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ABSTRACT 

A l l  t h e  a v a i l a b l e  exper imenta l  evidence sugges ts  t h a t  t h e  optimum 
1 1  organic"  a b s o r b e n t l r e f r i g e r a n t  combination would be a  methane d e r i v a t i v e  

w i t h  a s i n g l e  hydrogen atom w i t h  c h l o r i n e  and f l u o r i n e  atoms i n  t h e  o t h e r  

s i t e s ,  a s  r e f r i g e r a n t .  This would be  hydrogen bonded t o  an absorbent  molecule 

conta in ing  t h e  group ' N-C- , with  t h e  s u b s t i t u e n t  groups being such ' fl 
0 

t h a t  no s t e r i c  hindrance took p l ace .  

Cycle ana lyses  showed t h a t  t h e  r a t i o  of i n t e r n a l  h e a t  t r a n s f e r  t o  

cool ing  would be  l a r g e ,  probably i m p r a c t i c a l l y  s o  i n  view of t h e  high 

c o e f f i c i e n t  of performance needed f o r  s o l a r  d r iven  coo l ing  and the  a d d i t i o n a l  

handicap of h e a t  r e j e c t i o n  t o  t h e  atmosphere. 

. .  . . . A more.promisi-ng ,approach would be t o  reduce t h e  i n t e r n a l  h e a t  

t r a n s f e r  p e r  u n i t  of space  cool ing  by s e l e c t i n g  a  r e f r i g e r a n t  w i t h  a  high 

l a t e n t  h e a t  of vapor i za t ion  and s e l e c t i n g  an absorbent  with.  s u i t a b l e  

p r o p e r t i e s .  
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1-0 INTRODUCTION 

There has  been a lengthy  s tudy ,  ex tending  back i n t o  t h e  n i n e t e e n t h  

century ,  i d e n t i f y i n g  va r ious  chemical combinations which can suppor t  econo- 

mica l ly  acceptab le  absorp t ion  cool ing  cyc le s  f o r  space  condi t ion ing .  Of t h e  

many cyc le s  which have been s t u d i e d ,  on ly  two have been developed t o  r e a l  

commercial s t a t u s .  These two systems a r e  ammonia-water, which f i r s t  appeared 

a s  a gas powered, household r e f r i g e r a t o r  (by Se rve l )  and l a t e r  a s  a smal l  

tonnage space condi t ion ing  device  (by Bryant ,  Arkla  and Whirlpool) and the  

l i t h i u m  bromide-water cyc le  which was a p r o f i t a b l e  product  i n  t h e  hundred ton  

and l a r g e r  s i z e  ( C a r r i e r ,  Trane and York) bu t  which s t r u g g l e d  wi thout  n o t a b l e  

success  i n  t h e  sma l l e r  s i z e s  (Serve l  and o t h e r s ) .  

Both of t h e s e  systems have l i m i t a t i o n s  which have r e s t r i c t e d  t h e i r  

a r eas  of a p p l i c a t i o n  and have p e r i o d i c a l l y  l e d  t o  renewed e f f o r t s  i n  the  

search  f o r  a l t e r n a t e  chemical combinations. Some of t h e  more important  

l i m i t a t i o n s  t o  t h e s e  two cyc le s  a re :  

1-1.1 Aqua-Ammonia 

Ammonia i s  a t o x i c ,  flammable r e f r i g e r a n t ,  hence cannot be used 

f o r  d i r e c t  expansion i n  an occupied space .  Because i t  i s  a h igh  p re s su re  

system, t h e  gene ra to r  is covered by code requirements  which, f o r  the  d i r e c t  

f i r e d  v e r s i o n ,  e f f e c t i v e l y  l i m i t e d  t h e  gene ra to r  diameter  t o  s i x  inches  and 

r e s t r i c t e d  the  equipment t o  smal l  tonnage modules. The high p r e s s u r e  of 

t he  generator-condenser po r t ion  a l s o  presented  a pump problem i n  both 

mechanical des ign  and a s  a p a r a s i t i c a l  load .  Various " t rap" systems i n  

which h i g h  p re s su re  vapor was used t o  supply t h e  necessary  head have a l s o  

been used, b u t  f o r  a v a r i e t y  of reasons were d i sp l aced  by pumps. In  an 

e f f o r t  t o  r a i s e  t h e  c o e f f i c i e n t  of performance of t h e  u n i t ,  a h igh  genera tor  

temperature was used (about 190°C s o l u t i o n )  and a l a r g e  amount of h e a t  

t r a n s f e r  s u r f a c e  which l e d  t o  high c o s t s  and l a r g e  equipment s i z e .  



For s o l a r  a p p l i c a t i o n ,  a  s e r i o u s  l i m i t  i s  encountered i n  t h a t  

dec reas ing  t h e  gene ra to r  s o l u t i o n  temperature  t o  tempera ture  regimes 

a c c e s s i b l e  t o  contemporary s o l a r  c o l l e c t o r s ,  f l u i d s  and s t o r a g e  . a r t ,  

c auses  a  dec rease  i n  t h e  concen t r a t i on  d i f f e r e n c e  between s t r o n g  and weak , 

s t r e a m s ,  hence an i n c r e a s e  i n  t he  pumping r a t e  r equ i r ed  t o  main ta in  capac i ty .  

Th i s  causes  an  i n c r e a s e  i n  t h e  pump power t o  t h e  p o i n t  t h a t  when t h e  

c u r r e n t l y  a c c e s s i b l e  s o l a r  c o l l e c t o r  temperature  regime i s  approached, t h e  

pump energy requi rements  have become g r e a t e r  than t h e  power needed t o  d r i v e  

a  compression c y c l e  of  s i m i l a r  capac i ty .  An i n c r e a s e  i n  s o l u t i o n  c i r c u l a t i o n  

r a t e  a l s o  r e q u i r e s  t h a t  h e a t  t r a n s f e r  s u r f a c e  i n c r e a s e  t o  avoid d e t e r i o r a t i o n  

in n e t  thermal  e f f i c i e n c y .  

A t  a  t i m e  when promotion of n a t u r a l  gas f o r  summer consumption 

was a  major b u s i n e s s  t h r u s t  f o r  t h e  gas  u t i l i t y  i n d u s t r y ,  t he  manufacture 

and s a l e  of aqua-ammonia c h i l l e r s  was economically p o s s i b l e .  Now t h a t  n a t u r a l  

ga s  has  ceased t o  be  an abundant and 've ry  low p r i c e d  energy sou rce ,  t h e  

aqua ammonia c h i l l e r  is on t h e  verge  of  van i sh ing  from commerce. 

1-1.2 Lithium-Bromide-Water 

This  c y c l e  h a s  t r a d i t i o n a l l y  been used w i t h  low temperature  s team 

a t  about  115OC, which is i n  a  range marg ina l ly  a c c e s s i b l e  t o  s o l a r  c o l l e c t o r s  

of t h e  p r e s e n t  pe r iod .  With sui tab1.e  mod i f i ca t i ons  t he se  u n i t s  can be  adapted 

t o  lower tempera ture  e a s i l y  a v a i l a b l e  from evacuated t u b u l a r ,  moderately 

c o n c e n t r a t i n g  o r  even good, f l a t  p l a t e  c o l l e c t o r s .  One problem e x i s t s ,  

however; t h e  l i t h i u m  bromide-water c y c l e  h a s  n o t  been p r a c t i c a l l y  developed 

i n  a  manner which can b e  a i r  cooled.  The l i t h i u m  bromide-water system has  

been (commercially) l i q u i d  cooled ,  w i t h  a  cool ing  l i q u i d  sou rce  which cannot 

rise much above 30°C, an i n h e r e n t  l i m i t a t i o n  based on t h e  f i n i t e  s o l u b i l i t y  

of l i t h i u m  bromide i n  w a t e r .  

For l a r g e  i n s t a l l a t i o n s ,  i t  is  economical ly  accep tab l e  t o  supply 

a s t r e a m  o f  r e c i r c u l a t e d  water  whose tempera ture  is  w i t h i n  t h e  accep tab l e  

tempera ture  l i m i t s  by evapora t ive  coo l ing ,  most convenien t ly  w i th  a  cool ing  

tower.  A g r e a t  d e a l  of t h e  f a i l u r e  o f  s m a l l e r  l i t h i u m  bromide u n i t s  t o  win 

s i g n i f i c a n t  market a c c e p t a b i l i t y  has  been charged t o  t h e  unwi l l ingness  of 



householders ,  s t o r ekeepe r s  and otherusers  of low tonnage a i r  cond i t i one r s  

t o  accept  t h e  a d d i t i o n a l  f i r s t  c o s t  and maintenance of evapora t ive ly  cooled 

abso rp t ion  equipment . 
.,  

The most f e r t i l e  pe r iod  f o r  t h e  s tudy  of abso rp t ion  r e f r i g e r a t i o n  

combinations was t h e  decade of t h e  1930,'s when many p a i r s  were i n v e s t i g a t e d ;  

un fo r tuna t e ly  , however, most of t he  i n v e s t i g a t i o n s ,  were too super f  i c i a l  

t o  draw any r e a l  conc lus ions .  From t h i s  e a r l y  work t h e  two systems 

commercialized emerged and f u r t h e r  e x p l o r a t i o n  f o r  new systems remained a t  

a  low l e v e l  u n t i l  t h e  gas  u t i l i t y  i n d u s t r y  began t o  sponsor  programs 

seeking  t h e  development of  d i r e c t  gas -? i red  space  cond i t i on ing  equipment. 

Most of t h i s  work l a y  dormant dur ing  t h e  pe r iod  between t h e  t ime when' t he  

emergent energy sho r t age  i n t ruded  i t s e l f  i n t o  t h e  p u b l i c  consciousness  and 

t h e  resurgence  of i n t e r e s t  i n  h e a t  ope ra t ed  cool ing  dev ices  caused by 

Federa l  f i n a n c i n g  of  s o l a r  and geothermal  programs. 

1-1.3 Objec t ives  of This P r o j e c t  

The f i r s t  t a s k  of t h e  p r e s e n t  p r o j e c t ,  ERIA L e t t e r  Con t r ac t  

No. EG-77-C-03-1587, is t o  p re sen t  a  s t a t u s  r e p o r t  of t he  va r ious  systems 

which might be  capable  of s u s t a i n i n g  t h e  development of a  product  l i n e  of 

a i r  cooled abso rp t ion  u n i t s  of " r e s i d e n t i a l "  s i z e  which w i l l  be  i n t e r p r e t e d  

a s  t h e  c a p a b i l i t y  of supply ing  10,030 w a t t s  of cool ing .  The cond i t i ons  under 

which t h i s  r a t i n g  w i l l  be measured w i l l  s p e c i f y  water  ( o r  o t h e r  accep tab l e  

f l u i d )  be ing  supp l i ed  t o  a  cool ing  c o i l  i n  an a i r  s t r eam a t  7°C and t h e  wa te r  

r e tu rned  t o  t h e  c h i l l i n g  device  a t  13OC. Heat w i l l  be r e j e c t e d ,  when r a t i n g ,  

t o  an a i r  s t ream a t  35°C and incoming energy w i l l  be i n  a  f l u i d  a t  110°C. 

I n  a d d i t i o n  t o  a r r i v i n g  a t  c e r t a i n  recommended a r e a s  f o r  a d d i t i o n a l  

development work, t h e s e  r e p o r t s  w i l l  a l s o  s e r v e  a s  r e sou rce  documents wherein 

d a t a  suppor t ing  our conclusions can be recorded and made a v a i l a b l e  t o  o t h e r  

i n v e s t i g a t o r s  who may wish t o  draw d i f f e r e n t  conc lus ions .  A t  t h e  very  l e a s t ,  

i t  may s a v e  r e p e t i t i o n  of exper imenta l  work which has  a l r eady  been done 

s e v e r a l  t imes by i n d u s t r i a l  groups pursu ing  p a r a l l e l  programs. 



A n t i c i p a t i n g  what w i l l  develop i n  subsequent  s e c t i o n s ,  p o s t u l a t i n g  

a h e a t  sou rce  a t  llO°C i s  a very  s e r i o u s  r e s t r i c t i o n ,  i n  t h a t  t h e  concen t r a t ion  

d i f f e r e n c e  between s t r o n g  and weak s o l u t i o n s  becomes sma l l  ( p a r t i c u l a r l y  i f  

approach tempera tures  w i t h i n  t h e  l i m i t s  of p r a c t i c a l i t y  a r e  a l s o  accep ted ) .  

The consequences of s m a l l  concen t r a t ion  d i f f e r e n c e  a r e  i n c r e a s i n g  need of h e a t  

t r a n s f e r  s u r f a c e ,  dec reas ing  c o e f f i c i e n t s  of ( thermal ) .per formance  and r i s i n g  

e l e c t r i c a l  requi rements  f o r  pump power. 

I n  s p i t e  of t h e  s e v e r e  limits t h e  llO°C energy source  imposes,  t he  

writer f e e l s  t h a t  i t  must be accepted f o r  t h e  p r e s e n t  s i n c e  t h i s  appears  

t o  be a  reasonable  assessment of t h e  performance which c u r r e n t  s o l a r  technology 

can supply  w i t h  "reasonable" s o l a r  conversion e f f i c i e n c y .  

It i s  planned t o  i s s u e  t h i s  r e p o r t  i n  t h r e e  s e c t i o n s  c l a s s i f i e d  by 

n a t u r e  of  absorbent :  

1. Organic. l i q u i d  absorbents  

2.  Soluble  s o l i d  absorbents  

3. salt  - " a n t i f r e e z e  add i t i ve"  absorbents .  



2-0 ORGANIZATION OF SEARCH 

I n  p r i n c i p l e ,  any two subs tances  w i t h  d i f f e r e n t  vapor pressure-  

temperature r e l a t i o n s h i p s  and some degree of m i s c i b i l i t y  can be  used f o r  

absorp t ion  cool ing .  To be p r a c t i c a l ,  however, t h e r e  must be  a  d e f i n a b l e  

d i f f e r e n c e  between the  temperature l e v e l s  of t h e  energy i n t a k e  ( c h i l l e r )  and 

t h e  energy d ischarge  (absorber  and condenser) ,  which i s  equ iva l en t  t o  

say ing  t h a t  t h e  vapor  p re s su re  of r e f r i g e r a n t  d i s so lved  i n  t h e  absorbent  

a t  whatever temperature i t  is p r a c t i c a l  t o  cool  i t ,  must be  lower than  t h e  

vapor p re s su re  of pure r e f r i g e r a n t  a t  t h e  temperature needed t o  cool  t he  

space concerned. I n  t h e  case  of water  cooled abso rp t ion  equipment, t h i s  

d i f f e r e n c e  between evapora tor  and absorber  temperature is  about 25 t o  30°C; 

f o r  an a i r  cooled system i t  w i l l  be  i n  t h e  v i c i n i t y  of 40°C. A second 

requirement is  t h a t  t h i s  depress ion  of t h e  vapor p re s su re  of t h e  r e f r i g e r a n t  

when d i s so lved  i n  t h e  absorbent  be experienced w i t h  t h e  r e f r i g e r a n t  be ing  

a  s i g n i f i c a n t  p o r t i o n  of t h e  s o l u t i o n  s i n c e  t h i s  is  one of t h e  f a c t o r s  which 

a f f e c t s  o v e r a l l  cyc l e  e f f i c i e n c y .  T r a d i t i o n a l l y ,  t hese  requirements  a r e  

summarized i n  t h e  requirement t h a t  a  marked nega t ive  d e v i a t i o n  from Raoul t ' s  

Law w i l l  c h a r a c t e r i z e  a  Candidate abso rben t - r e f r ige ran t  combination. This  

i s  a u se fu l  s ta tement  because i t  permi ts  cons ide rab le  s c reen ing  of t h e  n e a r l y  

l i m i t l e s s  number of' conceptua l ly  p o s s i b l e  abso rben t - r e f r ige ran t  p a i r s .  

Unless t he  two chemical s p e c i e s  proposed a r e  capable of r e v e r s i b l e  chemical 

i n t e r a c t i o n ,  nega t ive  dev ia t ions  from Raoul t ' s  Law cannot t ake  p l ace .  

2-1 SCREENING .OF REFRIGERANT CANDIDATE 

m-en  e s t a b l i s h i n g  c r i t e r i a  of those  candida te  systems which w i l l  

be t r e a t e d  exper imenta l ly ,  i t  i s  most p r a c t i c a l  t o  begin w i t h  r e f r i g e r a n t s .  

A few requirements and some h igh ly  d e s i r a b l e  p r o p e r t i e s  permit  r a p i d  

reduct ion  t o  a  manageable number of candida tes .  These w i l l  comprise the  

f n l  1.owi.n~: 

Chemical S t a b i l i t y .  This i s  a f a i r l y  broad term s i n c e  i r r e v e r s i b l e  chemical' 

rea .ct ions wi th  t h e  atmosphere, wi th  the  m a t e r i a l s  of cons t ruc t ion  of the  

absorp t ion  machine, wi th  t h e  absorbent  o r  s imple thermal  decomposition must 

be v i r t u a l l y  absen t .  



S a f e t y  Cons ide ra t i ons .  I t  i s  impor tan t  t h a t  t h e  r e f r i g e r a n t  n o t  be no t ab ly  

t o x i c  o r  o the rwi se  dangerous t o  human be ings  exposed t o  l i q u i d  o r  moderate 

c o n c e n t r a t i o n s  of vapor .  It i s  h igh ly  d e s i r a b l e  t h a t  t h e  r e f r i g e r a n t  n o t  

be  flammable s i n c e  flammable r e f r i g e r a n t s  must be  handled i n  accordance 

w i t h  codes which a r e  r e f l e c t e d  a s  thermodynamic and c o s t  handicaps.. 

Molecular  Weight. The s p e c i f i c  hea t  of v a p o r i z a t i o n  is  roughly i n  i n v e r s e  

p r o p o r t i o n  t o  molecular  weight  whereas s p e c i f i c  h e a t  capac i ty  is approximately 

independent  o f  molecular  weight .  The r a t i o  of  s p e c i f i c  h e a t  capac i ty  t o  

s p e c i f i c  h e a t  of v a p o r i z a t i o n  i s  one of t h e  p r i n c i p a l  q u a n t i t i e s  a f f e c t i n g  

t h e  amo.unt of h e a t  which must be  handled by i n t e r n a l  h e a t  t r a n s f e r  p e r  u n i t  

of  c o o l i n g  d e l i v e r e d  t o  t h e  l oad .  

A second c o n s i d e r a t i o n  of molecular  weight  i s  b o i l i n g  p o i n t ,  which 

f o r  homologous chemical series tends  t o  i n c r e a s e  w i t h  molecular  weight .  

A h i g h  b o i l i n g  p o i n t  r e f r i g e r a n t  w i l l  have a  low pr .essure  i n  t h e  evaporator-  

a b s o r b e r  s e c t i o n s  and r e q u i r e  i n ~ o ' n v e n i e n t l ~  l a r g e  vapor passages t o  keep 

c a p a c i t y  up and s imul taneous ly  would complicate  any l iqu id-gas  h e a t  exchange 

which might b e  d e s i r a b l e  t o  improve t h e  c o e f f i c i e n t  of  performance. . . . .. 
. :  . . 

Substances w i t h  very  low b o i l i n g  p o i n t s  p r e sen t  problems i n  des ign ing  

t o  s a f e l y  c o n t a i n  t h e  h i g h  p r e s s u r e s  of t h e  generator-condenser  s e c t i o n  and 

even more troublesome a r e  t h e  mechanical des ign  and power consumption o f  

t h e  pumps. 

. :. 
An i d e a l  r e f r i g e r a n t  would b o i l  j u s t  below t h e  evaporator-.. t empera ture  

s o  a s  t o  main ta in  a  p o s i t i v e  p r e s s u r e  i n s i d e  a l l  p o r t i o n s  of t he  machine; 

b o i l i n g  p o i n t s  of -45°C and +llO°C a r e  reasonable  l i m i t s  t d . s e t  f o r  a  s e a r c h .  

Func t iona l  Groups 

Chemical i n t e r a c t i o n  between molecules  is  n o t  gene ra l i zed  b u t  

concen t r a t ed  i n  molecular  o r b i t a l s  a s s o c i a t e d  w i t h  " f u n c t i o n a l  groups. " 

For i n t e r a c t i o n  between o r g a n i c  molecules ,  a t  l e a s t  f o r  ou r  p re sen t  purposes ,  

one l ooks  f o r  p a i r i n g  o f  molecules ,  one of which c a r r i e s  a  f u n c t i o n a l  group 

which h a s  an  a v a i l a b l e  o r b i t a l  r e l a t i v e l y  d e f i c i e n t  i n  e l e c t r o n  d e n s i t y  

(Lewis a c i d )  and t h e  second of which has  an o r b i t a l  w i t h  h igh  e l e c t r o n  



d e n s i t y  (Lewis base ) .  Overlapping of t he se  o r b i t a l s  i s  then t h e  sou rce  of 

a minimum i n  p o t e n t i a l  energy which we a s s o c i a t e  w i t h  an i n t e r a c t i o n  

causing a nega t ive  d e v i a t i o n  from Raoul t ' s  Law. 

We have found t h a t  those r e f r i g e r a n t  s p e c i e s  which meet o u r  o t h e r  

requirements a r e  g e n e r a l l y  Lewis a c i d s .  I t  was a n t i c i p a t e d  t h a t  o l e f i n s  

wi th  s t r o n g l y  e l e c t r o n e g a t i v e  s u b s t i t u e n t  groups,  such a s  ha logens ,  would 

comprise t h e  most u s e f u l  c l a s s  of r e f r i g e r a n t s  f o r  t h i s  i n v e s t i g a t i o n .  A s  

r e s u l t s  were accumulated, however, i t  soon became apparen t  t h a t  t h e  bonding 

mode was i n v a r i a b l y  a hydrogen bond between a s t r o n g l y  (Lewis) b a s i c  s i t e  

on t h e  absorbent  molecule and a hydrogen s i t e  on t h e  r e f r i g e r a n t ,  w i t h  

s u b s t i t u e n t  groups on t h e  r e f r i g e r a n t  -enhancing the  ( ~ e w i s )  a c i d i t y  of  t h e  

hydrogen s i te .  

Sec t ion  2-3 con ta in s  an account  of  s p e c t r o s c o p i c  s t u d i e s  which 

i : were c a r r i e d  o u t  t o  con£ i r m  t h i s  conc lus ion .  

Other  Considerat ions 

A p r a c t i c a l  r e f r i g e r a n t  must have a v a i l a b i - l i t y  a t  a r ea sonab le  

c o s t ,  must n o t  involve  any r e s t r i c t i o n s  (such a s  h i g h  v i s c o s i t i e s )  t o  

hea t  t r a n s f e r  and c i r c u l a t i o n  and must no t  have any i n h e r e n t  slow s t e p s  i n  

mass t r a n s f e r  i n  whatever abso rp t ion  process  i s  used ( r e s u l t i n g  i n  f a i l u r e  

t o  approximate equ i l i b r ium c o n d i t i o n s ) .  

2-1.1 Candidate Re f r ige ran t s  

Ava i l ab l e  r e f r i g e r a n t  c l a s s e s ,  i n  t e r m s  of  our  above c r i t e r i a ,  

comprise : 

1. Highly, b u t  n o t  completely,  ha logena ted  methane, e thane  and 

e thy l ene  compounds. Samples o f  v i r t u a l l y  a l l  p o s s i b l e  members 

of t h i s  group were ob t a ined  and t e s t e d  w i t h  "best"  absorbent  

candida tes .  



2. A few low molecular  weight a l coho l s ,  ke tones  and e s t e r s  a r e  . . 

conceptua l ly  u s e f u l  and some of t h e s e  w i l l  b e  d iscussed  i n  

subsequent  r e p o r t s .  

3 .  Ammonia and lower molecular  weight  ammonia d e r i v a t i v e s  possess  

many of t h e  d e s i r a b l e  p r o p e r t i e s  l i s t e d  above bu t  it w i l l  be  most 

convenient  t o  cons ider  t h e  o rgan ic  absorbents  used i n  a  l a t e r  

r e p o r t  a long  wi th  compet i t ive  ino rgan ic  systems. 

4 .  Seve ra l  m a t e r i a l s ,  . somewhat unique i n  t h e i r  p r o p e r t i e s ,  have been 

cons idered ,  among which would be wa te r ,  hydrogen f l u o r i d e ,  some of 

t h e  v o l a t i l e  boron hydr ides  and h a l i d e s ,  hydrogen s u l f i d e ,  carbon 

d iox ide ,  s u l f u r  d iox ide ,  ox ides  of n i t r o g e n  and o t h e r  more o r  

less e s o t e r i c  compounds of t h e  non-metal l ic  e lements  of t h e  upper 

r i g h t  hand s e c t i o n  of t h e  p e r i o d i c  t a b l e .  

With the  except ion  of water ,  which i s  a uniquely d e s i r a b l e  

r e f r i g e r a n t  i n  many r e s p e c t s ,  t he se  o t h e r  e lements  and compounds 

can be g e n e r a l l y  e l imina ted  by t h e i r  known chemical and p h y s i c a l  

p r o p e r t i e s .  

2-2 ABSORBENT CANDIDATES 

W e n  t h e  b a s i c  p o s t u l a t e ,  t h a t  t h e  r e f r i g e r a n t  candida tes  w i l l  

be  e l e c t r o n  accep t ing  Lewis a c i d s ,  is  made then  t h e  absorbent  s ea rch  narrows 

down r a p i d l y  t o  a  manageable number of m a t e r i a l s  s i n c e  the  f a c t o r s  r e l a t i n g  

t o  t h e  b a s i c i t y  needed i n  t h e  absorbent  a r e  w e l l  known. 

The more impor tan t  cons ide ra t ions  f o r  s e l e c t i n g  absorbent  candida tes  

would i n c l u d e  the  fol lowing:  



Bas ic .Func t iona1  Group. The most s t r o n g l y  e l e c t r o n  denot ing f u n c t i o n a l  

groups a r e  found among t h e  d i s u b s t i t u t e d  amides. This  f a c t  was recognized by 

previous  workers ,  no tab ly  by G. F. Z e l l h o e f e r ,  M. J .  Copley and C. S. 

Marvel (3) ( 4 )  , by C . S . Marvel, M. J . Copley and Emanuel Ginsberg (2) , and 

by Thieme and ~ l b r i g h t " )  who recognized t h e  va lue  of  t h e  N,N dimethylamide 

grouping i n  forming hydrogen bands t o  p a r t i a l l y  f l u o r i n a t e d  and c h l o r i n a t e d  

hydrocarbon molecules.  

This obse rva t ion  was n o t  followed up by Z e l l h o e f e r ' s  group b u t , i n  

t h i s  r e p o r t  t h e  most promising o r g a n i c  absorbent  systems a r e  based on 

s u b s t i t u t e d  amine groups. 

High Bo i l ing  P o i n t .  An-absorbent should have a cons iderably  h i g h e r  b o i l i n g  

p o i n t  ( A T > .  100°C) than t h e  r e f r i g e r a n t  t o  o b v i a t e  t h e  need f o r  r e c t i f i c a t i o n ,  . 

which involves  both  machine coa t  and energy l o s s .  I n  Z e l l h o e f e r ' s  e a r l y  

work, he chose as an absorbent  the  dimethyl  e t h e r  of t e t r a e t h y l e n e  g l y c o l  

over  t h e  amides, whose s u p e r i o r i t y  h e  recognized,pr imari ly  because those  

amides a v a i l a b l e  t o  him had low b o i l i n g  p o i n t s .  

As  b o i l i n g  p o i n t s  r i s e ,  mel t ing  p o i n t s  gene ra l ly  tend t o  r i s e  a l s o .  

A s o l i d  absorbent , .  provided i t  has very  h i g h  s o l u b i l i t y  i n  t h e  r e f r i g e r a n t ,  

is accep tab le  b u t  opens one t o  t h e  r i s k  of s o l i d i f i c a t i o n  of p o r t i o n s  of 

t h e  c h i l l e r .  We have t r i e d  t o  work w i t h  low mel t ing  (M.P. 20°C) m a t e r i a l s  

a s  much as p o s s i b l e  t o  e l i m i n a t e  t h e  need f o r  design and c o n t r o l s  t o  p r o t e c t  

a g a i n s t  s o l i d i f i c a t i o n .  

J. Am. Chem. Soc. 60, 1337-1.343 (1938). 

(2) l o c .  c i t .  62, 3109-3112 (1940). 

U.S. Parent  2,308,665 (January 19 ,  1943). 

( 4 )  U.S. P a t e n t  2,149,948 (March 7 ,  1939) 

(5) 68 th  Annual ASHRAE Meeting (1961) . 



Chemicai P r o p e r t i e s .  Given an absorbent  wi th  s u i t a b l e  func t ion  group and 

b o i l i n g  p o i n t  f o r  t h e  r e f r i g e r a n t ,  o t h e r  chemical p r o p e r t i e s  p a r a l l e l  t hose  

impor tan t  f o r  t he  r e f r i g e r a n t .  Low molecular  weight  is gene ra l ly  d e s i r a b l e  

because only  the  f u n c t i o n a l  group is important  i n  absorb ing  r e f r i g e r a n t .  The 

remainder of  t h e  molecule  u s u a l l y  does noth ing  except  lower t h e  vapor p r e s s u r e  

and c o n t r i b u t e  t o  energy l o s s e s  by i t s  c o n t r i b u t i o n  t o  s e n s i b l e  h e a t  i n  

h e a t  exchangers ,  f l a s h i n g ,  e t c .  A s  w i l l  be  noted  below, we have been a b l e  

t o  b u i l d  up a  h igh  "concent ra t ion"  of func t ion  groups by p l ac ing  two such 

groups on v e r y  s h o r t  hydrocarbon ske l e tons  wi thout  s a c r i f i c i n g  vapor p re s su res .  

Thermal s t a b i l i t y  of candida te  systems,  i nc lud ing  absorbent ,  

r e f r i g e r a n t ,  all m a t e r i a l s  of cons t ruc t ion ,  should be demonstrated be fo re  

proceeding t o o  f a r  i n  q u a l i f i c a t i o n .  When des igning  f o r  t e n  o r  twenty-year 

l i f e  expectancy,  chemical  r e a c t i o n  r a t e s  must be almost immeasurably slow. 

2-3 SPECTROSCOPIC STUDIES OF ABSORBENT-REFRIGERANT INTERACTION 

I n f r a r e d  spec t rog raph ic  a n a l y s i s  was used t o  determine t h e  

mechanisms of a s s o c i a t i o n  between va r ious  absorbent  and r e f r i g e r a n t  molecules.  

The e s t ab l i shmen t  of t h e s e  mechanisms is  an important  s t e p  when s tudy ing  

t h e  broad f i e l d  of a b s o r p t i o n  r e f r i g e r a t i o n ,  i n  o rde r  t h a t  p r e d i c t i o n s  can 

be  made f o r  "improving" r e f  r i g e r a t i o n  combinations. 

I n i t i a l  s p e c u l a t i o n  l e d  us  t o  b e l i e v e  t h a t  t h e  e f f e c t i v e n e s s  (vapor 

p r e s s u r e  lower ing ,  e t c .  ) of combining c e r t a i n  o l e f i n s  ( r e f r i g e r a n t )  w i t h  

formamides such a s  N,N-dimethyl hexamide (absorbent )  was p r imar i ly  due t o  

T -bond ing  between t h e  carbonyl  of t h e  formamide and t h e  T - e l e c t r o n s  of  

t h e  o l e f i n .  It w a s  proposed t h a t  a n  e l e c t r o n  de f i c i ency  r e s u l t e d  a t  t h e  

double bond of o l e f i n s  con ta in ing  e l e c t r o n  withdrawing groups,  such a s  

c h l o r i n e ,  a t t a c h e d  t o  the double bonds. 'l'ilese u n f i l l e d  7r'-orbicaf s over lap  

w i t h  t h e  e l e c t r o n  cloud of t h e  u s h a r e d  e l e c t r o n s  of t h e  carbonyl  oxygen 

from t h e  formamide t o  form t h e  molecular a s s o c i a t i o n .  



Since  t h e  i n £  r a r e d  s p e c t r o s c o p i c  bands of t h e  compounds s t u d i e d  

were w e l l  c h a r a c t e r i z e d  i n  t h e  l i t e r a t u r e ,  w e  could test our premise.  One would 

expect  s p e c t r a l  s h i f t s  p r i m a r i l y  i n  t h e  carbonyl  of  t h e  formamide and t h e  

C = C bond o f  t h e  o l e f i n .  Other minor s h i f t s  i n  t h e  C-H and i n  t h e  C-X bands 

of t h e  o l e f i n  might a l s o  be  expected.  The r e s u l t s ,  however, showed t h a t  

t he  l a r g e s t  s p e c t r a l  s h i f t  was i n  t h e  C-H s t r e t c h i n g  band of t h e  o l e f i n .  

The second l a r g e s t  was t h e  = C-H bending mode w i t h  very  minor s h i f t s  i n  

t h e  C = C and C - C 1  (when ch lo r ina t ed  o l e f i n s  were used) bands. No appa ren t  

change was no ted  i n  any bands of t h e  formamide. 

From t h i s  evidence a  completely d i f f e r e n t  mechanism was pos tu l a t ed .  

The primary a s s o c i a t i o n  is  now b e l i e v e d  t o  be hydrogen bonding between t h e  

carbonyl  oxygen and t h e  o l e f i n i c  hydrogens.  With compounds w h e r e . s u b s t a n t i a 1  

vapor p re s su re  lowering was no t ed ,  i . e . ,  c i s  - 1, 2-d ich loroe thylene  

, t h e  carbons t o  which t h e  e l e c t r o n e g a t i v e  groups were a t t a c h e d ,  
C= C 

H' 'H i n v a r i a b l y  a l s o  conta ined  hydrogen. The e l e c t r o n e g a t i v e  

group i s  be l i eved  t o  withdraw e l e c t r o n  dens i ty  from t h e  C-H bond thereby 

making t h e  proton r e a d i l y  a v a i l a b l e  f o r  hydrogen bonding w i t h  t h e  n e g a t i v e  

C=O group of t h e  formamide. This conforms w e l l  w i t h  t h e  exper imenta l  r e s u l t s  

s i n c e  t h e  major s p e c t r a l  s h i f t  t o  be expected would be  i n  t h e  C-H band wi th  

only minor secondary p e r t u r b a t i o n s  of t h e  C=C and C-C1 bands. Very l i t t l e  

change would be expected i n  t h e  C=O band of t h e  formamide f o r  s e v e r a l  

reasons:  1 )  The C=O bond is  much s t r o n g e r  ( r i g i d )  than t h e  C-H bond of t h e  

o l e £  i n ,  t h e r e f o r e  would be  much l e s s  pe r tu rbed  by e l e c t r o n i c  i n t e r a c t i o n ;  

2) S i m i l a r l y  t h e  mass of t he  pro ton  i s  sma l l  r e l a t i v e  t o  t h e  oxygen and i s  

more e a s i l y  p o l a r i z e d ;  and 3) The s t r e n g t h  of t h e  hydrogen bond formed is  

r e l a t i v e l y  weak. 

From t h e  experimental  r e s u l t s  ob t a ined  wi th  some of t h e  halogenated 

o l e £  ins such a s  1 , l -d i ch lo roe thy lene  , 1,2-dibromoethylene, and t r i c h l o r o e t h y l e n e ,  

une can c v r r e l a t e  vapor p r e s s u r e  lowering e f f e c t s  w i t h  t h e  a v a i l a b i l i t y  and 
I 

number of a c t i v e  hydrogens. This i s  e s s e n t i a l l y  cor robora ted  w i t h  t he  i n f r a r e d  
I 

r e s u l t s  which always showed the  major s p e c t r a l  s h i f t s  t o  be  i n  t h e  C-H 

band. I n  one case  where weak a s s o c i a t i o n  was. expec ted  ( t r i c h l ~ r o e t h ~ l e n e )  

from vapor  p re s su re  d a t a ,  a  l a r g e r  s h i f t  than expected was found. Only one 



hydrogen i s  p r e s e n t  i n  t h i s  molecule r a t h e r  than two, t h e r e f o r e  t he  q u a n t i t a t i v e  

c o r r e l a t i o n  was r a t i o n a l i z e d .  One can s u c c e s s f u l l y  c o r r e l a t e  t he  e n t i r e  

l i s t  of o l e f i n s  t r i e d  us ing  pro ton  a v a i l a b i l i t y  and number, with s t e r i c  

c o n s i d e r a t i o n s  necessary  i n  a few ins t ances .  

Ano t h e r  i n t e r e s t i n g  group of  r e f  r i g e r a t i o n  comb i n a t  ions  s t u d i e d  

was t h e  amine w i t h  h y d r o x y n i t r i l e  and i ts  analogues. Again,infrared a n a l y s i s  

r evea l ed  t h a t  t h e  i n t e r a c t i o n s  a r e  p r imar i ly  due t o  hydrogen bonding. Large 

s p e c t r a l  s h i f t s  a r e  seen i n  t h e  OH bands (200-300 cmrl) of t h e  absorbent  

molecule and a l s o  i n  t h e  NH reg ion  of t h e  amine. Although a l i t e r a t u r e  2 - 
s e a r c h  r evea l ed  hydrogen bonding t o  n i t r i l e s  of t h e  type  - C - - N . .  .H -, t h i s  

i s  be l i eved  t o  be a minor e f f e c t  a s  compared t o  t h e  bonding t o  t he  OH. This 

conforms w i t h  t h e  vapor p r e s s u r e  luwering r e s u l t s  which show l a r g e  p re s su re  

lowerings of amine only  when t h e  absorbent  molecule conta ins  an OH group. - 
The p o s s i b i l i t y  of a n  i n d u c t i v e  e f f e c t  be ing  e x e r t e d  on t h e  OH by the  C - - N 

group has  n o t  been r u l e d  o u t .  Also complicat ing t h i s  system is  t h e  p o s s i b i l i t y  

of a compet i t ion  e x i s t i n g  between i n t e r  and in t r amolecu la r  hydrogen bonding 

s i n c e  t h e  h y d r o x y n i t r i l e s .  have been shown by us t o  hydrogen bond t o  themselves.  

The types  of hydrogen bonding one expec ts  i n  t h i s  system a r e  ( ignor ing  the  

n i t r i l e  end of molecule) :  

o r  combinations of 1 )  and 2 ) .  The type  of hydrogen bonding involved remains 

t o  be determined,  and i t s  v e r i f i c a t i o n  should  a i d  i n  p r e d i c t i n g  L e t t e r  

molecular  combinations f o r  t h i s  system. 

Using t h e  hypothes is  t h a t  hydrogen bonding was t h e  primary sou rce  

of  a s s o c i a t i o n  between absorbent  and r e f r i g e r a n t  molecule,  we at tempted t o  

i n c r e a s e  t h e  s t r e n g t h  of a s s o c i a t i o n  by improving the  proton donor a b i l i t y  

of s u b s t i t u t e d  methanes and e thanes .  This  w a s  accomplished by s u b s t i t u t i n g  

f l u o r i n e  on t h e  carbon conta in ing  t h e  pro ton  t o  g ive  compounds such as R21 

(CFCl2H), R22 (CF2C1H), o r  F-i-z!C1, which a r e  commercially a v a i l a b l e .  A l l  

of t hese  type compounds, # I! when combined wi th  formamides, gave much 

improved vapor p re s su re  lowerings over  any c h l o r i n a t e d  o l e f i n s  o r  s a t u r a s e d  



hydrocarbons. The improved e l e c t r o n  withdrawing c a p a b i l i t y  o f .  t h e  f l u o r i n e  

weakens t h e  C-H bond; consequent ly  making the  pro ton  more a v a i l a b l e  f o r  

hydrogen bonding. Besides  t h e  s t r o n g  a s s o c i a t i o n  of t h i s  type of r e f r i g e r a n t  

wi th  formamide abso rben t s ,  low molecular  weight ,  i n e r t n e s s ,  e t c .  of  r e f r i g e r a n t  

make t h i s  combina t ion . look  most promising. S t ronge r  a s s o c i a t i o n  can no 

doubt be found, a l though r e v e r s i b i l i t y  becomes an i n c r e a s i n g  problem. 

A s  an added reason  f o r  t h e  s t r o n g  a s s o c i a t i o n  i n  t h i s  system, t h e  

p o s s i b i l i t y  of hydrogen bonding t o  t he  f l u o r i n e  must a l s o  be cons idered .  

With dimethylformamide (DMF) and, f o r  example, R21, one could hypo t h e s i z e  

H3C\ N-C eO. . . . H \  bonding of t h e  type C cC1 a s  a r ea son  f o r  t h e ,  g r e a t l y  
H~C'  'H.. . .F' 

p r e s s u r e  lowering.  improved vapor 

Although thermal  s t a b i l i t y  w i l l  probably be t h e  major l i m i t i n g  

f a c t o r  when choosing t h e  b e s t  abso rp t ion  r e f  r i g e r a t i o n  combination, t he  t r end  

seems t o  be  c l e a r l y  o u t l i n e d  f o r  systems invo lv ing  hydrogen bond a s s o c i a t i o n s .  

Improvements should come by e i t h e r  i n c r e a s i n g  t h e  s t r e n g t h  of  a s s o c i a t i o n  

between r e f r i g e r a n . t  and absorbent ,  i n c r e a s i n g  t h e  number of a c t i v e  si tes which 

can combine, o r  combining donor and accep to r  c a p a b i l i t y  on the  same molecule.  

~mprovements w i l l  probably be most d ramat ic  i n  t he  l a t t e r  ca se ,  and might 

1:ome wi th  r e f r i g e r a n t s  such a s  d i f luoramine  (HNF ) o r  d i c h l o r a c e t o n i t r i l e  2 
(C12CHCN). Examples have been c i t e d  i n  t he  l i t e r a t u r e  where s t r o n g  molecular  

a s s o c i a t i o n s  between DMF or '  dimethy l s u l f  ox ide  (DMSO) and HNF2 were a t t r i b u t e d  

poss ib ly  t o  bonding of t h e  type  

,F.. . .H , A H 3  . - 
F.-N\ C-N - 

H. 0 ' C H ~  

which i s  s i m i l a r  t o  t h e  s t r u c t u r e  proposed e a r l i e r .  Although n o t  a s  s t r o n g l y ,  

HNF2 is  be l i eved  t o  a s s o c i a t e  w i th  a c e t o n i t r i l e  by forming the  s t r u c t u r e  
F 

CH3CN .... H - N < ~  . I n f r a r e d  i n v e s t i g a t i o n s  by Allerhand and Schleyer  revea led  

t h a t  t h e  C-H s t r e t c h i n g  frequency i n  C12CHCN s h i f t e d  more than t h r e e  t imes 

t h a t  i n  ClHC=CHCl  when each compound was combined wi th  DMSO. The s i g n i f i c a n c e  

of  t h i s  f i n d i n g ' a s  r e l a t e d  t o  a s s o c i a t i o n  of t h e s e  two compounds remains t o  

be determined. 



The i n f r a r e d  spec t rograph  i s  a va luab le  t o o l  f o r  s tudying  molecular 

mechanisms, b u t  i t  has  i t s  l i m i t a t i o n s .  Sometimes i n f r a r e d  s p e c t r a l  bands 

a r e  ve ry  broad and d i f f u s e  due t o  complic'ated s t r e t c h  and r o t a t i o n a l  i n t e r -  

a c t i o n s  w i t h  t h e  molecule.  A more f requent  " l imi t a t ion  is  t h a t  the  bands 

of s p e c i f i c  i n t e r e s t  ove r l ap  w i t h  bands. from another  s p e c i e s  p re sen t  i n  t h e  

s y s  tem.. It w a s  thought  u l t r a s o n i c  s p e c t r a  would provide va luab le  s t r u c t u r a l  

in format ion  f o r  t h i s  system s i n c e  s e v e r a l  workers have u t i l i z e d  u l t r a s o n i c s  

a s  a t o o l  f o r  o b t a i n i n g  s t r u c t u r a l  o r  k i n e t i c  in format ion  f o r  systems nof 

t o o  d i s s i m i l a r .  

An a t tempt  was made t o  adapt u l t r a s o n i c  techniques f o r  d i r e c t l y  

s tudy ing  r e l a t i v e  s t r e n g t h s  o r  exchange r a t e s  of hydrogen bonds i n  var ious  
.C ' 

o r g a n i c  r e f r i g e r a t i o n  systems.  No hydrogen bond r e l a x a t i o n s  have been 

observed by us  even . though o t h e r s  r e p o r t  such observat$ons wi th  s i m i l a r  

(maybe n o t  s i m i l a r  enough) . i n t e r a c t i o n s .  The reason  have n o t  bee* success-  
. . , 

f u l  may be  t h a t :  1 )  The r e l a x a t i o n s  t ake  pla'ce o u t s i d e  of our observable  

f requency  range ; 2)  The type  of bonding being s t u d i e d  i s  too  weak t o  be  

observed;  3) The p rope r  combination of v a r i a b l e s  such a s  temperature,  con- 

c e n t r a t i o n ,  e t c .  has  no t  been found t o  b.rt*g t h i s  type of r e l a x a t i o n  i n t o  our  

frequency range.  

An i n d i r e c t  method f o r  measuring bond s t r e n g t h s  o r  r a t e s  of  th i . s  

t ype  h a s  shown some promise. Relaxa t ions  a t t r i b u t e d  t o  r o t a t i o n a l  isoiiierization 

about  t h e  C-C l i nkage  have been observed i n  c e r t a i n  s u b s t i t u t e d  e thanes ,  

propanes,  e t c .  When t h e s e  compounds a s s o c i a t e  w i th  ano the r ,  such  a s  a 
I 

formamide, a c e r t a i n  amount of hindered r o t a t i o n  can be expected. This 

a s s o c i a t i o n  may e f f e c t  t h e  r o t a t i o n  e i t h e r  k i n e t i c a l l y  o r  thermodynamically, 

bo th  of 'which can be  observed u l t r a s o n i c a l l y .  The degree t o  which the  

r o t a t i o n a l  i somer i za t ion  r a t e  has been e f f e c t e d  should be an i n d i r e c t  measure 

of t h e  degree  of a s s o c i a t i o n .  W e  liave observed theoc r e l a x n t i e n s ;  however, 

t h e  change o f , . r a t e  has  been e i t h e r  too  smal l  t o  bea r  any s i g n i f i c a n c e  o r  

t h e  r e l a x a t i o n  has been too  n e a r  t he  end of our  spectrum range t o  be  of  va lue .  



3-1 EXPERIMENTAL METHODS 

The b a s i c  d a t a  c o l l e c t e d  f o r  t h e  eva lua t ion  of p o t e n t i a l  absorbent- 

r e f r i g e r a n t  sys  t e m s  were vapor pressure-  temperature curves f o r  va r ious  

concent ra t ions  of r e f r i g e r a n t  i n  absorbent .  

The l i q u i d - l i q u i d  type  appara tus  is  depic ted  i n  Figure 1. It was 

made of g l a s s  and used only when the  s o l u t i o n s  had very low vapor p re s su res  

a t  room temperature.  The procedure f o r  o p e r a t i o n  was a s  fo l lows:  The sample 

r e a c t i o n  v e s s e l  was disconnected from t h e  appa ra tus ,  c leaned ,  and d r i e d .  

It was weighed t o  w i t h i n  0.0001 gram and then f i l l e d  wi th  about 5 t o  10 m l  

of the  h igh-boi l ing  o rgan ic  s o l v e n t  t o  be t e s t e d .  The lower b o i l i n g  

r e f r i g e r a n t  was then added, and a  s o l u t i o n  was formed w i t h  a  vapor  p re s su re  

s u f f i c i e n t l y  low a t  room temperature s o  t h a t  accu ra t e  weighing was poss ib l e .  

The weight  of t h e  r e f r i g e r a n t  was obta ined  by d i f f e r e n c e .  The c e l l  was then 

. . . r e tu rned  t o  t h e  system and f rozen  i n  l i q u i d  n i t r o g e n .  Following adequate  

f r e e z i n g ,  t h e  c e l l  was evacuated f o r  s e v e r a l  minutes by means o f  a  vacuum 

pump. The vacuum va lve  "B" was then c losed  and t h e  s o l u t i o n  was allowed t o  

mel t  w i th  vigorous s t i r r i n g .  The s o l u t i o n  was aga in  f rozen  and degassed. 

Valve "B" was aga in  c losed  t o  t h e  pump and va lve  "D" was a l s o  c losed  above 

t.le r e a c t i o n  v e s s e l .  Valve "A" was always l e f t  c losed  fo l lowing  i n i t i a l  

degassing of t h e  l a r g e  manometer. As  t h e  s o l u t i o n  melted,  a i r  was in t roduced  

by r e v e r s i n g  va lve  "B" and s lowly cracking  va lve  "C" i n  o rde r  t o  ba lance  the  

s o l u t i o n  manometer. The o i l  b a t h  was then  placed on the l a b  jack  and the  

l e v e l  a d j u s t e d  so  t h a t  a l l  of t h e  s o l u t i o n ,  both l i q u i d  and vapor ,  was 

maintained a t  a cons t an t  temperature.  The o i l  ba th  temperature was s lowly 

increased  and t h e  p re s su re  was read d i r e c t l y  from the  l a r g e  manometer a f t e r  

ba lanc ing  t h e  s o l u t i o n  manometer. The temperature was read  s imultaneously 

from a mercury thermometer t o  w i t h i n  * O.l°C. The i n i t i a l  measurements 

proved conclus ive ly  t h a t  good a g i t a t i o n  was necessary  i n  t h e  r e a c t i o n  v e s s e l  

i n  o rde r  t o  o b t a i n  accu ra t e  p re s su re  readings .  

F igure  2 d e p i c t s  a  l iquid-vapor  automated device  f o r  record ing  

p re s su re  and temperature d i r e c t l y  on an X-Y r eco rde r .  It was designed and 

b u i l t  because most of t h e  r e f r i g e r a n t s  of i n t e r e s t  a r e  gases  w i th  b o i l i n g  
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p o i n t s  w e l l  below room temperature.  The r e a c t i o n  v e s s e l  w a s  cons t ruc t ed  of 

aluminum w i t h  s t a i n l e s s  steel va lves  and p ip ing .  The temperature a x i s  

r e c o r d i n g  t h e  ou tpu t  of a  copper-cons t an  tan  thermocouple w a s  c a l i b r a t e d  

a g a i n s t  a  po ten t iometer  and t h e  p re s su re  a x i s  r eco rd ing  the  m i l l i v o l t  ou tpu t  

from a p r e s s u r e  t r ansduce r  was c a l i b r a t e d  a g a i n s t  a  Seeger ' s  . pres su re  
+ gauge w i t h  - 0.05% F.S. r e l i a b i l i t y .  

The procedure f o r  f i l l i n g  t h e  r e a c t i o n  v e s s e l 1  w a s  as fol lows:  

The h ighe r  b o i l i n g  o rgan ic  s o l v e n t  w a s  weighed by d i f f e r e n c e  t o  w i t h i n  0 .1  

gram and in t roduced  d i r e c t l y  i n t o  t h e  v e s s e l .  The v e s s e l  w a s  then s e a l e d  and 

p l aced  i n  an i c e  b a t h .  Valves "A" and "B" were then  opened and a  vacuum 

of  a t  l e a s t  20 microns w a s  e s t a b l i s h e d .  Valve "B" was then  c losed  and t h e  

r e f r i g e r a n t  c y l i n d e r  was, connected t o  t he  f i l l e r .  The va lve  t o  t h e  r e f r i g e r a n t  

c y l i n d e r  w a s  cracked,  a l lowing  smal l  p o r t i o n s  of  r e f r i g e r a n t  t o  be dispensed 

' i n t o  t h e  r e a c t i o n  v e s s e l  w i t h  a c o n t r o l  of f 0.1  gram. Subsequent runs 

could  be made a t  a d i f f e r e n t  concen t r a t ion  simply by adding more r e f r i g e r a n t  

t o  t h e  r e a c t i o n  v e s s e l .  The temperature programmer was s e t  s o  t h a t  the  r i s e  

in tempera ture  w a s  0.5"C/minute, and a  s a f e t y  c i r c u i t  was i n s t a l l e d  s o  t h a t  

a  maximum p r e s s u r e  cu to f f  was e s t a b l i s h e d .  This  a l s o  allvwed d a t a  t o  be  

p l o t t e d  overn ight  w i thou t  an o p e r a t o r .  

The p r e c i s i o n  o f  t h e  d a t a  i n  t h i s  i n v e s t i g a t i o n  is  gene ra l ly  w i th in  

0 .5  p s i a  f o r  p re s su re s  below 30 p s i a ,  and w i t h i n  1 . 0  p s i a  f o r  p re s su re s  between 

30 and 100 p s i a .  A Robinson-Halpern p re s su re  t ransducer  was employed t o  

provide  D.C. ou tput  t o  t h e  pen (X-axis) and a  type  J thermocouple w i re  

f u r n i s h e d  the  output  t o  t h e  c h a r t  d r i v e  (Y-axis). The o v e r a l l  p r e c i s i o n  i n  

t h e  form o f  Duhring p l o t  was gene ra l ly  * 1 . 0 ' ~ .  

3-1.1 Other Measurements 

Throughout t h i s  r e p o r t  t h e r e  w i l l  be inc luded  o t h e r  i tems of 

numerical  infLrmation determined i n  our l a b o r a t o r i e s .  B r i e f l y  , some of t he  

methods used were: Heat of D i lu t ion .  An i so thermal  ca lo r ime te r ,  modeled 

a f t e r  a design used b,y t h i s  au thor  (WJB) i n  e a r l i e r  s tudies")  was b u i l t  t o  

W .  J. Biermann, e t  a1.  J. Am. Chem. Soc 7 4 ,  322 (1952),  76, 4289 (1954) 
Can. J. Chem. 3 4 ,  1591 (1956). 



measure h e a t s  of d i l u t i o n  and h e a t  ' :capaci ty.  This was used f o r  r e s u l t s  

given i n  connect ion w i t h  c i s ,  1 , 2 - d i c h l ~ r o e t h ~ l e n e  and N ,N-dimethylalkamides. 

S p e c i f i c  Heat. Some s p e c i f i c  h e a t s  were determined w i t h  a  wide mouthed Dewar 

f l a s k  and hea ted  copper block. The Dewar f l a s k  ca lo r ime te r  is "cal ibrated".  

by f i l l i n g  w i t h  weighed water  t o  t h e  working depth and then  adding a  c a l c u l a b l e  

amount of h e a t  by r a p i d l y  moving a t a r e d  copper block from b o i l i n g  water  t o  

t h e  ca lo r ime te r  f l a s k .  The water  equ iva l en t  of t h e  f l a s k  (and a c c e s s o r i e s )  

is t h e  unknown i n  t h e  h e a t  balance.  The method can,  i f  done c a r e f u l l y ,  
. . . . 

y i e l d  r e s u l t s  of * 2-3% accuracy . ,   eat ' ~ k s f  e r  ~ o e £ f  i c i e n t s .  Film s i d e  
. . 

h e a t  t r a n s f e r  c o e f f i c i e n t s  f o r  absorbers  .,:are key numbers. i n  e v a l u a t i n g  any 

p o t e n t i a l  absorp t ion  r e f r i g e r a t i o n  system. I n  t h i s  program, w e  had access  

t o  two l a b o r a t o r y  f a c i l i t i e s  "hich ' s i r k a t e d  h o r i z o n t a l  and v e r t i c a l  absorber  

tubes.  These f a c i l i t i e s  were used n o t  on ly  t o  measure. t h e  h e a t  t r a n s f e r  

c o e f f i c i e n t s  of absorbers  ope ra t ing  w i t h  novel  chemical systems,  b u t  a l s o  t o  

test t h e  e f f e c t i v e n e s s  of h e a t  t r a n s f e r  a d d i t i v e s  i n  enhancing t h e  f i l m  s i d e  

. .  h e a t  t r a n s f e r  c o e f f i c i e n t .  c a l c u l a t i o n s  were made us ing  c l a s s i c a l  counterf low 

h e a t  exchanger c a l c u l a t i o n s  and seg rega t ing  the  f i l m  c o e f f i c i e n t  by summing 

up i n d i v i d u a l  r e s i s t i v i t i e s  t o  h e a t  flow. 

Data ob ta ined  from these  l a b o r a t o r y  f a c i l i t i e s  were completely 

c o n s i s t e n t  w i th  h e a t  t r a n s f e r  c o e f f i c i e n t s  ob ta ined  i n  ope ra t ing  machines 

w i t h i n  t h e  u n c e r t a i n t y  of t h e  s c a l i n g  f a c t o r s .  
. . .  

. , 
. . 

Miscellaneous . concen t r a t ions  as used i n  t h i s  "$ectio& ,.., : were &nerhl l ,y  

obta ined  by c a r e f u l  weighing i n  making s.olutions,  ~ e i n p e r a t u r e s  . . . .  were e i&her  . . . . .  
, . . . . . .  , . ?, 

from mercury i n  g l a s s  thermometers, w i th  p r o p e ~ ~ i m ~ r s ~ t , ~ n  :. ..:.>. ? .: 'o= 'from.. copp'$;- 
. . .A i  . .  

constantan therrbocouples. C a l i b r a t i o n  . . .  was againdt , .N.E calA,br+.tcidilatinum. . 
' .-..A. 

+.._ 
..,. .-.% 

thermometers. P re s su re  s enso r s  were calibrate'd.~',g&qfns .L'C y... ...: t .a GFad . . .  :&eight ' gauge; . 
~ '., < . , . . .  . . . . . .  . . . . . .  . . . . . . . . . .  .:, . 

%, .?? . . .  . : , : . " , ... 
. . .  ..;:~,:'..",'~~f~CC, , :. ' ',. . . ........ ." -; . . . "  

A s e t  of Class M m e t i i c  weights  Gai k&$tr:ljEor &.. . . . : p&'&d$= . . , . .  . . c a l ib ra t ion  . 
. . . .  ,&pi:i . . . .  . . . . .  . . .  of p r e c i s i o n  balances.  . :.:. .1' 

.I. :L... . . 
. ' .  . :.. ,.:;<; :.-,&i;, -> .  

7 ,:,,, ++ ,:;.,; .. 

In a d d i t i o n  t o  observa t ions  of vapor> . i j 3e r ih ;~e - t~mpe&atu re  . . . . .  r e l a t i o n s h i p s ,  
: . .  . : . .  ..3' 

t h e  p r o g r k d  appara tus  gave a  method f o r  p rov i .~~o i - i a l  . . . .  .$c%gb,ility assessments.  
, ; ;., , i f  ' 

In cases  where d e c o m p ~ s i t i o n  took p l ace  a t  a  ' s i gn i f  i canCi , ih te  . . ,. which were na t 

uncommon, displacement  of euccess ive  T-P cyc le s  gave visual""arning of : t h i s .  



3-2.. SYSTEMS STUDIED 

3-2.1 R e f r i g e r a n t s  

I n  Table I has  been assembled a l i s t  o f t h o s e  r e f r i g e r a n t s  which 

were candida te  m a t e r i a l s  f o r  t h i s  s tudy .  An a s t e r i s k  has been used t o  

des igna te  those  r e f r i g e r a n t s  f o r  which numerical d a t a  have been inc luded  i n  

t h i s  r e p o r t .  These g e n e r a l l y  comprise those r e f r i g e r a n t s  whose s t a b i l i t y  , 
p h y s i c a l  p r o p e r t i e s  and degree of i n t e r a c t i o n  make them promising candida tes  

and a l s o  those  r e f r i g e r a n t s  whose s t r u c t u r e s  a r e  i n t e r e s t i n g  i n  e s t a b l i s h i n g  

t r e n d s .  General ly  speaking ,  d a t a  f o r  r e f r i g e r a n t s  which were uns t ab le ,  o r  

whose p r o p e r t i e s  do n o t  p l a c e  i t  i n  one of t h e  above c l a s s e s ,  have n o t  been 

inc luded .  

3-3 ABSORBENTS 

The primary f u n c t i o n a l  group used f o r  absorp t ion  was the  amide 

group -CO-NR;! where R i s  e i t h e r  H ,  which g ives  t he  lowest molecular  weight ,  

o r  methyl groups whose e l e c t r o p o s i t i v e  c h a r a c t e r  enhances t h e  b a s i c i t y  of 

t h e  n i t r o g e n  atom. For tuna te ly  s i n c e  t h e  earlier work done by Ze l lhoe fe r ,  

e t  a l . ,  h e a v i e r  d i s u b s t i t u t e d  amides wi th  h ighe r  b o i l i n g  p o i n t s  have become 

a v a i l a b l e  i n  commercial q u a n t i t i e s .  These m a t e r i a l s ,  of t he  gene ra l  formula 

(CH3) 2N . CO* CnH2n+l a r e  a v a i l a b l e  i n  r e l a t i v e l y  pure s t a t e  f o r  va lues  of n up 

t o  18 .  For purposes of t h i s  work, t h e  n = 5 mater ia l ,  N,N-dimethylhexamide was 

chosen a s  t h e  s t anda rd  absorbent  f o r  t h i s  s tudy .  This is s u f f i c i e n t l y  non- 

v o l a t i l e  t o  r e q u i r e  l i t t l e  o r  no r e c t i f i c a t i o n  wi th  t h e  more promising 

halocarbon r e f r i g e r a n t s .  For purposes of comparison, a few systems were 

run wi th  e i t h e r  N ,N-dimethylformamide o r  wi th  N,N-dimethyldodecamlde i n  

a d d i t i o n .  

In an  e f f o r t  t o  reduce the  molecular weight per  f u n c t i o n a l  u n i t ,  

s e v e r a l  d i f u n c t i o n a l  absorbents  were syn thes i zed  i n  sma l l  amount, namely: 

were 'prepared f o r  t e s t  purposes.  



Wo a d d i t i o n a l  absorbents  of  chemicai s imu la r i t y , .  2-pyrrol idone 

and N-methyl-2-pyrrolidone, which a r e  high b o i l i n g  l i q u i d s  and commercially 
TH 4 M  

a v a i l a b l e  (GAF, 2-pyrol and m-pyrol) were eva lua t ed  w i th  s e v e r a l  of t h e  

more promising r e f  r i g e r a n f s .  

Seve ra l  o t h e r  m a t e r i a l s  were found which were expected t o  show 

h igh  b a s i c i t y ,  two o f  which, trimethylphosphonoacetate, a r e  a l s o  r epo r t ed  

i n  t h i s  document, and t e t r a e t h y l e n e  g l y c o l  d i e  thy1  e t h e r .  

3-3.1 Absorbent P r o p e r t i e s  

. The "standard" absorbent  used i n  t h i s  work was a commercial 

N,N-dimethylhexamide [(CH3)2N-CO-C5H11] marketed by C.  P. H a l l  Company 

of Chicago, I l l i n o i s  under t h e  t r a d e  name of "Hallcomide." Various members 

of t h i s  series a r e  a v a i l a b l e  and a r e  des igna ted  by t h e  number of carbon 

atoms i n  t h e  cha in  ; i . e. , N ,N-dime thylhexamide is  M-6, which abb rev i a t i ons  

a r e  used i n  l a t e r  p r e s e n t a t i o n s  o f  d a t a .  

Some of t h e  key p r o p e r t i e s  of M-6 a r e  l i s t e d  below, ob t a ined  v a r i o u s l y  

from t h e  manufacturer o r  from our own measurements. 

Hallcomide M-6 

Chemical Names: N,N-dimethylhexamide; N,N-dimethylcaproamide 

Approximate Molecular Weight 

Bo i l i ng  Range (400 Pa) 

Freezing Poin t  

Flash Po in t  

F i r e  Po in t  

Density 

Viscos i ty  (25°C) 

S p e c i f i c  Heat (35°C) 

X N ,N-dirnethylamide ' 

M i s c i b i l i t y  Limi ts ,  Water a t  20°C 

14 3 

83-89°C 

-40°C 

88°C 

98°C 

889 kg/m3 

0.002 Pa-s 

2 .21  kJ /kg  

3 5% 

0-13% Water 



. The Hallcomides a r e  mildy i r r i t a t i n g  t o  t h e  s k i n ,  n o t  v o l a t i l e  

enough, t o  c o n s t i c u t e  an i n h a l a t i o n  hazard and are similar i n  t o x i c i t y  t o  

m i n e r a l ,  o i l  o r  t u r p e n t i n e  i f  adminis te red  p a r e n t e r a l l y .  

The N , N  dia lkylamides  a r e  s t a b l e  a t  200°C f o r  long pe r iods  of 

time, a r e  h ighly-  r e s i s t a n t  ' t o  hydro lys i s  by water  and tend t o  be h igh ly  

e f f e c t i v e  s o l v e n t s  f o r  e las tomers  and r e s i n s .  Polye thylene ,  nylon and 

TefJon are accep tab le  g a s k e t i n g  m a t e r i a l s ,  b u t y l  rubber  be ing  marginal .  

' .  Figure  3 shows . the  v a r i a t i o n  of normal b o i l i n g  p o i n t  f o r  t h e  .. 

N , N  d ime thy lamide . se r i e s  compared t o  methyl and e t h y l  e a t e r s  of t h e  a l i p h a t i c  

a c i d s  and t o  t h e  u n s u b s t i t u t e d  amides. 



N u m b e r  

11 d C 1 3 F  

CC12F2 

CC1F3 

4 
CHFC12 

CHF2C1 

CHF 3 

a2C12 
CH2C1F 

CH2F2 
CH3C1 

CH3F 

CH4 
CC13.  CC12F 

CC12F.  CC12F 

C C 1 F 2 -  C C 1 2 F  

CC1F2.  CC1F2 

CC1F2.  C F  
3 

CF3 - C F  
3 

CHC12 C C 1  
CHC12.  C C ~ &  
CHFC1'  CC12 F 
CF - C H C l 2  

3 
CHF2 ' C C 1 F  

2 
C F 3 - C F 2 C 1  ' 

C H 2 C l a  C C 1  
3 

CH2F.CC1.  

CH,F.CFCl2 
I 

CHF2 C l l F C l  

C H 2 F 2 . C F 2 C 1  

C H 2 C l . C H C l 2  

CH2C1 . C H C l F  

CH2F. CHCLF 

CH2C1. CHF2 

CHZFa CHF2 

C H , C ~ .  C H 2 C l  

CH2F.CH2CI: 

C H 2 F V C H 2 F  

2 3 

TABLE I 

REFRIGERANTS CONSIDERED I N  T H I S  STUDY 

B o i l i n g  P r e s s u r e  k P a  
F o r m u l a  P o i n t ,  "C  a t  4 . 5 " C  a t  4 8 . 9 " C  

2 3 . 7  4 8 . 5  5 7 9  

- 2 9 . 8  3 5 7  1 1 9 1  

- 8 1 . 4  2203 3 8 7 0  

H e a t  o f  V a p o r  
k ~ 1 k g - 0 ~  

195 (at  - 1 5 ° C )  

158 (at  B.P.) 

1 4 8  ( -30°C)  

1 4 4  ( T r o u t o n )  

2 5 3 . 8  ( 1 5 . 5 " C )  

2 1 6 . 3  (3O.O0C)  

2 3 7  ( T r o u t o n )  

315 ( 3 0 ° C )  

339 ( 3 0 ° C )  

3 7 6  ( T r o u t o n )  

501 ( T r o u t o n )  

610 ( 3 0 ° C )  . 

163 ( T r o u t o n )  

188 ( T r o u t o n )  
183  r rout on) 
180  r rout on) 
1 3 7  ( 3 0 ° C )  

2 9 0  ( T r o u t o n )  



TABLE I (cont 'd . )  

N u m b e r  F o r m u l a  

160 CH3CH2C1 

161 CH3CH2F 

1 7 0  CH *CH3 
3 

2 1 7  C 3 F 7 C 1  

318 
C3F8 

500 A z e o t r o p e  

5 0 2  A z e o  t r o p e  

C I S  CHCl :CHCl*  , 

C F 2 C l a  CF2C1* 

C C 1 2 P -  CC12F* 

CC12 : CClH* 

C C 1 2  : C C l F *  

C H B r  : CHBr * 
CH2C1'CC12H* 

CC12 : CC12* 

CHC12 : CHC12* 

CC13'  CH2F* 

HCF2.  CC1: C H C l *  

C 1  C : C C l a C F 3 *  
2 

C F B r :  C F B r *  

CBr, :CBrH* 
A 

HCF2.CC1:CC1H* 

CC14 

B o i l i n g  
P o i n t ,  OC 

P r e s s u r e  k P a  H e a t  of V a p o r  
a t  4 . 5 " C  a t  4 8 . g ° C  k ~ l k g -  OK 

390 ( T r o u t o n )  

4 3 2  I I 
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4-0 RESULTS AND CALCULATIONS 

I n  t h i s  r e p o r t ,  s o l u t i o n s  w i l l  be  cha rac t e r i zed  by weight 

pe rcen tage  o f  abso rben t .  I n  t h i s  convent ion,  a "s t rong" s o l u t i o n  is one 

w i t h  a h igh  percentage  of absorbent ,  hence weak i n  r e f r i g e r a n t .  

Experimental  d a t a  are g e n e r a l l y  ,def ici .ent  i n  doing i n i t i a l  
. 7  

a n a l y s e s  of system performance, hence exf 'ensivet use  is  made of two 
. ~ 

r u l e s  : 

. .. 
1. Ileat c a p a c i t y  uf s o l u t i o n s  a&. assumed t o  be mole f r a c t i o n  

weighted  averages of t h e  c o n s t i t u e n t s  : 

:- which would be  t r u e  i f  t h e  s o l u t i o n  were "regu1a.r." 

2 .  H e s s '  Law i s  e x t e n s i v e l y  employed i n  ob ta in ing  energy ba lances  

i n  a component. I n  most ca ses  t h i s  i nvo lves  t h e  use  .of a c c u r a t e l y  known 

h e a t s  of v a p o r i z a t i o n  and "bes t  guesses" f o r  t h e  sma l l e r  thermal  e f f e c t s  

due t o  h e a t  of d i l u t i o n  and s e n s i b l e  h e a t  t r a n s f e r .  

R e f r i g e r a n t  p r o p e r t i e s ,  where a v a i l a b l e ,  were taken. from t h e  

ASHRAE ,Bas ic  Data Manual. I n  many c a s e s ,  t h e  vapor p re s su re  of r e f r i g e r a n t s  

over  a temperature range were measured and h e a t s  of vapor i za t ion  approximated 

from Trouton ' s  Law. 

4-1.1 - System: R21lTetraethylene g lyco l  dimethyl  e t h e r  

I n  1936, G .  F. ~ e l l h o e f e r  ( I )  desc r ibed  a pro to type  absorp t ion  

chiller ac ~ h e  annual  meeting of t h e  American Socie ty  of ~ e f r i g e r a t i n g  

Engineers .  This machine w a s  based on t h e  use of dichloromonofluoromethane 

(R-21) absorbed i n  t h e  dimethyl  e t h e r  of t e t r a e t h y l e n e  g lyco l  and was 

designed t o  be  ope ra t ed  on low p res su re  s team wi th  h e a t  t o  be r e j e c t e d . t o  

coo l ing  tower wa te r  a t  29.4OC. This paper  i s  a good s t a r t i n g  p l a c e  i n  t h e  

a c t u a l  'assessment of p o t e n t i a l  systems s i n c e  i t  is  one of t h e  very few systems 

which has  e v e r  reached hardware. 

J .  of the A . S . R . E .  p 317-320, May 1937. 



A convenient way of presenting da ta  is the use of the Duhring 

p lo t  i n  which the temperature of a given so lu t ion  is p lo t ted  as a function 

of the temperature of pure refr igerant  at  .the same re f r igeran t  vapor 

pressure. I n  =st cases, a s t r a igh t  l i n e  re la t ionship,  within the accuracy 

with ijhich solut ion vapor.pressures are generally known, exists over a wide 

temperature range. The slope of each of these Duhring l i nes  is approximately 

the r a t i o  of the molar heat of vaporization from the solut ion to  the  molar heat 
0) of vaporization from pure refr igerant  a t  s imi la r  p a r t i a l  pressures of vapar . 

Z e l l h ~ e f e r ' s  presentation of vapor pressure data is i n  two sect ions;  the  

higher concentration data a re  given as a s e r i e s  of isotherms p lo t t ing  

gauge vacuum against  concentration, whereas t he  low concentration data  a r e  

i n  the  form of isobars,  with temperature and concentration as  axes. 

When these data a re  collected i n  the form of a family of Duhring 

l i nes ,  88 shown on the accompanying Figure 4 ,  i t  is immediately evident 

tha t  Zellhaefet 'e low and high concentration data  a r e  not consis tent ,  This ' 

discrepancy is re f lec ted  i n  h i s  dig crepancy be tween theore t ica l  and act-ubtl 

solut ion flows: (weak solution,  theory 0.68 g p d t o n  v s  0.90 gpm/ton, observed). 

For the purposes of t h i s  analysis ,  w e  w i l l  ignore t h i s  inconsistency, which 

tends to  iinprove all predicted performance by a s imi la r  amount. 

Ildtenberger, W. , Jr . Ind. Eng. Che?. 31, 783-786 (1939). 





4-1.1.1 System R21, Te t rae thy lene  g l y c o l  d imethyl  e t h e r  

Water Cooled 
Conditions 

QG I." , ;'"[ 

Analysis  Based on Ze l lhoefe r  Condi t ions ,  a s  r epor ted .  

Gens 111°C 

Heat Exchanger: 

St rong Stream sax - ( 1 1  - 35) x 1.72 x Cp (79%) = 222 k ~ l k g  r e f .  

HX Eff ic i ency  - (111 - 42)/ (111 - 35) - 91% 

QIIX -201 W/kg r c f .  

1. Superheated Ref. Vapor 

111°C 2.  Liquid  R e f r i g e r a n t  
Cond. 3 7 0 ~  3. S a t u r a t e d  Ref. Vapor 

4. Weak So l .  t o  HX 

Q 
kJ/kg-ref 

QA = 264 

Q E = 2 0 8  

Q G r =  286 

Q C = 248 

QHX = 201 

COP= 
QE/Q, = 

Q ' ( ~ ~ = l O k w )  

kg/hr ref 

12.7 

1 0  

13.8 

11.9 

9.66 

73% 

P r e s s u r e  
kPa 

269 

269 

'85.5. 

85.5 

269 

269 

85.5 

4 

Dew P t  
"C  

37 

37 

5  

5  

37 

3  7 

5  
, 

h 
k ~ / k g  

350 

- 78.9 

287 - 

-.-, ,*.,". 

W 
kg/kg-ref .  

1 

1 

1 

2.72 

2.72 

1.72 

1.72 

(6) 1 l i 0 c  . . 

i ( 2 )  

89Oc 

Wh 
kJ/kg-ref 

350 

78.9 

287 

-- 

[XI 
W t  % abs .  

0 

0 

0  

50 .O 

50.0 

79.0 

79 .O 

, P o i n t  

1 

2 

3  

4  

5  

6  

7  

+ 

5 .  Weak So l .  to' Gen. 
6. St rong So l .  t o  HX 
7. St rong S o l .  t o  Abs. 

37°C 

(5) 

Temp. 
"C 

I 

11 1 

3 7 

7  

35 

89 

111 

4 2 

No r e c t i f i e r  needed. Neglect  
thermal  e f f e c t s  of g e n e r a t o r  
l i q u i d  b l e e d  s t r eam .and condenser 
vapor purge s t ream.  

V 

HX Q ~ x  

. . 

~ v a p .  5°C Abs. 35°C 

(7) 
42°C 

A 

35°C 

I I 

(3) . 

v .  

(4) 



4-1.1.1 System R21, T e t r a e t h y l e n e  g lyco l  dimethyl  e t h e r  (cont 'd . )  

% (79%) = 0.791242 
0.791242 + 0.211103 = 0.62. mole f r a c t i o n  absorbent  

. . 

0.501242 
'2 (50X) = 0.501242 + 0.501103 = 0.30 mole f r a c t i o n  absorbent  

W ( s t rong )  = 0.50/(0.79 - 0.50) = 1.72 kglkg r e f r i g e r a n t  

W (weak) = 0.79/@. 79 - 0.50) = 2.72 kglkg r e f r i g e r a n t  

Q, = [hL (35") - h 5  ] + AHdil + 1.72 [Cp (79%) x (42 - 35)]  

-208 -35 -21 

= 264 kJ/kg r e f r i g e r a n t  c i r c u l a t e d .  

Q, 
= [hV (35") - hJ (37" ) l  = 208 W l k g  r e f r i g e r a n t  c i r c u l a t e d .  

QG = AHdil + [hV (111') - hL (111') 1 + 2.72 [Cp (50%) x (111 - 89) ] 

3 5  16  7  84 

= 286 kJ /kg  r e f r i g e r a n t  c i r c u l a t e d .  

- - 173 x 2.72 (269  - 86) x 1000 50 watts  
X 3600 x d e n s i t y  E f f i c i ency  

3  
assuming-dp.nei.ty = ;1QQO kglm , c f f  = 50%. 
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4-1 .l. 2 System R21/Tetraethylene g l y c o l  d imethyl .  e t h e r  

A i r  Cooled 
Conditions 

'G 4 llooC 'C q, 350c, 
t 

0.711242 
'2 (71'0%) = 0.71/242 + 0.29/103 

= 0.51 mole f r a c t i o n  absorbent  

Gen. l o 8 0 C  

0.6281242 
%2 (62.8%) = 0.628/242 + o . j i 2 i 1 0 3  

= 0.42 molt f r a c t i o n  absorbent  

1. Superheated Ref. Vapor 

Cond. 4 7 0 ~  
2 .  Liquid  R e f r i g e r a n t  
3. S a t u r a t e d  Ref. Vapor 
4. Weak So l .  t o  HX 

Dew P t  
O C  

47 

47 

47 

4 7 

6 

h 
k ~ / k g  

35 5 

9 0 

286 

i P o i n t  

1 

2 

92' . i0 

Q 
kJ'kg-ref 

QE 196 

QC 265 

Q ~ ,  240 

QG 467 

QHX 684 

COP = 0.42 

[XI 
W t  % abs .  

0 

0 

0 

62.8 

62.8 

71.0 

71.0 

Temp. 
" C  

108 

60 

(6) 1080 

h 

( 5 )  

Q '  (QE=lOkW 

184kg/hr  r e f  

10.0 

13.5  

12.2 

23.9 

34.9 

Wh . 
kJ/kg-ref 

355 

9 0 

286 

W 
kg/kg-ref .  

1 

1 

1 

8.65 

8.65 

7.65 

7.65 

5 .  Weak So l .  t o  Gen. 
6. St rong s o l .  t o  HX 
7. St rong So l .  t o  Abs. 

P r e s s u r e  
kPa 

364 

364 

9 1  ' 

91 '  

364 

364 

9 1  

I 
4 7 

4 i 47 

47°C 

No r e c t i f i e r  needed. Neglect  
thermal  e f f e c t s  of g e n e r a t o r  
l i q u i d  b l e e d  s t r eam and condenser 
vapor purge stream.,.- 

v - 

Y (2 

5 

6 

7 

1.. 

92.2 

108 

53 .1 .  

Q~~ 

. . 

47" 

.1 I 

35°C 
7°C 

A QE 

(3) 

6°C 

Abs. 47°C. Evap. 6°C 

I\ 
. - I :  .' .'.... 

(41 (7) 53.1" 

v - 



4-1.1.2 System ~ 2 1 1 ~ e t r a e t h y l e n e  g l y c o l  dimethy 1 e t h e r  (cont  'd . )  

S t rong  Stream Q = (108 - 47) x 1..63 x 7.65 = 760 kJ /kg  r e f r i g .  
max 

Assume 90% E f f i c i e n t  Heat Exchanger 

QA = hp (47') - h1 (6O) + A Hdil + 1.63 (53.1 - 47) x 7.65 

(286 - 90) 35 76 

A 
= 307 kJ /kg  r e f r i g .  

Q, = A H~~~ + [h  (108) - h~ (108) 1 + 8.65 x 1.75 x (108 - 92.2) 

= 3 5 (355 - 162) 239 

= 467 kJ /kg  r e f r i g .  

- 184 x 8.65 (364 - 91) x 1 0  
3 

- 
Qpunip 3600 x d e n s i t y  E f f i c i ency  

= 241 w a t t s  ( d e n s i t y  ss 1000 kg/m3; eff = 50%:).  
q P m P  



4-1.1.3 Comments, Te t rae thylene  Glycol  Dimethyl Ether  (R-21) 

For t he  water  cooled case ,  t h e  c a l c u l a t e d  COP is about 0.73 v s  

t h e  observed machine e f f i c i e n c y  of  0.53. The discrepancy is mostly i n  t h e  

incons is tency  of the  vapor p re s su re  d a t a  which is i n  such a  d i r e c t i o n  a s  t o  

enhance e f f i c i e n c y  by p r o j e c t i n g  a  l a r g e r  concen t r a t ion  d i f f e r e n c e  between 

s t r o n g  and weak s treams than would be  t h e  experience.  We have a l s o  ignored 

small l o s s e s  due t o  r e c t i f i c a t i o n ,  b leed  s t reams,  l o s s e s  t o  t h e  surroundings 

which a r e  very  s m a l l  compared t o  o t h e r  u n c e r t a i n t i e s  i n  t h e  c a l c u l a t i o n .  

Our primary i n t e r e s t  i n  t h i s  comparison is  the  d i f f e r e n c e  between 

a  water cooled and an a i r  cooled system. The most important  p o i n t s  t h a t  

emerge a re :  

Concentrat ion Change. I n  t he  wa te r  cooled case  t h e  s t r o n g  s t ream e n t e r s  t h e  

absorber  a t  79% and l eaves  a t  50%, and only 2.72 kg of weak s o l u t i o n  need 

be c i r c u l a t e d  per  kg of r e f r i g e r a n t  c i r c u l a t e d ,  o r  f o r  a  10 kW cooling load ,  t h e  

pump r a t e  i s  471 kg pe r  hour ,  w i t h  an e l e c t r i c  power consumption i n  t h e  

neighborhood of  50 w a t t s .  Because of t he  h ighe r  temperatures  a t  which a i r  

cooled condenser and absorber  w i l l  o p e r a t e ,  t h e  c i r c u l a t i o n  r a t e  of t he  weak 

f l u i d  now inc reases  t o  8.65 kg/kg r e f r i g e r a n t  o r  1592 kg/hour weak s o l u t i o n  

f o r  t he  same 10  kW coo l ing  load .  The pump power inc reases  t o  241 wa t t s .  

This need f o r  increased  flow r a t e  i s  a t  t h e  r o o t  of most l i m i t a t i o n s  t o  a i r  

cooled cyc le s  us ing  low l a t e n t  h e a t  r e f r i g e r a n t s .  

Heat Exchanger. Keeping the  same 90% h e a t  exchanger e f f i c i e n c y  we n o t e  t h a t  

t h e  r a t i o  of s e n s i b l e  h e a t  t r a n s f e r r e d  h e r e  t o  the  cool ing  produced i n c r e a s e s  

from 0.97 t o  3.49 i n  going from wa te r  cool ing  t o  a i r  cool ing.  Even s o ,  t h i s  

h e a t  exchanger is s t i l l  too smal l  s i n c e  examination of t h e  inc reased  genera tor  

load  shows t h a t  e s s e n t i a l l y  a l l  t h e  increased  load is due t o  t h e  s e n s i b l e  h e a t  

l o s s e s  i n  h e a t i n g  up the  e n t e r i n g  weak s o l u t i o n  s t ream. 

I t  is ev iden t  t h a t  s o  long a s  Q pe r  ki logram of  c i r c u l a t e d  r e f r i g e r a n t  
E 

is  s m a l l ,  keeping the  r a t i o  of QGen/QE sma l l  w i l l  r e q u i r e  enormous' amounts 

of h e a t  t r a n s f e r  s u r f a c e  i n  o r d e r  t o  keep Q / Q  h igh .  Other h e a t  exchangers HX E 
can a l s o  be G e d ?  f o r  example, co ld  r e f r i g e r a n t  gas  l eav ing  t h e  evapora tor  can 

bc uvad to coo l  entering l i q u i d  refrigerant from the condenser,  t hus  reducing . 

tlre s e n s i b l e  hea t  l o s s e s  i n '  f lashir lg  tlre warm e n t e r i n g  l i q u i d '  down t o  t h e  . 



p r e s s u r e  of t h e  evaporator-absorber  s e c t i o n .  This w i l l  i n c r e a s e  t h e  QE per  

pound of r e f r i g e r a n t  c i r c u l a t e d  but  w i l l  a l s o  i n c r e a s e  t h e  absorber  l oad .  

Streams (1) and ( 5 ) ,  weak s o l u t i o n  e n t e r i n g  the  gene ra to r  and t h e  

h o t  l e a v i n g  vapor can a l s o  be p u t  i n t o  h e a t  exchange t o  reduce t h e  gene ra to r  

l o s s e s  i n  s e n s i b l e  h e a t  t o  t h e  e n t e r i n g  l i q u i d .  
.. . .  ..".,&" 

O v e r a l l .  I f  we compare t h e  loads  on the  i n d i v i d u a l  components f o r  a i r  and 

water  cooled  machines supply ing  10 kW cooling:  

R-21/TGME* ' 

Water A i r  Water Cooled 
Cooled Cooled Lithium Bromide 

Evaporator  

Condenser 

Absorber 

Generator  

S o l u t i o n  HX 

* These r e s u l t s ,  p l e a s e  r e c a l l ,  a r e  based on i n c o n s i s t e n t  vapor p re s su re s  
which s i g n i f i c a n t l y  f a v o r  t h e  R-~~/TGME system. 



.. . . 
..- rr:z.l:. :;. '- 

' 4-2.2 c i s  -1 ,2-dichl3jl&."~~hylene/N ,N dimethy . . ldodecamide (M-12) 

The vapor p re s su re  of  c i s  1 , 2  d i ch lo roe thy lene  was measured i n  t he  . . .  

same ke.thod a s  descr&ed f o r  s o l u t i o n s .  Numerical d a t a  a r e  c o l l e c t e d  i n  
:, .. 

, - L:.. 

Table 2 and were found t o  be a c c u r a t e l y  descr ibed  by t h e  .equat ion ( v a l i d  

from, 0 t o  60°C r e f r i g e r a n t  temperature)  
.. . 

where P is  i n  k i l o P a s c a l s  and T is i n  degrees Kelvin. 

A s e r i e s  of 1 , 2  d i ch lo roe thy lene  s o l u t i o n s  i n  M-12 were prepared by 

weighing on an a n a l y t i c a l  ba lance  t o  w i t h i n  a  few t e n t h s  of a  millygram and 

t h e  r a w  d a t a  presented  i n  Table 3 w e r e  c o l l e c t e d .  The d a t a  f o r  87.00% and 

90.00% M-12 s o l u t i o n s  were taken i n  a  v e r t i c a l  absorber  t e s t  appara tus  i n  

connection wi th  f i l m  h e a t  t r a n s f e r  c o e f f i c i e n t  measurements and a r e  i n  good 

agreement wi th  t h e  r e s u l t s  taken i n  t he  d i r e c t  manometric method. 

It was found t h a t  t he  vapor pressure- temperature r e l a t i o n s h i p  f o r  

each concent ra t ion  could be r ep re sen ted  a n a l y t i c a l l y  . . ' (average devSation between 
I . .  

equat ion  and d a t a  p o i n t s  4 1°C) by means of a  ~ u h r i t i ~  equat ion  of t he  form: 

where m(x) and b(x)  a r e  e m p i r i c a l l y  determined cons t an t s  whose numerical  va lue  
..." ' .dl . 

i s  a func t ion  only of concen t r a t ion  (x ) .  Table .4 con ta ins  a  l i s t i n g  of t hese  

cons tan ts  a s  determined by l e a s t  squares  f i t t i n g  on d a t a  from Table 4. 

T r e f r i g e r a n t  
is a measure of t h e  p a r t i a l  p r e s s u r e  of r e f r i g e r a n t  over  t he  

s o l u t i o n  and is  der ived  from the  empi r i ca l  vapor.pressure-temperature r e l a t i o n -  

s h i p  given above. 

The cons t an t s  m(x) and b(x)  were found t o  be c l o s e l y  descr ibed  

by t h e  equat ions:  



whgge [XI ,--_ is !he concentrat$on of M-1? %q weight Percentage-  

Combining t h e s e  equat ions ,  we concludg cha t  ghe Eemperagytg ( t  . ) ref 
a t  which pu re  r e f r i g e r a n t  would show t h e  same vapog pregsure  as a sogut  jon 

of  [x]  weight pe rcen t  concent ra t ion :  M-12 a t  a tguperaturcz Tsol can be 
". - 

expres sed  by: 

F igu re  5 i s  a s e r i e s  of Duhring p l o t s  which a r e  t h e  l o c i  02 t h i s  equatAon f o r  

v a r i o u s  v a l u e s  of (x) in t h e '  r eg ion  of i n t g r e s t  . 

I n  a d d i t i o n  t o  t h e  vapor  p re s su re  d a t a ,  c a l o r i m e t r i c  d a t a  f o r  t h e  

h e a t  of mixing o f  c i s  1,l d ich lo roe thy lene  and M-12 i n  v a r i o u s  r a t i o s  w e r e  

measured and the  r e s u l t a n t  (smoothed) d a t a  a r e  presented  i n  Figure - 6.  

The s p e c i f i c  h e a t  of M-12 w a s  determined t o  be: 

where f i s  t h e  l i q u i d  temperature i n  degrees - Cels ius .  

The sp$c i£ i c  of cis 1,2=d$chlggoethylen.e was q e a s s e d  and is  

1: 109 k ~ / k g - O K .  

speci f i c. heats: ul: vulutiofio i o  obt;aj*ed by ~ i l i l a b g ~ l l d ' e  ruole 

f r a c t i o n  weight ing method. 



Temperature Pressure Temperature Pressure 
6 

- (-0 -- - (i3ch.s of Hg) ("c) - (inches of Hg) 

0.0 2.67 46.0 is. go 



TABLE 3 

- Vapor P r e s s u r e s  of s o i u t i o n s  of c i s  1, 2 - Dichloroethylene i n  - 
M-12 a t  Various Temperatures - Laboratory ' ~ e s u l t s  

94.49% M-12 92.67% M-12. '76.96% M-12 . 66.67 u t  % It-12 
T (OC) ' P ( i n  Hg) T(OC) P ( i n H g )  T (OC) P (in Hg) T (OC) P ( i n H g )  



TABLE 3 (cont ' ,d . )  cis 1, 2 Dichloroethylene in M-12 

91.77% M-12 
T (OC) P (in Hg) 

25.0 0.44 

30.0 0.57 
.+.: i 

35 .o 0 .. 6,3.? .- '  
. .I .  .. 

40.0 0.77 

45.0 0.95 

50.0 1.25 

55.0 1.46 

60.0 1.80 

65.0 2.19 

70.0 2.62 

75.0 3.07 

80 .O 3.58 

85 .O .4.27 

90.0 4.90 

95 .O 5.62 

100.0 .,,! 7 ..oo 

105.0 8-00 ..% . 
. . 

110.0 9.70 

115 .O 11.16 

120.0 12.70 

125.0 14.38 

130.0 16.34 

135.0 18.07 

140.0 19.60 

145 .O 21.82 

150.0 24.18 

155 .O 26.78 

lGO.O . 29.20 

95.20% M-12 
T (OC) P (in Hg) 

79.65% M-12 
T (OC) P (in Hg) 

25 .O 0.95 

30.0 1.26 

35 i-0 1.60 - 

40 .O 2.03 

45.0 2.52 

50.0 3.08 

55.0 3.78 

60.0 4.60 

65.0 5.52 

70.0 6.47 

75.0 7.61 



- 82.68% 'M-12 
T (OC) P (in Hg) 

85.45% M-12 
T (OC) P (in Hg) 



TABLE 3 (cont ' d. ) 
41 

cis 1, 2 Dichloroethylene in M-12 



TABLE 3 (cont'd.) 
cis 1, 2 Dichloroethylene + M-12 



TABLE 4 

Duhring Equation Constants for the Systw~ 
cis 1, 2 - Dichloroethylene/M-12 

[XI 
Weight Percent 

a M-12 





~ei'sht percexit c ia ,  1,2 diehloroekhy lene 



46 ' 

'4-1.2.1 System cis 1,2 &chhroethylene/N,N diaethyldodecaii&de (M-l2) &r Cooled 

QG 1 llo0c 
Q C  ,p 35OC 

1 

'Point  

2 

3 
'4 

5 
15 

? 

b 

cond. 4 7 0 ~  iwO e 

Temp. 
O C  

198 

47 

6 

41 

101.4 
108 

52.4 

1. Superheated Ref. Vapor 
2. Liquid Ref r f  getant  
3. Saturated Ref. Vapor 
4. Weak Sol. t o  HX 

> 
(1) 

[XI 
w t  X abe. 

0 

a 
0 

79.0 

79.0 

82.6 

82.6 

A 

h 
kJ/kg 

A -. 

W 
kg/kg-ref. 

1 

1 

1 

22.94 

22.94 

21.94 

U.94 

'(6) 108°C 101-.9"c 
5. Weak Sol. t o  Gen. 
6. Strong Sol. t o  HX 
7. Strong Sol. t o  Abs . (5) 

W h  
Ulkg-ref 

47Oc 

Na r e c t i f i e r  needed. Neglect 
thermal e f fec t s  of generator 
l iquid  bleed stream and condenser 
vapor purge stream. 

G 

Y (2) 

HX 

PressureDewPt  
kPa 

69.4 
69.4 

12.4 

12.4 

69.4 

69.4 

12.4 

Q~ 

map.  6°C. 

i 

A b .  47.C 

OC 

47 
47 

6 

6 

47 47 

6 

i 

1 1' 
Q k 35Oc QE 

7% 

i (3) . 
6O C 

(7) 52.4% 47% 

Q 

- 2151 
= 536 

V + 

Ib 

(4) 

Q ' (Q,-lSkW 

143kg/hr ref  

10 W 
21 kw 

QC = 343 19.4 kW 

QC = 601 23.9 kW 

r _I 95-8 k~ , 
COP = 42% 

I 
i 



( s t r o n g  s o l u t i o n )  = 21.94 x (108 - 47) x 1.97 = 2637 kJ /kg  r e f .  c i r .  
ax  

Qm 
(weak s o l u t i o n )  = 22.94 x  (108 - 47) x  1 .91  = 26.73 k ~ / k g  r e f .  c i r c .  

ax  

Assume HX i s  90% e f f i c i e n t .  

QHX 
= 0.90 x 2637 = 2405 kJ /kg  r e f .  c i r c u l a t e d  

 AH^^^ = T(17 + 0.011T) Nernst-Bingham Rule 

= 6861 cal/g-MW = 296 k ~ / k g  a t  5g°C b o i l i n g  p o i n t  

Cp (vapor) 70% of  Cp ( l i q u i d )  0.77 kJ/kg-OK 

QC = s e n s i b l e  h e a t  + l a t e n t  hea t  

= 0.77 (108 - 47) + 296- 

= 343 kJ/kg r e f .  c i r c u l a t e d .  

= ' 251  kJ/kg r e f .  c i r c u l a t e d .  

QG = s e n s i b l e  hea t  + l a t e n t  hea t  + h e a t  ' d i l u t i o n  

= 22.94 x 1 . 9 1  x (108 - 101.9) + 296 + 38 

= 60.1 k J /kg  r e f .  c i r c u l a t e d .  

Q = l a t e n t  h e a t  + s e n s i b l e  h e a t ,  l i q u i d  - sens ibke  h e a t ,  vapor + h e a t  d i l u t i o n  '. 
A 

= 296 + 21.94 (52.4 - 47) 1.97 - 0.77 (47 - 6) + 38 ,  

= 536 kJ/kg r e f .  circu:$ated. 

= 105 w a t t s  (dens r ty  ~ 1 , 0 0 0  kg/m3, e f f  = 56%. n e g l e c t  AP a c r o s s  HX) 
Q P u m ~  

Heat exchanger l o g  mean temperature  d i f f e r e n c e  5.74"C. 



' 4-1.2.2 Comments - System c i s  1 , 2  dichloroethylenejM-12 

T h i s  system looks  f a r  worse .than d id  t h e  R-2 l l t e t r ae thy lene  g lyco l  

d imethyl  e t h e r  p r i m a r i l y  because t h e  a c c u r a t e  vapor p re s su re  d a t a  g ives  a more 

r e a l i s t i c  p i c t u r e  o f  t h e  s m a l l  concen t r a t ion  d i f f e r e n c e  wi th  which we must cope 

and i t s  consequences. While some of our  d a t a  a r e  f a i r l y  roughly approximated, 

t h e  u n c e r t a i n t i e s  a r e  nowhere nea r  g r e a t  enough t o  improve t h e  cyc l e  t o  t h e  

p o i n t  of i n t e r e s t .  

Some improvements could b e  made i n  t he  cycle: 

1. I n c r e a s e  the  s i z e  of t h e  h e a t  exchanger.  The h e a t  exchanger used 

would b e  cons idered  enormous by p re sen t  abso rp t ion  s t anda rds ;  to. make 

t h i s  c y c l e  a t  a l l  i n t e r e s t i n g  from a COP p o i n t  of view, i t  would have 

t o  be s e v e r a l  t imes l a r g e r  s i n c e  as t h e  e f f i c i e n c y  i n c r e a s e s  above 

90%,already a very  e f f i c i e n t  hea t - exchange r ,  t h e  l og  mean temperature 

d i f f e r e n c e  dec reases  r a p i d l y  and t h e  s i z e  of h e a t  exchanger w i l l  vary 

i n v e r s e l y  w i t h  t h e  LMTD. Other  problems would a l s o  be encountered, 

such as keeping up t h e  v e l o c i t y  a long  t h e  s t r o n g  s i d e  s u r f a c e  wi th  a 

head of on ly  about  50 kPa a v a i l a b l e .  
- 

2 .  Choose c l o s e r  approaches between t h e  cool ing  a i r  and t h e  absorber  and 

a n d e n s e r  . Again, w e  have t h e  problem of p r o l i f e r a t i o n  of su r f ace .  

I n  t h e  abso rbe r ,  we might have a problem wi th  we t t i ng  t h e  increased  

s u r f a c e .  I n  any case ,  t o  decrease  t h e  temperature approaches i n  

t hese  subsystems is probably p o s s i b l e  but  w i l l  r e q u i r e  "smart" 

des ign .  We w i l l  do some c a l c u l a t i o n s .  below t o  s e e  q u a n t i t a t i v e l y  

what e f f e c t s  might r e s u l t .  

3. Exchange of s e n s i b l e  h e a t  between h o t  condensate (s t ream 2) and co ld  

vapor leaving che evapora tor  (s t ream 3) and between hot  vapor from the  

generator (erream 1 )  and e n t e r i n g  weak s o l u t i o n  ( s t ream 5) would 

a l s o  h e l p  t h e  COP of t he  system, bu t  wi th  added su r f ace .  These 

could be d d e c t  c o n t a c t  h e a t  cxchnngere, such a s  have been employed 

i n  abso rp t ion  sye terns . 
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4-1.3.1 The System c i s  1 , 2  dichloroethylene/M-6 

The a n a l y s i s  o f ,  t he  system c i s  1 ,2  dichloroethylene-N,N dimethylhexamide 

i s  i n t e r e s t i n g  because, when compared t o  4-1.2.1, i t  i l l u s t r a t e s  t h e  e f f e c t s  

of a change of  absorbent  molecular  weight wi thout  a l t e r i n g  r e f r i g e r a n t  a c i d i t y  

o r  absorbent  b a s i c i t y .  The r a w  l abo ra to ry  d a t a  f o r '  t he  vapor p r e s s u r e s  of t h i s  

system are g iven  i n  Table 5 and t h e  cons t an t s  of t h e  corresponding Duhring 

equat ions  a r e  given i n  Table 6 , d e r i v e d ' w i t h  t h e  use  of t he  vapor p r e s s u r e  

equat ion  f o r  c i s  1 , 2  dTchloroe thy lene  g iven  i n  4-1.2.1. 

These cons t an t s  were f i t t e d  t o  q u a d r a t i c  equa t ions ,  i .e . ,  ' 

i 

m = 1.501 - 0.01288[x] + 0.0000'42. [ x ] ~  

which can be  combined t o  g ive  t h e  equat ion:  

I l .501 - 0.01288 (x) + 4.2 EE (-5) (x12] - 216.3 + 5.488 (x): - 0.0403(x) 
2 

Tref  a T s o l  

whose l o c i  f o r  d i f f e r e n t  weight percent  concent ra t ions  (x) of  M-6 a r e  shown i n  

Figure 7. 



- - - 

TABLE 5 

Vapor P r e s s u r e s  cf cis  1, 2 Dichloroethylene/N,N Dimthylhexamide (M-6) 
(Laboratory Data)  

c i s  1, 2 Di .chloroethylene and M-6 

85.67% M-6 97.48% M-6 95.66% M-6 76.69% M-6 
T (OC) P ( i n  Hg) T (OC) P ( i n  Hg) T (OC) P ( i n H g )  T (OC) P ( i n  Hg) 



TABLE 5 (cont'd.) 

72.00% M-6 
T (OC) P (in .Hg) 



TABLE 5 (cont'd.) 
cis Dichloroethylene in M-6 

47.60~ t % M-6 
T ('CY-.. -- P (in Hg) .. . 

23,2 3.10 



butiring Camatante for the Symtm 
cle 1, 2 DicbZoroethglane/M6 

at ttarioucl Wetght Pereentsgee 04 M-6 

Tref - qoL + b 
m - 

.704 7 

e 6519 

,6562 

.7564 

,7906 

. 6465 

6896 

.8247 

.8776 

.7365 

. 7436 

.6778 





4-1.3.1 Syetem 1 ,2  d ich lo re thy lene  - N,N dimethylhexamide (M-6) Air .  Cooled 

1. Superheated Ref. Vapor . :. 

2.  Liquid  R e f r i g e r a n t  
3. S a t u r a t e d  Ref. Vapor, 
4. Weak So l .  t o  HX 
1 5. Weak So l .  t o  Gen. 

6 .  S t rong  So l .  t o  HX 
7. S t rong  So l .  t o  Abs. 

(2) 47OC 

No r e c t i f i e r  needed. Neglect  
thermal  e f f e c t s  of g e n e r a t o r  
l i q u i d  b l e e d  s t r eam and condenser 
vapor  purge s t ream.  

Evap. 6 0 ~  

6OC 

Cp (73.6%) = 0.65 x 2.21 + 0.35 x 1.105 = 1.82 k~/kg-OK 

Cp (78.5%) = 0.71 x 2.21 + 0.39 x 1.105 = 2.00 k~/kg-OK 

Qmax weak s t ream = 1778 kJ/kg r e f .  c i r c u l a t e d  

\ax s t r o n g  stream = 1832 kJ/kg r e f .  c i r c u l a t e d .  

Q ' (QE= lOkW 

43 kg/hr ref 

10 kW 

21.3 kW 

20.4 kW 

13.7 kW 

63.4 kW 

1 

Dew P t  
O C  

47 

47 

6 

6 ' 

47 

47 

6 

P r e s s u r e  
kPa 

69.4 

69.4 

12.. 4 

12.4 

69.4 

69.4 

12.4 

. 

Q 
kJ/kgiref 

QE = 251 

QA = 534 

Q G 3 5 1 2  

QC 343 

QHX = 1600 

COP30.49 

h 
W l k g  

W 
kg/kg-ref.  

1 

1 

1 

16.02 

16.02 

15.02 

15.02 

.Wh 
k ~ / k ~ - r e f  

1x1 
W t  % abs .  

0 

0 

0 

73.6 

73.6 

78.5.  

78.5 

. 

P o i n t  

1 

2 

: 3 

4 

5 

6 

7 

Temp. 
OC 

10 8 

4 7 

7 

47 

1 0 8 .  



Assume HX is 90% e f f i c i e n t .  

QHX 
= 0.90 x 1778 = 1600 kJ /kg  r e f .  c i r c u l a t e d .  

1600 = (108 - t ) x 2  .OO x  .15.02 
7  

t = 54.7 
7  

( t5  - 47)/108 - 47 = 0.9 

t5 = 101.9 

A H  vap = 296 kJ /kg  a t  5g°C b o i l i n g  p o i n t  ( s e e  4-1.2.19. 

Cp (vapor) = 0.77 kJ/kg-"K 

QC = 343 U / k g  r e f r i g e r a n t  (from 4-1.2.1) 

QE = 251 k.J/kg r e t r i g e r a n t  (from 4-1.2.1) 

QG = s e n s i b l e  h e a t  + l a t e n t  h e a t  + h e a t  d i l u t i o n  

= ( l o 8  - 101.9) x  16.02 x 1.82 + 296 + 38 

= 512 kJ /kg  r e f r i g e r a n t  

QA = l a t e n t  h e a t  + s e n s i b l e  heat ,  l i q u i d  - s e n s i b l e  heat, vapor + h e a t  d i l u t i o n  

= 534 k ~ / k g  r e f r i g e r a n t  

Heat exchanger l o g  mean tempera ture  d i f f e r e n c e  = 6.87 "C. 



4-1.3.2 Complents, c i s  1 , 2  dichloroethylene/M6 

When we compare t h i s  t o  t h e  previous M-12 system, we n o t e  t h a t  

t he  lower absorbent  molecular weight l eads  t o  a  36% inc rease  i n  t he  concen- 

t r a t i o n  d i f f e r e n c e  a t  o therwise  equ iva l en t  cond i t i ons .  This has  no s i g n i f i c a n t  

charge on t h e  evapora tor  o r  condenser (we assume' both absorbents  a r e  of low 

enough v o l a t i l i t y  t h a t  any r e c t i f i c a t i o n  w i l l  no t  s i g n i f i c a n t l y  a f f e c t  our  

energy ba l ances ) .  The e f f e c t  on the  gene ra to r  is  a  15% decrease  i n  loading ,  

a  33% decrease  i n  hea t  exchanger loading and a  f u r t h e r  a s s i s t a n c e  t o  t h e  

h e a t  exchanger i n  t h a t  t h e  same percentage e f f i c i e n c y  can be achieved wi th  

a  l a r g e r  l o g  mean temperature d i f f e r e n c e .  Our approximations obscure the  

r e l i e f  which should a l s o  be found wi th  absorber  loading .  

I t  is  a l s o  apparent  t h a t  f an  power and s o l u t i o n  h e a t  exchanger 

pump power w i l l  a l s o  b e n e f i t  s i g n i f i c a n t l y  from t h e  decreased molecular  

weight of absorbent .  

On &I i n t u i t i v e  b a s i s ,  i t  was f e l t  t h a t  .M-6 was about a s  low a 

molecular  weight amide as should be used wi thout  p o s t u l a t i n g  a  r e c t i f i e r .  . 

An a t tempt  was made, however, t o  f u r t h e r  lower t he  molecular  weight  'without 

i n c r e a s i n g  v o l a t i l i t y  by using- molecules w i t h  two d i s u b s t i t u t e d  amide 

groups, a s  w i l l  be descr ibed  below. 



The s tudy  of t h e  system 1 ,2  dichloro-1,2-difluoroethylene i n  

N , N  dimethylhexamide (M-6) was use fu l  s i n c e  i f  a  s i g n i f i c a n t  amount of 

abso rben t - r e f r ige ran t  i n t e r a c t i o n  took p l ace  through e l e c t r o n  donat ion 

t o  t he  *bond, t h e  s u b s t i t u t i o n  of f l u o r i n e  atoms f o r  hydrogen should  . 

s t r o n g l y  improve i n t e r a c t i o n  by withdrawing e l e c t r o n  d e n s i t y  from t h e  C=C 

bond. On t h e  o t h e r  hand, i f  t h e  predominate i n t e r a c t i o n  i s  hydrogen bonding, 

t h i s  s u b s t i t u t i o n  should  make 1,2-dichloro-1,2-difluoroethylene markedly 

i n f e r i o r  i n  i n t e r a c t i o n  t o  t h e  previous ly  s t u d i e d  d i ch lo roe thy lene .  

The vapor p r e s s u r e  d a t a  taken i n  t h e  l abo ra to ry  a r e  presented  

i n  Table 6 .  The m a t e r i a l  used was an approximately equimolar mixture  of  

t h e  c i s  and t r a n s  forms. This  was combined wi th  t h e  r e f r i g e r a n t  vapor 

p r e s s u r e  d a t a ,  i n  Table 7 which could be r ep re sen ted  by t h e  empi r i ca l  

equa t ion  : 

where P i s  t h e  vapor p r e s s u r e  i n  k i l o P a s c a l s  and T i s  t h e  corresponding 

tempera ture  i n  degrees Kelvin.  

These two groups of in format ion  were combined a s  shown i n  

Table 8 t o  g i v e  an equa t ion  whose l o c i  a r e  t h e  Duhring p l o t s  a t  smoothed 

concen t r a t ions  shown i n  Figure 8 . 



TABLE 6 a. 

Vapor pressures of 1,2 dichloro-1,2-dif luoroethylene in N,N-dimethylhexamide 

(M-6) original Data 



TABLE 6a(.con t ' d . ) 

PC P ( i n  l l g )  

93.68%M-6 

T(OC) P( in  l l g )  

86.63%M-6 

T(OC) P ( i n  l l g )  

23.7 5.98 

25.5 6.59 

27.5 7.01 

30.0 7.57 

50.0 12.99 

54.0 15 .55  



TABLE 6a(cont1  d.)  

T(OC) .  in l l g )  TOC P ( i n  l l g )  



TABLE 7 - 

Vapor Pressures of cisltrans 1,2 dichloro -1,2-difluoroethylene at 

various temperatutes . 

P(in llg) 

8.65 

9.00 

10.70 

12.10 

13.35 

14.95 

16.26 

17.80 

19.70 

21.30 

23.00 

25.15 

27.15 

28.80 

29.90 



Constants for Duhrhg Equations for cis/tranla 1,2 dichloro 1,2 dif lwro- 

ethylene in  M-6 at various weight pexcentagea of M.6. 

Equation valid 60 - 95 not X absorbent 





4-1.4.2 Comments, 1 , 2  dichloro-1,2-difluoroethylene/M-6 

From t h e  Duhring curves ,  u s ing  t h e  same condi t ior ls  a s  have 

prev ious ly  been adopted f o r  comparison purposes ,  t h e  high and low s i d e  

concent ra t ions  can be  seen  t o  be  82.8 and 82.5 weight pe rcen t ,  r e s p e c t i v e l y .  

Add i t i ona l  cyc l e  c a l c u l a t i o n s  a r e  e v i d e n t l y  supe r f luous  s i n c e  t he  s o l u t i o n  

flow would be enormous. 

It is  ev iden t  from t h i s  system, a s  w e l l  a s  obse rva t ions  made 

elsewhere i n  t h i s  r e p o r t ,  t h a t  e f f e c t i v e  ha locarbon  abso rp t ion  r e q u i r e s  

t he  presence  of a hydrogen atom on t h e  . r e f r i g e r a n t  molecule.  



4-1.5.1 Trichloroethylene-N,N dime thyldodecamide (M-12) 

The poor performance of t e t r aha logena ted  e thy lene  suggested 

t h a t  a t r i h a l o g e n a t e d  e t h y l e n e ,  i n  which t h e  s i n g l e  hydrogen would have 

i t s  b a s i c i t y  promoted by t h r e e  halogen atoms,. should be more promising 

than  t h e  p rev ious ly  cons idered  s y s  t e m s  . ~ r i c h l o r o e t h ~  l e n e  being r e a d i l y  

a v a i l a b l e ,  non-flammable, s t a b l e ,  e t c . ,  appeared t o  be a candida te .  

Vapor p r e s s u r e s  of t r i c h l o r o e t h y l e n e  a r e  shown i n  Table 9 ,  

vapor p r e s s u r e s  of t r ichloroethylene/M-12 s o l u t i n n s  i n  Table 1 8  and 

t h e  c o n s t a n t s  f o r  the  Duhring equat ions  de r ived  from t h e  d a t a  in Tables 

9 'and 10  are t a b u l a t e d  i n  Table 11. . . 

These d a t a  a r e  combined i n  t h e  equat ion:  

where (x)  i s  the  concen t r a t ion  of M-12 on a weight pe rcen t ,  
Tref  and 'sol 

are t h e  i s o b a r i c  r e f r i g e r a n t  and s o l u t i o n  temperatures ,  r e s p e c t i v e l y .  

The l o c i  of t h i s  e q u a t i o n  are ' t he  Duhring p l o t s  of F igure  9. 

4-1.5.2 Evalua t ion  of T r i ch lo roe  thylene/M-12 

The Duhring p l o t ,  i f  taken l i t e r a l l y , .  would sugges t  ' t h a t  the  

c o n c e n t r a t i o n  spread  between weak and s t r o n g  s o l u t i o n s , . u n d e r  t h e  a i r  

cooled cond i t i ons  adopted a s  s t anda rd  i n  t he  previc511sly s t u d i e d  sys  t e r n ,  

would be  ' between 88% M-12 and about 9 7%. Unfor tuna te ly  , t h e  a v a i l a b l e  

d a t a  were l ack ing  i n  h igh  concen t r a t ion  r e s u l t s  and t rea tment  of t h e  

system would have t o  be done on t h e  ' ba s i s  of a b l i n d  e x t r a p o l a t i o n ,  which 

i s  f a r  t o o  r i s k y .  Add i t iona l  d a t a  should  b e  taken.  

The system is  n o t  p a r t i c u l a r l y  promising: 

1. The low s o l u b i l i t y  means t h a t  t h e  c i r c u l a t i o n  r a t e  w i l l  be 

h i g h e r . t h a n  would be experienced f o r  a more s o l u b l e  m a t e r i a l  

showing a similar concen t r a t ion  spread .  



2. The high molecular weight ineans .that the r a t i o  of la tent  heat 

to heat capacity, on a unit  mass b a s i s ,  w i l l  be low. 



VAPOR PRESSURES, TRICHLOROETHYLENE 

P ( i n  Hg) 

3.06 

3 .40  

4 .25  

5 . 6 0  

6 .42  

7 . 1 5  

7 .90  

8 .80  

P  ( i n  Hg) 

9 . 4 8  

10 .41  

11.39 

12.37 

13 .49  

14 .60  

16 .21  

1 7 . 3 8 '  

18 .80  

P  ( i n  Hg) 

20 .48  

22.15 

23.92 

25 .82  

27 .61  

28.85 

29.80 

30.20 

where P is t h e  pressure i n  k i l oPasca l s  and T the abeolute  temperature 

in  degrees  K e l v i ~ a .  



TABLE 10 

VAPOR PRESSURES, TRICHLOROETHYLENE IN M-12 

44.09 wt% M-12 61.,54 wt% M-12 77.17 wt% M-12 70.35 wt% M-12 

OC P ( i n  Hg)  - OC P ( i n H g )  - OC P ( i n  Hg)  "C P ( i n H g )  - 
21.1 1.45 21.0 1.00 25.0 0.70 27.5 1.18 

25.0 2.00 2 5 1.25 30.0 0.90 30.0 1.32 



TABLE 10 (cont'd.) 

83.74 w t %  M-12 28.2 wt% M-12 5 1 . 9 1  wt% M-12 

" C  (in Hg) - O C  P (in Hg) - "C P (in Ha) 
30 0.75 2 0 1 ..98 2 2 1.40 



TABLE 11 

CONSTANTS EOR !DIE DUtIRING EQUATIONS, TRICHLOROETHYLENE/M-12 

T r e i m m T  + b  sol 





4-1.,5.3 F l u o ~ h l o r p ~ t h a n e  (R-21) with N ,N Dime thy lhexamide .(M-6) 

This r e f r i ge r an t  appears t o  be an exce l len t  choice f o r  an absorption 

systQm of the "organic" type s ince  i t  has a low molecular weight, one 

hydrogen atom and three  highly e lect ronegat ive  hal ide  atoms t o  enhance the  

ac id i ty  of the  hydrogen atom. It is a l so  a s t a b l e  r e f r i ge r an t  and has a 

bo i l ing  point  (about g°C) which would permit low pressure operation. 

Table 12 displays the  constants which relate the temperature of a 

s e r i e s  of solut ions  of R-21 i n  M-6 t o  the  i sobar ic  temperature of R-21. 

Vapor pressure da ta  f o r  R-21 were daken from Table 6, ASHRAE Handbook of 

Fundamentals (1972), a~ were the other  proper t ies  of t h i s  r e f r i ge r an t  

needed i n  cycle calculations.  

The family of Duhring p lo t s  f o r  R-21/M-6 are given i n  Figure 10. 

A s e r i e s  of cycle calculations follow which pro jec t  t h e  p r inc ipa l  

charac te r i s t i cs  of cycles operating with the  sys tern R-21/M-6: 

1. Undel: "typical" a i r  cooled, so l a r  powered conditions adopted e a r l i e r  

with a 70% e f f i c i e n t  heat  exchanger. 

2 .  Under "typical" conditions as above, but: with a 90% e f f i c i e n t  hea t  

exchanger . 

3.  Under "typical" conditions as above, but  with a hypothet ical  100% e f f i c i e n t  

l i qu id  heat  exchanger and a 100% e f f ec t i ve  llquid-suction hea t  

exchanger acroes the  evaporator. 

4. With air s i de  approach reduced from 12OC t o  8*C and with a 90% 

e f f i c i e n t  so lu t ion  heat  exchanger. 



TABLE 12 

Tnf Tao1 + b, where T i s  i n  degreu C e l ~ i ~ .  





Sys t e m :  ' Dichlorof luoramethane (R-21) /N ,N Dimethylhellamide (M76) A i r  Cooled 
HX = 70X e f f .  

1. Superheated Ref. Vapor 
2. Liquid Refrigerant 
3. Saturated Ref. Vapor 
4. Weak Sol. t o  HX 
5. Weak Sol. t o  Gen. 
6. Strong Sol. t o  HX 
7 .  Strong Sol. t o  Abs. 

No r e c t i f i e r  needed. Neglect 
thermal e f f e c t e  of generatax 
l i q u i d  bleed stream and 'condenser 
vapor purge strerna. 

h 
Wlkg 

355 

90 

286 

Temp. 
O C  - 

108 

4.7 

. 6  

47 

86.8 

108 

65.3 

[X) 
Wt X abs. 

0 

0 

0 

54.0 

56.0. 
1 .  

60.1 

60.1 

I 
Wh 

kJlkg-ref 

355 

90 

286 

- 

W 
kglkg-ref. 

1 

1 

.1 

14.65 

' 14.65 

13.65 

13. b5 

r Poin t  

- 
1 

2 

3 

4 
9 

6 

7 

Pressure 
kPa 

364 

344 

9 1  

91 . 
364 

3 64 

91  

Q' (QlOkW 

184 kg/hr mf 

10 kW 

13.5 

35.6 

32.4 

50.4 

A 

Dew P t  
O C  

47 

47 

6 - 

6 

47 

4 7 
U 

6 

Q 
W/kg-ref 

4 

QE = 196 

Qc = 265 

QA = 698 

Q G a 6 3 5  

QIIK0988 

COP-0.31 



QE 
= 286 - 90 = 196 k ~ / k ~  refrigerant .  c i r c u l a t e d  

Qc = 355 - 90 = 265 k ~ / k g  r e f .  c i r .  

Q ( s trong  stream) = 13.65 x (108 - 47) x 1 .75  = 1457 k ~ / k g  r e f .  

Q (weak'stream = 14.65 x (108 - 47) x 1 .58  = 1412 kJ/kg r e f .  

Q,, = 988 

= 698 kJ/kg r e f .  c i r cu la t ed .  

= 635 kJ/kg re f ;  c i r cu la t ed .  

Q,/Q, = 1 .35  

Q / Q  = 3 .56  
A E. 

Heat Exchanger LMTD 18.g°C 



- - -- - - - - 

System R-21/M-6 

A i r  Cooled 
> , . HX = 90% Ef f .  

. . 

1. Superheated Ref. Vapor 
2 .  Liquid  Ref t i g e r a n t  
3. S a t u r a t e d  Ref. Vapor 
4. Weak So l .  t o  HX 
5 .  Weak So l .  t o  Gen. 
.6. St rong S o l .  t o  HX 
7. St rong So l .  t o  Abs. 

No r e c t i f i e r  needed. Neglect  
thermal e f f e c t s  of g e n e r a t o r  
l i q u i d  b leed  s t ream and condenser 
vapor purge s t ream.  

From ,Previous Calculaf ion:  C (56%, 75°C) = 1.58 ' ~ J / ~ ~ - o K  
P  

C (60%, 75OC) = 1.75 kJ/kg-OK 
P 
QE .=-I96 kJ /kg  r e f .  c i r c u l a t e d  

QC - 265 kJ/kg r e f .  c i r c u l a t e d  - .  

Qmax' (HX) = 1412 kJ/kg r e f .  circulated. 



= 417 kJ./.kg' r e f .  circulated. 

'a, 369 kJ/kg-ref. circulated.  

Heat Exchanger LMDT = 6 .  91°C 



.System' M-6 and R-21 
., . 100% E f f i c i e n t  So lu t ion  HX 

100% E f f i c i e n t  Liquid-Suction HX 
llO°C 350.c ' 

, 1. Superheated Ref. Vapor 

Gens 1 0 8 0 ~ .  Cond. , 4 7 0 ~  
2.. Liquid  R e f r i g e r a n t  

. . 
(1) . 

3. S a t u r a t e d  Ref. Vapor 

I;-S . HX 
( m a x ) .  

= '18 kJ/kg . Assume t o t a l  exchange. 
. . 

h . . 

Temp. 
. O C  

108 
47 , 

' 6 '  

47 . 
1015 . 

, 1 0 8 .  
.48.9 

[ X I  , 

' W t  % ab.s. 

0 .  
.O 
0 

0 
0 .  

56.0 . . 
.5b . .O , .  

6 0 . 1 '  

60.1.;. 

D 
P o i n t  
. !  

4. Weak So l .  t o  HX. 

: 
I 

W 
kg jkg- re f .  

1 
' 1 

1 
1 
1 ' 

14.65' 
1.4.65 

13.65 

13.65 , 

. . . . 

2a 
db $a 
$P 
4 . 

. 

6 '  

, . 7 ' .  

108°C (6) 108OC 
. . 

' ( 5 )  . 

h 
kJ /kg 

35 5 
90.4 
7 2 

286 ' 

. 304 

. 

. . 

5 .  Weak So l .  t o  Gen. 
' 6 .  S t rong  S o l .  t o  HX 

. . 7. S t rong  S o l .  t o  Abs. 
2 a 

No r e c t i f i e r  needed. Neglect  
thermal e f f e c t s  of g e n e r a t o r  
l i q u i d  b leed  s t r eam and c'ondenser 

.2b vapor purge s t ream.  

V 

Y 

Wh 
.kJ/kg-ref 

355 
90.4 
7 2 

286 
,304 

HX . 

- . - - -  

QHX , I ES 
HX ' 

Abs. 4 7 ' ~ '  
3b . I 3a 

. 

P r e s s u r e  
kPa 

1559 
1539 
1559 

364 
364 

'364 
1559 

1559 

364 
. 

1 

Evap. 60°C 
. 

I . : '  :J I 

I . .  

Q A 3S°C QE . 7OC 
I 

Dew P t  
O C  

47 
47 
47 

6 
6 
6 

47 

47 

6 
. 

Q 
kJ/kg-ref 

Qc - 265 
Q E = 2 1 4  

= 249 
' ~ ~ 2 7 5  
k X - 1 4 1 2  

COP = 78% 

Q ' (QE=l0kW 

1 6 8 k g / h r  re f  

12.4  kW 
1 0  
11.6 
12.9 
66.0 



Q, 
.= 14.65 x 1.58 x. (108 - '47) = 1412 kJ/kg' r e f r i g e r a n t  

1412,- 13.65 x 1.75 x (108 - t7) 

'Q* = .  (304.. - 90) . . + 35 +'(48;9 - 47) x 13..65 x 1.75 

= 294 kJ /k i ,  r e f .  . c i rcu la ted .  . 
. . 

.=. 228: ,k.J/kg r e f .  c i r cu la ted .  



System M-6/R-21 90% Heat Exchanger, 8°C A i r s i d e  
Approach 

Abs. 43Oc Evap. 6OC 

I 

110" C 35°C 
QG 

1. Superheated Ref. Vapor 

- Gen . A J  l o 8 0 C  : ~ & { # [  Cond, 430C 2 .  3 .  Liquid  S a t u r a t e d  R e f r i g e r a n t  Ref. Vapor 

4. Weak So l .  t o  HX 

1 0 1 . 5 " ~  (6) 1 0 8 ' ~  (5) 

P o i n t  

1 

2 

5. Weak S o l .  t o  Gen. 
6. S t rong  S o l .  t o  HX 
7. S t rong So l .  t o  Abs. 

Temp. 
"C 

,108 

4 3 

No r e c t i f i e r  needed. Neglect  
thermal e f f e c t s  of g e n e r a t o r  
l i q u i d  b l e e d  s t r eam and condenser 
vapor purge s t ream.  

Y ,  r (2) 

HX Q~~ 

1 

[.XI 
W t  % a b s .  

.. ' 0  

0 
0 

53.2 

113.2 

'62 .5  

62.5 

h 
kJ/kg 

350 

' 86 

286 

, ' W  
kg lkg- re f .  

1 

1 

1 

6.72 

6 . 7 2  

3 .72  

' 5 - 7 2  

. I 
6- 

4 ' 1  43 

5 1 101.5 

(7) 49.5OC 

A 

' 6 .  

7 

43OC 

Wh 
kJ/kg-ref 
- 

350 

86 

, 286 

1100 

49.5 

( 4 )  

Pressure  
. kPa 

'321 

321 

9 1 

9 1 

32 1 

321 

9 1  

' ~ e w  P t  
O C  

43 

43 

6 

6 

43 

4 3 

6 

Q 
kJ/kg-ref 

QE = 200 

Q C = 2 6 4  

QA = 271 

QG = 295 

QHX '596 

COP=O. 68 

Q '  (QE=lOkW . 

180 k g l h r  r e f  

10.0 kW 

13.2 

13.6 

14.8  

29.8  

..-,-- -- 



QE 
= 286 - 86 = 200 kJ/kg r e f r i g e r a n t  c i r c u l a t e d  

QC = 350 - 86 = 264 kJ/kg r e f .  c i r c .  

Q(strong stream) = 5.72 x 1.78 (108 - 43) = 662 k ~ / k g  r e f .  

Q(weak stream) = 6.72 x 1.55 (108 - .43) = 677 k ~ / k g  r e f .  

QHX 
= 0.90 x 662 = 596 kJ/kg r e f .  

= 295 kJ/kg r e f .  

Heat Exchanger LMTD = 6.5OC 



4-1.5.8 Comments R-21/M-6 Sys t e m  

The s e v e r a l  cond i t i ons  under which cyc le  parameters ,were  c a l c u l a t e d  

g i v e  some f e e l  f o r  t h e  des ign  problems which 'must  be  faced  i n  b u i l d i n g  a 

useJ6ul' a i r  cooled,  s o l a r ,  d r iven ,  abso rp t ion  c h i l l e r  based on an "organic" 

c y c l e  . 

It i s  e v i d e n t  i n  comparing t h e s e  r e s u l t s  t h a t  one must have a 

ve ry  e f f i c i e n t  s o l u t i o n  h e a t  exchanger i f  any u s e f u l  e f f i c i e n c y  is  t o  b e  

ob ta ined  and t h a t  i t  w i l l  be  ve ry  l a r g e  s i n c e  t h e  h e a t  exchanger l oad  is  

about  s i x  and a h a l f  t i m e s  t h e  s i z e  of t h e  cool ing  load .  The absorber  and 

g e n e r a t o r  l oads  a l s o  tend  t o  climb very  f a s t  a s  t h e  h e a t  exchanger drbps i n  

- e f f i c i e n c y .  

Under t h e  s t a n d a r d  design cond i t i ons ,  i nc lud ing  a 12OC approach 

t o  t h e  ambient a i r ,  t h e  c y c l e  e f f i c i e n c y ' i s  proj .ected as 53%, w i t h  78% 

e s t i m a t e d  as a s o r t  of t h e o r e t i c a l  c e i l i n g  i f  a l l  p o s s i b l e  h e a t  conserva t ion  

t a k e s  p l ace .    he l i qu id - suc t ion  h e a t  exchange can p o t e n t i a l l y  i n c r e a s e  the  

evapora to r  performance by about  t en  p e r c e n t ,  which c u t s  down t h e ,  s o l u t i o n  

c i r c u l a t ~ o n  r a t e  by a s i m i l a r  amount. 

Another way of improving the  performance of t h e  cyc le  is by . 

reducing  t h e  approach teinperature of t h e  abs'orber and condenser t o  the  

coo l ing  a i r .  The number 8OC i n s t e a d  of 12" prevsously pos tu la te 'd  is 

. a r b i t r a r y .  ' The e f f e c t s  of  t h i s  a r e  dramat ic  s i n c e  i t  al lows an inc reased  

concer i t ra t ion  sp read  and a major decrease i n  s o l u t i o n  c i r c u l a t i o n  r a t e .  



4-1.6.1 ~ i f l w ~ d c h l o ~ o m e t h a n e  (R-22) IN, N Dimethylhexamide (M-6) 

'The R-22/M~-6 'da ta  were derived by measuring the  vapor pressures  

o f .  a series of so lu t ions  a t  var ious  temperatures and converting the  da ta  

t o  Duhring p l o t s  ,by use .of r e f r i g e r a n t  da ta  published by E. I. duPont de 

 emo our$. and Co. (1964). T'able 13 gives the  va lues  of t h e  cons tants  "m" and 
I1 11 . b 'der ived by l e a s t  s i u a r e s  f i t t i n g  .of the  d a t a  t o  a l i n e a r  curve. 

A .second l e a s t  squaring of these. constants  gives a combined 
. . 

equation: 

Tref = [ l .  182 - 0.00758 (x ) ]  Tsol + 15 - 0.8722 (x) ,  

whose l o c i  a t  rounded values  of the  weight percentage of M-6, (x),  a r e  shown 

i n  Figure 11. 

TABLE 13  

DUHRING EQUATION CONSTANTS FOR R-2 2/M-6 



Sys t e m  4-1.6. la Dif luorochloromethane (R-22)l~imethylhexamide (M-6) 

110°C 3S0C 
Air Cooled Conditions 

QG 

1. Superheated Ref. Vapor 

Cond. 4 7 0 ~  
A :*&+{Ll 2. Liquid  R e f r i g e r a n t  

Gen. 108OC 3. S a t u r a t e d  Ref. Vapor 
4. Weak Sol .  t o  HX 

9 6 . 4 0 ~  

, 

P o i n t  

1 

2 

3 

4 

5 

6 

7 

(6) 108Oc (5) 

Wh 
kJ/kg-ref 

-- 

5 .  Weak S o l .  t o  Gen. 
6. S t rong  So l .  t o  HX 
7 .  St rong  So l .  t o  Abs. 

Temp. 
"C 

1 0  8 

4 7 

7 

No r e c t i f i e r  needed. Neglect  
thermal  e f f e c t s  o f  g e n e r a t o r  
l i q u i d  b l e e d  s t r eam and condenser 
vapor purge s t ream.  

V 

Y (2 

P r e s s u r e  
kPa 

1812 

1812 

603 

603 

1812 

1812 

603 

HX 
A 

[XI 
W t  X a b s .  

0 

0 

0 

Q~~ 

47 52.7 

J.~I=: - 
108 1 36 .7  ' 

Evap. 6OC Abs. 47°C 

14.18 

14.18 

13.18 

13.18 

- 

W 
kg/kg-ref .  

1 

1 

1 

Q '  (QEalokW 

243kg/hr  r e f  

1 0  k W  

15.6 

27.9 

33.5 

116.4 

Dew P t  
O C  

47 

47 

6 

6 

41 

47 

6 

I I 

(3) 

h 
kJ /kg 

334 

103.- 

251.- 

Q 
kJ/kg-ref 

QE= 148 

QC= 230.5 

QA=413  

QG= 496 

QHX= 1722 

C(IP=30X 

(7) >3.1°C 47 "C 

V r 

I\ 

(4) 



Q (56.7%) ~ ( 1 0 8  - 47) x 13.18 x 2.38 = 1913 kJ /kg  r e f .  c i r c u l a t e d .  . . 

w i t h  90% e f f i c i e n t  h e a t  exchanger: 

Q~~ 
= 1722 kJ/kg r e f .  c i r .  

t7 = 108 - 0.90 (108 - 47) . . 

= 413 kJ/kg s o l u t i o n  c i r c u l a t e d .  

QG = QC + QA - QE = .496 kJ/kg r e f .  c i r c u l a t e d .  

A d i r e c t  c a l c u l a t i o n  of QG i s  d i f f i c u l t  s i n c e  the  c r i t i c a l  temperature of R-22 

i a  9 6 . 0 " ~ .  In l i e u  of  any knowledge of s o l u t i o n  p r o p e r t i e s ,  we can assume 
t h a t  t h e  apparent  molar enthalgy of  R-22 i n  s o l u t i o n  w i l l  be equa l  t o  t h e  

n o l a r  en tha lpy  of pure R-22 a t  t h e  same vapor p re s su re .  I f  w e  do t h i s :  

5 658 kJ/kg r e f .  c i r c u l a t e d .  

I n  terms of the u n c e r t a i n t i e s  involved ,  t h e  va lue  496 is p re fe r r ed .  



4-1.6.2 Comments - M-6/R-22 

. . R-22 is  a much h igher  pressure  r e f r i g e r a n t  than w e  have .p rev iowly  

considered.  This has two consequences ; the  molar, hea t  of vapor iza t ion  is 

lower (Trouton's Law.) and the  low c r i t i c a l  temperature -causes the  s p e c i f i c  

h e a t  of  the  r e f r i g e r a n t  t o  i n c t e a s e  r ap id ly  through the  temperature range. 

These two e f f e c t s  l ead  t o  a low QE value  per  u n i t  maas of r e f r i g e r a n t  c i r cu la ted .  

A l iquid-suct ion  h e a t  exchanger across the  evaporator  would. be 'a necess i ty  i f  

t h i s  system were t o  be w e d .  

Much of t h e  a d d i t i o n a l  loading on components , a r i ses  from the  increased 

h e a t  capaci ty  a t  higher temperatures. It might w e l l  be  t h a t  experimental values 

f o r  t h e  s p e c i f i c  h e a t s  of s o l u t i o n s  would be lower than the  extimated values 

w e  have, employed -- t he  e f f e c t ,  however, i s  expected t o  be r e a l .  

R-22, remains an i n t e r e s t i n g  r e f r i g e r a n t  candidate because of i t s  

a v a i l a b i l i t y ,  chemical s t a b i l i t y  and moderately high p ressure  which .can 

f avorabijr a f f e c t  compactness pf  equipment. 





4-1.7.1 Halogenated Ethaue Refrinarante 

EIavlag ceucludsd t h a t  the ethylene double bond is not  an important 

contr ibutor  t o  bonding between re f r igeran t  and absorbent, several halogenated 

ethanas were b r i e f l y  explored. 

Tiable 14 presents  the  vapor pressure data  recorded f o r  1,1,2 

tr ichloroethane and Table 15 shows vapor pressures of several  solutions,  

both over a temperature range. 

When the da ta  i n  these two tab les  a r e  combined i n t o  a series of 

l i n e a r  Duhring equations, Tref = mT + b, we  obtain the following: s o l  

The column t o  the  r i g h t  is the  calculated re f r igeran t  temperature 

t o  be i n  pressure equilibrium with solut ion of the specif ied composition and 

lW°C.. Since even a t  90 w t  % M-12 w e  cannot obtain a 50°C temperature 

dif ference,  the approximate minimal criteria establ ished e a r l i e r ,  w e  conclude 

t h a t  t h i s  system cannot be considered fo r  a i r  cooling. 

In ari attempt t o  enhance the  poor showing of 1,1,2 trichloroethane, 

a f luor ine  atom w a s  introduced on the  number two carbon t o  fur ther  withdraw 

e lec t ron  density from the  hydrogen atoms. A small sample of 1,1,2 t r ichloro-  

2-flwroethane (R-131a) w a s  obtained and in Table 16 a r e  presented the 

vapor pressure da ta  of pure re f r ige ian t  and two solutions i n  M-6, over a 

temperature range. 



TABLE 14  

Vapor .Pressure 1 , 1 , 2  Trichloroethane 

T "(OC) , .  P . ( i n  ~ g )  . T (OC) P- (in Hg) T (?C) 

20 .2  0 .60  60. 4 . 82  85 .0  

25 .0  1 .00  65 5 . 9 3  87 .5  

30.0  1 . 3 1  70 7 .20 90 . O  

35..0 1 . 64  ' 72.5 8 . 0 1  92 .5  

P  ( i n  HE) 

12.35 

13.45' 

14.70 

15.95 



TABLE '1 5 -- 
Vapor P r e s s u r e s  of  1 ,1 ,2Tr ich1oroe thane  i n  M-12 

77.84% M-12 16 .13  % M-12 79.96% M-12 43.14 % M-12 
P i n H g  T ° C  P i n H g  P i n H g  T O C  P i n H g  - 

25.0 0.40 20.0 0.70 25.0 0.30 20.0 0.40 



TABLE 15 (cont' d. ) 

62.77 % M-12 

- T  O C  - P (in Hg) 

25 .O 0.55 

30.0 0.65 

35.0 0.80 

40 .O 1.00 

88.29 X M-12 
T O C  - P (in Hp;) 

40.0 0.81 

45 .O 1.08 

50.0 1.27 . 

55 .O 1.60 

60 .O 1.95 

65.0 2..41 

70.0 2.95 

75.0 3.50 

80.0 4.20 

-85.0 4.95 

90.0 5.79 

95.0 6.75 

100.0 7.77 

105.0 .8.80 

110.0 10 .oo 
115 .O- 11.40 

120.0 12.80 

125 .O 14.50 

127.5 15.35 

130.0 16.20 

132.5 ' 17.10 

135 .O 18 .OO 

137.5 1'8.90 

140.0 19.80 

145.0 21.80 

150.0 23.98 

155.0. 26.18 . 

160.0 28.40 

,162 .O 29.35 

19.61 % M-12 

T O C  - P (in Hg) 

25.0 0.75 

30.0 0.95 

35.0 1.23 

40.0 1.60 

45 .O 1.96 

50 .O 2.41 

55.0 3.05 

60.0 3.70 

65.0 4.55 

70.0 5.48 

75.0 ' 6.61 

80.0 7.90 

85 .O 9.38 

90.0 11.00 

95.0 12.85 

100.0 14.82 

105.0 17.30 

107.5 18.80 . 

110.0 20.00 

112.5 21.50 

115.0 22.98 

117.5 24,. 75 

120.0 26.42 

122.5 28.22 

124 .O 29.40 

124.5 29.70 



TABLE 15  ( c o n t ' d . )  

77.84 % M-12 16.13 % M-12 79.96 % M-12 
T ° C  P i n H g  P i n H g  T P i n H g  - 
25.0 0.40 20.0 0.70 25.0 0.30 



9 5 
TABLE 16 

VAPOR PRESSURE DATA 1,1,2 Trichloro-2-Fluoroethane (131a) 

(in kPa) 



Combining t h e s e  d a t a  i n t o  Duhring equat ions ,  w e  ob ta in :  

The. f o u r t h  column i n d i c a t e s  t h a t  temperature d i f f e r e n c e s  between 

r e f r i g e r a n t  and s o l u t i o n s  i n  excess  of our  5 0 ° C  minimum can be  obta ined;  

o t h e r  systems,  however', show much more promise than  t h i s  one. 

What i s  demonstrated i n  t h i s  comparison of t h e  two . e thane  d e r i v a t i v e s  

is t h e  e f f e c t i v e n e s s  of a f l u o r i n e  atom i n  promoting hydrogen bonding i n  

t h e s e  systems. This  e f f e c t  is gene ra l ly  . seen  i n  o t h e r  comparisons which can 

be made w i t h  d a t a  conta ined  i n  t h i s  r e p o r t .  



4-1.8.1 l,l,l-Trifluoro-2,2-dichloroethane (R-123b) and N,N-Dimothylhexamide (M-6) 

The sa lu ta ry  e f f e c t  of a f luor ine atom, seen i n  the  previous 

section,  suggested tha t  an even greater  binding energy should r e s u l t  from 

the use of multiple f luor ine atoms. As an experiment, a sample of 

l,l,l-trifluoro-2,2-dichloroethane was obtained, its vapor pressure and 

vapor pressures of a series of solut ions  i n  M-6 measured and the Duhring 

equation constante shown below were obtained. 

Table 16 a, Duhr ing Cons t an t s  . R-123b/M-6 

Tref - [0.8722 - 0.00348 (x)] Tsol + 47.3 - 1.2283 (x) 

Figure 12 shows the l o c i  of Duhring equat iow f o r  i n t eg ra l  values 

of the  concentrations of M-6. 

Looking a t  the  refr igerant  temperatures for  100°C collation temperatures, 

as s h w n  i n  Table 16, we note tha t  there  has been l i t t le  ga&n in  going to  the 

more highly f.luorinated system, especially when the lower molecular weight 

of tha M-6 is taken i n t o  account. Even =re reatarkaB2s is the f a c t  t h a t  ' i f  

the  generator and absorber concentrations a r e  read of f  the curves (using 

108°/4?QC and 47'/6"C) they tutn out t o  be subs tan t ia l ly  59% * 6  i n  both 

cases. 





In a l l  probabili ty,  the explanation of t h i s  l ies i n  s t e r i e  hindranee 

e f fec t s ,  the carbon atom on which the hydrogen bonding atom is located 

also contains three la rge  subs t i tuea t  groups. This e f f ec t ,  good bonding but 

very small concentration change over the avai lable  temperature, range, w i l l  

be seen again, eo i t  ia probably a r e a l  e f f e c t  and not  just a poor set of 

data,  

4-1.9.1 Multiple Dirpethylamlde Grouas 

O u t  basin p o s t d a t e  i s  t h a t  good absorption occurs because of 

hydrogen bonding t o  a spec i f i c  s i te i n  the  absorbgnt molecula, Le., t he  

carbonyl group tr the  dimthylamide s t ructure .  The reminder  of the k l e c u l e  

serves only t o  polar ize  the  bonding site and t o  add mass t o  decrease v o l a t i l i t y .  

It appeared reasonable, therefore,  t o  attempt t o  increme re f r igeran t  

so lub i l i t y  by replacing -re mass with a second functional group. Buo 

such abebrbents were prepared i n  the laboratory i n  suf fkcient  amount t d  test 

the hypothesis ; i .e . , 

which is a 'solid melting at 84OC and 

which is a l iqu id  boi l ing above 250°C. 

Vapor pressures of R-22 dissolved in each of these absorbents w e r e  

measured over a raqp of coaeentxation and temperature. The Dutrring equation 

constants are tabulated i n  Table 17, and the loci of the  equations at 

i n t eg ra l  amcentrat ions  ate shown i n  Figures 13 and 14. 







Table 17. Duhring Equations R-22fDiamides 

W t  X Aba. m - b - T (T = 100°C)OC ref---a01 
54.0 0.6475 -40.2 24.6 

45.5 0.6583 -29.1 36.7 

29.3 0.7000 -26.5 43.5 

Tr ef = [O. 7624 - 0.00218 (x) 1 Tsol - 10.38 - 0.5017 (x) 

N,N ,N1 ,N' tetramethylmalonamidefR-22 

W t  X Aba. - m - b T (T = ~ O O ~ C ) O G  --r ef----sol 
85.1 0.3773 -54.1 -16.4 

74.1 0.4233 -39.9 2.4 

65.5 0 .$533 -37.1 18.2 

55.6 0.5808 -29.2 28.9 

48.8 0.6800 -28.7 39.3 

=ref - 11.068 - 0.00828 (x) 1 Tsol + 7.47 - 0.6882 (x) 

4A1.9.2 Comments, M u l t i ~ l e  Diethylamide Groups 

It is seen from Table 17 tha t  both of these absorbents show large 

depreeeieas of the dew point temperature a t  lower absopbent concentrations 

than we have seen previously. Thus, our basic  approach of the advantages 

of multiple f utlctional groups seems vindicated. 

When we look for u w e n t r a t i o a  apread between bug c ladard  condttinno 

(geaetatot 108'/47'~, abeorber 47'/6*C) we see v i r t m l l y  zero spread i n  the 

case of the nalondde and only a modest 33.99% t o  32.15% spread f o t  the 

succinaaride. Thgs may w e l l  be another example of a s t e r i c  e f f ee t  -- the 

maloneeaide being less subject to  the s t e r i c  obstriiction because of the 

addi t ional  unit i n  the carbotr chain separating the two bonding carbonyl 

groups I 



Closely a l l i e d  to the a d d e  we have looked at am the pyrrolidanee, 

such as 2-pyrrolidone Ilil-Q)-CB2-F2-Q12, which should be comparable i n  

basici ty  t o  the aafldes, of e l ight ly  lower formula weight cmd cormaercially 

available in quantity. It has a melting point of 24.6OC and a boi l ing point 

of about 245OC. Like the amidee, the pyrrolidones are excellent eolvents f o r  

a wide variety of materials. 

. In Table 18 are  collected the Duhring coastante f o r  the system 

R-2212-pyrrolidone. 

Tabla 18. R-2212-pyrrolido~ Duhring Constants 

W t  % Abs. - m - b %e&ol = ~ O O ~ C ) ~ C  
92.88 0.6147 -68.59 -7.1 

88.54 0.7508 -65 . 39 9.7 

81.98 0.7750 -54.65 22.9 

77.30 0.8224 -51.64 30.6 

72.09 0.8228 -45.30 37.0 

66.38 0.8155 -35 . 60 46.3 

- [1.302 - 0.0067 (x)] Teal + 44.6 - 1.229 (x) Tref . 

Figure 15 shows the l o c i  of these Duhring equations a t  in tegra l  

values of concentration. 

is one of the more promising of the syet& we have seen with 

a predicted 70.8 w t  X concentration out of the generator and 64.6 w t  X out 

of the absorber under our usual conditions of 108O/47OC generator and 47°/60C 

absorber. This would work out t o  a weak solut ion circulat ion r a t e  of 11.4 kg 
,,' 

of solution per kg of refr igerant  circulated. / 

No attempt is made to  do a cycle calculation becauee i t  would be 

similar t o  the M-6/~-22 system already analyzed. 





Because of the promise of the 2-pyrrolidone/~-22 system, some data 

were collected with N-methyl-2-pyrrolidone C 8 3 - ~ - - C O - ~ - ~ 2 - ~  

which should be somewhat more basic  than 2-pyrrolidone and hence an improved 

absorbemt . R-21, R-22 and Ib123b (CBF2 # C  C13) were chosen a s  "better" 

refr igerants  t o  pa i r  with N-methyl-2-yyrrolidone. 

Table 19 containe the Duhring constants obtained from the laboratory 

data  for  these three sys tem.  The l o c i  of these data,  a t  i n t eg ra l  concentrations, 

a r e  shown i n  Figures 16, 1 7  and 18. 

Concentrations and weak solut ion flow rates from these da ta  are: 

Refrigerant (x) stronn (108°/470C) (x) weak (47'/6OC) w kg/kg r e f .  

R-21 55.1 53.6 36.73 

R-22 50.8 45.0 8.76 

R-123b 49 .O 51.6 -- 

The expected improvement in so lub i l i t y  fo r  R-22 ie noted and ref lected 

in a somewhat more reasonable c i rcu la t ion  rate than w e  have generally seen. 

R-21 and R-123b a r e  both la rger  molecules than R-22 and the less promising 

results f o r  these can perhaps be re la ted  to  steric ef fec t s .  



!JABLE 19. ' hzhrbg Coae tats f o r  the Syer teare BPrplycthyl-2-pyxrolidone/ 
'It-21, R-22-ad  It-123b 

W t  X Abs. 

- [0.8593 - O.OQ286 (x)] Tsol + 29.27 - 1.0534 (x) Tref . 









4 - 1 1 1  ~iznethylphosphonoacetate/R-22 

CR3-0 
\ 

Tri8leth~l#me~honoace tate ,  C H 3 - g =  0 

CH3-CO 

is a l iquid with a boiling point i n  excess of 250°C and is a good Lewis base. 

Table 20 presents the Duhring constants fo r  the three solutions 

studied. Appropriate interpolation leads t o  a strong solution concentration 

of 60.1% and a weak solution concentration of 62.5X which is the same s o r t  

of trend w e  b e  seen previously when the absorbent molecules become so 

pronouncedly t h r e e - d ~ i o n a l  as to laaks s t e r i c  hindrances more possible. 

Table 20.  Trimethylphosphonoacetate/R-22 Duhring Constants 





Table 2 1  presents s ing le  data  points,  a t  about t en  weight percent 

re f r igeran t ,  f o r  a number of systems closely re la ted  t o  those discussed i n  

the  body of t h i s  report .  The l a s t  two columns t o  t he  r i g h t  eummarize the 

behavior. The r a t i o  P/P (Raoult) gives the  r a t i o  of the experimentally 

observed pressure t o  t h a t  estimated from Raoult's Law, P R * 're%ref . ~t 
w i l l  be noticed t h a t  l a rge  re f r igeran t  molecules with very weak interact ions  

with absorbents lead t o  e i t h e r  very weak negative deviations, o r  even (ae 

i n  case of CClq,  C2H B r g  and 8-113) la rge  pos i t ive  deviations. These are, 

of course, re f lec ted  in the r i gh t  hand wlwm which gives the temperature 

dif ference between the so lu t ion  and the pure re f r igeran t  when both show the 

vapor pressure of re f r igeran t  a t  30°C. 

Table 22 presents,  a miscellany of mostly s i a g l e  point  data which 

can be w e d  t o  estimate degree of deviation from Raoult 's Law, and hence, 

ga in  some indicat ion of the Gibbs' f r e e  energy of solut ion.  



TABLE 21 
VAPOR PRESSURE DEPRESSION, MISCELLANEOUS SYSTEMS 

System Refrigerant Weight . Mole Fraction PIP (Raoult) Tsol - Tref PC> 
% Refrigerant (at 5 & ~ )  

,&P = A / T + B  Absorbent (T = 30'~) 

A B - - 
M-6 /CH 2~1,2 -3432.2 15.483 74.80 0.3618 .O. 56 48 

M-6/CC1 -3828.2 15.597 90.60 0.0868 1.17 
4 

63 

M-6/Vinyl- 
acetonitrite -4612.9 16.460 90.38 0.187 0.73 . 30.2 

M-6/Properyl 
cyanide -4479.5 16.296 91.90 0.1770 1.12 

R-113/Tetraethylene 
glycol diechyl 
ether -3492.7 15.513 

M-613-Chloropro- 
pene -3569.1, '15.855 90.65 0.1615 0.75 

M-6/2,3-dichloro- 
propene -4194.7 16.136 91.53 0.1194 

M-6/2,3dichloro -1,l 
dif luoro 
2-propene -4701.. 1 17.819 90.27 0.0952 0.64 

M-6/1,1,2 trichlcro 
3,3,3 trifluom- 

propene - 

M-6/Tetrachloro- 
ethane -4236.1 14.771 90.91 0.0785 1.79 

M-6/1,l-difluoro 
dibromoethane 

M-6/Tribromo- 
ethylene -4.734.2 15.550 90.63 0.0533 5.14 

I-' 
I-' 
W 



TABLE 22 

HALOCARBON EFRIGERANTS PAIRED WITH VARIOUS ABSORBENTS 

Ref riprerant Absorbent 

I k w  P t .  Lowering Ref r i g .  
a t  100°C Conc. 

Sol .  Temp'. Weight % 

R-14 Carban Te t r ach lo r ide  N,N-Dimethyl Amide M-6 6 6 9.5 

R-20 Chloroform 
Trichloromethane . M-6 

R-21 Dichlorofluoromethane M-6 80 25 

R-22 M-6 77.5 2 9 

R-22 

R-22 

R-23 Tr i f  luorome thane 

R-30 Dichloromethane 

R- 30 

R-32 Dif luoromethane 

T e t r a c h b r o e  thane 

1,1,2-Trichloroethane 

Pentaf luorochloroethane 

Te t rachlorodi f  luoroethane 

~ i c h l ' o r o t e t r a f  luoroethane 

Tr ich loro  t r i f  luoroe thane 

Vinyl-Pyrol 

Sul f  o l ane  

T r i b u t y l  Phosphate 

Propy l e n e  Carbonate 

N ,N-Dimethyl Formamide 

Al ly1  Cyanide 

M-6 

Sul fo lane  

M-6 

M-6 

M-6 

M-12 

M- 6 

M-6 

M-6 

Te tr ae  thy lene  Pen tamine 



TABLE 22 ( con t ' d . )  

HALOCARBON' REFRIGERANTS PAIRED WITH VARIOUS ABSORBENTS 

Dew P t . Lowering Refr ig .  
a t  100°C Canc. 

Re f r ige ran t  Absorbent Sol .  Temp. Weight X 

Trichloro  t r i f  luoroe thane Tetrae thy l e n e  Glycol 
Die thy l e  t h e r  70 9 

Dichloro t r i f  luoroethane Al ly1  Cyanide 5 6 29 

Dich lo ro t r i f  luoroethane M-6 77.5 , 30.5 

1-Chloro-l , 1-Dif luoroethane 

1,l-Dif luoro-1 ,2-Dibromoe thane 

Tet rachloroe thylene  

1,l-Dichloro-2,2-Difluoro 
e thylene  

1,2-Dichloro-l,2-Difluoro- 
e thylene  

Chloro t r i f  luoroe  thylene 

Tr ich lorof luoroe thylene  

.Bromotrif luoroethylene 

1,2-Dichloro-1-Fluoroethylene 

2-Chloro-l, l-Dif luoroe thylene  

Tribromoe thy l ene  

Tr ich loroe  thylene 

1-Chloro-2-Fluoroe thy lene. 

Cis-1,2-Dichloroethy l e n e  

Cis-1,2-Dichloroethylene 

Trans-1,2-Dichloroethylene 



Refrigerant 

TABLE 22.  (cont ' d. ) 

HALOCARBOX REFRIGERANTS PAIRED WITH VARIOUS ABSORBENTS 

1 , l -~ ichloroeth~lene  

Vinyl ~romide 

Dew P t .  Lowering Ref r ig .  
at 100°C . m c .  

Absorbent S o l .  Temp. weight X 



5-0 FINAL COMMENTS 

I n  terms of cyc l e  performance, s t a b i l i t y  and a v a i l a b i l i t y ,  t h e  

most promising r e f r i g e r a n t s  f o r  use w i t h  o rgan ic  abso rben t s  appear t o  b e  

R-21 and R-22, each of which con ta ins  a s i n g l e  hydrogen atom f o r  bonding w i t h  

maximum enhancement of bonding tendency wi th  t h e  remainder of t h e  r e f r i g e r a n t  

s i t e s  occupied by c h l o r i n e  o r  f l u o r i n e  atoms. R-21 may sometimes g ive  s t e r i c  

problems because of t h e  l a r g e  s i z e  of two c h l o r i n e  atoms; R-22 is  a f a i r l y  

h igh  preseure  r e f r i g e r a n t .  

The predominate problem. i s  t h e  l a r g e  amount of s e n s i b l e  h e a t  which 

must be exchanged, t h i s  a r i s i n g  from two causes: 

1. The low l a t e n t  h e a t  of vapor i za t ion  of most r e f r i g e r a n t s .  The 

r a t i o  of  l a t e n t  hea t  t o  s p e c i f i c  h e a t  c o n s t i t u t e s  a s o r t  of 

" f igure  of meri t"  f o r  r e f r i g e r a n t s .  

2 .  The emal l  concent ra t ion  d i f f e r e n c e  pe rmis s ib l e  a s  a r e s u l t  of high 

absorber  and low gene ra to r . t empera tu re s  when s o l a r  energ ized ,  a i r  

cooled systems a r e  considered.  

* .  
I n  a t tempt ing  t o  apply t h e s e  systems ( o r  most o t h e r  systems,  f o r  

t h a t  mat te r )  one i s  faced  wi th  e i t h e r  c o n s t r u c t i n g  a s o l u t i o n  h e a t  exchanger 

wi th  i m p r a c t i c a l ,  i f  n o t  impossible ,  combinations of s i z e ,  e f f i c i e n c y  and 

p re s su re  drop o r  e l s e  a t tempt ing  t o  reduce t h e  s o l u t i o n  h e a t  exchanger 

requirements by lowering t h e  temperature d i f f e r e n c e s  between a i r  and t h e  

i n t e r i o r  of t h e  absorber  and condenser.  This  merely exchanges one d i f f i c u l t  

problem i n  h e a t  t r a n s f e r  f o r  ano the r .  

. . .  

What accen tua t e s  t h e  h e a t  t r a n s f e r  problem is t h e  r a p i d  l o s s  of 

c o e f f i c i e n t  of performance as even small percentages  of s e n s i b l e  h e a t  a r e  

l o s t  ra ther :  than  t r a n s f e r r e d .  I f  cheap n a t u r a l  gas were t o  be t h e  f u e l  ( a s  

was t h e  object of most previous workers i n  t h i s  f i e l d ) ,  one could accep t  

h ighe r  gene ra to r  temperatures  and lowered e f f i c i e n c y  . Because o f '  t h e  h igh  

cost  of 'amortizing ah investment i n  s o l a r  c o l l e c t o r s ,  n e i t h e r  of t hese  two 

compromiaee i s  accep tab le ,  s i n c e  both  involve  us ing  the  c o l l e c t o r  a r r a y  a t  



. . 

reduced e f f i c i e n c y  and hence h ighe r  c o s t  p e r  u n i t  of u s e f u l  energy. Even 

under t h e  most f a v o r a b l e  cond i t i ons  t h e  product  of  c o l l e c t o r  e f f i c i e n c y  and 

c h i l l e r  e f f i c i e n c y  is  going  t o  be  l e s s  than  50% on an in s t an t aneous  b a s i s  and 

'perhaps h a l f  t h a t  over  t h e  o p e r a t i n g  p o r t i o n  of a  day. Thus t o  produce 240 kwh 

of coo l ing  p e r  day ( d 3  t ons  f o r  24 hours)  would r e q u i r e  about 

2  2 240 + (0.25 kW/hr-m x 10 h/day)  100 m c o l l e c t o r .  

2 .  
A t  p r e s e n t  t h e  c o s t  of an i n s t a l l e d  c o l l e c t o r  is  about $500/m s o  t h a t  each 

p e r c e n t  l o s s  i n . . e i t h e r  c o l l e c t o r  performance o r  c h i l l e r  performance is  

e q u i v a l e n t  t o  something l i k e  $500 i n  c a p i , t a l  c o s t  o r  $50 t  annual long term 

amor t iza t ior i  c o s t .  It i s  e v i d e n t  t h a t  vkry high e f f i c i ency '  cantlot Be 

compromised i n '  a  s o l a r  coo l ing  system. 

While one cannot  c a t e g o r i c a l l y  deny t h e  p o s s i b i l i t y  of c o n s t r u c t i n g  

an  a i r  cooled ,  s o l a r  d r iven  c h i l l e r ,  based on R-21 o r  R-22 and M-6 o r  

2-pyrrol idone,  t h e  problems a r e  formidable and i t  appears  t o  be t h e  way of 

wisdom t o  seek  among t h e  h ighe r  l a t e n t  h e a t  r e f r i g e r a n t s .  For t h i s  reason ,  

t h e  subsequent  review r e p o r t s  w i l l  cover only h igh  l a t e n t  h e a t  r e f r i g e r a n t s  

such a s  auimonia, methylamine and w a t e r ,  which show consid6rably more promise. 

I n  t he  exper imenta l  p o r t i o n  of t h i s  program, now I n  p rog res s ,  

t h e  system s e l e c t e d  uses  wa te r  a s  r e f r i g e r a n t  and i n t e r n a l  h e a t  t r a n s f e r  
. . 

i s  s i m i l a r  i n  magnitude. t o  equipment which has  been co&nercial ly  s u c c e s s f u l .  
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