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A number of c omplex i ssues are addr essed '"hich will allow the incor­
poration of finite strain, inelast'ic mater ial behavior into the pie cewise 
numerical construction of solutions in solid mechanics . Without recourse 
to extensive continuum mechsnics P:reliminaries, an elementary time inde­
pendent plasticity model , an elemehtary t i me dependent c reep model, and 
a viscoelastic model are introduced as examples of constitutive equations 
which are routinely used in engineering calculations. The constitutive 
equations are all suitable for problems involving large deformations and 
f inite strains . The plastic i.ty and creep models are in rate form and use 
t he symmeLric part of the velocity gradi ent or the stretching to compute 
the co-rotational time derivative of the Cauchy stress. The viscoelastic 
model c omputes the current value of the Cauchy stress from a hereditary 
integral of a "materially invariant" form of the stretching history. 
The current configuration is s elected f or evaluation of equilibrium as 
opposed to either the reference configuration or the last established 
equilibrium conf i guration . The process of strain incrementation is 
examined in some depth and t he stretching evaluated at the midinterval 

' multipl ied by the time step is identified as the appropriate finite strain 
i ncrement to use with the selecteu for m of the constitutive equations . 
D:i.s cussed is the conversion of rotation rates based on the spin into 
incremental orthogonal rotations which are then used to updaLe stresses 
and state variables due t o rigid body rotation during the load increment. 
Comments and reference s to the literature are directed at numerical 
integration of the constitutive equations with an emphasi s on doing this 
accurately, if not exactly, for any t ime s tep and stretching. This mate­
r ial taken collectively provides an appron.ch to numerical implementation 
whi ch i s marked by its simplicity . 
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1. INTRODUCTION 

·I Successful engineering calculations which incorporate inelastic 

.!material behavior require that a number of complex issues be addressed. 

!The first is a m~thematical statement of-observed and mea~ured material : . . . . . 

!behavior known as a constitutive modet". · Constitutive modeling has a 

jhistory and a formalism v1hich is separate from and predates recent work 
I . 
;on numerical implementation. There .is .a wealth of literature on consti-

:tutive models and extensive writings in continuum mechanics guiding the 

:formulation of the equations which mimic observed material behavior. 
' lit is assumed the reader has some familiarity with this literature. 
l 

j Three very elementary constitutive models will be used here for 

I 
! 

I 

,_- --- -- --- -- -··- ·-- -- -·- ·--- -- ---- --- -- -- -- -- -- ---- ·-·- --· ·-- -- ---·· 
lthe purposes of example_ and little reference to the depth of the litera- : 

iture in each of the respective areas will be made. In particular, a ' 
I 
! 

representative time independent plasticity model, a viscoeleastic model, 
l 

f.nd a time dependent creep model will be cited.·· 

After a review of the mechanics which will be needed the focus 

will be on the issues related to numerical implementation. The goal is 

~o develop a predictive capability. Specifically, the incremental inte-
. I 

gration of these equations which accompanies the piecewise "construction"· 
I 

~f solutions in static, quasistatic and dynamic boundary value ~roblems 

kill be addre.ssed. The incremantation in strain, the interface needed 
' 
between the numerical implementation of the constitutive equations and 

the balance of the boundary value problem, and the numerical procedures 

used for integrating the respective constitutive models are discussed 

in turn•. It is the numerical implementation which allows the plethora 

6f constitt1tive proposals to be used in practice. The limitations of 

kpace \>'ill only penni t an exposition of one sequence of possible choices 
I 
from among the many possibl~. 
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Notation. The treatment of continuum mechanics~-used here follows closely: 

~hat found in Truesdell & Toupin [ 1]. A body V is given which occupies a J 

I 
tinite region of Euclidian space. Subjected to prescribed body forces and 

burface tractions, the body V undergoes the motion xi = xi(x0 ,t).' The I 
~articles of the body are identified by the ·coordinates X0 • They are 1· 

l 
referred to as material coordinates, and the relation of the particles I 
to the coordinates X0 does not change in time. The places in space which , 
i . 
the particles occupy during the motion are identified by the coordinates 
! 
:Xi. 
! 

The function xi describes the motion of the particles X0 through 

space as a function of time t. It is the motion xi·which is sought. 
I : 
The place occupied by the body at t = 0 is taken as the reference configu~ 
I 

~ation. __ In._this ... configuration--the- body -is-assumed·-to- be -strain· free-,·-·-

~hough not necessarily stress free. Only material coordinates X0 which 
! . . 
coincide with the spatial coordinates x 1 in the reference configuration I . . . 
are considered. Thus, in the reference configuration, xi(x0 ,0) = X0 • 

! The covariant and contravariant components of the metric tensor for 
! 
~he spatial coordinates xi are grs and grs, respectively, while in the 
i 8 ~oordinates of the reference configuration they are G

08 
and G0 

, respec-

tively. 
i 

In what follows, the spatial coordinates and the current con-
I 

~iguration of the body will be used for strain rate, stress, stress rate 

and equilibrium. 
I 

i 

Strain and Strain Rate. In finite deformations there are many strain 

measures which are useful. The majority of them can be computed from the 

deformation gradient Fk rlef:i.ned by 

l ~k 
i F1; = ?Ji1- cx~',t) (1); 

I : 
The velocity vk is defined as I 

I vk(x«,t) _ "ttk (x«,t) (2)~ 
i II 

! 
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~--~-I he stretching 

I 
is given by 

(3) i 

kith the spin given by. I 
1 wkm = i (vk,m - Vm,k) . 

I 
< 4) I I 

l 
i 

The comma in vk,m denotes covariant differentiation. In the constitutive!. 
I 
models which follow, the stretching is used as a ·strain rate measure. 
I 

There are a wealth of additional strain and strain rate variables which 
i 
'could -be-introduced but-they- are -not-· needed here.- Futher---references to _: 
I 
jthem can be found in Truesdell and Toupin [1.]. 

i 
2. CONSTITUTIVE THEORIES 

The stress relations considered are those of elementary character. 
I 

I 

I 
I 
i 
' 

They represent three classical forms of material behavior and are remark-· 
j 

ably adaptable .in performing useful engineering analyses. They are 
I 
;classical plasticity which exhibits path dependent but time independent 
I 

behavior, classical· viscoelastid.ty, and classical crerep> both of which 

~1ave path dependent and time dependent behavior.··· These attributes have 

important consequences when incremental strategies are considered. 

' ' I 
Plasticity. Plasticity is the behavior characteristic of ductile metals.: 

,igure 1 shows results which are typical of the behavior of a metal bar 
I 

loaded first in uniaxial tension followed by uniaxial compression. The . : 
i 
_straight line representation in Figure 1 is an idealization of this be-

havior. This is the approx.imation which results from. the plasticity 

relations employed here, Goel and Malvern [2]. It is based on the notion 
I 
pf a universal hardening curve from v7hich general triaxial behavior is 
! 
predicted. The finite Rtrain treatment of Key, Krieg, and Biffle [3] is 
I used. It is stated in a. rate form where the invariant co-rotational or 
i 
Jaumann stress rate is related through a tangent modulus to the stretch-
! 
fng. The result is ~quation (5). , 

I
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Figure 1. The ·typical behavior of. a ductile metal bar loaded first in 
. uniaxial tension follO\\'ed. by uniaxial compression. The straight line 

kpproximation is characterized as· an elastic modulus Et a yield stress t 0 : 

a strain hardening modulus Et, and a hardening parameter S where kine­
matic hardening is obtained with~ = o, isotropic hardening is obtained . 
with ~ = 1, and a linear combination of the two is obtained for ~ between 
zero and one. 

V'rs 
t cr.smn d 

mn 

! 
i 

(5) ! 
I 

When no yielding is occurri'ng, crsmn is the isotropic tensor Xgrsgmn + 
' 2l-Jgrmgsn, where 
I 

occurring, that 
i 

fangent moduius 

I 
I 

L ___ ., __ 
' ' •, I 

X and ~ are the Lame' 

i h 1 ~, ~,ij 
s, w en 2 ., ij" 

is given by 

parameters. Hhen plastic flow is 

k2 = 0 and F;:' ~,rs > 0, the rs 

(6) 
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, .. 

where 
I 

I 
I 
I 

~~s = 

12k = 

'i/ 
ars 

I 
trs 

I 
ars 

B ~ Hjd~sl k(O) = (2"/3)1/2 to 

(1~ B) 2 . p 
ars(O) o· 3\H drs ' 

Isotropic hardening is described by ·e = 1. Kinematic hardening is in- ' 
I 
I . 
eluded-in-a-rather-- obvious-way--by-letting- e. =-0-and -prescribing the-center 
i 'II 2 I 
ff the yield surface aij to move according to aij = (1- e) 

3 
H d~s· 

The prime denotes deviatoric components, the superscript p denotes the 
i . 
plastic part of the stretching, and:H = EEt/(E- Et)• 
i 
i 
i 
Viscoelastidty. Viscoelasticity is the behavior characteristic of poly- . 

I 
i, i 

meric materials. Under a constant stress they creep and. under a constant 
I 
I strain, the stress relaxes. The bulk behavior is much less viscoelastic 
i 
than the deviatioric response and is therefore often taken to be .elastic. 

Thus, 
I 
! 

i 

(7) 

I 
where k is the bulk modulus, p is the density in the current configuration, 

~nd p0 is the density in the reference configuration. I 
Since the material, in general, is rotating relative to the spatial 

' coordinates, the stretching history does not describe a material fiber 
" 
history suitable for use in a hereditary integral. A rotationally invari-: 
I 

ant form of the stretching must be introduced. A sui.table rotation 
! 

comes from the polar decomposition of the deformation gradient. Thus, 

(8) 1 
I 

i 
i 

where Rhm is an orthognal rotation so that (Rhm)-l = Rmh and Vma ·is a pure: 

I ~ ! L--------·-·--------------------· . _________ _: __________________ J 
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! 
~tretch, Trdesdell 
I 

liefined as 

l 
The co-rotational stretching nkm is I and Toupin [1]. 

(9) 

The 

I 
I 

I 

linear viscoelastic deviatoric behavi6r can riow be defined as 

t 

t'km ~ 2 Rkr(t) Rmn(t) ,J 
:o 

(10) 

~here the function ~ is the shear r~laxation modulus. This is a special 
I 

~ I 
1-
!· 
f 

I 
I 
I 
I 

case of a more general finite strain treatment introduced by Bard [4]. I 

I l 
!--The--shear--relaxation-modulus-is- taken--to-have-the-very---elementary .. ---'. 
i 
~orm 
i 
I 

I 
I 
I 
I 

cj>(t) (11) 

where B is a decay constant. It is,customary to use a number of expo­
i i 

nential 
i 

decay terms in practice, however, the essential behavior can be 

demonstrated with a single term. 

I 
I 
Creep.· . Creep occurs in man-made and natural materials, ·and in ductile 

materials becomes significant when the temperature ·on··an absolute scale 

reaches one third to one half the material's melt temperature. It is a 
I 

time dependent material mechanism in that the stress depends principally 
' 

· on the rate at lll'hich the material is deformed. Elastic terms are also 

necessary in this temperature range and are included here. In what fol-
! 
lows the common Norton power law for secondary creep will be used, Penny 

and Marriott [5]. 
i 

It is pa~ticularly descriptive of dislocation glide 

and climb deformation mechanisms in metals, Gi ttus [ 6]. 
I 

I 
i 
! 

. ! 

I 
! 
i 

It is stated in a rate form where the invariant co-rotational stress ; 

rate is related linearly to the difference between the total stretching 

minus the inelastic stretching d~s~ Thus, 

i 
(12) 

I 
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.where--. --,-1 
n-1 

C 3 3 I 1ij --z-:- I 
dmn = 2 D(2 tij t ) exp( .,... Q/R8) tmn 

constants determined from the material, e is absolute tern-n.and n are 
I 
perature, Q is the effective activa.tion ·energy, and R is the univer.sal ., 
gas constant .• 

I 3. EQUILIBRIUM 

To handle complex loading histories, to acommodate nonlinearities 

I 
I 
i. 

I 
I 

.I 

! 
I 
I I 

from changes in geometry, and to account for inelastic material behavior·, i 
kolution procedures are used vlhich build up the solution incrementally. \ · 
I ! 

Terminology has .been .introduced--which -characterizes -the--choice-of ··Configu-· 
I . 
ration where equilibrium is tested. Total Lagrangian refers to use of 
i 
the reference configuration and Updated Lagrangian refers to the use of 
I 

the last established equilibrium configuration. Here, the current con-

figurations will be used to examine equilibrium. Two terminologies which 

are both unsatisfactory are "Eulerian" and "Updated Lagrangian+ 1." 

The first has been used in the past in the finite element literature but 

has an entirely different meaning in the finite difference literature. 

Equilibrium is stated in terms of the principle of. yir.tual work. 

The variational form 

! ! 
on = J (13 )~ 

I 

' i 
I 

I 
I 
i 

v v sl 

~s to vanish at all points along the path of motion for all variations 
' 
6xk satisfying the displacement boundary conditions on s 2 • The integra-
' tion is performed over the ~urrent configuration of the body V, where p 
i 
is the mass density in that configuration, tkm is the Cauchy stress--the 

dtress in the current configuration, and sk is the surfacw traction. 

Figure 2 depicts the body V in question. sl is that part of the surface 

in the current configuration acted upon by prescribed tractions and s2 
. !s that part'of the surfac~ in the current configuration subjected to 

prescribed displacements. The displacement boundary conditions are 

I 
______ j 

! 
! 

I 
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It is important to realize that these equations are completely 

~eneral and applicable for arbitrarily large deformations. 

Figure 2. The body V with surface tractions sk on the boundary sl and a 
prescribed motion on the boundary s2. An interior boundary sO with a 
unit normal vector:nk is pictured. 

4. STRAIN INCREMENTATION 

The notion of an incremental solution is fundamental to the bulk of 

the methods for finding a motion xi(xa,t) which .generates a stress hfstory 

·in equilibrium with the applied ln;:uiR. Tt :f.s assumed that up to time tn, 
I 

~he stress trs 
I 

c;>f integrating 
I 
I 

satisfies equilibrium; and the stress tn is the result rs 
the constitutive models with the strain histories derived 

from the known motion up to'tn• The prescribed loads are incremented to 
I 

time tn+l and a predictor/corrector method is introduced to find the new 
i 

configuration x;+l = xi<l\ tn+l) that has all the equilibrium prop-
1. 

ertie.s which werP. dP.P.mP.rl nl?r.~s,;ary. at tu and accuraeies ac.c.eptabl~ to 

the constitutive model evaluation. To indicate temporal increments a 11 

~s used. For example, 11t = tn+l - tn, 11trs = t~~l t~s' etc. 

i 
I 
I 
I 
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I, A baste assump-tion which underlies most incremental treatments, in-
j-

~luding the one here, but which is rarely stated is that the motion 1 

between x~ and x~+l is linear. As a consequence, the incremental velocity 

kiven by v~+l/ 2 = 6xi/6t is constant over the time increment. -Equilibrium 
I 

fs tested in the configuration at tn+l which is a trial configuration 
I until equilibrium is established. 
i 

To do this the stresses at tn+l must -, 

1
be evaluated. 
I 

Following Hughes and Winget [7],. the one parameter family 

~f configurations is introduced i 

I I 
! 

(15) 

I 
x~+« = (1 - a)x~ + ax~+l 

i 
-I 

I 
! i . 
~he--gradient- hiJ·--of- ui -=- 6x -lolith--respect- -to--xJ-fU-is-given- by---------
1 -

I 
I I 

! cru.. 
! 

I 
l. 

<ncj 
n-+a. 

r .c .c. ( 16) 

! 
From this gradient the strain increment eij is given by 
I 
I 

I 
Thus, eij(O) is the Green-St. Venant strain increment, eij(l) is the 

Signorini strain increment, and 

I 
I 
i 
i 
Without 
; 
I 

the need for further linearization the configuration halfway 

(17) 
i 

I 

! 
i 
I 

(18) 

I 
i 
i 

between n and n+l is selected for evaluating the stretching and the spin, 
I 
~nd for computing 6trs· The midpoint configuration is optimal in the sense 

~hat no quadratic terms are needed to accurately evaluate (dxidxi)n+l i 
i i ! 
~dx dxi)n· ~ 

; It remains to identify the strain measure which eij(~) approximates'' 

knd establish if a satisfacto~y approximation of the total strain from 
I 
t 0 to tn+l is achieved by summing the incremental results. 

1 Consider an infinitismal material fiber i 0 in the reference configu- : 
! 
ration which as a result of the motion xicxa,t) has the length R.(t) •. If 
I ! 
I q , , . I ' . . i '---------- --·- ----------------------------------·--------·----' 

I ! " :·~, • 



the stretching nll aligned with i is evaiuated and integrated in time the 

logarithmic strain is obtained. Thus, 

--. Jt D11dT in(l!.(t)/£
0

) 

. 0 

(19) 

. 1 
If eij( ~) is evaluated over N length changes between 1 0 and i(t), the 

following formula is obtained: 

N N 

2: ei/ 
1 ) L i - in-1 (20) ~ 2 .n 

n = 1 tn-~ n = 1 in + in-1 

Table I for a range of values of the current length 1, lists the logarith­

mic strain, eij( ~ ) for a one step incremental change from 10 to 1 and the 

accummulated value of eij( ~ ) for 2 and 10 uniform incremental changes 

from i 0 to i. The result is striking. As an approximation to 1n(1j10 ), 

eij( ~ ) is well within~% of the logarithmic strain for a ± 20% 

change in i 0 in one step. Summed over a series of in6rements, eij ( ~ ) 

rapidly converges to the logarithmic strain. 

TABLE I 
Midinterval extensional strain approximation for the natural strain 

tn(£/£ 0 ) for N = 1,2 and 10 uniform subdivisions of the change from £0 to£. 

·N 
tn(£/£o) ~ L 2(£n - £n-l)/(tn + £n-l) 

n = 1 

£/to £n(P-/£o) N = 1 N = 2 N = 10 

.5 -0.69315 -0.66667 -0.68571 -0.69284 

.6 -0.51082 -0.50000 -0.50794 -0.51071 

.7 -0.35667 -0.35294 -0.35571 -0.35664 

.8 -0.22314 -0.22222 -0.22291 -0.22313 

.9 -0.10536 -0.10526 -0.10534 -0.10536 
1.0 0.0 o.o 0.0 o.o 
1.2 0.18232 0.18182 0.18219 0.18232 
1.4 0.33647 0.33333 0. 33566 . 0.33644 
1.6 0.47000 0.46154 0.46777 0.46991 
1.8 0.58779 0.51143 0 • .58333 0.58760 
2.0 0.69315 0.66667 0.68571 0. 69284 

10 
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r 5. STRESS AND STATE VARIABLE ADVANCEMENT I 
!used 
i 

The terms in the co-rotati9nal derivative-involving the spin wrk 

in the constitutive equations (5) and (12) are for the purpose of 

jtaking into account rigid body rotations of a material point relative to 

;the spatial coordinates xi. In incremental form.they are an orthogonal 
I 

rotation through an incremental angle. Hughes and Winget [7] have_pro-

;vided a direct ,.;ay to evaluate the incremental rotation L\ Rij from the 
; 

;spin wij. Thus, 
i 

I 
I 
I 
I 
I 

(21) 

i 
i 

I 
l 
i . 

Ha·lf·· angle -trigonometric·· formulas··are -used··to-· get -the square ·-root . of L\ R ,---! 
I 1 1 

~Rij = t.Rfkt.R~j" With these constructions the constitutive models (5), 

~10) and (12) can be integrated over the increment from n to n+l. First 

~he stress t~s and the applicable state variables a~s are advanced 
! 
~o n + ~ by 
i 
I 

-nH, 1 1. 
= t,R2i t.R2J n 

trs2 r s tij (22) 

1 1 1. 
-n+2 t,R~ t,R2J n 
ars r s aij (23) 

Using d~l/2 and t,t, the constitutive equations are integrated and new 

~tresses t~!1 1 2 and state variables a~!1 1 2 are obtained. These are then 

~otated from n + t to n + 1 by the same process as in equations (22) and 

(23). Mid-intervat strain and constitutive evaluation is also used by 
I 

Hallquist [8] and Biffle [9]. 
i 
! 

I 
I 

6. INCRE~NTAL CONSTITUTIVE EVALUATION 

I Of particular importance fs the integration 6f the balance of the 

bonstitutive equations from time n to fi + 1. The main requirement being 

to integrate the equations as accurately as possible, preferably exactly, 
I . 

~or any t,t and stretching drs• . The plasticity model is integrated 
! 

from n to n + 1 assuming the stretching is constant which is consistent 

with (15). For a constant stretching path the integration is very nearly 

exact and is extremely reliable independent of the specific value for 

the time interval t,t, [10-12]. 
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, ... ,_ \\ 



.I 
i 

·I 
i 
I 
j 
I 
\ 

·' 
I 

' 
I 
i 

! 

I 
i 
I 
I 

I 

;. 
I 
I 
i 
! 

.. i 

! 
: 
\ 
I 

I 
.. I 

I 
I 

I 

.l_ _j 

The successful implementation of the viscoelastic material re~ 
in 

1of 

the recursion relation that can be developed to compute a new value 

I 
the hereditary integral at time n + 1 from the old value at time n. 

;Using a direct 
I 
:the 

notation to ease the profusion of sub- and superscripts. 

I 
hereditary integral at time n + 1 is 

I 

-~(t -'1") 
e n+ 1 D ( .,-) d.,- R 

1 n+ 

where b.R is the rotation from tn to tn+l• · The recursion relation pro-
I 

yides an exact integration of a piecewise constant stretching history. 

:rhe additional details needed to ·adapt the recursion formula to .the mid­

~nterval constitutive evaluation are omitted here. This is a special 
j 

case of the work of Herrmaim and Peterson [ 13] generalized to large 
I . 

deformations and finite strains. 

I The .creep model is also intP.grated from n to n + 1 assuming the 

;stretching is constant. The creep equations, howeve.r, are not _nearly as 
I 
I _easy to numerically integrate. They are referred to in the mathematics 
i . 
community as "stiff". Only v7ith considet"able effort and great expense 
I 

~can they he numer!cally integrated with conventional methods from time n . . 

1
to n + 1. 

I 
I 
I 

I 
I 
i 

I 
I 
I 
I 

I 

I 

! 
i 
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·1 In this case~ semiana~yt ic integration j.s used, [ 14]. Domains in ! 
!stress and strain rate space are identified where various nearby differen.:. 
' I 

\tial equations with exact solutions are applicable. The solution path I 
i i 

time step may remain within a single domain or may pass through I ! 

J:::r o: 
l_·ential 

more domains requiring the solutions to two or more of the differ-: 

I 
equations to be applied, one after the other over the time step. 

jln this way arbitrarily large strain or time intervals can be accurately 
i .. 
and reliably used. 
! 

An absolute maximum of seven subincrements·are 

!equired so that computational time is not excessive. This approach, 

~hile conceptually straightforward is highly tailored to the constitutive 

model at hand. 
! 
1-- --This- approach ·to constitutive· equations based·- on· exact- or· accurate­
i 
tncrementation for all time steps, strains and strain rates uncouples 
i 
~tability and accuracy in their evaluation from the time step size used 
I 

1n the-load incrementing schemes with their attendant equilibrium itera-
1 . 

:tion, cf., Bushnell [15]. This approach contrasts with that vihere ~t in 
I 

~ constitutive integration scheme corresponds to the ~t used in incre­
i 

menting the_ load. If this coupling is pursued, many num~rical schemes 
i 
:can be developed. Argyris, Vaz and Willam [ 16] have documented a number 
I 
~f these and have provided the guidance necessary for their successful 
i 
use. 

; ~··"" 
-· While seemingly elaborate, these are in practice simple and quick 

calculations. This treatment has the property of b~ing objective and 

uses a strain increment which while appearing "linear" is the same order 
. . 

~f accuracy as using the nonlinear strain increments at either n or n + 1~ 
1 • i 
:respectively. 

For examples of solved problems using the~e ~rocedures references 

:[17] and [18] can be examin'ed. 
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