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• ABSTRACT

on momtoring of componentsin nuclearpowerplants hasbeenusedforVibrati ,.." .... __,.... ,,._ n.,,,,,,,4_of vibration data coming fromears I nis tecnnlclUe InVOtVCa-,_ _-u.7-'"a number oi y "- . - - - °.......... _-'--hreflect the o_rational state ot
" ents ot the Dtant to aetect Ieatus-c_ w..i_, , . . rv., - - •

___Ic°.m_P°n'r_,, o,_Ivs|s lead_ to the identification of potenual l.az.turcsana _nc._
to ereormemci=mprcve,n.  vcmaLn na E%.  ;7_wm..,., a-s_,, • .... . -- ' O]_C_I_t_L_U t|s_.,taZt,.J.LL..J_

' m nant[x_causett candecreasethe roDaomty .detectlonIs|.po ........... ,...."_bleassetsincreaset_ehreofthe
reduceft)rc_floutsasc, ma._m_zc uuttzauon ut uv,s,,.
plant, and reduce maintenance com.

' r documents our work on the design of _ vibration tuonitorins
Thls pape technolo • This technolo provides anbased on neural network .

methodology ....... -"-'----I vibration ana_vs,s because of t_Ye.Pqtenual o_[
attractive cows |emen_ _o tra.u_,u_,¢, . " dle data wmcrzmay oc

to o rate m real.Ume mode and to han

msto.ne,a .or nu_?..,,,--. ,-.__-,:_-__..,,.,..,.,_ _,,,Electricite ac erance _m.,r}. ,_,_vlorauon as naLu[cavu._,,,,,.. ,,z
cleass_cat!ono.t . _-.,___.g........,4_.,,,,., .riecr the Recirculationalgonmm ana
neuralrterworKsatgonmmswc_ u_v,,,,_-.-t--.oJ• . " inthecarivsta_esoi

, alorithm Althoughthinproject_s , -the Backprop.agatt.ong_ • .........,......,,,:,_Hca viablemctl_odologyfor
developmentitma_catesthatneuratnc_v_,,_,_,o_v'_.... . .....-'--.
monitoringanddiagnosticsofvibratingcomponents.Our resultsareveryencuur-_e.

BACKGROUND

A R_wer plant (nuc!car or fossil) is fundamentally, a thermodynamic system thatcombustion),flowingfluids,valves,controlsystems,andincludes a heat sour.ce (fission or ____ aad a cncrator.') Although
rotatinmachine (pumps,fans,motors:ge.m'__boxcs,.turbinc__ock-gthcorimarvsourceof

g ' w terandsteam canmciucev_brauonsands...-, ._ --.
theflowoffi_md_s._____,,,.hine,,' _V_bration_erseisnotne_ssarilybadifi_a_m_.pli.tudea,_devlortltlona 1_ rutututl_s.-,. . ;?" -. ,_"-"'_-*__--,--._ ..._,._,,i,_nirltnacnlncrv v,zt,_,. •
._....... ;,.)mHfc,r_.,,¢_rewithin acceotaole limits, lnu_cu, v,y,,,_,,.,

_ |
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_ 'merc is a great deal of Y_ram_ available that descn_)cs,the type of _'bration sisals
to be expec-_edfor faults m typical.systems ana t.heanalys/s teclu_ques that can be used for
early detection of faults. Arige}o_ presents a discussion on actu_t phenomena and their
indiv/dual character/pries. Fnr example, the low frequency domain contains information
about .unbalance, mlsalignrnent, instability in journal bearing and mechanical looseness;
analysls of the medium frequency range can render information about faults in meshing gear
teethwhflc the h/gh frequency domain will contain information about incipient fa_ts in
rolling-clementbearings.Inaddition,trendanalysismay be performedbycomparingme
vibraUons_ctrumforeachmachinewithareferencespectrumandevaluatingthevibration
magnitudechangesataifferentrsequencies.

. Thisformofanalysisfordiagnosticsixr}ftenperformedby maintcnancc.lX:.rs_onn.el
momtoringand recordingtransducersignalsand analyzingme sitarsto ioentitythe
operating_.nditionofth¢_machine.ThismethodhasproventobeeffectiveinidenfiEying
potential"fmlurcsbeforetheyoccur.W_ththeadventofportablefastFouriertransforni
(FF_.)analy'zcrsand"laptop"computers,itispossibletocollectandanalyzevibration data
on-mc anddetectincimentfailuresbeforerepairisnecassary,inoeea,itisonen _ps__iole
toestimatetheremain'inglifeofcertainsystemseneaa faulthasbeendetected.He.nec,
thereisconsiderablem'ouvationtodesignsystemstoautomaticallyperformthisanalys|soa
a real.timebasisina reproduciblemanner.

METHODOLOGY

RMS veloci_,acceleration,displacements,peakvalue,andcrestfactorreadingscan
becollectec1fromvlbrationsensorsattacl_edtoplantmachh_cry.The scn_yrsareplacedat

locations where the signals are expected to _ reliable. From these :ata: spec.tra_egenerated using FFT techniques and analy'z=dby expert personnel to iaentify laults, ur
goal is to design a diagnostic system using neural network technology. A _stem such as this
_vould.automate the interpretation of vibration data coming from plant-wide machinery and
perrmt cHlclent on-line monitoring of these components.

A network of artificial neurons (usually called ,aneural network) fs a data procas.dng
systemconsistingofa largenumberofsimple,highlyinterconnectedprc_ccssin_e_cment.s'm
an architecture_nspircd6ythestructureo'fthece-rebralcortexport_n ofthebr.sin.As a
result,neuralnetworksareoftencapableofdoingthingswhichhumansoranimalsdowell
butwhichconventionalcomputersoftendo poorly.Forexample,neuralnetworkshave
abilitytorecognizepatterns,evenwhen theinformationcomprisingthesepatternsisnoisy,
sparse,orincomplete.

Perhaosthemostimportantcharacteristicofneuralnetworksistheabilitytomodel
processesariasystemsfromactualdata.The neuralnetworkissuppliedwithdataand th_.n
"trained"tomimictheinput-outputrelationshipoftheprocessorsystem,r_eur.alnctworxs
alsohavetheabilitytorespcmdinreal-timetothechangingsystemstatedescript/o_
providedbycontinuoussensorinputs..Forcomplexsystemsrevery/rigmany sensorsar_,
possiblefaulttypes,real-timeresponse_sa difficultchallengetohuman opera|ors;ncura_
networktcchn61"ogymay prey/dcaviablealternativetothesolutionofthisproblem.

FOR THE .NUCL£AR INDUSTRY _l:temlDer 16-I 8, lliill
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VIBRATION SIGNATURES

To performspectralmonitoringofcomponentsinanoperatingengineeringsystem,
signatures are colle_ed from plant machineryand analyzed to detect features which reflect
the operational state of the machinery. Our data consist of vibration me_urem,ents
collected from ball bearings of type 6206 during an agingsimuiation process, xne romng
element under test is mounted on a horizontal shah (fed'by a 10 KWmot__or)and charged
radially by means of a jack, imposing a vertical force on the _ari,?.g, These con.cliti0n.s
generate scaling faults on the comporicnt..The geometry ct a 0_uo oe.ann_, ts a cpx_ealn
Figure 1. Data is collectect using an accelerometer pmcea In me raatm o_recnon xomc
loading zone of the ..bearing-- the accclerometer is screwed onto a uange, me tiange is m
turn stuck to the rolling element. From these measurements, s___ctraare generated using
FFT techniques Spectra are averaged over 16 samples with a HANNING window. The
spectra comma 397 points in the range :_tta to 1

The acceleration spectra were transformed by mea_, o1_numerical in_gration into
velocitys_ctra.Velocitymeasurementsareusedbe.caus__h_ycanb.edirect.ly.compareo
_.ith_'l"st_-t-_ndshutdnwncriteria_ andalsobecausevelocityaml31ituaesare,nxeatotne

sourceofexcitation.We areusinglow.frequencyspectra(3Hz toIu_ t_.)uecausetn
frequenciesgeneratedbyseverede]_cc_m rcJllin_clem¢:nt bcarln_s are usuall_inthis ran_e.

High_equencymeasurementsarelinkedtoinclpientfaultsinmc oearings,_nazIsoeanng
fatfltsm theveryearlystagesofdevelopmenu Figure3 depictsa spectrumofa 6206
bearing with a generalized scale fault.of tilt imlcr ra_., The data set ,conta!ns 71 s_n..,plcs.
rcpresentat'vest,ofthe.behavi°rof.rolhngelementoperating............underthezonowmgconomons.
nofault,localizedscalingfaultofinnerrace,generalizedscaling,faultorm.n.crrace,local.mca
scalingfauRofouterrace,generalizedscalingfaultofouterr_ce,anidciallocmLzeamu_tez
aball_generalizedscalingi_ultoftwoballs,andgeneralizedscalingfaultofallcomponents.
Figure2 sh_wstheinnerraceofa 6206bearingwitha localizedscalingfault.

The spectralvalueswcrcrow-wisenormalizedintherange(0.1,0.9).To performthe
normalization,_hemaximum andminimumvaluc_foreachpatternarecalculatedandthe
spectrascaledto the appropriaterange. Row-wisenormalizationiscriticalforthis
processingbecauseitensuresthattheshaveof thespectrumispreservedand,merc
unportant-ly,thatthelocationofthepeakswithinthespectraisnotalterecLTl_enor__n.al___e...d
si_aturescontained397point.To reducetheamountezaata,we setec_eatnema)amum
valueofeverythreepointsandproducedsignaturescontaining132points(Figure4).The
rationalebehindselectingthemaximum ist-hepreservationoftheoriginalpeaks.

NEURAL NETWORKS i_'ORVIBRATION ANALYSIS

For the analysisof spectralsignatures,neuralnetworksmay be used.both
classifyingandclusteringsystems.To performclassificationitisnecessarytoattachtoeacn
si.8naturea labelwhicI_describestheoperationalstateof them_chinea_the timeof
collectingthesignature.The inputtothenetworkisaspectrum,oritscompressedversion,
and theoutput_stheclasslabel.The networkistraine_itoidentifyanarbitrarypatternas
a member ofa.stateamon_ a setufpossible_tatc_.Clusteringmvo_vesmc _oupmg ez
atternsaccordingtotheirinternalsimilarityandrequiresnolabels.The aimofclustei'ing

_sto distribute the set of pattc_5 h_to staten such that the l)atterns in each state have similar

statistical and geometrical properties.
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We are addres g P . u s usin tlecirculation anu
sin the roblem nf identifying and .classifying vibration signatures in"eludes com resson of the spectral stgnat re . .two phases. Phase_ I !n .. P ..... ,._ m.,,o- tI comnrises the _asstficatton of the

toassociative Bacxprppagau°n netwurr_, r,,,_, • ._ r... ressinn is an im-ortant
Au - ' ack ro a ation atgontnm, tdomp P .

compressed pauems .us.ro.g thc B. _pt ,..pag.... a, ot With a very lartze data set and reducingissue in the context ot mis ana_n t_._m?__"._ _&_, ,., .,tt,, thc'trainina time and computer
the dimensionaiity of the patterns aecreau:_ _--,-,,..._7 _,
resources required.

Reeir©ulation Networks

• twork is auto_scmiative m ,,_,--_ -,,. ,"James McCl.elland.. The he..,_0_ , ...... -*- _,;,_,_enlaver The indus and ou_ut la_ aact" er$ a VISIDI¢ tit Ct- ttttu ,= AL,',*',* a " -- " "only two nama_Dle my. '- J ..... _- ",',- -.,,,-,,,,rk tonoiocv is illustrated m Figure 3. t.m:
slm 1 as buffers for mp.us an u output. !_ ':"'..","_.... _[,.n.._aa_ t difference bet'ween the
aimPo_training is to tmmmme the reconstrucuo- _--,,- ,-........ he

. the reconstructed vector. The reconstructed vector is as_mbledori 'nal mut vector and -. of wei his. This error is angl . P through the set g
by runmng the com resid representation., e sum of the s oared error at each node-
accurate in0tcator otPpcrfor mance became ,t lst.h ._, ......... q_,,,,,

The algorithm minimizes this error using a grament oesccm _,a_.

The Purpose of training is to construct in the hidden layer a representation of the

data _resented at the visible layer (the input vector.) If. the number of hidden units is lessthan the numbe, of visible umt$ and if'slac network ts traincd successfully, the hidden
idered as a compressed version of the visible representation.re res_ntation may. be COm ....... ,,,,_,,, which marts the orimnal vectors to

uPder these conditions mc nework acts _ an ey,.,,._-..-,:_..t,_,,_teristics, i_urthisoro_ct

ller dimensional space while reserving their sta tts._L_,:,.,:LT=.,4":- in the in-uS lkve'r ina sma • " tsl/fin a tnu'o ot tnt; ,Lu_
we built a network _th a hidden _ayer co.n - -l-g---r-at b-' a factnr of three :i_ network
order to reduc_ the dimensionaliw oi me Input vec_u , y " -
takes as input a 132-point signature and produces a 44.point signature. Higher oompresuon
ratiosarepossibleata highercomputationalcostand lossofaccuracy.

Backprolmgation Network

ion network BPN) is a multilayer fully connected network. The
• The Bac.kprop.agat'........(A-,-....--;-t,tsbetweenconnectedprocessingclam.cn_

' e aeltarule1ocompmc u,_ -,-,re' " 'alonthm usesm ....... d thedesiredoutputisminitm_a m.a

[ SOgthat the diHerenc, t: oetwccn th_ ,_t, ai output an . . • --suares sense. Thenetwork may opera ta m autoassoclatlve aid eht_t_;_sisd°e_itca_least q . . - "' and the out u .
mode. For an autoasso¢lattve networ_k] the input vector n inuut emciPoutvut pairs which are

oclauvenetworklearnsm._octatlonsIx:rwe...---r-.. ,- - -

A..heteroassc_ .... ,---.-.- _... n_,_,,,,,-aoation is otscussea m rcterence _.clRIerenL lhc o_lc atgunm,usu, ,-,,,,...v-..r o

is connected to all neurom in adjacent layers with no iat=,alIn the BPN every neuron .... ._ frr_m the in tit la r. to the
Dutln tralnin ttzu n_formattu- flows fomr d . . . 13. laj_ ....connections. . i.. g _ u h mc wet ntsto c_.cutam mc

w_'ght'-a_J-u_-t-.m_c-.-k,-_,,-urn,gs. The fir,t layerreceives theinput, .modifies_r.... Z.es the
reouccq toun _,.,._w--,.,,_.,,_,,.,__ ,:._a... s.A,,,,, the hidden laver m tum__p_u.P._.l_._" ....

l o" welles, ana vasses ttm mc tu_u_,, ,?_,--, ---,, .... :..X,,.,,_o,,H The niaocn m_r_t . "-: .' - where treeoverate crrut _a_,_:---y. . ,
modifiedinputstothe.outputlayer.......--'isofthedataand rtsstzctsdete.rrmnedby

i is usedto represent me non-smear cnaracmn_ . . . ........ • .,-.... _._-.., -I, 6 shows the architecture of a typical mree ta_r
mt complexity ut tt_ V_vv,,.-_. Fee-re
network.

I
Jatckson,Wyoming
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For thisprojectwe_usedtheBackpropagationalgorithminitstwo modes. In
autoassoclativemode toperformdatacompresson,andinheteroassociativcmode toclassify
thefeaturevectors.AutoassociativeBacl/propagationwas usedasan alternatemethodto
R_circulation.for data compresslonin orderm .c°mparethe effectiveness..,of the
representatmnsgeneratedby thetwomethods.The inputtotheautoassocmtlvenetwork
isthe132-pointsignatureand theoutputisthe44-pointcompressedsignature.

B The classification of the patterns was _rformed using a standard H=teroassociative
ac.kpropagat/on network which received as input the compressed 44-poim signature and

proaucccl the class label or roiling element operational states. The. network had a 44-node
input layer, a 10-node hidden layer and a (>-nodeoutput layer. The size of the hidden layer
was determined according to the numberof possiblestates (including combinations). Recent
studiesindicatethatthenumber ofregularityfeatures(exmingclasses)can be usedto
estimat_thenumberofhidden'nodes_.

RESULTS

For this project,we used the versionof theRecirculationnetworkincludedin
NeuralWorksm which runs on a £ranith 386 SX machine. The PlexiTM implementation of
Backvrovagation was used for both compression and classification. The program runs on
a SUN SP/_RC IPC workstation.

Compmslon

B . CompressionwasperformedusingtheRecirculationnetworkandtheAutoassociative
aczpropagationnetwork.The networkshavethesame topology(132inputsand44hidden

units)andweretrainedon onethirdnftheoriginaldataset---23outof71 patterns.The
representationsobtainedfromthetwonetworlciaredifferent,eachrepresentationisinrum
verydifferentfromtheoriginalspectralsignature.An exampleofthetworepresentations
isshownm Figures7 and8.

Therearethreereasonsforthedifferenceinrepresentations.Fire,theweightsfor
the Recirculationnetworkare not requiredto be syrametric_llikethe weightsin
Back'propagation(inBack-propagationthesetofweightsusedintheforwardpassW, isthe
sameaJthesetofweightsusedinthebackwardpassWji.) Second,theweightadjustment
equationsandtheschedul/ngofthetwoalgorithmsarenotequivalent,theRNN a_Igorithm
computestheadjustmentsby consideringonlylocal|nformationwhileBPN computes
changes to the weights according to the global error. Finally, the behavior of the
Reci/culationalgorithmapproachesgradientdescent(themethodusedbyBackpropaga3ion)
onlyaftera numberofiterations.By thetimethebehaviorsareequi.valent,thealgorithms
aredoingsearchindifferentregionsandcontinuetolookfura solu,onin_cparatepaths.

The RNN was trained for 50,000 iterations until it reached the ore-established error
threshold (0,03.) The compressed signature is geometrically different than the input vector,
but retains its statistical properties. We have demonstrated the effectiveness of the
compression in previous work by doin2 clustering of both the oriainal input vector and its
compressed representation using the g'-means al_orithm 7,s. The _utoassociative BPN was
_rained for 11,000 iterations to the same threshold (0.03). Usually, the BPN algorithm
converges fasterfor dam compression.

AI91I_RONTIER$ IN INNOVATIVE COMFUTING dacksOfl, Wyomi_QFOil THE NUCLF.A R INOUSI"RY 8ep|ember 15-18, 1991



fe Gene.rally,.the training of the Autoassoeiative Backpropagation requires significantly
wet iterations than the training ot the Recareulation networK, taowcver, the compresseia

representations obtained from Recirculation are better suited for training the classifiers. Not
0nly is the tra't_, g of the classifier faster using the compression from Recirculation, but also
the representattom are better generalizatiom of the input space.

CIassH1eation

O Twn BPN netwnrks with identical topology were built to perform the classification.
ne network was trained with the compressed data obtained from RNN, and the _.cortd

network wu trained on data from the Autoassociative BPN. Both networks have as input
the 44-pohtt eomprct_ed signature generated by the compression networks. 10 hidden nodc_
and 6 outputun_tscorrespondingtoeachpo_le operatingstate.Eachstate act/vatesa
particularneuronintheoutputlayer;formultiplestatesmore thanoneneuronisactivated
correspondingtotlaeapprof_riatvcombination;

To train the n_twork. 17 patterns representative of every operating state were
selected from the total set of 71 (24%). The set also included 7 patterns which lind no
labels (faults were unknown) because they were collected while the deterioration was
cvulving from a localized scaling fault of the outer race to _a generalized fault of all
components in the bearing. To recall, the entire data set was used, including the 7 patterns
with unknown faults. The-output units have a linear threshold function centered at 0.5. Arty
ou_ut higher tlaan0.5 is reported as a fault while outputs lower than 0.5 are considered at
absenceoffaults.

TrainingtheclassifierusingthecompresseddatafromR.NN took23,000iterations
(Figure9).The errorwasreducedto0.01.Of the64patternswithknownlabels,62(97%)
wt:rc clmified correctly (two normal patterns are classified as fault). Of the tWO
misclassified oattems one was classified as having a localized artificial fault of a ball and the
other as harang a generalized scaling fault of two balls. From the remaining seven (faults
were unknown), sii were classified as localized scalingfau.lt of the outer race (the condition
previous to deterioration) and one was classified as-having generalized scaling of the two
oalls and localized scaling fault of the inner race.

The other classifier converged after 49,.000iteratiom to the same error (0.01), and
u_O the compressed data from the autoassociattve BPN (Figure 10). This network was able
to classify correctly 54 of the 64 (84%) patterns with known labels. The misclassified
patterns were ali rion.faul_. Out of the seven patterns without labels, six wc_c classified
as having localizccl scaling fault of the uuter rac_ and one as normal.

Representation No. Iterations % Error % Correct
......... Classificatiorl

Recirculation 23,000 0.01 97%

Back'propagation 49,000 0.01 84%
I _, ....... r i i , ' " II I ! ....

Table I. Classifier Ruults

tort rHg r_UCL£AA INDUSTRY SeDtomDer 15,18, 1911'1



We run a set of experiments usiniLa reduced version of the data .se.c(36 p.atterns
representing 4 classes) to evaluate the e_ect ot nc_c,r_ topology !n trauung, we useo
networks w_ 44 input nodes and 4 output nodes. Th_ size of the hxddcn layerwas set. to
16, 6, and 3. We found that decreasing the number of _dden umzs, increases zne nurnoer
of iterations to the same level of convergence but produces better generalizations.
Obviously, an iteration in a small network is faster than for a larger network.

CONCLUSIONS

We arc working on the implementation of a methodology for interpreting vibration
measurements based on neural networks. The anticipated advantage of developing such a
system is the pos.siblli_ of automating the monitoring and diagnostic processes fbr v_brating
components, and building diagnostic sysu:mswhich complement tradltional PSD analysis by
dealing witll the non-linear cfiara_:tcrLsdc.sof the sil_,nal_.

This pr0ject dcals.exclusively with the analysis and classifi_tion of.sign._turc.scoming
bom rolling element bearings in bench tests, r'rcvious_y,we ana_ea viDra_qn aam from
rollingelementsina steelsheetmanufacturingfacilityw_thexcellentresults_. The next
phaseoftheproi©ctdealswiththeapplicationofthesetechniquestoelectrictumorsand
centrifugal,mulucellularpumps inEDF powerstations,themchniqueIsapplicabletoa
varietyofcomponentsina nuclearpowersettingwithoutmajorredesign9.m.

The feasibilityofusingRecirculationandAutoassociativeBackpropagationnetworks
forcompressionofspectraldatahasbeenestablished.Underthisstudywe haveachieved
compressionra_osof3/Iwhilemaintainingthestatisti.ca..lpropertiesoftheor/ginalpattcrrts.
The Recirculationnetwork,in our opinion,provldesa bettermechanism forthis
compression.Our resultstodateindicatethatthecnmpressedvcrsicmobtained_om
Recirculationisbettersuitedfortrainingtheclassifiernetworks.

TradRionally,dia_usisofcomponentsbasedonvForationanalysishasbeenmade by
lockingatspecificregionsofthespectra.We fcellikethecompressedslgnamreissn
efficientand feasiblerepresentationwhichprov/d.cscompleteinforr.n,ati0n,and_allow.s_c'
analyslstobe made on a broaderbase.f_mpleteimormauon about_n¢spc=_m _s
importantbecausevibrationm generalisImprecise.In some casesthebehaviorof
componentsundercertainoperatingstatesi__utka_ownindetail,c,_pcciallywhen the
behaviorisinducedbymore thanone fauR.

Although our prvj¢ct is ix,tlxcearly sr.atcvf develovmcn t we f_l tha_t_ne_ur_._ne.t_.or_
can provide a methodology for improvin$ mc analysis or spectra, ana may prov_u_ _ v,,,u,_
complement to PSD analysis for monitonng and dmgnostics of v_rating components. Our
results to date are very encouraging.
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Figure 2. The Inner Race of a 6206 Bearing with a
Localized Scaling Fault
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