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* ABSTRACT

Vibration monitoring of components in nuclear power plants has been used for
a number of years. This technique involves the analysis of vibration data coming {rom
vital components of the plant to detect features which reflect the operational state of
machinery. The analysis leads to the identification of potential failures and their
causes, and makes it possible to perform efficient preventive maintenance. Early
detection is important because it can decrease the probability of catastroghm failures,
reduce forced outgage, maximize utilization of available assets, increase the life of the
plant, and reduce maintenance costs.

This paper documents our work on the design of u vibration monitoring
methodology based on neural network technology. 1his technology provides an
attractive complement to traditional vibration ana sis because of the potential of

neural networks to operate in real-time mode and to handle data which may be
distorted or nois%. Our efforts have been concentrated on the: analysis an

classification of vibration signaturcs collectcd by Electricite de France (EDE km'f\vo
neural networks algorithms were used in our project: the Recirculation algornt and
the Backpropagation algorithm. Although this project is in the carly stages of
development it indicates that neural networks may provide u viable methodology for

monitoring and diagnostics of vibrating components. Our results are very encouraging.

BACKGROUND

A power plant (nuclear or fossil) is fundamentally a thermodynamic system that
includes a heat source (fission or combustion), flowing fluids, valves, control systems, and
rotating machinery (pumps, fans, motors, gear boxes, turbines and a generator. Although
the flow of fiuids (water and steam) can induce vibrations and shock, the primary source of
vibrations is rotating machinery. Vibration perse is not necessarily bad if its amplitude and
the associated forces are within acce wable limits. Indeed, vibration in machinery can be the

source of much information about the various systems involved.

*Electricite de France, Paris, France
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There is a great deal of literature available that describes the type of vibration signals
to be expected for faults in typical systems and the analysis techniques that can be used for
early detection of faults. Angslo! presents a discussion on actual phenomena and their
individual characteristics. For example, the low frequency domain contains information
about unbalance, misalignment, instability in journal beanng and mechanical looseness;
analysis of the medium frequency range can render information about faults in meshing gear
teeth while the high frequency domain will contain information about incipient faults in
rolling-clement bearings.  In addition, trend analysis may be performed by comparing the
vibration spectrum for each machine with a reference spectrum and evaluating the vibration
magnitude changes at different frequencies.

_ This form of analysis for diagrostics is nften performed by maintenance personnel
monitoring and recording transducer signals and analyzing the signals to_identify the
operau‘gf condition of the machine. This method has proven to be etfective in identifying

tential failurcs before they occur. With thc advent of portable fast Fourier transform
fl’?ﬂ) analiyzers and "laptop” computers, it is possible to collect and analyze vibration data
on-site and detect incipient failures before repair is necessary. Indeed, it is often possible
to estimate the remaining life of certain systems once a fault has been detecled. Hence,
there is considerable motivation to design systems to automatically perform this analysis on
a real-time basis in a reproducible manner.

METHODOLOGY

RMS velocity, acceleration, displacements, peak value, and crest factor readings can
be coliected from vibration sensors attached to plant machinery. The sensurs are placed at
locations where the signals are expected to be reliable. From these data, spectra are
generated using FFT techniques and analyzed by expert personnel to identify faults. Our
goal is to design a diagnostic system using neural network u:chnolo%y. A system such as this
would automate the interpretation of vibration data coming from plant-wide machinery and
permit efficient on-line monitoring of these components.

A network of artificial neurons (usually called a neural network) is a data processing
system consisting of a large number of simple, highly interconnected prucessing elements in
an architccturc inspired by the structure of the cerebral cortex Eomon of the brain. Asa
result, neural netwaorks are often capable of doing things which humans or animals do well
but which conventional computers o‘then do poorly. For example, neural networks have the
ability to recognize patterns, even when the information comprising these patterns 1S nossy,
sparse, or incomplete.

Perhags the most important characteristic of neural networks is the ability to madel
rocesses and systems from actual data. The neural network is supplicd with data and then
trained" to mimic the input-output relationship of the process or system. Neural networks
also have the ability to respond in real-time to the cianging system state descriptions
provided by continuous sensor inputs. For complex systems involving many sensors and
possible fault s, real-time response is a difficuit challenge to human operators; neusal
network technology may provide & viable alternative to the solution of this problem.
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VIBRATION SIGNATURES

To perform spectral monitoring of components in an opcrating engineering system,
signatures are collected from plant machinery and analyzed to detect features which reflect
the operational state of the machinery. l-E)ur data consist of vibration measurements
collected from ball bearings of type 6206 during an atgi.n%simulatio&))rocess. The rolh'ng
element under test is mounted on a horizontal shaft (fed by a 10 KW motor) and charge
radially by means of a jack, imposing a verticai force on the bearing, These conditions
ﬁgncrate scaling faults on the comporient. The geometry of a 6206 bearincﬁris depicted in

igure 1. Data is collected using an accelerometer placed in the radial ection to the
loading zone of the bearing -- the accelerometer is screwed onto a flange, the flange is in
turn stuck to the rolling element. From these measurements, spectra are generate using
FFT techniques. Spectra are averaged over 16 samples with a HANNING window. The
spectra contain 397 points in the range 5 Hz to 1 Kf-)lz.

The acceleration spectra were transformed by means of numerical integration into
velocity spectra. Velocity measurements are used becausc they can be directly compared
with alarm and shutdown criteria>* and also because vclocitgl amplitudes are linked to the
source of excitation. We are using low frequency spectra (5 Hz to 1000 Hz) because the
frequencics generated by severe defects in rolling element bearings are usually in this range.
High frequency measurements are linked to incipient faults in the bearings, that is beann
faults in the very early stages of development.  Figure 3 depicts a spectrum of a 62
bearing with a géneralized scale fault uf the inner race. The data set contains 71 samples
representatives of the behavior of rolling element o erating under the following conditions:
no fault, localized scaling fault of inner race, generalized scaling fault of inner race, localized
scaling fault of outer race, generalized scaling fault of outer race, artificial localized fauit of
a ball, gzcneralized scaling fault of two balls, and generalized scaling fault of all components.
Figure 2 shows the inner race of a 6206 bearing with a localized scaling fault.

The spectral values werc row-wisc normalized in the range (0.1, 0.9). To perform the
normalization, the maximum and minimum values for each pattcrn are calculated and the
spectra_scaled to the appropriate range. Row-wise normalization is critical for this
processing because it ensures that the sha%inof the spectrum is preserved and, more
importantly, that the location of the peaks within the spectra 1s not altered. The normalized
signatures contained 397 points. To reduce the amount of data, we seiected the maxmum
value of every three points and produced signatures containin 132 points (Figure 4). The
rationale behind selecting the maximum is the preservation of the original peaks.

NEURAL NETWORKS FOR VIBRATION ANALYSIS

For the analysis of spectral signatures, neural networks may be used both as
classifying and clustering sgstcxus. To perform classification it is necessary to attach to each
signature a label which describes the operational state of the machine at the time of
collecting the signature. The input to the network is a spectrum, or its compressed version,
and the output is the class label. The network is trained to identify an arbitrary pattern as
a member Of a state among 4 set uf possible states. Clustering involves the grouping of
Fattcms according to their internal similarity and requires no labels. The aim of clustering
s to distribute the set uf patteins into states such that the patterns in each state have similar
statistical and geometrical properties.
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We are addressing the problem of identifying and classifying vibration signatures in
two phases. Phase 1 includes compression of the spectral signatures usin% Recirculation and
Autoassociative Backpropagation networks. Phase 11 comprises the classification of the
compressed patierns using the Backpropagation algorithm. Compression is an important
issue in the context of this analysis because we deal with a very large data set and reducing

the dimensionality of the patterns decreases significantly the training time and computer
resources required.

Recirculation Networks

The Recirculation Network (RNN) algorithm was developed by Geoffrey Hinton and
James McClelland?. The network is autoassociative in nature and in its simplest version has
only two trainable layers, a visible layer and a hidden layer. The input and ou{:put layers act
simply as buffers for input and output. The network t%)ology is illustrated in ig\:re 5. The
aimn of training is to minimize the reconstruction error defined as the diffcrence between the
original input vector and the reconstructed vector. The reconstructed vector is assembled
by running the com ressed representation through the set of weights. This error is an
accurate indicator of performance because it is the sum of the squared error at cach node.

The algorithm minimizes this error using a gradient descent strategy.

The purpose of training is to construct in the hidden layer a represcntation of the
data presented at the visible layer (the input vector.) If the number of hidden units is less
than the number of visible units and if the network is traincd successfully, the hidden
representation may be considered as a compressed version of the visible representation.
Under these conditions the network acts as an encoder which maps the original vectors to
a smaller dimensional space while reserving their statistical characteristics. For this project
we built a network with a hidden layer containing a third of the nodes in the imt layer in
order to reduce the dimensionality of the input vector set by a factar of three. network
takes as input a 132-point signature and produces a 44-point signature. Higher compression
ratios are possible at a higher computational cost and loss of accuracy.

Backpropagation Network

The Backpropagation network (BPN) is a muitilayer fully connected network. The
algorithm uses the delta rule to compute the weights between connected processing elements
5o that the difference betwcen the actual output and the desired output is minimized n 2
least-squares scnse. The network may operate in autoassociative and heteroassociatve
mode. ‘For an autoassociative network, the input vector and the output vector are identical
A heteroassociative network learns associations between input and output pairs which are

different. The basic algorithm for Backpropagation is discussed in reference 3.

In the BPN every neuron is connected to all neurons in adjacent layers with no lateral
connections. Duiing training the information flows forward from the ‘input layer to the
output layer and the crror is propagated backwards through the weights to_calculate the
weight adjustments. Training involves the modification of the weights until the error is
reduced t0 an acceptable limit. The first laycr rcceives the input, modifies it using the set
of weights, and passes it to the hidden layer; the hidden layer in tum Tgrogagates the
modified inputs t0 the output layer where the overall error is calculated. The hidden layer
is used to represent the non-linear characteristics of the data and its size 1s determined by

the corﬁplcmy of the problem. Figure 6 shows the architecture of a fypical three-layer
networ
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For this project we used the Backpropagation algorithm in its two modes. In
autoassociative mode to perform data compression, and in heteroassaciative mode to classify
the feature vectors. Autoassociative Backprogagation was used as an alternate method to
Recirculation for data compression in order to compare the effectiveness of the
representations generated by the two methods. The input to the autoassociative network
is the 132-point signature and the output is the 44-point compressed signature.

The classification of the patterns was performed using a standard Heteroassociative
Backpropagation network which received as input the compressed 44-point signature and
produccd the class label or rolling element operational states, The: network had a 44-podc
input layer, a 10-node hidden layer and a 6-node output layer. The size of the hidden layer
was determined according to the number of passible states (including combinations). Recent
studies indicate that the number of regularity features (existing classes) can be used to
estimate the number of hidden'modes®,

. RESULTS

For this project, we used the version of the Recirculation network included in
NeuralWorks™ which runs on a Zenith 386 SX machine. The Plexi™ implementation of
Ba&:‘slar%g?gion was used for both compression and classification. The program runs on
a SUN C IPC workstation.

Compression

Compression was Eerformcd using the Recirculation network and the Autoassociative
Backpropagation network. The networks have the same topology (132 inputs and 44 hidden
units) and were trained on one third of the original data set --g¥3 out of 71 patterns. The
representations obtained from the two networks are different, each representation is in turn

vety different from the origxinal spectral signature. An example of the two representations
is shown in Figurcs 7 and

There are three reasons for the difference in representations. First, the weights for
the Recirculation network are not required to be symmetrical like the weights in
Backpropagation (in Backpropagation the set of weights used in the forward pass Wj is the
same as the set of weights used in the backward pass W;.) Second, the weight ad%ugtmcnt
equations and the schcdulingbof the two algorithms are not equivalent, the I%N‘N algorithm
computes the adjustments by considering only local information while BPN computes
changes to the weights according to the global error. Finally, the behavior of the
Recirculation algorithm approaches gradient descent (the method used by Backpropagation)
only after a number of iterations. By the time the behaviors are equivalent, the algorithms
are doing search in different regions and continue to look fur a solution in scparate paths.

The RNN was trained for 50,000 iterations until it reached the pre-established ¢rror
threshold (0.03.) The compressed signature is geometrically different than the input vector,
but retains its statistical properties, We have demonstrated the effectiveness of the
compression in previous work by doing clustering of both the original input vector and its
compressed representation using the K-means algorithm”?, The %toassociative BPN was

trained for 11,000 iterations to the same threshold (0.03). Usually, the BPN algorithm
converges faster for data compression.
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Generally, the training of the Autoassociative Backpropagation requires significantly
fewer iterations than the training of the Recirculation network. However, the compressed
representations obtained from Recirculation are better suited for training the classifiers. Not
orRy is the training of the clasifier faster using the compression from Recirculation, but also
the representations are better generalizations of the input space.

Classification

Two BPN networks with identical topolo%y were built to perform the classification.
One network was trained with the compressed data obtained from RNN, and the second
network was trained on data from the Autoassociative BPN. Both networks have as in&mt
the 44-point compressed signature generated by the compression networks, 10 hidden nodes,
and 6 output units corresponding to each possible operating state. Each state activates a
particular neuron in the output layer; for multiple states more than one neuron is activated
corresponding to the appropriate combination.

To train the network, 17 patterns representative of every operating state were
selected from the total set of 71 (24%). The set also inciuded 7 patterns which had no
labels (faults were unknown) because they were collected while the deterioration was
cvolving from a localized scaling fault of the outer race to a generalized faunit of ali
components in the bearing. To recall, the entire data set was used, including the 7 patterns
with unknown faults. The output units have a linear threshold function centered at 0.5. Any

output higher than 0.5 is reporied as a fault while outputs lower than 0.5 are considered as
absence of faults.

. Training the classifier using the compressed data from RNN took 23,000 iterations
(Figure 9). The error was reduced to 0.01. Of the 64 patterns with known labels, 62 (97%)
were classified correctly (two normal patterns are classified as faulty), Of the two
misclassified patterns one was classified as having a localized artificial fault of a ball and the
other as having a generalized scaling fault of two balls. From the remaining seven (faults
were unkmown), six were classified as localized scaling fault of the outer race (the condition
grewous to deterioration) and one was ciassified as%aving generalized scaling of the two

alls and localized scaling fault of the inner race.

The other classifier converged after 49,000 iterations to the same crror (0.01), and
used the compressed data from the autoassociative BPN (Figure 10). This network was able
to classify correctly 54 of the 64 (84%) patterns with known labels. The misclassified

patterns were all non-faulty. Out of the seven patterns without labels, six we:e classified
as having localized scaling fault of the outer race and onc as normal,

u Representation No. Iterations % Error % Correct
Classification ,
Recirculation 23,000 0.01 97%
Backpropagation 49,000 0.01 84%
e

Table 1. Classifier Results
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We run a set of experiments using a reduced version of the data set (36 patterns
representing 4 classes) to cvaluate the eifect of network topology in training. \B’e used
networks with 44 input nodes and 4 output nodes. The size of the hidden layer was set to
16, 6, and 3. We found that decreasing the number of hidden units, increases the number
of iterations to the same level of convergenoc but Froduccs better generalizations.
Obviously, an iteration in a small network is faster than for a larger network.

CONCLUSIONS

We are working on the implementation of a methodology for interpreting vibration
measurements based on neural networks. The anticipated advantage of developing such a
system is the possibilig' of automating the monitoring and diagnostic processes for vibrating
components, and building diagnostic systems which complement traditional PSD analysis by
dealing with the non-lincar characteristics of the signals.

This project deals,exclusively with the analysis and classification of signatures coming
from rolling element bearings in bench tests. Previously, we analyzed vibration data from
rolling elements in a steel sheet manufacturing facility with excellent results®. The next
phase of the project deals with the application of these techniques to electric motors and
centrifugal, multicellular pumps in EDF power stations, the technique is applicable to a

variety of components in a nuclear power setting without major redesign®10.

The feasibility of using Recirculation and Autoassociative Backpropagation networks
for compression of s?cctral ta has been established. Under this studg' we have achieved
compression ratios of 3/1 while maintaining the statistical properties of the original patterns.
The Recirculation network, in our opinion, provides a better mechanism for this
compression. Our results to date indicate that the compressed version obtained from
Recirculation is better suited for training the classifier networks.

Traditionally, diagnosis of components based on vibration analysis has been made by
looking at specific regions of the spectra. We feel like the compressed signature is an
efficient and feasible representation which El:vides complete information and allows the
analysis to be made on a broader base. Complete information about the spectrum is
important because vibration in general is imprecise. In some cases the behavior of
componcnts under certain operating states is not known in detail, cspecially when the
behavior is induced by more than one fault.

Although our gmjcct is in the early statc of dcvclotpmcnt we feel that neural networks
can provide a methodology for improving the analysis of spectra, and may provide a viable
complement to PSD analysis for monitoring and diagnostics of vibrating components. Our
results to date are very encouraging.
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Figure 2. The Inner Race of a 6206 Bearing with a
Localized Scaling Fault

Jackson, Wyoming
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Figure 6. Topology of o Backpropagation
Network
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