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ABSrRACT

Statistical theories for the outer envelope of the Raylcigh-Taylor mixing layer refer to

a simplified dynamics of fundamental modes and their interactions. TIICSC modes axe bub-

bles of light fhid entrained in the mixing layer between the undisturbed light and heavy

fluids. The dynumia can be uncterstoocf in terms of the motion of a single mode and the

interactions bewccn modes. The single mode dynamics has to bc solv~d sslf-consisterttly

in a background field of random bubbles. The dominant interaction is bubble merger, i.

c. the spreading of larger bubbles at the bubble envelope. Merger Icads to dynamically

increasing lcugth scales, and thus to a dynamic renormalization of scaling dimensions. The

mechanism for bubble merger is the differential motion of physically adjacent single bub-

ble modes.

This paper is foamed on the ●bove topics: single bubblo motion, bubble intcractiona

and statistical models,

1. Introduction

Density gradienta ●t ●n mxxlerstcd interface result in Rayleigh-Taylor instability. At late times, the

interface evolves inter a chaotic regime characterized by a mizing I@,ycr und the entrainment of rrnc fluid in

the other. f$cnsitivity to the initial conditions and to random hctcrvgcneities as well M the complexity of the

mixing proccts cd for ~tatistical descriptions. Here wc focus cm ~)tstistical theories for the outer envelope
——
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for the penetration of the light fluid into the heavy, i.e. the boundary of the mixing layer.

As with mixing theories in general, the issues discussed here fall within the area of nonequilibrium sta-

tistical mechanics, Ti. c essential issue is to determine transport behavior in the nonlaminar, chaotic regime.

IE this chaotic regime, macroscopic continuum events (i.e. interactions between coherent structures) rather

than molecular collisions are the driving mechanisms. Pursuing this analogy, our current investigation could

be viewed as an effort to characterize the two body potential of this process.

The elementary modes for the description of the outer envelope of the Rayleigh-Taylcr mixing layer

are bubbles of light fluid penetrating into undisturbed heuvy fluid. 52 describes a recent refinement [8] of

the single mode (bubble) theory developed previously [1]. An extension of this theory, based on superposi-

tion, describes the interaction of a single bubble with a random background field in the limit of small

compressihilitv. 53 reviews current statistical theories and develops ingredients which may be needed in a

new generation of statistical theories. Extending earlier work [1] using the Sharp-Wheeler model, we find a

greater variability in a than was observed ir, the Read experiments [4]. This variability may be due to the

smaller sample size in our computation as well as the ability to vary initial condition systematically.

2. Singie Bubble Throry

2.1. The Periodic Array

The periodic array of bubbles, or equivalently the single bqlbbie with periodic boundary conditions

allows a detaiied study of the long time behavior of a single mode. In this regime, the bubble goes through

three successive time periods of exponential growth, bounded acceleration and approach to a constant (termi-

nai) velocity. ‘1’here arc four parameters which effectively describe the entire motion, and in [8], the four

parameter ODE for the velocity v

(r v (1 – ;~:)
d v.— .. ———-. -———————
Jf ,,

‘ ~~;r~.F-+(l–+). +[:--(l +
L x

(’2.1)

is proposed us a model for the single bubble dynamics. Here w, gR, VX a,~d b are the Iincar growth rate, the

rcnorma]izcd gravity, the terminal velocity tind the dcctiy constant to terminal velocity rcspcctivcly. ‘i”he rea-

son for generalizing our previous three paromctcr oi~E for single bubble motion was the rcaiizaimn that It

cont~inccf nn ansatz or prediction cf):’t-crning

physical basis, “l’he solution for ilq. (2.1) is

the Gccay rate to terminal velocity which secmer.i to bc lucking u

(2.2)

i;xtcnsivc computntionn with the compressible two fluid i;u}cr cquntions show a good fit for u range of

Atwood” numhcrs A and compressihilitics M: Ag/c: [Xl for the cquntion (2,2). I{ere we give un intuitive, or

physical interpretation for these parnmetcrs. We NIW) note tht]t two of the follr parameters t,ave been rffcc-

tivciy dctcrmincd and the remaining two must bc f)btaincd its a function of A (In(i M~ through explicit numer-

ical soiutiori of the single bubble prt)blem to w)mplctc this tficory. i’his dctcrm:nntion has been mndc for n

limited rnngc of these vnria[)lcs only.

‘i”he twt~ p;trnmctcrs which nre known gi}vcrn the initinl period of bubble grt)wth. “ilc rxp{)ncnfinl

growth rntc (r is n w)llltion {If n Irnnsccn(lcrltnl eqllnti{~n, nnd its (Icpcndcncc t)n A nnd MJ hn~ hccn pnrtin!lv

cxplf)rrd I I,tl]. i“hr (’~lnstirnt which gives the mitxlmlln) ucx.clrration Is g~ ~ AK on the IIIISIS of the cx:in\i-
.,

nati(}n (If Ii Inrge number of nllnlcrlt. alsollltil~ns It) Ihr two tllli(l i;lllcr cqIIiItI{)ns [ I 1. i’hc finill two pur:ln)r

Irr* lprlify the tcrrnln:ll vcl(llltv u . ;Inll the rtitr- h of ;lppl(}n(ll tf) v.



2.2. The Superposition Hypothesis

“1’he bubble velocity for the periodic case does not agree with the experimentally observed values for

chaotic flow [2]. The essential idea we propose is to consider the bubble as a short wave length mode. ‘rhen

an envelope is umstructcd through the tips of adjacent bubbles. This envelope defines a long wave length

mode in the in~erface motion. We consider a bubble which is further ;tdvanced than its neighbors. Then its

location can be regarded as a bubble on the long wave length envelope. Jn other words the long and short

wavelengths arc in phase in this case. Similarly, a bubble which is less advanced than its neighbors is a spike

on the long wave length envelope, or in other words, the long and short wave lengths are phase reversed.

The superposition hypothesis states that the bubble velocity is the sum of the single bubble veloc!ty plus

the single bubble (or spike) velocity of the envelope. these two velocities are determined from the single

bubble model of $2.1, using only the bubble radius and amplitude as geometrical parameters and so finally

the bubble in a chaotic flow also has a velocity depending only on long and short wavelength radii and ampli-

tudes (and dimensionless physical parameters A and .$42).

I Experiment I 34A=1 136 A=0.51 104 A = 0.946
I

t (ins) 23.6 29.2 34.f3 60.8 46.6 57.6 68.6
—

v exp 117 145 170 161 76.1 95.5 110

V,,+ 106 142 168 152 84.1 106 127
4

Av/V 9% 270 1.270 5.9% 9.570 9.8%
J

13.5%
—.

f’able 1, Verification of the superposition hypothesis from experiments of Read [4]. The hypothesis is

satisfactory ior those experiments in which envelopes can be c!early identified. In ail these cases,

A 2 0.5.

‘lhc superposition hypothesis has been confirmed for the incom;]ressible case by analysis of Read’s

experiments. only cases with clearly formed bubbles and cnvciopcs were analyzed. In the remaining cases

(prcsumabiy with small surface tension) the intcrfacc was too irregular to define a long wave Icngth

envelope. “1’hc results are shown in “1’able 1.

Numerical solution of the two fluid Euler equation by the front tracking method shows agreement with

the ~upcrposition hypothesis fo, Ml ~ O in case.~ with clearly formed bubbles (no bubble splitting Secondary

instability). We find disagreement as Mz is incrcascd, scc ‘i”abic 2. Wc observe three cases of disagreement,

all outside the range of experiments. our proposed cxpianatiun in this case concerns the density stratification

of the fluids in tbc gravitatiunai field. In hydrostatic isothermal cquiiibrium, the density of the heavy fluid

dccrcascs cxponcntia]ly with height. The density profile is more strnngly stratified as Mz incrcascs. As a

result, when the light fluid pcnctratcs the stratified bcavy flui[i, the effective Ijensity ratio will bc less than it

wns initially, thereby ticcrcasing the vciocitics. Wc illso (~bscrvc disagrccmcnt with superposition in ~ii~c~

wh.-rc bubhlc splitting occurcd presumably (iuc omission of high frequency bubhlc splitting mo(lcs in tbc

cnvch)pc dcncriptk)n. I:inally we observe disiigrcctncnt with supcrp(]sltion for smiill Atwood nurnbcr, for

rci]qons not presently un(icrstot)ti.



t=o

I

I
I

I

I

t=12 t=15

Figure 1. Successive times in a two bubble merger process. The compressibility and density ratio for
this case are IU2 = 0.1 and D = 5 rcspcctivcly~ lt ‘can be seen that” the large bubble overtakes tkc
srmdlcr one at t Y 12. “Ihc veiocity of the Ia:gc bubble is accclcratcd during the merger while the vclo -
city of the small bubble is reversed, see Figure 2.
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Experiment 3--600 ().()()1-0.005 1.2-13.5%
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Simulation 5--10 .1 1-19%
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Simulation 2-10 ().5 72-105%
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‘1’able 2. ‘I”hc deviation of cxpcrimrntal iir~d numericnl results from the superposition ilyi)othcsis
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2.3. Mode Mode Interaction

The bubble merger prouss appears to have two stages. As illustrated in 52.2 with the superposition

hypothesis, smaller bubbles develop a negative envelope velocity (contributions out of phase with them single

bubble velocity), and at sufficient envelope amplitude, their total velocity becomes negative. At this point,

they move rapidly away from the bubble envelope, and the position they previously oecupicd can be

regarded as an oversized spike between the remaining Iargcr bubbles. The second stage of tbe merger pro-

cess involves an equilibration of radii, whereby the remaining (Iargc) bubbles increase in size, while the

spike region between them reduces to its equilibrium value. Fig. 1 shows the interface evolution of the two

bubble intcrfacc during merger and Fig. 2 is the plot of the velocities of the two bubbles.
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O.oc
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Figure 2. ‘1’hc plrr!s of bubtsle velocities vs. time for the two bubble merger simulation. “l”he result

YIIOWS that the small bIJbbk is accelerated at the beginning and is then dccclcrntcd nftcr ah(~ut r 5,

“I”hc qmall bLIbhlc is washed out downstream a{ter its vclt)c-ity is rcvcrscd. ‘1’hc large bubble is under
cf)rlstnct i~ccelcration, I“hc smooth curves represent The tsutsblc motion ns prcdictcd hy the supcrp{)slti~~n

hyp{)lhesis.



3. Statistical Theories

Let h(t) be the distance from the initial bubble interface to the outer bubble envelope. Then

h(t) = aAgt2 (3.1)

aad in two dimensions, a = .06 (experiment) [4].

Computations of the acceleration constant a have been given by several authors, based on the full two

fluid E~ler equations with a random interface. Youngs [7] used an incompressible MAC code with van Leer

advection. Special interface enhancements (e.g. the method of LeBlanc) which minimize diffusive mixing

were not used, and the computation presents considerable diffusive mixing of the two fluids. His computa-

tions used small amounts of viscosity. He considered initial configurations of 12 bubbles with 200 horizontal

mesh blocks, or about 16 blocks per bubble. He used a variety of initial conditions and Atwood numbers,

and obtained values for a in the range .04 to .05.

Zufiria [9] used & vortex-in-cell code for the incompressible case. He considered only A = 1, with

small surface tenslL\n. His initial conditions were various 4 bubble configurations, and he used a range of

,mesh sizes, the coarest of which was 16 grid cells per bubble. His result was a = .05 to .06.

We report here on recent compressible front tracking computations. A wide range of physical parame-

ters have been varied in our simulation. Those include the Atwood number A, the compressibility M and a

variation in the number and size of bubbles on the initial front. For these simulations, we have traced the

height of the largest bubble during the run. We have two methods for analyzing the acceleration coefficient

a, namely from plots of h vs. t~ and from plots of v vs. t. The first type of analysis is similar to Read’s

analysis and is close to the experimental d~ta. This first method gives integrated time averaged acceleration,

a,$, relative to the instanteous acceleration, a “, in the second method and is consequently more regular. We

find that ah in most cases is nearly time independent, and varies in the range 0.05 to 0.065 in agreement with

Read [4]. However, ~ome initial conditions give rise to significantly smaller values of a; namely extreme

values ah = 0.038 were recorded. a, shows even larger fluctuations, both between different runs and also at

different times within a single run. In Figs. 3 and 4 we examine a case for which ah = .066. The bubble

motion can be observed to have three stages, as recorded in Fig. 3b. The sharp increase in a, in the time

period 7.5 s t s 10 is associated with the collision of two spikes which lie above the bubble interface and

are falling into the larger bubble. Upon collision, they create a jet, which accelerates the bubble. The sign

reversal for 10 s t $ 14 appears to be due to the formation of a secondnry bubble splitting instability. “1’his

detail of structure is missing in the plots of Fig. 3a, which are once i~tegrated from Fig. 3b. The more regu-

lar quantities plotted in Fig. 3a are the same as measured and plotted by Read, which provides a partial

explanation of the regularity of his results in comparison to ours. A further explanation is that Read has

about lU times the number of initial bubbles in his experiments; if 10 of our runs were combined into an

ensemble of 50 bubbles, wc would obtain the same leading bubble behavior for ah as Read.

None of the above computations or experiments have examined many generations of bubble merger.

Computations have been limited to one or two generations of bubble merger. The experiments contain one

ohscrvablc generation of merger. A ccording to the theory of the most unstable wavcicngth, the experiments

have ilrl additional onc to two generations of bubble merger which is not directly observable from the experi-

mental pictures. ‘1’hc fact thut initial conditions can play an important role after unc or two generations is

not surprising.

I“hc numhcr of generations of hubhlc merger in the Itiscr fusion application can be bounded JS f(}llows.

I“hc thr(~rv of the most dangerous wave length [3, (J] gives an estimate of !hc final bubble size ir. terms of the

iiS[~CCt r:ltitl of the sphcrlcal shell of the cx)ntalnc:; Ihc Initial bubble size could be fixed by (a) ph(]ton wave

Icngth, (b) surface tension, (c) ~t]rfacc fin~sh, ~lnd ((!) i!!. Ylllm Ctri CS of the drlvlng s~lurcc. An or(lcr of



magnitude estimate of the number of bubble merger generations from the initial bubbles set by these sources

‘ would be (a) 5 generations, (b) unknown but presumed very large, (c) at most 5 generations, (d) f) to 1 gen-

eration. From this analysis we conclude that, aside from the driving source asymmetries, there is a potential

for more generations of bubble merger in the laser fusion application than in present computations or exper-

imc~ts. We turn next to statistical models, and the possibility of universal behavior independent of initial

conditions.
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Figure 3. The left plot displays bubble
number in this case is A = 0.818, and

city vs. t in the same case.
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“I”wo statistical models for the bubble envelope have been proposed [5, 10]. ‘I”hese models arc coupled

systems of differential or difference equations for the bubble growth and merger. The essential differences

between these models arc: ‘[he Zufiria model has no free parameters and is limited to the case A 1,

M2 (), Itallows continuous relaxation of bubble width, as an aspect of bubble merger. I“he Sharp- Whcclcr

model has two cmiprical parameters and appears to bc applicable to a range of values of A and M2. !vfcrgcr

in [his model is discrctc in all its aspects. ‘1’hcy both result in a constant acceleration, with an acceleration

constant m in rcasonahic agrccmcnt with cxpcrlntcnt.



t = o t = 7.5
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t = 10 t=15

Figure 4. The interface positions at successive times in a computation with five initial bubbles. The phy-
sical parameters of this run arc the same as in Figure 3.

Two phenomena have been observed in our random interface amputations which arc not contained in

the above statistical models. Onc is the role of stratified initial conditions, which implies that for times large

in proportion to the Impressibility, the light fluid bubbles rise into a rarefied portion of thr heavy fluid, to

an extent that the effective Atwood number is diminished or even be~mcs zero. This observation raises the

question of initial conditions which are not density stratified. It appears to be related to the breakdown of

superposition for small A,~ood numbers and moderate or large compress ibilitics. Also note that the increase

in wave number due to bubble merger leads to an incrcasc in the effective compressibility. A second

phenomena is a change of flow regime to a bubbly, frothy or slug flow regime in the mixing layer, in which

the light fluid spatially disconnected. This multiphasc regime also reduces the effective Atwood number at

the intcrfacc. The occurencc of a slug flow regime is dependent on initial conditions, in particular on the

relative size of adjacent bubbles. It could also depend on the distinction between exactly two-dimensional

computations as opposed to approximately two..dimensiona] experiments,
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