
**Inhalation Reproductive Toxicology
Studies: Male Dominant Lethal Study
of n-Hexane in Swiss (CD-1) Mice**

Final Report

T. J. Mast, Study Director

T. J. Mast	J. R. Decker
R. L. Rommereim	K. H. Stoney
J. J. Evanoff	R. J. Weigel
L. B. Sasser	R. B. Westerberg

August 1988

**Prepared for the
National Institute of Environmental
Health Sciences, National Toxicology Program
under a Related Services Agreement
with the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830**

**Pacific Northwest Laboratory
Operated for the U.S. Department of Energy
by Battelle Memorial Institute**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any or their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST LABORATORY
operated by
BATTELLE MEMORIAL INSTITUTE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC06-76RLO 1830

Printed in the United States of America
Available from
National Technical Information Service
United States Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22161

NTIS Price Codes
Microfiche A01

Printed Copy

Pages	Price Codes
001-025	A02
026-050	A03
051-075	A04
076-100	A05
101-125	A06
126-150	A07
151-175	A08
176-200	A09
201-225	A10
226-250	A11
251-275	A12
276-300	A13

3 3679 00056 0591

PNL-6679
UC-408

INHALATION REPRODUCTIVE TOXICOLOGY STUDIES:
MALE DOMINANT LETHAL STUDY OF n-HEXANE
IN SWISS (CD-1) MICE

Final Report
No. NIH-Y01-ES-70153

T.J. Mast, Study Director

T.J. Mast	J.R. Decker
R.L. Rommereim	K.H. Stoney
J.J. Evanoff	R.J. Weigel
L.B. Sasser	R.B. Westerberg

August 1988

Prepared for the
National Institute of Environmental
Health Sciences, National Toxicology
Program under a Related Services Agreement
with the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830

Pacific Northwest Laboratory
Richland, Washington 99352

SUMMARY

The straight-chain hydrocarbon, n-hexane, is a volatile, ubiquitous solvent routinely used in industrial environments; consequently, the opportunity for industrial, environmental or accidental exposure to hexane vapors is significant. Although myelinated nerve tissue is the primary target organ of hexane, the testes have also been identified as being sensitive to hexacarbon exposure. The objective of this study was to evaluate male dominant lethal effects in Swiss (CD-1) mice after exposure to 0, 200, 1000, or 5000 ppm n-hexane, 20 h/day for 5 consecutive days.

Each exposure concentration consisted of 30 randomly selected, proven male breeders; 4 groups. The mice were weighed just prior to the first day of exposure and at weekly intervals until sacrifice. Ten males in each dose group were sacrificed one day after the cessation of exposure, and their testes and epididymides were removed for evaluation of the germinal epithelium. The remaining male mice, 20 per group, were individually housed in hanging wire-mesh breeding cages where they were mated with unexposed, virgin females for eight weekly intervals; new females were provided each week. The mated females were sacrificed 12 days after the last day of cohabitation and their reproductive status and the number and viability of the implants were recorded.

The appearance and behavior of the male mice were unremarkable throughout the study period and no evidence of n-hexane toxicity was observed. Mean body weights of male mice exposed to n-hexane vapor concentrations as high as 5000 ppm for 5 consecutive days were not significantly different from those of 0-ppm animals at any time during the study. Exposure of male mice to n-hexane vapor at relatively high concentrations for a 5-day period produced no significant alterations in the reproductive indices obtained from females mated with exposed males. Consequently, it was concluded that short-term exposure to n-hexane vapor did not result in a male dominant lethal effect in Swiss (CD-1) mice.

ACKNOWLEDGMENTS

<u>Responsibility</u>	<u>Name</u>
Study Director	T.J. Mast
Previous Study Director	P.L. Hackett
Exposure System	J.R. Decker
	M.L. Clark
	R.J. Weigel
	E.J. Rossignol
Monitoring/Analytical Chemistry	R.B. Westerberg
	M.M. McCullough
Animal Resources Section	M.G. Brown
	S.E. Rowe
	A.E. Jarrell
Reproductive Toxicology	T.J. Mast
	R.L. Rommereim
Report Co-ordination	J.J. Evanoff
	L.B. Sasser

Terry J. Mast

Terry J. Mast, PhD
Study Director

This work was supported by the National Institute of Environmental Health Sciences, National Toxicology Program, under a Related Services Agreement with the U.S. Department of Energy under Contract DE-AC06-76RLO 1830 at the Pacific Northwest Laboratory operated for the U.S. Department of Energy by Battelle Memorial Institute.

In-life portions of this study were conducted under the supervision of the previous Study Director, Dr. P.L. Hackett. The excellent technical support in the Reproductive Toxicology Laboratory of B.J. Willemsen, M.L. Sours and B.L. Champion is appreciated.

CONTENTS

SUMMARY.....	iii
ACKNOWLEDGMENT.....	v
TABLE OF CONTENTS.....	vii
INTRODUCTION.....	1
MATERIALS AND METHODS.....	3
EXPERIMENTAL DESIGN.....	3
VAPOR GENERATION AND CHEMICAL ANALYSES.....	4
ANIMAL HUSBANDRY AND REPRODUCTIVE EVALUATIONS.....	6
STATISTICAL ANALYSES.....	8
RESULTS.....	8
DISCUSSION.....	10
REFERENCES.....	12
APPENDIX A - ANALYTICAL CHEMISTRY NARRATIVE AND DATA.....	A. 1
APPENDIX B - EXPOSURE NARRATIVE AND DATA.....	B. 1
NARRATIVE	B. 1
EXPOSURE CHAMBER CONCENTRATIONS	B.15
CHAMBER AIR FLOWS	B.21
RELATIVE HUMIDITY	B.25
TEMPERATURE	B.29
EXCURSION REPORT	B.33
APPENDIX C - DEVELOPMENTAL TOXICOLOGY DATA.....	C. 1
BODY WEIGHT DATA	C. 1
REPRODUCTIVE DATA	C. 5
CALENDAR OF EVENTS	C.29
ANIMAL DISPOSITION SUMMARY	C.33
APPENDIX D - HEALTH SCREEN.....	D. 1
APPENDIX E - QUALITY ASSURANCE STATEMENT.....	E. 1
APPENDIX F - STUDY PROTOCOL AND CAGE MAPS.....	F. 1

FIGURES

FIGURE 1. Buildup and Decay of Vapor Concentrations in the 200, 1000 and 5000 ppm Chambers Without Animals Present.....	15
FIGURE 2a. n-Hexane Dominant Lethal Study: Implants per Dam for Post-Exposure Breeding Weeks 1-8.	16
FIGURE 2b. n-Hexane Dominant Lethal Study: Intrauterine Death per Dam for Post-Exposure Breeding Weeks 1-8.	16

TABLES

TABLE 1. n-Hexane Dominant Lethal Study: Average Daily Exposure Chamber Concentrations.....	17
TABLE 2. n-Hexane Dominant Lethal Study: Mean Body Weights of Male Swiss (CD-1) Mice (g \pm SD)	19
TABLE 3. n-Hexane Dominant Lethal Study: Mean Body and Thymus Weights of Male Swiss (CD-1) Mice Sacrificed Immediately After Exposure (g \pm SD)	19
TABLES 4a. n-Hexane Dominant Lethal Study: Reproductive Measures (Mean \pm SD) Post-Exposure Week 1.....	20
TABLES 4b. n-Hexane Dominant Lethal Study: Reproductive Measures (Mean \pm SD) Post-Exposure Week 2.....	21
TABLES 4c. n-Hexane Dominant Lethal Study: Reproductive Measures (Mean \pm SD) Post-Exposure Week 3.....	22
TABLES 4d. n-Hexane Dominant Lethal Study: Reproductive Measures (Mean \pm SD) Post-Exposure Week 4.....	23
TABLES 4e. n-Hexane Dominant Lethal Study: Reproductive Measures (Mean \pm SD) Post-Exposure Week 5.....	24

TABLES 4f. n-Hexane Dominant Lethal Study: Reproductive Measures (Mean \pm SD) Post-Exposure Week 6.....	25
TABLES 4g. n-Hexane Dominant Lethal Study: Reproductive Measures (Mean \pm SD) Post-Exposure Week 7.....	26
TABLES 4h. n-Hexane Dominant Lethal Study: Reproductive Measures (Mean \pm SD) Post-Exposure Week 8.....	27

INTRODUCTION

The straight-chain hydrocarbon, n-hexane, is commonly used as a solvent for the extraction of oil seeds, as a reaction medium in the production of polyolefins, elastomers and pharmaceuticals, and as a component of quick-drying cements, lacquers and adhesives. The production of n-hexane, which was estimated to be four billion pounds per year in 1979, utilizes stocks of straight-run gasoline and higher boiling liquid products stripped from natural gas or paraffinic fractions of refinery streams. Since it is also found as a minor component of gasoline and its combustion products, petroleum products are a major source of environmental hexane contamination. Due to the large-scale production and widespread use of hexane, including teaching laboratories, the opportunity for industrial, incidental, environmental, or volitional (glue-sniffing) exposure to hexane vapors is significant. This study was performed due to concern that exposure to n-hexane vapors may result in a negative impact on human reproductive function.

An excellent review concerning hexacarbon toxicity and metabolism is available in Experimental and Clinical Neurotoxicology (edited by Spencer and Schaumburg, 1980). In summary, polyneuropathies have been reported following exposure of workers to n-hexane. A metabolite, 2,5-hexanedione (2,5HD), has been shown to be responsible for most, if not all, of the neurotoxicity. Younger rats appear to be less sensitive to n-hexane neurotoxicity than are older animals. It has been suggested that this difference may be due to their having shorter axons with smaller diameters, or to a greater rate of growth and repair of peripheral nerves as compared to that of adults (Howd et al. 1983; Kimura et al. 1971). Likewise, Graham and Gottfried (1984) hypothesized that mice are less sensitive than rats to gamma-diketones, such as 2,5HD, because myelinated axons in mice are shorter and have smaller diameters than the corresponding axons in larger species although species differences in metabolism have not been examined.

Pharmacokinetic and distribution studies of inhaled n-hexane in the rat indicated that the saturation concentration of n-hexane in organs is directly

proportional to their lipid content, and that blood contains more hexane in relation to its lipid content than do other organs (Andersen 1981; Bohlen et al. 1973). Baker and Rickert (1981) found that both the metabolism and elimination of n-hexane in male Fisher-344 rats given a single 6-h exposure to 500, 1000, 3000 or 10000 ppm n-hexane were dependent upon the exposure concentration, but that the tissue concentration of the major metabolite, 2,5-hexanedione (2,5HD), achieved a plateau and was not directly correlated to increasing n-hexane exposure concentration. Maximal 2,5HD levels in the blood and in the sciatic nerve were observed in the 1000-ppm exposure group, but did not increase for the two higher exposure groups. Bus et al. (1981), using ¹⁴C-labeled n-hexane administered to rats in a single 6-hour inhalation exposure of 500, 1000, 3000 or 10000 ppm and observed a similar phenomena. Tissue ¹⁴C-concentrations measured in liver, lung, kidney, testes, brain, sciatic nerve and blood were found to be maximal at the 3000-ppm level and did not increase at the 10,000-ppm level.

Although myelinated nerve tracts are the primary target organ, the testes have also been identified as being sensitive to hexacarbon toxicity. Krasavage et al. (1980) reported testicular atrophy following oral administration of n-hexane and several of its metabolites to male rats. Chapin et al. (1982) administered a 1% solution of the hexane metabolite, 2,5HD, to adult male rats (Fisher 344) in their drinking water and found a decrease in the activity of two Sertoli cell enzymes, β -glucuronidase and γ -glutamyl transpeptidase, after 3 weeks of exposure. No morphologic changes were noted at 3 weeks; however, the testes were essentially azospermic after 6 weeks of exposure, and the few primary or secondary spermatocytes that were observed exhibited severe degenerative changes. Since circulating levels of testosterone and the gonadotropins remained normal throughout the study, these workers concluded that 2,5HD does not act via the central gonadotropin regulatory system to induce azospermia, and that changes in Sertoli cell biochemistry precede visible morphologic changes in the testes. In another study, Chapin et al. (1983) indicated that in rats the Sertoli cell is probably an initial target cell for 2,5HD action on the testis.

Cavender et al. (1984) did not detect neurotoxicity or testicular toxicity in rats exposed to 3000, 6500 or 10000 ppm purified hexane (99.3%) 6 h/day, 5 day/wk for 13 weeks. However, the only measurement of testicular toxicity obtained in this study was the organ weight; the possibility of histological or biochemical changes in the testes was not addressed. Although the exposure concentrations used in Cavender's study were relatively high, the short daily exposure periods may not have permitted the concentration of the hexane metabolite, 2,5HD, to build up sufficiently in the blood or tissues to cause testicular toxicity.

These studies indicate there may be differences between the responses of male rats to oral versus inhalation exposure to n-hexane, therefore further efforts should be made to assess the effects of inhalation exposure on the testes. Testicular effects produced following exposure to a toxicant may be determined by evaluating males for the presence of dominant lethal mutations or for changes in sperm morphology. Accordingly, the objective of this study was to evaluate potential male dominant lethal effects in another rodent species. Mice were chosen as the test species based on their ease of handling and on the assumption that mechanisms of mutagenesis and spermatogenesis are fairly constant across mammalian species. Since the largest available database on male dominant lethal effects in mice resides with the CD-1 mouse, this strain was chosen for the study. A companion study, Mast, et al (1988a), examined sperm morphology effects in the B6C3F1 mouse following the same exposure regimen.

MATERIALS AND METHODS

EXPERIMENTAL DESIGN

Four groups of male Swiss (CD-1) mice, each consisting of 30 randomly selected, proven breeders were exposed to 0 (filtered air), 200, 1000, or 5000 ppm n-hexane vapor for five consecutive days, 20 h/day. The long daily exposure periods were chosen in order to maximize exposure to n-hexane vapor since the maximum vapor concentration of n-hexane in the exposure chambers was not allowed to exceed 50% of the lower explosion limit, ~10,000 ppm. The

not allowed to exceed 50% of the lower explosion limit, ~10,000 ppm. The 200- and 1000-ppm n-hexane levels were chosen in order to assess the dose-response relationship with respect to increasing exposure concentration.

One day after the end of the 5-day exposure period ten males in each exposure group were killed and their testes and epididymides prepared for future histological examination. (After evaluating the negative results of this study the NTP decided not to perform a histological examination of the testes and epididymides.) The remaining twenty male mice were each cohabitated with two untreated, virgin female Swiss (CD-1) mice for eight consecutive 7-day periods; new females were provided each week. The females were sacrificed 12 days after the last day of cohabitation to determine the number and status of implants. Males were sacrificed after the 8th weekly mating period and examined grossly for lesions.

VAPOR GENERATION AND CHEMICAL ANALYSES

Bulk chemical purity analyses were performed on the single lot of n-hexane used for the mouse exposures. Analytical procedures employed infrared spectroscopy and gas chromatography (GC) for the initial identity and purity determinations. The purity of the n-hexane used in this study was 99.1% (BNW Lot 50846-39; Phillips Lot # H-116). See Appendix A for details.

On-line measurements of the chamber n-hexane concentrations were performed using an HP5840 GC equipped with a flame ionization detector. A computer-controlled, rotating 8-port valve allowed measurement of n-hexane concentrations in the exposure room, the control chamber, the exposure chambers, and the on-line standard. All ports were sampled at least once every 40 minutes. The GC was equipped with a 1/8" o.d., 1-ft nickel column packed with 1% SP-1000 on 60/80 mesh CarboPack B. The oven operating temperature was 120°C. An on-line standard, 994 ppm n-hexane in nitrogen (MG Industries Scientific Gases, Los Angeles, CA), was used to check instrument drift throughout the exposure day. The minimum detectable limit of n-hexane was estimated from the decay profile of the 5000-ppm chamber and found to be 0.11 ppm. The calibration curve for this analysis was linear over an extended range and was monitored at intervals by routine analysis of bubbler-samplers.

Inhalation exposures were conducted in 2.3-m³ stainless steel chambers (1.7-m³ active-mixing volume) designed at Battelle Northwest Laboratories (Brown and Moss 1981; Moss et al. 1982). Each chamber contained three levels of caging, each of which was split into two offset tiers. Air, filtered through HEPA and charcoal filters and uniformly mixed with the test material, flowed through the chamber at approximately 15 air changes per hour. See Appendix B for a more detailed description.

The n-hexane exposures were conducted using an automated data acquisition and control system which monitored and controlled the basic inhalation test system functions, including chamber air flow, vacuum, temperature, relative humidity, and test chemical concentrations. Conditions which may have been a threat to the health of the animals, or constituted an explosion hazard, triggered alarms to personnel on-call 24 h/day. All data acquisition and control originated from an executive computer which contained the exposure protocols and controlled a multiplexing interface system.

Generation of the n-hexane vapor was accomplished by metered pumping of the liquid chemical from a 5-gallon reservoir which was replenished daily. The test material was delivered through inert delivery tubes to a vaporizer located at the fresh air inlet of each animal exposure chamber. The vaporizer was comprised of a heated stainless steel cylinder wrapped with a glass fiber wick from which the liquid was vaporized. The operating temperature of the vaporizer was maintained below 50°C (the boiling point of n-hexane is ≈70°C). All generation equipment which came into contact with the n-hexane was stainless steel, Teflon®, or Viton®. All equipment was contained in a vented, explosion-proof generator cabinet. Chamber air flows were maintained by a computer-controlled pump in the exhaust line of each chamber. The exposure suite data acquisition and control computer automatically controlled the concentration of n-hexane in the chambers by adjusting the flow rate of dilution air through the individual chambers.

The buildup and decay of n-hexane concentrations, without animals in the chambers, were checked prior to the first week of the study (Figure 1). The time required to reach 90% of the target concentration (T₉₀) ranged from 11.0-13.0 min. The decay time, the time required to decline to 10% of the

target concentration (T_{10}) after generators were shut off, ranged from 9.0-11.0 min. Uniformity of vapor concentration in the exposure chambers was measured prior to the start of the study and found to be acceptable in all chambers (e.g. $\pm 10\%$). A buildup and decay determination with animals present in the chambers was not performed due to the short total duration of the exposure—5 days. However, later evaluations showed that the presence of mice did not significantly affect build-up and decay times (Mast, et al 1988b).

ANIMAL HUSBANDRY AND REPRODUCTIVE EVALUATIONS

A total of 159 male Swiss (CD-1) mice, 7 weeks of age (Charles River Laboratories, Raleigh, NC), were group housed in solid bottom cages (11-12 per cage) for 7 days after receipt. Five shipments of 6 week old Swiss (CD-1) female mice, 1703 total, were received at intervals throughout the study period (Charles River Laboratories, Portage, MI; Appendix C). Females were identified by eartags and randomly assigned to treatment groups on the basis of body weight. The first shipment of females was used to prove male fertility and each of the four remaining shipments contained sufficient females for two breeding weeks; the females were 9-11 weeks old when breeding was initiated.

All shipments, male and female, were subjected to a health screen after three weeks of isolation in the test facility. Five to ten animals from each shipment were examined for bacterial pathogens and serum from each of these animals was tested for antibody titers to selected pathogens (see Appendix D), and to histopathologic examinations of lung, trachea, liver, kidney, ileum, colon and heart. There were no significant findings.

Pelleted NIH-07 diet (Ziegler Bros. Inc., Gardner, PA) was provided *ad libitum* during the entire study. Since the daily duration of exposure was so long, 20 h, food was left in place during the exposure period in order to prevent food deprivation and was replaced daily. Water was provided *ad libitum* at all times by an automatic watering system. Room lighting was maintained on a 12-h on-off cycle starting at 6 A.M.

During the quarantine period the animal room was maintained at $72\pm3^{\circ}\text{F}$ and $50\pm15\%$ relative humidity (%RH). During the exposure period daily mean chamber temperatures were within the normal operating range of $75\pm3^{\circ}\text{F}$. Daily mean %RH in each exposure chamber was within the normal operating range of $55\pm15\%$. The daily mean air flows in all chambers for the study were within the normal operating range of 15 ± 3 CFM. A detailed summary of the daily chamber environment is listed in Appendix B.

Following the 7-day acclimatization period the male mice were transferred to individual wire breeding cages where they each cohabitated with two virgin female mice for 16 days in order to prove their fertility. Study animals were selected from those males which sired offspring by at least one female. During the week prior to exposure fertile male mice were weighed, individually identified by eartags, toe-clipped by exposure group, and randomized into treatment groups on the basis of body weight. Study males, 30 per group, were acclimated to exposure chambers for three days prior to the initiation of exposures, and were then exposed to HEPA and charcoal-filtered air or to 0, 200, 1000, or 5000 ppm n-hexane vapors for a 5-day period; 20 h/day.

After the 5-day exposure period 20 males from each group were placed in breeding cages and two days later were cohabitated with two females/male for eight consecutive 7-day periods. At the end of each 7-day period the females were replaced with two new untreated virgin females. The remaining ten male mice in each exposure group were weighed and sacrificed on the day following the 5-day exposure period, their thymus weights were obtained, and their testes and epididymides were prepared for future histological evaluation of the germinal epithelium. (Since results of this study were negative these evaluations were not done, a decision made by the NTP.)

The body weights of the male mice used for post-exposure breeding were obtained prior to the start of the exposure period and weekly thereafter for 8 weeks. (See Appendix C for details.) Following the 8th post-exposure week the male mice were killed with CO₂, weighed and examined for gross lesions of the reproductive tract (including the testes, epididymides, prostate, seminal vesicles, and penis) and for gross tissue abnormalities. Twelve days after

the last day of cohabitation the females were killed by CO₂ and their reproductive status determined. The uterus was removed and the total number, position, and status of implantations were recorded. All animals were observed daily for morbidity, mortality and overt signs of toxicity.

STATISTICAL ANALYSES

The SAS statistical software and a VAX 11/780 computer were used to calculate all means and standard deviations of animal data. Body weights were analyzed using the SAS General Linear Models (GLM) procedures (SAS 1985) with an analysis of variance (ANOVA) model for unbalanced data. Proportional data were subjected to arcsin transformations and evaluated by ANOVA (e.g. incidence of resorptions). Tukey's studentized-range test was used to assess statistically significant differences between control and exposed groups. When appropriate the dose-response relationship was determined by use of an orthogonal trend test (Winer 1971). The litter was used as the basis for analysis of all fetal variables. Fertility data, e.g. number of fertile males per group, were analyzed by a Chi-square test on a 2 x C contingency table (Snedecor and Cochran 1980).

RESULTS

The daily mean n-hexane concentrations for all exposure chambers are shown in Table 1. Daily means for all chambers were within 6% of the target concentrations except for the 5000-ppm chamber on the first day of exposure, when the mean was 69% of target. Detailed summaries of the concentration data, summaries of environmental data, and graphic illustrations of the daily means, and standard deviations for each chamber are included in Appendix B.

No deaths attributable to the test material occurred in any of the n-hexane exposure groups. The appearance and behavior of all male mice were unremarkable throughout the study with the exception of those noted below. The mean weekly body weights of the n-hexane exposed male mice were not significantly different from those of the 0-ppm group at any time during the study (Table 2). Body and thymus weights obtained on 10 animals per exposure

group one day after the cessation of exposure demonstrated no effect of treatment (Table 3). No gross lesions of the reproductive or other organs were observed in the males at sacrifice.

Nine of the 80 exposed males died during the 7th week post-exposure as a result of accidental water deprivation on one level of the animal housing rack and another 11 males and their corresponding females were severely stressed by this situation. All animals on that level were eventually removed from the study (See Appendix C), consequently, the number of males included in study data analyses are fewer in post-exposure week 8 than for post-exposure weeks 1 through 7. Since the male weight data obtained for post-exposure week 7 was collected prior to the water and food deprivation male body weights for the 7th week are included in the study data. However, the number of females on study were fewer for both post-exposure weeks 7 and 8 than for post-exposure weeks 1 through 6 since the reproductive indices for those females that either died or were severely stressed could not be used.

A mean pregnancy rate of 89% was achieved, with weekly means by treatment ranging from 79 to 98% (Table 4a-4h). Indicators of reproductive performance (i.e. number of implants or incidence of intrauterine death) in untreated female mice mated to n-hexane exposed males for each of the 8 post-exposure weeks infrequently demonstrated significant differences among exposure groups (Tables 4a-4h). During the 6th post-exposure week the mean number of implants per litter was significantly less than the control group for the 5000-ppm group and the mean number of intrauterine deaths was significantly less than the control group for the 1000-ppm group (Figures 2a and 2b; Table 4f). It is unlikely that either of these differences should be attributed to n-hexane exposures, more probably they are a result of natural variability within the population. The number of live implants was consistently greater than ten fetuses per litter with no indication of a decrease associated with increasing n-hexane concentration. Furthermore, there was no increase in the number of dead implantations or early resorptions (on a litter basis) associated with exposure of the sires to any of four concentrations of n-hexane over a 5-day period. Nor did the percent of intrauterine death, a

measure indicative of male dominant lethal effects, demonstrate any exposure-related effects (cf. Tables 4a-4h; Intrauterine Death).

DISCUSSION

The absence of significant alterations in the mean body weight of exposed male mice was consistent with their apparent healthy condition throughout the course of the inhalation exposure and the post-exposure period (with the exception of the previously noted animals which died due to the environmental circumstances described above). The high pregnancy rate achieved, 89%, was indicative of healthy and reproductively sound females and males. Early implantation losses per litter and the percentage of females with dead implantations for the 0-ppm group were never greater than 0.6 and 7.7%, respectively.

The lack of a treatment-related effect on the number of implants per litter or on the number of early resorptions per litter in female mice mated to males exposed to n-hexane over a 5-day period indicated that overall male fertility was not affected by these exposures. These results were further corroborated in a companion sperm morphology study (Mast, 1988a). In that study no increase in the percent of abnormal sperm five weeks after exposure of male B6C3F1 mice to n-hexane under the same exposure regimen was observed. Although the mechanisms for producing abnormal sperm and male dominant lethal effects may be dissimilar, these two studies lend support to the conclusion that n-hexane does not adversely affect sperm quality in mice when administered by relatively high inhalation exposures over short periods of time.

In contrast to the lack of observable affects on the reproductive capacity of male Swiss (CD-1) mice noted in this study, others have reported toxic effects to the testes of rats following exposure to hexane and its metabolites. Atrophy of testicular germinal epithelium in rats following oral administration of n-hexane or its metabolites was reported by Krasavage et al. (1980). n-Hexane was found to be much less potent than its metabolites (e.g. 2,5HD, 5-hydroxy-2-hexanone, 2,5-hexane-diol, 2-hexane, and methyl n-butyl ketone) with respect to testicular atrophy. The oral administration of the

hexane metabolite, 2,5HD, in drinking water caused demonstrable changes in Sertoli cell biochemistry which occurred prior to visible morphologic changes in the testes (Chapin et al. 1982). The activities of Sertoli cell β -glucuronidase and γ -glutamyl transpeptidase were decreased at 3 and 6 weeks of exposure, whereas the testes, which appeared normal at 3 weeks, had severe lesions and were azospermic at 6 weeks. Boekelheide and Eveleth (1988) exposed male rats to 2,5HD in their drinking water and found low testis weights and severe germ cell depletion in the high dose group. They also demonstrated that 2,5HD-induced testicular injury, unlike the nervous system toxicity, was dependent upon the rate of intoxication and was independent of the total dose. The above mentioned results are not consistent with either the studies of Cavender et al. (1984), who failed to detect testicular toxicity (e.g. as a decrease in testicular weight) in rats exposed to concentrations of n-hexane as high as 10,000 ppm, 6 h/day for 13 weeks, or with the study results reported herein.

Although the results of most of the studies reviewed above cannot be directly compared because of differences in design and species, it is interesting that negative responses to the testes or sperm resulted from inhalation exposures whereas positive effects were seen (at least in rats) in studies using oral routes of administration. The differences in response may be due to differences in effective dose or in the duration of exposure, since the inhalation exposures were generally conducted for a short time period (5 days), or for a small fraction of the day (6 h), while the the oral studies were conducted over longer time periods. Krasavage et al. (1980) showed that a single, oral dose of n-hexane to the rat was rapidly metabolized to 2,5HD and that the 2,5HD was completely cleared from the blood in about 18 h. Consequently, a sustained exposure may be required to cause adverse effects. The lack of a testicular response in the mouse may also be due to inter-species differences in metabolism, an issue that has not been clearly addressed in the literature.

REFERENCES

Andersen, M.E. 1981. Pharmacokinetics of inhaled gases and vapors. Neurobehav. Toxicol. Teratol. 3:383-389.

Baker, T.S. and D.E. Rickert. 1981. Dose-dependent uptake, distribution, and elimination of inhaled n-hexane in the Fischer-344 rat. Toxicol. Appl. Pharmacol. 61:414-422.

Bohlen, P., U.P. Schlunegger and E. Lauppi. 1973. Uptake and distribution of hexane in rat tissues. Toxicol. Appl. Pharmacol. 25:242-249.

Boekelheide, K. and J. Eveleth. 1988. The rate of 2,5-hexanedione intoxication, not total dose, determines the extent of testicular injury and altered microtubule assembly in the rat. Toxicol. Appl. Pharmacol. 94:76-83.

Brown, M.G. and O.R. Moss. 1981. An inhalation exposure chamber designed for animal handling. Labor. Anim. Sci. 31:717-720, 1981.

Bus, J.S., E.L. White, P.J. Gillies, and C.S. Barrow. 1981. Tissue distribution of n-hexane, methyl-n-butylketone and 2,5-hexanedione in rats after single or repeated inhalation exposure to n-hexane. Drug Metab. Dispos. 9:386-387.

Cavender, F.L., H.W. Casey, H. Salem, D.G. Grahem, J.A. Swenberg and E.J. Gralla. 1984. A 13-week vapor inhalation study of n-hexane in rats with emphasis on neurotoxic effects. Fund. Appl. Toxicol. 4:191-201.

Chapin, R.E., K.T. Morgan and J.S. Bus. 1983. The morphogenesis of testicular degeneration induced in rats by orally administered 2,5-hexanedione. Exp. Molec. Path. 38: 149-169.

Chapin, R.E., R.M. Norton, J.A. Popp, and J.S. Bus. 1982. The effects of 2,5-hexanedione on reproductive hormones and testicular enzyme activities in the F-344 rat. Toxicol. Appl. Pharmacol. 62:262-272.

Graham, D.G., and M.R. Gottfried. 1984. Cross-species extrapolation in hydrocarbon neuropathy. Neurobehav. Toxicol. Teratol. 6:433-435.

Howd, R.A., C.S. Rebert, J. Dickinson, and G.T. Pryor. 1983. A comparison of the rates of development of functional hexane neuropathy in weanling and young adult rats. Neurobehav. Toxicol. Teratol. 5:63-68.

Kimura, E.T., D.M. Ebert, and P.W. Dodge. 1971. Acute toxicity and limits of solvent residue for sixteen organic solvents. Toxicol. Appl. Pharm. 19:699-704.

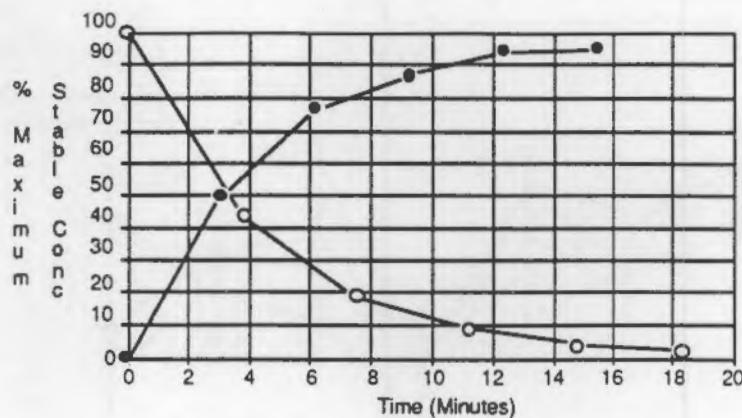
Krasavage, W.J., J.L. O'Donoghue, G.D. DiVincenzo and C.J. Ter Haar. 1980. The relative neurotoxicity of methyl-n-butyl ketone, n-hexane and their metabolites. Toxicol. Appl. Pharmacol. 52:433-441.

Mast, T.J., J.J. Evanoff, J.R. Decker, R.L. Rommereim, K.H. Stoney, L.B. Sasser, R.B. Westerberg. 1988a. Inhalation Reproductive Toxicology Studies: Sperm Morphology Study of n-Hexane in B6C3F1 Mice. PNL-6672. Pacific Northwest Laboratory, Richland, Washington.

Mast, T.J., J.R. Decker, K.H. Stoney, R.B. Westerberg, J.J. Evanoff, R.L. Rommereim, R.J. Weigel. 1988b. Inhalation Developmental Toxicology Studies: Teratology Study of n-Hexane in Mice. PNL-6590. Pacific Northwest Laboratory, Richland, Washington.

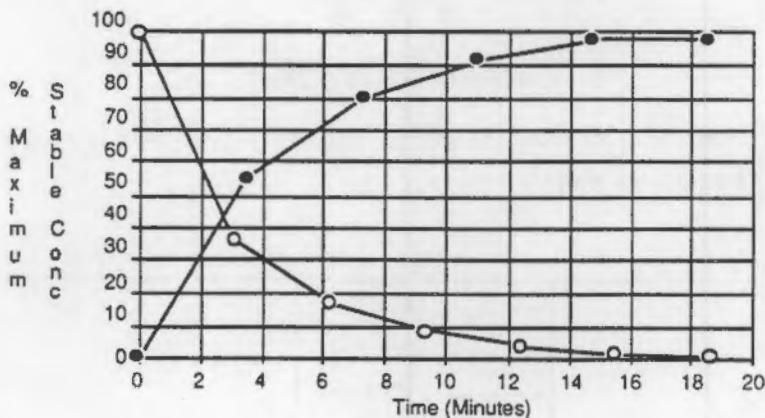
Moss, O.R., J.R. Decker and W.C. Cannon. 1982. Aerosol mixing in an animal exposure chamber having three levels of caging with excreta pans. Amer. Ind. Hyg. Assoc. J. 43:244-249.

SAS Institute. 1985. SAS® User's Guide: Basics, Version 5 Edition. SAS Institute, Cary, North Carolina, pp 434-506.

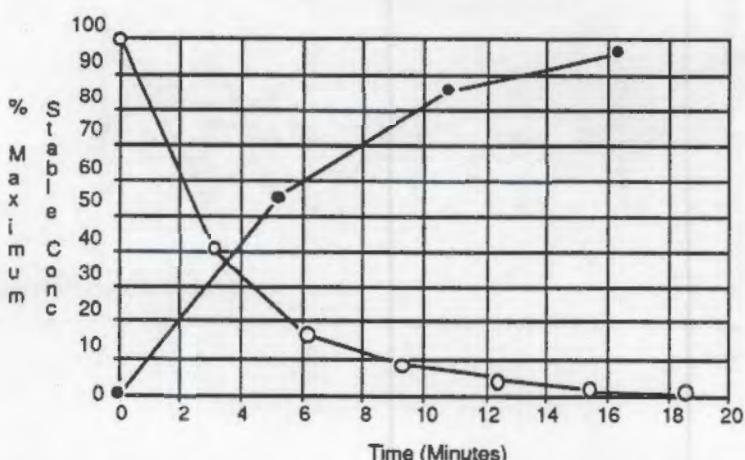

Snedecor, G.W. and W.G. Cochran. 1980. Statistical Methods 7th Ed. The Iowa State Press, Ames, Iowa. p 200.

Spencer, P.S., D. Couri and H.H. Schaumburg. 1980. n-Hexane and methyl n-butyl ketone. In Experimental and Clinical Neurotoxicology, P.S. Spencer and H.H. Schaumburg J. (eds.), Williams & Wilkins, Baltimore, MD, pp. 456-475.

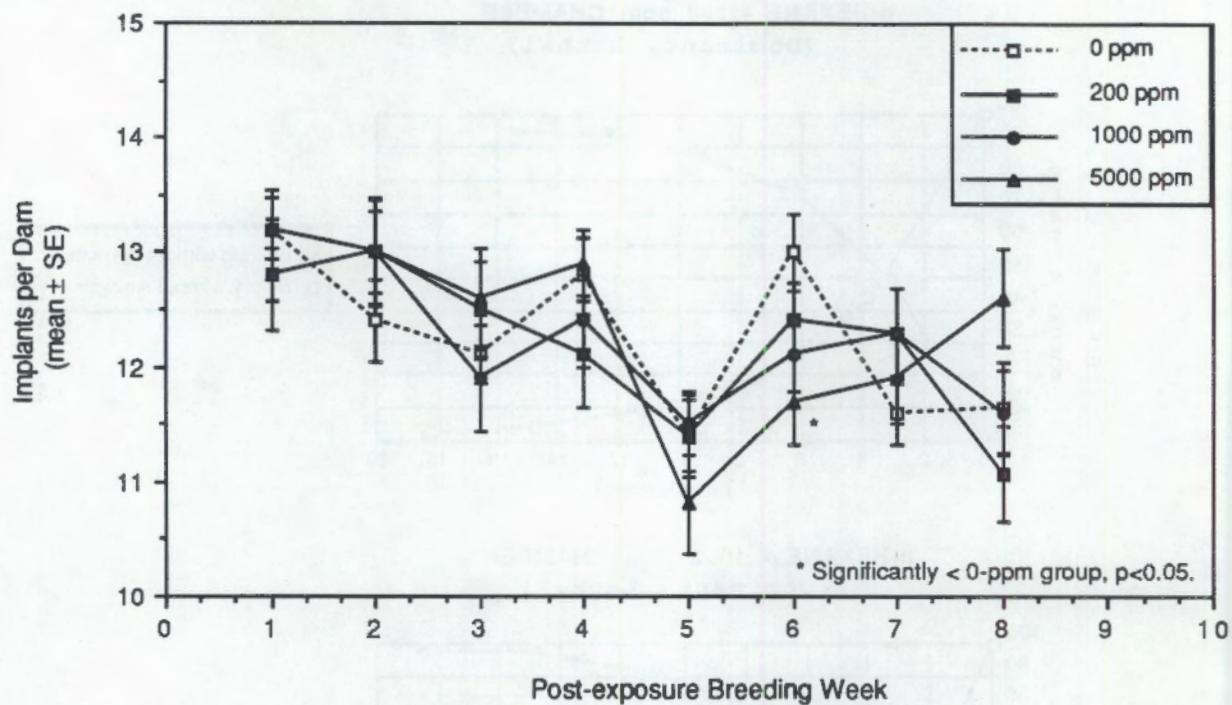
Spencer, P.S., H.H. Schaumburg, M.I. Sabri and B. Veronesi. 1980. The enlarging view of hexacarbon neurotoxicity. CRC Crit. Rev. Toxicol. 3:279.


Winer, B.J. 1971. Statistical Principles in Experimental Design, McGraw-Hill Book Co., New York, NY, pp 170-185.

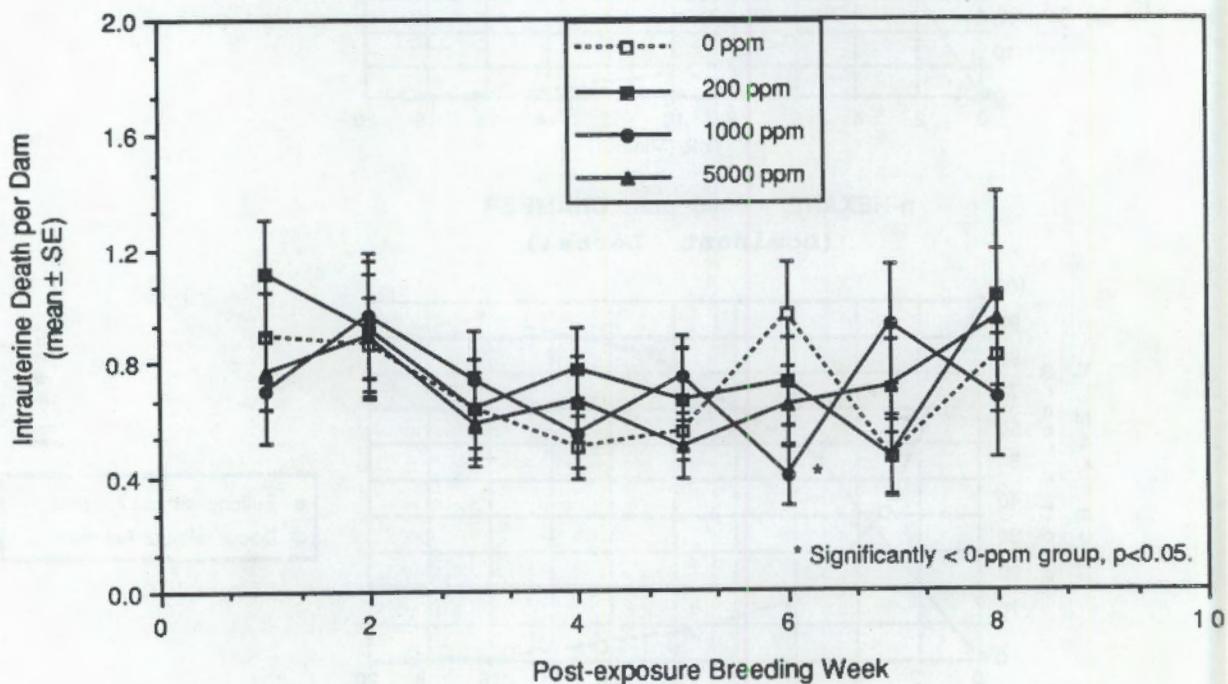
n-HEXANE - 200 ppm CHAMBER
(Dominant Lethal)


- Buildup without Animals
- Decay without Animals

n-HEXANE - 1000 ppm CHAMBER
(Dominant Lethal)


- Buildup without Animals
- Decay without Animals

n-HEXANE - 5000 ppm CHAMBER
(Dominant Lethal)



- Buildup without Animals
- Decay without Animals

FIGURE 1. Buildup and Decay of 200, 1000, and 5000 ppm n-Hexane Vapor Concentrations in Chambers Without Animals Present.

FIGURE 2a. n-Hexane Dominant Lethal Study: Implants per Dam for Post-Exposure Breeding Weeks 1-8.

FIGURE 2b. n-Hexane Dominant Lethal Study: Intrauterine Death per Dam for Post-Exposure Weeks 1-8.

TABLE 1a. n-Hexane Male Dominant Lethal Study: Average Daily Exposure Chamber Concentrations

0 ppm n-Hexane Vapor						
Exposure Day	Mean \pm SD (ppm)	Max (ppm)	Min (ppm)	Number Samples	Number in Range (b)	Percent in Range
1	<MDL (a)	< MDL	<MDL	3 6	3 6	100
2	<MDL	< MDL	<MDL	4 1	4 1	100
3	<MDL	< MDL	<MDL	4 1	4 1	100
4	<MDL	< MDL	<MDL	3 5	3 5	100
5	<MDL	< MDL	<MDL	4 3	4 3	100
Summary	<MDL	< MDL	<MDL	19 6	19 6	100

(a) Minimum detectable Limit (MDL) = 0.11 ppm n-Hexane.

(b) Range = 0-1 ppm n-Hexane

TABLE 1b. n-Hexane Male Dominant Lethal Study: Average Daily Exposure Chamber Concentrations

200 ppm n-Hexane Vapor						
Exposure Day	Mean \pm SD (ppm)	Max (ppm)	Min (ppm)	Number Samples	Number in Range (a)	Percent in Range
1	189 \pm 33	219	0.3	3 6	3 4	94
2	200 \pm 5	208	183	4 0	4 0	100
3	195 \pm 8	210	181	4 1	4 1	100
4	197 \pm 7	219	182	3 6	3 6	100
5	196 \pm 4	209	188	4 2	4 2	100
Summary	196 \pm 16	219	0.3	19 5	19 3	99

(a) Range = \pm 10% target.

TABLE 1c. n-Hexane Male Dominant Lethal Study: Average Daily Exposure Chamber Concentrations

1000 ppm n-Hexane Vapor						
Exposure Day	Mean \pm SD (ppm)	Max (ppm)	Min (ppm)	Number Samples	Number in Range (a)	Percent in Range
1	995 \pm 14	1030	962	36	36	100
2	1 010 \pm 16	1040	975	40	40	100
3	988 \pm 30	1070	938	41	41	100
4	997 \pm 24	1100	930	36	35	97
5	997 \pm 16	1030	972	42	42	100
Summary	998 \pm 22	1100	930	195	194	99

(a) Range = \pm 10% target.

TABLE 1d. n-Hexane Male Dominant Lethal Study: Average Daily Exposure Chamber Concentrations

5000 ppm n-Hexane Vapor						
Exposure Day	Mean \pm SD (ppm)	Max (ppm)	Min (ppm)	Number Samples	Number in Range (a)	Percent in Range
1	3450 \pm 1160	4430	15	36	0 (b)	0 (b)
2	5130 \pm 97	5280	4960	41	41	100
3	4870 \pm 163	5190	4610	42	42	100
4	4920 \pm 800	5910	516	37	34	92
5	4990 \pm 66	5240	4880	42	42	100
Summary	4700 \pm 848	5910	15	198	159	80

(a) Range = \pm 10% target.

(b) Pump failure.

TABLE 2. n-Hexane Male Dominant Lethal Study: Mean Body Weights of Male Swiss (CD-1) Mice (g \pm SD).

	N	n-Hexane Chamber Concentration (ppm)			
		0	200	1000	5000
Exposure Day 1	30	37.0 \pm 2.2	37.0 \pm 2.5	37.2 \pm 2.4	36.9 \pm 2.4
Post-Exposure Week 1	20	39.0 \pm 2.2	38.1 \pm 2.5	39.0 \pm 2.9	39.1 \pm 2.8
2	20	37.6 \pm 2.1	36.9 \pm 2.2	38.1 \pm 2.7	37.7 \pm 2.5
3	20	37.5 \pm 2.1	37.0 \pm 2.1	37.8 \pm 2.7	37.3 \pm 2.3
4	20	38.0 \pm 2.2	37.4 \pm 2.2	38.3 \pm 2.4	37.5 \pm 2.3
5	20	38.5 \pm 2.1	37.7 \pm 2.4	38.6 \pm 2.7	37.5 \pm 2.5
6	20	38.1 \pm 2.0	37.2 \pm 2.1	38.2 \pm 2.6	37.4 \pm 2.1
7	20	38.3 \pm 2.0	37.5 \pm 2.2	38.5 \pm 2.6	37.7 \pm 2.1
8	20	38.6 \pm 1.8 (a)	37.6 \pm 2.4 (b)	39.3 \pm 2.7 (c)	38.1 \pm 2.4 (d)
Sacrifice	20	40.0 \pm 2.1 (a)	40.0 \pm 3.1 (b)	40.0 \pm 2.5 (c)	39.2 \pm 2.6 (d)

(a) N=14; Six males either died or were removed from study (See Appendix C).

(b) N=18; Four males either died or were removed from study (See Appendix C).

(c) N=17; Three males either died or were removed from study (See Appendix C).

(d) N=13; Seven males either died or were removed from study (See Appendix C).

No statistically significant differences were found.

TABLE 3. n-Hexane Male Dominant Lethal Study: Mean Body and Thymus Weights of Male Swiss (CD-1) Mice Sacrificed Immediately After Exposure (g \pm SD).

	N	n-Hexane Chamber Concentration (ppm)			
		0	200	1000	5000
Body Weight	10	37.0 \pm 2.4	38.1 \pm 2.4	36.1 \pm 2.3	36.2 \pm 3.1
Thymus Weight	10	0.022 \pm 0.010	0.030 \pm 0.010	0.025 \pm 0.009	0.029 \pm 0.008

TABLE 4a. n-Hexane Male Dominant Lethal Study: Reproductive Measures (Mean \pm SD).

Post-Exposure Week 1	n-Hexane Concentration (ppm)			
	0	200	1000	5000
Number males:fertile/mated	20/20	20/20	18/20	20/20
Number females:pregnant/mated	37/39	36/39	33/40	39/40
Pregnant females (%)	95	92	83	98
Number per Litter:				
-Implants	13.2 \pm 2.1	13.2 \pm 1.6	12.8 \pm 2.8	12.8 \pm 1.5
-Live Implants	12.4 \pm 2.3	12.1 \pm 1.9	12.1 \pm 2.9	12.0 \pm 1.7
-Total Resorptions	0.9 \pm 1.0	1.1 \pm 1.2	0.7 \pm 1.0	0.8 \pm 0.8
-Early Resorptions	0.6 \pm 0.8	0.8 \pm 1.0	0.4 \pm 0.8	0.5 \pm 0.6
-Late Resorptions	0.3 \pm 0.8	0.3 \pm 0.5	0.3 \pm 0.4	0.3 \pm 0.6
-Dead Fetuses	0	0	0	0
Number of litters with:				
-Live Implants	37	36	33	39
-Early Resorptions	17	18	9	17
-Intrauterine Death	22	22	16	23
Percentage of:				
Live fetuses/litter	92.8 \pm 8.9	91.6 \pm 9.0	94.6 \pm 7.9	93.9 \pm 6.5
Resorptions/litter:				
-Total	7.2 \pm 8.9	8.4 \pm 9.0	5.4 \pm 7.9	6.1 \pm 6.5
-Early	5.1 \pm 7.9	6.0 \pm 7.3	3.3 \pm 6.7	4.0 \pm 5.0
-Late	2.1 \pm 5.7	2.4 \pm 4.2	2.1 \pm 3.5	2.1 \pm 4.8
Intrauterine Death (a)	6.7	8.4	5.4	6.0
Litters with:				
-Live Implants	100	100	100	100
-Early Resorptions	46	50	27	44
-Intrauterine Death	60	61	49	59

(a) Percentage of total intrauterine death per total implants sired by males in each exposure group.

TABLE 4b. n-Hexane Male Dominant Lethal Study: Reproductive Measures (Mean \pm SD).

Post-Exposure Week 2	n-Hexane Concentration (ppm)			
	0	200	1000	5000
Number males:fertile/mated	19/20	20/20	18/20 (a)	20/20
Number females:pregnant/mated	37/40	38/40	30/38 (b)	39/40
Pregnant females (%)	92	95	79	97
Number per Litter:				
-Implants	12.4 \pm 2.2	13.0 \pm 2.7	13.0 \pm 2.6	13.0 \pm 2.3
-Live Implants	11.5 \pm 2.5	12.1 \pm 3.1	12.0 \pm 2.6	12.1 \pm 2.6
-Total Resorptions	0.9 \pm 1.0	0.9 \pm 1.5	1.0 \pm 1.2	0.9 \pm 1.4
-Early Resorptions	0.6 \pm 0.9	0.6 \pm 1.2	0.5 \pm 0.6	0.7 \pm 1.1
-Late Resorptions	0.2 \pm 0.6	0.3 \pm 0.7	0.5 \pm 1.0	0.2 \pm 0.6
-Dead Fetuses	0	0	0	0
Number of litters with:				
-Live Implants	37	38	30	39
-Early Resorptions	15	12	13	16
-Intrauterine Death	20	18	19	19
Percentage of:				
Live fetuses/litter	92.6 \pm 8.8	92.5 \pm 13.2	92.9 \pm 8.6	92.6 \pm 11.9
Resorptions/litter:				
-Total	7.4 \pm 8.8	7.5 \pm 13.2	7.1 \pm 8.6	7.4 \pm 11.9
-Early	5.3 \pm 7.6	5.3 \pm 11.9	3.8 \pm 4.8	5.7 \pm 10.7
-Late	2.1 \pm 5.2	2.2 \pm 4.5	3.4 \pm 7.0	1.7 \pm 4.6
Intrauterine Death (c)	7.0	7.1	7.4	6.9
Litters with:				
-Live Implants	100	100	100	100
-Early Resorptions	41	32	43	41
-Intrauterine Death	54	47	63	49

(a) Two females in this group died prior to sacrifice; however, since they were pregnant and their deaths were unrelated to the test material their mates were counted as fertile.

(b) This group had a lower proportion of pregnant females, $p < 0.05$.

(c) Percentage of total intrauterine death per total implants sired by males in each exposure group.

TABLE 4c. n-Hexane Male Dominant Lethal Study: Reproductive Measures (Mean \pm SD).

Post-Exposure Week 3	n-Hexane Concentration (ppm)			
	0	200	1000	5000
Number males:fertile/mated	20/20	20/20	19/20	20/20
Number females:pregnant/mated	38/40	38/40	34/40	38/40
Pregnant females (%)	95	95	85	95
Number per Litter:				
-Implants	12.1 \pm 1.6	12.5 \pm 2.6	11.9 \pm 2.6	12.6 \pm 2.7
-Live Implants	11.5 \pm 1.6	11.8 \pm 2.8	11.1 \pm 3.0	12.0 \pm 2.8
-Total Resorptions	0.6 \pm 0.8	0.6 \pm 1.1	0.7 \pm 1.1	0.6 \pm 0.9
-Early Resorptions	0.4 \pm 0.7	0.5 \pm 0.9	0.5 \pm 0.9	0.3 \pm 0.7
-Late Resorptions	0.2 \pm 0.6	0.2 \pm 0.4	0.2 \pm 0.5	0.2 \pm 0.5
-Dead Fetuses	0	0	0	0
Number of litters with:				
-Live Implants	38	38	34	38
-Early Resorptions	12	11	13	9
-Intrauterine Death	18	14	15	15
Percentage of:				
Live fetuses/litter	94.9 \pm 6.6	94.7 \pm 8.9	93.4 \pm 9.9	95.3 \pm 7.5
Resorptions/litter:				
-Total	5.1 \pm 6.6	5.3 \pm 8.9	6.6 \pm 9.9	4.7 \pm 7.5
-Early	3.1 \pm 5.2	4.0 \pm 7.2	4.7 \pm 7.7	2.9 \pm 5.8
-Late	2.0 \pm 5.2	1.2 \pm 3.6	2.0 \pm 4.8	1.8 \pm 3.8
Intrauterine Death (a)	5.2	5.0	6.2	4.6
Litters with:				
-Live Implants	100	100	100	100
-Early Resorptions	32	29	38	24
-Intrauterine Death	47	37	44	40

(a) Percentage of total intrauterine death per total implants sired by males in each exposure group.

TABLE 4d. n-Hexane Male Dominant Lethal Study: Reproductive Measures (Mean \pm SD).

Post-Exposure Week 4	n-Hexane Concentration (ppm)			
	0	200	1000	5000
Number males:fertile/mated	20/20	19/20	19/20	19/20
Number females:pregnant/mated	36/40	36/40	33/40	36/40
Pregnant females (%)	90	90	83	90
Number per Litter:				
-Implants	12.8 \pm 2.0	12.1 \pm 2.8	12.4 \pm 2.3	12.9 \pm 1.7
-Live Implants	12.3 \pm 2.0	11.3 \pm 2.8	11.9 \pm 2.4	12.2 \pm 1.8
-Total Resorptions	0.5 \pm 0.6	0.8 \pm 0.9	0.5 \pm 0.7	0.7 \pm 0.9
-Early Resorptions	0.4 \pm 0.6	0.5 \pm 0.7	0.4 \pm 0.7	0.4 \pm 0.7
-Late Resorptions	0.1 \pm 0.4	0.3 \pm 0.6	0.2 \pm 0.4	0.3 \pm 0.4
-Dead Fetuses	0	0	0	0
Number of litters with:				
-Live Implants	36	36	33	36
-Early Resorptions	11	14	11	10
-Intrauterine Death	16	19	15	16
Percentage of:				
Live fetuses/litter	96.1 \pm 4.9	92.7 \pm 10.0	95.5 \pm 6.5	94.9 \pm 7.0
Resorptions/litter:				
-Total	3.9 \pm 4.9	7.3 \pm 10.0	4.5 \pm 6.4	5.1 \pm 7.0
-Early	2.8 \pm 4.8	5.4 \pm 9.6	3.4 \pm 6.1	3.2 \pm 5.6
-Late	1.1 \pm 2.8	1.9 \pm 4.9	1.2 \pm 2.8	1.9 \pm 3.5
Intrauterine Death (a)	3.9	6.4	4.4	5.2
Litters with:				
-Live Implants	100	100	100	100
-Early Resorptions	31	39	33	31
-Intrauterine Death	44	53	46	44

(a) Percentage of total intrauterine death per total implants sired by males in each exposure group.

TABLE 4a. n-Hexane Male Dominant Lethal Study: Reproductive Measures (Mean \pm SD).

Post-Exposure Week 5	n-Hexane Concentration (ppm)			
	0	200	1000	5000
Number males:fertile/mated	19/20	20/20	18/20	19/20
Number females:pregnant/mated	36/40	36/40	35/40	36/40
Pregnant females (%)	90	90	88	90
Number per Litter:				
-Implants	11.4 \pm 1.9	11.4 \pm 2.1	11.5 \pm 1.6	10.8 \pm 2.6
-Live Implants	10.9 \pm 2.0	10.7 \pm 1.9	10.8 \pm 1.8	10.3 \pm 2.7
-Total Resorptions	0.6 \pm 0.6	0.7 \pm 1.1	0.7 \pm 0.9	0.5 \pm 0.7
-Early Resorptions	0.3 \pm 0.5	0.6 \pm 1.0	0.5 \pm 0.8	0.3 \pm 0.7
-Late Resorptions	0.2 \pm 0.4	0.1 \pm 0.4	0.3 \pm 0.5	0.2 \pm 0.4
-Dead Fetuses	0	0	0.0 \pm 0.2	0
Number of litters with:				
-Live Implants	36	36	35	36
-Early Resorptions	12	11	12	7
-Intrauterine Death	18	13	19	15
Percentage of:				
Live fetuses/litter	94.9 \pm 5.5	94.6 \pm 8.8	93.5 \pm 7.6	94.9 \pm 8.6
Resorptions/litter:				
-Total	5.1 \pm 5.5	5.4 \pm 8.8	6.5 \pm 7.6	5.1 \pm 8.6
-Early	3.2 \pm 4.9	4.6 \pm 8.3	3.8 \pm 6.2	3.2 \pm 8.5
-Late	1.8 \pm 3.6	0.8 \pm 2.9	2.4 \pm 4.9	1.9 \pm 3.7
Intrauterine Death (a)	4.9	5.9	6.4	4.6
Litters with:				
-Live Implants	100	100	100	100
-Early Resorptions	33	31	34	19
-Intrauterine Death	50	36	54	42

(a) Percentage of total intrauterine death per total implants sired by males in each exposure group.

TABLE 4L n-Hexane Male Dominant Lethal Study: Reproductive Measures (Mean \pm SD).

Post-Exposure Week 5	n-Hexane Concentration (ppm)			
	0	200	1000	5000
Number males:fertile/mated	17/20	20/20	19/20	18/20
Number females:pregnant/mated	32/40	37/40	35/40	34/40
Pregnant females (%)	80	93	88	85
Number per Litter:				
-Implants	13.0 \pm 1.9	12.3 \pm 2.0	12.1 \pm 1.9	11.7 \pm 2.2 (a)
-Live Implants	12.1 \pm 2.1	11.6 \pm 2.3	11.7 \pm 1.8	11.1 \pm 2.5
-Total Resorptions	1.0 \pm 1.0	0.7 \pm 1.0	0.4 \pm 0.6	0.6 \pm 0.8
-Early Resorptions	0.6 \pm 0.8	0.5 \pm 0.9	0.3 \pm 0.6	0.4 \pm 0.5
-Late Resorptions	0.4 \pm 0.6	0.2 \pm 0.5	0.1 \pm 0.3	0.3 \pm 0.6
-Dead Fetuses	0	0	0.0 \pm 0.2	0
Number of litters with:				
-Live Implants	32	37	35	34
-Early Resorptions	13	13	8	11
-Intrauterine Death	19	18	12	17
Percentage of:				
Live fetuses/litter	92.3 \pm 8.9	93.8 \pm 8.2	96.8 \pm 4.8	94.0 \pm 8.2
Resorptions/litter:				
-Total	7.7 \pm 8.9	6.2 \pm 8.2	3.2 \pm 4.8	6.0 \pm 8.2
-Early	4.6 \pm 6.7	4.6 \pm 7.4	2.2 \pm 4.4	3.5 \pm 5.9
-Late	3.0 \pm 5.2	1.6 \pm 3.9	0.7 \pm 2.4	2.6 \pm 5.0
Intrauterine Death (a)	7.4	5.9	3.3	5.5
Litters with:				
-Live Implants	100	100	100	100
-Early Resorptions	41	35	23	32
-Intrauterine Death	59	49	34	50

(a) Percentage of total intrauterine death per total implants sired by males in each exposure group.

TABLE 4a. n-Hexane Male Dominant Lethal Study: Reproductive Measures (Mean \pm SD).

Post-Exposure Week 7	n-Hexane Concentration (ppm)			
	0	200	1000	5000
Number males:fertile/mated	14/14	16/16	16/17	12/13
Number females:pregnant/mated	26/28	28/32	29/34	24/26
Pregnant females (%)	93	88	85	92
Number per Litter:				
-Implants	11.6 \pm 1.5	12.3 \pm 2.1	12.3 \pm 2.1	11.9 \pm 2.0
-Live Implants	11.1 \pm 1.4	11.8 \pm 2.2	11.4 \pm 2.2	11.2 \pm 1.8
-Total Resorptions	0.5 \pm 0.6	0.5 \pm 0.7	0.9 \pm 1.2	0.7 \pm 0.8
-Early Resorptions	0.3 \pm 0.6	0.3 \pm 0.6	0.5 \pm 0.9	0.5 \pm 0.8
-Late Resorptions	0.1 \pm 0.4	0.1 \pm 0.4	0.4 \pm 0.7	0.3 \pm 0.4
-Dead Fetuses	0	0	0	0
Number of litters with:				
-Live Implants	26	28	29	24
-Early Resorptions	8	7	9	7
-Intrauterine Death	10	9	15	13
Percentage of:				
Live fetuses/litter	96.2 \pm 5.3	95.7 \pm 6.5	92.3 \pm 10.1	94.3 \pm 6.7
Resorptions/litter:				
-Total	3.8 \pm 5.3	4.0 \pm 6.5	7.7 \pm 10.1	5.7 \pm 6.7
-Early	3.0 \pm 4.9	2.9 \pm 5.6	4.6 \pm 8.4	3.7 \pm 6.9
-Late	0.8 \pm 3.1	1.2 \pm 3.0	3.2 \pm 5.1	2.0 \pm 3.6
Intrauterine Death (a)	4.0	3.8	7.5	5.9
Litters with:				
-Live Implants	100	100	100	100
-Early Resorptions	31	25	31	29
-Intrauterine Death	39	32	52	54

(a) Percentage of total intrauterine death per total implants sired by males in each exposure group.

TABLE 4h, n-Hexane Male Dominant Lethal Study: Reproductive Measures (Mean \pm SD).

Post-Exposure Week 8	n-Hexane Concentration (ppm)			
	0	200	1000	5000
Number males:fertile/mated	12/14	15/16	16/17	12/13
Number females:pregnant/mated	22/28	28/32	31/34	21/26
Pregnant females (%)	79	87	91	81
Number per Litter:				
-Implants	11.6 \pm 1.9	11.1 \pm 2.2	11.6 \pm 2.1	12.6 \pm 1.9
-Live Implants	10.8 \pm 1.9	10.0 \pm 2.9	10.9 \pm 2.2	11.6 \pm 2.3
-Total Resorptions	0.8 \pm 1.0	1.0 \pm 1.9	0.7 \pm 1.2	1.0 \pm 1.1
-Early Resorptions	0.6 \pm 0.7	0.4 \pm 0.7	0.5 \pm 1.0	0.7 \pm 1.0
-Late Resorptions	0.2 \pm 0.5	0.6 \pm 1.8	0.2 \pm 0.4	0.3 \pm 0.7
-Dead Fetuses	0	0	0	0
Number of litters with:				
-Live Implants	22	28	31	21
-Early Resorptions	11	9	9	9
-Intrauterine Death	12	12	13	12
Percentage of:				
Live fetuses/litter	93.0 \pm 7.8	90.3 \pm 19.9	94.3 \pm 9.4	92.1 \pm 9.8
Resorptions/litter:				
-Total	7.0 \pm 7.8	9.7 \pm 19.9	5.7 \pm 9.4	7.9 \pm 9.8
-Early	5.2 \pm 5.8	3.9 \pm 6.3	3.7 \pm 7.5	5.6 \pm 8.7
-Late	1.8 \pm 4.0	5.7 \pm 18.0	1.9 \pm 3.7	2.2 \pm 5.2
Intrauterine Death (a)	7.0	9.4	5.8	7.6
Litters with:				
-Live Implants	100	100	100	100
-Early Resorptions	50	32	29	43
-Intrauterine Death	55	43	42	57

(a) Percentage of total intrauterine death per total implants sired by males in each exposure group.

APPENDIX A

ANALYTICAL CHEMISTRY NARRATIVE AND DATA FOR N-HEXANE

ANALYTICAL CHEMISTRY NARRATIVE AND DATA FOR n-HEXANE

1. Test Material Receipt and Usage

n-Hexane, manufactured by Phillips Chemical Company, was received from Research Triangle Institute (RTI), P.O. Box 12194, Research Triangle Park, NC 27709-9981. The test material for this study, identified as BNW Lot 50846-39 (Phillips Lot#H-116) was received on 2/12/86 and consisted of thirty 4-liter bottles.

The bulk chemical was stored in its original shipping container at \approx 65°F in a flammable storage cabinet and maintained under a blanket of nitrogen. All chemical transfers to the reservoir took place under a blanket of nitrogen to avoid the introduction of air into the bulk chemical. Approximately 11.2 kg of test material were required for each exposure day. The usage of n-hexane for the mice dominant lethal study is summarized in Table 1.

TABLE 1. Mice Dominant Lethal Study with n-Hexane - Chemical Usage

Exposure Period	Phillips Lot#	BNW Lot#	Test Material Used
3/24/86 - 3/28/86	H-116	50846-39	~56 kg

2. Bulk Chemical Analysis

Bulk chemical analysis was performed using infrared spectroscopy and gas chromatography (GC) for identity and purity determinations. The gas chromatographic system used for purity analysis employed a 1.8mm x 4mm glass column packed with 0.1% SP-1000 on 80/100 Carbopack C. BNW Lot 50846-39 was analyzed for bulk purity and found to be 99.1% pure relative to the frozen reference material.

3. Vapor Concentration Monitoring

A Hewlett-Packard 5840 gas chromatographic system (employing a 1/8" o.d., one-foot nickel column packed with 1% SP-1000 on 60/80 mesh Carbopack B; oven temperature was 120°C) was used to monitor animal exposures. This instrument was equipped with an 8-port stream select valve and measured n-hexane in the three exposed chambers, the control chamber, the exposure room, and the on-line standard.

a. Calibration of the On-Line Chamber Monitor

The calibration of the on-line chamber monitor was based on analysis of bubbler grab samples. Thus, the calibration of the on-line monitor was tied to gravimetrically prepared standard solutions in dodecane through a second directly calibrated GC which was off-line. The analysis depended upon quantitative preparation of gravimetric standards and careful grab sampling. The gravimetrically calibrated GC was used to measure the quantity of n-hexane collected from exposure chambers in dodecane filled bubblers. The relationship between the peak area observed with the on-line GC and the concentration of n-hexane in the chamber was then defined using chamber concentrations determined by the gravimetrically calibrated GC.

The analysis of bubbler grab samples was performed using a HP 5830A GC with a 6' x 4mm glass column with 10% Carbowax 20m (TPA) on 80/100 Chromosorb WAW. The temperature program was 40°C for 3 minutes to 150°C for 10 minutes at the rate of 15°C/minute. A set of three standards was run for each analysis session. The concentration range of the standards bracketed the concentration range of interest.

The calibration procedure required quantitatively prepared gravimetric standards and carefully collected grab samples of a measured volume. The collection efficiency of a single bubbler was less than 100%, some hexane broke through the primary bubbler. Breakthrough was typically <4-6%. Breakthrough was measured each time bubblers were collected by acquiring back-up bubblers for the high concentration chamber. The calculation for chamber concentration by the grab sampling method included a breakthrough correction.

b. Detection of Monitor Drift Using an On-Line Standard

An on-line standard was used to check instrument drift throughout the exposure day. The on-line standard was 994 ppm n-hexane in nitrogen (MG Industries Scientific Gases, 11705 South Alameda St., Los Angeles, CA). The standard was checked before the start of any given exposure day, then monitored every 8th sample throughout the exposure period. The measured concentration for the standard had to be within $\pm 10\%$ of the assigned target value before any exposure could begin without consultation with the Exposure Control Task Leader. During the course of the exposure, if the on-line standard was within 5% of the target value, no change in calibration was required. If the on-line standard was between 5% and 10% of its assigned target, the calibration could be updated immediately by an Exposure or Chemistry Specialist. Such a correction was based upon the on-line standard. If the cumulative drift exceeded 15%, then the calibration was checked by quantitative analysis of grab samples.

c. Demonstration of Sensitivity and Specificity

The sensitivity of the GC was estimated from the decay profile for the highest concentration chamber. The minimum detectable limit (MDL) was estimated as 0.15 ppm. A measure of chromatographic specificity was defined by determination of the analytes partition coefficient. The retention time of methane, assumed to be non-retained was 0.19 min.; the retention time for n-hexane was 1.49 minutes. Thus, the partition ratio was about 6.8.

d. Precision, Linearity and Absolute Recovery Evaluation

Precision for the on-line GC was estimated from 5 consecutive measurements made on the 994 ppm on-line certified standard; a 0.4% coefficient of variation (CV) was observed (all values fell within ± 1 ppm of the mean). Linearity of the on-line GC was assured by calibrating the on-line GC against a gravimetrically calibrated GC (also see comments in the "Calibration of the On-Line Chamber Monitor" section). This was basically accomplished by analyzing a series of bubbler grab samples acquired during exposure generation and then implementing the appropriate on-line GC calibration curve in the data acquisition and control system.

Achievement of linearity for the on-line monitor was therefore dependent upon defining a linear method for analysis of bubbler samples. The calibration curve for this analysis showed good linearity over an extended range. Routine analysis of bubblers was performed using midrange, high and low level standards in order to assure linearity.

4. n-Hexane Degradation Studies

a. n-Hexane Stability in the Reservoir

Under the storage and generation conditions employed, decomposition of n-hexane was not anticipated. Tests to confirm test material stability included analysis of an aged reservoir sample. n-Hexane (BNW Lot 50846-39) was placed in the reservoir for generation of chamber atmospheres. At the end of 5 days, an aliquot of the test material was removed from the reservoir. Infrared spectroscopy and gas chromatography were used for identity and purity determinations. The bulk purity of the aged reservoir sample was 99.1% relative to the reference material and exhibited no significant changes in impurities from the reference material.

b. n-Hexane Degradation in Exposure Chambers

Studies of the degradation of n-hexane in the exposure chambers (with animals) were conducted on 3/28/87. No evidence of impurities or degradation products was found. n-Hexane, BNW Lot 51436-58, was the source of the test material. During exposure, samples of chamber atmospheres from the 5000 ppm and the 200 ppm chambers were taken by pulling a measured volume of gas through standard gas-sampling charcoal tubes. The sample size was adjusted to provide adequate sensitivity to detect impurities. Duplicate charcoal samples were taken at 4.6 and 27.6 liter collection volumes for the 5000 ppm and 200 ppm chambers. The charcoal tubes were desorbed using carbon disulfide. The GC conditions are summarized in the attached report.

Breakthrough was measured for each sample level and volume. Less than 5% breakthrough of total sample was observed for the 4.6 and 27.6 liter samples from the 5000 ppm and 200 ppm chambers. These determinations were made by analysis of the secondary charcoal bed within the tubes.

BULK CHEMICAL REANALYSIS

COMPOUND: n-HEXANE
C&P: 110-54-3
LOT#: Phillips lot# H-116 (BNW#50846-39 bottles 1-20)
APPEARANCE: Clear liquid
RECEIPT DATE: 2/12/86
ANALYSIS PERIOD: Initial
STORAGE TEMPERATURE: Room Temperature
SAMPLE SUBMITTAL DATE: 2/27/86
SAMPLE ANALYSIS DATE: 3/6,7/86
ANALYSIS PROCEDURE: Method provided by MRL, dated December 17,1984
NOTEBOOK REFERENCE: BNW 51436-10

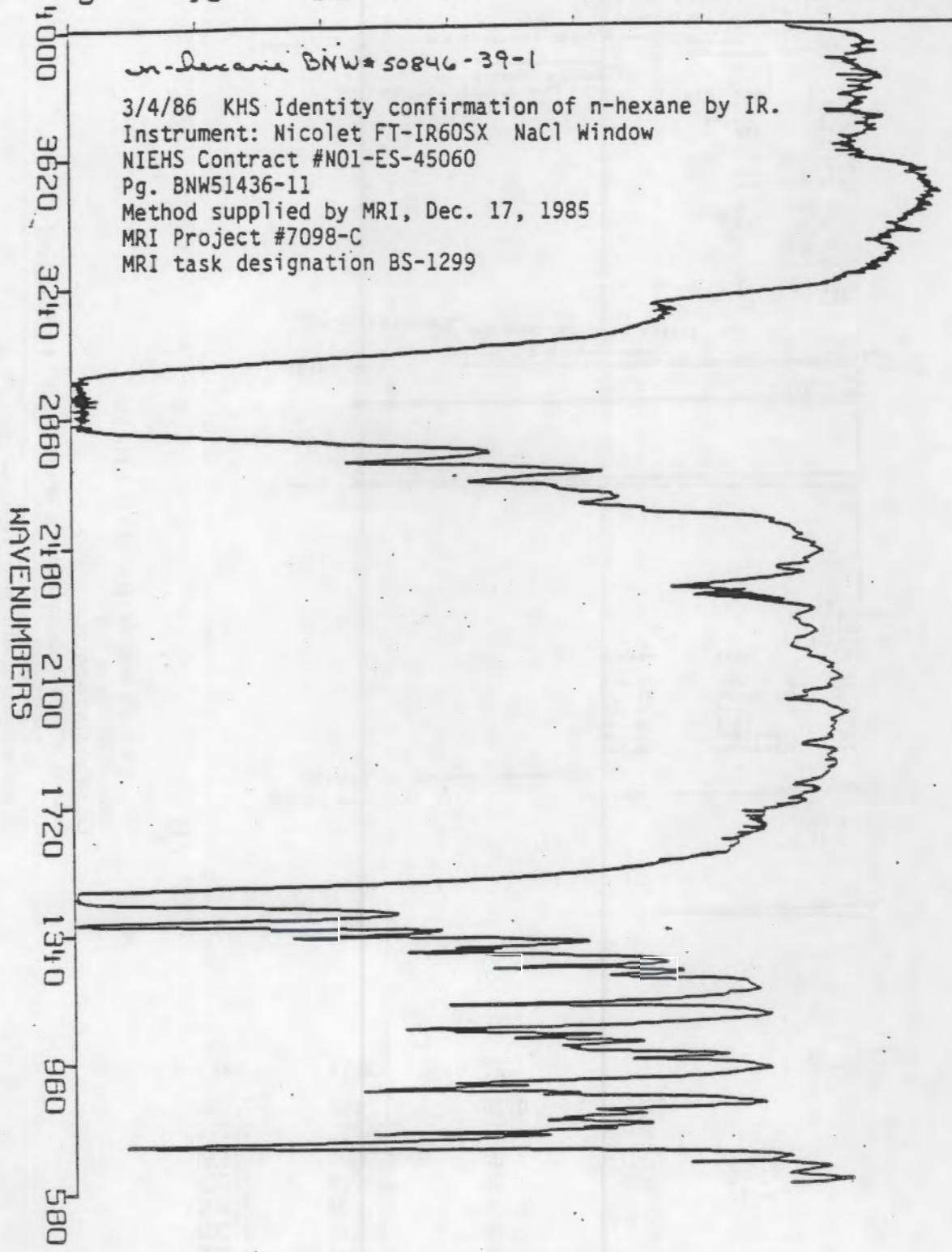
IDENTITY: Infrared spectroscopy using a Nicolet FT-IR 60 SX with 4mm NaCl windows and 0.1mm spacers.

ASSAY: Gas chromatography using a 6ft x 4mm glass column packed with 0.1% SP-1000 on 80/100 Carbobak C
Instrument HP 5830A

Results: % Purity
Date Bulk
3/86 RRF 0.5606 RSD \pm 0.23%

Retention Time of n-Hexane ~2.6 minutes.
Retention Time of Internal Standard ~ 7.4 minutes.
A minor impurity peak was detected at ~ 1.8 minutes

Test material sample was taken from bottle 1.


CONCLUSIONS: The basis of the analysis is quantitation of the major component of the bulk chemical by GC major peak comparison to a frozen reference material. No reference material was provided. 5 x 10 ml portions of n-hexane were placed in glass septum vials, sealed with teflon lined septa and stored frozen, for use as reference materials in future analyses. Infrared spectra was obtained between 4000cm⁻¹ and 600cm⁻¹. The spectra was similar to that provided by MRL

Signature of Technician: Karl M. Lutz Date: 3-24-86

Signature of Chemist: John M. Lutz Date: 3/23/86

3-4-86 KHS Identity confirmation of n-hexane by IR.
Instrument: Nicolet FT-IR60SX NaCl windowed
NIEHS Contract #N01-ES-45060 % TRANSMITTANCE
Pg. BNW51436-11 18 36 54 72 90 108 126

Measured analytical by MRI.
Dec 17, 1985
MRI Project #7098-C
MRI task designation BS-1299

NICOLET FT-IR

BULK CHEMICAL REANALYSIS

COMPOUND: n-HEXANE
 CAS# 110-54-3
 LOT# Phillips lot# H-116 (BNW 50846-39, sample removed
 from reservoir 3/29/86 - last day of study)
 APPEARANCE: Clear liquid
 RECEIPT DATE: 2/12/86
 ANALYSIS PERIOD: Last usage day
 STORAGE TEMPERATURE: Room Temperature
 SAMPLE SUBMITTAL DATE: 3/29/86
 SAMPLE ANALYSIS DATE: 4/3,4/86 & 5/5/86
 ANALYSIS PROCEDURE: ØB-AC-3A15-00
 NOTEBOOK REFERENCE: BNW 51436-33 & BNW 51436-45

IDENTITY: Infrared spectroscopy using a Nicolet FT-IR 60SX with 4mm NaCl windows and 0.1mm spacer.

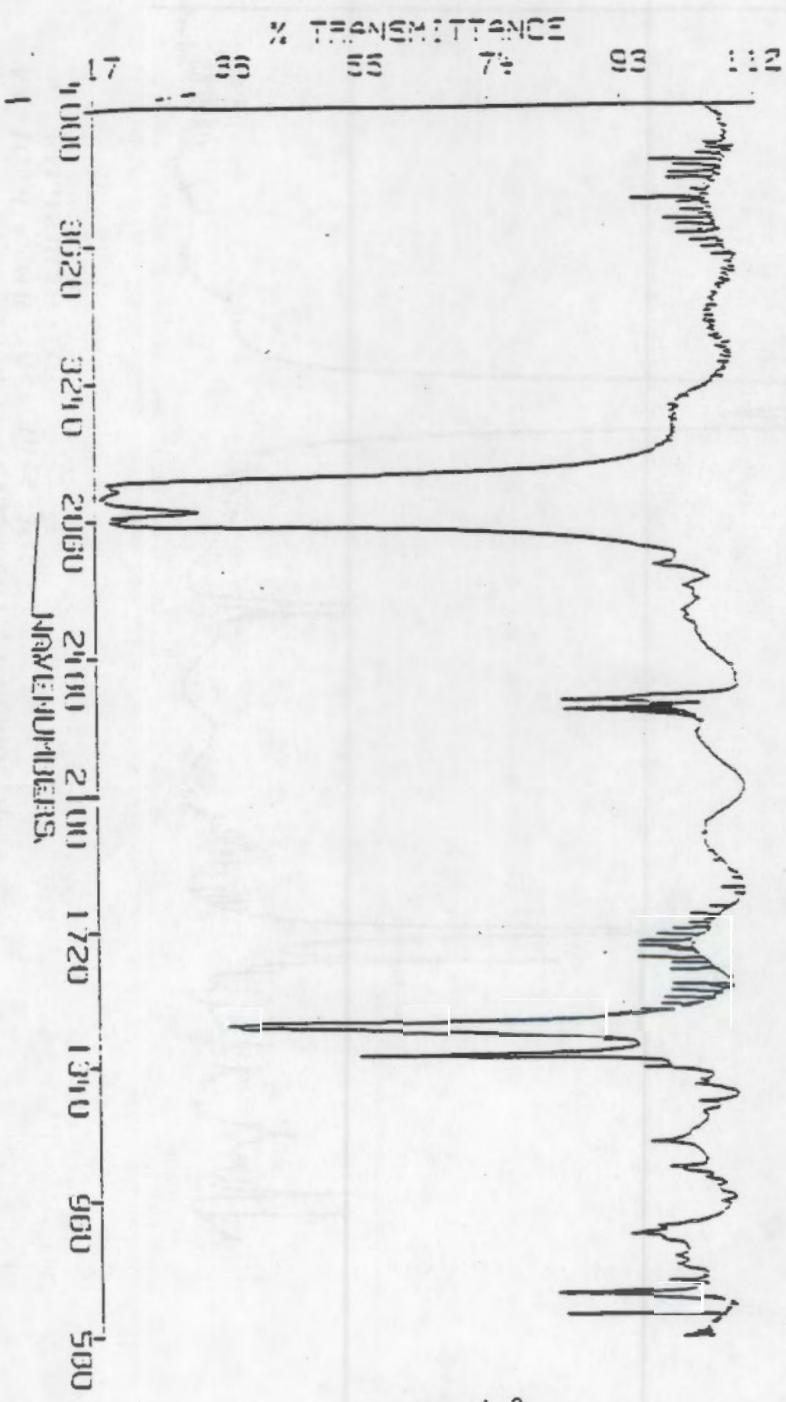
RESULTS: The spectra was similar to that found in previous BNW analysis.

ASSAY: Gas chromatography using a 1.8m x 4mm glass column packed with 0.1% SP-1000 on 80/100 Carbopak C
 Instrument: HP 5840A

RESULTS: Relative % Purify
 Date Bulk
 4/86 99.1
 Retention time of n-Hexane ~2.8 minutes.
 Retention time of internal standard ~8.0 minutes.

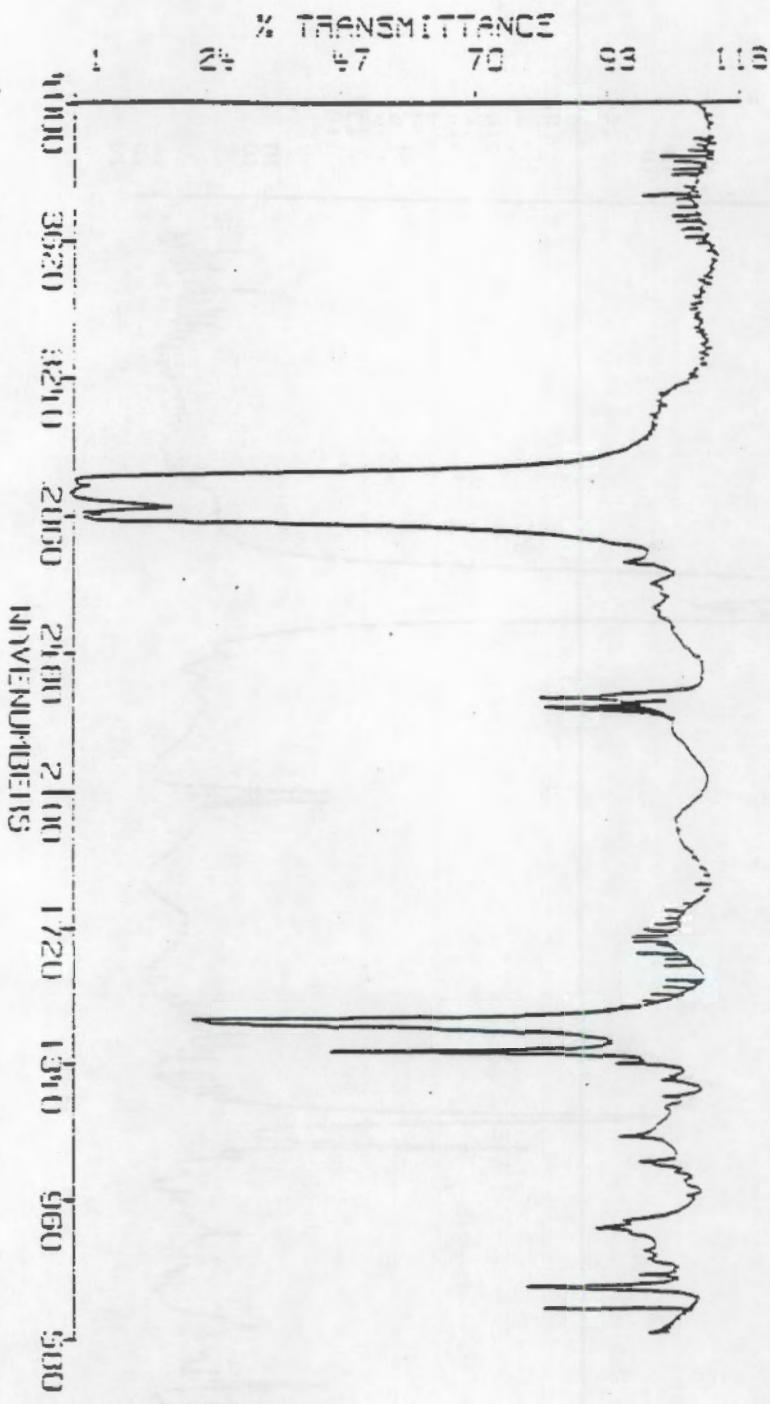
ASSAY: Gas chromatography using a 1.8m x 2mm glass column packed with 0.1% SP-1000 on 80/100 Carbopack C.
 Instrument: HP5840A

RESULTS: Impurity Profile
 Date Area % Reference Test
 5/86 -RT Material Material
 9.62 0.113 0.112
 11.64 0.043 0.044
 11.98 0.003 0.003
 16.92 0.001 0.001
 24.90 0.003 0.005


A major peak of 99.84% area was observed at a retention time of ~13.3 minutes for both the reference and test material. The reference material showed 5 impurity peaks and the test material showed 4 impurity peaks all $\geq 0.001\%$.

CONCLUSION: Gas chromatography shows this test material to be 99.1% pure by area ratio of an internal standard. The impurity profile showed four impurities greater than 0.001% for the test material. An infrared spectrum was obtained between 4000 cm⁻¹ and 600 cm⁻¹. The spectrum was similar to previous BNW analysis.

Signature of Technician: KH Date: 5/8/86


Signature of Chemist: RH Date: 5/8/86

7.7.36 Kd8
Reference: Mr. R. V. Raman, 20050946-195-1
Instrument: Nicolet FT-IR Model 1105X
Date: 1986-07-11
Time: 10:15 AM
Wavenumbers: 4000-500 cm⁻¹

4-4-86

Al. Alivane collected 3-29-86 (Day five of study)
(Experiments done at 100% relative humidity, 25°C, 50%
RH, and 100% RH, black windows, open specimen
-P. P. 19950134 - 00-3015-00)

51 488 58 65

STOP

HP RUN # 34
ESCAPE
ESCAPE

MAY/85/86 TIME 10:45:08
5-5-% KB

TEMP1 488 58 58
TIME1 5.00
RATE 18.00
TEMP2 488 225
TIME2 5.00
INJ TEMP 488 288 199
FID TEMP 488 258 258
CHT SPD 0.50
ZERO 18.0
ATTN ST 18
FID BGNL 48
SLC SEHS 1.10
BREQ REJ 1.3 31.6
FLOW 0 0.0 3.7
TEMP1 488 58 49
TEMP1 488 58 49
TEMP1 488 58 58

Perkin Elmer of Norwalk by W.G.
Sampling profile

Method 08-AC-3A15-00

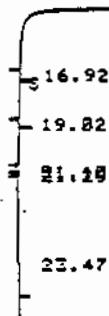
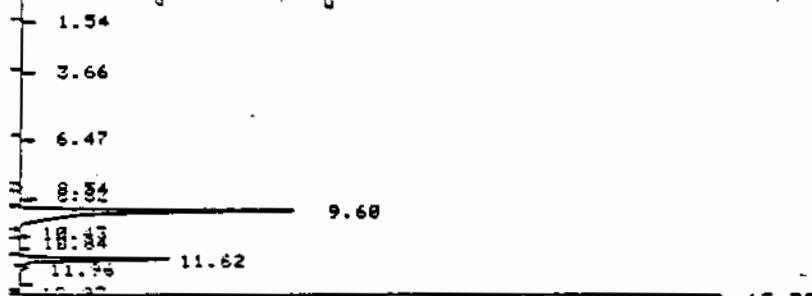
H.C. HP5840A W10706

Column: 2mm x 1.8m 10 glass

% Carbopeak C/0.5% SP-1000
BNW51436-38-1

Samples: n-hexane

Ref BNW5C846-145-1



last day 3-29-86

drum BNW51436-5-1

P. BNW51436-45

? TEMP1
? START

Repetitive n-hexane BNW51436-145-1, 1 μl

HP RUN # 36
ID:18706
AREA %

MAY/85/86 TIME 11:34:26

RT	AREA	AREA %
1.54	234	0.000
3.66	133	0.000
6.47	225	0.000
8.54	2050	0.000
9.62	1388	0.000
9.60	528200	0.113
10.43	547	0.000
10.84	1393	0.000
11.52	229300	0.843
11.95	17210	0.003
12.97	29	0.000
13.32	528900000	99.836
14.62	7777	0.000

^ TEMPI +00 3, 50 Reserve sample
^ START May 23, last day of study 3-29-86, 1 ml

8.56 9.62
16.88 11.64
21.18

13.74

8
19.05
21.18
24.98

HP RUN # 37 MAY/23/86 TIME 13:33:24
13:13:26
AREA %

RT	AREA	AREA %
8.56	2417	0.200
8.85	459	0.000
9.62	594900	0.112
10.46	543	0.000
10.88	725	0.000
11.34	233000	0.044
11.98	16420	0.003
13.74	526200000	99.800
19.05	196	0.000
21.18	474	0.000
24.98	16420	0.005

DIL FACTOR: 1.0000 E+ 0

^ TEMPI 400 50 50

4-3-86 Kd

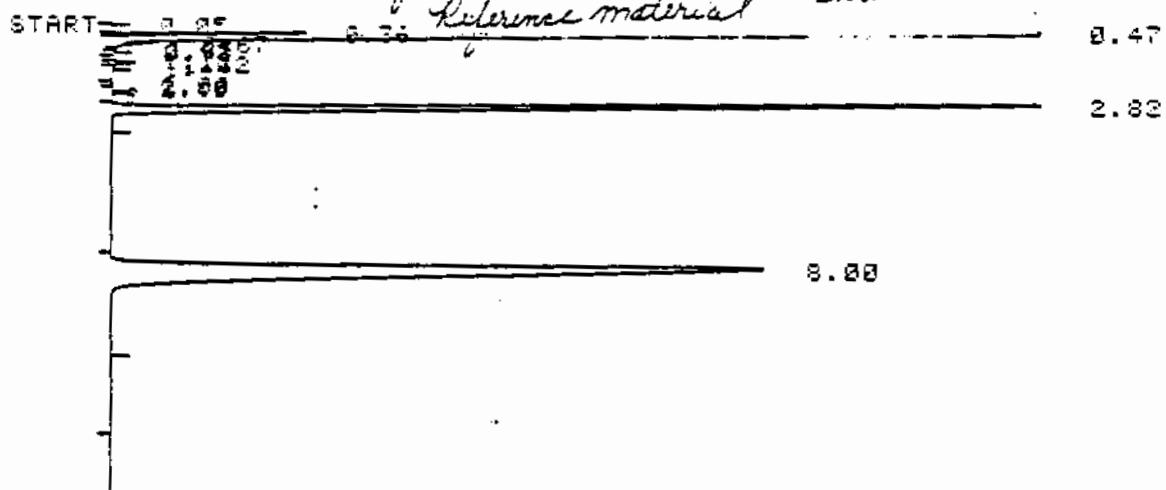
Purity Analysis of m-xylene by H.C. major peak
~~Method used by me: December 17, 1984 Comparison~~
~~Instrument: Model ES-45060~~
~~APR Project no: 7093-C wrong formular~~
~~Lot designation: 051299 5-15-86 Kd~~

129

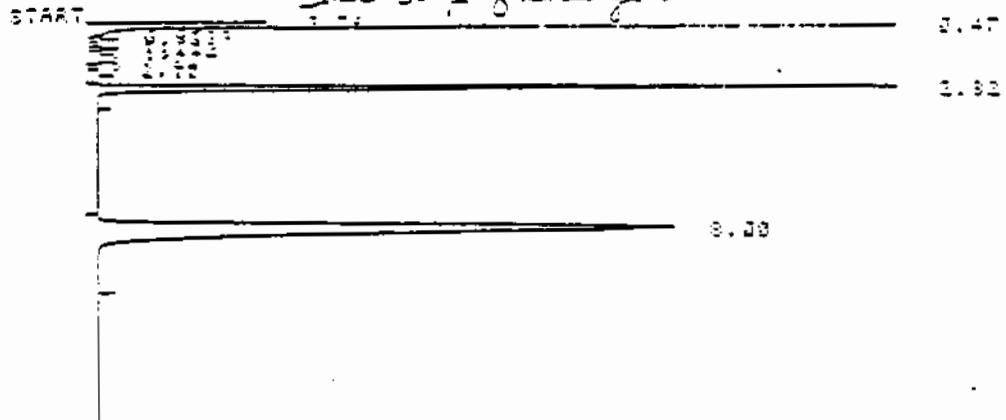
ESCAPE

TEMP1 400 150 150
TIME1 15.00
INJ TEMP 400 200 200
FID TEMP 400 250 250
CHT SPD 0.50
ZERO 10.0
ATTN 2⁺ 14
FID SGNL +8
SLP SENS 0.10
AREAS REJ 1
FLOW A 0.0 71.5
FLOW B 0.0 3.7

Method # 0B-AC-3A15-08


GC: KPS840A WA10706

Column: 1.8x4mm ID glass


3%100 Carbopack C/0.1% SP-1000
BNW50846-146

P. BNW51436 - 33

JIL FACTOR: 1.0000 E- 0

DIL FACTOR: 1.0000 E-0
6 n-hexane collected from receiver 3-29-86
Gas can "B" today

RT	AREA	AREA %
0.36	156800	0.117
0.47	120600000	89.871
0.66	30420	0.023
0.85	2741	0.002
0.93	931	0.001
1.19	5012	0.004
1.32	47720	0.036
1.44	7492	0.006
1.99	3238	0.002
2.10	1296	0.001
2.82	4895000	3.648
8.00	8442000	6.291

John
5/20/87

n-Hexane Degradation in Exposure Chamber with Animals Present

Degradation Study

Studies of the degradation on hexane in the exposure chambers were conducted for the test run performed on March 28, 1987. Test material BNW Lot No. 51436-58 was used as the source of test material. The bulk purity using gas chromatography by major peak comparison was approximately 99.2%.

Samples were taken from the high (5000 ppm) and low (200 ppm) chambers were taken with animals present by pulling a measured volume of gas through standard gas sampling charcoal tubes. Sample size was adjusted to provide adequate sensitivity for impurities. Sample size was 4.6 liters for the 5000 ppm chamber and 27.6 liters for the 200 ppm chamber. Breakthrough was measured and found to be less than 5% for the 5000 ppm and 200 ppm samples by analysis of the secondary charcoal bed within the tubes. We assume that good trapping efficiency for impurities and degradation products will be achieved when good trapping efficiency is observed for hexane. Comparison of a hexane sample with a hexane sample desorbed from charcoal shows a good recovery ratio (~100%). The charcoal was transferred to GC autosampler vials and desorbed using carbon disulfide with approximately 1 minute of ultrasound treatment.

Samples were analyzed using an HP5890 chromatographic system with a DB-5, 30 m x 0.52 mm ID, 1.5 micron film thickness, fused silica megabore column and a temperature program of 35°C for 5 minutes to 250°C for 5 minutes at a rate of 20°C/minute.

Composition of Degradation Samples by GC Area %

	Bulk Hexane			
<u>RT (minutes)</u>	<u>Low Chamber</u>	<u>High Chamber</u>	<u>on Charcoal</u>	<u>Identity</u>
2.2	-	0.10	0.11	unknown
2.4	99.58	99.51	99.50	n-hexane
2.8	0.41	0.38	0.39	unknown

An additional peak less than 0.004 % of total observed peak areas was observed for the high and low chamber charcoal samples at 14.5 minutes. This study shows no evidence for decomposition products exceeding 0.004% of the hexane concentration in the high and low chambers. The impurities at -2.2 and -2.8 minutes were found in equivalent amounts in a standard of bulk test material prepared with charcoal. Thus, these impurities are not formed by decomposition in the generator or chamber. The unknown peaks are probably other hexane isomers.

Technical Specialist: K.H. Brown Date: 5/3/82

Chemist: R.B. Westberg Date: 5/7/87

APPENDIX B

**EXPOSURE NARRATIVE AND DATA
FOR N-HEXANE**

EXPOSURE DATA AND NARRATIVE FOR n-HEXANE

Animal Exposure Chamber

The Battelle-designed inhalation exposure chamber (commercially available from Harford Systems/Lab Products, Inc., Aberdeen, MD) was used for the inhalation exposures. The 2.3 m³ (1.7 m³ active-mixing volume) stainless steel chamber contains three levels of caging, each level split into two offset tiers (Figure B.1). The drawer-like stainless steel cage units comprise individual animal cages, feed troughs and automatic watering. Stainless steel catch pans for the collection of urine and feces are suspended below each cage unit.

The catch pans, which remained in the chamber during exposure, were designed to aid in mixing to maintain uniform concentrations of aerosol, dust or vapors throughout the chamber. Incoming air is HEPA and charcoal filtered before addition of the test article. A uniform mixture of incoming air and the test article is diverted to flow along the inner surfaces of the chamber. A portion of the flow is "peeled off" by each catch pan thus creating mixing eddies. Exhaust from each tier is cleared through the space between the tiers.

Exposure Suite System Description

The n-hexane exposures were conducted using an automated data acquisition and control system in an exposure suite (Figures B.2 and B.3). This system monitors and controls the basic inhalation test system functions including chamber air flow, vacuum, temperature, relative humidity and test chemical concentration. The system computers, printers, magnetic data storage devices, interface equipment, and monitoring instruments were located in a central control room and interfaced with monitoring and control elements in three exposure rooms. All data acquisition and control originated from an executive computer which controlled a multiplexing interface system. All experimental protocols related to data acquisition and control resided in this computer and were entered into software tables accessed by menus.

Data were printed and stored immediately upon completion of the measurement on separate diskettes in the exposure control center. Data and comments from each exposure room were printed on separate printers. At the end of the 24 hour period, the daily data were analyzed, and summary and data outlier reports were printed.

A dual point alarm system with user-defined set points was available for each parameter measured. Action taken upon alarm depended on the cause and severity of the alarm and ranged from audio/visual alert to automatic shutoff of the exposure generator. Alarm conditions which might be a threat to the health of the animals alerted a building power operator who was on duty 24 hours per day.

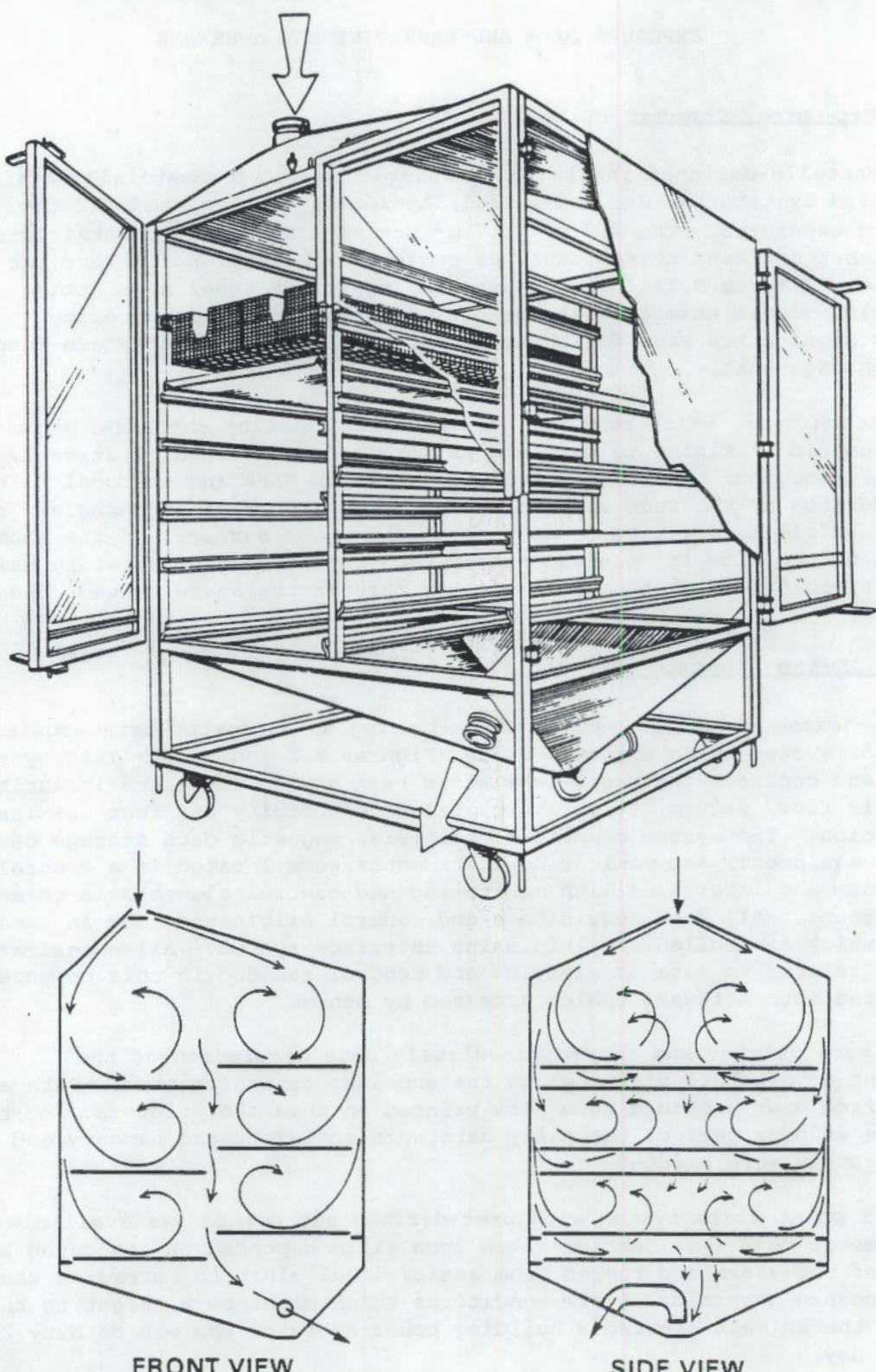


FIGURE B.1. n-Hexane Inhalation Exposure Chamber

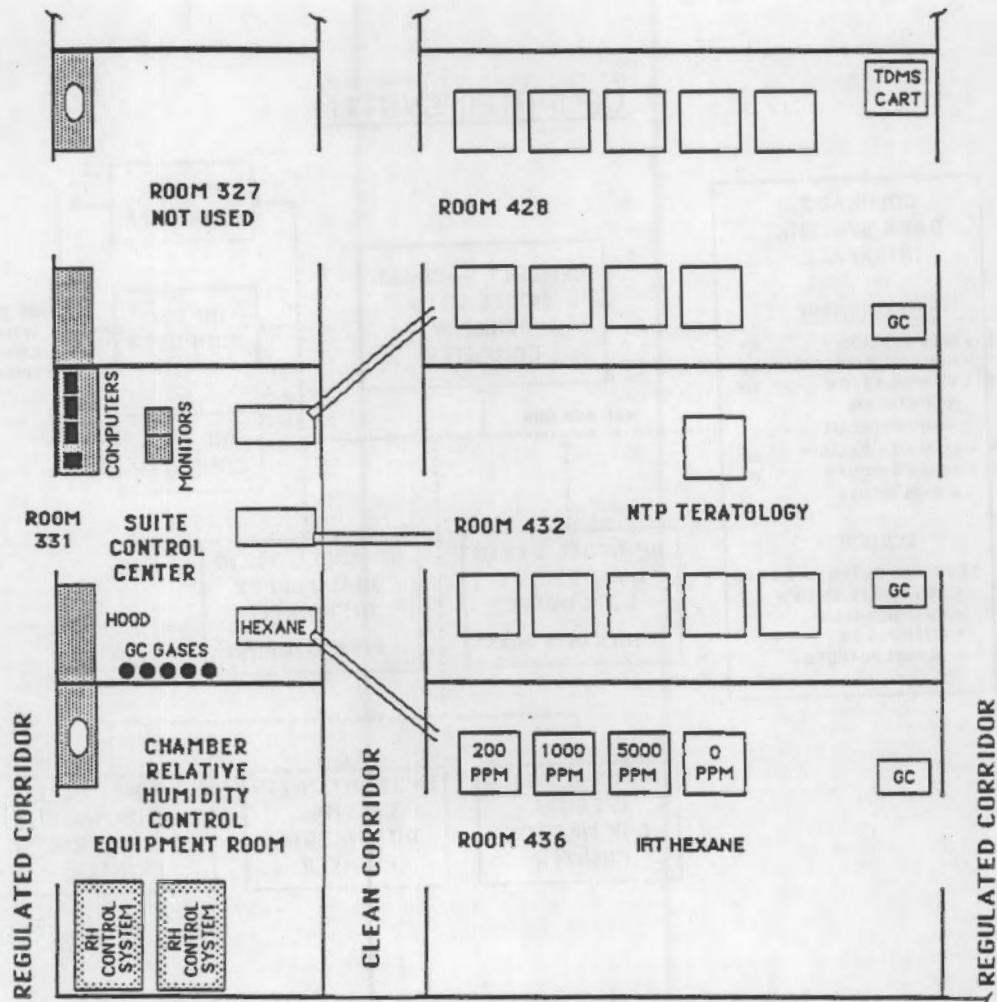


FIGURE B.2. n-Hexane Exposure Suite

COMPUTER SYSTEM

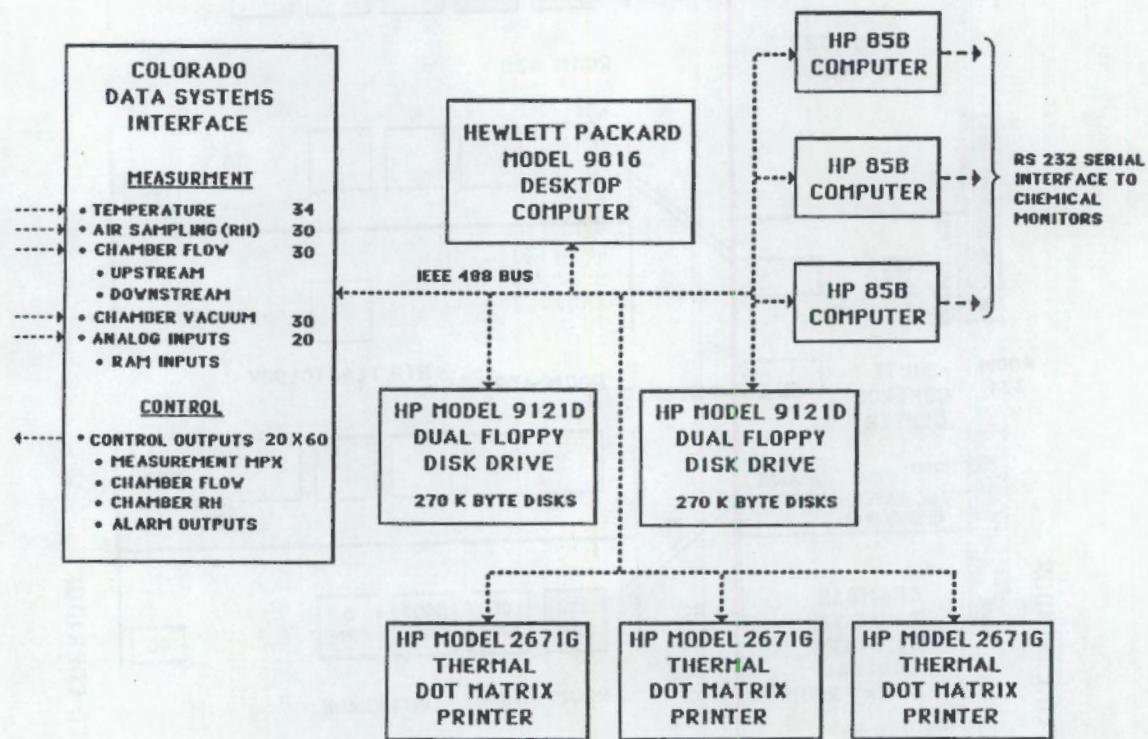


FIGURE B.3. Data Acquisition System for n-Hexane Exposures

Temperature was measured with an accuracy of approximately $\pm 0.5^{\circ}\text{F}$ by Resistance Temperature Devices (RTDs) located at the measurement site. The RTDs were multiplexed to a digital thermometer which was interfaced to the computer. Chamber temperature was controlled primarily by controlling the temperature of the room housing the chambers.

Percent relative humidity (%RH) was calculated with an accuracy of approximately $\pm 6\%$ by pulling a sample from the measurement location through a Teflon® tube into a dewpoint hygrometer located in the control center. Measurements were made from different locations by a valving system which multiplexes the tubes to the hygrometer. Percent RH was calculated by the executive computer from temperature and dewpoint measurements. Chamber %RH was maintained by a "wet/dry" air source supplied to each chamber. The ratio of "wet" to "dry" air, determined by a computer-controlled mixing valve, determined the chamber %RH.

Chamber air flow was calculated with an accuracy of approximately ± 15 liters/min by measurement of the pressure drop across calibrated orifices located at the inlet and exhaust of each chamber. The desired flow orifice was attached by means of a multiplexed valve system to a calibrated pressure transducer located in the control center. Small leaks in the chambers could be detected by comparison of the measurement of inlet flow with that of the exhaust. Flow was maintained by a computer controlled pump in the exhaust line of each chamber.

Chamber vacuum, relative to the control center, was measured with an accuracy of approximately $\pm 0.2 \text{ cm H}_2\text{O}$ using the same pressure transducer system which measures chamber air flows. Chamber vacuum was maintained at approximately $(-1) \text{ cm H}_2\text{O}$ primarily by inlet resistance provided by the HEPA and charcoal filters.

Hexane Generation System

A schematic diagram of the hexane generation system is shown in Figure B.4. Most of the generator was housed in a vented cabinet located in the Suite Control Center. The cabinet was vented to the building exhaust. The hexane to be vaporized was contained in a 19-liter stainless steel reservoir. This reservoir was filled daily from the original shipping container by the following method which was designed to prevent explosion during transfer. All oxygen in the reservoir was displaced with nitrogen through a purge port. The nitrogen pressure in the shipping container forced hexane through a filter and into the reservoir. The reservoir was on an electronic scale during filling so that the correct level was readily obtained. All metal containers were grounded. The filled reservoir was then transferred and installed into the generator cabinet.

During exposure the hexane was pumped from the reservoir through a stainless steel eductor tube and delivery tubes to vaporizers located at the fresh air inlet of each animal exposure chamber. Stable micrometering pumps with adjustable drift-free pump rates ranging from less than 1×10^{-3} to greater than 20 ml per minute were used.

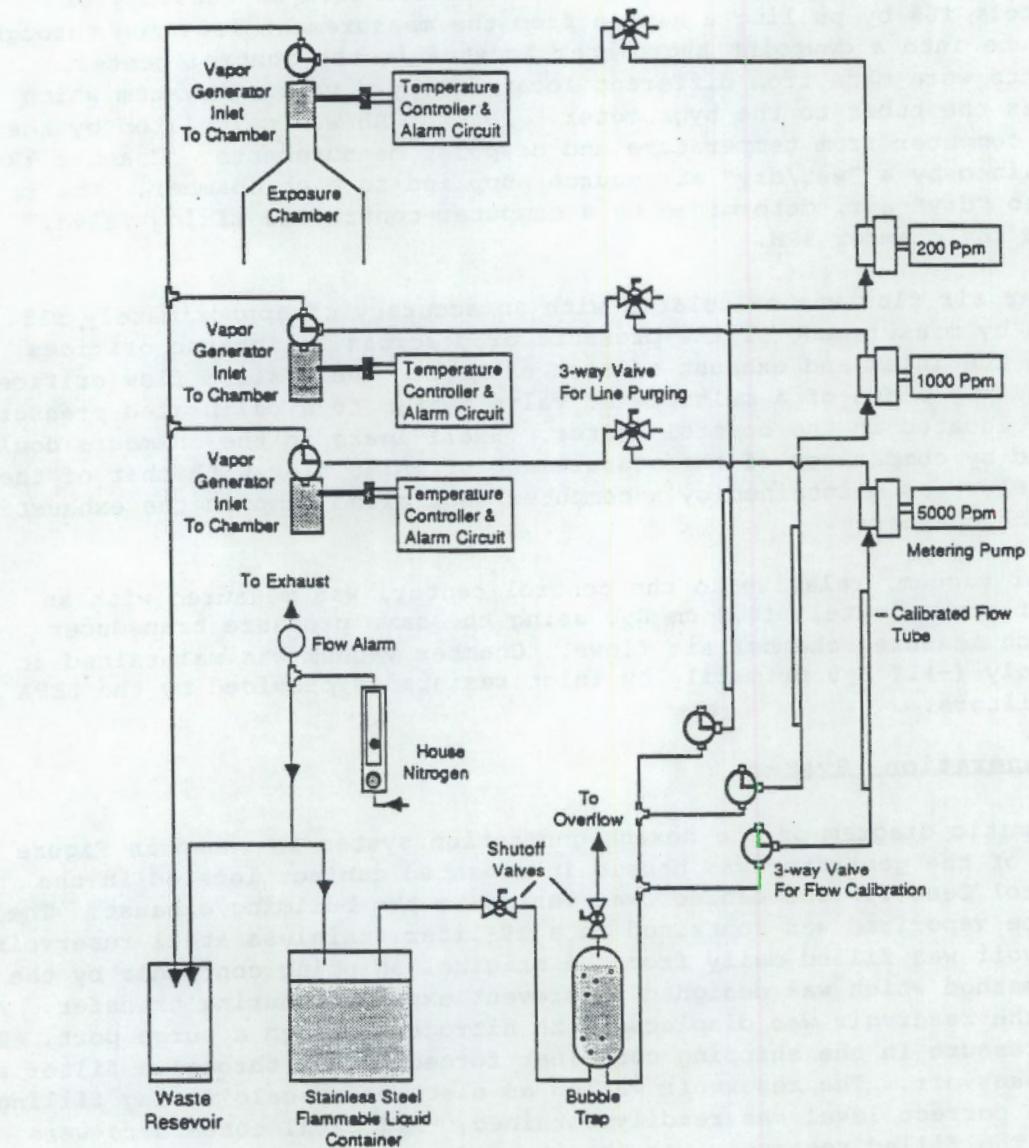
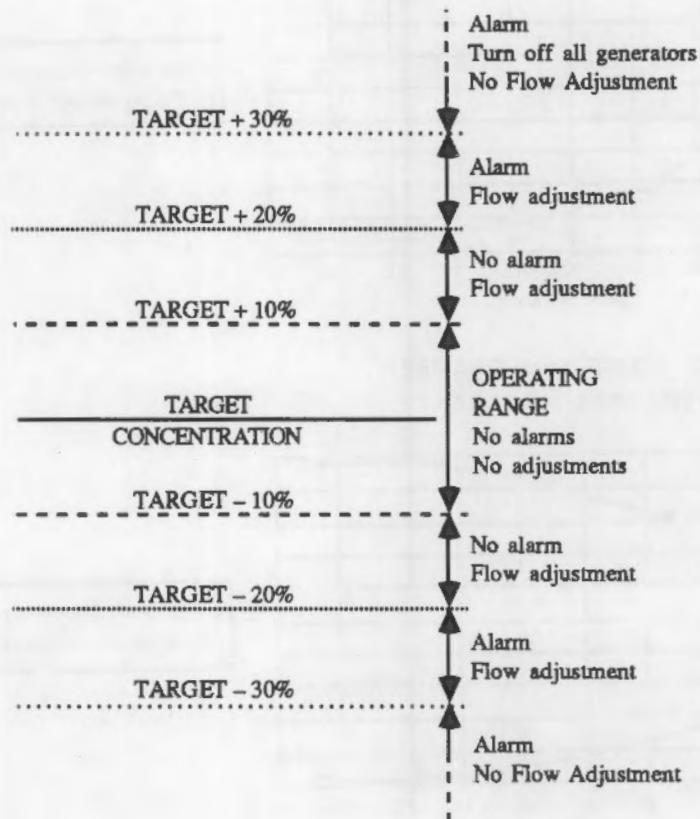


FIGURE B.4. n-Hexane Generation and Delivery System

The vaporizer comprised a stainless steel cylinder covered with a glass fiber wick from which the liquid was vaporized. The wick could be easily and inexpensively replaced if residue buildup occurred. An 80-watt heater and a temperature sensing element were incorporated within the cylinder and connected to a remotely located temperature controller. A second temperature monitor was incorporated in the vaporizer allowing the operating temperature to be recorded by the automated data acquisition system. The operating temperature of the vaporizer was maintained below 50°C (the boiling point of hexane is about 70°C). The cylindrical vaporizer was positioned in the fresh air duct leading directly to the inlet of the exposure chamber.

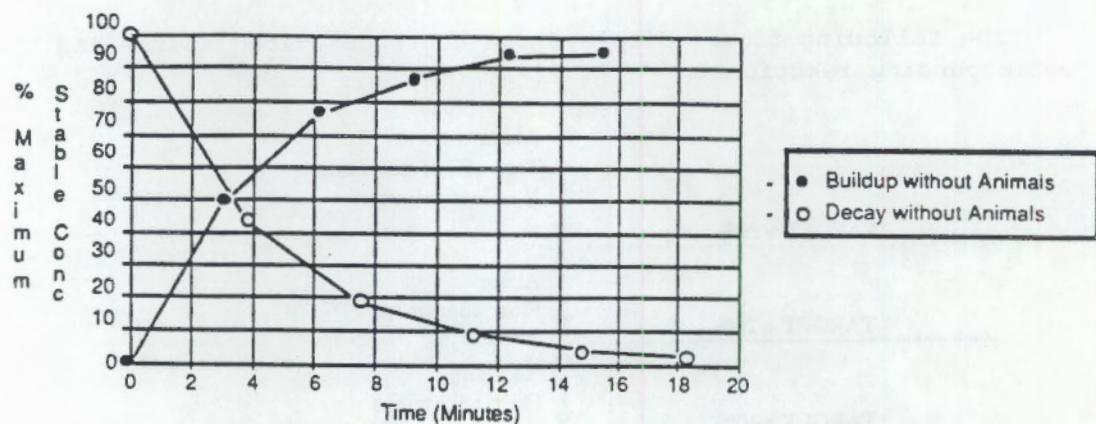
A clear Teflon® tube of measured volume, preceded by a three-way valve was attached downstream of the pump to facilitate measurement of the flow rate of the vapor generator. Measurement was accomplished by momentarily switching the three-way valve from the run position to the test position. A small bubble of air was pulled by the pump from the cabinet through the valve and into the clear tube. The progress of this bubble from one end of the tube to the other (calibrated volume) was timed with a stop watch. Flow rate was calculated by dividing the volume by the time. The concentration in the exposure chamber was calculated from the flow measurements of liquid and dilution air. This value was then compared to the chamber concentrations as measured by the gas chromatograph (on-line monitor).

All generation equipment which came in contact with the hexane was stainless-steel, Teflon® or Viton®. All equipment contained in the vented generator cabinet was explosion proof.

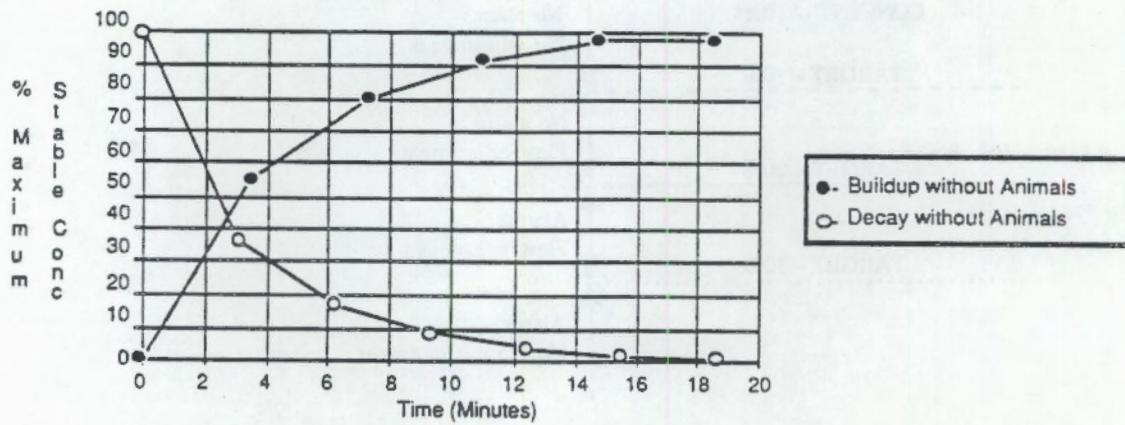

The exposure suite data acquisition and control computer automatically controlled the concentration of n-hexane in the animal exposure chambers by adjusting the flow rate of dilution air through the chamber over a narrowly-limited flow range. This was accomplished by adjusting the dilution air flow pump which was mounted in the exhaust duct of the chamber. This air-multiplier-type pump was controlled by adjusting the air pressure by a computer-controlled motor attached to the air pressure regulator.

Adjustments were made to the air flow only if the concentration was beyond the Non-Critical Limit ($\pm 10\%$ of target concentration). The concentration adjustment was limited to assure that the chamber dilution air flow was not adjusted beyond the non-critical flow limits (12 to 18 air changes per hour). If the allowed adjustment was not sufficient to bring the concentration back into the desired operating range, the computer made the maximum adjustment possible within the flow limits, then set the alarm and indicated to the operator that a manual adjustment of the generation system had to be made.

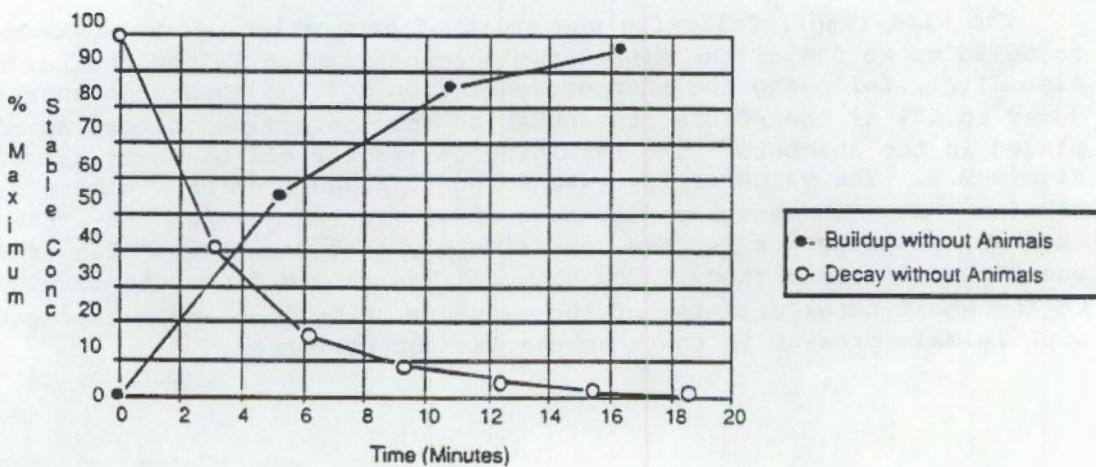
The following conditions for alarms and concentration adjustments applied:


- Concentration \leq Target + 10% and \geq Target - 10%
No action necessary
- Concentration $>$ Target + 10% and \leq Target + 20%
or
 $<$ Target - 10% and \geq Target - 20%
Set no alarms.
Adjust chamber air flow rate to bring concentration as close to target as possible within air flow limits (12 to 18 air changes per hour).
- Concentration $>$ Target + 20% and \leq Target + 30%
or
 $<$ Target - 20% and \geq Target - 30%
Set audible alarm in control room and exposure room.
If after normal working hours or if weekend, also set power operator alarm. Adjust chamber air flow rate to bring concentration as close to target as possible within air flow limits (12 to 18 air changes per hour).
- Concentration $>$ Target + 30%
Turn off all generators.
Set audible alarm in control room and exposure room.
If after normal working hours or if weekend, also set power operator alarm. Make no adjustment of chamber air flow.
- Concentration $<$ Target - 30%
Set audible alarm in control room and exposure room.
If after normal working hours or if weekend, also set power operator alarm. Make no adjustment of chamber air flow.

The following figure displays the above described alarms and the corresponding reactions:



The time (T_{90}), following the start of generation, for the concentration to build up to 90% of the final stable concentration in the chamber and the time (T_{10}), following the stop of generation for the vapor concentration to decay to 10% of the stable concentration were determined before animals were placed in the chambers. The resulting curves for all chambers are shown in Figure B.5. The value of T_{90} was found to range from approximately 11 to 13 minutes. At a chamber air flow rate of 15 air changes per hour, the theoretical value for T_{90} was approximately 12.5 minutes. A T_{90} of 12 minutes was chosen for this study. The value of T_{10} ranged from 9 to 11 minutes. Due to the short total duration of the exposure, a buildup and decay determination with animals present in the chambers was not performed.


n-HEXANE - 200 ppm CHAMBER
(Dominant Lethal)

n-HEXANE - 1000 ppm CHAMBER
(Dominant Lethal)

n-HEXANE - 5000 ppm CHAMBER
(Dominant Lethal)

FIGURE B.5. Buildup and Decay of 200, 1000, and 5000 ppm n-Hexane Vapor Concentrations in Chambers Without Animals Present.

Vapor Concentration Uniformity in Chambers

Uniformity of vapor concentration in the exposure chambers was measured prior to the start of the study, but not during the study due to its short duration. The vapor concentration was measured using the on-line GC with the automatic 8-port sample valve disabled to allow continuous monitoring from a single input line. Twelve chamber positions (two positions, one in front (F) and one in back (B), for each of the six possible animal cage unit positions per chamber) were measured.

The sample point was just above and about 10 cm in from the front or back center of each cage unit. The uniformity data for each chamber during prestart testing is summarized in Table B.1. Uniformity in all chambers was found acceptable. To provide easier interpretation of the results, the concentration readings at each port is also expressed as a percentage of the mean measurement at all ports measured. The possible variation of chemical concentration measured from one sample port to another during the chamber balance procedure is termed the Total Port Variability (TPV). Three factors contribute to the TPV. The first, the Between Port Variability (BPV), represents the variation of chemical distribution within the chamber. This factor is of interest because it is the measure of the uniformity of distribution of the chemical in the chamber. The second factor, the Within Port Variability (WPV), represents the fluctuation of the average chemical concentration within the chamber during the time the uniformity measurements are made. The third is the variability of the measurement instrument itself.

TABLE B.1. Summary of Pre-Start Chamber Uniformity Data

Chamber	TPV (%RSD)	WPV (%RSD)	BPV (%RSD)
200 ppm	2.5	1.8	1.8
1000 ppm	1.2	0.2	1.2
5000 ppm	1.0	1.8	0

Chamber Uniformity Limits

WPV \leq 5% RSD

BPV \leq 5% RSD

TPV \leq 7% RSD

Environmental Data During Exposure

Summations of chamber air flow, temperature and relative humidity data for the study are shown in Table B.2. This table includes the mean, standard deviation, mean expressed as a percentage of the target, the percent relative standard deviation (SD/Mean), maximum, minimum readings, number of readings and the percent of readings for which the value was within the specified operating range.

TABLE B.2. Inhalation Dominant Lethal Study of n-Hexane in Mice—Summation of Environmental Data for the Period When Animals Were Housed in the Exposure Chambers. (Acceptable Ranges are Also Shown.)

Temperature (°F)
(Acceptable Range = 72 to 78 °F)

Target Chamber						Number of Percent of Samples in Range	
Conc. (ppm)	Mean \pm SD	Target \pm %RSD	Maximum	Minimum			
1 0	73.0 \pm 0.8	97 \pm 1%	75.5	71.7	71	93	
200	74.1 \pm 0.9	99 \pm 1%	77.8	72.8	49	100	
1000	74.8 \pm 0.9	100 \pm 1%	78.5	73.5	49	98	
5000	73.5 \pm 0.7	98 \pm 1%	76.4	72.1	49	100	

Relative Humidity (% RH)
(Acceptable Range = 40 to 70 %RH)

Target Chamber						Number of Percent of Samples in Range	
Conc. (ppm)	Mean \pm SD	Target \pm %RSD	Maximum	Minimum			
1 0	59.8 \pm 5.0	109 \pm 8%	68	44	71	93	
200	57.0 \pm 4.3	104 \pm 8%	65	45	50	100	
1000	56.8 \pm 4.8	103 \pm 8%	65	41	50	100	
5000	49.9 \pm 4.6	91 \pm 9%	56	35	50	96	

Air Flow (CFM)
(Acceptable Range = 12 to 18 CFM)

Target Chamber						Number of Percent of Samples in Range	
Conc. (ppm)	Mean \pm SD	Target \pm %RSD	Maximum	Minimum			
1 0	15.1 \pm 0.3	101 \pm 2%	17.5	13.8	70	100	
200	15.0 \pm 0.6	100 \pm 4%	17.9	13.6	49	100	
1000	15.1 \pm 0.5	100 \pm 3%	17.9	13.5	49	100	
5000	15.0 \pm 0.7	100 \pm 4%	18.5	13.2	49	98	

Period Covered: 3/24/86 - 3/30/86 except ¹:3/21/86 - 3/30/86.

The mean values of temperature in all chambers for the entire study were between 73.0 and 74.8°F, all within the specified limits of 72 to 78°F. Temperature extremes ranged from 71.7 to 78.5°F. The percent of temperature readings within the operating range for all chambers was greater than 92%. No reading exceeded the critical operating limits.

The mean values of relative humidity in all chambers for the study were between 49.9 and 59.8%, all within the specified limits of 40 to 70%. Relative humidity extremes (considering all chambers) ranged from 35 to 68% and at least 93% of all relative humidity readings were within specified limits throughout the study. No reading exceeded the critical operating limits.

The mean values of chamber air flow in all chambers for the study were between 15.0 and 15.1 CFM (1 CFM = 1 air change per hour), all within the specified limits of 12 to 18 CFM. Flow extremes (considering all chambers) ranged from 13.2 to 18.5 CFM. Most of the variation was due to the use of air flow to adjust concentrations during the nighttime hours. No reading exceeded the critical operating limits.

A complete summary of the daily chamber environmental data follows.

Exposure Data

The study protocol called for daily exposure means to be within $\pm 10\%$ of target levels, % RSD's (relative standard deviation) $\leq 10\%$ and at least 90% of samples within $\pm 10\%$ of the target. Due to a compatibility problem between hexane and the construction materials in the pump (see Exposure Operation Discussion Sheet in this appendix), we had a great deal of difficulty attaining and maintaining the target concentration, especially in the 5000 ppm chamber. As a result, for the 5000 ppm chamber, the overall %RSD was 18% with 80% of samples within the normal operating range. Concentration mean was 94% of target.

The daily mean concentrations for all chambers were within 6% of the target concentrations except for Day 1 for the 5000 ppm chamber (69%). Standard deviations were outside the 10% protocol-defined limits on 1 day for the 200 ppm chamber and 2 days for the 5000 ppm chamber. The percent of concentration readings within the operating range for the 5000 ppm chamber was 80%, the other chambers were greater than 99%.

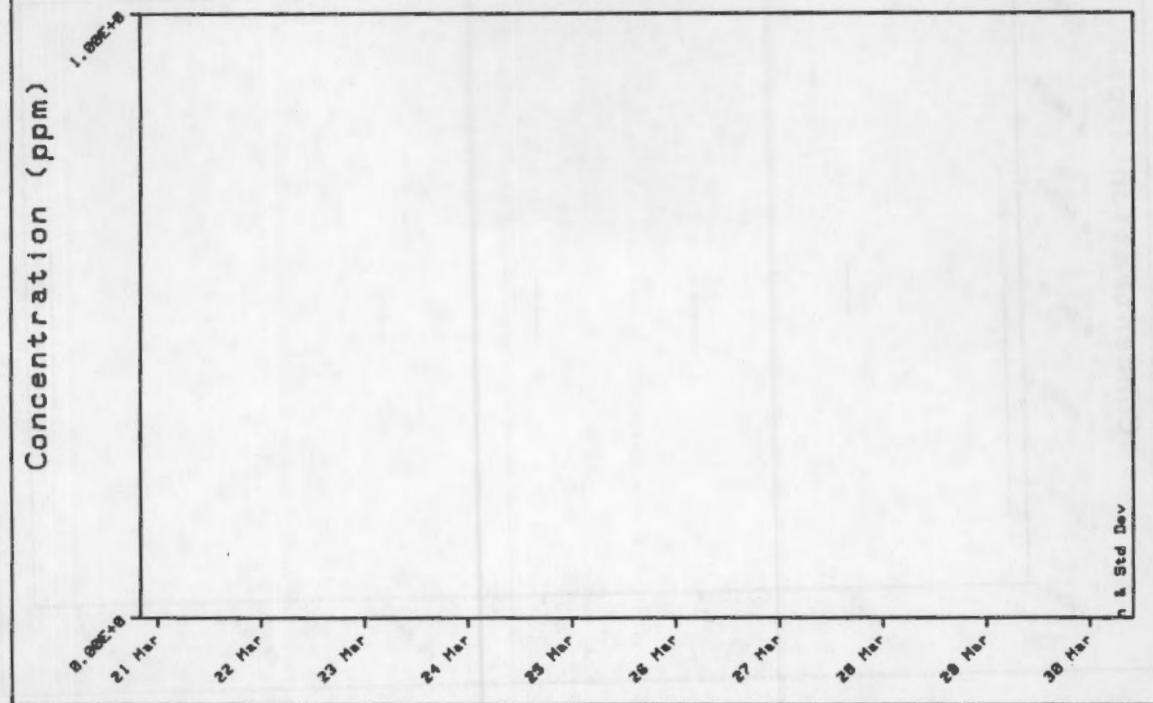
Summaries of the concentration data for all chambers and the exposure room are included in Table B.3. Summaries of concentration by exposure day are included in this appendix along with graphic illustrations of the daily mean and standard deviation for each chamber. A complete discussion of all concentration excursions is included.

TABLE B.3. Inhalation Dominant Lethal Study of n-Hexane in Mice - Summation of Concentration Data for the Period When Animals Were Housed in the Exposure Chambers.¹

Concentration (PPM)
Acceptable Range = Target \pm 10%

Target	Percent	Number	Number % Samples	
Conc. (ppm)	Mean \pm SD	Target \pm RSD	Samples In Range	in Range
Room	0.00 \pm 0.03	-----	0.2	0
0	0.00 \pm 0.00	-----	0	0
200	196 \pm 15.7	98 \pm 8%	219	0.3
1000	998 \pm 22.0	100 \pm 2%	1100	930
5000	4700 \pm 848	94 \pm 18%	5910	14.5
St. Gas	1030 \pm 37.7	103 \pm 4%	1170	992
			197	*197
			196	*196
			195	193
			195	194
			198	159
			206	200
				99
				99
				80
				97

* Samples with concentration less than 1 ppm

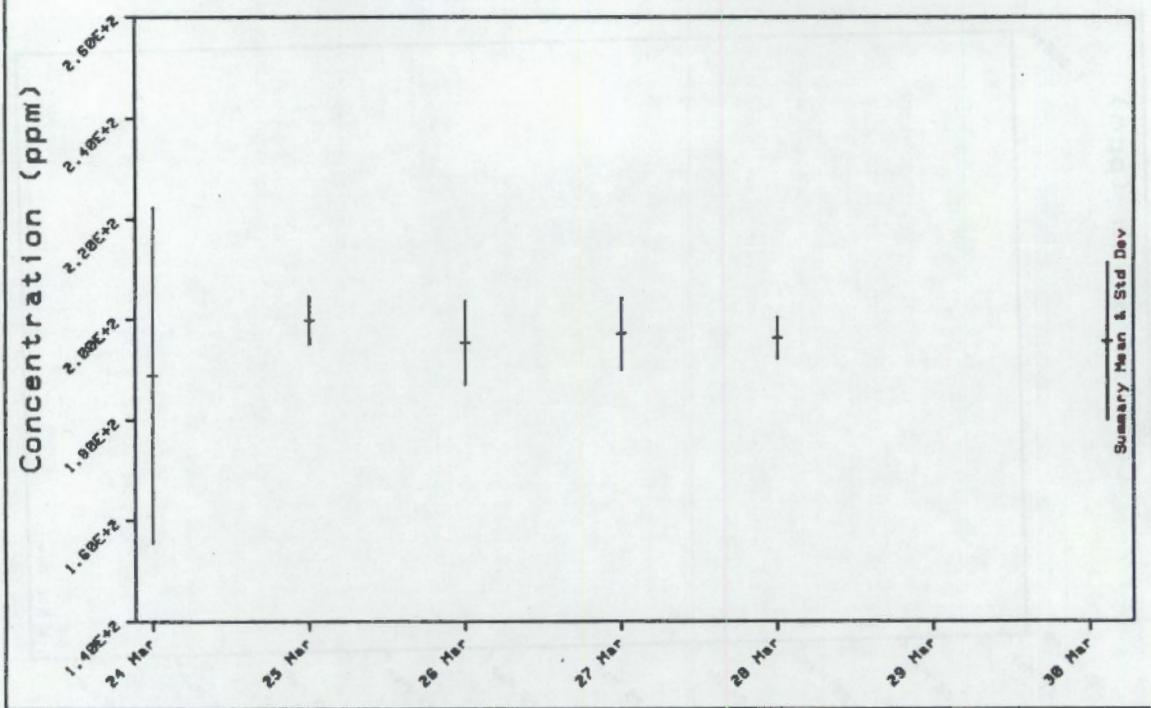

1: 3/24/86 - 3/28/86

Daily Summation For Hexane - IRT (Mice) From 24 Mar 1986 through 28 Mar 1986

Summary Data for: Hexane - 0 ppm-R/M/Concentration 0.00E+0 to 1.00E+0

Date	Mean	% Target	Std Dev	% RSD	Maximum	Minimum	N	N in	% N in
24 Mar 1986	0.00E+0	0%	0.000E+0	0%	0.00E+0	0.00E+0	36.	36.	100%
25 Mar 1986	0.00E+0	0%	0.000E+0	0%	0.00E+0	0.00E+0	41.	41.	100%
26 Mar 1986	0.00E+0	0%	0.000E+0	0%	0.00E+0	0.00E+0	41.	41.	100%
27 Mar 1986	0.00E+0	0%	0.000E+0	0%	0.00E+0	0.00E+0	35.	35.	100%
28 Mar 1986	0.00E+0	0%	0.000E+0	0%	0.00E+0	0.00E+0	43.	43.	100%
Summary	0.00E+0	0%	0.000E+0	0%	0.00E+0	0.00E+0	196.	196.	100%

Hexane - IRT (Mice)
 Hexane - 0 ppm-R/M
 Mean & Standard Deviation

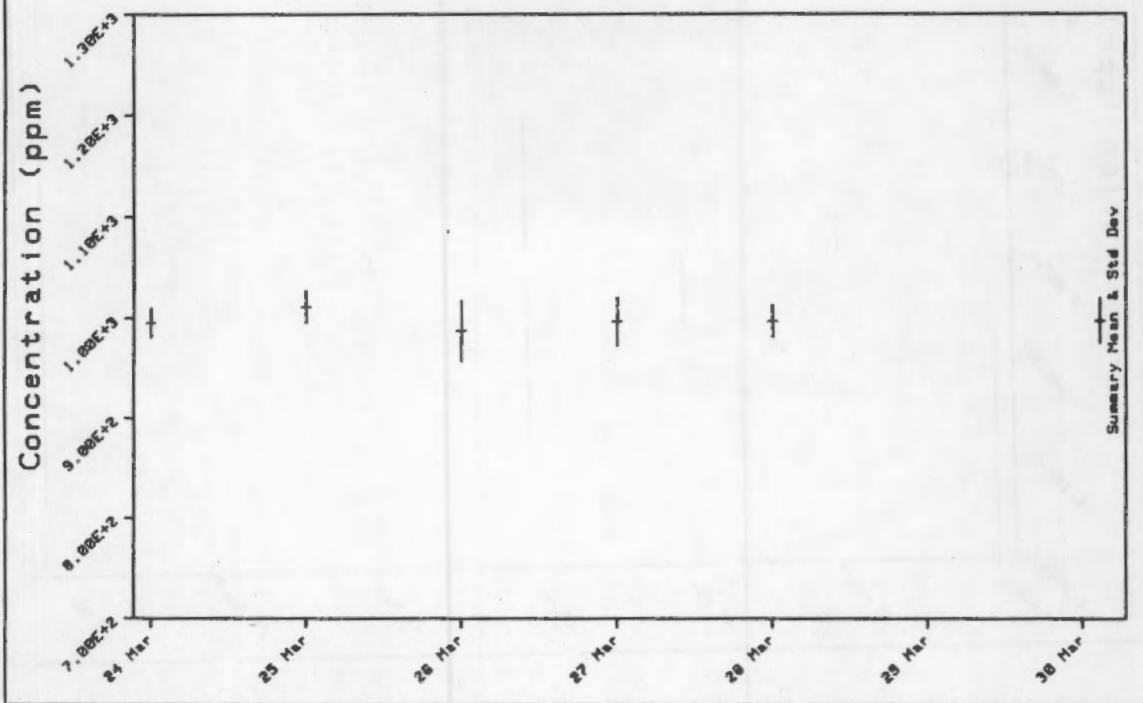

Daily Summation For Hexane - IRT (Mice) From 24 Mar 1986 through 28 Mar 1986

Summary Data for: Hexane - 200 ppm-R/M/Concentration

1.80E+2 to 2.20E+2

Date	Mean	% Target	Std Dev	% RSD	Maximum	Minimum	N	N in	% N in
24 Mar 1986	1.89E+2	94%	3.344E+1	18%	2.19E+2	2.72E-1	36.	34.	94%
25 Mar 1986	2.00E+2	100%	4.753E+0	2%	2.08E+2	1.83E+2	40.	40.	100%
26 Mar 1986	1.95E+2	98%	8.358E+0	4%	2.10E+2	1.81E+2	41.	41.	100%
27 Mar 1986	1.97E+2	99%	7.159E+0	4%	2.19E+2	1.82E+2	36.	36.	100%
28 Mar 1986	1.96E+2	98%	4.180E+0	2%	2.09E+2	1.88E+2	42.	42.	100%
Summary	1.96E+2	98%	1.569E+1	8%	2.19E+2	2.72E-1	195.	193.	99%

Hexane - IRT (Mice)
Hexane - 200 ppm-R/M
Mean & Standard Deviation

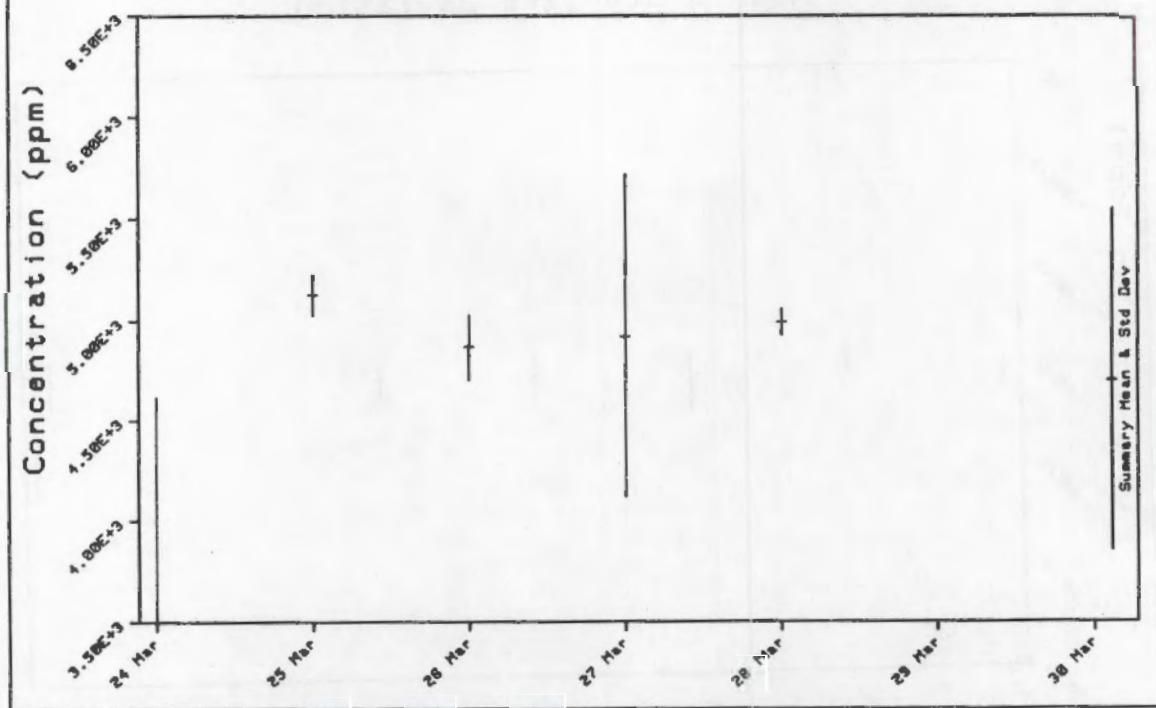

Daily Summation For Hexane - IRT (Mice) From 24 Mar 1986 through 28 Mar 1986

Summary Data for: Hexane -1000 ppm-R/M/Concentration

9.00E+2 to 1.10E+3

Date	Mean	% Target	Std Dev	% RSD	Maximum	Minimum	N	N in	% N in
24 Mar 1986	9.95E+2	100%	1.441E+1	1%	1.03E+3	9.62E+2	36.	36.	100%
25 Mar 1986	1.01E+3	101%	1.591E+1	2%	1.04E+3	9.75E+2	40.	40.	100%
26 Mar 1986	9.88E+2	99%	2.971E+1	3%	1.07E+3	9.38E+2	41.	41.	100%
27 Mar 1986	9.97E+2	100%	2.375E+1	2%	1.10E+3	9.30E+2	36.	35.	97%
28 Mar 1986	9.97E+2	100%	1.582E+1	2%	1.03E+3	9.72E+2	42.	42.	100%
Summary	9.98E+2	100%	2.202E+1	2%	1.10E+3	9.30E+2	195.	194.	99%

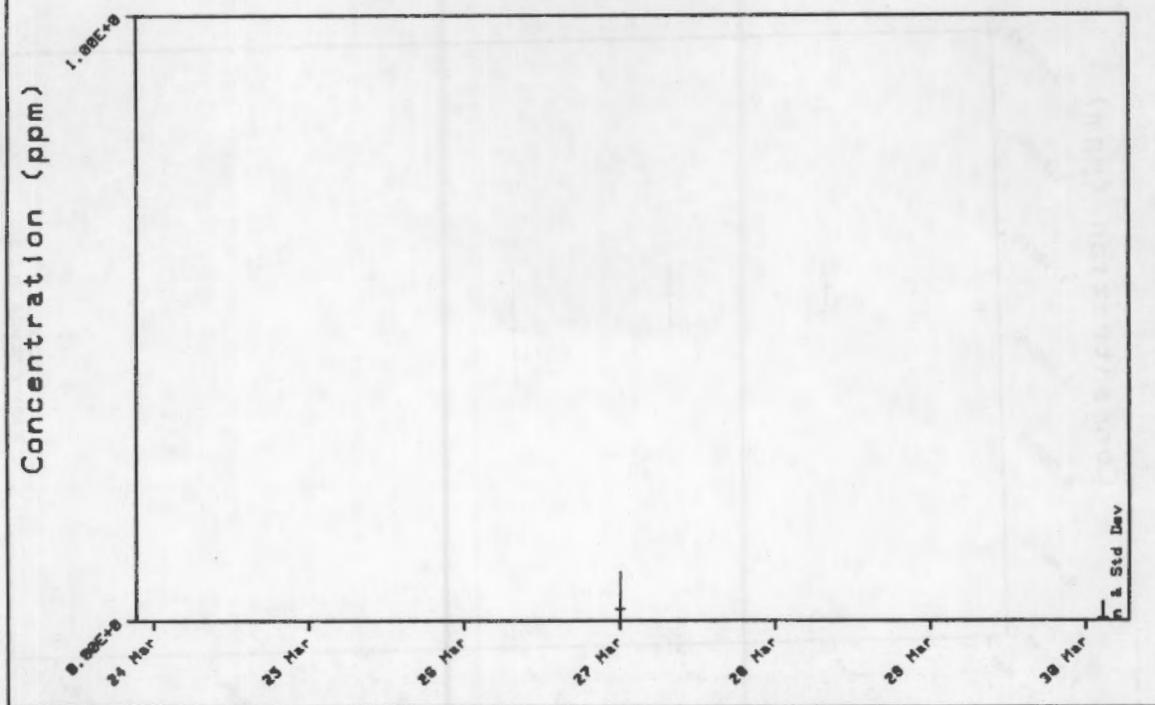
Hexane - IRT (Mice)
Hexane -1000 ppm-R/M
Mean & Standard Deviation


Daily Summation For Hexane - IRT (Mice) From 24 Mar 1986 through 28 Mar 1986

Summary Data for: Hexane -5000 ppm-R/M/Concentration

4.50E+3 to 5.50E+3

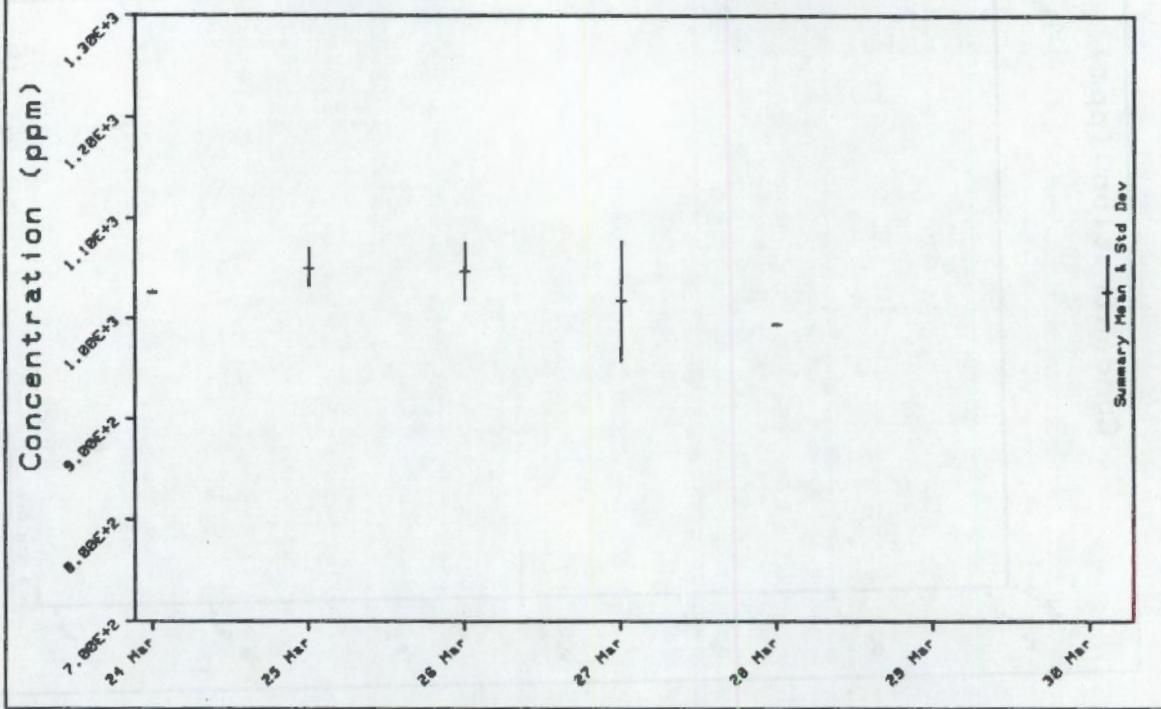
Date	Mean	% Target	Std Dev	% RSD	Maximum	Minimum	N	N in	% N in
24 Mar 1986	3.45E+3	69%	1.160E+3	34%	4.43E+3	1.45E+1	36.	0.	0%
25 Mar 1986	5.13E+3	103%	9.737E+1	2%	5.28E+3	4.96E+3	41.	41.	100%
26 Mar 1986	4.87E+3	97%	1.631E+2	3%	5.19E+3	4.61E+3	42.	42.	100%
27 Mar 1986	4.92E+3	98%	8.003E+2	16%	5.91E+3	5.16E+2	37.	34.	92%
28 Mar 1986	4.99E+3	100%	6.569E+1	1%	5.24E+3	4.88E+3	42.	42.	100%
Summary	4.70E+3	94%	8.475E+2	18%	5.91E+3	1.45E+1	198.	159.	80%


Hexane - IRT (Mice)
Hexane -5000 ppm-R/M
Mean & Standard Deviation

Daily Summation For Hexane - IRT (Mice) From 24 Mar 1986 through 28 Mar 1986

Summary Data for: Hexane - Room/Concentration							0.00E+0 to 1.00E+0		
Date	Mean	% Target	Std Dev	% RSD	Maximum	Minimum	N	N in	% N in
24 Mar 1986	0.00E+0	0%	0.000E+0	0%	0.00E+0	0.00E+0	36.	36.	100%
25 Mar 1986	0.00E+0	0%	0.000E+0	0%	0.00E+0	0.00E+0	41.	41.	100%
26 Mar 1986	0.00E+0	0%	0.000E+0	0%	0.00E+0	0.00E+0	41.	41.	100%
27 Mar 1986	1.97E-2	2%	6.052E-2	307%	2.38E-1	0.00E+0	36.	36.	100%
28 Mar 1986	0.00E+0	0%	0.000E+0	0%	0.00E+0	0.00E+0	43.	43.	100%
Summary	3.60E-3	0%	2.669E-2	741%	2.38E-1	0.00E+0	197.	197.	100%

Hexane - IRT (Mice)
 Hexane - Room
 Mean & Standard Deviation

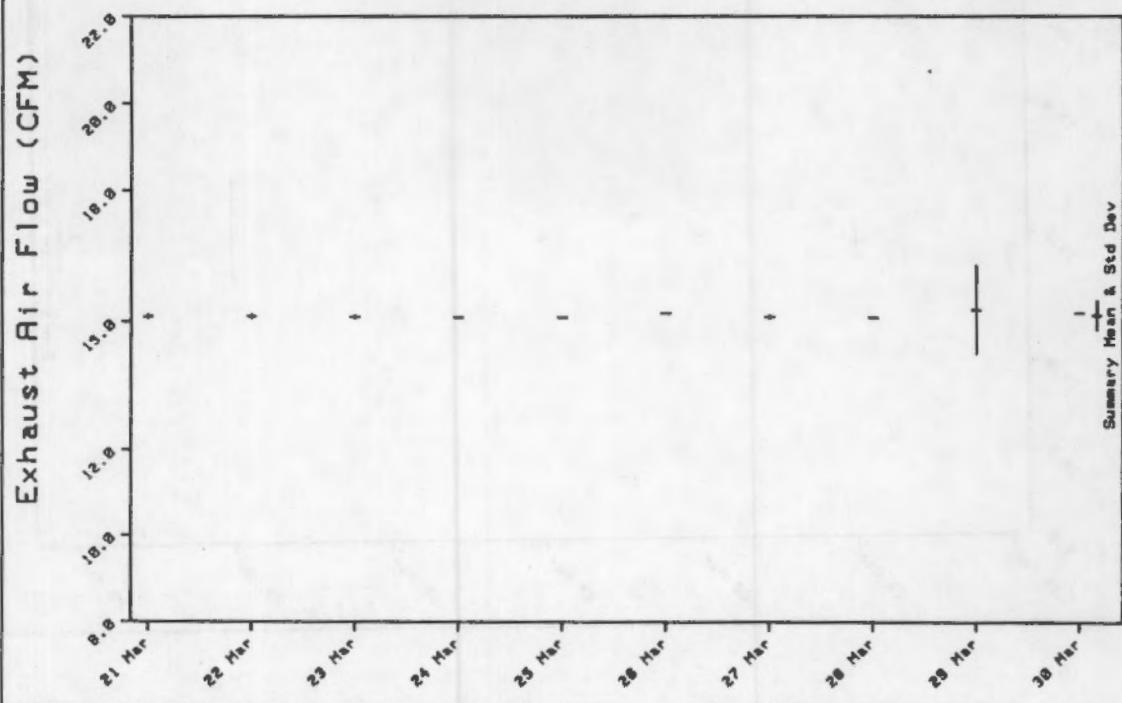

Daily Summation For Hexane - IRT (Mice) From 24 Mar 1986 through 28 Mar 1986

Summary Data for: Hexane -Standard Gas/Concentration

9.00E+2 to 1.10E+3

Date	Mean	% Target	Std Dev	% RSD	Maximum	Minimum	N	N in	% N in
24 Mar 1986	1.03E+3	103%	8.929E-1	0%	1.03E+3	1.02E+3	37.	37.	100%
25 Mar 1986	1.05E+3	105%	1.943E+1	2%	1.07E+3	1.03E+3	41.	41.	100%
26 Mar 1986	1.05E+3	105%	2.891E+1	3%	1.07E+3	1.00E+3	42.	42.	100%
27 Mar 1986	1.02E+3	102%	6.007E+1	6%	1.17E+3	9.92E+2	43.	37.	86%
28 Mar 1986	9.94E+2	99%	7.541E-1	0%	9.95E+2	9.92E+2	43.	43.	100%
Summary	1.03E+3	103%	3.773E+1	4%	1.17E+3	9.92E+2	206.	200.	97%

Hexane - IRT (Mice)
Hexane -Standard Gas
Mean & Standard Deviation

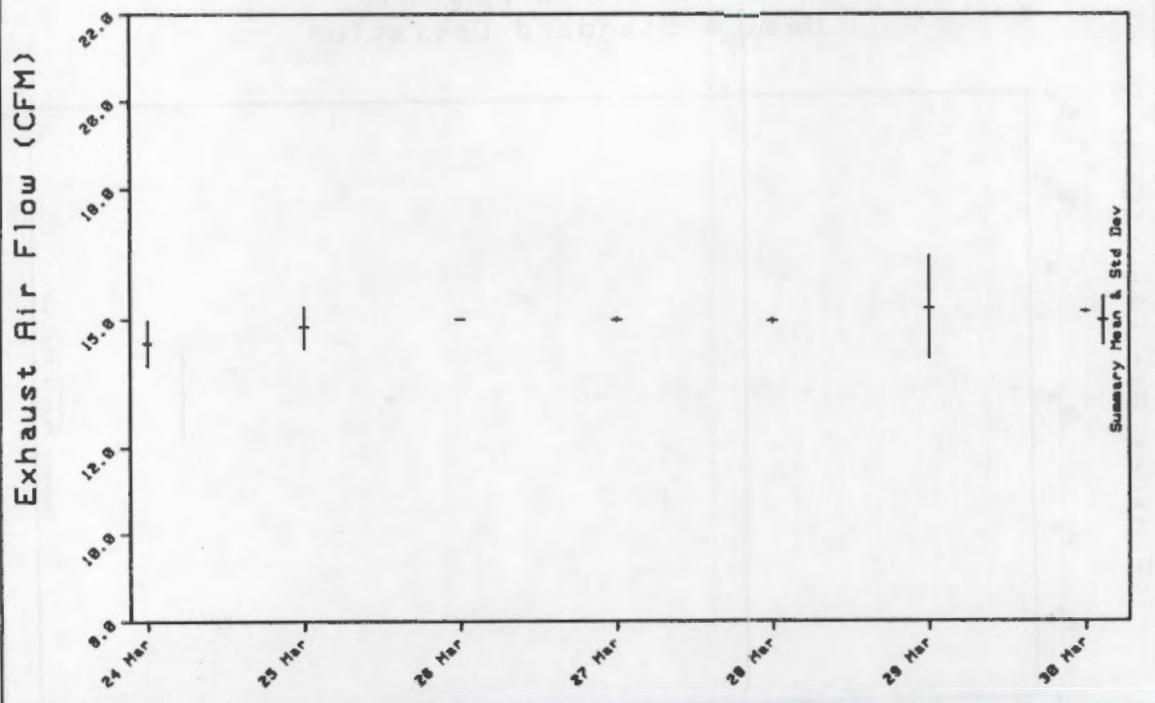


Daily Summation For Hexane - IRT (Mice) From 21 Mar 1986 through 30 Mar 1986

Summary Data for: Hexane - 0 ppm-R/M/Exhaust Air Flow

Date	Mean	% Target	Std Dev	% RSD	Maximum	Minimum	N	N in	12.0 to 18.0 % N in
21 Mar 1986	15.1	101%	.04	0%	15.2	15.1	5.	5.	100%
22 Mar 1986	15.1	101%	.05	0%	15.2	15.1	8.	8.	100%
23 Mar 1986	15.1	101%	.04	0%	15.2	15.1	8.	8.	100%
24 Mar 1986	15.1	101%	0.00	0%	15.1	15.1	6.	6.	100%
25 Mar 1986	15.1	101%	0.00	0%	15.1	15.1	7.	7.	100%
26 Mar 1986	15.2	101%	0.00	0%	15.2	15.2	7.	7.	100%
27 Mar 1986	15.1	101%	.04	0%	15.2	15.1	7.	7.	100%
28 Mar 1986	15.1	101%	0.00	0%	15.1	15.1	7.	7.	100%
29 Mar 1986	15.3	102%	1.02	7%	17.5	13.8	8.	8.	100%
30 Mar 1986	15.2	101%	0.00	0%	15.2	15.2	7.	7.	100%
Summary	15.1	101%	.33	2%	17.5	13.8	70.	70.	100%

Hexane - IRT (Mice)
Hexane - 0 ppm-R/M
Mean & Standard Deviation

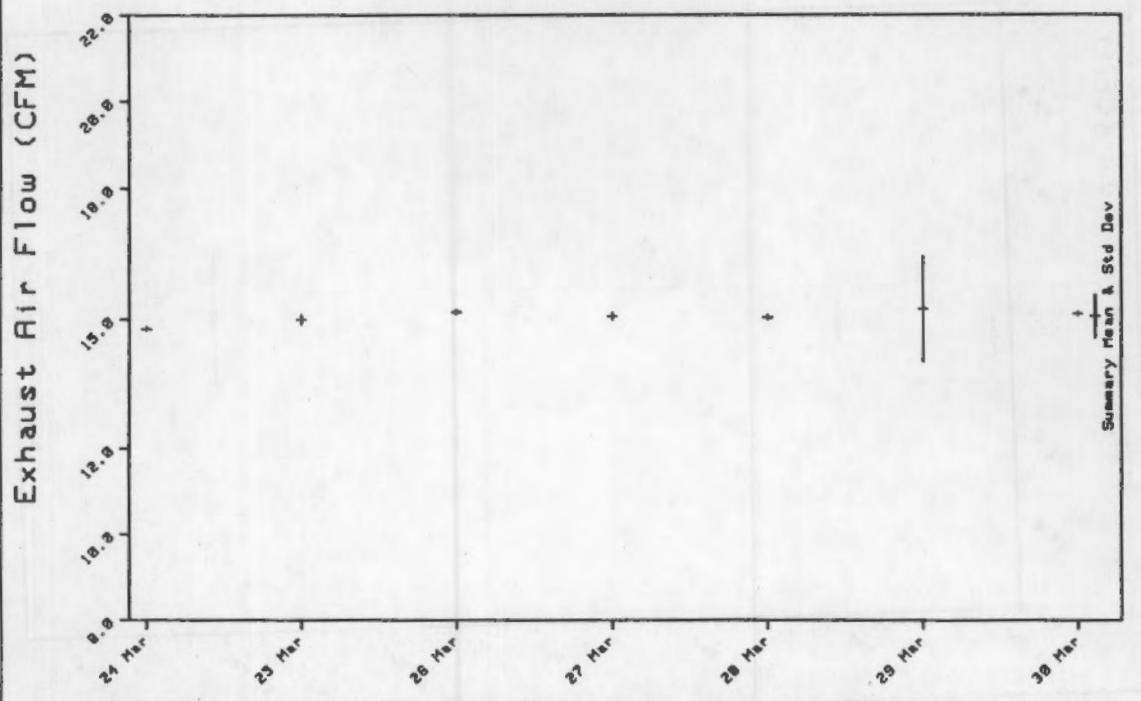


Daily Summation For Hexane - IRT (Mice) From 24 Mar 1986 through 30 Mar 1986

Summary Data for: Hexane - 200 ppm-R/M/Exhaust Air Flow

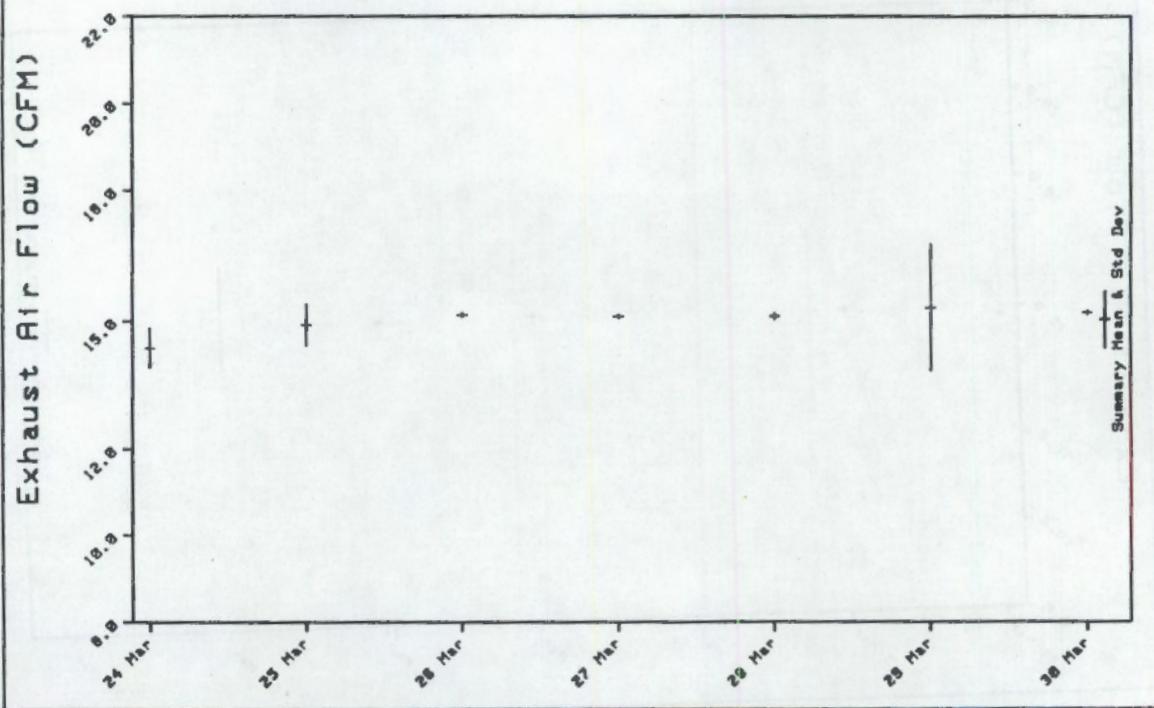
Date	Mean	% Target	Std Dev	% RSD	Maximum	Minimum	N	N in	12.0 to 18.0 % N in
24 Mar 1986	14.4	96%	.54	4%	14.9	13.7	6.	6.	100%
25 Mar 1986	14.8	99%	.49	3%	15.0	13.7	7.	7.	100%
26 Mar 1986	15.0	100%	0.00	0%	15.0	15.0	7.	7.	100%
27 Mar 1986	15.0	100%	.04	0%	15.0	14.9	7.	7.	100%
28 Mar 1986	15.0	100%	.05	0%	15.0	14.9	7.	7.	100%
29 Mar 1986	15.3	102%	1.19	8%	17.9	13.6	8.	8.	100%
30 Mar 1986	15.2	101%	.04	0%	15.2	15.1	7.	7.	100%
Summary	15.0	100%	.57	4%	17.9	13.6	49.	49.	100%

Hexane - IRT (Mice)
Hexane - 200 ppm-R/M
Mean & Standard Deviation


Daily Summation For Hexane - IRT (Mice) From 24 Mar 1986 through 30 Mar 1986

Summary Data for: Hexane -1000 ppm-R/M/Exhaust Air Flow

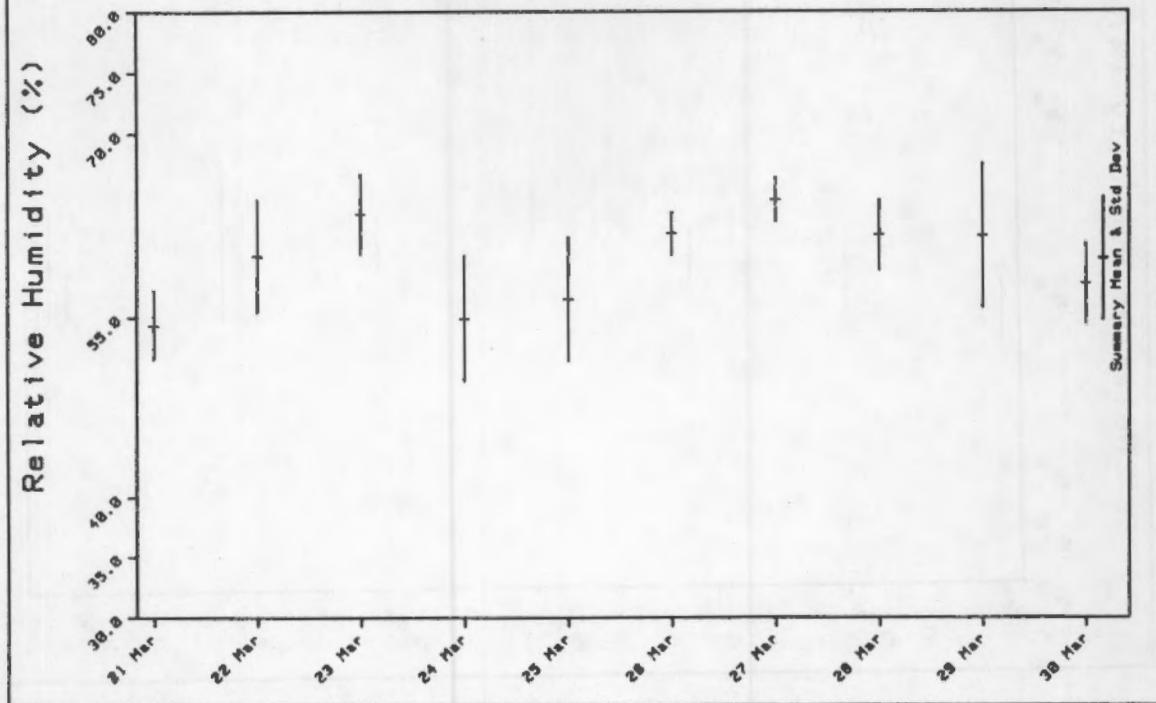
12.0 to 18.0


Date	Mean	% Target	Std Dev	% RSD	Maximum	Minimum	N	N in	% N in
24 Mar 1986	14.8	99%	.04	0%	14.8	14.7	6.	6.	100%
25 Mar 1986	15.0	100%	.10	1%	15.1	14.8	7.	7.	100%
26 Mar 1986	15.2	101%	.05	0%	15.2	15.1	7.	7.	100%
27 Mar 1986	15.1	100%	.08	1%	15.2	15.0	7.	7.	100%
28 Mar 1986	15.0	100%	.05	0%	15.1	15.0	7.	7.	100%
29 Mar 1986	15.2	102%	1.21	8%	17.9	13.5	8.	8.	100%
30 Mar 1986	15.1	101%	.05	0%	15.2	15.1	7.	7.	100%
Summary	15.1	100%	.48	3%	17.9	13.5	49.	49.	100%

Hexane - IRT (Mice)
Hexane -1000 ppm-R/M
Mean & Standard Deviation

Daily Summation For Hexane - IRT (Mice) From 24 Mar 1986 through 30 Mar 1986							12.0 to 18.0		
Date	Mean	% Target	Std Dev	% RSD	Maximum	Minimum	N	N in	% N in
24 Mar 1986	14.4	96%	.45	3%	14.9	13.9	6.	6.	100%
25 Mar 1986	14.9	99%	.49	3%	15.1	13.8	7.	7.	100%
26 Mar 1986	15.1	101%	.05	0%	15.2	15.1	7.	7.	100%
27 Mar 1986	15.1	101%	.04	0%	15.1	15.0	7.	7.	100%
28 Mar 1986	15.1	101%	.07	0%	15.2	15.0	7.	7.	100%
29 Mar 1986	15.3	102%	1.46	10%	18.5	13.2	8.	7.	88%
30 Mar 1986	15.2	101%	.05	0%	15.2	15.1	7.	7.	100%
Summary	15.0	100%	.66	4%	18.5	13.2	49.	48.	98%

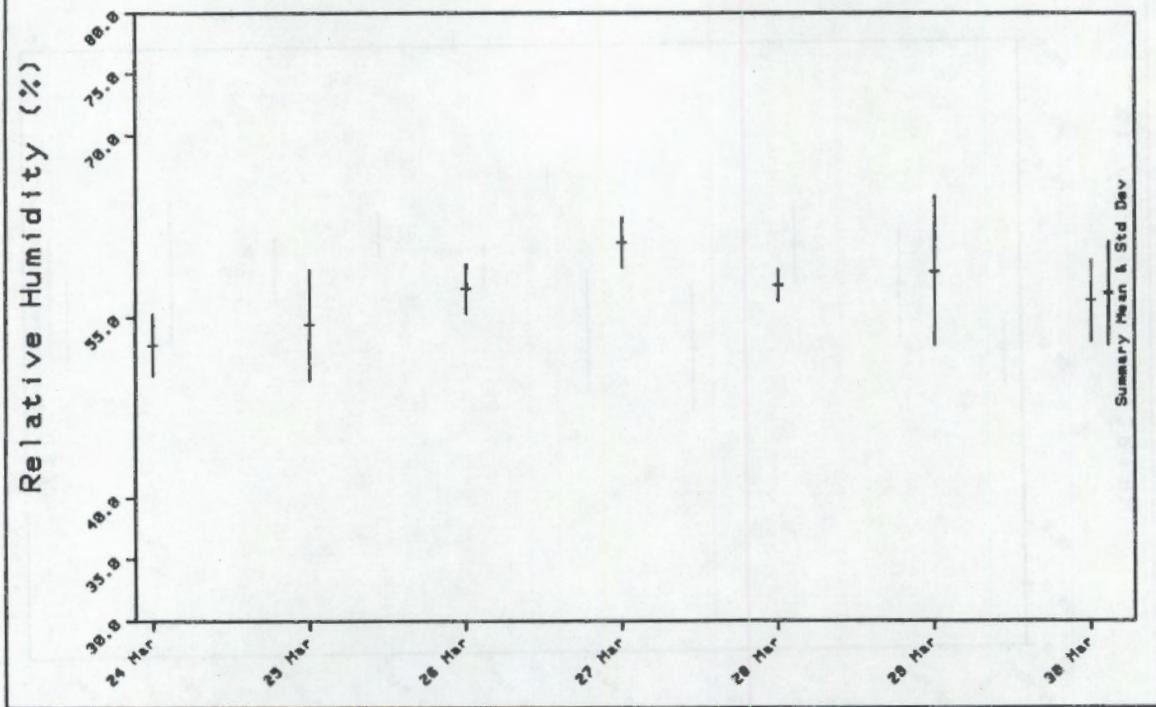
Hexane - IRT (Mice)
 Hexane -5000 ppm-R/M
 Mean & Standard Deviation


Daily Summation For Hexane - IRT (Mice) From 21 Mar 1986 through 30 Mar 1986

Summary Data for: Hexane - 0 ppm-R/M/Relative Humidity

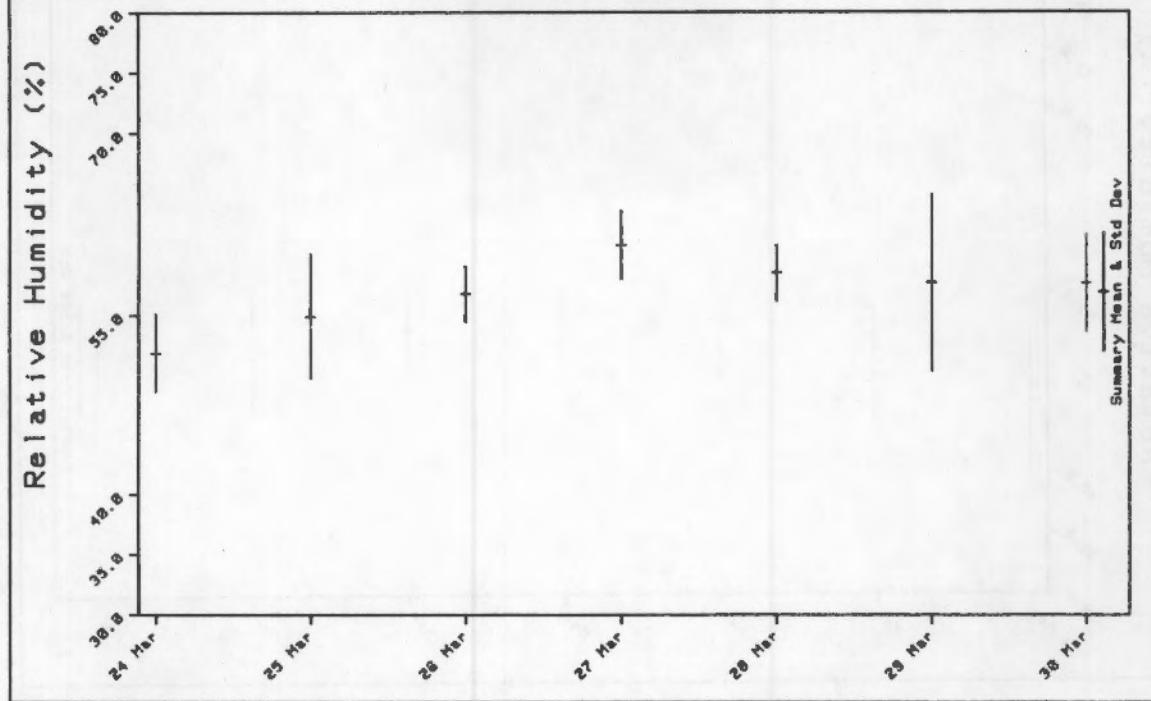
40.0 to 70.0

Date	Mean	% Target	Std Dev	% RSD	Maximum	Minimum	N	N in	% N in
21 Mar 1986	54.3	99%	2.88	5%	58.0	50.0	6.	6.	100%
22 Mar 1986	60.0	109%	4.63	8%	65.0	51.0	8.	8.	100%
23 Mar 1986	63.4	115%	3.31	5%	68.0	59.0	7.	7.	100%
24 Mar 1986	54.9	100%	5.21	9%	60.0	44.0	7.	7.	100%
25 Mar 1986	56.4	103%	5.13	9%	64.0	52.0	7.	7.	100%
26 Mar 1986	61.9	112%	1.77	3%	64.0	60.0	7.	7.	100%
27 Mar 1986	64.6	117%	1.81	3%	67.0	63.0	7.	7.	100%
28 Mar 1986	61.7	112%	2.87	5%	65.0	57.0	7.	7.	100%
29 Mar 1986	61.6	112%	5.90	10%	67.0	48.0	8.	8.	100%
30 Mar 1986	57.7	105%	3.40	6%	63.0	53.0	7.	7.	100%
Summary	59.8	109%	5.03	8%	68.0	44.0	71.	71.	100%


Hexane - IRT (Mice)
Hexane - 0 ppm-R/M
Mean & Standard Deviation

Daily Summation For Hexane - IRT (Mice) From 24 Mar 1986 through 30 Mar 1986

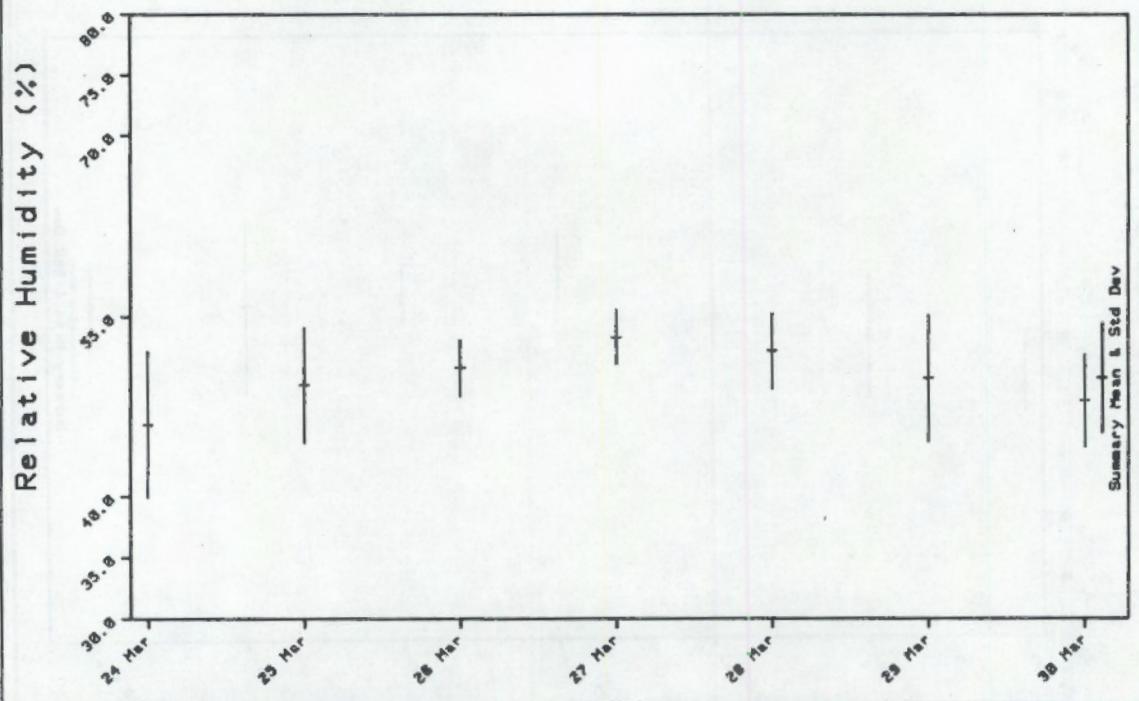
Date	Mean	% Target	Std Dev	% RSD	Maximum	Minimum	N	40.0 to	70.0
								N in	% N in
24 Mar 1986	52.7	96%	2.56	5%	56.0	49.0	7.	7.	100%
25 Mar 1986	54.4	99%	4.65	9%	60.0	49.0	7.	7.	100%
26 Mar 1986	57.4	104%	2.07	4%	60.0	55.0	7.	7.	100%
27 Mar 1986	61.3	111%	2.06	3%	64.0	59.0	7.	7.	100%
28 Mar 1986	57.7	105%	1.38	2%	60.0	56.0	7.	7.	100%
29 Mar 1986	58.9	107%	6.20	11%	65.0	45.0	8.	8.	100%
30 Mar 1986	56.4	103%	3.46	6%	60.0	52.0	7.	7.	100%
Summary	57.0	104%	4.31	8%	65.0	45.0	50.	50.	100%


Hexane - IRT (Mice)
Hexane - 200 ppm-R/M
Mean & Standard Deviation

Daily Summation For Hexane - IRT (Mice) From 24 Mar 1986 through 30 Mar 1986

Date	Summary Data for: Hexane -1000 ppm-R/M/Relative Humidity						40.0 to 70.0		
	Mean	% Target	Std Dev	% RSD	Maximum	Minimum	N	N in	% N in
24 Mar 1986	51.9	94%	3.24	6%	56.0	46.0	7.	7.	100%
25 Mar 1986	54.9	100%	5.11	9%	61.0	49.0	7.	7.	100%
26 Mar 1986	56.7	103%	2.21	4%	60.0	54.0	7.	7.	100%
27 Mar 1986	60.7	110%	2.81	5%	63.0	56.0	7.	7.	100%
28 Mar 1986	58.4	106%	2.30	4%	61.0	54.0	7.	7.	100%
29 Mar 1986	57.6	105%	7.29	13%	65.0	41.0	8.	8.	100%
30 Mar 1986	57.6	105%	3.95	7%	62.0	52.0	7.	7.	100%
Summary	56.8	103%	4.80	8%	65.0	41.0	50.	50.	100%

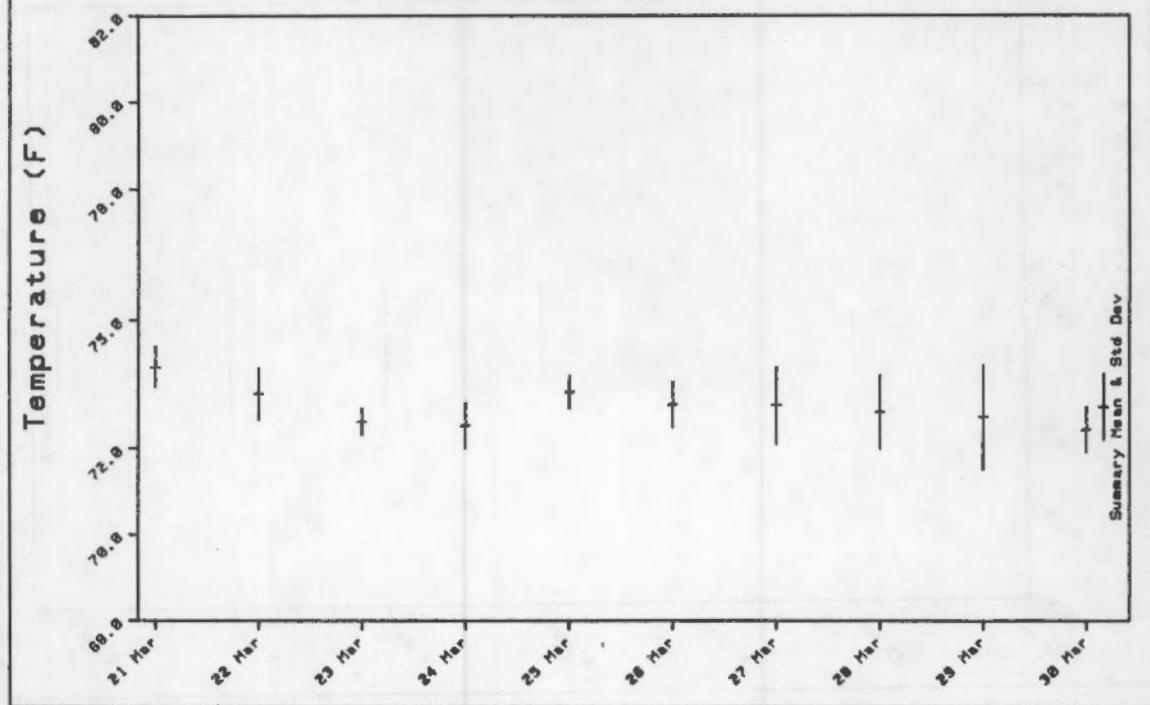
Hexane - IRT (Mice)
Hexane -1000 ppm-R/M
Mean & Standard Deviation



Daily Summation For Hexane - IRT (Mice) From 24 Mar 1986 through 30 Mar 1986

Summary Data for: Hexane -5000 ppm-R/M/Relative Humidity

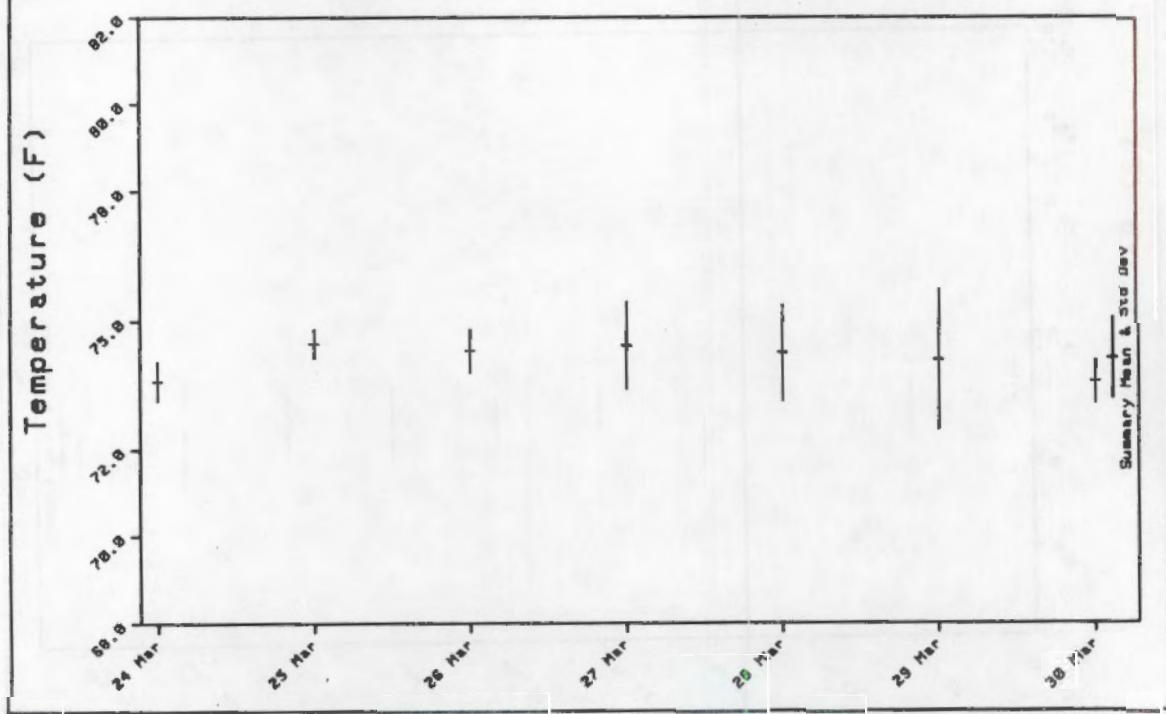
Date	Mean	% Target	Std Dev	% RSD	Maximum	Minimum	N	N in	40.0 to 70.0 % N in
24 Mar 1986	46.0	84%	6.06	13%	54.0	35.0	7.	6.	86%
25 Mar 1986	49.3	90%	4.75	10%	54.0	44.0	7.	7.	100%
26 Mar 1986	50.7	92%	2.36	5%	54.0	49.0	7.	7.	100%
27 Mar 1986	53.3	97%	2.29	4%	56.0	50.0	7.	7.	100%
28 Mar 1986	52.1	95%	3.13	6%	56.0	47.0	7.	7.	100%
29 Mar 1986	49.9	91%	5.28	11%	55.0	38.0	8.	7.	88%
30 Mar 1986	48.0	87%	3.83	8%	53.0	44.0	7.	7.	100%
Summary	49.9	91%	4.55	9%	56.0	35.0	50.	48.	96%


Hexane - IRT (Mice)
Hexane -5000 ppm-R/M
Mean & Standard Deviation

Daily Summation For Hexane - IRT (Mice) From 21 Mar 1986 through 30 Mar 1986

Date	Mean	% Target	Std Dev	% RSD	72.0 to 78.0				
					Maximum	Minimum	N	N in	% N in
21 Mar 1986	73.9	99%	.49	1%	74.7	73.4	6.	6.	100%
22 Mar 1986	73.3	98%	.61	1%	74.4	72.8	8.	8.	100%
23 Mar 1986	72.6	97%	.32	0%	73.2	72.2	7.	7.	100%
24 Mar 1986	72.6	97%	.55	1%	73.3	72.0	6.	6.	100%
25 Mar 1986	73.3	98%	.39	1%	73.8	72.8	7.	7.	100%
26 Mar 1986	73.0	97%	.53	1%	73.9	72.1	8.	8.	100%
27 Mar 1986	73.0	97%	.90	1%	74.5	72.1	7.	7.	100%
28 Mar 1986	72.9	97%	.86	1%	74.2	71.8	7.	6.	86%
29 Mar 1986	72.7	97%	1.23	2%	75.5	71.7	8.	6.	75%
30 Mar 1986	72.4	97%	.53	1%	73.2	71.7	7.	5.	71%
Summary	73.0	97%	.77	1%	75.5	71.7	71.	66.	93%

Hexane - IRT (Mice)
Hexane - 0 ppm-R/M
Mean & Standard Deviation

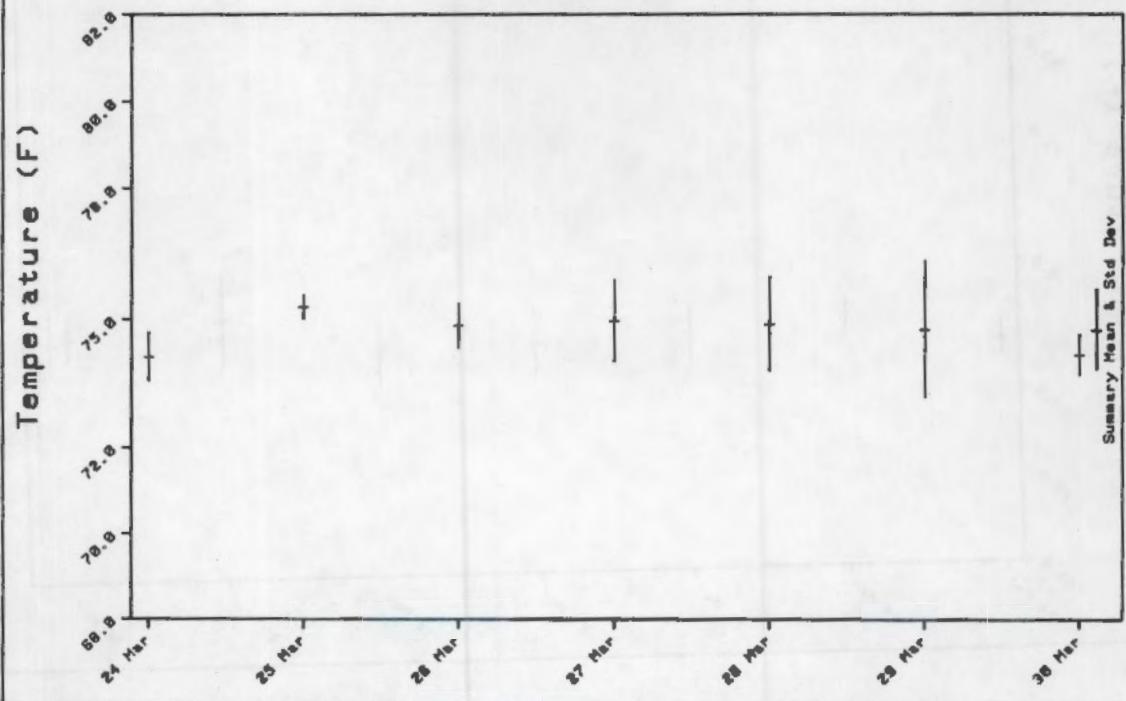


Daily Summation For Hexane - IRT (Mice) From 24 Mar 1986 through 30 Mar 1986

Summary Data for: Hexane - 200 ppm-R/M/Temperature

Date	Mean	% Target	Std Dev	% RSD	Maximum	Minimum	N	N in	72.0 to 78.0 % N in
24 Mar 1986	73.6	98%	.45	1%	74.3	73.2	5.	5.	100%
25 Mar 1986	74.5	99%	.34	0%	75.0	73.9	7.	7.	100%
26 Mar 1986	74.3	99%	.51	1%	75.1	73.5	8.	8.	100%
27 Mar 1986	74.4	99%	1.01	1%	76.1	73.3	7.	7.	100%
28 Mar 1986	74.3	99%	1.11	1%	75.9	72.9	7.	7.	100%
29 Mar 1986	74.1	99%	1.62	2%	77.8	72.8	8.	8.	100%
30 Mar 1986	73.6	98%	.48	1%	74.2	72.9	7.	7.	100%
Summary	74.1	99%	.93	1%	77.8	72.8	49.	49.	100%

Hexane - IRT (Mice)
Hexane - 200 ppm-R/M
Mean & Standard Deviation

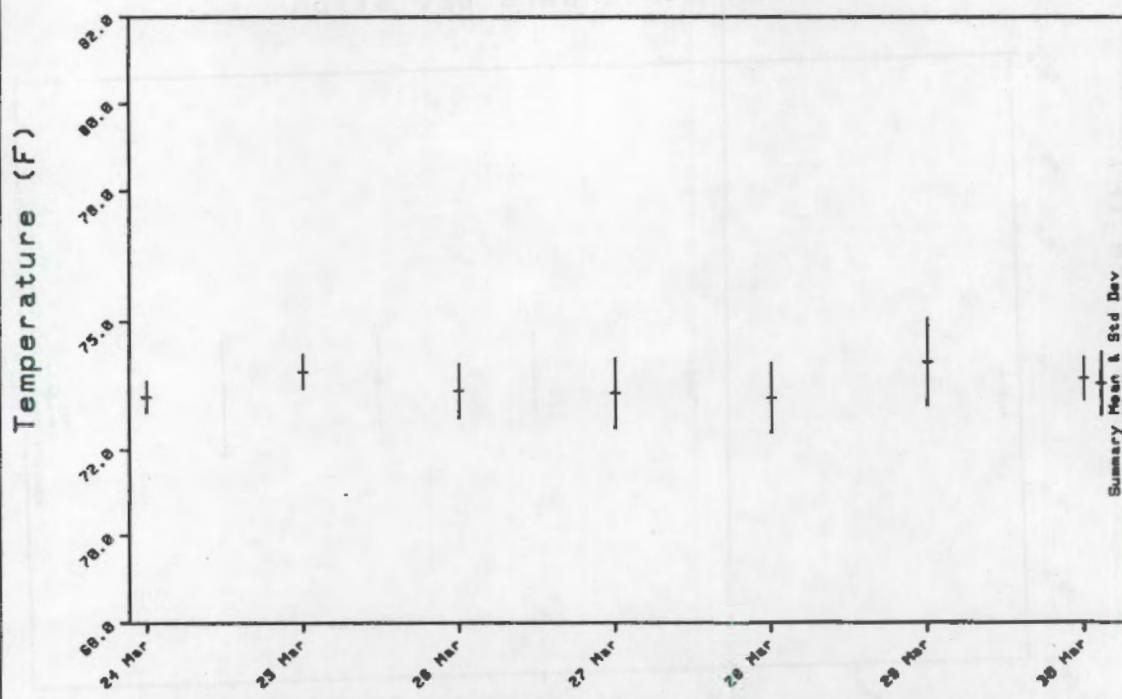


Daily Summation For Hexane - IRT (Mice) From 24 Mar 1986 through 30 Mar 1986

Summary Data for: Hexane -1000 ppm-R/M/Temperature

Date	Mean	% Target	Std Dev	% RSD	Maximum	Minimum	N	N in	% N in
24 Mar 1986	74.1	99%	.57	1%	75.0	73.6	5.	5.	100%
25 Mar 1986	75.3	100%	.27	0%	75.7	74.8	7.	7.	100%
26 Mar 1986	74.9	100%	.51	1%	75.7	74.0	8.	8.	100%
27 Mar 1986	75.0	100%	.94	1%	76.4	73.8	7.	7.	100%
28 Mar 1986	74.9	100%	1.09	1%	76.6	73.5	7.	7.	100%
29 Mar 1986	74.8	100%	1.59	2%	78.5	73.6	8.	7.	88%
30 Mar 1986	74.2	99%	.49	1%	74.9	73.5	7.	7.	100%
Summary	74.8	100%	.93	1%	78.5	73.5	49.	48.	98%

Hexane - IRT (Mice)
Hexane -1000 ppm-R/M
Mean & Standard Deviation



Daily Summation For Hexane - IRT (Mice) From 24 Mar 1986 through 30 Mar 1986

Summary Data for: Hexane -5000 ppm-R/M/Temperature

Date	Mean	% Target	Std Dev	% RSD	Maximum	Minimum	N	N in	% N in
24 Mar 1986	73.2	98%	.38	1%	73.8	72.8	5.	5.	100%
25 Mar 1986	73.8	98%	.40	1%	74.2	73.1	7.	7.	100%
26 Mar 1986	73.4	98%	.63	1%	74.1	72.4	8.	8.	100%
27 Mar 1986	73.3	98%	.81	1%	74.5	72.4	7.	7.	100%
28 Mar 1986	73.2	98%	.81	1%	74.3	72.1	7.	7.	100%
29 Mar 1986	74.0	99%	1.03	1%	76.4	73.2	8.	8.	100%
30 Mar 1986	73.7	98%	.50	1%	74.4	72.9	7.	7.	100%
Summary	73.5	98%	.73	1%	76.4	72.1	49.	49.	100%

Hexane - IRT (Mice)
Hexane -5000 ppm-R/M
Mean & Standard Deviation

EXPOSURE OPERATION DISCUSSION SHEET

INCLUDES DISCUSSIONS AND/OR EXPLANATIONS OF PROBLEMS AFFECTING ANIMAL ENVIRONMENT AND EXPOSURES. EXPLANATIONS ARE INCLUDED FOR DATA IN WHICH THERE WERE EXCURSIONS OF DAILY MEAN OR STANDARD DEVIATION BEYOND ALLOWABLE OPERATING LIMITS OR EXCURSIONS OF INDIVIDUAL DATUM BEYOND CRITICAL LIMITS.

STUDY: IRT n-Hexane Sperm Morphology/Dominant Lethal Exposure

REPORTING PERIOD: March 21-30, 1986

NOTE: 24 Hour Data Collection Period extends from 8:00 a.m. to 8:00 p.m.

COMPILED BY: Mark S. Clark

DATE: 5/5/86

CHAMBER CONCENTRATION

DATE	DISCUSSION OR EXPLANATION
3/24/86	We were unable to reach the high dose level (i.e. 5000 ppm) using the two pumps originally installed. The Operator was advised to maintain a concentration level of 4000 ppm throughout the exposure period until the situation could be resolved the following day by the installation of pumps with higher pumping capacity. At 22:45 the high dose chamber exceeded the lower critical operating limit (3200 ppm) because of a pump failure. Chamber concentration dropped to ~1450 ppm, the level maintainable by the second pump. At 00:26 the Specialist on call discovered a loose coupling on the failed pump and tightened. By 00:35 the chamber concentration had returned to specifications. Between 02:26 and 02:54 the second pump failed. The alarming system failed as well, so the Specialist on call was not notified. Chamber concentration dropped to ~2000 ppm. At 03:25 the computer communication failed and data was lost until the problem was discovered and corrected at 06:32.
3/25/86	New pumps were installed on the 5000 ppm dose chemical delivery system. This required establishing new pump setpoints so chamber concentration buildup took longer than normal, i.e. 45 minutes to achieve T ₉₀ vs the usual 12 minutes, this because the Operator was advised to approach the concentration level conservatively. No additional excursions were noted during this 20-hour exposure period.
3/27/86	Between 21:19 and 21:46 the pumps to the 5000 ppm chamber began to fail. Chamber concentration dropped to 516 ppm. The Exposure Specialist was alerted and changed out the pumps at 21:55. By 22:14 chamber concentration had returned to specs. The second pump was replaced a short time later, at 22:29, as a precautionary measure. Following this replacement, chamber concentration jumped to 5914 ppm, at 23:38, before the Specialist was able to set the proper flowrates and regain the operating concentration level. By 00:49 the exposure was again under control and no further excursions were reported during the remainder of the exposure period.

TEMPERATURE & RELATIVE HUMIDITY

DATE	DISCUSSION OR EXPLANATION
	No problems or excursions during this reporting period.

CHAMBER FLOW & VACUUM

DATE	DISCUSSION OR EXPLANATION
	No problems or excursions during this reporting period.

CHAMBER UNIFORMITY DATA SHEET

COMPOUND: IRTHEXANE

EXPOSURE ROOM NUMBER: 436

TPV MEASUREMENTS

CHAMBER DATE	5000 ppm		1000 ppm		200 ppm					
	MONITOR READING	%	MONITOR READING	%	MONITOR READING	%	MONITOR READING	%	MONITOR READING	%
BACK:	1B	791	99.6%	367	100.0%	232	103.9%			
	2B	801	100.8%	368	100.2%	222	99.4%			
	3B	791	99.6%	371	101.0%	224	100.3%			
	4B	804	101.2%	361	98.3%	211	94.5%			
	5B	803	101.1%	371	101.0%	225	100.8%			
	6B	805	101.3%	370	100.8%	223	99.9%			
	1F	792	99.7%	374	101.9%	227	101.7%			
	2F	780	98.2%	359	97.8%	220	98.5%			
	3F	795	100.1%	363	98.9%	230	103.0%			
	4F	783	98.6%	368	100.2%	218	97.6%			
FRONT:	5F	798	100.5%	366	99.7%	227	101.7%			
	6F	790	99.4%	368	100.2%	220	98.5%			
	MEAN:	794.4	100.0%	367.2	100.0%	223.3	100.0%			
	TPV:	8.10	1.0%	4.37	1.2%	5.67	2.5%			
	BPV:	//////////	≤0 %	//////////	1.2 %	//////////	1.8 %	//////////	//////////	

B.34

WPV MEASUREMENTS

IN-LINE	1st	801	100.5%	368	99.9%	232	101.0%		
		808	101.4%	368	99.9%	225	98.0%		
		781	98.0%	369	100.2%	232	101.0%		
MEAN:	796.7	100.0%	368.3	100.0%	229.7	100.0%			
WPV:	14.01	1.8%	0.58	0.2%	4.04	1.8%			

MONITOR TYPE: GC

SERIAL #: N809569

MONITOR DATA LOCATION:

COMMENTS: No animals in chambers, pre-exposure chamber balance, no deflector plate in chamber inlets
BNW 51192 pg 102

ENTERED BY:

RJW

DATE: 3/12/87

REVIEWED BY: Roland J. Weigel

DATE: 3/15/87

APPENDIX C

DEVELOPMENTAL TOXICOLOGY DATA

Dominant Lethal n-Hexane Study: Body Weights (g) for Male Mice

1

0 ppm n-Hexane

Male Pre-study Id	Exposure Wt	Day1 Wt	Pre-breeding Sacwt	Thymus Wt	Breeding								Post-breeding Sacwt
					Week1 Wt	Week2 Wt	Week3 Wt	Week4 Wt	Week5 Wt	Week6 Wt	Week7 Wt	Week8 Wt	
1765	36.6	37.4	38.4	0.016
1766	36.6	38.4	34.3	0.018
1768	37.6	38.4	40.0	0.011
1769	37.8	37.2	37.5	0.009
1720	39.0	39.0	39.6	0.022
1729	38.0	38.6	38.6	0.021
1739	38.6	39.0	38.1	0.087
1742	37.2	38.4	36.4	0.028
1751	31.4	32.0	33.0	0.030
1764	36.6	35.6	34.4	0.019
1765	36.2	36.6	.	.	39.6	39.6	38.6	39.6	40.2	39.2	38.8	.	.
1766	36.2	36.4	.	.	38.6	36.6	36.6	37.6	36.2	36.8	36.8	.	.
1767	40.4	40.8	.	.	41.6	40.0	40.6	40.6	42.4	41.2	40.6	.	.
1774	35.6	36.8	.	.	37.2	34.8	34.6	35.2	35.6	35.2	35.2	.	.
1778	35.4	36.0	.	.	37.0	36.8	36.8	36.2	36.2	37.2	36.8	.	.
1777	34.8	35.4	.	.	37.6	36.6	35.4	36.0	37.2	36.4	36.4	.	.
1779	37.6	36.8	.	.	41.2	38.6	39.6	39.6	40.6	39.4	39.6	40.2	42.1
1781	35.2	37.0	.	.	40.2	35.6	36.0	36.0	36.4	36.0	35.6	35.6	36.0
1787	38.6	40.0	.	.	43.0	41.6	41.6	41.4	42.6	41.6	41.4	41.6	43.4
1790	34.6	35.8	.	.	37.2	36.4	37.0	36.6	37.6	37.2	37.6	38.2	40.4
1791	34.6	35.4	.	.	37.6	37.0	37.2	37.6	39.0	39.4	39.2	38.8	40.7
1800	33.0	34.4	.	.	37.0	36.0	35.6	36.4	36.8	36.0	37.6	37.2	39.2
1801	40.6	42.0	.	.	43.4	40.6	40.6	41.6	40.8	41.2	41.4	42.0	43.2
1823	40.2	40.2	.	.	41.6	40.6	40.6	41.6	40.6	41.0	40.2	40.6	41.3
1826	36.0	35.8	.	.	37.4	36.6	36.6	36.6	36.6	37.0	37.6	36.8	39.3
1827	35.8	39.0	.	.	41.0	39.4	39.2	40.2	39.6	39.8	40.2	39.4	40.7
1829	32.2	33.6	.	.	36.4	35.6	35.2	36.6	36.6	36.2	34.6	36.8	37.2
1830	33.4	35.6	.	.	38.6	36.4	36.4	36.2	36.6	37.4	37.6	37.8	39.4
1832	34.0	35.4	.	.	37.2	36.6	36.6	36.6	37.2	36.6	36.6	38.2	39.6
1838	37.2	37.6	.	.	38.8	37.2	37.2	37.4	38.2	37.6	38.6	38.4	37.9

Dominant Lethal n-Hexane Study: Body Weights (g) for Male Mice

2

200 ppm n-Hexane

Male Pre-study Exposure Id	Day1	Pre-breeding	Thymus	Breeding Week1	Breeding Week2	Breeding Week3	Breeding Week4	Breeding Week5	Breeding Week6	Breeding Week7	Breeding Week8	Post-breeding Secwt
	Wt	Wt	Wt	Wt	Wt	Wt	Wt	Wt	Wt	Wt	Wt	Wt
1704	37.8	38.4	40.3	0.008
1715	39.0	39.4	39.8	0.022
1717	36.6	38.2	39.2	0.034
1726	36.6	36.8	36.8	0.035
1732	38.8	40.6	40.0	0.032
1733	33.4	33.6	33.2	0.038
1787	35.8	37.0	37.3	0.020
1738	37.8	39.2	36.1	0.044
1743	36.8	35.8	35.3	0.034
1747	40.4	41.6	40.7	0.035
1758	36.2	35.2	.	.	36.8	34.6	35.4	35.6	36.2	35.8	35.8	.
1782	32.6	34.2	.	.	36.8	36.8	35.8	35.8	36.0	36.0	36.6	.
1771	34.8	34.2	.	.	35.8	35.2	36.8	36.8	36.8	37.0	37.2	.
1773	37.8	37.6	.	.	39.4	38.6	38.4	39.0	39.0	39.2	38.4	.
1778	38.2	37.4	.	.	38.0	37.8	38.0	38.8	39.0	38.0	37.6	37.2
1782	35.0	35.2	.	.	37.8	35.8	36.0	36.4	36.2	35.2	34.2	34.0
1783	38.0	38.6	.	.	41.2	39.8	39.0	39.4	39.4	39.2	38.8	39.4
1795	35.8	36.0	.	.	36.2	35.2	35.0	35.4	35.8	35.2	34.8	36.7
1798	43.6	44.6	.	.	45.2	42.6	42.4	42.6	43.6	41.6	42.4	42.0
1802	34.6	35.4	.	.	38.0	35.8	35.4	37.0	37.4	37.2	38.4	38.4
1805	31.0	33.2	.	.	34.0	34.2	33.8	34.4	34.8	34.4	34.8	37.7
1809	35.8	36.0	.	.	38.2	37.8	37.4	38.8	39.0	39.0	39.4	39.6
1810	39.4	39.4	.	.	41.2	40.2	40.2	41.8	41.6	41.0	41.4	41.0
1818	37.0	36.4	.	.	39.0	38.2	37.8	37.8	38.0	38.0	38.4	39.9
1820	35.2	37.2	.	.	40.0	35.8	35.2	36.0	36.2	36.2	36.4	36.2
1822	34.0	34.0	.	.	36.2	35.6	37.0	36.8	36.2	36.0	37.0	39.3
1834	35.4	36.6	.	.	38.4	35.8	36.0	36.8	36.4	36.0	36.0	38.2
1837	37.2	37.6	.	.	38.0	37.6	38.2	37.8	38.0	38.2	38.6	40.3
1840	36.4	36.4	.	.	37.2	36.8	36.0	36.8	39.4	38.2	38.2	39.6
1841	32.6	35.6	.	.	36.4	34.2	34.0	34.8	36.2	34.8	36.0	47.6

C.2

Dominant Lethal n-Hexane Study: Body Weights (g) for Male Mice

3

----- 1000 ppm n-Hexane -----

Male Pre-study Id	Exposure Wt	Pre-breeding Day1 Wt	Thymus Sacwt	Breeding								Post-breeding Wt	Sacwt
				Week1 Wt	Week2 Wt	Week3 Wt	Week4 Wt	Week5 Wt	Week6 Wt	Week7 Wt	Week8 Wt		
1710	35.2	36.8	36.9	36.18
1711	32.4	33.2	34.7	36.021
1712	35.4	36.2	35.5	36.009
1713	34.4	35.6	34.6	36.025
1718	36.2	37.8	36.0	36.021
1725	40.4	40.2	40.0	36.038
1734	35.4	37.6	36.4	36.029
1741	36.8	37.0	36.6	36.038
1744	37.0	37.6	37.0	36.033
1750	31.4	32.4	31.4	36.027
1752	36.6	36.6	.	.	37.6	38.6	37.6	38.6	38.2	38.6	.	.	.
1757	34.8	34.8	.	.	35.8	34.8	34.2	35.0	35.0	34.2	34.2	.	.
1758	36.4	37.2	.	.	40.0	39.6	38.8	38.8	39.2	39.0	37.6	.	.
1784	36.8	38.4	.	.	39.8	40.8	40.0	40.2	41.0	40.0	40.4	41.6	43.2
1785	38.8	40.4	.	.	41.0	40.8	39.4	39.6	39.2	39.6	39.4	39.6	40.7
1786	37.6	38.2	.	.	41.0	39.0	39.6	39.6	39.8	39.8	39.2	40.0	42.4
1788	35.0	34.2	.	.	36.4	37.4	36.4	37.8	37.8	36.8	36.6	36.2	41.3
1792	37.4	36.4	.	.	38.6	38.6	38.8	37.4	37.6	39.0	38.2	38.6	40.6
1793	40.4	41.4	.	.	44.2	42.6	42.4	42.4	43.4	42.6	42.6	43.0	44.6
1798	38.2	38.6	.	.	40.6	40.6	39.2	40.0	40.2	40.6	39.6	38.6	40.5
1803	37.0	38.0	.	.	40.2	39.4	38.4	38.0	39.2	38.4	38.6	38.8	40.5
1813	33.4	34.6	.	.	34.4	32.8	32.2	32.6	33.0	32.4	33.4	34.2	34.7
1814	37.8	38.8	.	.	39.4	37.2	36.0	37.6	37.2	36.0	36.6	37.2	38.4
1815	35.8	37.0	.	.	39.2	36.8	36.8	38.0	38.4	37.0	37.6	37.4	37.3
1824	33.8	34.0	.	.	34.0	34.0	35.6	36.4	36.6	36.4	37.2	37.6	40.1
1825	37.2	38.2	.	.	40.0	37.8	38.0	39.2	39.6	40.0	40.0	38.6	39.7
1831	39.2	40.0	.	.	40.2	39.6	39.6	39.8	38.8	38.4	39.2	40.0	41.5
1833	33.2	33.6	.	.	34.4	34.4	34.8	36.0	34.6	35.6	36.4	37.6	37.1
1839	35.8	37.4	.	.	38.6	37.0	38.2	38.8	39.6	38.6	39.0	39.6	40.0
1842	40.0	42.8	.	.	44.8	42.8	43.6	42.8	44.2	43.4	45.0	46.2	37.1

C.3

Dominant Lethal n-Hexane Study: Body Weights (g) for Male Mice

4

----- 6000 ppm n-Hexane -----

Male Pre-study Id	Pre-breeding Wt	Exposure Day 1		Pre-breeding Thymus Wt		Breeding Week 1 Wt		Breeding Week 2 Wt		Breeding Week 3 Wt		Breeding Week 4 Wt		Breeding Week 5 Wt		Breeding Week 6 Wt		Breeding Week 7 Wt		Breeding Week 8 Wt		Post-breeding Sacwt
		Wt	Wt	Secwt	Wt	Wt	Wt															
1701	38.0	38.4	39.5	0.048
1702	36.2	37.4	38.0	0.028
1703	36.4	36.6	38.7	0.026
1707	37.4	38.6	34.0	0.027
1714	37.4	38.4	38.5	0.026
1716	38.2	37.0	31.4	0.024
1721	36.6	36.6	36.1	0.017
1723	34.0	33.8	34.1	0.040
1724	37.6	36.0	36.4	0.027
1728	41.2	41.6	41.3	0.036
1736	36.0	36.2	.	.	38.8	36.6	37.2	37.0	37.4	37.0	37.8	37.8	37.8	37.8	37.8	37.8	37.8	37.8	37.8	37.8	37.8	.
1749	36.6	39.4	.	.	40.6	40.0	39.0	39.4	38.6	39.0	38.8	38.8	38.8	38.8	38.8	38.8	38.8	38.8	38.8	38.8	38.8	.
1754	34.8	36.8	.	.	38.4	35.6	35.4	35.2	36.2	36.2	36.2	36.2	36.2	36.2	36.2	36.2	36.2	36.2	36.2	36.2	36.2	.
1755	31.6	32.8	.	.	36.0	33.4	34.0	34.6	36.6	36.6	36.6	36.6	36.6	36.6	36.6	36.6	36.6	36.6	36.6	36.6	36.6	.
1768	40.0	39.2	.	.	42.8	42.2	42.6	41.6	43.0	42.0	41.6	41.6	41.6	41.6	41.6	41.6	41.6	41.6	41.6	41.6	41.6	.
1769	37.8	37.2	.	.	38.0	36.6	36.8	37.2	37.6	37.6	37.6	37.6	37.6	37.6	37.6	37.6	37.6	37.6	37.6	37.6	37.6	.
1772	34.2	36.6	.	.	41.0	37.4	36.4	36.6	36.2	36.2	36.4	36.4	36.4	36.4	36.4	36.4	36.4	36.4	36.4	36.4	36.4	.
1780	35.6	36.2	.	.	38.2	38.2	38.0	37.4	38.2	38.2	38.0	38.0	38.0	38.0	38.0	38.0	38.0	38.0	38.0	38.0	38.0	41.7
1794	36.8	38.4	.	.	42.0	40.2	39.2	39.0	38.8	38.8	38.6	38.6	38.6	38.6	38.6	38.6	38.6	38.6	38.6	38.6	38.6	40.3
1797	34.6	35.4	.	.	38.0	36.8	35.4	35.0	35.6	35.6	35.6	35.6	35.6	35.6	35.6	35.6	35.6	35.6	35.6	35.6	35.6	.
1804	37.0	37.8	.	.	40.0	38.4	39.2	40.4	39.8	39.8	39.4	39.4	39.4	39.4	39.4	39.4	39.4	39.4	39.4	39.4	39.4	41.1
1806	32.6	34.6	.	.	37.4	37.0	36.0	36.6	36.6	36.6	35.8	36.4	37.0	37.4	37.4	37.4	37.4	37.4	37.4	37.4	37.4	36.9
1807	33.2	33.2	.	.	37.0	36.4	34.6	35.4	35.4	35.4	35.6	35.6	35.6	35.6	35.6	35.6	35.6	35.6	35.6	35.6	35.6	36.8
1808	39.0	39.6	.	.	42.4	41.0	40.2	40.2	40.4	40.4	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	41.1
1811	40.4	43.8	.	.	46.0	43.2	40.8	42.4	42.4	42.4	43.2	43.2	41.0	41.0	43.0	43.2	43.2	43.2	43.2	43.2	43.2	.
1812	33.0	33.6	.	.	36.2	36.0	34.8	35.2	36.2	36.2	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	35.4
1816	36.2	37.0	.	.	37.2	36.0	35.0	34.6	35.2	35.2	34.6	34.6	35.2	35.2	34.6	35.2	35.2	35.2	35.2	35.2	35.2	37.3
1817	35.4	36.6	.	.	38.0	36.4	37.2	37.6	37.6	37.6	37.4	37.4	36.2	36.2	37.2	37.2	37.2	37.2	37.2	37.2	37.2	38.3
1818	35.4	34.0	.	.	34.4	35.8	37.0	37.6	37.6	37.6	34.4	34.4	37.0	37.0	38.0	38.0	38.0	38.0	38.0	38.0	38.0	40.8
1828	35.0	34.8	.	.	37.0	37.0	36.4	36.4	36.4	36.4	35.2	35.2	35.2	35.2	35.2	35.2	35.2	35.2	35.2	35.2	35.2	39.8

Dominant Lethal n-Hexane Study: Male Reproductive Measures

1

----- 0 ppm n-Hexane -----

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1765	1	1878	1	12	12	0	0	0
1765	1	1879	1	13	12	1	0	0
1765	2	2041	1	12	10	1	1	0
1765	2	2042	1	14	13	0	1	0
1765	3	2235	1	11	8	0	3	0
1765	3	2242	1	14	13	0	1	0
1765	4	2398	1	12	12	0	0	0
1765	4	2397	1	11	11	0	0	0
1765	5	2503	1	16	15	0	0	0
1765	5	2568	1	10	9	1	0	0
1765	6	2720	1	15	15	0	0	0
1765	6	2723	1	15	14	0	1	0
1766	1	1880	1	10	9	1	0	0
1766	1	1881	1	13	13	0	0	0
1766	2	2043	1	9	8	1	0	0
1766	2	2044	1	11	11	0	0	0
1766	3	2230	1	10	9	0	1	0
1766	3	2244	1	13	12	1	0	0
1766	4	2405	1	12	12	0	0	0
1766	4	2409	1	16	16	0	0	0
1766	5	2564	1	14	13	0	1	0
1766	5	2565	1	12	11	0	1	0
1766	6	2722	1	15	15	0	0	0
1766	6	2727	0	.	.	0	0	0
1767	1	1883	1	14	14	0	0	0
1767	1	1884	1	13	13	0	0	0
1767	2	2045	1	14	10	4	0	0
1767	2	2046	1	7	5	1	1	0
1767	3	2241	1	15	14	1	0	0
1767	3	2243	1	10	10	0	0	0
1767	4	2400	1	11	11	0	0	0
1767	4	2410	1	15	15	0	0	0
1767	5	2567	1	9	9	0	0	0
1767	5	2568	0	.	.	0	0	0
1767	6	2726	1	11	11	0	0	0
1767	6	2730	1	13	11	2	0	0
1774	1	1855	1	13	12	1	0	0
1774	1	1856	1	14	13	1	0	0
1774	2	2017	1	15	14	1	0	0
1774	2	2018	1	11	11	0	0	0
1774	3	2251	1	10	10	0	0	0
1774	3	2257	1	12	11	1	0	0
1774	4	2414	1	12	12	0	0	0
1774	4	2422	1	14	14	0	0	0
1774	5	2670	1	10	10	0	0	0
1774	5	2677	1	13	12	0	1	0
1774	6	2736	1	13	12	1	0	0
1774	6	2737	1	9	8	1	2	0
1778	1	1867	1	14	13	1	0	0
1778	1	1868	0	.	.	0	0	0
1778	2	2019	1	15	13	2	0	0
1778	2	2020	1	13	13	0	0	0
1778	3	2264	1	13	12	1	0	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

2

----- 0 ppm n-Hexane -----

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1776	3	2258	1	11	10	1	0	0
1776	4	2415	1	12	11	1	0	0
1776	4	2423	0
1776	5	2581	1	14	14	0	0	0
1776	5	2584	1	18	18	0	0	0
1776	6	2735	1	17	16	1	0	0
1776	6	2743	1	12	12	0	0	0
1777	1	1859	1	18	14	1	1	0
1777	1	1860	1	12	12	0	0	0
1777	2	2021	1	15	15	0	0	0
1777	2	2022	1	12	11	1	0	0
1777	3	2247	1	11	11	0	0	0
1777	3	2253	1	13	13	0	0	0
1777	4	2413	1	9	9	0	0	0
1777	4	2417	1	18	16	0	0	0
1777	5	2589	1	14	14	0	0	0
1777	5	2591	1	11	10	1	1	0
1777	6	2742	1	12	11	0	0	0
1777	6	2753	1	18	15	1	0	0
1779	1	1863	1	13	12	1	0	0
1779	1	1864	1	6	3	2	0	0
1779	2	2055	1	10	8	2	0	0
1779	2	2056	1	11	11	0	0	0
1779	3	2267	1	13	12	1	1	0
1779	3	2268	1	11	10	0	0	0
1779	4	2416	1	15	14	1	0	0
1779	4	2419	1	10	9	1	1	0
1779	5	2583	1	12	12	0	0	0
1779	5	2586	1	11	11	0	0	0
1779	6	2749	1	14	13	1	0	0
1779	6	2751	1	18	14	0	0	0
1779	7	2936	1	12	12	0	0	0
1779	7	2944	1	11	10	1	0	0
1779	8	1265	1	11	11	0	0	0
1778	8	1266	1	12	11	1	0	0
1781	1	1867	1	18	16	0	0	0
1781	1	1888	1	12	12	0	0	0
1781	2	2059	1	15	15	0	0	0
1781	2	2060	1	11	11	0	0	0
1781	3	2264	1	13	13	0	0	0
1781	3	2265	1	9	9	0	0	0
1781	4	2425	1	14	14	0	0	0
1781	4	2433	1	15	14	1	0	0
1781	5	2588	1	11	11	0	0	0
1781	5	2596	1	11	11	0	0	0
1781	6	2747	1	10	8	1	1	0
1781	6	2755	1	18	14	2	0	0
1781	7	2942	1	13	13	0	0	0
1781	7	2947	1	18	18	0	0	0
1781	8	1261	1	11	11	0	0	0
1781	8	1262	1	8	7	1	0	0
1787	1	1911	1	16	15	1	1	0
1787	1	1912	1	12	11	1	0	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

3

--- 0 ppm n-Hexane ---

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1787	2	2872	1	12	11	0	1	0
1787	2	2873	1	17	16	1	0	0
1787	3	2273	1	12	12	0	0	0
1787	3	2279	1	12	12	0	0	0
1787	4	2486	1	13	12	1	0	0
1787	4	2442	1	13	12	0	1	0
1787	5	2593	1	13	13	0	0	0
1787	5	2597	1	12	11	0	1	0
1787	6	2783	1	12	12	0	0	0
1787	6	2785	0
1787	7	2948	1	10	10	0	0	0
1787	7	2953	1	12	11	1	0	0
1787	8	1249	1	11	11	0	0	0
1787	8	1250	1	14	12	0	2	0
1790	1	1915	1	13	13	0	0	0
1790	1	1916	1	14	14	0	0	0
1790	2	2878	1	14	14	0	0	0
1790	2	2077	1	14	14	0	0	0
1790	3	2277	0
1790	3	2281	1	12	12	0	0	0
1790	4	2439	1	14	11	3	0	0
1790	4	2448	1	13	13	0	0	0
1790	5	2613	1	10	10	0	0	0
1790	5	2818	1	9	8	1	0	0
1790	6	2786	0
1790	6	2775	0
1790	7	2952	1	14	13	0	1	0
1790	7	2967	1	10	9	1	0	0
1790	8	1245	1	9	9	0	0	0
1790	8	1246	1	12	10	1	1	0
1791	1	1917	1	15	12	3	0	0
1791	1	1918	1	12	10	2	0	0
1791	2	2078	1	12	12	0	0	0
1791	2	2079	1	11	11	0	0	0
1791	3	2285	1	12	11	1	0	0
1791	3	2288	1	15	14	0	1	0
1791	4	2443	1	17	17	0	0	0
1791	4	2444	1	14	14	0	0	0
1791	5	2808	1	9	8	0	1	0
1791	5	2815	1	11	11	0	0	0
1791	6	2788	1	12	11	0	1	0
1791	6	2771	1	13	13	0	0	0
1791	7	2988	1	10	9	1	0	0
1791	7	2987	1	12	12	0	0	0
1791	8	1242	0
1791	8	1244	0
1800	1	1933	1	16	14	0	1	0
1800	1	1934	1	13	12	0	1	0
1800	2	2094	1	15	14	0	1	0
1800	2	2095	1	17	17	0	0	0
1800	3	2296	1	12	12	0	0	0
1800	3	2299	1	14	14	0	0	0
1800	4	2464	1	12	12	0	0	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

4

----- 6 ppm n-Hexane -----

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1800	4	2489	1	16	14	0	1	0
1800	5	2618	1	13	12	1	0	0
1800	5	2621	1	12	12	0	0	0
1800	6	2786	1	11	11	0	0	0
1800	6	2787	1	12	12	0	0	0
1800	7	2979	1	11	10	1	0	0
1800	7	2980	1	13	12	1	0	0
1800	8	1825	1	13	10	2	1	0
1800	8	1826	1	12	12	0	0	0
1801	1	1935	1	15	15	0	0	0
1801	2	2698	0	.	.	2	0	0
1801	2	2697	1	11	9	2	0	0
1801	3	2380	1	14	14	0	0	0
1801	3	2383	1	13	13	0	0	0
1801	4	2461	1	14	14	0	0	0
1801	4	2462	0	.	.	0	0	0
1801	5	2623	1	11	10	1	0	0
1801	5	2632	1	16	9	0	0	0
1801	6	2782	1	14	14	0	0	0
1801	6	2788	1	13	12	0	1	0
1801	7	2971	1	13	13	0	0	0
1801	7	2974	1	12	12	0	0	0
1801	8	1823	0	.	.	0	0	0
1801	8	1824	0	.	.	1	0	0
1823	1	1977	1	14	13	0	0	0
1823	1	1978	1	14	14	0	0	0
1823	2	2139	0	.	.	0	0	0
1823	2	2140	0	.	.	0	0	0
1823	3	2346	1	14	11	0	0	0
1823	3	2349	1	16	10	0	1	0
1823	4	2501	1	13	12	0	0	0
1823	4	2504	0	.	.	0	0	0
1823	5	2664	0	.	.	0	0	0
1823	5	2687	0	.	.	0	0	0
1823	6	2825	0	.	.	0	0	0
1823	6	2830	0	.	.	0	0	0
1823	7	1373	1	12	12	0	0	0
1823	7	1374	1	12	12	0	0	0
1823	8	1237	1	12	9	2	1	0
1823	8	1238	0	.	.	0	0	0
1826	1	1983	1	13	9	0	4	0
1826	1	1984	1	11	11	0	0	0
1826	2	2145	1	12	10	2	0	0
1826	2	2147	1	13	12	1	0	0
1826	3	2341	1	13	13	0	0	0
1826	3	2350	1	14	12	2	0	0
1826	4	2507	1	11	11	0	0	0
1826	4	2513	1	13	12	1	0	0
1826	5	2675	1	6	5	1	0	0
1826	5	2683	1	13	12	1	0	0
1826	6	2824	1	14	11	2	1	0
1826	6	2842	1	13	12	1	0	0
1826	7	1378	0	.	.	0	0	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

6

--- 6 ppm n-Hexane ---

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1826	7	1383	1	14	12	0	2	0
1826	8	1231	1	10	9	1	0	0
1826	9	1232	1	11	10	1	0	0
1827	1	1985	1	13	11	1	1	0
1827	1	1986	1	14	12	2	0	0
1827	2	2148	1	13	13	0	0	0
1827	2	2149	1	12	9	0	3	0
1827	3	2842	1	13	13	0	0	0
1827	3	2351	1	12	12	0	0	0
1827	4	2511	1	11	11	0	0	0
1827	4	2514	1	11	10	1	0	0
1827	5	2879	1	12	12	0	0	0
1827	5	2685	1	10	9	1	0	0
1827	6	2837	1	13	13	0	0	0
1827	6	2846	1	12	12	0	0	0
1827	7	1381	1	11	11	0	0	0
1827	7	1384	1	8	8	0	0	0
1827	8	1229	1	10	10	0	0	0
1827	8	1236	1	11	11	0	0	0
1829	1	1989	0
1829	1	1990	1	14	14	0	0	0
1829	2	2151	1	10	10	0	0	0
1829	2	2152	1	9	9	0	0	0
1829	3	2359	0
1829	3	2364	1	13	11	1	1	0
1829	4	2508	1	13	12	1	0	0
1829	4	2517	1	12	11	1	0	0
1829	5	2680	1	13	11	1	1	0
1829	5	2682	1	9	8	1	0	0
1829	6	2839	1	12	11	1	0	0
1829	6	2841	1	11	8	3	0	0
1829	7	1388	1	11	11	0	0	0
1829	7	1389	1	12	12	0	0	0
1829	8	1225	1	9	8	1	0	0
1829	8	1226	1	13	12	1	0	0
1830	1	1991	1	15	15	0	0	0
1830	1	1992	1	13	12	1	0	0
1830	2	2153	1	11	11	0	0	0
1830	2	2154	1	12	11	1	0	0
1830	3	2355	1	13	12	0	0	0
1830	3	2357	1	11	11	1	0	0
1830	4	2522	1	13	12	0	0	0
1830	4	2529	1	8	8	0	0	0
1830	5	2676	1	12	11	1	0	0
1830	5	2684	0
1830	6	2844	1	13	12	0	1	0
1830	6	2845	1	14	11	2	1	0
1830	7	1365	1	13	13	0	0	0
1830	7	1367	1	13	12	1	0	0
1830	8	1222	1	13	13	0	0	0
1830	8	1224	1	14	14	0	0	0
1832	1	1995	1	17	15	0	2	0
1832	1	1996	1	14	13	1	0	0

C.9

Dominant Lethal n-Hexane Study: Male Reproductive Measures

6

----- 0 ppm n-Hexane -----

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1832	2	2157	1	18	12	1	0	6
1832	2	2158	1	18	12	1	0	0
1832	3	2863	1	18	9	1	0	0
1832	3	2864	1	18	13	0	0	0
1832	4	2526	1	11	11	0	0	0
1832	4	2526	1	11	10	1	0	0
1832	5	2896	1	12	12	0	0	0
1832	5	2897	1	9	9	0	0	0
1832	6	2848	0
1832	6	2858	0
1832	7	1361	0
1832	7	1872	1	12	10	2	0	0
1832	8	1219	1	18	13	0	0	0
1832	8	1220	0
1838	1	2003	1	18	12	1	0	0
1838	1	2004	1	10	10	0	0	0
1838	2	2166	1	18	13	0	0	0
1838	2	2166	1	18	8	2	0	0
1838	3	2368	1	18	9	1	0	0
1838	3	2373	1	10	10	0	0	0
1838	4	2538	0
1838	4	2540	1	15	16	0	0	0
1838	5	2891	1	14	12	1	0	0
1838	5	2895	1	12	12	0	0	0
1838	6	2863	1	11	11	0	0	0
1838	6	2864	1	13	13	0	0	0
1838	7	1360	1	11	11	0	0	0
1838	7	1357	1	9	9	0	0	0
1838	8	1209	1	18	15	1	0	0
1838	8	1210	1	11	10	1	0	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

7

----- 200 ppm n-Hexane -----

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1756	1	1901	1	13	10	2	1	0
1756	1	1902	1	12	12	0	0	0
1756	2	2033	1	13	7	5	1	0
1756	2	2034	1	13	13	0	0	0
1756	3	2223	1	13	11	2	0	0
1756	3	2229	1	13	13	0	0	0
1756	4	2391	1	9	9	0	0	0
1756	4	2398	0
1756	5	2554	1	13	13	0	0	0
1756	5	2556	1	11	11	0	0	0
1756	6	2713	1	9	9	0	0	0
1756	8	2718	1	12	12	0	0	0
1762	1	1876	1	13	12	1	0	0
1762	1	1877	1	12	12	0	0	0
1762	2	2039	1	11	10	1	0	0
1762	2	2040	1	12	12	0	0	0
1762	3	2281	1	8	7	1	0	0
1762	3	2283	1	11	8	3	0	0
1762	4	2394	1	15	13	0	2	0
1762	4	2395	1	13	13	0	0	0
1762	5	2559	1	11	11	0	0	0
1762	5	2562	1	12	12	0	0	0
1762	6	2721	1	13	13	0	0	0
1762	8	2725	1	13	13	0	0	0
1771	1	1849	0	.	.	.	0	0
1771	1	1850	1	12	11	1	0	0
1771	2	2051	0	.	.	.	1	0
1771	2	2052	1	15	14	0	0	0
1771	3	2239	1	11	11	0	0	0
1771	3	2246	1	9	9	0	0	0
1771	4	2402	1	13	11	1	0	0
1771	4	2411	1	11	9	2	0	0
1771	5	2575	1	10	10	0	0	0
1771	5	2578	1	10	10	0	0	0
1771	6	2734	1	12	11	1	0	0
1771	6	2738	0	.	.	.	0	0
1773	1	1853	1	16	16	0	0	0
1773	1	1854	1	16	12	4	0	0
1773	2	2015	1	16	16	0	0	0
1773	2	2018	1	13	13	0	0	0
1773	3	2249	1	13	13	0	0	0
1773	3	2255	1	15	15	0	0	0
1773	4	2416	1	14	12	2	0	0
1773	4	2421	1	10	10	0	0	0
1773	5	2578	1	14	14	0	0	0
1773	5	2574	1	9	8	1	0	0
1773	6	2739	1	12	8	3	1	0
1773	6	2740	0	.	.	.	0	0
1778	1	1881	1	17	17	0	0	0
1778	1	1882	1	13	13	0	0	0
1778	2	2053	1	17	16	1	0	0
1778	2	2054	1	12	11	1	0	0
1778	3	2252	1	16	16	0	0	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

8

200 ppm n-Hexane

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1778	3	2269	1	9	9	0	0	0
1778	4	2412	1	12	11	1	1	0
1778	4	2420	1	14	13	0	0	0
1778	5	2687	1	11	11	0	0	0
1778	5	2692	1	9	9	0	0	0
1778	6	2744	1	12	10	0	2	0
1778	6	2762	1	12	12	0	0	0
1778	7	2931	1	13	13	0	0	0
1778	7	2937	0	0	0	0	0	0
1778	8	1267	0	0	0	0	0	0
1778	8	1268	0	0	0	0	0	0
1782	1	1869	1	11	10	0	1	0
1782	1	1870	1	11	10	0	0	0
1782	2	2061	1	16	13	0	0	0
1782	2	2062	0	0	0	0	0	0
1782	3	2266	1	14	14	0	0	0
1782	3	2278	1	11	11	0	0	0
1782	4	2424	1	14	13	0	1	0
1782	4	2432	1	14	14	0	0	0
1782	5	2600	1	10	10	0	0	0
1782	5	2603	0	0	0	0	0	0
1782	6	2748	1	12	11	0	0	0
1782	6	2750	1	17	17	0	0	0
1782	7	2938	1	16	16	0	0	0
1782	7	2946	1	16	16	0	0	0
1782	8	1259	0	0	0	0	0	0
1782	8	1260	1	9	9	0	0	0
1783	1	1871	1	14	14	0	0	0
1783	1	1872	1	14	14	0	0	0
1783	2	2063	1	17	16	0	0	0
1783	2	2064	1	14	14	0	0	0
1783	3	2262	1	8	6	0	0	0
1783	3	2263	1	12	11	0	0	0
1783	4	2426	1	2	1	0	0	0
1783	4	2430	1	15	14	0	0	0
1783	5	2685	1	11	10	0	0	0
1783	5	2699	1	10	10	0	0	0
1783	6	2746	1	11	11	0	0	0
1783	6	2758	1	14	13	0	0	0
1783	7	2940	1	11	11	0	0	0
1783	7	2943	1	12	11	0	0	0
1783	8	1267	1	11	11	0	0	0
1783	8	1268	1	12	12	0	0	0
1795	1	1925	1	18	13	0	1	0
1795	1	1926	1	15	13	0	0	0
1795	2	2086	1	12	11	0	0	0
1795	2	2087	1	13	13	0	0	0
1795	3	2284	1	16	13	0	0	0
1795	3	2289	1	13	13	0	0	0
1795	4	2448	1	14	14	0	0	0
1795	4	2461	1	11	10	0	0	0
1795	5	2617	1	12	12	0	0	0
1795	6	2619	1	10	9	1	0	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

9

--- 200 ppm n-Hexane ---

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1795	6	2778	1	12	10	2	0	0
1795	6	2779	1	12	12	0	0	0
1795	7	2959	1	14	13	1	0	0
1795	7	2965	1	12	12	0	0	0
1795	8	1388	1	11	11	0	0	0
1795	8	1384	1	12	12	0	0	0
1796	1	1927	1	13	10	3	0	0
1796	1	1928	1	12	10	1	1	0
1796	2	2088	1	13	13	0	0	0
1796	2	2089	1	15	13	1	1	0
1796	3	2298	1	11	7	2	2	0
1796	3	2297	1	14	13	0	1	0
1796	4	2447	1	13	13	0	0	0
1796	4	2456	0	0	0	0	0	0
1796	5	2626	1	10	10	0	0	0
1796	6	2627	1	9	7	2	0	0
1796	6	2777	1	11	10	0	1	0
1796	6	2783	1	12	11	1	0	0
1796	7	2969	1	10	10	0	0	0
1796	7	2973	1	7	6	1	0	0
1796	8	1381	1	12	10	1	1	0
1796	8	1382	1	9	9	0	0	0
1802	1	1937	1	14	14	0	0	0
1802	1	1938	1	14	13	1	0	0
1802	2	2098	1	14	14	0	0	0
1802	2	2099	1	14	12	0	2	0
1802	3	2294	1	15	14	0	1	0
1802	3	2295	1	11	11	0	0	0
1802	4	2463	1	13	10	0	3	0
1802	4	2476	1	12	12	0	0	0
1802	5	2631	1	12	12	0	0	0
1802	5	2638	1	12	8	4	0	0
1802	6	2780	1	17	16	1	0	0
1802	6	2785	1	14	14	0	0	0
1802	7	2978	1	13	12	1	0	0
1802	7	2981	1	11	9	1	1	0
1802	8	1321	1	13	13	0	0	0
1802	8	1322	1	14	9	0	5	0
1805	1	1943	0	0	0	0	0	0
1805	1	1944	1	13	12	0	1	0
1805	2	2104	1	12	12	0	0	0
1805	2	2105	1	12	12	0	0	0
1805	3	2310	1	14	14	0	0	0
1805	3	2314	1	15	15	0	0	0
1805	4	2459	0	0	0	0	0	0
1805	4	2473	0	0	0	0	0	0
1805	5	2629	1	12	9	2	1	0
1805	5	2637	1	14	11	3	0	0
1805	6	2791	1	14	13	1	0	0
1805	6	2794	1	14	11	3	0	0
1805	7	2984	1	13	13	0	0	0
1805	7	2987	1	15	15	0	0	0
1805	8	1315	1	14	12	2	0	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

10

----- 200 ppm n-Hexane -----

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1805	8	1816	1	14	13	0	1	0
1809	1	1951	1	14	14	0	0	0
1809	1	1952	1	15	14	1	0	0
1809	2	2112	1	11	10	0	1	0
1809	2	2113	1	17	17	0	0	0
1809	3	2316	1	11	10	1	0	0
1809	3	2818	1	13	12	1	0	0
1809	4	2477	1	12	10	2	0	0
1809	4	2479	1	12	10	2	0	0
1809	5	2642	1	11	11	0	0	0
1809	5	2649	1	9	9	0	0	0
1809	6	2804	1	14	14	0	0	0
1809	6	2812	1	9	9	0	0	0
1809	7	2963	1	11	11	0	0	0
1809	7	2997	0
1809	8	1307	1	10	9	1	0	0
1809	8	1308	1	9	8	1	0	0
1810	1	1953	1	13	11	2	0	0
1810	1	1954	1	12	11	1	0	0
1810	2	2114	1	16	15	0	1	0
1810	2	2118	1	14	14	0	0	0
1810	3	2817	1	13	13	0	0	0
1810	3	2821	1	16	12	3	1	0
1810	4	2460	1	13	13	0	0	0
1810	4	2462	1	15	13	2	0	0
1810	5	2641	1	18	18	0	0	0
1810	5	2647	1	15	14	0	1	0
1810	6	2802	1	9	7	2	0	0
1810	6	2805	1	15	15	0	0	0
1810	7	1397	1	16	14	1	1	0
1810	7	2995	1	14	14	0	0	0
1810	8	1300	1	13	13	0	0	0
1810	8	1306	1	9	7	2	0	0
1810	1	1969	1	11	8	2	1	0
1810	1	1970	1	11	10	0	1	0
1810	2	2181	1	13	12	1	0	0
1810	2	2132	1	16	16	0	0	0
1810	3	2330	1	18	15	1	0	0
1810	3	2334	1	17	17	0	0	0
1810	4	2496	1	14	14	0	0	0
1810	4	2500	1	10	9	1	0	0
1810	5	2655	1	16	16	0	0	0
1810	5	2658	1	13	12	1	0	0
1810	6	2821	1	14	14	0	0	0
1810	6	2823	1	10	9	1	0	0
1810	7	1985	1	11	11	0	0	0
1810	7	1307	1	11	11	0	0	0
1810	8	1290	1	10	10	0	0	0
1810	8	1291	1	13	13	0	0	0
1820	1	1973	1	12	12	0	0	0
1820	2	2135	1	15	14	0	1	0
1820	2	2136	1	12	12	0	0	0
1820	3	2331	1	12	12	0	0	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

11

----- 200 ppm n-Hexane -----

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1820	3	2337	1	16	16	0	0	0
1820	4	2497	1	11	11	0	0	0
1820	4	2498	1	12	11	1	0	0
1820	5	2665	1	14	12	0	2	0
1820	5	2669	1	8	8	0	0	0
1820	6	2828	1	12	11	1	0	0
1820	6	2827	1	10	9	0	1	0
1820	7	1886	1	12	12	0	0	0
1820	7	1891	0
1820	8	1286	1	10	9	1	0	0
1820	8	1281	1	9	9	0	0	0
1822	1	1975	0
1822	1	1976	1	14	12	2	0	0
1822	2	2137	1	13	13	0	0	0
1822	2	2138	1	11	11	0	0	0
1822	3	2843	0
1822	3	2345	1	13	13	0	0	0
1822	4	2503	1	15	14	1	0	0
1822	4	2505	1	12	11	1	0	0
1822	5	2668	1	13	13	0	0	0
1822	5	2673	1	7	7	0	0	0
1822	6	2884	1	15	15	0	0	0
1822	6	2935	1	14	14	0	0	0
1822	7	1386	0
1822	7	1382	1	13	11	2	0	0
1822	8	1278	0
1822	8	1279	1	11	11	0	0	0
1834	1	1999	1	10	10	0	0	0
1834	1	2000	1	14	13	1	0	0
1834	2	2161	1	6	6	0	0	0
1834	2	2162	1	10	14	2	0	0
1834	3	2370	1	10	10	0	0	0
1834	3	2372	1	11	11	0	0	0
1834	4	2524	1	14	14	0	0	0
1834	4	2527	1	10	10	0	0	0
1834	5	2688	0
1834	5	2689	1	13	12	1	0	0
1834	6	2851	1	12	11	1	0	0
1834	6	2857	1	11	11	0	0	0
1834	7	1355	1	15	15	0	0	0
1834	7	1360	1	12	12	0	0	0
1834	8	1215	1	7	7	0	0	0
1834	8	1216	1	12	12	0	0	0
1837	1	2001	1	13	13	0	0	0
1837	1	2002	1	14	13	1	0	0
1837	2	2163	1	6	3	3	0	0
1837	2	2164	1	13	12	1	0	0
1837	3	2365	1	7	7	0	0	0
1837	3	2367	1	13	13	0	0	0
1837	4	2521	1	11	11	0	0	0
1837	4	2526	1	16	16	0	0	0
1837	5	2693	0
1837	6	2694	1	11	11	0	0	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

12

200 ppm n-Hexane

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1837	6	2852	1	12	12	0	0	0
1837	6	2855	1	11	11	0	0	0
1837	7	1858	1	10	10	0	0	0
1837	7	1859	1	10	8	2	0	0
1837	8	1213	1	15	15	0	0	0
1837	8	1214	1	14	12	2	0	0
1840	1	2007	1	13	9	2	2	0
1840	1	2008	1	12	11	0	1	0
1840	2	2169	1	8	6	0	0	0
1840	2	2170	1	12	8	5	1	0
1840	3	2369	1	11	10	0	1	0
1840	3	2371	1	12	12	0	0	0
1840	4	2635	1	5	5	0	0	0
1840	4	2539	1	11	10	1	0	0
1840	5	2706	1	15	14	1	0	0
1840	5	2708	0
1840	6	2950	1	11	11	0	0	0
1840	6	2860	1	10	8	2	0	0
1840	7	1352	1	14	14	0	0	0
1840	7	1363	1	13	12	0	0	0
1840	8	1205	1	9	9	0	0	0
1840	8	1211	1	11	10	1	0	0
1841	1	2009	1	14	14	0	0	0
1841	1	2010	1	13	18	0	0	0
1841	2	2171	1	12	12	0	0	0
1841	2	2172	1	13	13	0	0	0
1841	3	2374	1	14	14	0	0	0
1841	3	2376	0
1841	4	2631	1	15	15	0	0	0
1841	4	2537	1	10	10	0	0	0
1841	5	2704	1	16	13	3	0	0
1841	5	2706	1	10	10	0	0	0
1841	6	2869	0
1841	6	2870	1	13	12	0	1	0
1841	7	1351	1	14	14	0	1	0
1841	7	1354	1	11	10	0	1	0
1841	8	1206	1	10	8	2	2	0
1841	8	1207	1	7	7	0	0	0

C.16

Dominant Lethal n-Hexane Study: Male Reproductive Measures

13

1000 ppm n-Hexane

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1752	1	1895	1	14	13	0	1	0
1752	1	1896	1	13	9	3	1	0
1752	2	2027	1	14	13	0	1	0
1752	2	2028	0
1752	3	2221	1	18	18	0	0	0
1752	3	2222	1	11	9	1	1	0
1752	4	2388	1	13	13	0	0	0
1752	4	2387	1	13	12	0	1	0
1752	5	2548	1	12	12	0	0	0
1752	6	2549	1	12	12	0	0	0
1752	8	2717	1	9	6	0	0	0
1752	8	2718	1	14	13	1	0	0
1757	1	1903	1	16	16	0	0	0
1757	1	1904	1	15	15	0	0	0
1757	2	2035	1	14	13	1	0	0
1757	2	2036	1	13	12	0	1	0
1757	3	2224	1	12	12	0	0	0
1757	3	2228	1	10	9	0	1	0
1757	4	2388	1	12	12	0	0	0
1757	4	2392	1	13	13	0	0	0
1757	5	2568	1	12	11	1	0	0
1757	5	2581	1	12	11	1	0	0
1757	8	2711	1	18	11	2	0	0
1757	8	2718	1	12	12	0	0	0
1768	1	1874	1	9	7	2	0	0
1768	1	1875	1	5	5	0	0	0
1768	2	2037	1	11	11	0	0	0
1768	2	2038	1	1	1	0	0	0
1768	3	2232	1	3	3	0	0	0
1768	3	2234	0
1768	4	2389	1	11	11	0	0	0
1768	4	2393	0
1768	5	2567	1	9	8	1	0	0
1768	5	2588	1	10	9	0	1	0
1768	6	2710	1	14	14	0	0	0
1768	6	2726	1	12	12	0	0	0
1784	1	1905	0
1784	1	1906	0
1784	2	2066	0
1784	3	2261	1	10	10	0	0	0
1784	3	2276	0
1784	4	2428	1	15	14	1	0	0
1784	4	2435	0
1784	5	2595	0
1784	5	2604	0
1784	6	2780	0
1784	6	2781	0
1784	7	2946	0
1784	7	2951	0
1784	8	1255	0
1784	8	1256	0
1785	1	1907	1	16	16	0	0	0
1785	1	1908	1	14	14	0	0	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

14

----- 1000 ppm n-Hexane -----

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1785	2	2067	1	13	12	1	0	0
1785	2	2069	1	13	10	1	2	0
1785	3	2271	1	8	7	0	0	0
1785	3	2274	1	10	10	0	0	0
1785	4	2427	1	18	16	0	0	0
1785	4	2429	1	14	13	1	0	0
1785	5	2594	1	15	11	0	0	0
1785	5	2802	1	11	10	1	1	0
1785	6	2766	1	12	11	0	0	0
1785	6	2762	1	12	12	0	0	0
1785	7	2950	0	.	.	0	0	0
1785	7	2956	1	12	11	0	0	0
1785	8	1253	1	11	11	0	0	0
1785	8	1254	1	9	8	1	0	0
1786	1	1909	1	18	16	0	1	0
1786	1	1910	1	13	12	0	0	0
1786	2	2070	1	14	12	0	0	0
1786	2	2071	0	.	.	0	0	0
1786	3	2272	1	12	12	0	0	0
1786	3	2260	1	13	13	0	0	0
1786	4	2440	1	13	13	0	1	0
1786	4	2445	1	15	14	0	0	0
1786	5	2598	1	11	11	0	0	0
1786	5	2601	1	10	10	0	0	0
1786	6	2757	1	12	12	0	0	0
1786	6	2769	1	11	11	0	0	0
1786	7	2954	1	10	10	0	0	0
1786	7	2955	1	13	12	0	1	0
1786	8	1251	1	14	9	0	0	0
1786	8	1252	1	15	15	0	0	0
1788	1	1913	1	13	13	0	0	0
1788	1	1914	1	12	11	0	0	0
1788	2	2074	1	14	14	0	0	0
1788	2	2075	1	18	13	0	0	0
1788	3	2276	0	.	.	0	0	0
1788	3	2278	1	10	10	0	0	0
1788	4	2437	1	11	10	0	0	0
1788	4	2438	1	12	12	0	0	0
1788	5	2609	1	12	12	0	0	0
1788	5	2612	1	12	12	0	0	0
1788	6	2764	1	10	10	0	0	0
1788	6	2767	1	11	11	0	0	0
1788	7	2949	1	15	14	0	0	0
1788	7	2958	1	13	12	0	1	0
1788	8	1247	1	13	13	0	0	0
1788	8	1248	1	11	10	0	1	0
1792	1	1919	1	12	11	0	0	0
1792	1	1920	1	14	13	0	0	0
1792	2	2080	1	16	15	0	1	0
1792	2	2081	1	14	14	0	0	0
1792	3	2286	0	.	.	0	0	0
1792	3	2287	1	12	8	1	0	0
1792	4	2441	1	12	11	0	0	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

15

----- 1000 ppm n-Hexane -----

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1792	4	2459	1	12	12	0	0	0
1792	5	2616	1	9	9	0	0	0
1792	5	2611	1	14	14	0	0	0
1792	6	2773	1	13	13	0	0	0
1792	6	2774	1	13	13	0	0	0
1792	7	2961	1	12	12	0	0	0
1792	7	2963	1	12	9	2	1	0
1792	8	1241	1	12	12	0	0	0
1792	8	1243	1	12	12	0	0	0
1793	1	1921	1	12	12	0	0	0
1793	1	1922	1	16	15	0	0	0
1793	2	2062	1	15	14	1	0	0
1793	2	2069	1	15	9	1	5	0
1793	3	2282	1	14	13	1	0	0
1793	3	2283	1	11	11	0	0	0
1793	4	2450	1	13	13	0	0	0
1793	4	2458	0
1793	5	2606	1	13	12	1	0	0
1793	5	2614	1	12	12	0	0	0
1793	6	2769	1	12	11	0	1	0
1793	6	2770	1	11	10	1	0	0
1793	7	2984	1	7	7	0	0	0
1793	7	2968	1	12	12	0	0	0
1793	8	1239	1	9	9	0	0	0
1793	8	1240	1	6	6	0	0	0
1798	1	1931	0
1798	1	1932	1	13	13	0	0	0
1798	2	2092	1	15	14	0	1	0
1798	2	2093	1	11	11	0	0	0
1798	3	2302	1	14	14	0	0	0
1798	3	2304	1	12	11	1	0	0
1798	4	2449	1	15	15	0	0	0
1798	4	2468	0
1798	5	2620	1	10	9	0	1	0
1798	5	2626	1	9	7	1	0	0
1798	6	2789	1	14	14	0	0	0
1798	6	2790	1	9	9	0	0	0
1798	7	2975	1	14	12	2	0	0
1798	7	2976	1	15	15	0	0	0
1798	8	1327	1	12	12	0	0	0
1798	8	1328	1	13	13	0	0	0
1803	1	1939	1	14	10	3	1	0
1803	1	1940	1	8	8	0	0	0
1803	2	2100	1	19	18	0	0	0
1803	2	2101	1	12	11	1	0	0
1803	3	2301	1	15	14	1	0	0
1803	3	2313	1	12	11	1	0	0
1803	4	2460	1	12	10	1	1	0
1803	4	2465	1	11	10	1	0	0
1803	5	2620	1	12	11	1	0	0
1803	5	2636	1	14	13	0	1	0
1803	6	2797	1	11	11	0	0	0
1803	6	2799	0

C.19

Dominant Lethal n-Hexane Study: Male Reproductive Measures

18

----- 1000 ppm n-Hexane -----

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1803	7	2976	1	14	12	0	2	0
1803	7	2988	1	14	11	1	2	0
1803	8	1819	1	9	9	0	0	0
1803	8	1820	1	11	10	1	0	0
1813	1	1959	1	15	15	0	0	0
1813	1	1960	1	12	11	0	1	0
1813	2	2121	0
1813	2	2122	0
1813	3	2322	1	12	12	0	0	0
1813	3	2328	1	10	10	0	0	0
1813	4	2484	1	10	7	3	0	0
1813	4	2492	1	10	9	1	0	0
1813	5	2844	1	9	7	0	2	0
1813	5	2856	1	11	10	0	1	0
1813	6	2803	1	10	10	0	0	0
1813	6	2806	1	11	10	1	0	0
1813	7	1399	1	13	10	3	0	0
1813	7	2996	1	13	9	2	2	0
1813	8	1294	1	13	12	1	0	0
1813	8	1295	1	12	9	2	1	0
1814	1	1961	1	14	12	1	0	0
1814	1	1962	1	15	14	0	0	0
1814	2	2123	1	14	14	0	0	0
1814	2	2124	1	14	13	1	0	0
1814	3	2324	1	15	15	0	0	0
1814	3	2827	1	10	7	2	1	0
1814	4	2485	1	12	12	0	0	0
1814	4	2487	1	13	12	1	0	0
1814	5	2859	1	13	10	2	1	0
1814	5	2662	1	12	11	1	0	0
1814	6	2815	1	12	13	5	0	0
1814	6	2816	1	14	14	0	0	0
1814	7	1396	1	13	12	0	1	0
1814	7	1398	1	11	11	0	0	0
1814	8	1292	1	10	10	0	0	0
1814	8	1293	1	12	11	0	1	0
1815	1	1963	1	15	15	0	0	0
1815	1	1984	1	12	12	0	0	0
1815	2	2125	1	13	12	1	0	0
1815	2	2126	1	12	11	0	1	0
1815	3	2328	1	12	11	1	0	0
1815	3	2329	1	14	14	0	0	0
1815	4	2489	1	12	12	0	0	0
1815	4	2490	1	14	14	0	0	0
1815	5	2652	1	11	10	1	0	0
1815	5	2661	1	11	10	1	0	0
1815	6	2818	1	11	11	0	0	0
1815	6	2820	0	.	.	0	0	0
1815	7	1395	1	12	12	0	0	0
1815	7	2999	1	14	14	0	0	0
1815	8	1284	1	12	11	1	0	0
1815	8	1285	1	12	12	0	0	0
1824	1	1979	1	13	12	0	1	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

17

----- 1000 ppm n-Hexane -----

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1824	1	1980	1	14	14	0	0	0
1824	2	2141	1	14	14	0	0	0
1824	2	2142	1	11	9	1	1	0
1824	3	2347	1	13	12	1	0	0
1824	3	2348	1	9	8	1	2	0
1824	4	2510	1	12	11	0	1	0
1824	4	2510	1	3	3	0	0	0
1824	5	2668	1	9	9	0	0	0
1824	5	2671	1	15	15	0	0	0
1824	6	2681	1	14	13	1	0	0
1824	8	2836	1	12	12	0	0	0
1824	7	1377	1	14	14	0	0	0
1824	7	1378	0
1824	8	1286	0
1824	8	1236	1	13	13	0	0	0
1825	1	1981	0
1825	1	1982	0
1825	2	2143	0
1825	2	2144	0
1825	3	2348	0
1825	3	2344	0
1825	4	2508	0
1825	4	2509	0
1825	5	2672	0
1825	5	2674	0
1825	6	2828	0
1825	6	2832	1	9	9	0	0	0
1825	7	1375	1	11	11	0	0	0
1825	7	1379	0
1825	8	1233	1	10	10	0	0	0
1825	8	1234	1	15	15	0	0	0
1831	1	1993	0
1831	1	1994	1	4	4	0	0	0
1831	2	2155	1	12	10	2	0	0
1831	2	2156	1	12	12	0	0	0
1831	3	2356	1	10	10	0	0	0
1831	3	2361	1	15	15	0	0	0
1831	4	2619	1	14	13	1	0	0
1831	4	2623	1	12	12	0	0	0
1831	5	2678	1	10	9	1	0	0
1831	5	2696	1	13	13	1	0	0
1831	6	2638	1	10	9	0	1	0
1831	6	2847	1	14	14	0	0	0
1831	7	1363	1	11	11	0	0	0
1831	7	1371	1	11	11	0	0	0
1831	8	1221	1	14	13	0	1	0
1831	8	1223	1	11	10	0	0	0
1833	1	1997	1	14	13	1	0	0
1833	1	1998	1	12	11	1	0	0
1833	2	2159	1	13	12	1	0	0
1833	2	2160	1	15	14	1	0	0
1833	3	2362	1	12	11	0	2	0
1833	3	2363	1	10	8	0	0	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

18

----- 1000 ppm n-Hexane -----

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1833	4	2518	1	13	13	0	0	0
1833	4	2528	1	11	11	0	0	0
1833	5	2698	1	11	11	0	0	0
1833	5	2692	1	12	12	0	0	0
1833	6	2856	1	13	12	0	0	0
1833	6	2859	1	12	11	0	0	0
1833	7	1362	1	13	12	0	0	0
1833	7	1366	1	12	11	0	0	0
1833	8	1217	1	13	13	0	0	0
1833	8	1218	1	14	13	0	0	0
1839	1	2005	1	13	13	0	0	0
1839	1	2006	1	14	13	0	0	0
1839	2	2167	1	15	14	0	0	0
1839	2	2168	1	14	14	0	0	0
1839	3	2866	1	13	13	0	0	0
1839	3	2376	1	15	13	0	0	0
1839	4	2530	0	0	0	0	0	0
1839	4	2536	1	14	14	0	0	0
1839	5	2763	0	0	0	0	0	0
1839	5	2767	1	11	11	0	0	0
1839	6	2848	1	14	13	0	0	0
1839	6	2849	1	16	16	0	0	0
1839	7	1349	1	13	13	0	0	0
1839	7	1366	1	14	14	0	0	0
1839	8	1208	1	8	7	0	0	0
1839	8	1212	1	10	10	0	0	0
1842	1	2011	1	12	12	0	0	0
1842	1	2012	0	0	0	0	0	0
1842	2	2178	0	0	0	0	0	0
1842	3	2370	1	13	13	0	0	0
1842	3	2362	1	14	14	0	0	0
1842	4	2632	1	16	15	0	0	0
1842	4	2638	1	11	10	0	0	0
1842	5	2698	1	12	12	0	0	0
1842	5	2699	1	13	12	0	0	0
1842	6	2862	1	14	12	0	0	0
1842	6	2867	1	17	17	0	0	0
1842	7	1337	1	14	13	0	0	0
1842	7	1347	1	8	4	0	0	0
1842	8	1191	1	13	13	0	0	0
1842	8	1202	1	11	9	0	0	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

19

----- 5000 ppm n-Hexane -----

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1736	1	1891	1	11	10	1	0	0
1736	1	1892	1	15	14	1	0	0
1736	2	2023	1	4	2	2	0	0
1736	2	2024	1	13	11	1	1	0
1736	3	2217	1	12	10	1	1	0
1736	3	2218	1	18	16	0	1	0
1736	4	2381	1	11	11	0	0	0
1736	4	2384	1	11	11	0	0	0
1736	5	2551	1	9	9	0	0	0
1736	5	2552	1	11	10	1	0	0
1736	6	2701	1	12	12	0	0	0
1736	6	2702	1	9	8	2	1	0
1749	1	1893	1	11	9	0	0	0
1749	1	1894	1	14	14	0	0	0
1749	2	2025	1	17	17	0	0	0
1749	2	2026	1	13	9	5	0	0
1749	3	2219	1	15	15	0	0	0
1749	3	2220	1	14	14	0	0	0
1749	4	2377	1	15	14	1	0	0
1749	4	2378	1	18	13	0	0	0
1749	5	2545	1	12	11	0	0	0
1749	5	2546	1	11	11	0	0	0
1749	6	2697	1	11	10	0	0	0
1749	6	2700	1	16	16	0	0	0
1754	1	1897	1	12	12	0	0	0
1754	1	1898	1	14	14	0	0	0
1754	2	2029	1	13	13	0	0	0
1754	2	2030	1	18	16	0	0	0
1754	3	2226	1	12	12	0	0	0
1754	3	2230	1	15	14	1	0	0
1754	4	2380	1	15	11	0	0	0
1754	4	2385	1	12	12	0	0	0
1754	5	2547	1	5	3	2	0	0
1754	5	2553	1	12	12	0	0	0
1754	6	2709	1	14	13	0	0	0
1754	6	2712	1	8	8	0	0	0
1755	1	1899	1	13	12	1	0	0
1755	1	1900	1	12	12	0	0	0
1755	2	2031	1	12	12	0	0	0
1755	2	2032	1	16	16	0	0	0
1755	3	2225	1	14	14	0	0	0
1755	8	2227	1	15	15	0	0	0
1755	4	2383	1	12	12	0	0	0
1755	4	2396	1	14	14	0	0	0
1755	5	2550	1	10	9	1	0	0
1755	5	2555	1	12	12	0	0	0
1755	6	2714	1	15	15	0	0	0
1755	6	2719	1	9	9	0	0	0
1768	1	1886	1	15	15	0	0	0
1768	1	1887	1	11	11	0	0	0
1768	2	2047	1	13	12	1	0	0
1768	2	2048	1	14	9	3	0	0
1768	3	2239	1	10	10	0	0	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

20

----- 5000 ppm n-Hexane -----

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1768	3	2246	1	13	13	0	0	0
1768	4	2406	1	11	9	1	1	0
1768	4	2407	1	16	15	0	1	0
1768	5	2572	1	9	9	0	0	0
1768	5	2588	1	10	9	0	1	0
1768	6	2729	1	6	5	1	0	0
1768	6	2731	1	13	12	1	0	0
1769	1	1888	1	13	11	0	2	1
1769	1	1889	1	14	13	0	0	0
1769	2	2049	1	13	13	0	0	0
1769	2	2050	1	14	13	1	0	0
1769	3	2237	1	11	11	0	0	0
1769	3	2246	1	6	5	1	0	0
1769	4	2399	1	14	14	0	0	0
1769	4	2406	1	14	14	0	0	0
1769	5	2569	1	9	9	0	0	0
1769	5	2576	1	16	15	0	1	0
1769	6	2724	1	13	13	1	0	0
1769	6	2732	1	11	10	0	0	0
1772	1	1851	1	14	14	0	0	0
1772	1	1852	1	13	13	0	0	0
1772	2	2013	1	12	11	1	0	0
1772	2	2014	1	13	13	0	0	0
1772	3	2248	1	12	8	2	0	2
1772	3	2250	1	15	12	3	0	0
1772	4	2403	1	14	14	0	0	0
1772	4	2404	1	15	15	0	0	0
1772	5	2571	1	13	13	0	0	0
1772	5	2579	1	13	12	0	1	0
1772	6	2733	1	11	11	0	0	0
1772	6	2741	1	12	12	0	0	0
1780	1	1865	1	12	12	0	0	0
1780	1	1866	1	14	13	1	0	0
1780	2	2057	1	13	11	0	2	1
1780	2	2058	1	13	12	0	0	0
1780	3	2260	1	15	15	0	0	0
1780	3	2269	1	13	12	0	0	0
1780	4	2431	1	12	12	0	0	0
1780	4	2434	1	15	13	1	1	1
1780	5	2582	1	10	10	0	0	0
1780	5	2590	1	2	2	0	0	0
1780	6	2745	1	13	12	0	0	0
1780	6	2754	1	10	10	0	0	0
1780	7	2939	1	12	11	0	0	0
1780	7	2941	1	11	11	0	0	0
1780	8	1263	1	14	14	0	0	0
1780	8	1264	1	15	12	0	0	0
1794	1	1923	1	13	13	0	1	0
1794	1	1924	1	13	12	1	1	0
1794	2	2084	1	13	12	0	0	0
1794	2	2085	1	10	10	0	0	0
1794	3	2291	1	13	13	0	0	0
1794	3	2292	1	12	10	2	0	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

21

----- 5000 ppm n-Hexane -----

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1794	4	2455	1	13	13	0	0	0
1794	4	2457	1	12	12	0	0	0
1794	5	2606	1	10	10	0	0	0
1794	5	2607	1	10	7	3	0	0
1794	6	2772	0	0	0	0	0	0
1794	6	2776	1	12	11	1	0	0
1794	7	2968	1	11	11	0	0	0
1794	7	2962	1	11	11	0	0	0
1794	8	1835	1	13	12	1	0	0
1794	8	1838	1	13	12	1	0	0
1797	1	1929	1	13	11	1	1	1
1797	1	1930	1	11	10	1	1	1
1797	2	2600	1	17	16	2	1	1
1797	2	2691	1	14	13	1	1	1
1797	3	2298	1	11	10	1	1	1
1797	3	2299	1	13	12	1	0	0
1797	4	2452	1	17	16	0	0	0
1797	4	2454	1	11	10	0	0	0
1797	5	2622	1	12	11	1	0	0
1797	5	2624	1	9	9	0	0	0
1797	6	2781	1	12	10	0	0	0
1797	6	2784	1	12	12	0	0	0
1797	7	2972	1	16	16	1	0	0
1797	7	2977	1	9	8	0	0	0
1797	8	1329	1	13	13	0	0	0
1797	8	1330	1	11	11	0	0	0
1804	1	1941	1	14	14	0	0	0
1804	1	1942	1	13	12	1	0	0
1804	2	2102	1	12	12	0	0	0
1804	2	2103	1	11	11	0	0	0
1804	3	2306	1	15	15	0	0	0
1804	3	2307	0	0	0	0	0	0
1804	4	2466	1	13	11	1	0	0
1804	4	2467	1	14	13	1	0	0
1804	5	2636	1	12	12	0	0	0
1804	5	2635	1	14	14	0	0	0
1804	6	2798	1	14	13	0	0	0
1804	6	2800	1	14	13	0	0	0
1804	7	2982	1	16	14	0	0	0
1804	7	2992	1	8	8	0	0	0
1804	8	1817	1	10	7	3	0	0
1804	8	1818	1	14	13	1	0	0
1806	1	1945	1	16	15	0	0	0
1806	1	1946	1	16	15	0	0	0
1806	2	2106	1	14	14	0	0	0
1806	2	2107	0	0	0	0	0	0
1806	3	2309	1	11	11	0	0	0
1806	3	2315	1	6	6	1	0	0
1806	4	2474	1	14	13	0	0	0
1806	4	2478	1	12	12	0	0	0
1806	5	2633	1	12	12	0	0	0
1806	5	2639	1	10	10	0	0	0
1806	6	2796	0	0	0	0	0	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

22

5000 ppm n-Hexane

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1806	6	2801	0
1806	7	2986	1	12	12	0	0	0
1806	7	2989	1	10	10	0	0	0
1806	8	1319	1	10	9	1	0	0
1806	8	1814	1	10	10	0	0	0
1807	1	1947	1	11	10	1	0	0
1807	1	1948	1	13	12	0	0	0
1807	2	2106	1	11	11	0	0	0
1807	2	2109	1	11	11	0	0	0
1807	3	2808	1	14	13	0	1	0
1807	3	2311	1	16	16	0	0	0
1807	4	2471	1	16	14	1	0	0
1807	4	2472	1	11	10	0	0	0
1807	5	2634	1	11	11	0	0	0
1807	5	2643	0	.	.	0	0	0
1807	6	2792	1	12	12	0	0	0
1807	6	2793	1	14	13	1	0	0
1807	7	2996	1	11	10	0	0	0
1807	7	2998	1	13	13	0	0	0
1807	8	1811	1	15	14	1	0	0
1807	8	1812	1	13	13	0	0	0
1808	1	1949	0	.	.	0	0	0
1808	1	1950	1	12	11	1	0	0
1808	2	2110	1	16	15	0	0	0
1808	2	2111	1	12	11	1	0	0
1808	3	2305	1	12	12	0	0	0
1808	3	2312	0	.	.	0	0	0
1808	4	2475	0	.	.	0	0	0
1808	4	2478	1	12	12	0	0	0
1808	5	2648	1	9	8	0	1	0
1808	5	2651	1	11	10	1	1	0
1808	6	2798	1	9	8	0	0	0
1808	6	2808	1	10	10	0	0	0
1808	7	2986	1	11	9	2	1	0
1808	7	2991	1	10	9	1	0	0
1808	8	1309	0	.	.	0	0	0
1808	8	1310	1	14	13	0	1	0
1811	1	1955	1	12	12	0	0	0
1811	1	1958	1	11	10	1	0	0
1811	2	2117	1	15	15	0	0	0
1811	2	2118	1	13	13	0	0	0
1811	3	2319	1	13	12	0	0	0
1811	3	2320	1	12	12	0	0	0
1811	4	2401	1	11	10	0	0	0
1811	4	2483	0	.	.	0	0	0
1811	5	2645	0	.	.	0	0	0
1811	6	2650	0	.	.	0	0	0
1811	8	2809	0	.	.	0	0	0
1811	6	2811	0	.	.	0	0	0
1811	7	2998	0	.	.	0	0	0
1811	7	3000	0	.	.	0	0	0
1811	8	1298	0	.	.	0	0	0
1811	8	1299	0	.	.	0	0	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

23

----- 5000 ppm n-Hexane -----

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1812	1	1957	1	13	13	0	0	0
1812	1	1958	1	14	11	0	0	0
1812	2	2119	1	12	11	1	0	0
1812	2	2120	1	12	11	0	1	0
1812	3	2323	1	14	13	1	0	0
1812	3	2325	1	12	11	1	0	0
1812	4	2486	1	11	11	0	0	0
1812	4	2491	1	13	13	0	0	0
1812	5	2640	1	14	14	0	0	0
1812	5	2648	1	10	9	1	0	0
1812	6	2807	1	14	14	0	0	0
1812	6	2810	1	12	12	0	0	0
1812	7	1400	1	14	13	0	1	0
1812	7	2994	1	15	13	2	0	0
1812	8	1296	1	12	12	0	0	0
1812	8	1297	1	16	15	1	0	0
1816	1	1965	1	11	11	0	0	0
1816	1	1966	1	9	8	1	0	0
1816	2	2127	1	12	12	0	0	0
1816	2	2128	1	13	13	0	0	0
1816	3	2332	1	15	14	0	0	0
1816	3	2333	1	16	16	0	0	0
1816	4	2486	1	11	10	1	0	0
1816	4	2493	1	12	10	2	0	0
1816	5	2653	1	12	11	0	1	0
1816	5	2654	1	14	14	0	0	0
1816	6	2813	0
1816	6	2817	1	11	10	1	0	0
1816	7	1388	1	12	12	0	0	0
1816	7	1890	1	13	12	0	1	1
1816	8	1267	1	10	9	0	0	0
1816	8	1268	1	11	11	0	0	0
1817	1	1967	1	11	11	0	0	0
1817	1	1968	1	14	13	1	0	0
1817	2	2129	1	11	11	0	0	0
1817	2	2130	1	12	12	0	0	0
1817	3	2335	1	11	11	0	0	0
1817	3	2336	1	4	4	0	0	0
1817	4	2494	1	11	11	0	0	0
1817	4	2502	1	11	11	0	0	0
1817	5	2657	1	16	14	0	1	0
1817	5	2663	1	10	10	0	2	0
1817	6	2819	1	13	10	1	0	0
1817	6	2822	1	10	9	1	0	0
1817	7	1389	1	13	12	1	0	0
1817	7	1393	1	12	12	0	0	0
1817	8	1286	1	13	10	3	0	0
1817	8	1289	0
1819	1	1971	1	14	12	2	0	0
1819	1	1972	1	12	11	1	0	0
1819	2	2133	1	16	11	4	0	0
1819	2	2134	1	16	15	1	0	0
1819	3	2336	1	13	13	0	0	0

Dominant Lethal n-Hexane Study: Male Reproductive Measures

24

----- 5000 ppm n-Hexane -----

Male Id	Week	Female Id	Pregnant	# Implants	# Live Fetuses	# Early Resorptions	# Late Resorptions	# Dead Fetuses
1819	8	2839	1	12	12	0	0	0
1819	4	2495	0
1819	4	2499	0
1819	5	2660	1	11	11	0	0	0
1819	5	2676	1	9	9	0	0	0
1819	6	2814	1	12	12	0	0	0
1819	6	2829	1	14	14	0	0	0
1819	7	1892	1	14	13	1	0	0
1819	7	1894	1	11	11	0	0	0
1819	8	1262	0
1819	8	1263	1	15	15	0	0	0
1828	1	1987	1	13	12	1	0	0
1828	1	1999	1	13	12	0	1	0
1828	2	2149	1	12	11	1	0	0
1828	2	2150	1	15	14	1	0	0
1828	3	2352	1	13	13	0	0	0
1828	3	2358	1	13	13	0	0	0
1828	4	2512	1	11	9	2	0	0
1828	4	2516	1	14	14	0	0	0
1828	5	2677	0
1828	5	2681	1	11	10	1	0	1
1828	6	2836	1	8	5	2	0	0
1828	6	2840	1	13	13	0	0	0
1828	7	1864	1	12	9	3	0	0
1828	7	1870	1	10	10	0	0	0
1828	8	1227	1	12	12	0	0	0
1828	8	1229	1	10	7	2	1	0

n-Hexane Dominant Lethal Study: Calendar of Events

MALES

Males exposed concurrent with sperm morphology study males

Exposure levels; treatments 1-4	0, 200, 1000, 5000 ppm
Males ordered	2-14-86
Males received (ARC#860032)	2-25-86
Eartagged	3-03-86
Cohabitation for proving males	3-4 to 3-20-86
Health screen; 5 males	3-17-86
Weighed pre-study, randomized and toeclipped	3-20-86
Released from quarantine	3-22-86
Moved to exposure room	3-21-86
Exposure 120 males (5 days, 20 hr/day)	3-24 to 3-28-86
Weighed, exposure day 1 (120 males)	3-24-86
Weighed and sacrificed; post-exp day 1, 40 males testes/epididymides slides sent for evaluation	3-29-86 4-06-86
Post-exposure cohabitation; 80 males 2 females/male for each of 8 weeks	3-31 to 5-26-86
Males weighed breeding week 1	3-31-86
breeding week 2	4-07-86
breeding week 3	4-14-86
breeding week 4	4-21-86
breeding week 5	4-28-86
breeding week 6	5-05-86
breeding week 7	5-12-86
breeding week 8	5-19-86
Weighed and sacrificed post-breeding	5-29-86

n-Hexane Dominant Lethal Study: Calendar of Events

FEMALES- proving (same shipment as males)
(only males health screened from this shipment)

Ordered female mice	2-14-86
Received female mice (ARC#860032) (also used 11 females from ARC#860031)	2-25-86
Eartagged females	3-03-86
Cohabitation with males; pre-exposure 16 days 140 males: 280 females	3-4 to 3-20-86
Sacrifice; to select 120 males for study/exposure	3-20-86

FEMALES- breeding week 1 & 2

Ordered females	2-14-86
Received females (ARC#860030) (rm 433)	2-25-86
Health screen 5 females	3-17-86
Eartagged	3-17-86
Released from quarantine	3-22-86
Cohabitation with males - 7 days breeding week 1: breeding week 2:	3-31-86 4-07-86
Sacrifice breeding week 1: breeding week 2:	4-18-86 4-25-86 terminal serology

n-Hexane Dominant Lethal Study: Calendar of Events

FEMALES- breeding week 3 & 4

Ordered females	2-14-86
Received females (ARC#860041 rm314)	3-18-86
Health screen 10 females	4-07-86
Eartagged	4-11-86
Released from quarantine	5-14-86
Cohabitation with males - 7 days	
breeding week 3:	4-14-86
breeding week 4:	4-21-86
Sacrifice	
breeding week 3:	5-2-86 terminal serology
breeding week 4:	5-09-86

FEMALES- breeding week 5 & 6

Ordered females	2-14-86
Received females (ARC#860049 rm 336)	4-01-86
Health screen 10 females	4-21-86
Eartagged	4-24-86
Released from quarantine	5-14-86
Cohabitation with males- 7 days	
breeding week 5:	4-28-86
breeding week 6:	5-05-86
Sacrifice	
breeding week 5:	5-16-86
breeding week 6:	5-23-86 terminal serology

n-Hexane Dominant Lethal Study: Calendar of Events

FEMALES- breeding week 7 & 8

Ordered females	2-14-86
Received females (ARC#860058 rm 314)	4-15-86
Health screen 10 females	5-05-86
Eartagged	5-9-86 and 5-15-86
Released from quarantine	5-14-86
Cohabitation with males - 7 days	
breeding week 7:	5-12-86
breeding week 8:	5-19-86
Sacrifice	
breeding week 7:	5-30-86
breeding week 8:	6-6-86 terminal serology

n-HEXANE DOMINANT LETHAL STUDY DISPOSITION OF MALE MICE

Exposure Group	Treatment Code	Number of Male Mice				
		On Study	Sacrificed Pre-Breeding	Died On Study	Data Excluded	Sacrificed Post-Breeding
Control (0 ppm)	1	30	10	5 (a)	1 (b)	15
200 ppm	2	30	10	1 (a)	3 (b)	19
1000 ppm	3	30	10	0	3 (b)	20
5000 ppm	4	30	10	3 (a)	4 (b)	17

C.33

- (a) Died from deprivation of water and food on 5/17-18/86 (breeding week 7).
- (b) Data from breeding weeks 7 & 8 and sacrifice data were excluded due to water and food deprivation of the males. Body weight data was retained for breeding week 7.

n-HEXANE DOMINANT LETHAL STUDY: DISPOSITION OF FEMALE MICE - WEEK 1

Bred to Males in		Number of Female Mice		
Exposure Group	Treatment Code	On Study	Removed From Study	Sacrificed
Control (0 ppm)	1	40	1(a)	39
200 ppm	2	40	1(b)	39
1000 ppm	3	40	0	40
5000 ppm	4	40	0	40

- (a) Injured
- (b) Liver lesions

n-HEXANE DOMINANT LETHAL STUDY: DISPOSITION OF FEMALE MICE - WEEK 2

Bred to Males in		Number of Female Mice		
Exposure Group	Treatment Code	On Study	Removed From Study	Sacrificed
Control (0 ppm)	1	40	0	40
200 ppm	2	40	0	40
1000 ppm	3	40	2(a)	38
5000 ppm	4	40	0	40

- (a) 1 mouse died, unknown cause of death
- 1 mouse moribund, broken back

n-HEXANE DOMINANT LETHAL STUDY: DISPOSITION OF FEMALE MICE - WEEK 3

Bred to Males in		Number of Female Mice		
Exposure Group	Treatment Code	On Study	Removed From Study	Sacrificed
Control (0 ppm)	1	40	0	40
200 ppm	2	40	0	40
1000 ppm	3	40	0	40
5000 ppm	4	40	0	40

n-HEXANE DOMINANT LETHAL STUDY: DISPOSITION OF FEMALE MICE - WEEK 4

Bred to Males in		Number of Female Mice		
Exposure Group	Treatment Code	On Study	Removed From Study	Sacrificed
Control (0 ppm)	1	40	0	40
200 ppm	2	40	0	40
1000 ppm	3	40	0	40
5000 ppm	4	40	0	40

n-HEXANE DOMINANT LETHAL STUDY: DISPOSITION OF FEMALE MICE - WEEK 5

Bred to Males in		Number of Female Mice		
Exposure Group	Treatment Code	On Study	Removed From Study	Sacrificed
Control (0 ppm)	1	40	0	40
200 ppm	2	40	0	40
1000 ppm	3	40	0	40
5000 ppm	4	40	0	40

n-HEXANE DOMINANT LETHAL STUDY: DISPOSITION OF FEMALE MICE - WEEK 6

Bred to Males in		Number of Female Mice		
Exposure Group	Treatment Code	On Study	Removed From Study	Sacrificed
Control (0 ppm)	1	40	0	40
200 ppm	2	40	0	40
1000 ppm	3	40	0	40
5000 ppm	4	40	0	40

n-HEXANE DOMINANT LETHAL STUDY: DISPOSITION OF FEMALE MICE - WEEK 7

Bred to Males in		Number of Female Mice		
Exposure Group	Treatment Code	On Study	Removed From Study	Sacrificed
Control (0 ppm)	1	40	12(a)	28
200 ppm	2	40	8(a)	32
1000 ppm	3	40	6(a)	34
5000 ppm	4	40	14(a)	26

(a) Due to food and water deprivation.

n-HEXANE DOMINANT LETHAL STUDY: DISPOSITION OF FEMALE MICE - WEEK 8

Bred to Males in		Number of Female Mice		
Exposure Group	Treatment Code	On Study	Removed From Study	Sacrificed
Control (0 ppm)	1	30	2(a)	28
200 ppm	2	38	6(a)	32
1000 ppm	3	40	6(a)	34
5000 ppm	4	34	8(a)	26

(a) Due to cohabitation with a male affected by water and food deprivation on 5-17-86.

APPENDIX D

ANIMAL HEALTH SCREEN

ARC DIAGNOSTIC LABORATORY REPORT

INVESTIGATOR Hackett
 EXPERIMENT n-huane Strategy + Con. Detal
 COST CODE -
 BUILDING L5LII
 PEN, ROOM

LAB NO. 041
 DATE 3/17/86
 ANIMAL OR SHIPMENT NO. 860030 860032
Charles River
 SOURCE Raleigh B.D. REC'D 2-25-86
 SPECIES & STRAIN CD-1 mice
 SEX m/f AGE 860030 B.D. 1-16-86
860031 B.D 1-9-86
860032 B.D 1-9-86

SPECIMEN SUBMITTED AND CLINICAL HISTORY:

16 ^{units were sent} animal submitted, 10 of which will be part of a pre-exposure health screen, 5 from each study. (2, 3, 4, 7, 8, 11, 12, 14, 15, 16)

LABORATORY RESULTS

Gross necropsy

1-10 no significant findings

#11 - Spleen moderately enlarged. (uniform enlargement, 1.2 x 0.5 mm ulcerated area on skin of back, likely a bite wound - culture aerobically) Other smaller presumably bite wounds on back. Most of wounds are at least several days old.

#12 - Bite wounds on back and base of tail, most of which are at least several days old

#13 Thin, moderate dehydration, Small scabbed area on skin of scrotum. Excreta matted to ventral side of tail. Spleen is small (contracted).

Anal tape prep: (13+15 omitted) all others are negative for pinworm ova.

REF 3/17/86

Culture results - Nasopharyngeal washings

#2 BAP - 3 col mucoid gnr - do API 5144572 = E. coli

3 col small gray gpc - cat ⊖ BE ⊕ Group D streptococcus

RESULTS

ARC DIAGNOSTIC LABORATORY

841 -

#3 BAP \rightarrow No growth
MAC

#4 BAP - 1 - white gpc cat ⊕ oxygen ⊕ Staphylococcus sp.
1 - gray gpc cat ⊕ BE ⊕ Group staphylococcus
MAC - No growth

#6 + #7 - No growth

041-11 BAP - 2+ white gpc cat \oplus oxag \oplus Staphylococcus sp.
 1+ mucoid - see MAC
 MAC - 1+ LE $\frac{A}{A}$ $\frac{K}{K}$ (UA) \ominus $\frac{H}{H}$ $\frac{MO}{MO}$ \ominus $\frac{E. coli}{E. coli}$ \ominus

#12, 14, 15, 16 - No growth

#11 Found - 4+ caps \oplus Staphylococcus sp.
Culture

O E Garrett
3/26/86

RESULTS
ARC DIAGNOSTIC LABORATORY ELISA REPORT

LAB NO. 041
PAGE 3 OF 4

TEST: GD 7

Positive Control: + Lot: 07768
Negative Control: - Exp.: 11/86

Animal #	<u>2</u>	Result	<u>-</u>
	<u>3</u>		<u>-</u>
	<u>4</u>		<u>-</u>
	<u>6</u>		<u>-</u>
	<u>7</u>		<u>-</u>
	<u>11</u>		<u>-</u>
	<u>12</u>		<u>-</u>
	<u>14</u>		<u>-</u>
	<u>15</u>		<u>-</u>
	<u>16</u>		<u>QNS</u>

TEST: Rc 3

Positive Control: + Lot: 06733
Negative Control: - Exp.: 5/86

Animal #	<u>2</u>	Result	<u>-</u>
	<u>3</u>		<u>-</u>
	<u>4</u>		<u>-</u>
	<u>6</u>		<u>-</u>
	<u>7</u>		<u>-</u>
	<u>11</u>		<u>-</u>
	<u>12</u>		<u>-</u>
	<u>14</u>		<u>-</u>
	<u>15</u>		<u>-</u>
	<u>16</u>		<u>QNS</u>

TEST: Sendai

Positive Control: + Lot: 07970
Negative Control: - Exp.: 12/86

Animal #	<u>2</u>	Result	<u>-</u>
	<u>3</u>		<u>-</u>
	<u>4</u>		<u>-</u>
	<u>6</u>		<u>-</u>
	<u>7</u>		<u>-</u>
	<u>11</u>		<u>-</u>
	<u>12</u>		<u>-</u>
	<u>14</u>		<u>-</u>
	<u>15</u>		<u>-</u>
	<u>16</u>		<u>equivocal</u>

TEST: MHV

Positive Control: + Lot: 07/73
Negative Control: - Exp.: 5/86

Animal #	<u>2</u>	Result	<u>-</u>
	<u>3</u>		<u>-</u>
	<u>4</u>		<u>-</u>
	<u>6</u>		<u>-</u>
	<u>7</u>		<u>-</u>
	<u>11</u>		<u>-</u>
	<u>12</u>		<u>-</u>
	<u>14</u>		<u>-</u>
	<u>15</u>		<u>-</u>
	<u>16</u>		<u>-</u>

TEST: PVM

Positive Control: + Lot: R6392
Negative Control: - Exp.: 5/86

Animal #	<u>2</u>	Result	<u>-</u>
	<u>3</u>		<u>-</u>
	<u>4</u>		<u>-</u>
	<u>6</u>		<u>-</u>
	<u>7</u>		<u>-</u>
	<u>11</u>		<u>-</u>
	<u>12</u>		<u>-</u>
	<u>14</u>		<u>-</u>
	<u>15</u>		<u>-</u>
	<u>16</u>		<u>QNS</u>

TEST: MVM

Positive Control: + Lot: R6056
Negative Control: - Exp.:

Animal #	<u>2</u>	Result	<u>-</u>
	<u>3</u>		<u>-</u>
	<u>4</u>		<u>-</u>
	<u>6</u>		<u>-</u>
	<u>7</u>		<u>-</u>
	<u>11</u>		<u>-</u>
	<u>12</u>		<u>-</u>
	<u>14</u>		<u>-</u>
	<u>15</u>		<u>-</u>
	<u>16</u>		<u>QNS</u>

TEST: MVM

Positive Control: + Lot: 06751
Negative Control: - Exp.: 3/86

Animal #	<u>2</u>	Result	<u>-</u>
	<u>3</u>		<u>-</u>
	<u>4</u>		<u>-</u>
	<u>6</u>		<u>-</u>
	<u>7</u>		<u>-</u>
	<u>11</u>		<u>-</u>
	<u>12</u>		<u>-</u>
	<u>14</u>		<u>-</u>
	<u>15</u>		<u>-</u>
	<u>16</u>		<u>QNS</u>

Initial: AS

Date: test performed
3/20/86

HEALTH EVALUATION

HISTOPATHOLOGY

ARC Lab. # O-41 Histo Lab. # 286-1085

Animal #	2	3	4	6	7	11	12	14	15	16
Lung	NSL	NSC	NSL							
Trachea	NSL	NE	NSL	NE	NE	NSL	NSL	NSL	NSL	NE
Harderian Gt.	NE									→
Salivary Gt.	NE									→
Submand. L.N.	NE									→
Heart	NSL									
Liver	NSL	NSL	NSL	(1)	NSL	(2)	(3)	(1)	NSL	NSL
Kidney	NSL									
Ileum	NSL									
Colon	NSL									

NSL = No significant lesions

NE = Not examined (tissue not submitted or didn't get on slide)

(1) Rare foci of inflammation, tiny

(2) Numerous perivascular and periportal foci of mixed inflammatory cells, slight. Also occasional tiny foci of inflammation in hepatic parenchyma.

(3) Occasional foci of inflammation as in (2).

3/22/86 SCR

The liver lesions are of slight concern but not enough to put any restrictions on these mice. They are released from quarantine for the studies anticipated. I recommend we look at some livers on these we do terminal sevology on. 3/22/86 SCR

#15 had an equivocal reaction to Sendai virus but since none of these animals had lung lesions, this was presumably a false reaction. SCR 3/22/86

ARC DIAGNOSTIC LABORATORY REPORT

INVESTIGATOR Hackett LAB NO. 057
 EXPERIMENT 7 Years Com stdd (B6g) DATE 4/7/86
 COST CODE ANIMAL OR SHIPMENT NO. 960041
 BUILDING L5LII SOURCE CR- Belch REC'D 3/18/86
 PEN, ROOM 314 SPECIES & STRAIN CD-1 mice
 SEX F AGE BD 2-6-82

SPECIMEN SUBMITTED AND CLINICAL HISTORY:

10 F mice submitted for health screen and to
include viral serology, gross necropsy + histopathology.

LABORATORY RESULTS

Gross necropsy: No significant findings REC 4/8/86

These mice were released for study on 4/11/86. SCR 4/4/86

RESULTS

ARC DIAGNOSTIC LABORATORY ELISA REPORT

057TEST: SindaiPositive Control: T Lot: 07970Negative Control: Exp.: 12/86Animal # 1 Result 2345678910TEST: Positive Control: Lot: Negative Control: Exp.: Animal # Result AEJtest performed4/8/86TEST: Positive Control: Lot: Negative Control: Exp.: Animal # Result SCR4/4/86TEST: Positive Control: Lot: Negative Control: Exp.: Animal # Result

RESULTS
ARC DIAGNOSTIC LABORATORY ELISA REPORT

LAB NO. 857
PAGE 2 OF 4

TEST: MRM
Positive Control: + Lot: R6056
Negative Control: - Exp.: 6/86
Animal # 1 Result -
2 -
3 -
4 -
5 -
6 -
7 positive^①
8 equivalent^②
9 -
10 -

*① wrong result in wrong place
as 4/9/86*

TEST: GD7
Positive Control: + Lot: 07768
Negative Control: - Exp.: 11/86
Animal # 1 Result -
2 -
3 -
4 -
5 -
6 -
7 -
8 positive^①
9 -
10 -

TEST: PVM
Positive Control: + Lot: R6392
Negative Control: - Exp.: 5/86
Animal # 1 Result -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9 -
10 -

TEST: MHV
Positive Control: + Lot: 07773
Negative Control: - Exp.: 5/86
Animal # 1 Result -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9 -
10 -

Initial: AEJ
Date: test performed
4/8/86

GEN
4/14/86

HEALTH EVALUATION

HISTOPATHOLOGY

ARC Lab. # 0-57

Histo Lab. # 286-1099

ARC DIAGNOSTIC LABORATORY REPORT

INVESTIGATOR Hickox/Mast LAB NO. 070
EXPERIMENT Hyrene Dom/Lethal Shrub DATE 4-21-86
COST CODE — ANIMAL OR SHIPMENT NO. 860049
BUILDING CSLIT SOURCE Cl-Fatigh R04 REC'D 4-1-86
PEN, ROOM 336 SPECIES & STRAIN mice CD-1
SEX F AGE B.D. 2-20-86

SPECIMEN SUBMITTED AND CLINICAL HISTORY:

10 female mice submitted for pre-exposure
batch screening including gross necropsy, viral
serology and histopathology

LABORATORY RESULTS

Gross necropsy: no significant findings DFG 5/14/86

Summary: all ox. SCT 5/14/86

Cpy to Hickox/Mast
Baron

RESULTS
ARC DIAGNOSTIC LABORATORY ELISA REPORT

LAB NO. A70
PAGE 2 OF 3

TEST: PVM
Positive Control: + Lot: R6392
Negative Control: - Exp.: 5/86
Animal # 1 Result -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9 -
10 -

TEST: MHV
Positive Control: + Lot: 07173
Negative Control: - Exp.: 5/86
Animal # 1 Result -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9 -
10 -

TEST: MRM
Positive Control: + Lot: R6056
Negative Control: - Exp.: 6/86
Animal # 1 Result -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9 -
10 -

TEST: Sendai
Positive Control: + Lot: 07970
Negative Control: - Exp.: 13/86
Animal # 1 Result -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9 -
10 -

TEST: GD7
Positive Control: + Lot: 07768
Negative Control: - Exp.: 11/86
Animal # 1 Result -
2 -
3 -
4 -
5 -
6 -
7 -
8 -
9 -
10 -

Initial: AEQ
SIN 5/14/86 Date: test performed
4/24/86

HEALTH EVALUATION

HISTOPATHOLOGY

ARC Lab. # 9-70

Histo Lab. # 286-1167

1. *recording own
recording*

NSL = No significant lesions

NE = NOT EXAMINED (tissue not submitted or lost in processing)

(1) Keratinocyte necrosis with associated WBC's.

Sept 4/25/86

Lower lesions in #6 and #8 are not considered significant.

SEN 5/4/86

ARC DIAGNOSTIC LABORATORY ELISA REPORT

INVESTIGATOR Hackett /most
 EXPERIMENT Worm Dominant Lethal
 COST CODE Group A
 BUILDING LSL II
 PEN. ROOM

LAB NO. 078
 DATE 4/25/86
 ANIMAL OR SHIPMENT NO. ARC # 860030
 SOURCE CCRabu REC'D 2-15-86
 SPECIES & STRAIN CD-1 mice
 SEX F AGE 1-16-86 (B.O.)

TESTS REQUESTED

10 mouse blood specimens received for viral serology at terminal sacrifice

SEROLOGY RESULTS

TEST: Sendai

Positive Control: + Lot: 07/70 Negative Control: - Exp.: 12/86
 Animal # 1 Result - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 -

TEST: PRM

Positive Control: + Lot: R6392 Negative Control: - Exp.: 5/86
 Animal # 1 Result - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 -

TEST: MHV

Positive Control: + Lot: 07/73 Negative Control: - Exp.: 5/86
 Animal # 1 Result - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 -

TEST: GDT

Positive Control: + Lot: 07/68 Negative Control: - Exp.: 11/86
 Animal # 1 Result - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 -

TEST: MRM

Positive Control: + Lot: Negative Control: - Exp.:
 Animal # 1 Result - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 -

All negative.

SG
 5/14/86

Initial: QEF

Date test performed
5/16/86

ARC DIAGNOSTIC LABORATORY REPORT

INVESTIGATOR Hackett/Mast
EXPERIMENT Hemani-Dominant Lethal
COST CODE
BUILDING LSL II
PEN, ROOM 433

LAB NO. 084
DATE 5/2/86
ANIMAL OR SHIPMENT NO. ARC# 360041 Thrupt
SOURCE CR-Raleigh REC'D. 3/18/86
SPECIES & STRAIN CD-1 mice
SEX F AGE 80-2-6-86

SPECIMEN SUBMITTED AND CLINICAL HISTORY:

10 mice (Female) submitted euthanized and with uterus removed & blood specimens drawn for collection of tissues and viral serology at terminal sacrifice.

LABORATORY RESULTS

Post necropsy: no significant findings DEF 5/14/86

Summary: All before-dominant lethal animals may be released from quarantine status with the exception of one new group (if any) which haven't had the initial health screen completed on them S82 5/14/86

Copy to Hackett/Mast
Becon

RESULTS
ARC DIAGNOSTIC LABORATORY ELISA REPORT

LAB NO. 084

PAGE 2 OF 3

TEST: PJM

Positive Control: + Lot: 08190

Negative Control: - Exp.: 2/87

Animal #	1	Result	-
2		-	
3		-	
4		-	
5		-	
6		-	
7		-	
8		-	
9		-	
10		-	

TEST: Sindai

Positive Control: + Lot: 07970

Negative Control: - Exp.: 12/86

Animal #	1	Result	-
2		-	
3		-	
4		+	*
5		-	
6		-	
7		-	
8		-	
9		-	
10		-	

TEST: GD7

Positive Control: + Lot: 07768

Negative Control: - Exp.: 11/86

Animal #	1	Result	-
2		-	
3		-	
4		-	
5		-	
6		-	
7		-	
8		-	
9		-	
10		-	

TEST: MHV

Positive Control: + Lot: 07173

Negative Control: - Exp.: 5/86

Animal #	1	Result	-
2		-	
3		-	
4		-	
5		-	
6		-	
7		-	
8		-	
9		-	
10		-	

TEST: by IFA Daryl Lab Jack X1 System mem

Positive Control: + Lot: 501346

Negative Control: - Exp.: 7/18/86

Animal # 1 Result - Correlation: 0.94

2	-	test performed 5/14/86
3	-	af
4	-	
5	-	
6	-	
7	-	
8	-	
9	-	
10	-	90%

* Negative by IFA Daryl Lab Jack X1 System
Lot 601066 exp. 5/30/86 af 5/13/86

All considered negative SER 5/14/86

Initial: af
Date: test run 5/13/86

HEALTH EVALUATION

HISTOPATHOLOGY

ARC Lab. # 8-84

Histo Lab. # 286-115

- ① Occasional tiny focus of hepatocellular necrosis with associated mixed WBC infiltrate.
- ② Rare focus of acute hepatocellular necrosis at periphery of section (from surface of lobule and extending not more than 1-2 cell layers deep).
- ③ Rare focus of perivascular cuffing with mixed inflammatory cells.

SEP 5/14/86

Summary: None of the lesions described above are considered a significant indicator of infection disease. S&T 5/14/89

SEE 5/14/82

ARC DIAGNOSTIC LABORATORY REPORT

INVESTIGATOR Hackett / Mast
EXPERIMENT Neuro. Dom. Lethal Group D
COST CODE -
BUILDING LSC II / 314
PEN, ROOM

LAB NO. 085
DATE 5/5/85
ANIMAL OR SHIPMENT NO. 86058
SOURCE CR-Raleigh Roy REC'D 4-15-86
SPECIES & STRAIN CD-1 mice
SEX Female AGE BD 3-6-86

SPECIMEN SUBMITTED AND CLINICAL HISTORY:

Received 10 female mice for pre-exposure health screen including gross necropsy, blood for serology and histopathology

LABORATORY RESULTS

Gross necropsy: No significant findings 086 5/14/86

Summary: All findings are satisfactory for release
of the animals. SGR 5/14/86

Copy to Hackett / Mast
Brown

RESULTS
ARC DIAGNOSTIC LABORATORY ELISA REPORT

LAB NO. 085
PAGE 2 OF 3

TEST: Ardei

Positive Control: + Lot: 07970

Negative Control: - Exp.: 12/86

Animal #	1	Result	-
2			
3			
4			
5			
6			
7			
8			
9			
10			

TEST: PVM

Positive Control: + Lot: R6392

Negative Control: - Exp.:

Animal #	1	Result	-
2			
3			
4			
5			
6			
7			
8			
9			
10			

TEST: MHV

Positive Control: + Lot: 07173

Negative Control: - Exp.: 5/86

Animal #	1	Result	-
2			
3			
4			
5			
6			
7			
8			
9			
10			

TEST: GD7

Positive Control: + Lot: 07768

Negative Control: - Exp.: 11/86

Animal #	1	Result	-
2			
3			
4			
5			
6			
7			
8			
9			
10			

TEST: MRM

Positive Control: + Lot: R6056

Negative Control: - Exp.: 6/86

Animal #	1	Result	equivocal*
2			
3			
4			
5			
6			
7			
8			
9			
10			

* Negative by IFA 501346 exp. 7-18-86
Daryl Davis Track 21
Mouse MRM

** To be sent to reference laboratory
for further testing

** Pending to be a false positive at
this point. Sgd 5/14 (86)

Initial: QEG

Date: test performed

HEALTH EVALUATION

HISTOPATHOLOGY

ARC Lab. # 0-85

Histo Lab. # 286-1112-

ABC DIAGNOSTIC LABORATORY ELISA REPORT

INVESTIGATOR Flanigan
 EXPERIMENT Domesticated House Sparrow
 COST CODE _____
 BUILDING L54E
 PEN, ROOM 336

LAB NO. 598
 DATE 5/23/86
 ANIMAL OR SHIPMENT NO. 860049
 SOURCE CR-Raleigh Roy REC'D
 SPECIES & STRAIN mus musculus CD-1
 SEX F AGE BO 2-20-86

TESTS REQUESTED

10 mouse blood specimens submitted
 for viral serology at terminal sacrifice

SEROLOGY RESULTS

TEST: SindbisPositive Control: + Lot: 07970Negative Control: - Exp.: 12/86Animal # 1 Result -

<u>2</u>	<u>-</u>
<u>3</u>	<u>+</u>
<u>4</u>	<u>-</u>
<u>5</u>	<u>-</u>
<u>6</u>	<u>-</u>
<u>7</u>	<u>-</u>
<u>8</u>	<u>-</u>
<u>9</u>	<u>-</u>
<u>10</u>	<u>-</u>

TEST: EDVIIPositive Control: + Lot: 07768Negative Control: - Exp.: 11/88Animal # 1 Result -

<u>2</u>	<u>-</u>
<u>3</u>	<u>-</u>
<u>4</u>	<u>-</u>
<u>5</u>	<u>-</u>
<u>6</u>	<u>-</u>
<u>7</u>	<u>-</u>
<u>8</u>	<u>-</u>
<u>9</u>	<u>-</u>
<u>10</u>	<u>-</u>

TEST: AIHVPositive Control: + Lot: 07175Negative Control: - Exp.: 5/86Animal # 1 Result -

<u>2</u>	<u>-</u>
<u>3</u>	<u>-</u>
<u>4</u>	<u>-</u>
<u>5</u>	<u>-</u>
<u>6</u>	<u>-</u>
<u>7</u>	<u>-</u>
<u>8</u>	<u>-</u>
<u>9</u>	<u>-</u>
<u>10</u>	<u>-</u>

TEST: PVMPositive Control: + Lot: 03190Negative Control: - Exp.: 2/87Animal # 1 Result -

<u>2</u>	<u>-</u>
<u>3</u>	<u>-</u>
<u>4</u>	<u>-</u>
<u>5</u>	<u>-</u>
<u>6</u>	<u>-</u>
<u>7</u>	<u>-</u>
<u>8</u>	<u>-</u>
<u>9</u>	<u>-</u>
<u>10</u>	<u>-</u>

TEST: MRMPositive Control: + Lot: 05477Negative Control: - Exp.: 2/87Animal # 1 Result -

<u>2</u>	<u>-</u>
<u>3</u>	<u>-</u>
<u>4</u>	<u>-</u>
<u>5</u>	<u>-</u>
<u>6</u>	<u>-</u>
<u>7</u>	<u>-</u>
<u>8</u>	<u>-</u>
<u>9</u>	<u>-</u>
<u>10</u>	<u>-</u>

*See 6/2/86
 See Copy to Hackett*

Initial: REGDate: 5/29/86

BWWSASSP.13:
p.1 of 2

ARC DIAGNOSTIC LABORATORY REPORT

INVESTIGATOR Mast LAB NO. 9111
EXPERIMENT Hexane - Dom/Lethal DATE 6/27/86
COST CODE ANIMAL OR SHIPMENT NO. 860058
BUILDING LSL-II SOURCE C.R. Raleigh REC'D 4/15/86
PEW, ROOM SPECIES & STRAIN Mice CD-1
SEX F AGE born 3/6/86

SPECIMEN SUBMITTED AND CLINICAL HISTORY:

Received 11 mouse blood samples at the
terminal sacrifice of n-Hexane Dominant
Lethal Study mice B.T. they were submitted
for serology testing on 6/27/86

LABORATORY RESULTS

Send copy to Terry Mast. File NTP/IBC 1.8
6/27/86

RESULTS
ABC DIAGNOSTIC LABORATORY ELISA REPORT

LAB NO. 0111
PAGE 2 of 2

TEST: PVM
Positive Control: + Lot: 08190
Negative Control: - Exp.: 2/87
Animal # 1247 Result -

1261 -
1262 -
1265 -
1269 -
1271 -
1272 -
1273 -
1275 -
1276 -
1342 -

TEST: M HV
Positive Control: + Lot: 08488
Negative Control: - Exp.: 5/87
Animal # 1247 Result -

1261 -
1262 -
1265 -
1269 -
1271 -
1272 -
1273 -
1275 -
1276 -
1342 -

TEST: MRM
Positive Control: + Lot: 08489
Negative Control: - Exp.: 2/87
Animal # 1247 Result -

1261 -
1262 -
1265 -
1269 -
1271 -
1272 -
1273 -
1275 -
1276 -
1342 -

TEST: G DVII
Positive Control: + Lot: 07768
Negative Control: - Exp.: 11/86
Animal # 1247 Result -

1261 -
1262 -
1265 -
1269 -
1271 -
1272 -
1273 -
1275 -
1276 -
1342 -

TEST: Sendai
Positive Control: + Lot: 07970
Negative Control: - Exp.: 12/86
Animal # 1247 Result -

1261 -
1262 -
1265 -
1269 -
1271 -
1272 -
1273 -
1275 -
1276 -
1342 -

SEC
7/7/86

Initials: DP
Date: 6/27/86

 **MICROBIOLOGICAL
ASSOCIATES INC.**

COMPREHENSIVE ANIMAL HEALTH SERVICE-VIROLOGY

CORPORATE OFFICES

5221 River Road • Bethesda • Maryland 20816-1493
(301) 654-3400 • Telex 90-8793

TO: Dr. Stephen Rowe
Battelle Northwest Laboratory
P.O. Box 999/LSL-II
Richland, WA 39352

Our Code MVS K827
Page 1 of 2

FROM: Robert L. Peters, Ph.D. *44*
DATE: 6/13/86
TEST: Murine virus antibody determination
SPECIMEN: 19 mouse, 14 rat sera
RECEIVED: 5/29/86

Sample #	Hemagglutination Inhibition				Complement Fixation			IFA	ELISA*		
	Reo3	Poly	MVM	KRV	H-1	M.Ad	LCM		Ectro	RCV/SDA	GDVII
Mouse											
029-2											.01
032-9											
039-4											.02
7											.02
065-1	-	-	-			-	-	-	.01		
2	-	-	-			-	-	-	0		
3	-	-	-			-	-	-	.01		
085-7											.01
rat											
063-4						-	-				.02
5											.01
7											0
064-1						-	-				0
2											0
3											0
4											0
5											0
6											0
068-5											0
7											0
8											0
Significant Titer	20	20	20	20	20	10	10				

* 085-7 (n-Hexane Dominant-lethal study) was sent to M.A. for
testing as stated on the report #RC 085 (AHC Symposium 860055)
Group D Health screen). Other specimen numbers and
results should be disregarded. R.E.P. 6/14/86

Recd 6/20/86

APPENDIX E

QUALITY ASSURANCE STATEMENT

DOMINANT LETHAL STUDY IN MICE
EXPOSED TO n-HEXANE

Quality Assurance Statement

Listed below are the phases and/or procedures included in the study described in this report which were reviewed by the Quality Assurance Unit during the period, 2/15/86 -5/31/86, specifically for this study and the dates the reviews were performed and findings reported to management. (Findings were reported to the study director or his designee at the time of the review.)

Phase/Procedure Reviewed	Review Date	Date Findings Submitted in Writing to Study Director/Management
Animal Receipt	2/25/86	3/3/86
Health Screen	3/17&18/86	3/20/86
Animal Identification	3/20/86	3/20/86
Body Weights	3/20/86	3/20/86
Necropsy	3/20/86	3/21/86
Randomization	3/20/86	3/20/86
Dosing	3/27/86	3/28/86
Data	3/28/86	4/18/86
Animal Receipt	4/1/86	4/7/86
Animal Receipt	4/15/86	4/18/86
Necropsy	4/18/86	4/18/86
Health Screen	4/21/86	5/9/86
Necropsy	5/29/86	6/2/86
Data	5/5,6&9/86	5/9/86
Draft Report	5/12,13,16,25,31&6/8/86	6/8/86
Final Report	8/25/88	8/25/88

Patricia S. Guenmer
Quality Assurance Specialist

8/25/88
Date

APPENDIX F

PROTOCOL AND CAGE MAPS

May 23, 1988

To: The Study File

From: Terryl J. Mast, Study Director

Re: Male Dominant Lethal Study in CD-1 Mice Exposed to n-Hexane Vapors:
Deviations from Study Protocol.

Section VII.A.3: Study protocol specifies "Upon arrival animals will be housed 10 mice per cage in solid-bottom cages."

*Mice were actually housed 11-12 per cage upon arrival for 7 days.
Since they weighed <25 g this number per cage met ALAS requirements.*

Section VII.G: Specifies "At necropsy, 5 animals in the control group and 5 from the high dose group will be tested for antibodies to selected pathogens."

Serum was inadvertently not obtained from any male at the time of necropsy.

*Terryl J. Mast
6/9/88*

PROTOCOL FOR INHALATION REPRODUCTIVE STUDIES
n-HEXANE

MAR 6

I. TITLE

Dominant Lethal Study in Mice Exposed to n-Hexane.

II. PURPOSE OF STUDY

The straight-chain hydrocarbon, n-hexane, is commonly used as a solvent for the extraction of oil seeds, as a reaction medium in the production of polyolefins, elastomers and pharmaceuticals, and as a component of quick-drying cements, lacquers and adhesives. The production of n-hexane, which was estimated to be four billion pounds per year in 1979, utilizes stocks of straight-run gasoline and higher boiling liquid products stripped from natural gas or paraffinic fractions of refinery streams. It is also found as a minor component of gasoline and its combustion products, hence petroleum products are a major source of environmental hexane contamination. Due to the large-scale production and widespread use of hexane, including teaching laboratories, the opportunity for industrial, incidental environmental, or volitional (glue-sniffing) exposure to hexane vapors is significant. The studies described herein are proposed as a result of a concern that this exposure may result in a negative impact on human reproductive function.

Several excellent reviews concerning hexacarbon toxicity and metabolism are available in Experimental and Clinical Neurotoxicology (edited by Spencer and Schumburg, 1980) and in CRC Critical Reviews in Toxicology (Spencer, Schaumburg, Sabri, and Veronesi, 1980). In summary, polyneuropathies have been reported following exposure of workers to n-hexane contained in adhesives or used as an industrial solvent as well as following repeated exposure by glue sniffing. A metabolite, 2,5-hexanedione, has been shown to be responsible for most, if not all, of the neurotoxicity.

Pharmacokinetic and distribution studies indicated that the hexane saturation concentration of organs following inhalation is directly proportional to their lipid content, and that blood contains more hexane in relation to its lipid content than do organs (Andersen, 1981; Bohlen et al., 1973). Baker and Rickert (1981) found that metabolism and elimination of n-hexane were dependent upon exposure concentration, but that the tissue concentration of the metabolite, 2,5-hexanedione, was not directly related to n-hexane exposure concentration. Bus et al. (1982), using 6-hour exposures to ¹⁴C-labeled n-hexane, found that the distribution of radioactivity was dose-dependent.

Although myelinated nerve tracts are the primary target organ, the testes have been identified as being sensitive to hexacarbon toxicity. Krasavage et al. (1980) reported testicular atrophy following oral administration of n-hexane and several of its metabolites. Chapin et al. (1982) administered a 1% solution of the hexane metabolite, 2,5-hexanedione, to male rats in their drinking water and found a decrease in the activity of two Sertoli cell enzymes, β -glucuronidase and γ -transferase, after 3 weeks of exposure. No morphologic changes were detected at this time; however, after 6 weeks of exposure the testes were essentially azospermic. The few primary or secondary spermatocytes that were observed exhibited severe degenerative changes. Since circulating levels of testosterone and the gonadotropins remained normal throughout the study, these workers concluded that 2,5-hexanedione does not act via the central gonadotropin control systems to induce azospermia and that demonstrable changes in Sertoli cell biochemistry precede visible morphologic changes in the testes.

Cavender et al. (1984) were unable to detect neurotoxicity or testicular toxicity in rats exposed to purified hexane (99.3%) via inhalation at 10,000 ppm, 6 hr/day for 13 weeks. The possibility of histological or biochemical changes in the testes was not addressed in this study. Although the exposure concentrations used in this study were relatively high, 0, 3000, 6500, and 10,000 ppm, the short exposure periods—6 hr/day—may not have allowed significant buildup of major metabolites in blood and tissues.

Because of apparent differences in the induction of reproductive deficits between males exposed to n-hexane orally and by inhalation, it is important that more sensitive measures be employed to assess the effects of exposure by the latter route. Evaluation of test animals for the presence of dominant lethal mutations and/or changes in sperm morphology may serve as a means of detecting testicular effects produced in males by inhalation exposure. Accordingly, dominant lethal mutation studies will be performed on fertility-tested CD-1 mice which have been exposed to 0, 200, 1000, or 5000 ppm n-hexane, 20 hr/day for 5 days, following standard timing and evaluation procedures. Sperm morphology studies, employing B6C3F1 mice exposed to the same dose levels will also be done. As a supplement to the standard tests the testes of these animals will be preserved at necropsy and supplied to NIEHS for examination.

III. SPONSOR AND SPONSOR'S REPRESENTATIVE

A. Sponsor

National Institute of Environmental Health and Safety
National Toxicology Program (NTP)
P.O. Box 12233; Research Triangle Park, NC 27709

B. Sponsor's Representatives

Dr. Bryan Hardin
Dr. Bernard Schwetz

IV. TESTING LABORATORY

A. Facility

Pacific Northwest Laboratories (PNL)
P.O. Box 999; Richland, WA 99352

B. Study Co-Directors

Dr. Patricia L. Hackett
Dr. Beatrice J. McClanahan

V. PROPOSED SCHEDULE OF EVENTS (This proposed schedule may be altered. All changes will be appended to the protocol.)

A. Prestart audit for GLP compliance: 3/17/86.

B. Receipt of animals: Four shipments will be required.

1. Males plus two groups of females (one to prove males and one to provide females for postexposure matings (weeks 1 and 2) will arrive the week of 2/24/85.
2. Females for matings of postexposure weeks 3 and 4 will arrive the week of 3/17/86.
3. Females for matings of postexposure weeks 5 and 6 will arrive the week of 3/31/86.
4. Females for mating of postexposure weeks 7 and 8 will arrive the week of 4/14/86.

C. Quarantine will commence upon arrival of the shipment and continue for 4 weeks. Health evaluation will proceed within 3 weeks of arrival.

D. Initiation of breeding procedures for proving males and randomization of males into treatment groups: 3/4/86 - 3/21/86.

- E. Exposure interval: 3/24/86 - 3/28/86.
- F. Sacrifice of 1Ø males/dose group for germinal epithelium evaluation: 3/29/86.
- G. Initiation of postexposure matings (weekly for 8 weeks): 3/31/86
- H. Initiation of female necropsies (weekly for each of the 8 matings and 12 days after the last day of cohabitation): 4/18/86.
- I. Necropsy of males: 5/27/86
- J. Evaluation of data: 4/18/86 - 7/5/86.
- K. Completion of draft report: 7/30/86
- L. Completion of final report: 9/30/86

VI. TEST SYSTEM

- A. Species: mouse.
- B. Strain: Cr1:CD-1(ICR)BR.
- C. Number of animals and supplier: 161Ø females and 15Ø males.
- D. Age on arrival: 7-8 weeks.
- E. Experimental Animals (Proven Breeder Males): Prior to selection for exposure, male mice will be designated as proven breeders following the determination of pregnancy in 1 of the 2 females cohabited with each male for at least one week. Each female will be examined for her reproductive status within 17 days of the first day of cohabitation (ØB-DT-3B12).
- F. Number of animals in the study: 3Ø proven breeder males will comprise each of the four treatment groups—12Ø total. Ten will be necropsied one day after cessation of exposure for evaluation of the germinal epithelium. The remaining twenty in each dose group tested for fertility (see Experimental Design, p. 5).
- G. Test System Justification: Where appropriate, dominant lethal assays are routinely performed in mice because the spermatogenic cycle of the mouse encompasses a shorter time interval than that of the rat (8 wk and 11 wk, respectively). In addition, the use of mice as a test system was specified by the sponsor.

VII. TEST SYSTEM HOUSING, HANDLING AND ENVIRONMENTAL CONDITIONS

- A. Quarantine and Acclimatization:
 - 1. Upon arrival at PNL, each of the 4 shipments of mice will be quarantined separately (ØB-AR-3FØ3) for 3-4 weeks.
 - 2. Temperatures in all rooms will be maintained at $72^{\circ}\pm 3$ F and relative humidities at $50\pm 15\%$ during the quarantine, acclimatization and exposure periods. These values will be measured and recorded twice daily.
 - 3. Upon arrival the animals will be housed 1Ø mice per cage in solid-bottom cages. Following 2-3 days of acclimation animals will be placed in wire cages and proving matings of the males will be initiated—one male will be housed with two females for at least one week.
 - 4. During the mating period the animals will be housed in the quarantine room.
 - 5. Proven breeder males will be acclimated for 2-3 days in individual compartments of wire-mesh cages within exposure chamber (with chamber doors open).
- B. Feed: NIH-Ø7 Open Formula Diet (pellets) will be provided ad libitum during the acclimation and experimental period. Feed will remain in place during the exposure period and will be changed daily.
- C. Water: Water will be supplied ad libitum at all times during the study using an automatic watering system.
- D. Randomization: During the week prior to exposure, proven breeder male mice will be weighed; their weights will be ranked from lightest to heaviest and each animal will be randomly assigned to a treatment group by means of a computer-assisted randomization program which is based on a single blocking factor; body weight (ØB-DT-3BØB).

E. Identification:

1. All experimental male mice will be individually identified by metal ear tags (ØB-DT-3BØ1).
2. Exposure groups will be designated by distinctive toe clipping and by placement within the individual compartments of the chamber cage units (ØB-DT-3BØ1).
3. Cage maps (ØB-DT-3BØ3) showing placement of individual animals in each cage unit of the exposure chamber will be prepared and updated as necessary. Each exposure chamber will be identified by chamber number and exposure level. The proposed arrangement of the exposure chambers is included in Attachment 2.

G. Animal Disease Screening Program (ØB-AA-3FØ2): Approximately 2-3 weeks after receipt of the animal shipment, five males and five females will be examined for internal and external parasites and bacterial pathogens; their sera will be tested for antibodies to selected pathogens and histopathologic examinations of lung, liver, kidney, ileum, colon and heart will be performed. At necropsy, serum from 5 animals in the control group and 5 from the high dose group will be tested for antibodies to selected pathogens.

VIII. TEST ARTICLE

- A. Chemical name: n-hexane.
- B. Formula: $\text{CH}_3(\text{CH}_2)_4 \text{CH}_3$
- C. Manufacturer: Phillips Chemical Co.
- D. Source: Research Triangle Institute, Research Triangle Park, NC.
- E. CAS No.: 110-54-3
- F. NTP No.: 1Ø189-N
- G. LOT No.: RTI log number: 4911-1ØØ-Ø1
PNL 1st Shipment: BNW 50846-39
- H. Date of Receipt: 1st Shipment 2/12/86
- I. Test Article Preparation and Storage Areas: 2-day reserve in rms 311 and 315 LSL-II; the remainder in the Research Technology Laboratory (RTL) chemical storage facility.
- J. The vehicle control will be filtered air.
- K. Analytical Chemistry:
 1. Upon receipt, identity and gross purity analyses of the bulk chemical were performed by infrared spectroscopy; gas chromatography (GC) was used to determine purity by major peak comparison and also to generate an impurity profile (ØB-AC-3A15). Subsequent bulk assays, upon completion of the animal exposures, will use GC to determine test material purity and an impurity profile.
 2. n-Hexane concentrations within the exposure chambers will be monitored (ØB-AC-3B1P) using an HP-584Ø gas chromatograph calibrated by the method detailed in ØB-AC-3CØW (see Attachment 2).

IX. DESCRIPTION OF INHALATION EXPOSURE SYSTEM

Inhalation exposure was selected by the sponsor as the route of administration since it is the most commonly encountered route of occupational exposure. The inhalation chambers will be located in room 436 of the LSL-II building. A detailed description of the inhalation exposure system to be used in this study is included in Attachment #2 of this protocol.

X. EXPERIMENTAL DESIGN AND DOSE LEVELS

- A. Experimental Design: Four groups of animals, consisting of 30 proven breeder male mice in each group, will be exposed to air or to the test chemical on 5 consecutive days. One day after cessation of exposure 10 randomly chosen animals in each dose group will be sacrificed and the testes and epididymis removed, fixed, sectioned, and sent to Dr. Chapin at NIEHS for evaluation of germinal epithelium. After cessation of exposure the remaining animals will be held for 2 days prior to initiation of cohabitation of each male with two females for one week; matings will continue for eight weeks with replacement of two females each week. The females will be sacrificed twelve days after the last day of cohabitation to evaluate their reproductive status and the viability of the conceptus.
- B. Exposure Regimen: Chamber atmospheric concentrations of n-hexane will be 0 (filtered air), 200, 1000 and 5000 ppm. Male mice will be exposed for 20 hr/day for 5 consecutive days. Control mice (0 ppm) will be housed in an exposure chamber in the same room, and will be handled in the same manner as the mice that are exposed to the test chemical. The exposure chamber doors will be closed throughout the exposure and nonexposure periods, except during animal care procedures. Exposure chamber temperatures will be maintained at 75±3 °F and relative humidities at 55 ±15%. Air flow will be maintained at 15±3 cfm and the chamber pressure will be approximately 1" water negative with respect to the room pressure.
- C. Selection of Atmospheric Concentrations: The maximum exposure chamber atmospheric concentration of hexane, 5000 ppm, is 50% of the LEL (lower explosion limit). Since previous studies employing 10,000 ppm, 6 hr/dy produced no overt testicular toxicity (Cavender, et al., 1984) the exposure time in this study will be 20 hr/day for all doses. Exposure concentrations were approved by the Co-Project Officers.

XI. EXPERIMENTAL OBSERVATIONS

- A. Clinical Observations: The animals will be observed once daily for mortality, morbidity, and signs of toxicity. The date and time of death or euthanasia of moribund animals will be recorded and the animals will be necropsied according to ØB-DT-3BØF.
- B. Body Weights: The male mice will be weighed during the week prior to exposure, on the first day of exposure, and on the first day of mating for each of the eight subsequent weekly mating periods and at necropsy (ØB-DT-3BØC).
- C. Scheduled Necropsy: Ten male mice randomly selected from each dose group will be euthanized with CO₂ one day after the cessation of exposure. The remaining 20 males in each group will be necropsied after the last weekly mating period (8 weeks postexposure). At necropsy (ØB-DT-3B12) the males will be weighed and examined for lesions of the reproductive tract and for gross tissue abnormalities. To document the presence of lesions which may be due to chemical exposure, any organs or tissues with lesions will be preserved in neutral buffered formalin (NBF); in this case, comparable organs or tissues from approximately 20% of the control animals will be preserved in NBF; all other tissues will be discarded.

The testes and epididymis from all males will be treated as follows: fix in 10% buffered formalin (24 hr), transect and transfer to 4% glutaraldehyde in 0.1 M. cacodylate buffer at pH 7.4 (at least 24 hr), imbed in glycol methacrylate, cut 2-micron sections and stain with PAS-hematoxylin. Slides will be sent to Dr. Chapin at NIEHS for evaluation.

Female mice will be euthanized with CO₂ 12 days after the last day of cohabitation. The reproductive status will be determined and the gravid uterus removed. The total number, position and status of implants will be recorded. Implants will be scored as follows: live fetuses; early resorptions (brown or black containing necrotic and hemorrhagic material but no embryo); late resorptions; and dead fetuses (ØB-DT-3B12).

D. Indices of Effects: The following parameters, expressed as mean \pm SE, when appropriate, will be computed from data for males and for females and their litters from each mating and will be presented in the Final Report for each treatment group:

- Number of dead animals, animals removed from the study and reason for removal.
- Summary of toxicity, including incidence of changes detected during clinical observations.
- Body weight of males before exposure, on each of the 8 postexposure weeks, and at necropsy.
- Number and percentage pregnant for each weekly mating
- Number of implantation sites/litter
- Number of live fetuses/litter
- Number of early intrauterine deaths/litter
- Number of late fetal deaths/litter
- Mutagenic index (intrauterine mortality as percentage of implantation sites)
- Number and percentage of litters with live fetuses
- Number and percentage of litters with early intrauterine deaths
- Number and percentage of litters with late resorptions or dead fetuses.

XII. PROPOSED STATISTICAL METHODS

The number of implantation sites and intrauterine deaths/litter for each week and for the complete experiment will be analyzed by analysis of variance (Steel and Torrie, 1980). When appropriate, proportions of resorptions, dead or live fetuses per implant will be subjected to an arcsin transformation and analyzed by an analysis of variance. Duncan's multiple-range test will be used to delineate intergroup differences. Orthogonal contrasts will be employed to test for dose response trends (Winer, 1971).

XIII. STORAGE OF STUDY MATERIAL

All raw data and study records will be retained in the Project Office (room 1519); all tissues and slides will be temporarily stored in the Teratology Laboratory (room 1428). Both of these rooms are located in Life Sciences Laboratory II, Battelle, Pacific Northwest Laboratories. All tissue specimens will be shipped to the NTP Archives. Records generated in the conduct of the study will be microfiched. Computer tapes of biological data, the original and one copy of the microfiche, and the microfiche index will be sent to Dr. Schwetz (NIEHS) for storage in the NTP Archives. One copy of the microfiche and the microfiche index will be sent to Dr. Hardin (NIOSH). The Quality Assurance Unit at PNL will retain the following materials:

- Bound PNL laboratory notebooks, which are required to remain at PNL.
- QAU master schedule and audit records.
- Personnel training and experience records and job descriptions for persons participating in the study is sent to NTP archives.
- Maintenance and calibration records of equipment used on the study. (Exception: if the equipment is government-owned, the records would accompany the equipment.)

XIV. RECORDS RETENTION

The following records, generated during the course of the study, will be maintained at PNL until they are shipped to the NTP archives. Some of these records may be presented in the protocol or in study reports.

A. Personnel Records:

1. Current professional resume and job description for each person recording data.
2. Safety Training records, including respirator and hazardous material, and specific-task training records.
3. Accident/injury reports for personnel in contact with the test material or test system.
4. Record of removal of any individual, because of illness, from direct contact with the test system.

B. Study Protocol:

1. Study protocol prepared prior to the initiation of the study and approved by the PNL Study Director(s), the PNL QAU Officer and the NTP Project Officer(s).
2. All amendments to the study protocol resulting from modifications in the study or time schedule.
3. A record of any deviations from the protocol and corrective actions taken.

C. Equipment Records:

1. Title(s) of person(s) assigned to clean, inspect, and maintain equipment.
2. Schedule for cleaning, calibrating, inspecting and maintaining equipment.
3. Documentation of routine cleaning, inspection, calibration, and maintenance of equipment.
4. Documentation of any nonroutine maintenance:
 - Description of malfunction
 - Description of remedial action.

D. Test Materials Records:

1. Test materials identity records including manufacturer, quantity, lot number(s) and purity grade.
2. Records from NTP analytical contractor concerning characterization, bulk stability and shipment.
3. PNL records for receipt and storage of material, including storage conditions.
4. PNL records for bulk analysis and degradation.
5. PNL records of inventory, usage and shipment of unused test material to the NTP repository.

F. Animal records:

1. Animal receiving records including supplier, species, strain, birth week, sex, number of animals of each sex, receiving date and condition upon receipt.
2. Health evaluation records of findings, written release from quarantine/acclimatization or reasons for refection for use in the study and results of serologic examination at sacrifice.
3. Housing records for quarantine, acclimation, mating and exposure to the test material, including room location, temperature, relative humidity, lighting cycle, caging type, number of animals per cage, location of chambers within the exposure room, cage assignment of individual animals within the exposure chamber and sanitation procedures (frequency and methods of cage and room cleaning/sterilization).
4. Feed records of commercial source and product information (feed tags, lot numbers and milling dates), analyses and mode and frequency of feeding.
5. Records of mode and frequency of watering, annual analysis and weekly water hardness tests (records are maintained in offices of the building engineer or building manager).
6. Animal disposition records.

G. Study Implementation and Conduct Records:

1. Records of assignment of animals to treatment groups.
2. Body weights.
3. Dates of exposure intervals for individual animals.
4. Daily observations.
5. Time of death/euthanasia of animals occurring prior to scheduled sacrifice and results of gross necropsy.
6. At scheduled sacrifice, gross necropsy findings in male animals and results from microscopic examinations of sperm preparations.

H. All relevant correspondence.

I. Reports:

1. Literature survey and recommendations for studies.
2. Monthly progress reports.
3. Draft final and final reports.

J. Internal Computer Generated Forms and Tables:

1. Study data and statistical analyses.
2. Analytical data.
3. Exposure suite control center computer printouts.

K. Standard Operating Procedures: The list of SOP's to be used in this study appears in Attachment 1. A file of these SOP's is maintained in the QAU office.

L. Health and Safety Records:

1. NTP safety and toxicity package.
2. PNL Biohazard Protocol and Health and Safety Plan.
3. Personnel respirator and hazardous material training records: accident/injury reports.
4. Monitoring records of ventilation system, hoods and exhaust systems used in this study.
5. Relevant sections of the Health and Safety Monthly Progress Reports.
6. NTP site visit reports, attention items and related correspondence concerning health and safety.

XV. OTHER SPECIFICATIONS

- A. This study will be performed in compliance with the FDA Good Laboratory Practice Regulations for Non-Clinical Laboratory Studies (21 CFR 58).
- B. This Protocol will be the controlling document in case of discrepancies between the Protocol and SOP's. If discrepancies are noted, the Study Director is to be notified immediately to resolve and document the variance between the Protocol and SOP.

XVI. HEALTH AND SAFETY

PNL's Health and Safety Plan, which has been submitted for NTP approval, is detailed in ØB-HS-3S1C. In addition, a respiratory program is outlined in ØB-HS-3S1B. This is supplemented by an SOP (ØB-HS-3S19) which covers the use of supplied-air respirators which will be worn by personnel during periods of animal care while the chambers are open, and by an SOP (ØB-HS-3S1A) which covers the use of a self-contained breathing apparatus for use when entering a room under emergency conditions following an accidental release of the chemical.

Personnel training, protective equipment and facilities are designed to conform with DOE health and safety requirements and with Health and Safety Minimum Requirements for Laboratories under Contract to the NTP Systemic Toxicology Branch, dated November 19, 1984 and consisting of a basic document of eight pages, Appendix I of ten pages and Appendix II of two pages.

XVII. APPROVAL BY PNL

R.L. Hackett Date: 3/4/86
Co-Study Director

B.J. Mc Clellan Date: 3/4/86
Co-Study Director

R.A. Gelman Date: 3/15/86
Quality Assurance Auditor

XVIII. APPROVAL BY NTP

B.A. Schwetz Date: 20 Mar 86
Co-Project Officer

Bryan D. Hucks Date: 21 March 1986
Co-Project Officer

XIX. REFERENCES

Andersen, M.E. 1981. Pharmacokinetics of inhaled gases and vapors. *Neurobehavioral Toxicology and Teratology* 3: 383-389.

Armitage, P. 1955. Tests for linear trends in proportions and frequencies. *Biometrics* 11: 375-386.

Baker, T.S. and D.E. Rickert. 1981. Dose-dependent uptake, distribution, and elimination of inhaled n-hexane in the Fischer-344 rat. *Toxicol. Appl. Pharmacol.* 61: 414-422.

Bohlen, P., U.P. Schlunegger and E. Lauppi. 1973. Uptake and distribution of hexane in rat tissues. *Toxicol. Appl. Pharmacol.* 25: 242-249.

Bus, J.S., D. Deyo and M. Cox. 1982. Dose-dependent disposition of n-hexane in F-344 rats after inhalation exposure. *Fund. and Appl. Toxicol.* 2: 226-229.

Cavender, F.L., H.W. Casey, H. Salem, D.G. Grahem, J.A. Swenberg and E.J. Gralla. 1984. A 13-week vapor inhalation study of n-hexane in rats with emphasis on neurotoxic effects. *Fund. App. Toxicol.* 4: 191-201.

Chapin R.E., R.M. Norton, J.A. Popp, and J.S. Bus. 1982. The effects of 2,5-hexanedione on reproductive hormones and testicular enzyme activities in the F-344 rat. *Toxicol. Appl. Pharmacol.* 62: 262-272.

Krasavage, W.J., J.L. O'Donoghue, G.D. DiVincenzo and C.J. Terhaar. 1980. The relative neurotoxicity of methyl-n-butyl ketone, n-hexane and their metabolites. *Toxicol. Appl. Pharmacol.* 52: 433-441.

NTP. 1983. NTP Technical Protocol for Sperm Morphology and Vaginal Cytology Evaluation in Toxicity Testing for Rats and Mice (Revised 10/31/83).

Spencer, P.S., D. Couri and H.H. Schaumburg. 1980. n-Hexane and methyl n-butyl ketone. In *Experimental and Clinical Neurotoxicology*, P.S. Spencer and H.H. Schaumburg J. (eds.), Williams & Wilkins, Baltimore, MD, pp. 456-475.

Spencer, P.S., H.H. Schaumburg, M.I. Sabri and B. Veronesi. 1980. The enlarging view of hexacarbon neurotoxicity. *CRC Critical Reviews in Toxicology* 3: 279.

Steel, R.D.G. and J.H. Torrie. 1980. Principles and Procedures of Statistics, McGraw-Hill, New York, NY.

Winer, B.J. 1971. Statistical Principles in Experimental Design, McGraw-Hill, New York, NY

n-HEXANE
Dominat Lethal Test

ØB-DT-1FØ9-ØØ-Ø154
Attachment 1

Page 1 of 4
March 4, 1986

ATTACHMENT 1

STANDARD OPERATING PROCEDURES FOR INHALATION
REPRODUCTIVE TOXICOLOGY STUDIES

STANDARD OPERATING PROCEDURES FOR INHALATION
REPRODUCTIVE TOXICOLOGY STUDIES

EXPOSURE SYSTEM

CDS DMM Card Calibration	ØB-BE-3CØT
Bubbler Sample Collection via the Critical Orifice Sample System	ØB-BE-3CØQ
Inhalation Exposure Chamber Balance	ØB-BE-3B24
Model 1 Chamber Leak Tester	ØB-BE-3DØ6
Calibration and Check of Chamber Airflow Using Digital Anemometer	ØB-BE-3CØV
Digital Anemometer Calibration	ØB-BE-3CØS
Dwyer Manometer Calibration Check	ØB-BE-3CØX
Validyne Pressure Transducer Calibration	ØB-BE-3CØW
Filling Out Data Sheets	ØB-BE-3BØ7
EG&G Hygrometer: Operation, Maintenance and Calibration	ØB-BE-3CØJ
Relative Humidity Determination Via Use of Dewpoint Hygrometer	ØB-BE-3B1X
Exposure Suite Computer Program Documentation	ØB-BE-5EØ1
Exposure Suite Data Analysis Program Documentation	ØB-BE-5EØ3
Exposure Suite Data Analysis Program Operation	ØB-BE-3EØB
Exposure Suite Routine Computer Operation	ØB-BE-3GØ4
Exposure Suite Routine Data Disk Operation	ØB-BE-3EØA
Software Change Protocol	ØB-BE-5EØ2
Study Protocol Entry into Exposure Suite Computers	ØB-BE-3EØ9
Exposure Suite Emergency Evacuation Procedure	ØB-BE-3SØ1
Exposure Suite QC, Maintenance and Calibration	ØB-BE-3DØE
Selection of RTD's and Digital Thermometer Calibration	ØB-BE-3CØD
Omega RTD Thermometer Calibration	ØB-BE-3CØL
ERDCO FGD Maintenance & Calibration	ØB-BE-3CØU
Flammable Gas Detector (ERDCO) Checkout Procedures	ØB-BE-3CØB
Hexane Exposure System Daily Operating Procedure	ØB-BE-3B2Y
Hexane Exposure System Quality Control, Maintenance and Calibration	ØB-BE-3DØM

ANALYTICAL CHEMISTRY AND MONITORING

Operation of HP584Ø Gas Chromatograph for Monitoring n-Hexane in Inhalation Chamber	ØB-AC-3B1P
Calibration of n-Hexane Inhalation Chamber Monitor	ØB-AC-3CØW
Bulk Chemical Analysis of n-Hexane	ØB-AC-3A15
Use of Mettler H51 Analytical Balance	ØB-AC-3BØP
Special Operating Procedure for Care and Use of Volumetric Glassware	ØB-AC-3BØR
Use of Pipets	ØB-AC-3BØS
Ordering, Receipt, Recording Use and Returning Chemicals	ØB-AC-3EØ5
Labeling of Reagents and Chemicals	ØB-AC-3B12
Dispensing Test Material to Exposure Suite Control Center	ØB-AC-3B1H

Operation of Toledo Scale (Model 2120) to Weigh Large
Containers of Test Material

ØB-AC-3B1A

ANIMAL RESOURCE CENTER

Job Orientation and Training	ØB-QA-3B07
Barrier Procedures for LSL II Animal Facility	ØB-AR-3B0G
Operation and Maintenance of the Clean Corridor Area	ØB-AR-3B05
Operation of the Regulated Corridor	ØB-AR-3B1Y
Operation and Maintenance of the Street Corridor	ØB-AR-3B06
Moving Animals from LSL II Animal Resources Center	ØB-AR-3B0N
Management of Animal Feed	ØB-AR-3F05
Pre-cleaning Equipment and Operation of Cage, Bottle and Rack Washers	ØB-AR-3G01
Operation of Steam, Gas and Bulk Sterilizers	ØB-AR-3G02
Kaye Digistrip-III Room-Temperature Recorder	ØB-AR-3G03
Operation of Garb-El Waste Disposal	ØB-AR-3G04
Operation of Clark-A-Matic Floor Scrubber	ØB-AR-3G05
Operating Procedures for Pathological Incinerator	ØB-AR-3G07
Calibration/Service of Balances	WØ-SL-3C01
Biweekly Deep Cleaning of Exposure Rooms and Occupied Animal Rooms	ØB-AR-3H01
Deep-Cleaning and Sanitizing Empty Animal and Exposure Rooms	ØB-AR-3H03
Processing Laundry for the LSL II Animal Facility	ØB-AR-3B07
Sanitizing Operations Monitoring	ØB-AR-3H0A
Handling and Changing Out Exposure Chamber and Cage Units	ØB-AR-3B03
Handling, Changing and Storage of Animal Cages and Racks	ØB-AR-3B0D
Cage and Rack Change-Out and Rotation for LSL II	ØB-AR-3B1U
Changing Out Racks Having Individual-Compartment Cage Units	ØB-AR-3B1V
Pre-exposure Health Screening for Rodents	ØB-AR-3F02
Quarantine of Animals	ØB-AR-3F03
Daily Care of Bioassay Animals and Cleaning of Exposure Rooms	ØB-AR-3F0A
Daily Care of Rodents Housed in Cage Units and Cleaning of Animal Holding or Exposure Rooms	ØB-AR-3F0N
Daily Care of Animals Housed in Holding Cages and Cleaning of Animal Holding Rooms	ØB-AR-3B0C
Handling Escaped Small Animals	ØB-AR-3B08
Determination of Ammonia Levels Within the Exposure Chambers	ØB-AR-3A01
Handling of Animal Death Records and ARC Daily Observation Records	ØB-AR-3F06
Moribund Sacrifice	ØB-AR-3F0B
Weighing Rodents with Toledo Semi-Automatic Weighing System Using the 733 ASR Terminal	ØB-AR-3G06

REPRODUCTIVE AND DEVELOPMENTAL TOXICOLOGY

Identification of Animals	ØB-DT-3B01
Cage Location Maps and Daily Observations	ØB-DT-3B03
Randomization of Animals	ØB-DT-3B0B
Animal Body Weights	ØB-DT-3B0C

n-HEXANE
Dominant Lethal Test

ØB-DT-1F09-00-0154
Attachment 1

Page 4 of 4
March 4, 1986

Rodent Mating Procedures
Necropsies for Health Evaluation and of Dead and
Moribund Animals
Sacrifices for Dominant Lethal Assays
Photography
Data Acquisition and Transfer with a Microcomputer
Data Handling and Storage

ØB-DT-3BØD
ØB-DT-3BØF
ØB-DT-3B12
ØB-DT-3BØJ
ØB-DT-3BØK
ØB-DT-3BØL

HEALTH AND SAFETY

Biohazard Protocol n-Hexane (Teratology)
Bioassay Studies: Health and Safety Plan
The 3M Brand W-2869 Hardcap, Continuous-Flow Air-line Respirator
Scott-Presur Pak II Self-contained Breathing Apparatus
Bioassay Respiratory Protection Program

ØB-HS-3S1S
ØB-HS-3S1C
ØB-HS-3S19
ØB-HS-3S1A
ØB-HS-3S1B

ATTACHMENT 2

**DESCRIPTION OF THE EXPOSURE SYSTEM FOR
INHALATION REPRODUCTIVE TOXICOLOGY STUDIES**

CONTENTS

	<u>Page</u>
INHALATION EXPOSURE SYSTEM DESCRIPTION.	
A. ANIMAL EXPOSURE CHAMBER.	
B. EXPOSURE SUITE CONTROL CENTER.	
C. TEST ARTICLE GENERATION AND MONITORING	
1. Hexane Generation System.	
2. Test Article Concentration Monitoring	
3. Explosive-Level Detector.	
D. ENVIRONMENTAL MONITORING	
1. Temperature Measurements.	
2. Relative Humidity (RH) Measurements	
3. Chamber Air-Flow Measurements	
4. Chamber Vacuum Measurements	
E. ENVIRONMENTAL CONTROLS	
1. Animal Facility Air-Handling System	
2. Animal Room Air-Handling System	
3. Chamber Relative Humidity (RH) Control.	
4. Chamber Air-Flow Control.	
5. Chamber Temperature Control	
F. CHAMBER EXHAUST WASTE TREATMENT.	
G. DATA HANDLING.	
H. EQUIPMENT OR POWER-FAILURE PROTECTION SYSTEM . . .	
I. REFERENCES	

INHALATION EXPOSURE SYSTEM DESCRIPTION

A. ANIMAL EXPOSURE CHAMBER

The Battelle-designed stainless steel chamber (U.S. Patent #4,216,741) available from Hazleton Systems, Inc., Aberdeen, MD, is used for inhalation exposures (Figure 1A). The total volume of the chamber is 2.3 m³, the chamber has an active mixing volume of 1.7 m³, the remainder being the non-mixing inlet and exhaust volumes. There are three levels of caging, each level split into two tiers which are offset from each other and from the chamber walls (Figure 1B). Drawer-like, stainless steel cage units composed of individual animal cages, are suspended in the space above each tier. Stainless steel catch pans for collection of urine and feces are suspended below each cage unit. Catch pans are left in position during each exposure period. Instructions for maintenance of these chambers is detailed in SOP# OB-BE-3D06.

The chamber was designed so that uniform aerosol or vapor concentrations can be maintained throughout the chamber when the catch pans are in position. Incoming air containing a uniform mixture of test material is diverted so that it flows vertically along the inner surfaces of the chamber. Waves are formed (Figure 1B) at each tier as the aerosol or vapor flows past the catch pans. Stagnant zones that would normally exist above each pair of catch pans are cleared by exhaust flow through the space between the tiers. Aerosol or vapor reaching the lowest level is deflected across the bottom tiers by metal strips in the space between the catch pan and wall. Tests have shown that aerosol or vapor concentrations uniform to within 8% throughout the chamber can be obtained repeatedly provided the aerosol or vapor is uniformly mixed before passing through the chamber inlet.

Rats and mice are housed in individual cages having feed troughs and automatic watering. During exposure the feed will be removed from each cage unit. The floor area of an individual mouse cage is 106 cm² and of a rat cage 270 cm² (representing dimensions 14.0 cm by 7.6 cm with height 15.0 cm, and 27.9 cm by 9.7 cm with height 20.0 cm, respectively). There are 60 mice or 24 rat individual cages per cage unit. Up to six cage units can fit in a chamber.

B. EXPOSURE SUITE CONTROL CENTER

A computer located in the Suite Control Center interfaces with system monitors and provides control of the basic functions (e.g., chamber air flow, test chemical concentration, vacuum, and relative humidity) in three exposure rooms (Figure 2). The arrangement of computer control and interface instrumentation is shown in Figure 3. The executive computer is an Hewlett Packard Model (HP) 9816. All data acquisition and automated system control originates from this computer. All experimental protocols related to the data acquisition and control system (such as data channel assignments, monitoring frequencies, and alarm settings) reside in the executive computer and are entered into tables accessed by menus.

Data input to the executive computer is accomplished through several interface instruments. All gas chromatographic (GC) data is collected and preconditioned by Hewlett Packard Model 85B computers, one for each of the exposure rooms. Conditioned data is transferred to the executive computer for analysis, storage, printing and concentration control. Up to two GCs can be attached to each HP85B computer. Data from monitoring equipment other than the GCs are inputted through a Colorado Data Systems (CDS) Model 53A-IBX Intelligent Interface System.

System control is provided from the computer by means of control relays in the CDS Intelligent Interface System. These relays control such devices as valves, drive motors, audible alarms, indicator lamps, etc.

A complete description of the software for this system is contained in document 0B-BE-5E01. Maintenance of the system is detailed in SOP #0B-BE-3D0E. Routine operation of the computer system is detailed in SOP #0B-BE-3G04. Routine daily operation of the system hardware is detailed in SOP #0B-BE-3B2Y.

C. TEST ARTICLE GENERATION, MONITORING

1. Hexane Vapor Generation System

A Schematic diagram of the hexane vapor generation and delivery system is shown in Figure 4. Most of the hexane generator system will be enclosed within a vented cabinet located in the Exposure Suite Control Center. The hexane to be vaporized will be contained in an 19 liter stainless steel reservoir. This reservoir will be filled daily from the original shipping container by the following method which is designed to prevent explosion during transfer. All oxygen in the reservoir will be displaced with nitrogen. A vacuum will be applied to the reservoir to suck hexane through an eductor tube placed in the shipping container into the reservoir. All metal containers will be properly grounded. Transfer will take place in a vented vapor hood and the filled reservoir will then be transferred and installed into the generator cabinet.

During exposure the hexane will be pumped from the reservoir through a stainless steel eductor tube and delivery tubes to vaporizers located at the fresh air inlet of each animal exposure chamber. Stable micrometering pumps with adjustable drift-free pump rates ranging from less than 1×10^{-3} to greater than 20 ml per minute will be used.

The vaporizer (Figure 5) comprises a stainless steel cylinder covered with a glass fiber wick from which the liquid is vaporized. The wick can be easily and inexpensively replaced if necessitated by residue buildup. An 80-watt heater and a temperature sensing element are incorporated within the cylinder and connected to a remotely located temperature controller. A second temperature monitor is incorporated in the vaporizer allowing the operating temperature to be recorded by the automated data acquisition system. The operating temperature of the vaporizer will be maintained below 50°C (the boiling point of hexane is about 70°C). The cylindrical vaporizer will be positioned in the fresh air duct leading directly to the inlet of the exposure chamber.

A clear teflon® tube of measured volume, preceded by a three-way valve will be attached just upstream of the pump to facilitate measurement of the liquid flow rate of the vapor generator. Measurement will be accomplished by momentarily switching the three-way valve from the run position to the test position. A small bubble of air will be pulled by the pump from the cabinet through the valve and into the clear tube. The progress of this bubble from one end to the other of the tube (calibrated volume) will be timed with a stop watch. Flow rate will be calculated by dividing the volume by the time. The concentration in the exposure chamber can be calculated from the flow measurements of liquid and dilution of air.

All generation equipment which comes in contact with the hexane will be stainless-steel, teflon or viton. All equipment contained in the vented generator cabinet will be explosion proof.

Detailed operating instructions for this system are contained in SOP's QB-BE-3B2Y and QB-BE-3DQM.

2. Test Article Concentration Monitoring

An HP Model 5840 gas chromatograph with a flame ionization detector (FID) will be used to monitor the exposure chambers, the control chamber, the exposure room and a hexane standard gas. Sampling from multiple positions will be accomplished by means of an automated multiplexed eight-port sampling valve. The sampling system (Figure 6) is incorporated into the relative humidity (RH) sampling system. Samples of the atmosphere from each sample location are continuously drawn by a vacuum pump through polytetrafluoroethylene-lined, stainless-steel sample lines to a location near the input to the eight-port sample valve. This assures fresh samples at the monitor. The sample lines, which continue from the point where they "T" off to the eight-port valve to the dew point monitor, are polytetrafluoroethylene.

Sample values are accumulated and printed by an HP model 85B computer until samples from all eight ports of the sample valve have been measured. These values are then sent to the executive computer for printing and storage. As each value is sent to the HP 85B, it is compared with limit values for that particular location. If the value is beyond the control limits, the HP 85B will immediately send the information to the executive computer, which will then take the appropriate action as follows:

- Concentration \geq non-critical low limit and \leq non-critical high limit:

No action

- Concentration $<$ non-critical low limit but \geq critical low limit:

Increase concentration by decreasing chamber air flow.

- Concentration < critical low limit:
 - Increase concentration by decreasing chamber air flow and activate audible alarm.
- Concentration > non-critical high limit but ≤ critical high limit:
 - Decrease concentration by increasing chamber air flow.
- Concentration > critical high limit:
 - Turn off generation system and activate audible alarm.

The monitor will be calibrated by quantitative analysis of grab samples. Additionally, the operation of the chamber-monitoring gas chromatograph will be checked daily against an on-line standard. This check provides a measure of day-to-day instrument drift. Additional calibration checks with grab samples will be performed to check the monitor calibration when drift of the on-line standard response factor is detected. Under normal circumstances, the calibration check will be performed once monthly (SOP #0B-AC-3C0W).

Daily operating procedures for the concentration monitoring system are contained in SOP #0B-AC-3B1P. Routine maintenance of the gas chromatograph is covered in SOP #0B-AC-3D02.

The uniformity of the distribution of test chemicals in the chamber will be checked before the start of the study following SOP #0B-BE-3B24.

3. Explosive-Level Detector

Figure 6 shows the explosive-level detection system. Sample lines from all chambers containing test chemicals "T" off from the chamber sample stream to the dewpoint hygrometer. Equal sample rates from each of these lines are controlled by flow meters incorporating five metering valves. Sample flow from each line is mixed in a plenum containing the explosive-level detector head. The detector will be set to alarm if the level in any one chamber reaches 20% of the lower explosive limit while the level in all other chambers is zero (SOP #0B-BE-3C0U) and #0B-BE-3C0B). An alarm condition will automatically shut off the flow of test compound to all chambers.

D. ENVIRONMENTAL MONITORING

1. Temperature Measurements

Temperatures of the exposure chambers, exposure rooms and, if necessary, test chemical generators, are measured by Resistance Temperature Devices (RTDs). The RTDs will be placed in a representative location in each chamber (a top sample port on the back side). Each RTD can be connected to an Omega Model 412B

digital thermometer by a manual select switch or by computer controlled scanner relays in the CDS IIS (Figure 7). This allows temperature to be read manually or to be recorded automatically. All temperature measurement equipment except the F°'s will be located in the Suite Control Center. Temperatures will be automatically recorded at regular periods during each 24-hour day.

The RTD will be calibrated at least once every 2 months (SOP #0B-BE-3C0D and 0B-BE-3C0L). Calibration will generate values for offset and slope, which will be entered into the computer for each RTD. Calibration data will be included as part of the study archives.

2. Relative Humidity Measurements

Relative humidity (RH) will be measured using a EG&G Model 910 chilled-mirror dewpoint hygrometer located in the Suite Control Center. Samples of the air from each measurement location will be pulled through individual polytetrafluoroethylene sample lines to a central location in the Suite Control Center (Figure 6). This assures a fresh sample of the air at the point of measurement. Air from exposure chambers will be sampled from a representative location (a top port on the back side). Sample air from a particular location passes through a three-way valve to the system exhaust. When the RH is to be measured at that location, the three-way valve is switched to divert the flow to the dewpoint hygrometer. The valve can be controlled by either a manual switch or by a computer-controlled relay in the CDS IIS. This allows RH to be measured manually or automatically. Once the dewpoint has been determined by the hygrometer, the RH is automatically calculated by the executive computer using the dewpoint value (T_1) and the drybulb temperature (T_2), measured simultaneously at that measurement location.

The following equation is used for this calculation:

$$\% \text{ RH} = \frac{\frac{9.91 - \frac{2714.55}{(5/9)(T_1 - 32) + 293.3}}{10}}{\frac{9.91 - \frac{2714.55}{(5/9)(T_2 - 32) + 293.3}}{10}} \times 100$$

where: T_1 = dewpoint temperature, °F
 T_2 = drybulb temperature, °F

Calibration of the dewpoint hygrometer will be checked before the start of the study and at least once every two months thereafter (0B-BE-3C0J and 0B-BE-3B1X). The procedure requires comparison of the RH calculated by the system monitor to measurements made by calibrated dewpoint hygrometer at the sample location. Calibration of the system monitor can be accomplished by inserting a value for offset and slope in the computer for each measurement location. Calibration data will be included as part of the study archive. RH will be recorded at regular periods during each 24-hour day.

3. Chamber Air-Flow Measurements

Chamber air flow is measured by a multiplexed orifice-meter system (Figure 8). Calibrated flow orifices are installed at the inlet and exhaust of each chamber. The desired flow orifice is attached to a Validyne Model DP-45 pressure transducer and CD-18 carrier demodulator pressure-measurement system through Tygon tubes by means of solenoid valves. The valves can be operated either by a manual switch or by computer activated relays in the CDS IIS. This allows flow to be measured either manually or automatically. Pressure is read manually on a Validyne Model PM-12 voltmeter. Usually chamber flow will be measured using the exhaust flow orifice; however, after closing of the chamber doors, both inlet and exhaust flow measurements will be made and compared to determine if there are leaks in the chamber. If leaks are present, the executive computer will notify the operator and will not allow exposures to proceed until the leak is repaired.

All flow measurement equipment, except the multiplexed solenoid valves, is located in the Suite Control Center. Flow will be automatically recorded at regular intervals during the 24-hour day. The Validyne pressure transducer will be calibrated once each week (ØB-BE-3CØW and ØB-BE-3CØX). Calibration of the flow orifices will be checked once every two months (SOPs #ØB-BE-3CØS and ØB-BE-3CØV). Calibration of each orifice will generate coefficients that will be inserted into the computer flow equation for each orifice. Calibration data will be included as part of the study archive.

4. Chamber Vacuum Measurements

The same Validyne pressure transducer system used to measure chamber flows will be used to measure chamber vacuum (Figure 8). Vacuum in the chamber will be measured relative to atmospheric pressure in the Suite Control Room. Vacuum will be automatically recorded at regular intervals during the 24-hour day.

Vacuum will also be continuously monitored by a pressure switch mounted near each chamber. If the chamber should develop a leak (for example, a door inadvertently opened or a sample port stopper jarred loose), the pressure switch will immediately shut off the flow of compound to the chamber and alert the executive computer of the condition. The computer will activate an audio alarm and print and display a comment for the operator.

E. ENVIRONMENTAL CONTROLS

1. Animal Facility Air Handling System

Supply air enters the building through two identical parallel air handling systems (Figure 9). Each system consists of a pre-heat coil, a filter system, a heating coil, a chilling coil, and a supply fan. The

pre-heat coil heats the air to a minimum of 45°F. The filter system - which includes a roll filter, pre-filter, and a bag filter - rids the air of most particles. The heating and chilling coils maintain the temperature of the air exiting the air conditioning system at about 53°F. The chilling coils also dry the air to a dewpoint not greater than 53°F.

2. Animal Room Air Handling System

The air from the two building air handling systems is then mixed together by an air mixing unit and is divided into two ducts which feed the rooms on East and West sides of the animal quarters. If necessary, steam is injected into the air in these ducts to maintain the RH of the room at between 35% and 65%.

3. Chamber Relative Humidity (RH) Control

Figure 10 shows a schematic diagram of the system used to control the relative humidity in the exposure chambers. Equipment located in the RH Control Equipment Room (Room 335) provides separate ducts of dry and moist air to each exposure chamber. A mixing valve, controlled by the computer, mixes the proper proportions of the moist and dry air to maintain the proper RH in each chamber.

Filtered air with a maximum dewpoint of about 53°F is supplied to the RH control equipment by the building air handling system. This air is evenly delivered to two ducts. Air from the first duct passes into a plenum where steam is injected to bring the air to a dewpoint of about 65°F. This provides moist air to the mixing valves. Steam is generated from city tap water with no additional additives. The air from the second duct passes through a refrigeration coil which reduces the moisture content of the air to a dewpoint of about 38°F. This provides "dry" air to the mixing valves.

Chamber RH is measured by the multiplexed dewpoint hygrometer. If the RH is found to be beyond the RH control range, the computer will calculate and make the appropriate adjustment to the mixing valve to bring the chamber RH to the desired target value.

4. Chamber Air-Flow Control

Flow of air through the chamber is maintained by an AIR-VAC Engineering Model TDRH 1000 air- multiplier pump located in the exhaust duct of the chamber (Figure 11). This air-pressure-driven pump is stable, contains no moving parts, and is very reliable. Exhaust air from the chamber is HEPA-filtered before passing through this pump to remove particles which may reduce pump reliability. The pressure regulator, which controls the pump rate, is operated by a motor drive system. The motor drive can be controlled by a manual switch or automatically by the computer through a relay in the CDS IIS. Fine control of exposure concentration will be accomplished by automatically adjusting the chamber air flow within the allowable flow limits. Gross

adjustments of concentration must be done manually by adjustment of the generation system. Maintenance of the chamber air flow control system is covered in SOP #0B-BE-3D0E.

Exhaust from all chambers is collected into a central chamber exhaust duct within the exposure room. The exhaust from the chamber pump is rigidly attached to the central chamber exhaust duct. This rigid attachment prevents the possible escape of test compound into the room. The vacuum level in the central duct is regulated by a motor-driven feedback damper to prevent variations in building exhaust pressure from affecting chamber air-flow rates.

The air-flow rate in the central chamber exhaust duct is continuously monitored and alarmed. If the flow in this duct falls below 50% of the normal flow, the monitor trips the alarm which immediately shuts off the test compound generator system. Maintenance and calibration of the exhaust duct monitor is covered in SOP #0B-BE-3D0E.

5. Chamber Temperature Control

Nearly all of the heat load contributed to the exposure chamber by the animals is dissipated from the chamber by radiation through the chamber walls (Bernstein and Drew, 1980). Consequently, temperature of the air supplied to the chamber has little effect on the temperature of the chamber while, on the other hand, the temperature of the room housing the chamber has a great deal of effect. For this reason, the major method of chamber temperature will be control of the room temperature. However, some cooling of chambers full of animals will be affected by the cool incoming air from the chamber's RH control system. Typically, a chamber full of animals will require the addition of dry air to maintain the proper RH. The dry air from the RH control system is cooler than room temperature. On the other hand, some warming of a chamber containing few animals will be affected by the warm air from the chamber's RH control system. Typically, a chamber with few animals will require the addition of wet air to maintain the proper chamber RH. The wet air is equal to or warmer than the room temperature.

F. CHAMBER EXHAUST WASTE TREATMENT

The exhaust from the central chamber exhaust duct is mixed with the exhaust from the entire animal facility (75,000 cfm) prior to being exhausted from the building stack. Dilution of chamber exhaust with building exhaust results in an acceptable stack concentration of less than 10% of the threshold limit value (TLV) for the test article.

G. DATA HANDLING

Data from each exposure room are stored in the Exposure Suite Control Center on separate magnetic diskettes by Hewlett Packard Model 9121 micro-floppy disk drives. Data and comments from each exposure room are printed on separate thermal dot-matrix printers (Hewlett

Packard Model 2171G). Data are printed and stored immediately upon completion of the measurement to a Daily Log (example, Figure 12). At the end of the day (24-hour period), the daily data are analyzed and a summary is printed (Figure 13). This summary includes the mean, standard deviation, maximum, minimum and target values for each set of data for the 24-hour period. A second printout (Figure 14) provides a list of outliers (i.e., all data points which were beyond the defined critical limits). This printout will allow quick review of the data.

Data handling and analysis procedures are described in the SOPs 0B-BE-5E03, 0B-BE-3E0A, and 0B-BE-3E0B.

H. EQUIPMENT OR POWER FAILURE PROTECTION SYSTEMS

In the event of equipment failure, or of a short-term power failure, two parameters must be considered most important to the well-being of the animals - temperature and air flow. To understand the factors protecting against either of these two parameters becoming life-threatening to the animals, one must understand both the emergency power system and the emergency air handling equipment.

Power is provided to the Battelle complex from two separate city substations through an automatic switching device. This significantly reduces the possibility of losing city power. Power from the city is routed to equipment in LSL-II through two types of motor control centers. One type can switch power to the equipment from either city power or emergency power from the LSL-II diesel generator. The other has access only to city power. The emergency-power-type motor control center has a low voltage detector on each leg of the three-phase input power. If the city-supplied power should fail or "brown out", these detectors automatically start the emergency power diesel generator, and route the emergency power to the equipment supplied by the motor control center.

All equipment critical to the well-being of the animals is connected to the emergency-power-type motor control centers. A list of this equipment is as follows:

- Emergency lighting and electrical outlets
- Chillers #1 and #2
- Boiler and feedwater pump systems #1 and #2
- Air compressors #1 and #2
- Air supply fans #1 and #2
- Air exhaust fans #1 and #2

It should be noted that there are two identical units of all of the equipment that is vital to the well-being of the animals (heating, cooling, supply air, exhaust air, and compressed air). Either of the two units has sufficient capacity to maintain the animal environment within a safe range. In all cases, the emergency power system will operate one of the two identical units. If, during a power outage, the unit of equipment that is on emergency power should happen to fail, the other unit of identical equipment can be manually switched to run on emergency power.

All building or chamber systems which are essential to the survival of the animals are alarmed. If a system malfunctions, an alarm is tripped in the power operator's office. A power operator is on duty 24-hours/day, 7 days/week. If the power operator is not authorized to correct the problem that caused the alarm, he immediately calls the appropriate personnel, including the Task Leader(s) or the Principal Investigator(s) of the program(s) affected.

References

1. Bernstein, D.M. and R.T. Drew. 1980. The major parameters affecting temperature inside inhalation chambers. AIHAJ, (41) 6/80, pp. 420-426.

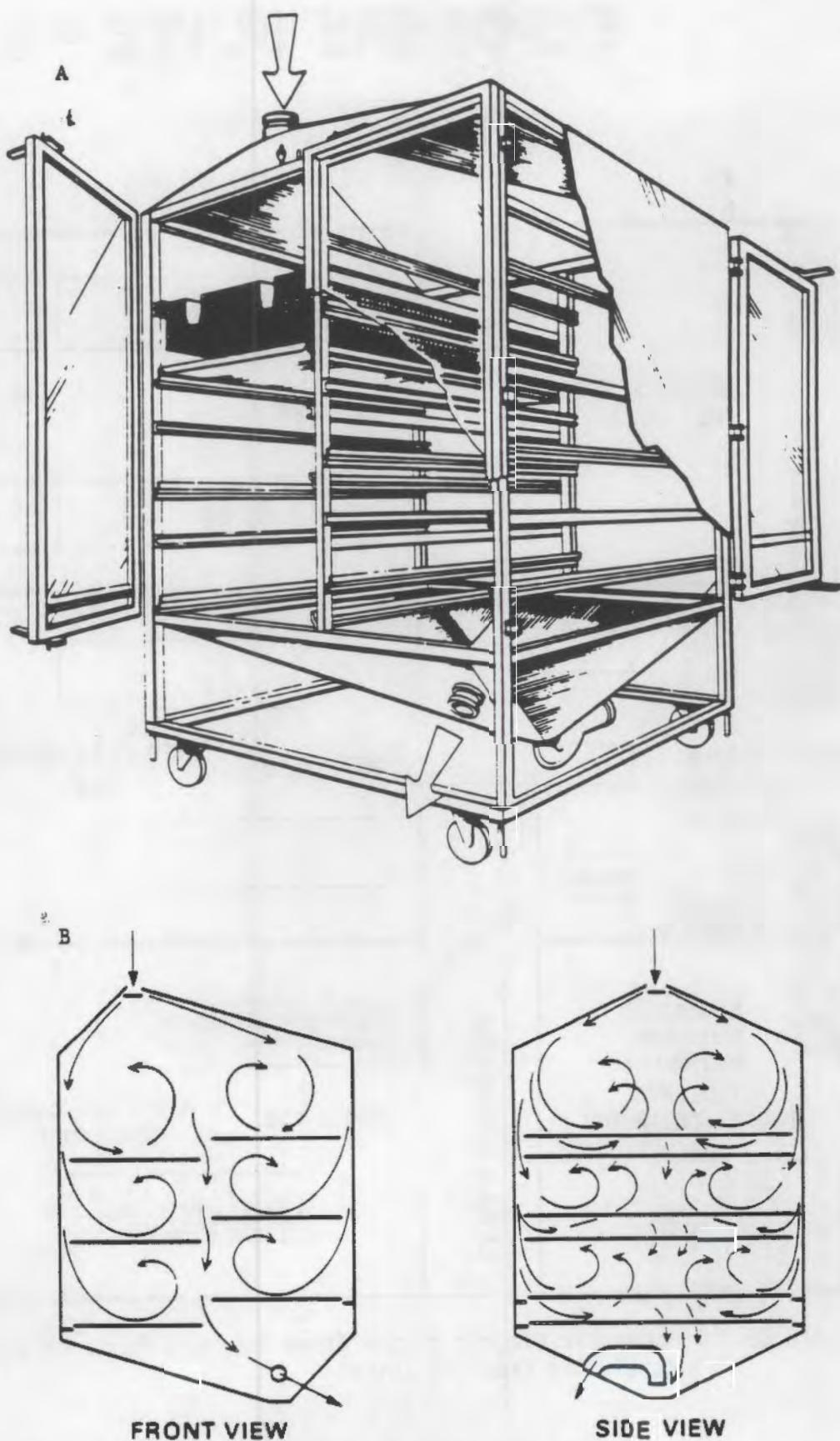


FIGURE 1. Inhalation Exposure Chamber Designed at BNW
(A. Oblique cutaway view of the chamber;
B. Airflow patterns)

EXPOSURE SUITE #1

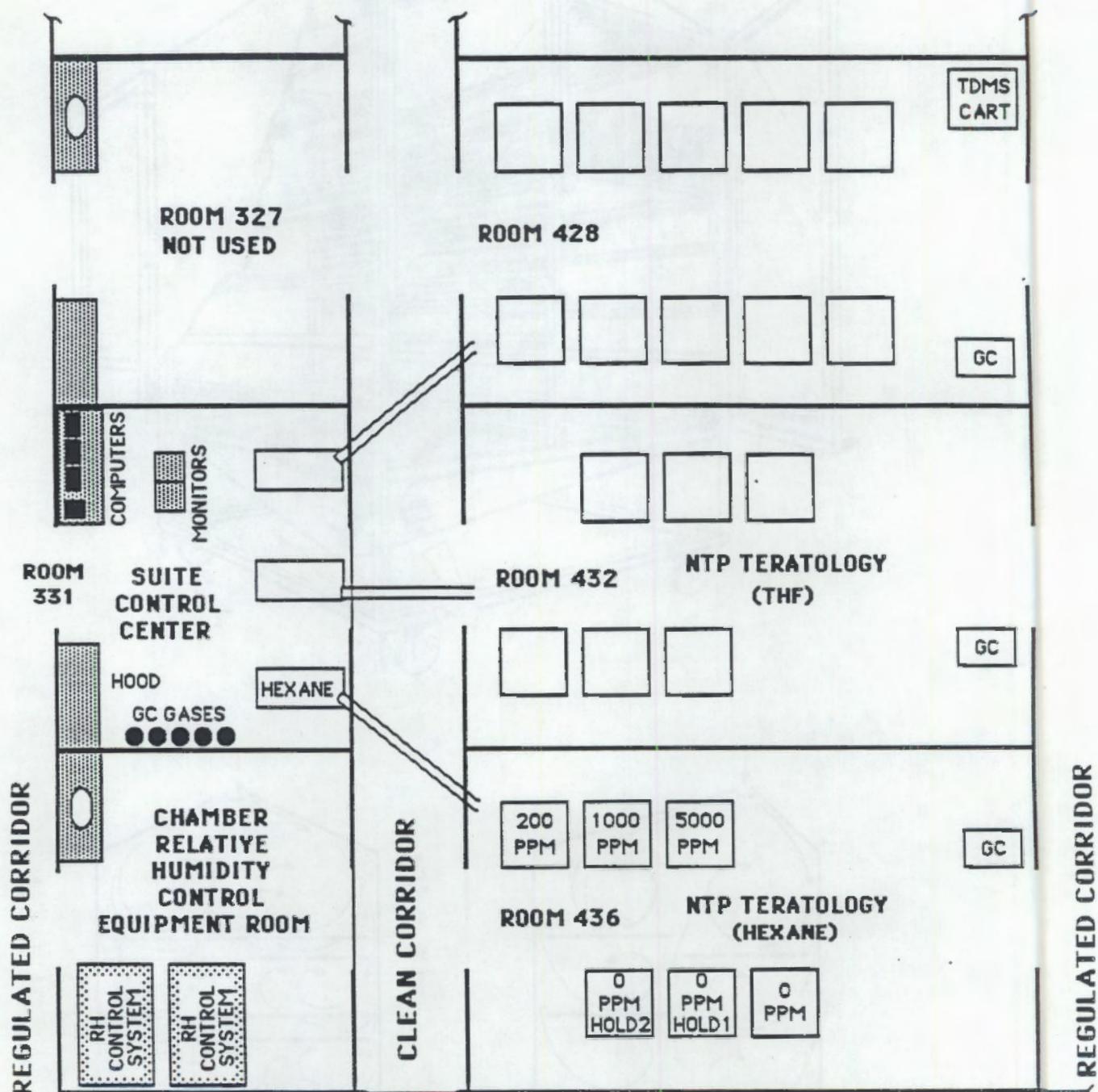


FIGURE 2. Schematic Diagram of the Three Exposure Rooms in the Automated Inhalation Exposure Suite.

COMPUTER SYSTEM

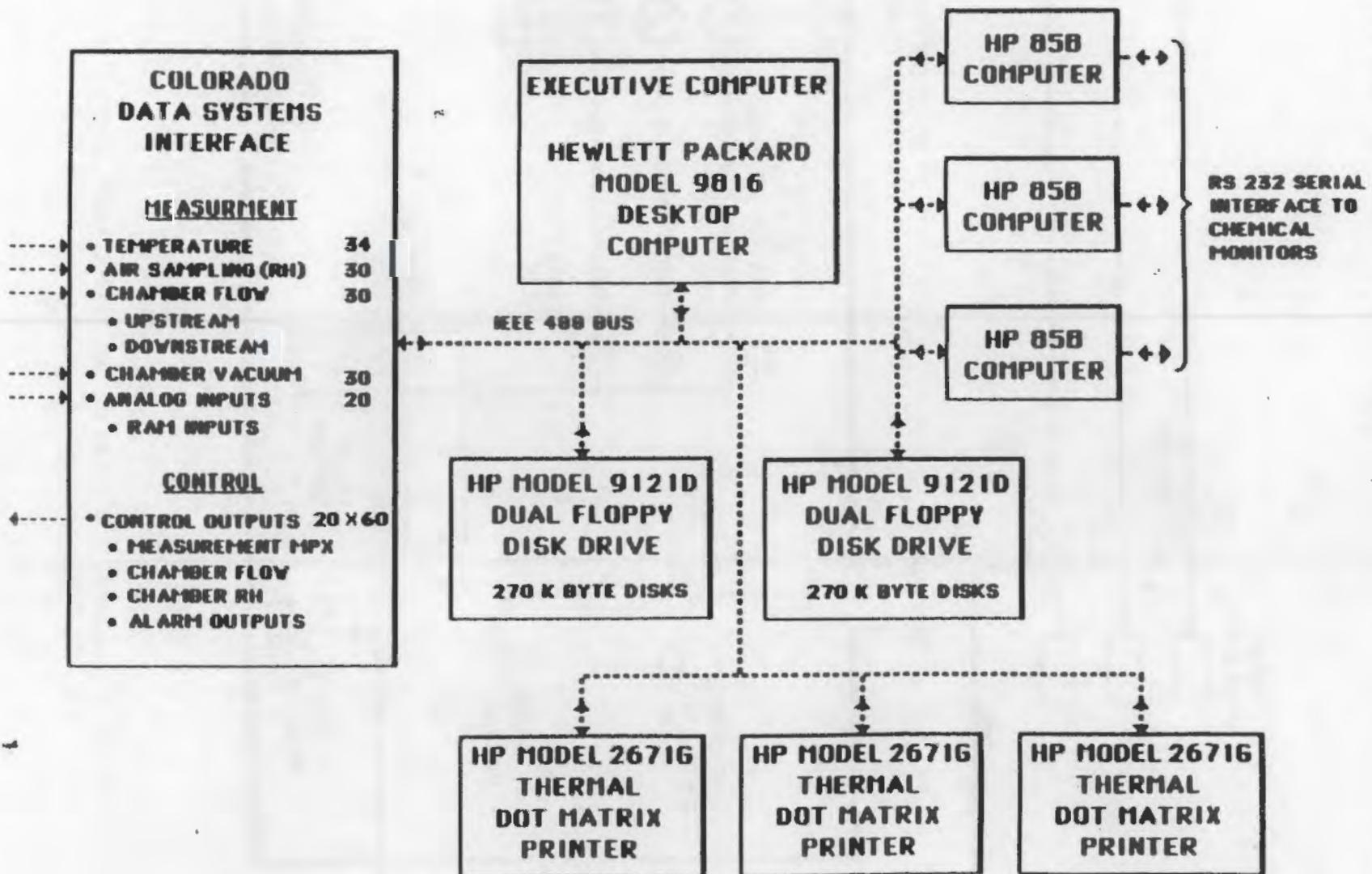


FIGURE 3. Block Diagram of Data Acquisition and Control Computers and Interface Instrumentation

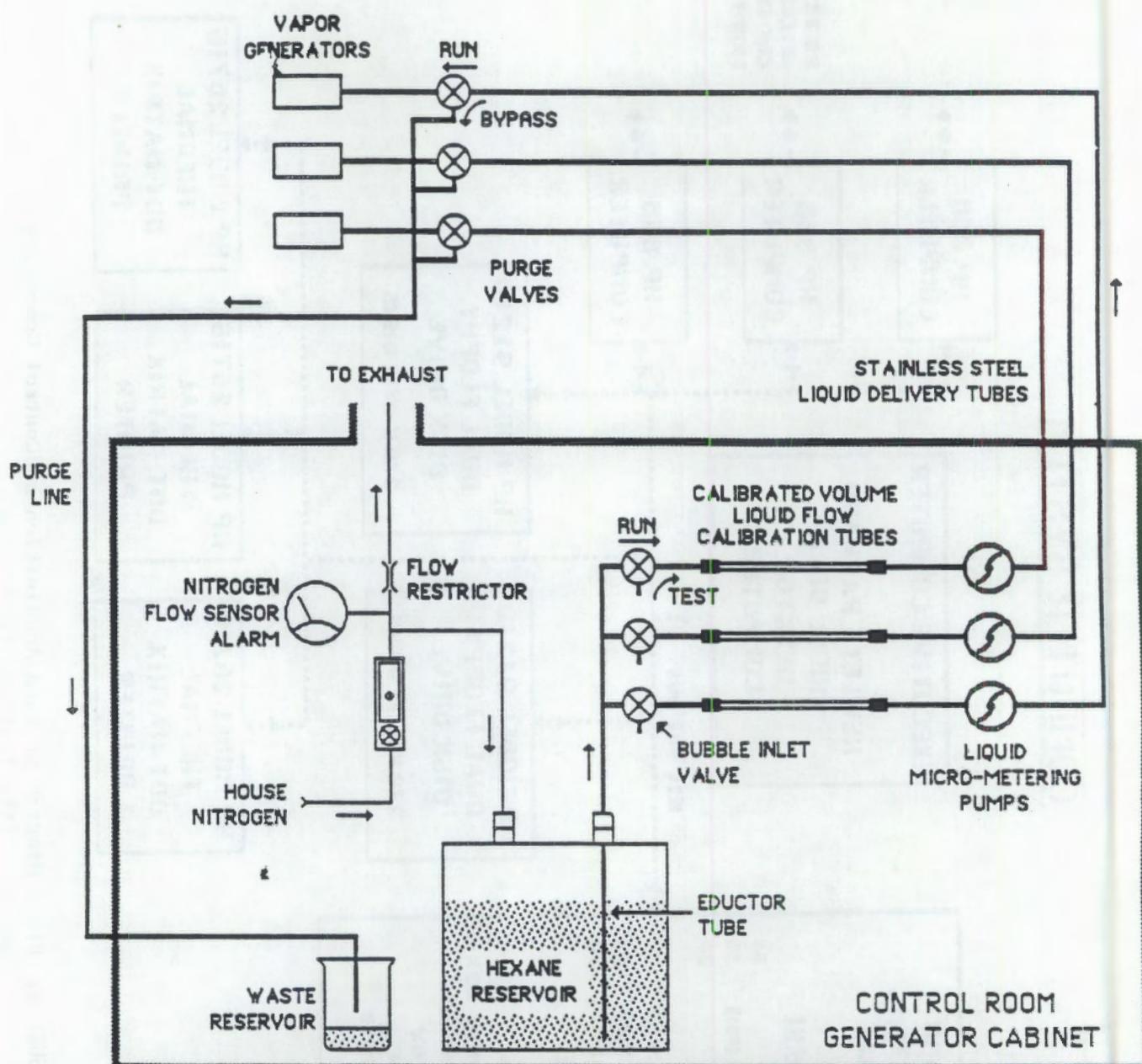


FIGURE 4. Schematic Diagram of the Hexane Vapor Generation System.

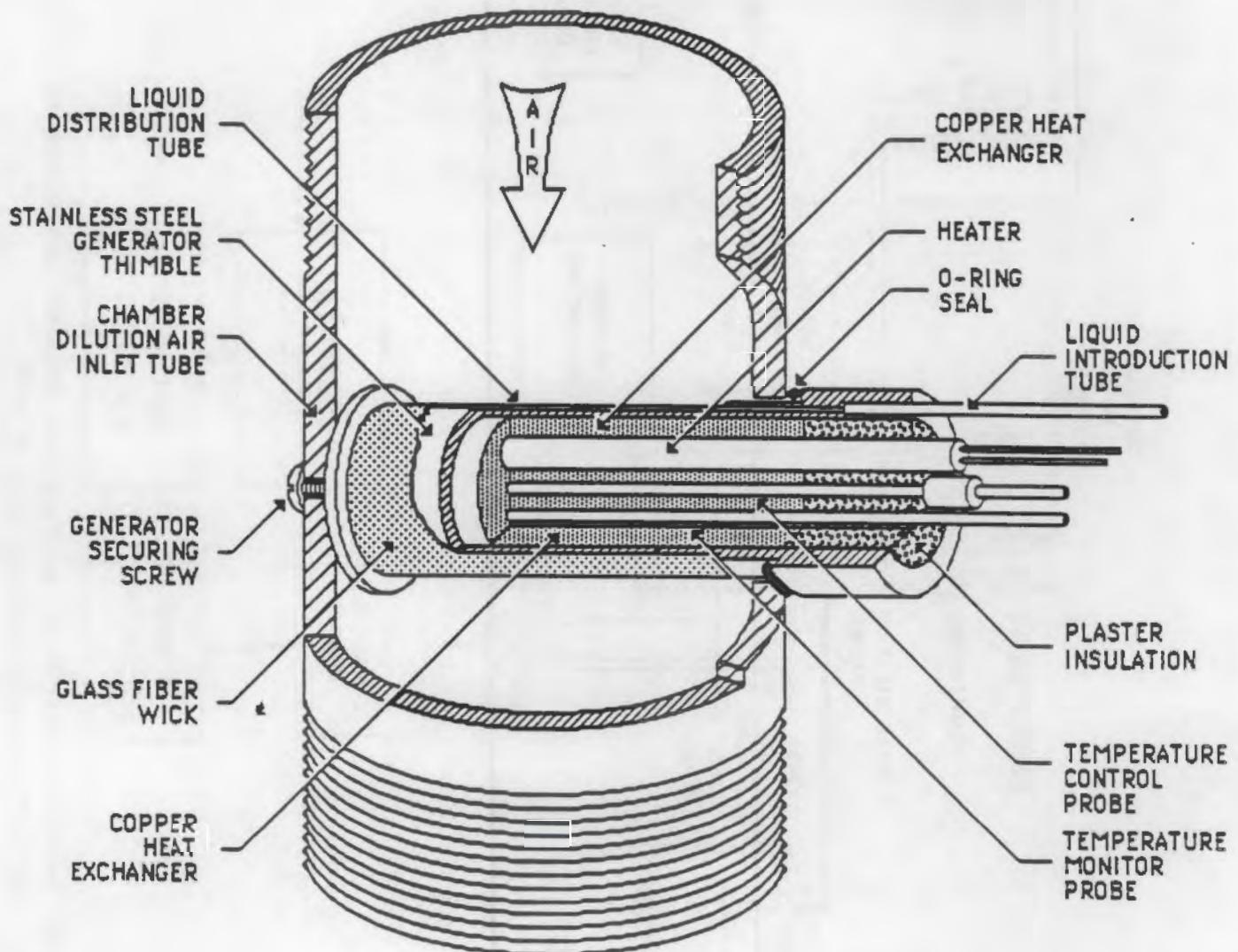


FIGURE 5. Cutaway Drawing of the Hexane Vapor Generator Located in the Fresh-Air Inlet Tube of the Exposure Chamber.

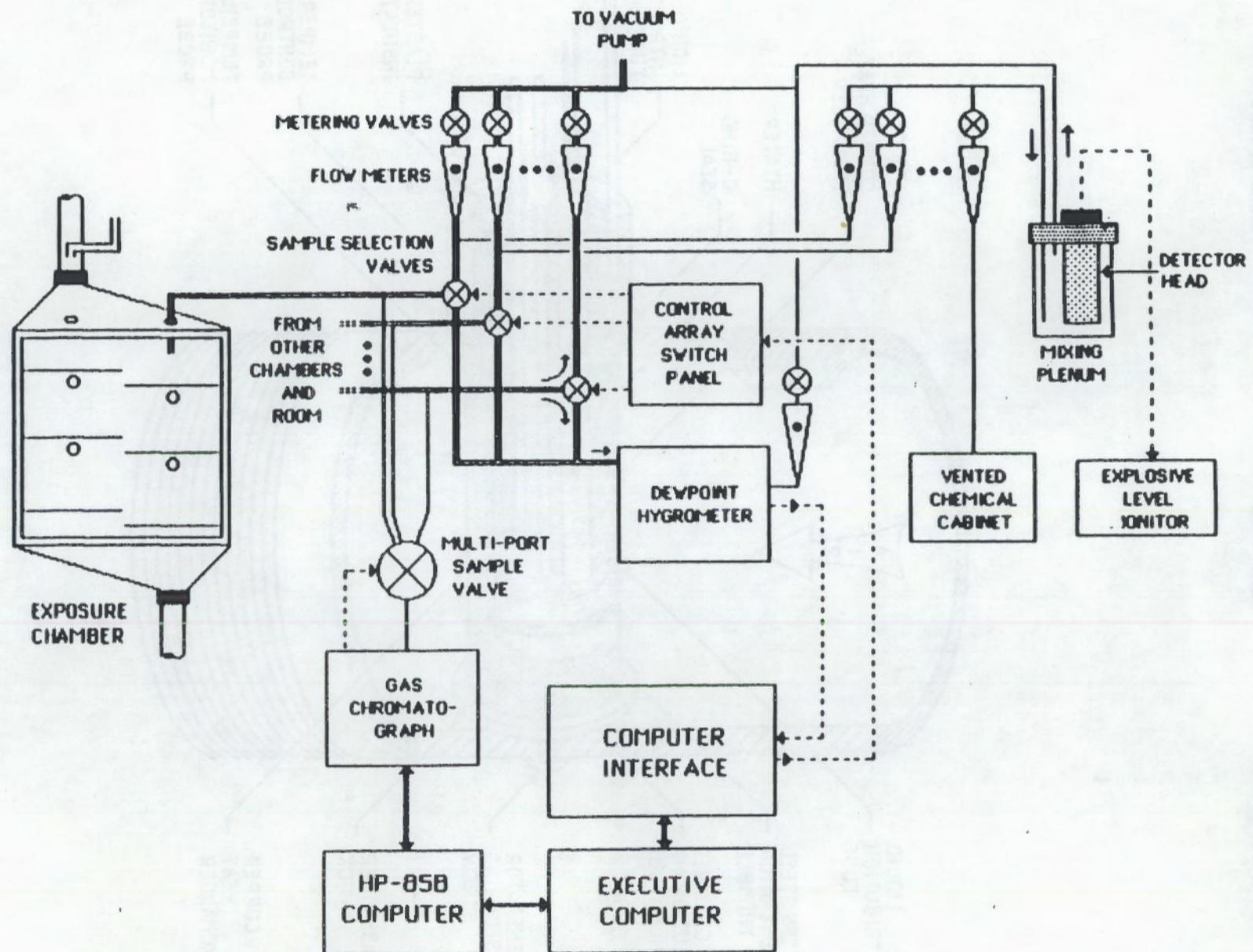


FIGURE 6. Schematic Diagram of the Dewpoint, Chemical Concentration, and Explosive Level Monitoring Systems

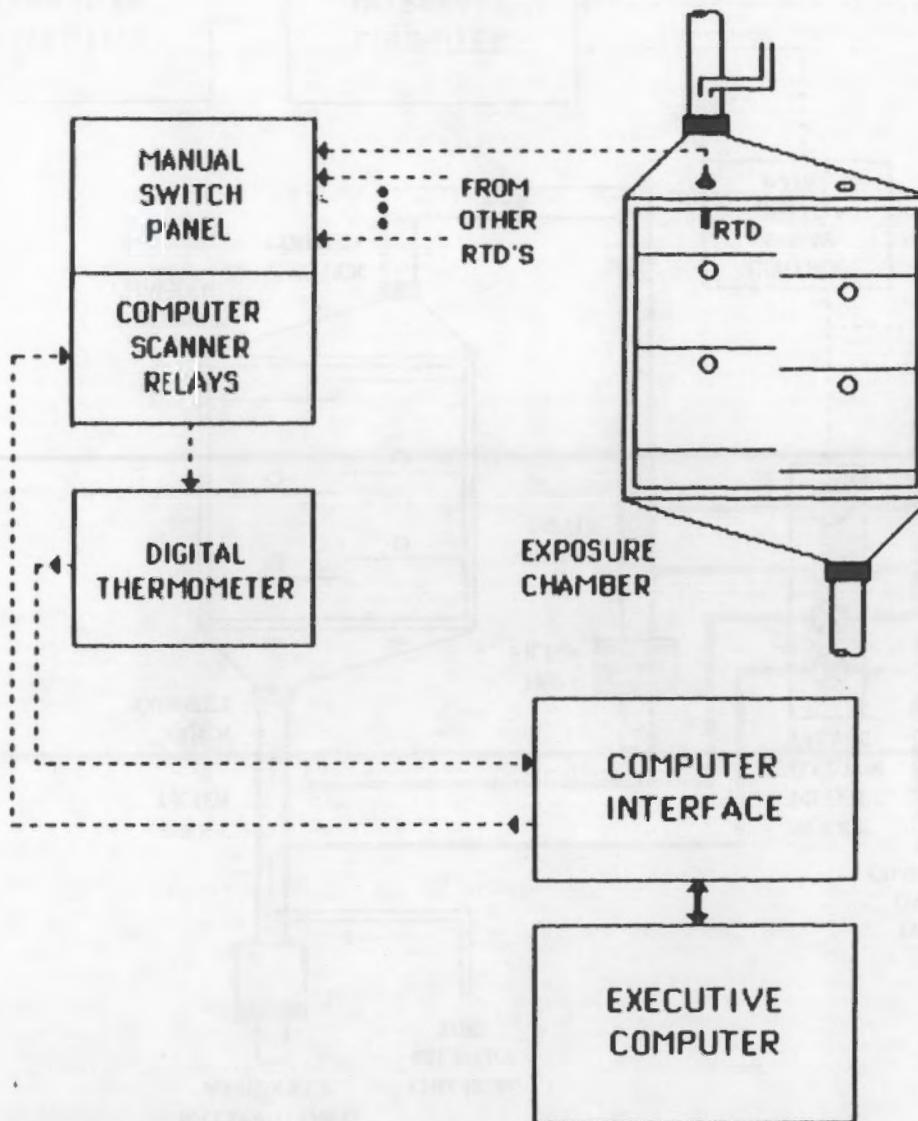


FIGURE 7. Schematic Diagram of Temperature Monitoring System

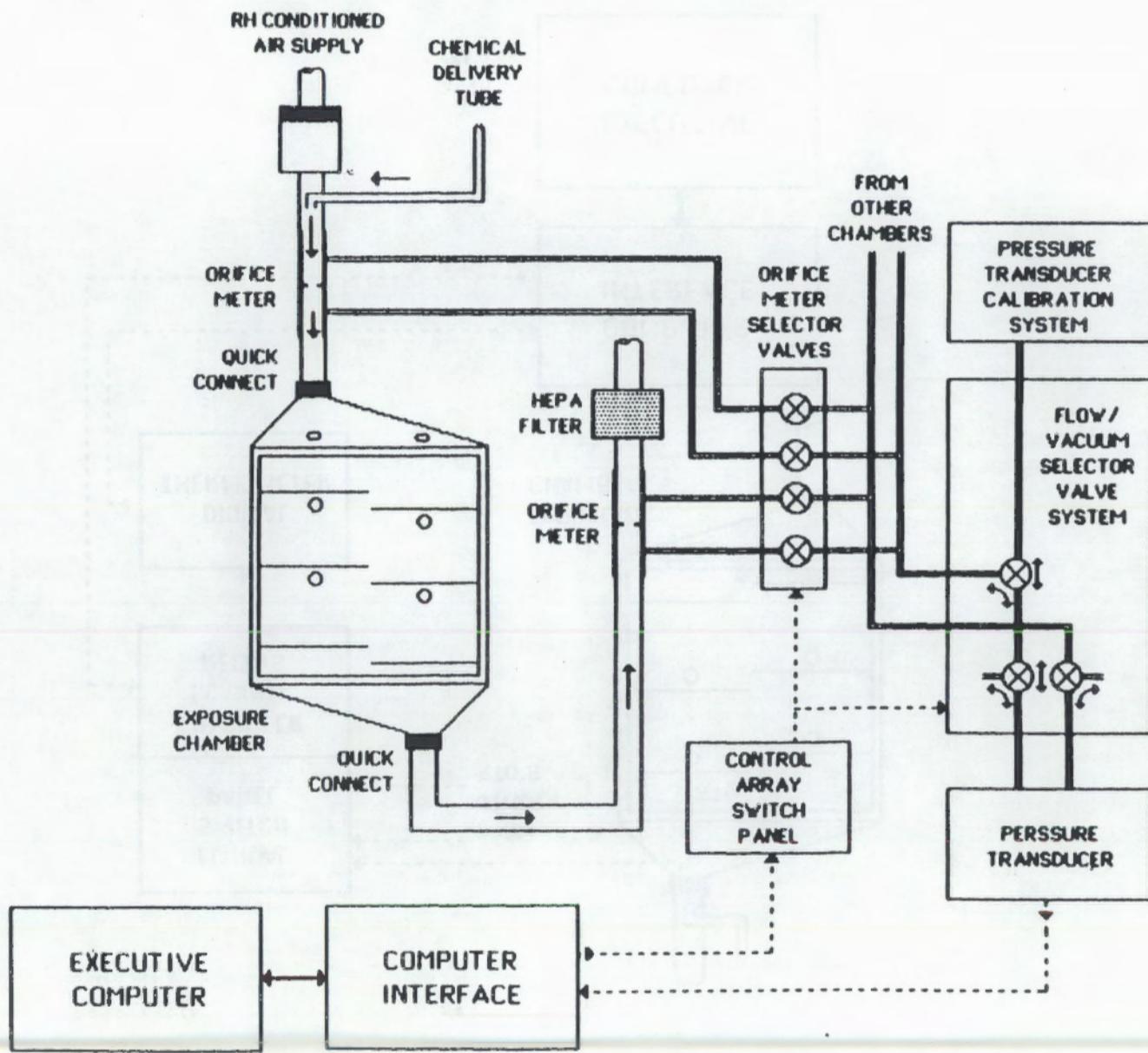


FIGURE 8. Schematic Diagram of the Chamber Flow and Vacuum Monitoring System

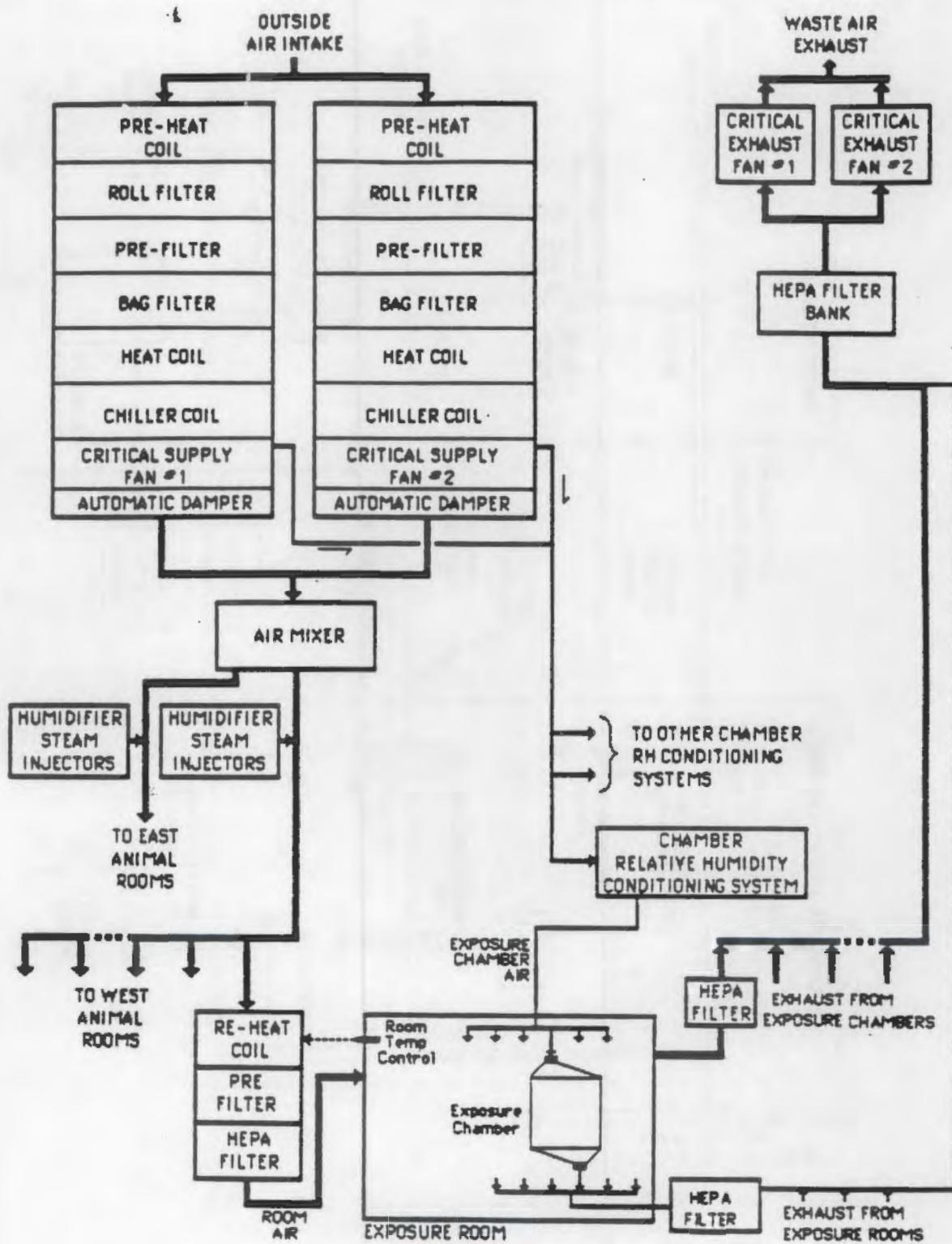


FIGURE 9. Air Handling System for Animal Rooms of Life Sciences II Building

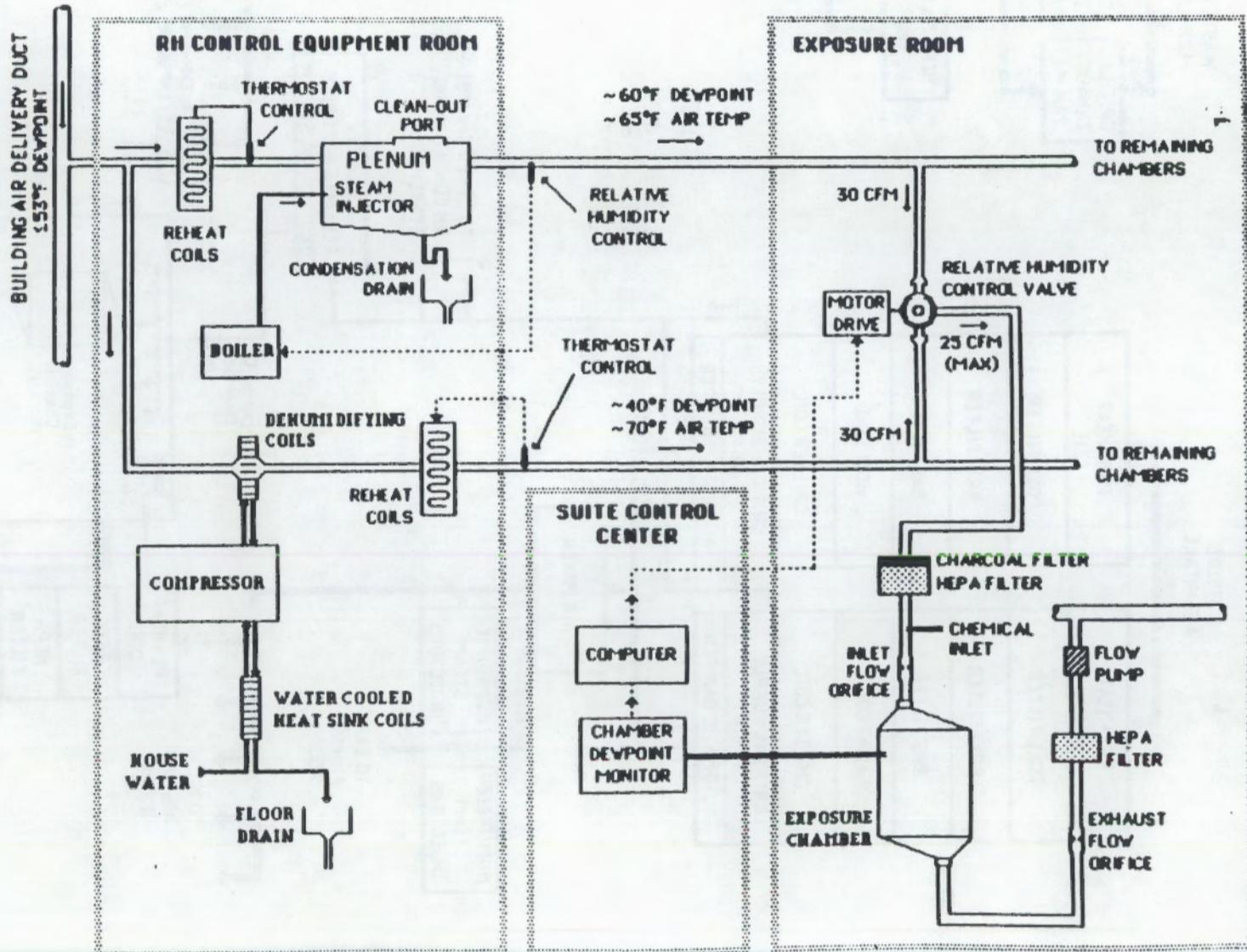


FIGURE 10. Schematic Diagram of Chamber Relative Humidity Control System



FIGURE 11. Schematic Diagram of the Chamber Air Flow Pump and Air Flow Control System

Exp #1: Demonstration

Program: 85.01

24 July 1985

Time	Location	Function	Data		
21:01	Ch #1 -- Room 324	Temperature	(BSI	79.1	F
21:02	Ch #2 -- Room 324	Relative Humidity	(OKI	40.	%
21:03	Ch #3 -- Room 324	Flow	(OKI	16.3	CFM
21:06	Ch #2 -- Room 436	Relative Humidity	(BSE	65.	%
21:07	Ch #2 -- Room 436	Vacuum	(OKE	1.5	HOH
21:08	Ch #1 -- Room 324	Vacuum	(BSI	.8	HOH
21:10	Ch #2 -- Room 324	Relative Humidity	(OKI	35.	%
21:13	Ch #3 -- Room 324	Concentration	(OKI	5.000E+1	PPM
21:16	Ch #2 -- Room 436	Relative Humidity	(BSE	65.	%
21:16	Ch #2 -- Room 436	Vacuum	(OKE	2.5	HOH
21:17	Ch #1 -- Room 324	Temperature	(BSI	81.1	F
21:18	Ch #2 -- Room 324	Relative Humidity	(OKI	46.	%
21:18	Ch #3 -- Room 324	Flow	(OKI	16.3	CFM
21:19	Ch #2 -- Room 436	Relative Humidity	(BSE	65.	%
21:20	Ch #2 -- Room 436	Vacuum	(OKE	1.4	HOH
21:21	Ch #1 -- Room 324	Vacuum	(BSI	.8	HOH
21:25	Ch #2 -- Room 324	Relative Humidity	(OKI	35.	%
21:26	Ch #3 -- Room 324	Concentration	(OKI	5.000E+1	PPM
21:26	Ch #2 -- Room 436	Relative Humidity	(BSE	65.	%
21:26	Ch #2 -- Room 436	Vacuum	(OKE	1.3	HOH
21:27	LJF	This is a demonstration of the comment routine. This routine is available from every menu.			
21:40	Ch #2 -- Room 436	Relative Humidity	(BSE	65.	%
21:46	Ch #2 -- Room 436	Vacuum	(OKE	.8	HOH
21:48	Ch #1 -- Room 324	Vacuum	(BSI	.8	HOH
21:50	Ch #2 -- Room 324	Relative Humidity	(OKI	35.	%
21:53	Ch #3 -- Room 324	Concentration	(OKI	5.000E+1	PPM
21:56	Ch #2 -- Room 436	Relative Humidity	(BSE	65.	%
21:06	Ch #2 -- Room 436	Vacuum	(OKE	1.5	HOH

FIGURE 12. Example of "Daily Log" Printout from Data Acquisition and Control Computer. See following page for explanation of columns.

DESCRIPTION COMPUTER "LOG BOOK" OUTPUT

The exposure number, exposure name, program version and exposure date will be printed at the top of every report page.

Time--This is the far left column. This is the time that the measurement was taken.

Location--This identifies where the data came from. Also referred to in the menus as "Location". This column allows for 20 characters.

Function--This identifies which function was used to take the reading. This column allows for 20 characters.

Data--This is the raw data. This column includes an alarm code, a status code, the data value and a units label.

Alarm code--"(" means that the data has exceeded non-critical alarm limits.

"<" means that the data has exceeded critical alarm limits.

Status code--OK1 - Okay and calibrated. Data is included in summary.

OKE - Okay and calibrated. Data is not included in summary.

BS1 - Beyond service time. Data is included in summary.

BSE - Beyond service time. Data is not included in summary.

* Data format--Data will be expressed as four significant digits with non significant zeros suppressed. Number of decimal points was determined in the menus. (Function Assignments Menu.)

Examples: DDDD.

DDD.0

DD.DD

D.DDD

.DDDD

D.DDDESZ

Units label--This column allows 9 characters. Examples: ppm, °F, °C, MOH.

NOTE: At almost any time during the exposure day, a comment can be entered from the keyboard. Because our report is generated as events occur, comments can appear in the middle of the logbook printout. This first line will show only the time and the operator's full name. The next lines will contain the body of the comment.

FIGURE 12. (Continued)

Summation for the File: 23 July 1986

Exposure: Demonstration

Temperature	Mean	% Targ	Std Dev	% RSD	Maximum	Minimum	N	Target
Ch #01	73.20	101	.125	1	74.6	70.7	10	72.0
Ch #02	74.30	103	.128	2	78.3	72.7	15	72.0
Ch #03	73.20	101	.134	3	75.3	70.7	15	72.0
Ch #04	59.20	95	.131	2	75.6	65.7	15	72.0
Ch #05	73.20	101	.131	2	76.3	68.7	15	72.0
Ch #06	73.40	102	.129	2	75.3	72.7	15	72.0
Ch #07	69.40	95	.150	1	74.3	68.7	10	72.0
Ch #08	70.20	98	.130	2	75.3	72.7	15	72.0
Room	74.20	103	.130	2	75.3	72.7	15	72.0
Flow	Mean	% Targ	Std Dev	% RSD	Maximum	Minimum	N	Target
Ch #01	14.10	94	.300	3	17.0	12.0	8	15.0
Ch #02	17.90	118	.500	4	19.0	14.0	12	15.0
Ch #03	15.80	105	.400	3	17.0	12.0	15	15.0
Ch #04	13.80	102	.300	2	15.0	12.0	16	15.0
Ch #05	10.80	72	.200	3	12.0	8.0	18	15.0
Ch #06	14.80	98	.400	3	17.0	12.0	15	15.0
Ch #07	16.80	112	.300	4	18.0	14.0	14	15.0
Ch #08	14.60	91	.400	3	17.0	12.0	15	15.0
Relative humidity	Mean	% Targ	Std Dev	% RSD	Maximum	Minimum	N	Target
Ch #01	51.0	102	5.10	10	70.	41.	14	50.
Ch #02	48.0	95	5.20	11	55.	45.	14	50.
Ch #03	52.0	106	5.30	10	70.	45.	14	50.
Ch #04	51.0	102	5.10	10	70.	41.	14	50.
Ch #05	48.0	95	5.20	11	55.	45.	14	50.
Ch #06	52.0	106	5.30	10	70.	45.	14	50.
Ch #07	51.0	102	5.10	10	70.	41.	14	50.
Ch #08	48.0	95	5.20	11	55.	45.	14	50.
Room	52.0	106	5.30	10	70.	45.	14	50.

FIGURE 13. Example of 24-Hour Data "Summation" Printout from Data Acquisition and Control Computer. Data are organized by data type.

Outlier Table for the File : 24 July 185

Exposure: Demonstration

Date	At Origin	Function	Time	Data	Lower	Target	Higher
23 Jul	Temperature	Ch #01	16:46	59.3	70.0	72.0	74.0
			16:48	59.2	70.0	72.0	74.0
			16:51	59.0	70.0	72.0	74.0
			16:55	59.1	70.0	72.0	74.0
			16:59	59.3	70.0	72.0	74.0
			16:47	68.1	70.0	72.0	74.0
23 Jul		Ch #02	16:48	58.3	70.0	72.0	74.0
			16:40	59.0	70.0	72.0	74.0
			16:59	75.1	70.0	72.0	74.0
			17:09	74.8	70.0	72.0	74.0
		Ch #03	14:59	74.3	70.0	72.0	74.0
			16:01	57.1	70.0	72.0	74.0
23 Jul		Ch #04	16:20	58.1	70.0	72.0	74.0
			16:23	59.0	70.0	72.0	74.0
			16:41	59.8	70.0	72.0	74.0
		Room	12:46	11.2	12.0	15.0	17.0
			15:23	18.1	12.0	15.0	17.0
23 Jul	Flow	Ch #01	15:33	9.1	12.0	15.0	17.0
			10:23	20.1	12.0	15.0	17.0
		Ch #05	16:41	20.2	12.0	15.0	17.0
			10:45	4.560E+0	5.000E+0	7.500E+0	1.000E+1
			10:50	4.350E+0	5.000E+0	7.500E+0	1.000E+1
			11:01	4.200E+0	5.000E+0	7.500E+0	1.000E+1
23 Jul		Ch #03	11:14	4.130E+0	5.000E+0	7.500E+0	1.000E+1
			11:29	4.530E+0	5.000E+0	7.500E+0	1.000E+1
		Ch #06	9:06	1.143E+1	5.000E+0	7.500E+0	1.000E+1
			9:21	1.154E+1	5.000E+0	7.500E+0	1.000E+1
			9:46	1.053E+1	5.000E+0	7.500E+0	1.000E+1
23 Jul		Ch #08	11:46	1.001E+1	5.000E+0	7.500E+0	1.000E+1
			12:07	1.003E+1	5.000E+0	7.500E+0	1.000E+1

FIGURE 14. Example of 24-Hour Data "Outlier Table" Printout from Data Acquisition and Control Computer. Table shows data which were beyond the defined operating limits.

SPONSOR: NTP-IRT
STUDY: DOMINANT LETHAL
ROOM: 436
DATE: 3-24-86 to 3-29-86

CHEMICAL: n-HEXANE
CHAMBER: Treatment #1
CONCENTRATION: 0 ppm (Control)

3x6 LEVEL 3

Cage	Cage	Cage	Cage
15	30	45	60
14	29	44	59
13	28	43	58
12	27	42	57
11	26	41	56
10	1764	40	55
9	1751	39	54
8	1742	38	53
7	1739	37	52
6	1729	36	51
5	1720	35	50
4	1709	34	49
3	1708	33	48
2	1706	32	47
1	1705	31	46
	16	1765	1766

SPONSOR: NTP-IRT
STUDY: DOMINANT LETHAL
ROOM: 436
DATE: 3-24-86 to 3-29-86

CHEMICAL: n-HEXANE
CHAMBER: Treatment #2
CONCENTRATION: 200 ppm (Low)

Bku

LEVEL 3

Cage	Cage	Cage	Cage
15	30	45	60
14	29	44	59
13	28	43	58
12	27	42	57
11	26	41	56
10	1747	40	55
9	1743	39	54
8	1738	38	53
7	1737	37	52
6	1733	36	51
5	1732	35	50
4	1726	34	49
3	1717	33	48
2	1715	32	47
1	1704	31	46
	1756	1805	

SPONSOR: NTP-IRT
STUDY: DOMINANT LETHAL
ROOM: 436
DATE: 3-24-86 to 3-29-86

CHEMICAL: n-HEXANE
CHAMBER: Treatment #3
CONCENTRATION: 1000 ppm (Medium)

BW

LEVEL 3

Cage	Cage	Cage	Cage
15	30	45	60
14	29	44	59
13	28	43	58
12	27	42	57
11	26	41	56
10	1750	40	55
9	1744	39	54
8	1741	38	53
7	1734	37	52
6	1725	36	51
5	1718	35	50
4	1713	34	49
3	1712	33	48
2	1711	32	47
1	1710	31	46
	1752		

SPONSOR: NTP-IRT
STUDY: DOMINANT LETHAL
ROOM: 436
DATE: 3-24-86 to 3-29-86

CHEMICAL: n-HEXANE
CHAMBER: Treatment #4
CONCENTRATION: 5000 ppm (High)

BLW

LEVEL 3

Cage	
15	
14	
13	
12	
11	
10	1728
9	1724
8	1723
7	1721
6	1716
5	1714
4	1707
3	1703
2	1702
1	1701

Cage	
30	
29	
28	
27	
26	
25	
24	1797
23	1794
22	1780
21	1772
20	1768
19	1755
18	1754
17	1749
16	1736

Cage	
45	
44	
43	
42	
41	
40	1828
39	1819
38	1817
37	1816
36	1812
35	1811
34	1808
33	1807
32	1806
31	1804

Cage
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46

DISTRIBUTION

No. of
Copies

OFFSITE

2 DOE/Office of Scientific
and Technical Information

M.L. Minthorn
U.S. Department of Energy
ER-72, GTN
Washington, D.C. 20545

10 R.E. Morrissey and

B.A. Schwetz
National Toxicology Program - NIEHS
Alexander Drive
Bldg. 101, Room D440
Research Triangle Park, NC 27709

E.B. Ford
National Institute of Environmental Health Sciences
Contracts Management Office, OAM
79 Alexander Drive, Bldg. 4401
P.O. Box 12874
Research Triangle Park, NC 27709

ONSITE

DOE Richland Operations Office

E.C. Norman/D.L. Sours

20 Pacific Northwest Laboratory

E.M. Crow (2)
R.A. Gelman
T.J. Mast (11)
Publishing Coordination
Technical Report Files (5)

