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SUMMARY

This report presents the results of studies addressing several problems
in the head-end processing {(decladding, metathesis, and core dissolution) of
N Reactor fuel elements in the Hanford PUREX plant. These studies were
conducted over 2 years: FY 1986 and FY 1987. The studies were divided into
three major areas: 1) differences in head-end behavior of fuels having
different histories, 2) suppression of 106gy volatilization when the ammonia
scrubber solution resulting from decladding is decontaminated by distillation
prior to being discharged, and 3) suitability of flocculating agents for
lowering the amount of transuranic (TRU) element-containing solids that
accompany the decladding solution to waste.

The major study area addressed the reasons why operating problems in the
plant were more severe during processing of aged fuels grade (FG) fuel than
when shorter-cooled weapons grade (WG) fuel was processed. This was
investigated primarily in a series of flowsheet simulation runs with sections
of N Reactor fuels of different histories. These studies showed that the
piant problems with FG fuel Tikely resulted from the presence of water-
reacted fuel in the dissolver charges. Such fuel gives more extensive
reaction of the uranium core during decladding; this results in a greater
quantity of insoluble uranium fluoride salts, which leads to a higher
likelihood of jet pluggages as well as to an increased 1ikelihood of a
"runaway chemical reaction" at the start of the acid cut because of the
increased quantity of highly reactive {to nitric acid) hydrous uranium
dioxide present after metathesis.

Based on the results of this work, several flowsheet changes were made
that Ted to largely trouble-free operation during the next FG fuel campaign.

The flowsheet simulation runs also provided valuable information in a
number of other areas such as 1) uranium reaction during decladding by a
previously unrecognized reaction, 2) fission product behavior during
decladding, 3} ammonium hydroxide behavior during decladding, 4) precipi-
tation of an unknown zirconium compound from declad solutions, 5) transfer of
actinide-containing solids along with the declad and metathesis solutions,



6) effectiveness of different metathesis conditions, 7) foaming and reaction
rates during the acid cut, and 8) presence of excessive zirconium in the acid
cut solutions. '

The second major area of study in this project was the suppression of
106py volatilization when the ammonia scrubber solution resulting from the

decladding process was decontaminated by distillation prior to being ~r
discharged. It was found that the 106Ry content of the ammonia scrubber -
distillate (ASD) could be significantly reduced by the addition of either —~

permanganate or peroxide to the evaporator.

The third major area of the study was related to the solid/liguid .
separations problems that led to the neutralized cladding removal waste
{(NCRW)} containing too much plutonium and americium to allow the resultant
sludge to be disposed of (after grouting) as Tow-level waste. Data were
obtained on particle sizes and densities, and the effectiveness of flocculat-
ing agents was tested under several conditions (including work with an
irradiated element). The flocculating agents appeared to give little, if
any, improvement in the settling of plutonium and americium-containing
solids.
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The uranium reacted during decltadding is not lost, however. The uranium
(IV) resulting from this reaction has a limited soTubility in the terminal
declad solution so that only a small fraction is soluble:

UM+ (44x)F7 + xNHE = UF, xNH,F(s) (1.4)

Nearly all of the UFs-xNH4F remains behind in the dissolver but a portion of
it accompanies the solution when it is transferred to centrifuge feed tanks.
Another portion of the NH4F-xNH4F solids is recovered by centrifugation, but
a small fraction passes through the centrifuge and is discarded with the
soluble materials that are present in the solution.

If the UF4-xNH4F solids were dissolved in nitric acid along with the
uranjum metal core, the contained fluoride would lead to excessive corrosion
or to the need to add large amounts of a fluoride-complexing metal ion such
as aluminum to minimize corrosion. Such an addition has an adverse effect on
waste treatment costs, and it is necessary to minimize it. Accordingly, the
next process step is to metathesize the UF;-xNH4F to hydrous uranium (IV)
oxide (UD2-yH»0). This is accomplished by boiling with a basic solution:

UFgq-XNHgF(s) + 4KOH = UOp-yHpO(s) + 4KF + xNH4F (1.5)

Potassium hydroxide is preferred for this application because the solubility
of potassium fluoride is much higher than the solubility of sodium fiuoride.
Most of the fluoride that precipitated as UF4-xNHaF is thus discarded to
waste in the spent metathesis soTution.

The U0z-yHy0 metathesis product and the uranium core are then dissolved
in nitric acid cohtaining aluminum nitrate nonahydrate (ANN), which is added
to minimize corrosion caused by the portion of the fluoride that still
remains. Because of volume constraints, it is necessary to use multiple acid
cuts to dissolve the uranium core to (hopefully) completion before the next
batch of fuel elements is charged to the dissolver. The resulting solutions
are then ready for the mainline PUREX solvent extraction steps in which the
uranium and plutonium are recovered and purified.
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This head-end procedure had worked adequately well in the pre-1972 time
frame before the PUREX plant was placed on standby and the fuel discharged
from N Reactor was allowed to accumulate in water-filled storage basins.
Much of the fuel discharged during this period was irradiated to burnhups
that resulted in >7% of the plutonium being present as 240py; such material
is referred to as fuels grade (FG) fuel. More recently, fuel has again been
irradiated to burnups that resulted in 5% to 6% of the plutonium being
present as 240py; this material is referred to as weapons grade (WG) fuel.

When the PUREX plant was restarted in 1983, WG fuel was processed first.
Both Tong-cooled and short-cooled fuels were processed, with little apparent
difference. However, when a batch of long-cooled FG material was processed,
severe processing problems were encountered. These problems included
1) frequent pluggage of transfer jets when the spent declad and metathesis
solutions were being removed from the dissolver, 2} excessive entrainment of
plutonium-bearing solids from the dissolver into the centrifuge feed tanks,
3) excessively rapid reaction rates at the start of the first acid cuts, and
4) excessive foam formation in the dissolvers.

From initial considerations, it was concluded that the most probabie
cause of most of the problems was excessive reaction of uranium during
dectadding. This would result in the formation of higher concentrations of
so1ids, which would increase the probabilities of jet pluggages and excessive
entrainment of solids from the dissolver, as well as result in more hydrous
oxide, which can react very vigorously when nitric acid is added to initiate
the first acid cut. An experimental program was initiated to obtain
comparative data under controlled conditions to test this hypothesis and to
evaluate possible methods of alleviating the observed problems.

The main thrust of this experimental program was to perform head-end
simulation experiments with three different categories of irradiated fuel:
1) short-cooled, intact WG fuel elements; 2) long-cooled, intact FG elements;
and 3) long-cooled FG elements that had their cladding breached sufficiently
to allow appreciable reaction of uranium with water during storage. Other
categories of fuel were not available for study. Related studies were
carried out concurrently in other experiments.
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Additional studies were later done in two problem areas that are not a
function of differences between FG fuel and WG fuel (although the severity of
these problems can vary with the fuel age and its behavior during declad-
ding). The first of these areas involved study of the volatilization (and
ways to suppress it) of 106Ry when the ammonium hydroxide sotution, which
results when the declad off-gas stream is scrubbed with water {Equation 1.3),
was distilled before it was released to the environment. The other area
involved testing the use of flocculating agents to reduce the amount of
plutonium-containing solids that are transferred from the dissolver along
with the spent declad and metathesis solutions.
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2.0 SUMMARY AND CONCLUSIONS

This report presents the resulis of studies addressing several problems
in the head-end processing {decladding, metathesis, and core dissolution) of
N Reactor fuel elements in the Hanford PUREX plant. These studies were
divided into three major areas: 1) differences in head-end behavior of fuels
having different histories, 2) suppression of 106Ry volatilization when the
ammonia scrubber solution resulting from declad is decontaminated by
distillation prior to being discharged, and 3) suitability of flocculating
agents to lower the amount of transuranic (TRU) element-containing solids
that accompany the decladding solution to waste.

The major probiem area was to determine the reason for the severe
operating problems that had been encountered in the plant during processing
of aged FG fuel instead of shorter-cooled WG fuel. This problem area was
addressed primarily in a series of flowsheet simulation runs with sections of
N Reactor fuel of different histories, as follows: 1) unirradiated fuel,

2) ~1l-yr-cooled WG fuel, 3) -12-yr-cooled FG fuel that had remained intact
during storage, and 4) ~12-yr-cooled FG fuel that had {partially) reacted
with water during the storage period. The flowsheet simulation runs involved
partial decladding with AFAN solution, metathesis with KOH solution, and
dissolution of a small portion of the uranium metal core in nitric acid
{HNO3).

The results of this comparison showed that the plant problems with FG
fuel likely resulted primarily from the presence of water-reacted fuel in the
dissolver charges. Such fuel gives more extensive reaction of the uranium
core during decladding; this results in a greater quantity of insoluble
uranium fluoride salts, which leads to a higher likelihood of jet pluggages
as well as to an increased Tikelihood of a "runaway reaction" at the start of
the acid cut because of the increased quantity of highly reactive (te HNO3)
hydrous uranium oxide present after metathesis.
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Based on the results of this work, several flowsheet changes were made
before the next FG fuel reprocessing campaign was run:

1. The dissolver charge size was reduced {from 10.2 MTU to 7.3 MTU)
with proportional reduction in solution volumes. This decreased the
reactive surface area, which gave lower quantities reacting per unit
time, and increased the vapor volume, which allowed more foam to be
accommodated without incident.

2. The declad reaction time was reduced from 8 h to 6 h, in an effort
to decrease the extent of uranium reaction during decladding.

3. The second acid cut end-point c¢criterion was changed in an effort to
reduce the area of exposed uranium remaining at the end of the acid
cut, so that less uranium reaction would occur in the next cycle in
that dissolver.

The results of this work also verified and provided a sound basis for
another flowsheet change that had been successfully implemented by plant
personnel during the problem-plagued campaign with FG fuel; this change was
to use a low concentration of nitric acid at the start of the first acid cut
so that slower reaction rates occurred.

The FG campaign that was run under these conditions was largely trouble-
free, indicating that the changes were indeed effective in avoiding the
problems encountered earlier. The overall processing rate of the latest FG
campaign was comparable to that of the earlier campaign, indicating that the
time saved by avoiding the problems offset the time lost by reducing the
charge size.

The flowsheet simulation runs also provided valuable information in a
number of areas that appeared to be independent of the type of fuel being
processed. One of these areas was foaming during acid cuts where, in
addition to the foaming that results from the runaway reactions that occur
when a large amount of hydrous uranium oxide reacts with nitric acid, another
type of foaming was observed. This foaming occurred during dissolution of
the uranium metal core in nitric acid; it was found to increase in severity
as the concentration of ANN, which is added to complex residual fluoride,
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increased and was also found to be increased by the presence of oil from an
air compressor. The severity of this type of foaming increases dramatically
as the temperature nears boiling; thus, slight cecoling of the solution {e.g.,
by sparging, using a cooling coil, or adding water) gives a dramatic decrease
in the volume of this type of foam.

Another important result of these flowsheet simulation runs was the
discovery that extensive reaction of the uranium core during decladding can
continue to occur after the free fluoride concentration has become so low
that dissolution of Zircaloy has essentially stopped. This not only can lead
to excessive attack of the core, but can also lead to continued reaction
after all the nitrate present in the currently used AFAN blend has been
consumed; this would result in an increased hydrogen evolution. Such
occurrences are more likely with water-reacted fuel than with intact fuel
because of the higher area of uranium that can be exposed in the water-
reacted case.

In a related area, it was also found that extensive reaction of uranium
will occur during storage in dilute fluoride solutions at room temperature;
thus, Tong exposure of declad fuel to declad or declad rinse solutions should
be avoided.

Data were also obtained regarding the rate of dissolution of uranium
metal in nitric acid. No dramatic effect of irradiation exposure on
dissolution rate {per unit area) was observed. However, a markedly higher
total dissolution rate was observed with an element that had reacted
extensively with water during storage; this came about because this element
"fell apart" during decladding, thereby giving a markedly higher exposed
uranium area.

The flowsheet simulation runs also provided some data in other head-
end areas. Among these are 1) transfer of actinide-containing solids along
with the declad and metathesis solutions, 2) fission product behavior during
decladding, 3) ammonium hydroxide behavior during decladding, 4) precipita-
tion of an unknown zirconium compound from dectad solutions, 5) effectiveness
of different metathesis conditions, and 6) presence of excessive zirconium in

2.3



the acid cut solutions. This last area is another case that appears to be
worse during processing of extensively water-reacted fuel.

The second major area of study in this project was the suppression of
106py volatilization when the ammonia scrubber solution resulting from the
decladding process is decontaminated by distillation prior to being dis-
charged. It was found that the 106py content of the ammonia scrubber
distillate (ASD) could be significantly reduced by the addition of either
permanganate or peroxide to the evaporator. The work reported here was done
before the determination was made that the ammonium hydroxide contained in
this stream could not be discharged to the environment, and thus is not
directly relevant to currently considered processes designed to destroy
ammonia as well as to provide decontamination from fission products.

The third major area of the study was related to the solid/Tiquid
separations problems that led to the neutralized cladding removal waste
(NCRW) containing too much plutonium and americium to allow the resultant
sludge to be disposed of (after grouting) as low-level waste. Data were
obtained on particle sizes and densities, and the effectiveness of flocculat-
ing agents was tested under several conditions (including work with an
irradiated element). The flocculating agents appeared to give little, if
any, improvement in the settling of plutonium- and americium-containing
solids.
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3.0 METHODS AND MATERIALS

The dissolver pot used in the flowsheet simulation runs was a glass
cylindrical vessel ~33 cm tall and ~13 cm in diameter having a nominal
capacity of 4 L. It was fitted with a removable top containing four
openings; one opening was fitted (through a ground glass joint) with a steam
condenser of the Eastman type and the other three were filled with silicone
rubber stoppers through which passed a cooling coil, a water-add line
connected to a graduated reservoir, an air sparge line, or a thermometer.
This dissolver pot was heated by a heating mantle, which extended nearly
half-way up the walls of the pot.

Most of the flowsheet simulation runs used 6-in. lengths cut from the
end of fuel elements. A 6-in. inner element end section is estimated to
contain a total of 150 g zirconium, of which 96 g is in the cladding and the
remainder is in the end cap. A 6-in. outer element end section is estimated
to contain 292 g zirconium, of which 193 g is in the cladding. All flowsheet
simulation runs started with 1.7 L of 5.0 M NHgF; thus the molar charge
ratios in typical experiments were 8.1 fluoride/clad zirconium in an inner
element run and 4.0 fluoride/clad zirconium in ap outer element run.

Complete decladding was therefore not expected in an outer element run; the
comparative behavior of sections having different reactor exposures was still
valid, however.

At the completion of the time allowed for decladding, the solution was
diluted to 2.6 L and cooled to ~60°C while being air-sparged. The sparge was
then stopped and, after a -20-min settling time, the declad solution was
slurped from the dissolver pot through a slurp line inserted in the pot until
it almost touched the bottom and held in place as suction was applied and the
solution was removed. The slurp line had feet attached to its sides so that
its end could not get closer than 1/8 in. to the bottom of the dissolver;
however, transfer of some settled solids along with the solution and
suspended solids was observed in all cases.

After the declad solution had been removed, the dissolver contents were
rinsed with 2.0 L water, which was sparged to mix the loose solids. After a
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20-min settling time, this solution {and some solids) was slurped from the
dissolver and combined with the declad solution for dissolution (in nitric
acid/ANN) and analysis. '

The remaining solids were then treated with hot potassium hydroxide
solution to metathesize the fluoride salts to hydrous oxides (hydroxides).
This step usually employed 3.0 L of 3.3 M KOH, which was heated to boiling
and held there (with sparging) for 1 h. The solution was then cooled,
allowed to settle, and slurped out as before. The metathesis rinse procedure
was the same as the declad rinse procedure except that this rinse solution
was combined with the metathesis solution for analysis.

A solution containing 6.6 M HNO3 + 0.6 M ANN was then added to dissolve
the hydrous oxides and, when hot enough, a portion of the uranium metal. The
volume of this solution was generally 1.9 L. This solution was sparged while
it was being warmed, and was sampled at temperatures of -~50, ~-60, and ~70°C
to obtain a measure of the uranium that had been present as hydrous oxide.
Sparging was then stopped and the solution was heated to boiling, or to a
Tower temperature if the severity of foaming would not allow that high of a
temperature, and samples were taken over a period of ~1 h to determine the
rate of dissolution of the uranium metal.

In general, the solutions were not sparged during the decladding and
core dissolution reactions, as the boiling action and the reaction gas
evolution were very adequate to provide good mixing. The action of the steam
sparge used during decladding in the plant was simulated by increasing the
externally supplied heat input so that more water was converted to steam
in situ. Our target condensate collection rate during decladding was
400 mL/h, which is comparable (per liter of decladding solution} to the total
condensate rate in the plant resulting from the steam sparge and from
external heating.

A relatively constant solution volume was maintained during the
decladding and core dissolution reactions by periodically adding water to
replace the condensate. These additions were generally 50 or 100 mL in size.

The procedure used to sample the dissolver pot during the runs was
primitive, but effective. It involved simply dipping a cup of known volume
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