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Abstract

A number of complex issues are addressed which will allow the incor-—
poration of finite strain, inelastic material behavior into the piecewise
numerical construction of solutions in solid mechanics. Without recourse
to extensive continuum mechanics preliminaries, an elementary time inde-
pendent plasticity model, an elementary time dependent creep model, and
a viscoelastic model are introduced as examples of constitutive equations
which are routinely used in engineering calculations. The constitutive
equations are all suitable for problems involving large deformations and
finite strains. The plasticity and creep models are in rate form and use
the symmetric part of the velocity gradient or the stretching to compute
the co-rotational time derivative of the Cauchy stress. The viscoelastic
model computes the current value of the Cauchy stress from a hereditary
integral of a "materially invariant” form of the stretching history.

The current configuration is selected for evaluation of equilibrium as
opposed to either the reference configuration or the last established
equilibrium configuration. The process of strain incrementation is
examined in some depth and the stretching evaluvated at the midinterval
multiplied by the time step is identified as the appropriate finite strain
increment to use with the selected form of the constitutive equations.
Discussed is the conversion of rotation rates based on the spin into
incremental orthogonal rotations which are then used to update stresses
and state variables due to rigid body rotation during the load increment.
Comments and references to the literature are directed at numerical
integration of the constitutive equations with an emphasis on doing this
accurately, if not exactly, for any time step and stretching. This mate—
rial taken collectively provides an approach to numerical implementation
which is marked by its simplicity.
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1. INTRODUCTION

Successful ‘engineering calculations which incorporate inelastic
material behavior require that a number of complex issues be addressed.
The first is a mathematical statement of -observed and'meaéured material

;behavior known as a constitutive model. Constitutive modeling has a

ihistory and a formalism which is separate from and predates recent work
gon numerical implementation. There is a wealth of literature on consti-

‘tutive models and extensive writings in continium mechanics guiding the

l
| .
It is assumed the reader has some familiarity with this literature.

| Three very elementary constitutive models will be used here for

formulation of the equations which mimic observed material behavior.

it?e'"pﬁ“r“pc?éé? of example and little reference to the depth of the litera—

ture in each of the respective areas will be made. In particular, a

represeﬁtative time independent plasticity model, a viscoeleastic model,

%nd a time dependent creep model will be cited.
;  After a review of the mechanics which will be needed the focus

Qill be on thé issues related to numerical implementation. The goal is
%o develop a predictive capability. Specifically, the incremental inte-i
ération of these equafions which accompanies the piecewise "construction”
;f solutions in static, quasistatic and dynamic boundary value problems
will be addressed. The incrementation in strain, the interface needed
fetween the numeriéal implementation of the constitutive equations aqd

" the balance of the boundary value problem, and the numerical proﬁedures
Lsed for integrating the respective constitutive models are discussed

in turn. It is the numerical implementation which allows the plethora

pf constitutive proposals to be used in practice. The limitations of
%pace will only permit aﬁvexposition of omne éequence of possible choices

from among the many possiblé°



Notation. The treatment of continuum mechanicsiused here follows closeiyi
%hat found in Truesdell & TOupin,[l]. A body V is. given which occupies ag
finite region of Euclidian space. Suhjected to prescribed body forces an&
gurface tractions, the body V undergoes the motion x1 = xi(xa,t).' The %
particles of the body are identified by the coordinates X®. They are

referred to as material coordinates, and the relation of the particles

|

to the coordinates X® does not change in time. The places in space which

he particles occupy during the motion are identified by the coordinates

1, The function xi describes the motion of the'particles X% through

34— — e

épace as a function of time t. It is the motion xi‘which is sought. i
The place occupied by the body at t = O is taken as the reference configu-
i

%ation.a_In_thiswconfigurationmthe-body-is—assumed“to-bevstrainwfree,~_ i

though not necessarily stress free. Only material coordinates X% which

oincide with the spatial coordinates xi in the reference configuration

¢
Lre considered. Thus, in the reference configuration, xi(X“,O) = X9,
! The covariant and contravariant components of the metric tensor for

éhe spatial coordinates xi

are g, and grs’ respectively, while in the i
%oordinates of the reference configuration they aré GaB and GGB, respec- :
éively. In what follows, the spatial coordinates and the current con-
figuration of the body will be used for strain rate, stress, stress rate i
énd equilibrium. i
{
i
|
\

Strain and Strain Rate. In finite deformations there are many strain

measures which are qseful° The majority of them can be computed from the

,deformation gradient FK defined by

i

i
i
i

k
oX B . . :
Tk =_ax°‘ xP,t) . ' (1)
The velocity v'¢ is defined as
" |
vK(X%,t) = =X (x%4e) . ; (2)!




The stretching is given by

|
-

'akﬁ =2 (Vk,m t VoK) > . . (3)

with the spin given by .

|

N

R R L

bodels which follow, the stretching is used -as a 'strain rate measure.

#here are a wealth of additional strain and strain rate variables which

The comma in Vi ,m denotes covariant differentiation. .In the constitutive’,
i H

| i
could -be~introduced but—they-are -not- needed here.—Futher-references to —!

ihem can be found in Truesdell and Toupin [1].
i
|

2. CONSTITUTIVE THEORIES

The stress relations considered are those of elementary character.

! : ;
They represent three classical forms of material behavior and are remark-—

?bly adaptable,ip performing useful engineering analyses. They are
?lassical plasticity which exhibits path dependent but time independent
%ehavior, classical viscoelasticity, and classical creep: both of ‘which
ﬁave path dependent and time dependent behavior. = These attriﬁutes have
important conseqﬁences when incremental strategieg are considered.

1

i
{
i
1
i
t
{
|

Plasticity. Plasticity is the behavior characteristic of ductile metals. ;

Figure 1 shows results which are typical of the behavior of a metal bar
loaded first in uniaxial tension followed by uniaxial compression. The
%traight line representation in Figure 1 is an idealization of this be-

havior. This is the approximation which results from the plasticity

1
f
!
4

+
i

Feiations employéd here, Goel and Malvern [2]. It is based on the notion

of a universal hardening curve from which general triaxial behavior is
!
predicted. The finite qrrain treatment of Key, Krieg, and Biffle [3] 1is

%sed. It is stated in a raLe form where the invariant co—rotatlonal or
|
Jaumann stress rate is related through a tangent modulus to the stretch-

ing. The result is equation (5).

m .

i

|
|
l
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Figure 1. The typical behavior: of a ductile metal bar loaded first in
.uniaxial tension followed by uniaxial compression. The straight line A
épprdximation is characterized as an elastic modulus E, a yield stress tg:
a strain hardening modulus E., and a hardening parameter 3 where kine-
matic hardenlng is obtained with B = O, isotropic hardening is obtained
with B = 1, and a llnear combination of the two is obtained for B bntveen
zero and one.

i
! v |
! : ' rs _ .rs _ .r .ms 4, ,T S _ prsmn .
% t t wh e™8 + Tl c d, - (5)
!
i

When no yielding is occurrihg, CYSUM jg the isotropic tensor AgTSgmn 4

ngrmgsn where A and u are the Lame” parameters. When plastic flow is
. . v

occurring, that is, when £ i3 1] - k¢ =0 and £’rSE’rs > 0, the

J
tangent modulus is given by

crsmn - )\gr-sgmn + zu(grmgsn - nrsnmn) (6) ;

X

L.




where

£°TS/[2k2(1 + H/3n)]1/2

nfsS =

Ers = trs ~ Qés ’

VZk = 8 % H[dgs.| , k(0) = (2/3)L/2 t
dpe = (1= 8) %H dlr-’; , ;rs(O) ‘='o

Isotropic hardening is described by:B = 1. Kinematic hardening is in-
cluded in-a-rather. obvious-way-by—letting 8. ——O—and-prescrlbing the.- center
of the yield surface 3 to move according to gij (1 -18) 3 H dp

The prime denotes deviatoric components, the superscript p denotes the
plastlc part of the stretching, and ‘'H = EE./(E - E.).

i . . : i

| ) P
i H
{

Viscoelasticity. Viscoelasticity ie the behavior characteristic of poly- .

?eric materials. Under a constant dtress they creep and under a constant:
%train, the stress relaxes. The bulk behavior is much less viscoelastic

i !
than the deviatioric response and is therefore often taken to be elastic.:

N o , p )
; | | tl = 3k 2“(739)’ | (7) |
|

where k is the bulk modulus, p is the density in the current configuration,

and po is the density in the reference configuration.
; Since the material, in general, is rotating relative to the spatial |
coordinates, the stretching history does not describe a material fiber

’3

history suitable for use in a hereditary integral. A rotationally invari-
]

ent form of the stretching must be introduced. A suitable rotation

comes from the polar decomposition of the deformation gradient. Thus,

= phm

= RV, o - (8).

h
FG.

i
t
|
1
!
!
hm -1 mh
where R is an orthognal rotation so that (Rhm) = R and V als a pure

5
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stretch, Truesdell and Toupin [1]. The co-rotational stretching pkm jig
defined as .
km _ prkpnm -
The linear viscoelastic deviatoric behavior can now be defined as 4 v
£k® = 2 RKT(ry RMO(t) -{, 9(E= 1) DT (T) AT, (10)
. I _
where the function ¢ .is the shear relaxation modulus. This is a special

case of a more general finite straiﬁ treatment introduced by Bard [4].
— —The--shear-relaxation modulus— is taken--to-have-the-very.elementary-

form
i

!

|

[ :

where B 1s a decay counstant. It is,customary to use a number of expo-
i 1

$(t) = Gy, + (6, = Ge Pt | Can

l : .

nential decay terms in practice, however, the essential behavior can be
i :

gemonstrated with a single term.

[ : : - S : :
Creep. Creep cccurs in man-made and natural materials, 'and in ductile

matérials-becomes significant when the temperature on an absolute'scaléf~
%ééchés-oné third to one half the material's melt temperature. It is a
iime dependent material mechanism in that the stress depends principally
~;n the rate at which the material is deformed. Elastic terms are also
hecessary in this temperature range and are included here. In what fol-
iows the common Norton power law for secondary creep will be used, Penny
and Marriott [5]. It is particularly descriptive of dislocation glide !
?nd climb deformation mechanisms in metals, Gittus [6]. |
{ .~ It is stated in a rate form where the invariant co-rotational stress .
fate is related linearly to the difference between the total:stretching v

minus the inelastic stretching dgsf Thus,

v ' |
e = ¢T8™(  - dS ) (12)

G




where
. n-1

’ 14 5 . " ’
a¢ =3 D(—g-tij /1) < exp( < Q/RO) .
D.and n are constants determiﬁed from the material, © is absolute tem-
. perature, Q is the effective activation energy, and R is the universal

gas constant.

3. EQUILIBRIUM

To handle complex loading histories, to acommodate nonlinearities
A from changes in geometry, and to account for inelastic materiai behavior,

golution procedures are used which build up the solution incrementally. .
, A

Terminology has been.introduced-which -characterizes -the-choice-of--configu~

ratioh where equilibrium is tested. Total Lagrangian refers to use of
i
the reference configuration and Updated Lagrangian refers to the use of

i
the last established equilibrium configuration. Here, the current con-—

t
'
t
0
1

figdrations will be used to examine equilibrium. Two terminologies which

are both unsatisfactory are "Eulerian" and “Updated Lagrangian + 1."
The first has been used in the past in the finite element literature but
ﬁas an entirely different meaning in the finite difference literature.

Equilibrium is stated in terms of the principle of,virtual work.

|
T
l
E
|
|
|
|

is to vanish at all points along the path of motion for all variations
éxk satisfying the displacement boundary conditions on 82 The integra-
tion is performed over the current configuration of the body V, where p
is the mass density in that configuration, tkm §5 the Cauchy stress—-the
étress in the current configﬁration; and sk is the surface traction.
Eigure 2 depicts the body V in question. sl is that part of the surface
in the current configuration acted upon by prescribed tractions and 52

.is that part 'of the surface in the current configuration subjected to

i

ﬁrescribed displacements. The displacement boundary conditions are

i

e

he variational form
& = I tkmﬁxk’m dv - I pfkﬁx dv - § 8 6xk da : (13)
v v : sl




xi(:xa,t:) = ii(t)l on S? | as)

It is important to realize that these equations are completely -

- general and applicable for arbitrarily large deformations.

Figure 2. The body V with surface tractions sk on the boundary sl and a
prescribed motion on the boundary s2. An interior boundary SO with a

unit normal vector: nK is pictured.
i

! .

P | 4. STRAIN INCREMENTATION - S
| .
l

The notion of an incremental solution is fundamental to the bulk of
]

the methods for flndlng a motion x1(X®,t) which .generates a stress hiatory
'in equilibrium with the applied lrnads. Tt is assumed that up to timec tn» '

;he stress t. g satisfies equilibrium; and the stress trs is the result i
i : !
of integrating the constitutive models with the strain histories derived

from the known motion up to‘t,. The prescribed loads are incremented to

time thtl and a predictor/corrector method is introduced to find the new
$9nfigurat10ﬂ xé+1 =y (X s they) that has all the equilibrium prop-
erties which were deemed necessary at t;, and accuraeies acceptable to

the constitutive model evaluation. To indicate temporal increments a A

o L.ntl o on
At =t trg» €tce

%s used. For example, At = Lo+l ~ oo rs rs

| g
| | |




A basic assumption which underlies most incremental treatments, in-

cluding the one here, but which is rarely stated is that the motion

between xt and xi+1 is linear. As a consequence, the incremental velocity.

given by Vn+1/2 = Ax /At is constant over the time increment. Equilibrium

|
I
|

is tested in the configuration at t,4; which is a trial configuration ;
pntil equilibrium is established. To do this the stresses at tpy] must-<i
| , : . A ;
.be evaluated. Following Hughes and Winget [7],. the one parameter family

1 ,
of configurations is introduced ' , i

xhie = @-oxd+axd, . - ©(15)

Thewgradient h ~-of—ui —-Axi—with—respect-to—x&;u—is—given-by-—-w———-m-——

ou,
hij = .l T.c.c.(16)
Y ‘
! n+Q
From this gradient the strain increment ey j is given by -
egs(@) =3 [hyy + hyy + (1 - 2a)hkihkj] (17)

Thus, eij(O) is the Green-St. Venant strain increment, eij(l) is the :

Signorini strain increment, and

ey 3 ( 5 ) = At d“+1/2 = sym (u J) . (18)

Wlthout the need for further linearization the configuration halfway

beLween n and ntl is selected for evaluating the stretching and -the spin,f
Lnd for computing Atpg. The midpoint configuration is optimal in the sense
that no quadratic terms are needed to accurately evaluate (dx dx )n+l ‘

fdx dxi)

:
|
: It remains to identify the strain measure which eij(%) approximates
and establish if a satisfactory approximation of the total strain from
ko to tn4+]1 is achieved by summing the incremental results. i
Consider an infinitismal matcrial fiber £, in the reference configuﬂi

q

1
|
ration which as a result of the motion xixe, t) has the length (LY. -
i
l




- the stretching pll aligned with £ is evaluated and integrated in time the
. logarithmic strain is obtained. Thus,

fnL(e)/h,) = .[ pllgr . 4 ' (19)
J . .

if eij( %’) is'evaluated over N length changes between 20 and 2(t), the

following formula is obtained:

N N S
E e;5( 1) = Z 5% 7 % ‘ (20)
n=1 t _1 n=1 Ly ln—l
n—73 .

Table I for a range of values of the current length £, lists the logarith-
mic strain, eij( %-) for a one step incremental change from 20 to £ and the
accuﬁmulated value of eij( % ) for 2 and 10 uniform4incremental chaﬁges
from £, to £. The result is striking. As an approximation to Ln(L/%),
eij( % ) is well within %Z of the logarithmic strain for a * 20%

change in %, in oné step. Summed over a series of increments, ej j ( % )

rapidly converges to the logarithmic strain.

TABLE 1 :
Midinterval extensional strain approximation for the natural strain
4n(L/L4y) for N = 1,2 and 10 uniform subdivisions of the change from £, to £.

N
n(e/io) ~ 3 208y - Ap-1)/ Ry + £po1)

n =1
L/4, 4n(L/Ly) N=1 ‘ N =2 . N =10
.5 -0.69315 -0.66667 -0.68571 -0.69284
.6 -0.51082 -0.50000 -0.50794 -0.51071
.7 - -0,35667 -0.35294 -0.35571 -0.35664
.8 -0.22314 -0.22222 -0.22291 -0.22313
.9 -0.10536 -0.10526 -0.10534 ' -0.10536
1.0 0.0 0.0 0.0 0.0
1.2 0.18232 0.18182 0.18219 0.18232
1.4 0.33647 0.33333 0.33566 - 0.33644
1.6 0.47000 0.46154 0.46777 0.46991
1.8 0.58779 0.57143 0.58333 0.58760
2.0 0.69315 0.66667 0.68571 0.69284

{0



_ 5. STRESS AND STATE VARIABLE ADVANCEMENT

The terms in the.co—rbtational derivative-involving the spin wrk
hsed in the constitutive equations (5) and (12) are for the purpose of
%aking into account rigid body rotations of a material point relative to
ﬁhe spatial coordinates xl. In incremental form they are an orthogonal
}otation through an increﬁental angle. Hughes and Winget [7] have pro-
?ided a direct wa& to evaluate the incremental rotation ARij from the
spin Wige Thus,

t
i .
|
i! ARij = (Glii - At %‘ wik)-l '(gkj +AAt %—'wkj) . (21)
i

Falf«angle-tr%gonometric"formulas"are-used“to~get~the square-root-.of AR, —!

, 1
ARij = ARikARﬁj. With these constructions the constitutive models (5),

t

(10) and (12) can be integrated over the increment from n to mtl. First
ihe stress t?s and the applicable state variables a?s are advanced

to n + 3 by

}

| .

i -t 1 1.

E trs2 = AR%' Ajo t?jA (22)

i : ' '

. —]:- 1 l‘, - . - o
; &2:2 = AR?i AR§J a?j‘ S (@3
-b ml/2 : . . ‘

Using d.g and At, the constitutive equations are integrated and new

ntl/2
rs

rotated from n,+-%_to n + 1 by the same process as in equations (22) and

stresses t and state variables QEZI/Z are obtained. These are then
k23). Mid-interval strain and constitutive evaluation is also used by

Hallquist [8] and Biffle [9].

i
! ‘ 6. 'INCREMENTAL CONSTITUTIVE EVALUATION
] Of particular importance is the integration of the balance of the

| .
constitutive equations from time n to n + 1. " The main requirement being

to integrate the equations as accurately as possible, preferably exactly,

for any At and stretching d.g. . The plasticity model is integrated

from n to n + 1 assuming the stretching is constant which is consistent

H
1

i
|
i
i
i
i
t
1

¢

with (15). For a constant stretching path the integration is very nearly

exact and 1is extremely reliable independent of the specific value for

the time interval at, [10-12].

[ . . —

I



The successful implementation of the viscoelastic materiai»rests
in the recursion relation that can be developed to compute a new value
iof the hereditary integral at time n + 1 from the old value at time n.
Using a direct notation to ease the profusion of sub—- and superscripts,

‘the hereditary integral at time n + 1 is

' tn+1 -B(tn+l-7)
In+l-= Rn+l € D(7) ar Rn+l

(o}

_ . :
-B(t -
=R_ / : e B il ) D(r) ar

) (24)

t
n+l -B(t_ .-T)
N / e ™1 7 p(r)ar| R

t
n

n+1l

_ -Bat 1 -
= &R e "7 I

where AR ie the rotation from ty to tp41. The recursion relation pro-
bides an exact integration of a plecewise constant stretching history.
The additional. details needed to:adabt,the recursion formula to the mid-

dinterval constitutive evaluation are omitted here. This 1s a special

Ease of the work of Herrmann and Peterson [13] generalized to large
!
deformations and finite strains.

The creep modal is also integrated from n to n + 1 assuming the

%tretching is constant. .The creep equations, however, are not nearly as
?asy to numerically integrate. They are referred to in the mathematics

Eommunity as "stiff". Only with considerable effort and great expense

Lan théy he numerically integrated'with conventional methods from time n
ko n+ 1.




In this case; a semianalytic integration is used, [14]. Domains in

,i
|

istress and strain rate space are identified where various nearby differen;

|
!
l
2

}tial equations with exact solutions are applicaﬁlef The solution path !
over a time step may remain within a single domain or may pass through
two or more domains requiring the solutions to two or more of the differ-

ential equations to be applied, one after the other over the time step.

In this way arbitrarily large strain or time intervals can be accurately

i

and reliably used. An absolute maximum of seven subincrements are i
?equired S0 that computational time is not excessive. This approach, {
%hile conceptually straightforward is highly tailored to the constitutive
?odel at hand. ' ?

i . . : o
1— — This-approach -to- constitutive equations based-on exact-or-accurate —

incrementation for all time steps, strains and strain rates uncouples
i

%tability and accuracy in their evaluation from the time step size used

' .

in the-load incrementing schemes with their attendant equilibrium itera- .
! ‘ , i
tion, cf., Bushnell [15]. This approach contrasts with that where At in
I

a constitutive integration scheme corresponds to the At used in incre-— !
menting the load. If this coupling is pursued, many numerical schemes

; .
can be developed. Argyris, Vaz and Willam [16] have documented a number
|

of these and. have provided the guidance necessary for their successful

| .
use.

j“;~ While seemingly elaborate, these are iﬁ practice simple and quick
;alculationé. This treatment has the property of béihg objective and

uses a strain increment which while appeafingA"linear" is the same order .
?f accuracy as using the nonlinear strain increments at eifher n or n'+ 1;
}espectively. ﬁ
| For examples of solved problems using these procedures references ;
:;[17] and [18] can be examired. |

i
i

|
i
;
|
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