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Human Error Considerations and Annunciator Effects in Deteruining
Optimal Test Intervals for Periodically

Inspected Standby Systems

T. P. McWilliams
University of Denver
Denver, CO

H. F. Martz
Los Alamos Scientific Labnratory

Los Alamos, NM

Abstract

This paper incorporates the effects of four types of human errcr in a
model for determining the optimal time between periodic inspections which
maximizes the steady state availavility ror standby safety systems. Such
safety systems are characteristic of nuclear power plant operations. The
systern is assumed to possess the following characteristics:

(1) System fallures occur according to a specified lifetime distribu-
tion, while on standby, which may have a time-dependent failure
rate. The system may include a detection/annunciator device which
Wwill announce a failure with a known constant probability.

(2) The system is periodically inspected for f:zilures which may not
have been detected by the annuncialor.

(3) Four types of human errors may occur in the inspection/repair pro-
cess: the system may not be correctly replaced on-line after
inspection/repair (type A error); a failed system may be judged good
during a periodic inspection (type B error); a failed s /stem may be
improperly repaired (type C error); or the failure causing an
annunciator=-activated inspection way not be located (type D error).

(4) Ingpection times are assumed lixed and known.
(%) Repalr times are assumed to have a lognormal distribution.

The system described above i3 modeled by means of an infinite state-space
Markov chain. The purpose of the paper is to demonstrate techniques for com-
puting steady-state availahility A and the optimal periodic inspection inter-
val 1* for the system described above. The model can be used to investigate
the effecta of human error probabilities on optimal availability, study the
benefits of annunciating the standby-system, and to determine optimal inapec-
tion intervals. Several examples which are representative of nuclear power
plant applications are preaented.



1. Introduction

This paper considers the availability of a safety system designed {or
standby operation under emergency conditions. The aystem ls aasumed to be
subject to the possibility of failure while on standby, and must be periodi-
cally inapected to insure proper operation when required. Examples of such a
system might include an emergency power generator at a hospital, or an emer-
gency core cooling system in a nuclear power nlant.

We develop an infinite state Markov chaln model which characterizes Lhs
behavior of a standby system during a sequence of on-=line, testing, and main-
tenance periods. The model is then used to determine the effeect on the opll-

mual test interval and correaponding availabllity taking inlo consideration:

(1) various types of huma?n error which may take place during the testii’
mihinterance process. The poaaibility of auch errors ia obviously
preaent, and recent events in the nuclear power industry, such an
T™M1, have gancrated increascd intereat in thn study - I such error:;

(2) the Incorporation intn Lhe system of an annunciator devies desiyne:
tu detact failures, at the time of ocaurrence, with a specified pro-

habiltity.

Several pecopt. atudiea hipve taken human ereor into acemnt in the JJoyel-
opment of inapection plany anu procuaures.  ounceptibility ' componentn anh=
Jeat to Leat and muintenance procoduren to human error eaus J fnllurea have
previoualy been recognized (Ref. 1). Apostolakis and B.ouaal (Ref. ?2) conalder

the offoct of a single type nf human error on n k=oul=of'=n:G syastem, while
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Swain and Guttmann (Ref. 3) discuss human error rate estimation in the speoi-
fio oase of the nuolear power industry. Swain and Guttmann (F f. 8) have also
prepared a handbook for use in evaluating the effecta of human error on the
availability of sngineered safety systems in nuclear power plants. A variety
of types and causes of errors and methods for thei~ recuction is diacussed by
Street (Ref. 5).

The problem of determining op*imum test intervals has been addrassed by
various authors, including Chay and Mazumdar (Ref. 6) (maximizing availabillty
for k=out=of=-n:G configurea standuvy systems), Sherwi: (Hef. 7) (optimum cost
inspeation schedules of condition-maintained items), and others (Hefs. 8-10).

Nonr of the papers refarenced above integrate the concepts of humar
errors and optimum test intervalas. Thia paper conaiders the actermipation of
an optimur test interval which maximizen steady stnte availability for a
standby system which includen the ponsibility of four types of human errors.

In a previoun paper, MeWilliams and Martz (Ref. 11) conaidered n leos
refined model whicn aonnl dered the effects of only Lwo Lypes of human crrors
and repale timen which were assumed to be fixed.  The model developed fn thin
paper alpal Clicantly axtend:s the pesulta of the previoan posearch by allowing
four poasible human errors, rardom repair timen, nnd the poasitility ol inear-
porat.ing an annuneiator into Lhe ayztem. Section 2 glves the aaanumption:s
which underlie the model and dafires the potation uned throughout the paper.
The Markov mode] {0 develope] in Section 4, adong #lth Lthe mathematien in=-
volved in the ealenlation of ateady state avatlability.  Section 4 deseriben
the aompul.er program uned Lo detopmine optimm trat intervala and {ta apeecifice
appliontion tn A Welhull fajlura=time and lognor=al repanir time diatribution.
Examplaon relating Lo nuclear power planl applicationa are praaanted in Section

H, and nome ~ nclunfona are given tn fection b,



2. Assumptions and Notation

The followlng assumptions are made in the development of the availability

model of Section 3.

(1) A single system is perindically inspected, and is repaired if found
to be in a bad or failed state (no consideration is given tn the
component configuration of the system).

(2) There are three wayn of clascifying the system:

A. Up (available for use when called upon),
Down (unavailable)

B. Goor
Bad

C. Under inapectinn/repair
Not under inapecticn/repair

The three classiflcations can be related as follows:

i‘u'] \’ 9_0_' lﬂ
Under inspection/repair Deyeas Down
Not under inspect im/repair Down Up

(3) The syatem can fail while un nerenpdine to 4 known, possibly non-
constunt failure (nazard) rate tunction. A fal ure may be deleoted
immediately by an annuneiator having a known probabillty of detoec=
tion, or it may be detected durig a periodie inapection.

(") Inapection conslats of Lhe following three actionn:

A. Remove/Tent. Take the ayatem off=line to see if it 18 goou or
bad. The teat procedure alwayn judgen a good system correctly.

However, it sometimea Judgea a bad saystem as good. 1f thin



(%)

(h)

1)

-4-

error occurs during a normal, periodic inspection it is called

a Type B human error. If it occurs during an annunciator-
investigated inspention it is called a Type D human error. The
time to rem-ve and test the system 1s assumed to be a known fixed
constant; however, it may have two different values depending
upon whether tne incpection is annunciator ir.duced or is a
periodic maintenance insp-ection.

B. FKepair. If the system is judged to be bad, it is repaired. If
repaired properly, it is returned to a good-as-new state (i.e.,
time is turned back to zero). If repaired improperly, it is left
in a bad state. Failure to repair properly is called a Type T
human error. Rerair times are assumed tc be random.

C. Hheturn. Return system to on=~line status. During this action
a4 human error can occur in which a good system is left in 1
bail stute, e.F., a maintenanr~ engineer fails to return a
manually operated valve t- {t: .ormal condition after the
system {2 peplaned ap=iine. Thi - error {2 ealled a Type A
human cre.,

Type &, B, C, ana U error probabilities are o iumed known and cun-

stant .,

A cyrle in Lhe period of time betweoen the end of one {nape~tion’

res or phane and the end of the next inzpection/repnir phase.  The

low daapram of Fig. 1 {1 lustraten the behavior of the aystem Jurine

a ayeln,

All random events in the model (system rfailure time, repalr time,

annunciation, and humar errors) are mutually s-independent.



Notation

kK=1,2,...; state representing a system which 1) has survived
(k-1) previous cycles and 2) is goond at the beginning of inspec-
tion k.

k=z1,2,...; state representing a system which 1) has survived
(k=1) previous eycles, and 2) is bad at the beginning of inspec-
tivn k.

state representing a system which is5 bad at the beginning n{ any
cycle.

Pr{(k=1)1<T<k1|T>(k-1)1}, k=1,2,... . Conditional probability
that the svstem fails auriny cycle k, given that !t has survived
{(k=1) previous cycles.

time between normal periodic inspections (test interval).
optimal value of 1.

remove/test (inapantinan) tims ®nr narmal inspections.

repair time (ranucvi;.

remove/tent (inspection) time for an annunciateor induced inapre=
tinr.

svatem failure-time, a random varlable.

Cdr of' T.

Weibull scale and shape parameters.

Lognormal parametera.

Pr {Type A human error |

Pr {Type E human error |.

Pr {Type ¢ human error |.

Pr {Tyre D human error L
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probabllity of immediate detection of a failure by the
annunciator (annunciator reliability).

steady-state avallability.

max‘A(T)}, the maximum steady-state availability.

(l-rA)(l-pB)(l-pc). the proba! ‘lity that a system which

is bad just prior to a normal, periodic inspection is correctly

Judged, repaired, and returned.

pI(l-pA)(l-pcitl-pul+t1-p1)pn. tne probtablility that

a system which fails while on-line {3 up at the beginning of i

next cycle.

Marg.v tranaition probability from sta%e . to state ..

vector of steady-state probablilities for Markov chain states

» .ll "lp '..- ";,v .1' "-1|



3. Steady State Avallability

System behavior from cycle to cycle can be described by a Markov process

having infinite state space {V; (“k.f ), k=1, 2, «v.!« The transition

74

patrix determining movement from state tu state is given by

i a o 2 ] 3 3
) 1-p4 Y Pol1-4;) 0 0 0 0.
5] l-p1 P9, pl(l-ql) 0 0 0 0n...
8 P 0 0 (1-pA)q2 fl-pA)(l-q:) 0 0...
P =i, l-p1 plql Py (1-q;) 0 0 e n.,...(1)
ta Pa 0 0 \ 0 (1-pp)az  (1-p 2(1-q5)...
iy l-p1 P14, py(1-qy) 0 n 0 n...

The steady=state probah!lityv vantar " far the pracess jia found by solvine e

equation T = T, which gencrales the systeam of equations

| (l-po)nlo(l-pl)(ﬁ?tvuo'ﬁo...)OpA(F301h*“7+---)

=
]

2 ® Py M ¢ plql(npoﬂ"01b+..-)

3 po(l'ql)n"pl‘l'ql)("?."u0H60--0)




“ll R (],—'pA)qZT*3

m_ o= (l-pA)(l-q;_)'ﬂ3 ()

Te = (l-pA)qB'-5

(l-pA)(l-qB)‘H

~l
"

Substituting atep-hv=step, we ahtain the equationa

Ty = (=pydaTy

k-1

RN . .
“Zk = (1 PA) qk( E (l’qi))"sn k o 3 (3)

-

i

k

K=1 "
n - ! - Moo h -2

s T, e« can all be expressed in terms of © Subatituting equa-

“F” 3l
tions (3) into the first three equations of (2) and adding the constraint

b

i=]

n1 =z 1, we have



® (l-po)‘nl-o-(l-pl)('" 2%," 3)+pA(ﬂ 3+u2-n3)

"
T, = Pyd,7*P, 4, (1'2+;,1'n3)

Ty = po(l-ql)ﬂ1+pl(1-q1)("2+ulr3) (4)
1l =7 + T, (lﬂiu)"J

1

where

- oy K-l
ho = (l'p’\] + Z (l-pA] -“.' (l-qi)
k=3 i=2

[Lg k'l

The solution to (4), determined algebruically, is
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™ = ql | " = -(-I-Ll) n (—]-.I‘u) - 6\
2 l-ql 3 | Po "2 Po g (6

Unce “1. ‘E and ﬂi have bee¢n determined, the remalning values of the
stationary distribution are computed using equations (3).

Steady state availability calculations require, in addition to the Marikov
chain steady state distribution, knowledge of the lengtn of time each stats cr
cycle length requires. Lettin:s El' Ea. +ssy, bDe the expected cycle lengths

in states ':.‘1.“1.5,.',. cestl, mespantivelv, the steady state p nba-

bilities for the various stales ab a plven Lime point are

r. s ——— (7)

k=1
Af'ter the iril sequence iz determined, steady atate availability is doter-
mined Lty

A(T) = r.oe P{system upistate i, ()

| I

i
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The expeoted cyale length sequence is computed aocording to

El a E(Y) = T + 11 + (1-pB) E(TZ)

Epy ™ E(ﬁk) = pI[E(Tk)+13+(1-pD)E(TZ)] (9)
+ (l-pI)[T *1 0+ (l-pB) E(TZ)]. k 21
= f =
Epeay * B0 =T+ 1

where '1'k ~epragsents the portion of the Gk oycle or state during which the
system is up. 3ince for a 6k aoycle the system begins at age (k-1)t and
fails during the oyale, the expected value of Tk is given by

E(T,) = E(T| (k=1)T ; T2 k1) = k=i )1 (10)

whers T represents system failuro-time. Finally, the conditional availability

sequence required for equation ('s) 1 computed according ton
P{system up|y! = 0

Playstem uplﬂkl e 1/(1 + ll) ()
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T

P{system up|§ } = p (l-p )b m———
kK 1 0 Tk+r2+'l3

Tk Tk E(Tk)
* PyPpE T;:?; + (-p ) (1-pp)E ;:;;;;:‘ + (1-py)pg ;:;;"

Steady state availability is computed by finding the {Ei} sequence according
to equations (9), the {ri} and conditional availabi.ity sequences according

to equations (7) and (11), respectively, and finally substituting into equa-
tion (8). Note that (11) requires three calculations of the expected ratic of
independent random variables. Each of tuese expectations 1s approximated by

means of Taylor series expansions in the examples presented in Section 5.
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4, Optimum Test Interv:l

A FORTRAN program has been developed to compute A(1) and find the test
interval 1% which maximizes A(t) for a given set of input parameters. The
program computes finite approximations of all infinite series and sequences
required, and the number of terms used in the computations can be varied to
insure convergence and to control the degree of accuracy required. The ex-
pected ratios required in equations (11) are approximated through Taylor
series expansions. The ratios are expanded about the means of the appropriate
random variables. and the expansion is carried out to third-order terms. The
approximation requires as input the mean, second and third central momerits of
the repalr and lifetime distributinns. The program currently uses a lognormal
repair-time distribution tor 14 and a Weibull fallure-time distribution for
T. Although we feel that these distributions allow a reasonable amount of
flexibility, other distributions can be used by altering appropriate subrou-
tines. A simple and direct search technique 1s used to determine the value 1®
that maximizes steady state avallabllity.

The Welbull tallure=time distribution used In the program is paramclep-

ized in the form

()

(e 34

ey Bl st
r(L; o) = - (-) c

[

. =(t/1)
Using the correaponding distribution function F(L) : 1 = ¢ , the con-

ditional fatlure probability sequence a, la found Lo be

exp L= k-D1/al™) —exp (- [k/ ™

= e mm e trem o e——— he mmm - (l*)

q. = .
k oxp{-[(k-l)1/ufﬂ}
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In addition, the conditional expectation required in equation (10) is given by

a(l[l*-%, xk/a® - 1pned, (x-nvm b »
\

E{T|(k-1)1<T<kt} = 7 z
exp{-[(k-1)1/a]"} - exp{-[k1/u]"}

where I(a,x) is the incomplete gamma function defined by
Ifa,x] = é“ y* " leVay. (13)

The lognormal repair time distribution used in the program is parameteri:ad Aas

-
-

(log ¢t - )
207

£L) 2 =l 0 (16)
tmﬂ
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5. Examples

Nuclear power plants contains a variety of safety systems which reason-
ably satisfy the assumptions of the model. The cycle length for redundant
systems in nuclear power plants is typically one month, while the inspection
duration is but a few hours. Based on the results of Refs, 1 and 4, the pro=-
bability of human errors of the type coniidered here will be nominally assumed
-2

= p =10 ".

=2
to be equal to 10 ". Thus, Py ° L

Py = P
Suppose also that we are interested in determining the optimal test in-
terval for a standby system having a linearly increasing standby failure rate
with MITK = 105h (02 112837.5, (= 2). Also let us assume that repair time
is lognormally distributed with w2 = 0.04 and ¢ = 2.2826 (MTTR = 10h, VITh =
“hz). Further suppose that Py = 0.0, ll = 3h, and 13 = ?he In this
case the standby system is not annunciated. The search program wan used to
find the optimal test interval which was found to be 1% = 810h for which A® -
0.983, Un the other hand, {f S A 0.0, while all other
parameter values are unchanged, then % = 740h and the corresponding optimal
unavailability o J00=99,.2 = 0.8 percents This {a les:a than halt the former
value. If the standby syatem is annunciated with by = 0.99 and all remain-
tng, parameters are unchanpged, the optimal tent interval ineeeasen to 1% =
3330h for whioh A* = 0,088, Than, hy ineappapating an annenefater which tno
99% reliable into Lhe atanduy sydtem, Lhe pel effect {n o inepeane the opti-
mal time botween inapectionn from 30 days to 139 dayn (o factor of H), while
aimultaneounly tneeeaaing, the optimal avatlability by 0.0%,

Now conatder the cane of a conatant atandby failure rate (F=1) squal to

wt -t
10770/ (MTTE = 1077 h) 0 10 by e 0.0, by 2 by = P by E

-t
107", and all other parametors remain the name as above, the optimal test
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interval is ™ = 780h for which A% = 0.982. If the standby system is annun-

0.99, then 1* = 3480h and A* = 0.988. Thus, for a constant

clated with Pq
failure rate system, the optimal procedure is to inspect more (less) often
when Py = 0.0 (pI = 0.09) compared tn a system w'th a linearly increaszing
standby fallure rate function.

Let us now examine the senaitivity of the optimal solution to changes in
certain parameter values used in the example. For convenience, only a single
parameter will be varjed at a time, while all remaining parameters will he
fixed at the reapective values glven by Py = Py = e TP 2 IO-L.
Py = 0.0 or py = 0,99, « = 112837.5, k= 2, ¢© = 0.04, f = 2.2826, "
= 3h, and !3 = ’he  These vialues are 1 minally consiatent with nuolear pPOwe
plant safety system:s.

(1) Conalder the aensitivity te ehanges in P Fip. @ gives the
npt.imal value I* which maximizes the steady-state availability, o
well an A% ftsell, an P, virtes betwesn 0 and 0.1 Curves for
by = 0u0md ppoz 0.9 are both shewn. Tt e ohserved tha 08
incprenne: an Pa fnanegnee oy AP 0.0 which mays that the
larger Lhe probabaiaty od rewenons, b ayasbem on v bad atate Uer
Inapection. the longer I ahld Hhes Thin reaull aupports decreased
inapection whenever type A human orrors are preasent compared to
cane when Lthere jo no pecoenttaon that such errors may be present

(|IA:l)). The cptimal availabtiliy also stendCleant ly decroasen g

Inercaness When pooz 0,99, the optimal avaldlability g

Pp I

aliphtly higher Lhan when p Do The aptimal teat inteprval 0 -

approximitegy =0 timeax longer Lhan when Py o= 0 and tends to

either deoreane or remaln cenatant an p, {nereanes,

A



(2)

(3)

(u)
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Consider the mndel's sensitivitv to Ppe Increasing the valuer of
Py has only a slight decreasing effect on T* as observed in Fig.

3. The optimal availability is nearly conatant. Again, if Py =
0.99 as opposed to 0.0, the optimal test interval is approximately 4
times longer, while the optimal unavallahility 13 decreased by
approximately 30%.

Figs. 4 and 5 show the sensltivity of I'® and A% to Pc and P
respectively. When p1 = 0.99, 1% decreases aa pC increases,
although the optimal avallability is nearly constant over the inidi-
cated range of pc.

The senaltivity of Lhe optimal value of | to the annunciator rel!iu=
bility, P is showy {n Fig. 6. 1t {5 observed that !® {ncrease:n

as pl incrensen, with the largest gradler t oceourring as p

1

approachen 1.
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6. Conclusions

A mode! has been developed for determining the ortimal time between
periodic inspection: which maximizes the steady state availability for standby
systems, such as those used in nuclear power plant operations.

A limited sensitivity analysis witnh parameter values not unlike those
found in nuclear power plant safety systems was conducted. The optimal in-
spection interval was observed to most significaatly depend upon Py the
probability of returning the system in a bad state, when the standby svster. is
not annunciated. The optimal system availability is significantly reduiced as

P, increases. When the standby system i alarmed with a 99% reliable annun-
ciator, the optimal availabilityv is al=so sisnificantly reduced as Pa
increases.

For all three remaining error types, the optimal availability was not
observed to be significantly redunced as che probability of each error in-
creased (with the remaining error probabilities held fixed), provided that the
optimal inspection interval is uned,

The benefits of annunaiatine sach 4 aystenm wore also examined in view !
the four types of human errors. By incor worating an annunciator which han a
9% reliability of detecting system T4 are while on atandby inta the aysien,
the aptimal time between periodie inspections increased trom approximatelv |
month to 4.h montho.s At the same time, the eptimal syatem unavailabilaty

decreanrd by approximately 0%,
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