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ABSTRACT

Statistical theories for the outer envelope of the Rayleigh-Taylor mixing layer refer to
a simplified dynamics of fundamental modes and their interactions. These modes are bub-
bles of light fluid entrained in the mixing layer between the undisturbed light and heavy
fluids. The dynamics can be understood in terms of the motion of a single mode and the
interactions between modes. The single mode dynamics has to be solv_d szlf-coasistently
in a backgrcund field of random bubbles. The dominant interaction is bubble merger, i.
¢. the soreading of larger bubbles at the bubble envelope. Merger leads to dynamically
increasing leugth scales, and thus to a dynamic renormalization of scaling dimensions. The
mechanism for bubble merger is the differential motion of physically adjacent single bub-
ble modes.

This paper is focused on the above topics: single bubble: motion, bubble interactions
and statistical models.

1. Introduction

Density gradients at an accelerated intcrface result in Rayleigh-Taylor instability. At late times, the
interface evolves inte a chaotic regime characterized by a mixing lsyer and the entrainment of one fluid in
the other. Sensitivity to the initial conditions and to random hetercgeneitics as well as the complexity of the

mixing process call for statistical descriptions. Here we focus on ststistical theories for the outer envelope
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for the penectration of the light fluid into the heavy, i.e. the boundary of the mixing layer.

As with mixing thcories in general, the issues discussed here fall within the area of nonequilibrium sta-
tistical mechanics. Ti ¢ essential issue is to determine transport behavior in the nonlaminar, chaotic regime.
Ir this chaotic regime, macroscopic continuum events (i.e. interactions between coherent structures) rather
than molecular collisions are the driving mechanisms. Pursuing this analogy, our current investigation could

be viewed as an effort to characterize the two body potential of this process.

The elementary modes for the description of the outer envelope of the Rayleigh-Taylor mixing layer
are bubbles of light fluid penetrating into undisturbed heavy fluid. §2 describes a recent refinement [8] of
the single mode (bubble) theory developed previously [1]. An extension of this theory, based on superposi-
tion, describes the interaction of a single bubble with a random background field in the limit of small
compressibility. §3 reviews current statistical theories and develops ingredients which may be needed in a
new generation of statistical theories. Extending carlier work {1] using the Sharp-Wheeler model, we find a
greater variability in « than was observed in the Read experiments [4]. This variability may be due to the
smaller sample size in our computation as well as the ability to vary initial condition systematically.

2. Single Bubble Theory
2.1. The Periodic Array

The periodic array of bubbles, or equivalently the single bubble with penodic boundary conditions
allows a detailed study of the long time behavior of a single mode. In this regime, the bubble goes through
three successive time periods of exponential growth, bounded acceleration and approach to a constant (termi-
nal) velocity. There are four parameters which effectively describe the entire motion, and in [8], the four
parameter ODE for the velocity v
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is proposed as a model for the single bubble dynamics. Here o, gg, v, and b are the lincar growth rate, the
renormalized gravity, the terminal velocity and the decay constant to terminal velocity respectively. The rea-
son for generalizing our previous three parameter ODE for single bubble motion was the realization that it
contained an ansatz or prediction concerning the Gecay rate to terminal velocity which seemed to be lacking a

physical basis. The solution for Eq. (2.1) is

G L P € . it KRRV S L GO R (2.2)
Extensive computations with the compressible two fluid Euter equations show a good fit for a rarge of
Atwood numbers A and compressibilities M Ag/c! [8] for the equation (2.2). Here we give an intuitive, or
physical interpretation for these parameters. We also note that two of the four parameters have been effec-
tively determined and the remaining two must be obtained as a function of A and M? through explicit numer-
ical solution of the single bubble problem to complete this theory. This determination has been made for a

limited range of these variables only.

The two parameters which are known govern the initial period of bubble growth. The exponuntial

growth rate o is a solution of a transcendental equation, and its dependence on A and M? has been partially
cxplored [1,8]. The constant which gives the maximum aceeleration s gy lAg on the basis of the exami-

nation of a large number of numerical solutions to the two flnid Euler equations [1]. The final two parame

ters specify the terminal velocity v, and the rate b of approach to v, .



2.2. The Superposition Hypothesis

The bubble velocity for the periodic case does not agree with the experimentally observed values for
chaotic flow [2]. The essential idea we propose is to consider the bubble as a short wave length mode. Then
an envelope is constructed through the tips of adjacent bubbles. This envelope defines a long wave length
mode in the interface motion. We consider a bubble which is further advanced than its neighbors. Then its
location can be regarded as a bubble on the long wave length envelope. In other words the long and short
wavelengths are in phase in this case. Similarly, a bubble which is less advanced than its neighbors is a spike

on the long wave length envelope, or in other words, the long and short wave lengths are phase reversed.

The superposition hypothesis states that the bubble velocity is the sum of the single bubble velocity plus
the single bubble (or spike) velocity of the envelope. I'hese two velocities are determined from the single
bubble model of §2.1, using only the bubble radius and amplitude as geometrical parameters and so finally
the bubble in a chaotic flow also has a velocity depending only on long and short wavelength radii and ampli-
tudes (and dimensionless physical parameters A and M?2).

—E;pcrimcnt 344 =1 364 =0.5 104 A = 0.946 ‘
t (ms) 23.6 29.2 348 60.8 46.6 57.6 68.6
Verp 117 145 170 161 76.1 95.5 110
Voa 106 142 168 152 84.1 106 127

AV/IV 9% 2% 1.2% 5.9% 9.5% 1 ¢.8% 13.5%

Fable 1. Verification of the superposition hypothesis from experiments of Read [4). The hypothesis is
satisfactory for those experiments in which envelopes can be clearly identified. In all these cases,
A= 0.5.

The superposition hypothesis has been confirmed for the incompressible case by analysis of Read’s
experiments. Only cases with clearly formed bubbles and envelopes were analyzed. In the remaining cases
(presumably with small surface tension) the interface was too irregular to define a long wave length

envelope. The results are shown in Table 1.

Numerical solution of the two fluid Euler ¢quation by the front tracking method shows agreement with
the superposition hypothesis for M2 = 0 in cases with clearly formed bubbles (no bubble splitting secondary
instability). We find disagreement as M2 is increased, see Table 2. We observe three cases of disagreement,
all outside the range of experiments. Our proposed explanation in this case concerns the density stratification
of the fluids in the gravitational field. In hydrostatic isothermal equilibrium, the density of the heavy fluid
decreases exponentially with height. The density profile is more strongly stratified as M? increases. As a
result, when the light fluid penetrates the stratified heavy fluid, the effective density ratio will be less than it
was initially, thereby decreasing the velocities. We also observe disagreement with superposition in cases
where bubble splitting occured presumably due omission of high frequency bubble splitting modes in the
envelope description. Finally we observe disagreement with superposition for small Atwood number, for

reasons not presently understood.
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Figure 1. Successive times in a two bubble merger process. The compressibility and deasity ratio for
this case are M2 = 0.1 and D = S respectively. It can be scen that the large bubble overtakes the
smaller one at ¢ = 2. The veiocity of the la:ge bubble is accelerated during the merger while the velo-
city of the small bubble is reversed, see Figure 2.

Case D M2 Frror

Experiment | 3-600 | 0.001-0.005 | 1.2-13.5%

-

—

Simulation 5-10 .1 1-19%

Simulation

2-10 72-105%

Table 2. The deviation of experimental and numerical results from the superposition itypothesis.



2.3. Mode Mode Interaction

The bubble merger process appears to have two stages. As illustrated in §2.2 with the superposition
hypothesis, smaller bubbles develop a negative envelope velocity (contributions out of phase with their single
bubble velocity), and at sufficient envelope amplitude, their total velocity becomes negative. At this point,
they move rapidly away from the bubble envelope, and the position they previously occupied can be
regarded as an oversized spike between the remaining larger bubbles. The seconc stage of the merger pro-
cess involves an equilibration of radii, whereby the remaining (large) bubbles increase in size, while the
spike region between them reduces to its equilibrium value. Fig. 1 shows the interface evolution of the two

bubble interface during merger and Fig. 2 is the plot of the velocities of the two bubbles.
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Figure 2. The plots of bubble velocities vs. time for the two bubble merger simulation. The result
shows that the small bubble is accelerated at the beginning and is then decelerated after about ¢ - 5.
The small bubble is washed out downstream alter its velocity is reversed. The large bubble is under
constart acceleration. The smooth curves represent the bubble motion as predicted by the superposition
hypothesis.



3. Statistical Theories

Let h(2) be the distance from the initial bubble interface to the outer bubble envelope. Then
h(t) = aAgt? (3.1)
and in two dimensions, a = .06 (experiment) [4].

Computations of the acceleration constant a have been given by several authors, based on the full two
fluid Ealer equations with a random interface. Youngs [7] used an incompressible MAC code with van Leer
advection. Special interface enhancements (e.g. the method of LeBlanc) which minimize diffusive mixing
were not used, and the computation presents considerable diffusive mixing of the two fluids. His computa-
tions used small amounts of viscosity. He considered initial configurations of 12 bubbles with 200 horizontal
mesh blocks, or about 16 blocks per bubble. He used a variety of initial conditions and Atwood numbers,
and obtained values for a in the range .04 to .05.

Zufiria [9] used & vortex-in-cell code for the incompressible case. He considered only A = 1, with
small surface tensicn. His initial conditions were various 4 bubble configurations, and he used a range of

mesh sizes, the coarest of which was 16 grid cells per bubble. His result was a = .05 to .06.

We report here on recent compressible front tracking computations. A wide range of physical parame-
ters have been varied in our simulation. Those include the Atwood number A, the compressibility M and a
variation in the number and size of bubbles on the initial front. For these simulations, we have traced the
height of the largest bubble during the run. We bave two methods for analyzing the acceleration coefficient
a, namely from plots of A vs. 12 and from plots of v vs. t. The first type of analysis is similar to Read’s
analysis and is close to the experimental data. This first method gives integrated time averaged acceleration,
a,, relative to the instanteous acceleration, a,, in the second method and is consequently more regular. We
find that a, in most cases is nearly time independent, and varies in the range 0.05 to 0.065 in agreement with
Read [4]. However, some initial conditions give rise to significantly smaller values of a; namely extreme
values a, = 0.038 were recorded. o, shows even larger fluctuations, both between different runs and also at
different times within a single run. In Figs. 3 and 4 we examine a case for which a, = .066. The bubble
motion can be observed to have three stages, as recorded in Fig. 3b. The sharp increase in a, in the time
period 7.5 = ¢ = 10 is associated witu the collision of two spikes which liz above the bubble interface and
are falling into the larger bubble. Upon collision, they create a jet, which accelerates the bubble. The sign
reversal for 10 < ¢ < 14 appears to be due to the formation of a secondary bubble splitting instability. This
detail of structure is missing in the plots of Fig. 3a, which are once integrated from Fig. 3b. The more regu-
lar quantities plotted in Fig. 3a are the same as mecasured and plotted by Read, which provides a partial
explanation of the regularity of his results in comparison to ours. A further explanation is that Read has
about 10 times the number of initial bubbles in his experiments; if 10 of our runs were combined into an

ensemble of 50 bubbles, we would obtain the same leading bubble behavior for a, as Read.

None of the above computations or experiments have examined many generations of bubble merger.
Computations have been limited to one or two generations of bubble merger. The experiments contain one
observable generation of merger. According to the theory of the most unstable wavelength, the experiments
have an additional one to two generations of bubble merger which is not directly observable from the experi-
mental pictures. The fact that initiai conditions can play an important role after one or two generations is

not surprising.

The number of generations of bubble merger in the luser fusion application can be bounded as follows.
I'he theory of the most dangerous wave length [3,6] gives an estimate of the final bubble size in terms of the
aspect ratio of the spherical shell of the containey; che initial bubble size could be fixed by (a) photon wave

length, (b) surface tension, (¢) surface finish, and (d) acymmetries of the driving sourcc. An order of



magnituée estimate of the number of bubble merger generations from the initial bubbles set by these sources
"would be (a) 5 generations, (b) unknown but presumed very large, (c) at most 5 generations, (d) 0 to 1 gen-
eration. From this analysis we conciude that, aside from the drivirg source asymmetries, there is a potential
for more generations of bubble merger in the laser fusion application than in present computations or =xper-

imeats. We turn pext to statistical models, and the possibility of universal behavior independent of initial

conditions.
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Figure 3. The left plot displays bubble heights vs. 12 in a simulation witk 5 initial bubbles. The Atwoed
number in this case is A = 0.818, and the compressibility M2 = 0.1. The right picture shows the velo-
city vs. ¢t in the same case.

Two statistical models for the bubble envelope have been proposed [5,10]. These models are coupled
systems of differential or difference equations for the bubble growth and merger. The essential differences
between these models are: The Zufiria model has no free paramecters and is limited to the case A 1,
M1 - 0. It allows continuous relaxation of bubble width, as an aspect of bubble merger. The Sharp-Wheeler
model has two emiprical paramcters and appears to be applicable to a range of values of A and M2, Merger
in this model is discrete in all its aspects. They both result in a constant acceleration, with an acceleration

constant a in reasonable agreement with experiment.
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Figure 4. The interface positions at successive iimes in a computation with five initial bubbles. The phy-
sical parameters of this run are the same as in Figure 3.

Two phenomena have been observed in our random interface computations which are not contained in
the above statistical models. One is the roie of stratified initial conditions, which implics ‘that for times large
in proportion to the compressibility, the light fluid bubbles rise into a rarefied portion of the heavy fluid, to
an extent that the effective Atwood number is diminished or even becomes zero. This observation raises the
question of initial conditions which are not density stratified. It appears to be related to the breakdown of
superposition for small Aitwood numbers and moderate or large compressibilities. Also note that the increase
in wave number due to bubble merger leads to an incrcase in the cffective compressibility. A second
phenomena is a change of flow regime to a bubbly, frothy or slug flow regime in the mixing layer, in which
the light fluid spatially disconnected. This multiphase regime also reduces the effective Atwood number at
the interface. The occurence of a slug flow regime is dependent on initial conditions, in particular on the
relative size of adjacent bubbles. It could also depend on the distinction between exactly two-dimensional

computations as opposed to approximately two-dimensional experiments,
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