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NOMENCLATURE 
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f c a p i l l a r y  k v e  o s c i l l a t i o n  frequency, s 

vapor drag force ,  N 

g r a v i t a t i o n a l  acce le ra t ion ,  m / s 2  

column length,  m 

drople t  mass; kg 

mass of both primary and secondary drople ts , ,  kg 

tube  pi tch , .  m 

tube  spacing, m 

time, s 

ve loc i ty ,  m/s , 

column volume, m 3  
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5 f r a c t i o n  of blocked area  
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lJ viscos i ty ,  N- s / m 2  

P densi ty ,  kg/m3 

u surface  tension,  N/m 

r f lowrate, kg/srm 
. .  . 
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ABSTRACT 

The problem of vapor l l iquid  i n t e r a c t i o n  and entrainment in shell-and- 

tube  evaporators i s  analyzed. At tent ion is focused pr imar i ly  on t h e .  

hor izonta l  tube  f a l l i n g  f i lm evaporators, which have been proposed f o r  use  

in Ocean Thermal Energy conversion (OTEC)' power. p lan t s .  I n  t h e  hor izon ta l  

tube  design, l i q u i d  f a l l s  from one tube  t o  t h e  next in e i t h e r  a  d rop le t  o r  

column mode. A c r i t e r i o n  is derived f o r  p red ic t ing  t h e  t r a n s i t i o n  from t h e  

d rop le t  mode t o  t h e  column mode. Models a r e  developed f o r  predic t ing t h e  

de f lec t ion  of d r o p l e t s  and columns due t o  vapor crossflow. ~ a s e d '  on an 

experimental study of drop detachment and breakup, a  c o r r e l a t i o n  i s  es- 

tabl ished f o r  determining t h e  r e s u l t i n g  d rop le t  s i zes .  For high vapor 

crossflow v e l o c i t i e s ,  a  c r i t e r i o n  is presented f o r  p red ic t ing  t h e  inception 

of l i q u i d  entrainment by a process known a s  s t r ipp ing .  Based on t h e  fore-  

going models, condi t ions  a r e  defined under which.vaporl l iquid i n t e r a c t i o n  

and entrainment a r e  important f o r  OTEC evaporators. 



1.0 INTRODUCTXON 

An evaporator concept widely used tn deaa l ina t ton  systems and re- 

cen t ly  proposed f o r  use  i n  Ocean Thermal Energy Conversion COTEC) power 

p l a n t s  is t h e  shell-and-tube design, where a t h i n  f i lm of warktng f l u i d  

i s  evaporated on e i t h e r  horfzontal  o r  v e r t i c a l  tubes. With t h e s e  types of 

designs, vapor crossflow may cause se r ious  problems, such a s  r e d t s t r i b u t i o n  

,of t h e  working f l u i d  and incomplete wettfng of tubes. Re l i ab le  evaporator 

design requ i res  a c l e a r  understanding of t h e  e f f e c t  of vapor crossflow. The 

purpose of t h i s  paper i s  t o  study t h e  bas ic  mechanisms of vapor l l iqu id  2nter- 

a c t i o n  and entrafnment and t o  develop models app l i cab le  t o  t h e  design and 

performance evaluation of shell-and-tube evaporators f o r  OTEC. 

Compared t o  t h e  v e r t i c a l  configurat ion,  t h e  horfzonta l  design is  con- 

s iderably  &re vulnerable t o  vapor / l iquid  in te rac t ion .  Thus a t t e n t i o n  i s  

focused pr imar i ly  on t h e  latter design. I n  a t y p i c a l  hor izonta l  tube  f a l l i n g  

f i l m  evaporator, working f l u i d  is  fed' a t  t h e  top of v e r t i c a l  banks of hori- 

zon ta l  tubes. I n  t h e  absence of vapor crossflow the  unevaporated f l u i d  from 

any given tube  w i l l  f a l l  onto t h e  next lower tube, and t h e  q u a l i t a t i v e  

s t r u c t u r e  of t h e  f a l l i n g  l i q u i d  is dependent p r imar i ly  on t h e  feed f l o w a t e .  

A t  r e l a t i v e l y  low feed f lowrates  t h e  f l u i d  f a l l s  from one tube  t o  t h e  next 

i n  t h e  form of drople ts ,  which a r e  crea ted  'by Taylor i n s t a b i l f t i e s  along 

t h e  bottom por t ion of : the  tubes,  see Fig. l a .  A t  higher feed f l o w a t e s  

a t r a n s l t i o n  region i s  encountered where in te rmi t t en t  d r o p l e t s  and columns 

a r e  formed. Upon increasing t h e  f lowrate  s t i l l  f u r t h e r  a c r i t i c a l  flow- 

r a t e  is reached beyond which t h e  l i q u i d  f a l l s  a s  s t a b l e  columns, Fig. l b .  

A t  extemely high feed f lowrates  t h e  l i q u i d  f a l l s  a s  uns table  shee t s  and 

columns, but these  high f lowrates  a r e  genera l ly  ou t s ide  t h e  range of 

i n t e r e s t  f o r  OTEC. 

A s  a r e s u l t  of vapor crossflow t h e  d r o p l e t s  and columns. fa l l ing  from a 

given tube may be p a r t i a l l y  o r  t o t a l l y  def lec ted  away from t h e  next lower . . 

tube, thereby causing l i q u i d  r e d i s t r i b u t i o n  and incomplete wetting of lower 

tubes i n  t h e  bank. I n  additiori t o ' t h e s e  d e f l e c t i o n  mechanisms,, a number of 
. . 

entrainment mechanisms can a l s o  occur. For example i f  nuc lea te  boi l ing  

is  present  i n  t h e  f i lm,  a m i s t  of small d r o p l e t s  i s  generated a s  bubbles 

burs t  through t h e  f i lm, and t h e  ball d r o p l e t s  a r e  r e a d i l y '  ent ra ined by 

t h e  flowing vapor. An entrainment mechanism common t o  both hor izonta l  and 



v e r t i c a l  designs is  t h a t .  of shearing o r  "str ipping" of t h e  th$n l t q u i d .  

f i lm from t h e  tube  surface.  I n  this paper models of t h e  foregotng 

mechanisms, among others ,  a r e  developed. Based on t h e  models, condi t ions  

a r e  defined under which vapor/ lfquid i n t e r a c t i o n  and entrafnment a r e  

important f o r  OTEC. Whenever an example is given f o r  OTEC, ammonia f s 

assumed t o  be t h e  working f l u f d .  

Simple experiments have a l s o  been conducted t o  study t h e  dynamics of 

drop formation and breakup. Resul ts  from such e x p e r b e n t s  some of 

t h e  necessary information f o r  t h e  development of t h e  present '  models. 
. . 



. . 

2.0 MODELLING 

The following models genera l ly  apply t o  hor izonta l  t u b e  f a l l f n g  ff lm 

evaporators  which are. t h e  most vulnerable  t o  vapor/lf,+id in te rac t ion .  It. 

w i l l  be c l e a r l y  e t a t ed  when the.mode1.s apply t o  o t h e r  v a p o r a t o r  designs.  

2.1. Droplet Mode. I n  a hor izon ta l  tube evaporator ,  t h e  physica l  form of t h e  

l i q u i d  flowing from one tube t o  t h e  next depends on t h e  l i q u i d  flowrate 

and the d i s t a n c e  between the tubes. When t h e  f lowra te  is small and t h e  tube  

spacing i s  l a rge ,  t h e  l i q u i d  is  u'sually i n  the form of. drop le t s .  . I f  t h e  

f lowra te  is l a r g e  o r  t h e  tube  spacing i s  small,  t h e  l i q u i d  may flow in t h e  

form of columns. The c r i t e r i o n  f o r  t h e  t r a n s i t i o n  from t h e  d rop le tmode  

t o  t h e  column mode ~ 2 . 1 1  be discussed- . in' the next. sect ion. 

I n  t h e  d rop le t  mode, d r o p l e t s  are produced from d i s c r e t e  p o i n t s  along 

t h e  underside of  t h e  hor izonta l  tube. The present  problem of a t h i n  f i l m  

on t h e  underside of a hor izonta l  tube  r e l a t e s  t o  a c l a s s i c  hydrodynamics. 

problem known a s  Taylor i n s t a b i l i t y  [ I ] ,  see Fig. 2. Taylor i n s t a b i l i t y  

s t a t e s  t h a t  when a heavier  f l u i d  i s  on top  of a l i g h t e r  f l u i d ,  such a s  

l i q u i d  over vapor i n  t h e  present  case ,  t h e  system i s  not  s t a b l e .  Taylor 

i n s t a b i l i t y  a l s o  s t a t e s  t h a t  t h e  i n s t a b i l i t y  wave t h a t  w i l l  most l i k e l y  

appear at t h e  i n t e r f a c e  has a wave length:  

= 2 . F  (1) 
~g 

where a and p R  a r e  the  su r face  tens ion and dens i ty  of t h e  f l u i d ,  re- 

spect ive ly ,  and g is  t h e  g r a v i t a t i o n a l  acce le ra t ion .  Since t h e  formation 

of d r o p l e t s  in  t h e  present  case is  a r e s u l t  of t h e  growth of an i n s t a b i l i t y  

wave a t  t h e  in te r face ,  i t  is reasonable t o  expect t h a t  t h e  spacing between 

t h e  d rop le t  genera t ion  s i t e s  i s  equal  t o  t h e  wavelength A given by Eq. (1) .  

( I t  should be pointed out  that Eq. (1) has success fu l ly  been used t o  pre- 

d i c t  t h e  spacing between vapor bubble columns i n  s t a b l e  f i l m  boi l ing  [2, 31.) 

For ammonia a t  22OC ( 7 2 ' ~ ) ~  Eq. (1) p r e d i c t s  a wavelength of 2.0 cm (0.8 in . )  

which i s  i n  good agreement with t h e  experimentally measured spacing of 

1.9 cm (0.75 in . )  by Sabin and Poppendiak 141. Furthermore Eq. (1) was found 

t o  ag ree  reasonably w e l l  wlth our mper iments  wi th  e t h y l  a lcohol ,  which w i l l  

be discussed shor t ly .  

The mechanism of detachment of a drop" from a '  l i q u i d  f i l m  i s  ex- 

tremely d ' i f f i c u l t  t o  t r e a t  analy t ica l ly . .  To study t h e  detachment mechanism, 



a simple experiment was performed wfth e t h y l  a lcohol ,  which was chosen 

because of i t s  s i m i l a r i t y  t o  ammonia i n  w e t t a b i l i t y ,  surface  tension,  and 

densi ty .  Ethyl  a lcohol  a t  room temperature (20°C) was fed f r a n  a bure t  on- 

t o  an unheated 3.8 cm (1.5 in.) diameter hor izonta l  aluminum tube. The 

l i q u i d  d rop le t s  from t h e  underside of t h e  tube  were photographed by a high 

speed camera a t  200 framesleec. Figure 3 shows a sequence of photographs 

of a detaching drop. A s  a drop detaches from t h e  f i lm,  it c a r r i e s  with it 

a long narrow t a i l ,  which, by t h e  w e l l  known Rayleigh i n s t a b i l i t y ,  eventually 

breaks up i n t o  4 o r  5 smaller drople ts .  A s l i g h t  inc rease  i n  d r o p : s i z e  w i t h  

t h e  f lowrate ms  observed '(the v a r i a t i  . . on i n  s i z e  is usua l ly  wi th in  + 5% of 

i t s  nominal value).  Also t h e  length  of t h e  t a i l  increased with f lowrate. 

The large  drop i n  Fig. 3 w i l l  be re fe r red  t o  a s  t h e  primary drop, and t h e  

4 o r  5 smaller drops a s  secondary drops. The mechanism by which t h e  l iqu id  

breaks off  from t h e  f i l m ,  is egsential-ly an i n t e r a c t i o n  of g rav i ty  'and- sur- 
I f ace  tens ion forces.  It is  reasonable t o  expect t h a t  t h e  diameter, d , of 

P 
a primary drop can be cor re la ted  by an expression such as:  

where C1 i s  a constant .  The value  of t h e  constant  ' C was dete&ined from 1 
our experiments with alcohol to.! be 2.7. The secondary .drops cou1.d a l s o  be 

cor re la ted  by a s imi lar  expression but with d i f f e r e n t  constants .  However, 

it was decided t o  express t h e  diameter, dS, of t h e  secondary drops i n  terms 

of t h e  r a t i o  ds/d . From t h e  experimental da ta  i t  was found t h a t :  
P d 

S 0.23 c - 
d < 0.38 (3 )  

P 

It was estimated t h a t  t h e  volume of t h e  secondary d r o p l e t s  compared t o  t h e  

t o t a l  .volume of . d ~ p p l e t s  .fs about 10% .;. It I;s e x p e c t d  t h a t  Eq. (2) '.and 

expression (3) can be applied t o  any good wetting f l u i d .  For ammon2a a t  22OC 

- ( 7 2 ' ~ )  t h e  foregoing expressions predic't d = 5.1 mm (0.20 in.)  and 1.2 mm 
P 

(0.05 in.) < d < 1.9  mm (0.08 in.). These predic ted  drop s i z e s  a r e  con- 
s 

s i s t e n t  with experimentally measured drop s i z e s  f o r  ammonia [ 4 ] .  

Knowing t h e  drop s i z e s ,  it is  poss ib le  t o  c a l c u l a t e  t h e  driplet deflec-  
. - . . .  . . 

tf.ons dGe t o  vapor erossflow,'  I n  F ig .  4 t h e  angle  a i s  t h e  a c t u a l  drop 

de f lec t ibn  angle and' 8 is the  .cr f t ic .a l .  angle beyond which' t h e  drpp w i l l  not  
.. . .  , 

h i t  the I&&: &be. nef iec t jo i i  angles  f o r  whiih'a v 0 . a r e  'considered s a f e  in 



t h e  sense t h a t  t h e  drop w i l l  h i t  t h e  lower tube ,a l though . i t  is  recognized 

t h a t  non-uniform wett ing of t h e  lower tube  may s t i l l  r e s u l t .  The angle  

8 has a  simple re la t ions l l ip  t o  t h e  pitch-to-diameter r a t i o  P/D a s  

Further  remarks concerning 8 and P/D w i l l  be given in a  l a t e r  sec t ion  

on tube  arrangement. 

Based on t h e  coordinates  shown i n  Fig. 4, t h e  equations of motion of 

a  s i n g l e  d r o p l e t ,  i n  t h e  presence of vapor crossflow v e l o c i t y  u  a re :  
8 ' 

x-di rec t  ion 

v-d i r e c t  i o n  

where m and d  a r e  t h e  mass and diameter of t h e  d rop le t ,  respect ive ly ,  p 
g 

is the  vapor dens i ty  and Cd i s  t h e  drag c o e f f i c i e n t .  Cer ta in  assumptions 

a r e  implied i n  t h e  formulation of t h e  above equations. These assumptions 

a re :  (1) t h e  motion of the  d rop le t  i n  t h e  y  d i r e c t i o n  i s  mainly governed 

by g r a v i t y  ( i .e . ,  vapor drag f o r c e  i n  t h a t  d i r e c t i o n  i s  small) ;  and (2)  t h e  

motion of t h e  d rop le t  i n  t h e  x  d i r e c t i o n  i s  mainly due t o  t h e  vapor drag f o r c e  

a t  a  s teady vapor crossflow v e l o c i t y  u  (%;mi. ; t h e  reduction in drag 
f.4 

f o r c e  due t o  t h e  motion of t h e  d rop le t  in t h e  x  d i r e c t i o n  i s  smal l )*  With- 

out  t h e s e  assumptions, t h e  formulat ion given by Eqs. (5) and (6) would be 

much more complex because the  vapor flow around t h e  d rop le t  is  b a s i c a l l y  

non-steady. With these  assumptions, t h e  problem i s  reduced t o  a  s teady 

s t a t e  f low problem wi th  known va lues  f o r  t h e  drag c o e f f i c i e n t  C It is  
d  ' 

r ea l i zed  t h a t  t h e s e  assumpitons a r e  v a l i d  only i f  t h e  e r r o r  introduced 

i s  s m a l l .  This ,  however, is found t o  be t r u e ' a s  w i l l  be discussed l a t e r  

when t h e  so lu t ion  i s  appl ied  t o  a  t y p i c a l  ammonia d rop le t  case. 

The drag c o e f f i c i e n t  Cd in Eq. (5) depends genera l ly  on t h e  Reynolds 

nmber  of t h e  vapor flow. Equation (5) can be f u r t h e r  s impl i f ied  by re- 

s t r i c t i n g  our  so lu t ion  t o  Reynolds number g , rea ter  than 1000, which is  

usua l ly  t h e  case. A t  Reynolds number between lo3  and lo5,  t h e  drag 

cvcf I f c i e n t  has a simple  value^ sf 0...44-~'1'.5~ . . .  



The.boundary cond i t ions  f o r  Eqs, 0) and (6) a r e  x 5. dx/dt  = y = 

dy/dt = 0 a t  t = 0. In s e t t t n g  dy/dt  = 0 a t  t = 0, it i s  .somewhat con- 

s e r v a t i v e l y  assumed t h a t ' t h e  d rop le t  has no t n i t f a l  v e l o c i t y  a s '  it depar t s  

from t h e  tube. Equatians. C5)  and (6)' i nd ica te .  t h a t  t h e .  t r a j e c t o r y  of a  d e f l e c t -  

ed drople t  i s  a s t r a f g h t  l i n e .  The angle  of def l e c t f o n  a ,  def b e d  a s  
- 1 

a = t a n  (x/Y), can be  e a s i l y  obtained from Eqs. ( 5 )  and (6) A s  

The c r i t i c a l  vapor crossflow v e l o c i t y  u f o r  which t h e  d rop le t  de- 
g 

f l e c t i o n  angle  a is equal t o  t h e  maximum allowable angle  8 ,  can be  obtained 

by combining Eqs. (4) and (7) in to :  

Equation (8) i s  p l o t t e d  i n  Fig. 5 f o r  t h e  case  of ammonia d r o p l e t s  a t  a  

temperature of 22OC ( 7 2 O ~ ) .  I n  Fig. 5 ,  t h e  c r i t i c a l  ammonia vapor crossflow 

v e l o c t t y  u t s  p l o t t e d  as a func t ion  of t y p i c a l  ammonfa d rop le t  diameters..d, 
' g 

and f o r  var ious  t y p i c a l  pitch-to-diameter r a t i o s  P/D. The dash region f o r  small 

drop diameters  i n d i c a t e s  a  range where Eq. (8) i s  not  s t r i c t l y  app l i cab le  

because t h e  Reynolds number is  l e s s  than 1000; thus  t h e  curves  a r e  only 

projec ted  values.  The atomization region i n  Fig.  .5 i n d i c a t e s  an a r e a  where 

d r o p l e t s  would not  be a b l e  t o  e x i s t  because of d i s i n t e g r a t i o n  due t o  high 

vapor ve loci ty .  The atomization boundary i s  based on a Weber number of 

12' [6] ,  where t h e  Weber number i s  defined a s :  

The diameter d i n  t h i s  equation de f ines  t h e  maximum drop s i z e  t h a t  can exist 

f o r  a  given crossflow ve loc i ty .  A drop which is  l a r g e r  than t h e  maximum 

drop s i z e  corresponding t o  a  given vapor v e l o c i t y  can d i s i n t e g r a t e  i n t o  

many smaller  d rop le t s .  Although t h e  curves i n  Fig. 5 a r e  obtained from 

a s impl i f ied  set of equations,  t h e  r e s u l t s  a r e  q u i t e  accura te .  From a 

s l i g h t l y  more involved a n a l y s i s ,  it was found t h a t  t h e  ca lcu la ted  vapor 

v e l o c i t y  may be s l i g h t l y  higher than t h e  t r u e  value.  I f  t h e  tube  spacing 

i s  l e s s  than 2.5 cm ( 1  in.), t h e  overest imate i s  a t  most 20%. 

The s a f e  region i n  Fig. 5 i s  t h e  a r e a  f o r  which a < 8 ( t o  ensure t h a t  

t h e  d rop le t  h i t s  t h e  lower tube) and ly ing  below t h e  atomization boundary 



( t o  avoid p o t e n t i a l  d i s i n t e g r a t i o n  i n t o  much smaller  d r o p l e t s  t h a t  can 

e a s i l y  be de f l ec ted) .  For a given P/D, t h e  i n t e r s e c t i o n  of Eqs. (8) and 

(9) de f ines  t h e  maxim& al lowable ,  c rossf  low v e l o c i t y .  For P/D = 1.25 t h i s  

maximum v e l o c i t y  i s  2.9 m / s  and occurs a t  d = 3.8 mm. Recall  t h a t  t h e  pre- 

d ic t ed  drop s i z e s  f o r  ammonia a r e  d = 5.1.mm and 1.2 mm < d < 1.9  mrn. 
P s 

From Fig. 5 f o r  P/D = 1.25 t h e  corresponding maximum v e l o c i t i e s  a r e  ? . 6  m / s  

f o r  t h e  primary drop and 1.6 m / s  t o  2.1 m / s  f o r  t h e  secondary drops. I f  

t h e  crossflow v e l o c i t i e s  a r e  kept below 1.6 h/s no d r o p l e t s  w i l l  be de-, 

f  l e c t e d  away from lower tubes  al though non-uniform tube  wett ing may occur. 

For c r o s s f l o w v e l o c i t f e s i n  t h e  range 1 .6  m / s  t o  2.1 m / s ,  some of t h e  

secondaryd.roplets w i l l  be de f l ec ted  from t h e  lower tube  and w i l l  s t r i k e  a 

tube  i n  t h e  next  column., A t  2.1 m / s  a l l  t h e  secondary drops a r e  de f l ec ted ,  

represent ing  10% of t h e  l i q u i d  f a l l i n g  from t h e  tube. Ve loc i t i e s  beyond 

2 . 6  m / s  may cause d i s i n t e g r a t i o n  of primary d r o p l e t s  i n t o  much smaller  drop- 

lets, thus  p o t e n t i a l l y  causing 100% d e f l e c t i o n  of l i q h i d  from t h e  lower 

tubes. 

Based on t h e  preceeding example, it was seen t h a t  vapor crossflow can 

p a r t i a l  o r  t o t a l  de f l ec t ion  of d r o p l e t s  from t h e  lower tubes. This  

can lead  t o  non-uniform and incomplete wett ing of tubes,  and r e d i s t r i b u t i o n  

of working f l u i d  from one column t o  t h e  next .  The n e t  e f f e c t  is  a l o s s  i n  

heat  t r a n s f e r  performance. To completely avofd depr ivat ion  of l i q u i d  t o  t h e  

lower tubes and r e d i s t r i b u t i o n  of working f l u i d ,  t h e  crossflow v e l o c i t y  

should not  exceed 1.6 m / s .  However even under t h e s e  cond i t i ans  it should 

be recognized t h a t  non-unifonn.tube wett ing can s t i l l  occur. It should 

a l s o  be pointed out  t h e  l a r g e s t  crossflow v e l o c i t i e s  occur i n  t h e  outer -  

most regions of an evaporator  u n i t .  For l a r g e  bundle evaporators ,  the re fo re ,  

vapor l a n e s  should be  cons ide red ' to  reduce vapor v e l o c i t y  so a s  t o  avoid t h e  

aforementioned l i q u i d  d e f l e c t i o n  and entrainment problems. 

2 . 2  column Mode, A n  express ion . fo r  t h e  c r i t i c a l  f lowrate 'above which s t a b l e  

columns are formed w a s  obtained by s e t t i n g .  t h e  d rop le t  prdduction frequency 

equal  t o  t h e  c a p f l l a r y  wave o s c f l l a t f o n  frequency a t  t h e  film i n t e r f a c e ,  

y ie ld ing  : 

where X i s  t h e  Taylor wave l eng th  given by Eq. ( I ) ,  M is t h e  mass of a l l  

t h e  d r o p l e t s  i n  each drop breakup, and f is  t h e  c r i t i c a l  breakup frequency. 



The t o t a l  d rop le t  mass, My & .  @bply.: . . 

* ' 
where d - i s  ' the  prfmary d rop le t  diameter g i v e  by Eq. (2) and t h e  f a c t o r  of 

P 
1.1 accbunt s f o r  t h e  mass of a l l  t h e  secondary d rop le t s .  The c r i t i c a l  break- 

up frequency is simply that of t h e  c a p i l l a r y  wave o s c i l l a t i o n  frequency a t  

t h e  f i l m  surface ,  which is  [ 7 ]  

This  assumes t h a t  a f t e r  each drop breakup, t h e  f i l m  su r face  bounces'once, a t  

t h e  c h a r a c t e r i s t i c  speed of a c a p i l l a r y  wave, before  another  drop can be 

formed, and t h a t  t h e  maximum breakup frequency i s  l imi ted  by t h e  c a p i l l a r y  

wave o s c i l l a t i o n  frequency given by Eq. ( lob) .  Note that f o r  f lowra tes  

s m a l l e r t h a n  rc, t h e  drop breakup frequency can be sinaller than t h e  c a p i l l a r y  

wave o s c i l l a t i o n  frequency. For f lowrates  g r e a t e r '  than r c ;  d r o p l e t '  mode 14 

not poss ib le  and t h e  flow changes t o  t h e  column.mode. Equati& (Id)  fs i n  good . 

agreement with t h e  experimentally observed c r i t i c a l  f lowra tes  f o r  e t h y l  

alcohol .  Applying Eq. (10) t o  ammonia a t  2Z°C ( 7 Z 0 ~ ) ,  t h e  c r i t i c a l  f lowrate  

above which colurqns w i l l  f o p  i.6 .about .0.013 kg/s*m (.3.2 l b l h r - f t ) .  

- . . - - - - . . - -- .. - . - - . - . . - ... . 
Figure l b  shows a sketch. of t h e  - fu l ly  developed column mode. A s  i n  

t h e  case  of d rop le t s ,  t h e  column spacing w i l l  be  prescr ibed by t h e  most un- 

s t a b l e  wavelength, A ,  from Eq. (1) .  A l i q u i d  column has a tapered  shape 

but f o r  a n a l y t i c a l  purposes i t  is  convenient t o  model t h e  column a s  a r i g h t  
* 

c i r c u l a r ' c y l i n d e r  having t h e  same leng th  and an e f f e c t i v e  diameter,  d , 
such t h a t  t h e  vo1,mes a r e  equivalent .  The e f f e c t i v e  diameter is  determined 

a s  follows. Ref e r r ing  t o  Fig. 6a, t h e  v e l o c i t y  a t  -any p o s i t i o n  y below t h e  

tube  is given by t h e  " f ree - fa l l "  expression:  

.Here it i s  conservat ive ly  assumed that t h e  l i q u i d  v e l o c i t y  a t  ,y = 0 ,fs 

neg l ig ib ly  m a l l .  The mass f lowra te  f o r  a s i n g l e  column i s  XI',.where X is 

* 
For t h e  c a l c u l a t i o n  of d w e  recommend using C = 2.83, ins t ead  of 2.7 because 
t h e  drop sires at f l o w a ? e s  approaching t r a n s i t i o n  were 5X l a r g e r  than 
nominal . 



column spacfng and r i s  t h e  l i q u i d  f lowrate  per  ' u n i t  length .  Employing . . 

t h e  f  oregofng i n  conjunction i r i th  t h e  con t inu i ty  equation, t h e  f  o l l o ~ i n g  
. . 

expression f o r  t h e  column c r o s ~ - s e c t i o n a l  a r e a  i s  obtained: 

from which t h e  column volume V can be determined by in teg ra t ion .  Sub- 

s t i t u t i n g  y  = z cos a  and in teg ra t ing  from z = 0 t o  L y ie lds :  
,"-. :- 

Then t h e  e f f e c t i v e  diameter is  determined from: 

upon s u b s t i t u t e  Vf rom Eq. (13) and l e t t i n g  L = S / C O ~  a,  t h e  e f f e c t i v e  

diameter can be  expressed as:  

Referring t o  Fig. 6b, t h e  column def l ec t ion  angle,  a; due t o  vapor cross-  

f low can be determtned from a  balance of f o r c e s  normal t o  t h e  cy l inder :  

Fd =..W s i n  a (1 6) 

where Fd i s  t h e  drag f o r c e  based on t h e  component of v e l o c i t y  normal t o  

t h e  cyl inder  : 

* P  2 
P d = c d ~ d  + ( u  c o s a )  

g  
and W is t h e  weight of t h e  column: 

W = p e g V  C16b) 

Af te r  making t h e  appropr ia t e  s u b s t i t u t i o n s  i n t o  .Eq. (16) and with some re- 

arrangement t h e  foll'owing expression i s  obtained:  



* 
where d i s  def fned by Eq, U 5 )  and A by Eq. (1). 

The c r f t f c a l  angle  8 beyond which t h e  column w i l l  no longer hit t h e  

next  lower tube  is given t h e  same expression a s  f o r  drops, f .e., Eq. ( 4 ) .  

Subs t i tu t fng  8 f o r  a f n  Eq. (17) l e a d s  t o  an  equation definfng t h e  c r i t i -  . 

c a l  condit ion f o r  columns. For t h i s  condi t ion ,  Eq. (17) is p l o t t e d  i n  

Fig. 7 a s  u v s  I' f o r  varfous P/D r a t f o s .  The c a l c u l a t i o n s  a r e  f o r  ammonia 
g 

a t  22OC ( 7 2 ' ~ ) .  The between-tube d f s t ance  S was determined by assuming 
-118 

5.1 cm (2 in.) diameter tubes. It is  easy t o  show t h a t  u Q S and con- 
g 

sequently t h e  r e s u l t s  a r e  not  s e n s i t i v e  t o  S. The drag c o e f f i c i e n t  over 

t h e  Reynolds numbers of i n t e r e s t  is  Cd = 1. 

I n  Fig. 7 t h e  "safe". region i s  t h e  a r e a  f o r  which a < 8 ( t o  ensure t h a t  

t h e  column h i t s  t h e  lower tube).  Only t h e  region f o r  which I' 2, rc i s  con- 

s idered  s ince  t h e  d rop le t  mode dominates f o r  I' < rC. For I' = rc and P/D 

= 1.25, t h e  maximum allowable crossflow v e l o c i t y  i s  Q 1.5  m / s  ( 5  f t / s e c ) .  

This  v e l o c i t y  i s  roughly t h e  same a s  t h e  maximum allowable crossf low 
. . 

v e l o c i t y  f o r  t h e  smal les t  secondary drops found i n  t h e  d rop le t  mode, see  

previous sec t ion .  ' A s  I' increases,  t h e  column th ickens  and a higher cross-  

f low v e l o c i t y  i s  required t o  d e f l e c t  t h e  column. A t  r = 0.21 kg/s-m (500 

l b / h r * f t ) ,  t h e  al lowable v e l o c i t y  i s  about 3 m / s  (10 f t / s e c ) .  For a > 8 t h e  

column w i l l  be de f l ec ted  away from t h e  lower tube  and impinge on a tube  in 

t h e  adjacent  column of tubes. This  l e a d s  t o  depr ivat ion  of l i q u i d  t o  t h e  

lower tubes and r e d i s t r i b u t i o n  of t h e  working f l u i d .  To avoid these  pro- 

blems t h e  maximum allowable v e l o c i t y  f o r  a given f lo t r r a t e  I' should not  be  

exceeded.: However even under t h e s e  condi t ions  i t  should be recognized t h a t  

non-uniform tube .we t t ing  can s t i l l  occur. 

Before c los ing t h i s  sec t ion  a simple model w i l l  be given f o r  pre- 

d i c t i n g  t h e  f r a c t i o n  of t h e  vapor crossflow a r e a  which i s  blocked by l i q u i d  

columns. Referr ing t o  Fig. l b ,  t h e  f r a c t i o n ,  5 ,  of blocked a r e a  based on 

t h e  projected a r e a  of t h e  column i s  

* 
where d i s  given by Eq. (15) and X by Eq. (1). , For ammonia, Eq. (18) pre- 

d i c t s  that Q, 8% of t h e  flow a r e a  i s  blocked a t  t h e  c r i t i c a l  f lowrate  . f o r  

column formation. A t  I' = 0.21 kg/ewm (500 l b / h r ; f t ) ,  nea r ly  30% of t h e  



a r e a  i s  blocked. The percent  blocked a r e a  w U l  inf luence  t h e  ' she l l -s ide  

v e l o c i t i e s  and pressure  drops; and consequently must b e  c a r e f u l l y  con- 

s idered i n  t h e  thermal design. 

2 . 3  Str ipping,  The previous two s e c t i o n s  d e a l t  with t h e  d e f l e c t i o n  of l i q u i d  

a s  it f a l l s  from one tube  t o  t h e  next .  This  sec t ion  considers  entrainment 

phenomena associa ted  wi th  t h e  t h i n  l i q u i d  f i lm on t h e  tube  surface.  The 

models developed here in  apply t o  both hor izon ta l  and v e r t i c a l  tube  designs.  

I n  a  shell-and-tube evaporator ,  l i q u i d  flows over t h e  tubes  i n  t h e  

form of a  t h i n  f i lm.  I f  t h e  vapor v e l o c i t y  is  s u f f i c i e n t l y  high, t h e  l i q u i d  

f i l m  becomes uns tab le  a s  a  r e s u l t  of t h e  w e l l  known Helmholtz i n s t a b i l i t y  

[81 phenomenon. The growth of i n s t a b i l i t y  waves eventual ly  l e a d s  t o  d rop le t  

formation and entrainment. The incept ion  c r i t e r i a  f o r  d rop le t  entrainment 

i n  t h i n  f i l m s  has been considered by numerous inves t iga to r s .  A review 

paper on t h i s  subjec t  was published by I s h i i  and Grolmes [9] .  I s h i i  and 

Grolmes proposed new c r i t e r i a  f o r  d rop le t  entrainment i n  t ~ - ~ h a s e  co- 

current  f i l m  flow, which w e r e  shown t o  agree  w e l l  wi th  a l l  a v a i l a b l e  ex- 

perimental da ta .  Thei r  incept ion  c r i t e r i a  r e l a t e  t h e  c r i t i c a l  gas  v e l o c i t y  

(in dimensionless form) t o  t h e  l i q u i d  Reynolds number and t h e  flow d i r e c t i o n  

(whether hor izonta l ,  upward, o r  downward flow). From t h e i r  incept ion  

c r i t e r i a ,  t h e  lowest gas  v e l o c i t y  t o  cause entrainment, i r r e s p e c t i v e  of t h e  

l i q u i d  Reynolds number and flow d i r e c t i o n ,  i s  given by: 

where IJ is t h e  l i q u i d  v i s c o s i t y .  Although Eq. (19) i s  s t r i c t l y  app l i cab le  R 
only t o  co-current gas-l iquid f low it should a l s o  apply t o  counter-current 

flow when t h e  l i q u i d  v e l o c i t y  i s  small compared t o  t h e  c r i t i c a l  vapor 

ve loc i ty .  I n  both hor izonta l  and v e r t i c a l  evaporators  f o r  OTEC,the con- 

d i t i o n  of small l i q u i d  v e l o c i t y  i s  s a t i s f i e d  and hence Eq. (19) i s  genera l ly  

appl icable .  

When t h e  gas  dens i ty  is  much smaller than t h e  l i q u i d  d e n s i 6 ,  p r-< pE, 
g 

t h e  l e f t  hand s i d e  of Eq. (19) can be rearranged i n t o  a  r a t i o  of two important 

s i m i l a r i t y  parameters: t h e  Kutateladze number [ l o ]  and t h e  Kapitza number [ l l ] ,  

The Kutateladze number r ep resen t s  t h e  r a t i o  of t h e  d is turbance  f o r c e  (gas 

ve loc i ty )  t o  t h e  r e s t o r i n g  f o r c e  (surface tens ion)  a t  t h e  in te r face ,  

and i s  an important parameter i n  t h e  study of two-phase i n t e r f a c i a l  

s t a b i l i t y  problems 1101. The Kapitza number r e l a t e s  t o  t h e  



i n t e r n a l  s t a b i l i t y  of t h e  l i q u i d  f i l m  and is  an important parameter i n  t h e  

study of t h i n  lirquid f i l m  flows [ l l ]  . Based on t h e  foregoing remarks, 

the .  inception c r i t e r i o n  expressed by Eq. (19) i s  seen t o  have a s t r a i g h t  

forward physica l  i n t e r p r e t a t  ion. 

For ammonia a t  22OC (72OF), Eq. (19) i n d i c a t e s  a vapor v e l o c i t y  of 

4.7 m / s  (15 f t l s e c ) .  I f  an evaporator is  designed t o  s a t i s f y  t h e  drople t  

and column d e f l e c t i o n  c o n s t r a i n t s  discussed i n  t h e  previous sec t ions ,  then 

entrainment by s t r ippfng w i l l  no t  be  a problem. 

2.4 Other Entrainment Mechanisms. I n  t h i s  sec t ion  two o the r  entrainment 

mechanisms w i l l  be  considered, namely those  due t o  nuclea te  bo i l ing  and 

s p l a  shing . 
When n u c l e a t e  boil ing i e  present  i n  the f i lm,  a m i s t  of small d r o p l e t s  

can be generated a s  bubbles burs t  through the  f i lm,  and t h e  small d r o p l e t s  

can r e a d i l y  be ent ra ined by vapor crossflow. Our l i t e r a t u r e  survey revealed 

only one paper deal ing  with d rop le t  formation r e s u l t i n g  from boi l ing  i n  t h i n  

f i l m s  [12]. Petrovichev e t  a l .  [12] used water a s  t h e  t e s t  f l u i d ,  and found 

that t h e  d rop le t  generat ion r a t e  depends on both t h e  heat  f l u x  and f i lm 

thickness.  What determines t h e  degree 'of entrainment, of course, is  not  t h e  
. . 

t o t a l  d rop le t  generat ion r a t e  but r a t h e r  t .he r a t i o  of d rop le t  generat ion 
, . 

r a t e  t o  t h e  vapor genera t ion  r a t e ,  a parameter which w i l l  be r e f e r r e d  t o  a s  t h e  

d rop le t  entrainment r a t e .  I f  t h e  Petrovichev c o r r e l a t i o n  is a l s o  v a l i d  f o r  

ammonia, t h e  d rop le t  entrainment . r a t e  can be ca lcu la ted  f o r  a typ ' ical  OTEC 

ammonia s a t u r a t i o n  temperature of 22OC (72OF). I f  w e  assume a high heat 

f l u x  of 0.032 W / m 2 .  ( l o 4  ~ t u l h r - i t 2 )  and a r e l a t i v e l y  l a r g e  f i l m  th ickness  

of 0.33 mm (corresponding t o  a f lowra te  of 0.2 kg/s*m, o r  500 l b l h r - f t ) ,  

t h e  Petrovichev c o r r e l a t i o n  g ives  a d rop le t  entrainment r a t e  of only 0.23 x 

10'~ (0.23%). However, t h e  Petrovichev c o r r e l a t i o n  may not  be v a l i d  f o r -  

ammonia because it is not  dimensionless and i s  t h e r e f o r e  not  s t r i c t l y  ap- 

p l i c a b l e  t o  any f l u i d  except w a t e r .  For example, it was shown by N e w i t t  

et a l .  [I31 that bubble s i z e  a f f e c t s  t h e  d rop le t  entrainment r a t e .  Given 

t h e  f a c t  t h a t  ammonia l i q u i d  has smaller  vapor bubbles than water,  t h e  

a c t u a l  drople t  entrainment r a t e  may be d i f f e r e n t  from t h a t  predic ted  by t h e  

Petrovichev cor re la t ion .  Consequently f u r t h e r  study i n  t h i s  a r e a  i s  needed 

before any d e f i n i t e  conclusions can be reached. 
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Another poss ib le  entratnment mechanism is  that due t o  splashing. 

Splashing can occur when a lfqufd impinges onto a s o l i d  surface.  This  

process can generate drops of varioue s i z e s  which a r e  l i k e l y  t o  be en- 

t r a ined  by t h e  vapor. . . The extent  of splashing depends pr imar i ly  bn 

w e t t a b i l i t y  and f l u f d  ve loc i ty .  Experiments wfth v e r t i c a l  banks of hori-  
. . 

zbn ta l  tubes  (simulating an *.OTEC evapprator) indica ted  that splashing i s  
. . . . 

not s i g n i f i c a n t  when t h e  working f l u i d  adequately w e t s  t h e  tubes  1141 . 
Based on these  test r e s u l t s  and our own experimental observations wi th  

e t h y l  alcohol,  i t  is  expected t h a t  splashing i s  not  important f o r  good . 

wetting f l k d e  which f a l l  from one tube  t o  t h e  next under t h e  a c t i o n  of 

gravity.. Splashing of good wetting f l u i d s  can be expected only when t h e  

l i q u i d  i s  sprayed a t  high ve loc i ty  onto t h e  .tubes. 



3.0 REMARKS ON TUBE ARRANGEMENT 

Heat exchanger tube f i e l d s  are genera l ly  l a i d  ou t  with e q u i l a t e r a l  

p i t ches  in '  e i t h e r  square o r  t r i a n g u l a r  ar rays .  The arrangements a r e  of 

f o u r  bagic 'types: 90'-square; 45'-square; 30'-triangular; and 6O0-tri- 

angular.  With t h e  30' and 90' arrangements, t h e  t r ansverse  p i t c h  ( i . e . ,  

v e r t i c a l  tube p i t c h  t ransverse  t o  vapor crossflow) is  equivalent  t o  t h e  

e q u i l a t e r a l  p i t ch ,  P. This i s  t h e  case  depicted i n  Fig. 4. With t h e  60' 

and 45' arrangements the  t r ansverse  p i tches  are P& and ~ f i  respect ively .  

Equation (4) f o r  t h e  c r i t i c a l  angle  and t h e  sketch  i n  Fig. 4 apply 

only t o  t h e  30' and 90' arrangements. Di f fe ren t  expressions a r e  needed 

t o  c a l c u l a t e  t h e  c r i t i c a l  angles  f o r  t h e  45' and 60' cases.  For t h e  45' 

arrangement t h e  c r i t i c a l  angle is determined by replacing P wi th  PE in 

Eq. (4) .  For t h e  60° case t h e  l i n e  def in ing t h e  c r i t i c a l  ang le  is  not  

tangent to  t h e  next  lower tube, bu t  ins tead i s  tangent  t o  a tube i n  the  

adjacent  column. Thus t h e  c r i t i c a l  angle  i s  l e s s  than t h a t  which would 

be 'obtained by replacing P wi th  PO i n  Eq. (4 ) .  For a given P/D t h e  

c r i t i c a l  angles  f o r  t h e  45' and 60' arrangements a r e  r e l a t i v e l y  small. com- 

pared t o  t h e  c r i t i c a l  angle  f o r  the  30' o r  90" case.  ~ h e k e  smaller angles  

do n o t . n e c e s s a r i l y  imply a g r e a t e r  p o t e n t i a l . f o r  de f lec t ion  because the  

crossflow ve loc i ty  is  a l s o  smal ler  ( i n  view of t h e  l a r g e r  t ransverse  gaps). 

It is not  a t  a l l  obvious which of t h e  four  conf igura t ions  is super ior  

from a vapor/ l iquid i n t e r a c t i o n  standpoint .  Although a r igorous  comparison 

is dependent on many aspec t s  of each design, a very simple approach can 

provide some i n s i g h t  i n t o  the  problem. To e s t a b l i s h  a b a s i s  of comparison, 

consider four  hor izon ta l  tube evaporator u n i t s ,  each having a d i f f e r e n t  tube 

arrangement ( i . e . ,  45', 90°, 60°, and 30'). Assume t h a t  each u n i t  is  de- 

signed with t h e  same e q u i l a t e r a l  pitch-to-diameter r a t i o ,  P/D, and t h e  

o v e r a l l  envelope of each tube bundle is square. Moreover, each u n i t  has an 

equal number of tubes and hence t h e  same heat  duty and t o t a l  vapor generat ion.  

I n  each u n i t  t h e  vapor is assumed t o  flow hor izon ta l ly  outward from t h e  

v e r t i c a l  cen te r l ine .  The r e l a t i v e  m e r i t  of each u n i t  was examined using t h e  

d rop le t  and column def lec t ion  models. Based on th i sapproach ,  t h e  45O arrange- 

m e n t  was found t o  be t h e  b e s t  ( i .e . ,  l e a s t  vulnerable t o  entrainment),  followed 

c lose ly  by t h e  60°, 90°, and 30' arrangenents. The r e l a t i v e l y  high ranking 

of t h e  60' conf igura t ion is  a b i t  misleading because uniform t ransverse  gap 

ve loc i ty  was assumed in t h e  ca lcu la t ions .  For t h e  o the r  tube  arrangements 



t h i s  assumption is  reasonably good. However f o r  t h e  60' arrangement t h e  

ve loc i ty  w i l l  be non-uniform i n  view of t h e  l a r g e  t ransverse  gap and t h e  

proximity of tubes in adjacent  columns. The crossflow ve loc i ty  w i l l  be 

neg l ig ib ly  small a t  a gap loca t ion  midway between t h e  tubes and r e l a t i v e l y  

l a r g e  i n  t h e  neighborhood of t h e  upper and lower tubes. Consequently t h e  

d e f l e c t i o n  of drops and columns is probably underestimated f o r  t h e  60° con- 

f igura t ion .  It  is  q u i t e  poss ib le  t h a t  a more exact  a n a l y s i s  would revea l  

t h a t  t h e  60° arrangement is  a c t u a l l y  t h e  l e a s t  d e s i r a b l e  insofa r  a s  vapor/ 

l i q u i d  i n t e r a c t  ion is concerned. 

Although the  30' conf igura t ion was found t o  be somewhat more vulnerable  

t o . l i q u i d  de f lec t ion  than t h e  o t h e r  arrangements, i t  must be emphasized t h a t  

t h e  approach used f o r  t h e  comparison is  very crude. F u r t h e m r e ,  vapor l l iquid  

i n t e r a c t i o n  is  only one of a number of f a c t o r s  t h a t  must be considered i n  t h e  

thermal design of evaporators. Thus, on ' the b a s i s  of t h e  foregoing comparison 

alone,  no arrangement should b e  precluded a s  a v i a b l e  candidate. 



4.0 SlJMMARY AND CONCLUSIONS 

A s tudy of vapor/ll;qutd i n t e r a c t i o n  and entrainment t n  shell-and-.tube 

evaporators  was conducted. At tent ion  was focused on hor izonta l  tube  f a l l i n g  

f i lm evaporators  fo r  OTEC. I n  t h e  hor izonta l  t u b e  design, l i q u i d  f a l l s  

from one tube  t o  t h e  next i n  e f t h e r  a  d rop le t  o r  column mode. The spacing 

between d rop le t  generat ion sites and columns can be predic ted  by t h e  most 

uns tab le  wavelength f o r  t h e  Taylor i n s t a b i l i t y .  

Based on an experimental study (using e t h y l  a lcohol)  of d rop le t  de- 

tachment and breakup, a  c o r r e l a t i o n  was es t ab l i shed  f o r  determining t h e  

r e s u l t i n g  drop s i z e s .  Applying t h e  c o r r e l a t i o n s  t o  ammonia a t  22OC (72OF) 

it was found t h a t  90% of t h e  l fqu id  e x i s t s  a s  l a r g e  d r o p l e t s  of diameter % 

5.1 mm (0.20 in.) and 10% is i n  t h e  form of smaller  d r o p l e t s  i n  t h e  range 

1.2 mm (0.05 in.)  t o  1 .9  mm (0.08 i n . ) .  The equations of motion w e r e  solved 

t o  determine t h e  d rop le t  t r a j e c t o r i e s .  With ammonia a s  t h e  working f l u i d  

and p / ~  = 1-25 (in a 300-triangular o r  go0-square arrangement), i t  was 

predic ted  t h a t  vapor crossflow can produce p a r t i a l  o r  t o t a l  d e f l e c t i o n  of 

d r o p l e t s  away from t h e  lower tubes. To completely avoid deprfvat ion  of 

l i q u i d  t o  t h e  lower tubes  and r e d i s t r i b u t i o n  of t h e  working f l u i d ,  t h e  

maximum allowable crossflow v e l o c i t y  was ca lcu la ted  t o  be 1 .6  m / s  (5.3 f t / s e c )  . 
A c r i t e r i o n  was derived f o r  p red ic t ing  t h e  t r a n s i t i o n  from t h e  d rop le t  

mode t o  t h e  column mode. For ammonia t r a n s i t i o n  w a s  predic ted  t o  occur a t  

r = 0.013 kg1s.m (32 l b / h r * f t ) .  A model was developed f o r  determining t h e  

d e f l e c t i o n  of a  column due t o  vapor crossflow. The maximum allowable 

v e l o c i t y  was found t o  depend on t h e  f lowrate  per  u n i t  length ,  and f o r  P/D = 

1.25 inc reases  from 1.5 m / s  (5 f t / s e c )  a t  t h e  t r a n s i t i o n  f low t o  3 m / s  

(10 f t / s e c )  a t  0.21 kg1s.m (500 l b / h r . f t ) .  I n  t h e  column mode it  was 

predic ted  t h a t  t h e  percent  o f t h e  a v a i l a b l e  crossflow a rea  blocked by l i q u i d  

columns inc reases  from abou t .8% a t  t h e  t r a n s i t i o n  f lowrate  t o . n e a r l y  30% a t  

A t  high vapor v e l o c i t y  l i q u i d  can be s t r ipped  from t h e  tubes  and en- 

t r a ined  by t h e  vapor. An incept ion  c r i t e r i o n  d s  presented  which p r e d i c t s  
. . 

a c r i t i c a l  vapor v e l o c i t y  of 4.7 m / s  (15 f t / s e c )  . (This a p p l i e s  t o  both 

hor izonta l  and ' v e r t i c a l  f a l l i n g  f i l m  evaporators .  ) f f an evaporator is. de- 

signed. t o  s a t i s f y  the d r o p l e t  ahid column d e f l e c t i o n  cor is t ra in ts ,  ihen 



entrainment by s t r fpping wf l l  not be a probleii. . . 

Other vapor / l tqutd  f n t  e rac t  ion mechanisms were considered: d r o p l e t s  
i generated' as bubbles burst  through t h e  f i lni  t n  t h e  case  of-  boi l ing  and 

' splashing as l fqufd  f a l l s  from one t u b e -  t o  t h e  next.  Splashing m e  judged 

t o  be ins ignf f i can t  f o r  good wetting f l u i d s  &ch a s  ammonia. ' Using 

Petrovfchev's  dimensional entrainment c o r r e l a t i o n  whfch i s  based on boi l ing  

of t h i n  water fflms, entrainment f o r  ammonia &s found t o  be &ll. How- 

ever s ince  t h e  c o r r e l a t i o n  is s t r f c t l y  v a l i d  o n l y . f o r  water, f u r t h e r  work 

is  needed before any conclusive assessment can be made regarding ammonia. 

A crude comparf son was. made of four  tube  arrangement 9. (.30°-tri- . , 

angular ,  60'-triangular, 45'-square, and 90'-square) t o  d e t e d i n e  which i s  
. . 

superior  from a vapor/ l iquid i n t e r a c t i o n  standpoint.  The 45O arrangement 

was found. t o  be t h e  bes t  and t h e  60' conf igura t ion probably t h e  worst. 

However i n  view of t h e  s impl ic i ty  of'. t h i s  comparison, no arrangement bhould 

be precluded a s  a v i a b l e  candfdate. 

The vapor/ l iquid i n t e r a c t  ion and entrainment models developed i n  t h i s  

paper a r e  general ,  and should prove t o '  be use fu i  t 'ools for t h e  thermal de- 

s ign and perfor&nce.evaluation of shell-and-tube evaporators for.OTEC. 
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.TYPICAL HORIZONTAL TUBE I N  
A VERTICAL BANK.: 
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Fig.  1 .Liquid . f a l l i n g  i n  (a) ' droplet mode; 
.and (b) s table  column 'mode. 



r- .UNDER S I D E  OF HORIZONTAL TUBE 

F2g. 2 Taylor instabi l i ty  a t  liqufd/vapor interface. 



TIME = 0 145 ms 180 ms 190 ms 200 ms 

F i g .  3 MovLe sequence of a drop detaching from a thj.n fib. 



Fig. 4 . Deflection o f  drople t  due to . ' 

vapor crossf low. 



Fig. S Maximum allowable crossflow velocity  
for droplet deflection. 



Fig .  6 ~e ' f l ec t ion  of  liquid column due to  
vapor crossflow. 
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Fig. 7 Maximum allowable cro,ssflow .velocity 
for Column deflect ion. 
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