MARTIN MARIETTA

APPLIED
TECHNOLOGY

OPERATED BY

MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES

DEPARTMENT OF ENERGY

Knana Y
/

JUL 1 2 1999 K/DSRD-419

PACIFIC MISSILE TEST CENTER
INFORMATION RESOURCES MANAGEMENT
ORGANIZATION (CODE '0300)

THE ORACLE CLIENT-SERVER AND
DISTRIBUTED PROCESSING ARCHITECTURE

A. L Beckwith
J. T. Phillips

DISTRIBUTION oF THIS DOCUMENT |8 UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Techni-
cal Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615)
576-8401, FTS 626-8401.

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product, or process dis-
closed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

K/DSRD--419
DE9O 013271..

LX)

1

q

PACIFIC MISSILE TEST CENTER ‘-~ e e
INFORMATION RESOURCES MANAGEMENT ORGANIZATION
(CODE 0300)
THE ORACLE CLIENT-SERVER AND
DISTRIBUTED PROCESSING ARCHITECTURE

A. L. Beckwith
J. T. Phillips

June 10, 1990

Sponsored by the
Pacific Missile Test Center
Point Mugu, California 93042
Under Interagency Agreement 1714-1714-A1

Prepared by
Data Systems Engineering Organization
Data Systems Research and Development Program

Located at
OAK RIDGE GASEOUS DIFFUSION PLANT
Oak Ridge, Tennessee 37831-7129
Operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
Under Contract No. DE-AC05-840R21400

DISTBIBYUTION oF THIS Dacy

M&—.h Rt D SV .

- e 0,

v — e

MASTER

MENT IS UNLimigp
Y

oy

- DO NOT MICROFILM
©THIS PAGE

TABLE OF CONTENTS

ACKNOWLEDGMENTS e e e e iv
ABSTRACT . . . e v
INTRODUCTION TO DISTRIBUTED COMPUTING ARCHITECTURES 1
DISTRIBUTED DATABASE et e e e 2
DISTRIBUTED PROCESSING i e e 3
IMPACT OF THE RELATIONAL MODEL, SQL, AND COMMUNICATIONS 4
CLENT-SERVER ARCHITECTURES i 6
ORACLE OVERVIEW e e e e e 8
ORACLE SYSTEM MODULES e e e 10
THE COMMUNICATIONS ENVIRONMENT 12
IMPLEMENTING ORACLE’S DISTRIBUTED PROCESSING 14
TEST RESULTS e e e i 16
CONCLUSIONS e e e 18
REFERENCES 19
SELECTED BIBLIOGRAPHY e 21

ACKNOWLEDGMENTS

The following products and names are registered trademarks of their respective companies.
3Com Etherlink is a trademark of 3Com Corporation.
COMPAQ 386 Deskpro is a trademark of COMPAQ.
dBASE is a trademark of Ashton-Tate Corporation.
Emerald Bay is a trademark of Ratliff Software Production Inc.
Ethernet is a trademark of the XEROX Corporation.
INFORMIX-SQL is a trademark of INFORMIX Software, Inc.
Ingres Version 6.3 Dafabase Server is a trademark of Relational Technologies, Inc.

MicroVAX/VMS, DECnet, DECnet-DOS, MicroVAX lI[VMS, VT100, VAX, VMS, and DEC
are trademarks of the Digital Equipment Corporation.

MS-DOS is a trademark of Microsoft Corporation.

NCR 286 is a trademark of the NCR Corporation.

NetWare SQL is a trademark of Novell Inc.

ORACLE, SQL*NET, ORACLE PC TOOL PACK, ORACLE PC Tools, SQL*Connect,
ORACLE Server, SQL*PLUS, SQL*FORMS, SQL*MENU, SQL*ReportWriter,
Professional ORACLE, RPT, SQL*LOADER, and Import/Export Utilities are trademarks
of the Oracle Corporation.

Paradox is a trademark of Borland International, Inc.

Rbase is'‘a trademark of Microrim, Inc.

SQL Base is a trademark of Gupta Technologies.

Systemns Application Architecture, SAA, IBM, 0S/2, and IBM PC/AT are trademarks of
International Business Machines.

XDB Server is a trademark of XDB Corporation.

ABSTRACT

Computing architectures using distributed processing and distributed databases are
increasingly becoming considered acceptable solutions for advanced data processing
systems. This is occurring even though there is still considerable professional debate as to
what "truly" distributed computing actually is and despite the relative lack of advanced
relational database management software (RDBMS) capable of meeting database and
system integrity requirements for developing reliable integrated systems. This study
investigates the functionality of ORACLE database management software that is performing
distributed processing between a MicroVAX/VMS minicomputer and three MS-DOS-based
microcomputers. The ORACLE database resides on the MicroVAX and is accessed from the
microcomputers with ORACLE SQL*NET, DECnet, and ORACLE PC TOOL PACKS. Data
gathered during the study reveals that there is a demonstrable decrease in CPU demand on
the MicroVAX, due to "distributed processing", when the ORACLE PC Tools are used to
access the database as opposed to database access from "dumb" terminals. Also
discovered were several hardware/software constraints that must be considered in
implementing various software modules. The results of the study indicate that this
distributed data processing architecture is becoming sufficiently mature, reliable, and should
be considered for developing applications that reduce processing on central hosts.

INTRODUCTION TO DISTRIBUTED COMPUTING ARCHITECTURES

"Distributed" computer systems have been accepted as being desireable and feasible for
many years. Much discussion of this trend began in the late 1970's and early 1980's."#%°
During those years, the decreasing cost of processors reversed an early trend in data
processing toward large centralized computer systems. The original assumption (Grosch’s
Law) had been that “the cost per machine instruction executed was inversely proportional to
the square of the size of the machine", thereby leading to an economy of scale for large
centralized computers in data processing centers. However, it slowly became accepted that
for many applications, minicomputer and microcomputer architectures offered more cost
effective solutions. In addition to lower initial systems costs, smaller systems offered a
potentially higher availability (less down time), simpler software support requirements, and
lower installation, maintenance, and training requirements.’

The growth of multiple data processing sites within'companies and the cooperative use of
enterprise information systems between companies has required organizations to develop
strategies for ensuring a positive impact of distributed data processing. The impact of
distributed processing on system users and the nature of required organizational changes
calis for planning implementation as an evolutionary process rather that allowing end-users
to drive the development of corporate information systems in an uncoordinated fashion from
the bottom up. Issues such as data ownership, privacy, security, and auditability must be
addressed as well as the challenges that occur in decentralized applications development
where standards are needed for corporate information systems consistency. The
requirements of distributed systems for data from central systems must also be planned and
monitored, including both distributed data "owned" locally and requested data that is simply
processed locally ’

All of these concerns are still true today, and top management faces increasing challenges
in deciding how much and where distributed processing is appropriate in their
organizations.” Because of the effort required to migrate large centralized systems to
distributed processing, many organizations are starting with the migration of mini-computer
based systems with compromise interim solutions that attempt to combine keeping the
“critically important business applications on the host and farming out end-user applications
to the desktop.”®

Despite an acknowledgement that distributed systems offer many challenges and
opportunities, it is only in the last few years that full-featured software has appeared as
development platforms for integrated distributed systems. Some early systems often used
“intelligent terminals" that allowed some "function distribution" such as data entry without
participating in complete transaction processing. Other systems used networks or
hierarchies of scattered "integrated" processors that completed parts or all of some
transactions. No specific developmental approaches, database standards, or
communications protocols were commonly accepted or in place for developing distributed
data processing systems and software had not been developed taking into consideration
the unique requirements of distributed systems™.

DISTRIBUTED DATABASE

Distributed computing systems can take advantage of distributed data, distributed
processing or both facilities. Although the subject of this investigation is distributed
processing, some discussion of the issues in distributed data will help clarify the boundaries
of distributed processing and the requirements for interaction between systems.

A distributed database system consists of a collection of sites (also called
nodes), connected together via some kind of communication network, in
which ... each site is a database system site in it's own right, but ... the
sites have agreed to work together..., so that a user at any site can access
data in the network exactly as if the data were all stored at the user’s own
site..."

Although there are undoubtedly no ideal distributed database systems in existence today,
the overall objective is to achieve a "seamless” operation while adhering to principles of
operation such as the following goals for data and systems operations:*

1. Local autonomy 8. Distributed transaction

2. No reliance on a central site management

3. Continuous operation 9. Hardware independence

4. Location independence 10. Operating system independence
5. Fragmentation independence 11. Network independence

6. Replication independence 12. DBMS independence"

7. Distributed query processing

All of these issues have an impact on the functionality, performance, and reliability of both
distributed databases and distributed processing. Major objectives for distributed database
systems are location transparency, data fragmentation, fragmentation transparency, and data
replication.” Although an explanation of all of these issues is beyond the scope of this
investigation, some of the issues do directly impact an evaluation of distributed processing.
They are the issues of data fragmentation, data replication, data location, and the overall
issue of system transparency, because of their involvement in the manipulation and
alteration of data during the processing of database updates.

DISTRIBUTED PROCESSING

Any system that divides the data processing workload among several processors or
computer systems is performing distributed processing (often called cooperative
processing). Parallel processing can be considered a form of tightly coupled distributed
processing with the processors all in close geographic proximity (on the same machine).
File-sharing systems on Local Area Networks (LANSs) allow individual users to access
programs and data stored on a remote LAN file server. Client-server architectures split the
front-end user interface processes from the back-end request and updates of the database.
Some distributed transaction systems replicate applications or break large applications down
into smaller independent components to offload processing to smaller processors.'

Whereas, the term "distributed database" obviously means the distribution of actual data, the
exact activities performed in a "distributed processing" manner are not always as clear.

Data entry, screen handling, communications interfaces, database updates, and applications
development may all be occurring on different processors. Some computer networks divide
the overall system processing between CPUs on different machines, but the specific
implementation varies widely. The importance of networking and communications protocols
and architecture for implementing distributed processing has been known for some time."

A major impact on distributed processing is the cost of data communications. Different
computer systems often use different communications protocols. The communications
media and distance between systems can affect performance and system responsiveness
drastically. For this reason, many existing distributed and networked computer systems are
unique implementations for specific business challenges, that have been inappropriate as
general solutions for other settings or environments.

A more generic approach to one type of distributed processing is beginning to arise. It is a
type of cooperative processing in which some of the processing originally performed on a
central mainframe computer is actually performed on a workstation, microcomputer or
intelligent terminal. This "client-server" cooperative working relationship between the user’s
interface machine and the host computer is finding increasing acceptance in many
environments. Until recently, a lack of standard interfaces or software made the
development of such solutions often cost prohibitive. As the computing industry changes,
the client-server architecture is expected to become the norm.

This study is an investigation of the implementation of distributed processing without
distribution of the actual database data. The ORACLE data actually resides on a MicroVAX
that is accessed by a microcomputer performing some of the data processing. As will be
discussed in technical detail later, the microcomputer software must have knowledge of the
data location, data fragmentation, data replication, and the communications environment
necessary to access and process the data in a distributed manner on the microcomputer.

IMPACT OF THE RELATIONAL MODEL, SQL, AND COMMUNICATIONS

A major software industry change that has supported the development of distributed
systems is the growing acceptance of the relational data model and Structured Query
Language (SQL) as an access interface. Contemporary thought is that the relational model
will continue to be refined in software implementations with faster performance and
additional functionality. Many non-relational database management systems are being
re-engineered to accept SQL interfaces, and SQL is being refined by the American National
Standards Institute to provide a standard data access language.'®

As an example, the ANSI X3H2 committee is presently completing the SQL2 standard draft,
which is expected to include referential integrity.

Referential integrity involves making certain that any database object that references
another database object must be valid [ORACLE] plans to make referential
integrity a part of its upcoming Version 7."

The importance of development of standards became very evident with the formation of the
SQL Access Group. This vendor association includes Informix Software, Inc., ORACLE
Corporation, Relational Technology Inc., Ashton-Tate, and other software and hardware
vendors that are working to develop a standard version of SQL, a standard network
protocol, and a standard call-level application protocol interface (APIl) to SQL that would
allow developers to write applications that could access data from various databases.
Sybase Inc. offered it's own product’s technology for utilization as a standard, while offering
to license other vendors with it's technology now, potentially establishing a defacto
standard. Some users are working on their own interoperability, while IBM expects to use
its Systems Application Architecture (SAA) for eventual micro to mainframe compatibility.
IBM has at present only "succeeded in implementing limited mainframe-to-mainframe
database interoperability and workstation database communication."'®

As data and processes become distributed, mechanisms that enforce consistency increase
system reliability and performance. The overall goal is one of enhanced operability between
heterogeneous vendor environments. This strongly impacts the future of distributed
processing, as it is increasingly to each users advantage to be able to share and access
data from remote as well as local applications. In addition to access languages and
database integrity concerns, there is a lack of a communications standards for data base
management systems. However, while ORACLE is using SQL*Connect, other vendors have
their own implementation. As can be seen from this study, a standard SQL (or other
access language) and a standard communications interface will be required for complete
transparency between heterogeneous systems.™

An acceptance of standards in SQL, interfaces, and communications protocols is generating
increasing interest in cooperative processing applications. However, much of the
technology required to transition users and developers to creating distributed processing
applications are still unavailable or implemented in a piecemeal fashion. Sophisticated LAN
managers, operating systems (such as 0S/2), and graphical user interfaces (GUI) are just

4

5

now being offered, but there are still few products to aid programmers. Considerable
training of staff will be necessary for those programmers to achieve productivity with the
new tools. Existing software such as wordprocessors and program editors do not always
offer full functionality in OS/2, for instance, and dBASE programmers will need to understand
SQL and data dictionaries that they may not have used previously. Many of the presently
offered products are simply front ends to mainframe products.®*' It is expected that
distributed processing applications will become very widely accepted and installed however,
over the next two or three years.

CLIENT-SERVER ARCHITECTURES

The microcomputer client-server or database server seems to presently be the most active
area of development and technological advancement for distributed processing systems.
Most microcomputer database software today -- e.g., dBASE, Rbase, Paradox, etc. — are
simply file server databases. True database servers differ from file servers in that “a file-
server system sends out to PCs not only copies of programs but also whole data files,
[whereas] a database server decreases network load by centralizing record manipulation at
the server. The database server sends only the data needed by the client application."®
The database server works with several client microcomputers in a muititasking mode
(under 0S/2, a DOS LAN, or other operating systems) to provide clients requested data and
also update the database. Components of the client-server architecture are usually:®

1) '"The database server or engine, residing on a dedicated computer or the network
file-server;

2) The client program, an application or development tool, running on a PC;

3) A layer of communication software on each end of the process."
This architecture is usually supported by SQL as an access language, because it
accompanies the relational database that these systems usually support. Relational systems
support the separation of the data from the applications thus making it easier to separate
the front-end client application processes from the data oriented database processes. Not
all vendors are supporting this approach as can be seen with Ratliff Software Production
Inc.’s Emerald Bay database management software, which supports a record and pointer

oriented methodology for data management. Most vendors, however, are supporting SQL
based implementations.

Present major vendors developing and offering SQL client-seliver architectures are;®22>202728
Microsoft/Sybase/Ashton-Tate - SQL Server

Oracle - ORACLE Server

Gupta Technologies - SQL Base

IBM - OS/2 Extended Edition Database Manager

Ingres Corporation - Ingres Version 6.3 Database Server

Novell Inc. - NetWare SQL

XDB - XDB Server

Informix - Informix-SQL

The database server architecture is thus a compromise between older centralized database
systems on mainframes and stand alone microcomputer systems. It combines the
centralized/shared data architecture of a mainframe system (on the database server often
using a microcomputer) with a microcomputer (client) handling its own screen and keyboard
I/O in a front-end application. Database processing, including updates, original query
processing, and transaction logging, occurs on the database server. Screen handling,
some data validation, keyboard I/O, database requests, occur on the microcomputer client.
Requests for data are developed on the client and sent out over a network to a server that
processes the request and sends the answer/data back to the client. Thus it is a
compromise solution that spreads the processing out over the whole system.*

The advantages of this architecture can be several. By splitting the processing, both the
client and the server can be developed, enhanced, and optimized to concentrate on their
specific activity. An individual server can support more users, because the client
workstations perform user interface activities. Data is more available to any given user,
because it is only locked during the few moments of access. Workstations with different
hardware, software and operating systems can be used to access data from a single
powerful server. Users can be free to select and develop their own interfaces, while
database administration and security remain under centralized control.*

As might be expected, there are some disadvantages to this architecture. Client-server
systems can be expected to be complex to set up; as the server, the client and the
communication interface each have their own requirements for administration and
knowledge. They are heavily dependent on the network/communications system used, and
should generally not be used for applications that would put severe loads on the
communication system. “The best case for distributing data [or processing] is when there
are few I/O’s per input; for example, a single complex SQL call. The worst case is when
hundreds of records are accessed per transaction.”' Communications overhead can
become a central issue in system performance. This became apparent in this study.

ORACLE OVERVIEW

ORACLE Corporation has developed software products that allow an ORACLE tool set or
module to reside on a microcomputer, while the data used in the execution of the
application is retrieved from an ORACLE RDBMS kernel residing on a different machine that
could perhaps be located miles away. ORACLE PC Tools communicate from the
microcomputer over a network through a proprietary communications protocol and accesses
the ORACLE data on a microcomputer, minicomputer, or mainframe host. This technique is
an example of the client-server architecture and it enables distributed databases and
distributed processing to be used. This discussion will focus on distributed processing.

ORACLE'’s distributed products become more sophisticated and permit many additional
enhancements with multitasking operating systems such as OS/2. However, the test bed
used to examine and discuss distributed processing in this study was built with MS-DOS
and a MicroVAX ll. The MS-DOS operating systein limits its capabilities to a single client
application and single database kernel. This means that a MS-DOS machine cannot be
both a server and a client at the same time. The database server can, however, have
multiple MS-DOS users accessing it at the same time over a communications network.

The ORACLE distributed software includes the following modules:
1. A physical communication medium such as Ethernet,

2. An industry-standard protocol for the server and each client, in this case DECnet and
DECnet-DOS;

3. SQL*NET for the server machine and for each MS-DOS client machine; and
4. The ORACLE RDBMS kernel for the server.

In addition each microcomputer must have a compatible communications board, in this test
3Com Etherlink boards. Figure 1 presents product version numbers and a diagram of the
test bed environment. Note that the test environment did not include local databases on
the microcomputer clients because extended memory would be required to run this local
database and a major interest was in the performance of the product below a 640K DOS
memory limit. The following is a description of the individual ORACLE product modules
used to achieve and study distributed processing.

DECnet-DOS 2.1.0

SQL*NE_T DECnet for
MS-DOS 1.1

ORACLE TOOL PACK

MS-DOS 3.3

IBM AT
W/ 640K

MicroVAX Il 9-16 Users

/472:: N
DECnet-VAX 4.6
SQL*NET DECnet 1.2
ORACLE RDBMS 5.1
VMS 4.7
ETHERNET CONNECTIONS
DECnet-DOS 2.1.0
SQL*NET DECnet for DECnet-DOS 2.1.0
MS-DOS 1.1 SQL*NET DECnet for
ORACLE TOOL PACK MS-DOS 1.1
MS-DOS 3.2 ORACLE TOOL PACK
Compaq 386 MS-DOS 3.2
Deskpro W/ 6 MB IBM AT W/ 2 MB
Extended Memory Extended Memory

Fig. 1. Hardware/software environment.

ORACLE SYSTEM MODULES

The ORACLE Relational Database Management System (RDBMS) works as an interface
between the actual storage of the data and the user to provide a view of the data to the
user. The RDBMS allows sophisticated, versatile, and an easy method for handling
information with powerful control over the data stored. The RDBMS with capability for
associating data between tables, permits data relationships that appear to the user as if his
requested data came from one large datafile instead of combining from several tables.
Flexibility in information retrieval is increased and this allows many groups to share the
same data rather than have many datafiles or independent databases housing redundant
data. System maintenance, concurrency, and integrity issues suddenly become less costly.
ORACLE is considered to be a full featured implementation of the relational database model.

Data manipulation is accomplished with the SQL*PLUS product. ORACLE uses American
National Standards Institute (ANSI) Standard Query Language (SQL) as the standard
relational access language between the user and the kernel. ORACLE also has added SQL
extensions (commands) to enable easier requesting and manipulating of data in the RDBMS.
The advantage of SQL and SQL*PLUS is that many data records can be returned to the
user with one command line in a comparatively short amount of time, especially when using
ORACLE’s indexing. The bulky procedural coding and long programming hours used by
older query methods are no longer required to produce reports and review data.

The SQL*FORMS module allows a user to retrieve and manipulate data with ease using full
screen forms. Using nonprocedural methods, simple data manipulation screens are created
using function keys, or the user can use the full screen painter to customize and detail
screens. SQL*FORMS enables quick applications building for the system designer as well
as a user-friendly interface to the database for the non-expert operator.

To integrate SQL*FORMS applications together and allow access from a main module or
program, ORACLE created SQL*MENU. Just as the RDBMS is the central module of the
applications, SQL*MENU is the heart of all the data manipulation applications. SQL*MENU
provides a menu that allows a user to access any of the developed applications instead of
having the separate applications execute individually.

To allow easy and fast production of sophisticated reports without procedural code, the
ORACLE SQL*ReportWriter is used. The non-procedural, menu-driven product allows ease
in producing good report formats. A user wanting to do ad hoc reporting must have some
knowledge of SQL*PLUS, since as with all ORACLE products, the ReportWriter relies on SQL
and SQL*PLUS to extract the data from the database.

All of the above ORACLE products, with the exception of the RDBMS kernel make up the
ORACLE TOOL PACK that each microcomputer must have for distributed processing to take
place. This software package resides on the microcomputer client. No longer are software
tools housed on the same machine as the data base management system. The database
server only hosts and maintains the database kernel.

10

11

The heart of ORACLE distributed processing is the SQL*NET product. SQL*NET permits the
user to access data on a remote machine(s) as if the data resides on the user’'s
microcomputer workstation as a local database. The product’s main concern while being
executed is to connect the client application to ORACLE database on the server side.
SQL*NET is referred to as an open system since it is independent of industry
communication protocols, such as DECnet. It conforms or operates with many protocols.
Like the other ORACLE software tools, SQL*NET is portable across various environments.
SQL*NET is comprised of two sections: the generic layer and the custom layer. The
generic layer is common to all protocols, and the custom layer is tailored to the specifically
required protocol and operating system environment. SQL*NET acts as the interpreter for
the ORACLE request. The microcomputer client-PC-generated data request is passed from
SQL*NET to DECnet-DOS which performs its process to process communication and sends
the data request to the server DECnet module. Here SQL*NET evaluates the command and
interfaces with the RDBMS. The answer to the command is returned to the client
workstation. Security can be an issue of concern, because, although the local database
data is secure, the data passed across the network lines are not. Later versions of the
distributed product plan to incorporate data encryption across the network lines. The
ORACLE tools such as SQL*FORMS and SQL*PLUS support SQL*NET in that an entrance
to the database kernel is permitted with the invoking of the product. Included in the
command line for executing the product are the ORACLE database username and
password, the server's ORACLE account username and password, the filename declaring
the remote database’s name, and the server machine's node number. This cumbersome
command line will be alleviated in later versions. At this time, aliases and database server
machine names are not permitted.

ORACLE has taken into consideration the International Standards Organization’s (ISO) seven
layer model of communication, Open Systems Interconnect (OSI), in developing their
distributed products. This model creates an environment standard that allows one vendor’s
product to talk to another vendor’'s products. This permits users eventually to be able to
retrieve data from many kinds of databases. Most of the current industry protocols, do not
match the OSI model, since many protocols were developed before the standards were
created; however, protocols such as DECnet are moving their architecture to the OS| model.
When SQL*NET is referred to as an open system, it reflects being compatible with the OSI.

THE COMMUNICATIONS ENVIRONMENT

A brief description of the in-house LAN used in the distributed test bed is necessary to give
the reader a clear understanding of the distributed environment studied. The architecture of
the LAN is one of computing resources resident on widely separated LANs connected via
the intra-plant broadband. Figure 2 demonstrates the setup description. Degradation was
experienced in data retrieval when the data request went through the baseband to
broadband bridges. This bridge is limited to relatively small packet throughput rates and is
sensitive to network loading which causes transmission delays. The bridge throughput
limitation is the probable cause for varied times in executing a database query.

12

BLDG. K-1023

MicroVAX i

rmm————

DELNI

e

IB/1

BLDG.

K-1001

PC|

(/S

g
/
o

N L LLZ 727727 7727727777 7777 7 2 77777772

BLDG. K-1007 / FIBER OPTIC MEDIA

DEREP

———————

{]

REPEATER - DIGITAL ETHERNET REPEATER

DELNI - DIGITAL ETHERNET LOCAL NETWORK INTERCONNECT
DEMPR - DIGITAL ETHERNET MULTI-PORT REPEATER

IB/1 - BROADBAND TO ETHERNET BRIDGE

BASEBAND
BROADBAND
THIN WIRE
DROP CABLE
FIBER OPTIC

Fig. 22 The communications environment of Test Bed.

gL

IMPLEMENTING ORACLE’S DISTRIBUTED PROCESSING

The distributed ORACLE environment was setup with a MicroVAX lI/lVMS and three client
MS-DOS microcomputers. It should be stated that the distributed software was tested over
a network that experiences moderately heavy user traffic. Also, there was not a local
database on any of the client microcomputers. The MicroVAX Il was to be used solely as a
remote database for the developed applications on each client workstation.

It should also be noted that the installation of the software, particularly the TOOL PACKS on
the client microcomputers have certain restrictions. During TOOL PACK installation, a
program entitted MACHTYPE is executed. This program requires the user performing the
installation to declare the type of microcomputer that will be used as a client. ORACLE
customizes their TOOL PACK to run on certain types of hardware. Just because a machine
is IBM PC-compatible, does not mean that choosing one of the IBM-compatible models will
aliow the software to successfully run. The TOOL PACK instaliation was initially attempted
on a NCR 286 machine which is IBM PC-compatible. ORACLE does not support the NCR
machines so the software would not successfully load. The installation appeared to be
successful, but the SQL*NET drivers were unable to be loaded into memory, which is
required for the remote database to be accessed through SQL*NET and DECnet. After
discovering the NCR machines could not be used, they were replaced with two /IBM PC/ATs
and a COMPAQ 386 Deskpro. These machines are included in ORACLE’s list of supported
hardware.

The user installing the software should also make note that SQL*FORMS developed in a
large machine environment cannot be ported to another smaller computer platform and
execute properly without the proper preparation. ORACLE recommended that certain
procedures be executed to insure the applications would run properly on the
microcomputer. First, one needs to make sure the VT100.CRT file is copied from the
SQL*FORMS Installation Disk 2 into the ORACLES\DBS directory on the microcomputer
regardless of whether the microcomputer is the target or source system in the transferring
process. This file is not installed during installation because the microcomputer cannot use
it to run a form. Second, if a database exists on a source system, all the forms being
transferred must be saved in the database of the source system. Third, the forms on the
source system need to be converted to VT100 format. Use the Interactive Application
Converter (IAC) command to translate the forms, in this case on the VAX, to VI700 format.
The command is executed as follows:

IAC ¢ VT100.CRT inputfilename formnameinDB usemame/password

It is very important to note that the input filename that will contain the form formatted to
VT100 format, should be different from the form name in the database; otherwise, the form
in the database will be written over. Proceed by performing a binary file transfer for each
file to be downloaded. Once all files have been ported to the target system, the forms need
to be saved in the database of that target system, if one exists. The IAC command with the
".i* option loads the application forms into the target database.®

14

15

The 5.1B application TOOL PACK includes the newer versions of SQL*FORMS and
SQL*ReportWriter. If there is not a local database, the database to be accessed is referred
to as remote. To allow development capability with SQL*FORMS and SQL*ReportWriter,
the system tables required for application and report development need to be installed or in
this case upgraded to allow the new versions to execute properly. To accomplish the
upgrade, use SQL*PLUS to connect to the remote database and execute the appropriate
SQL scripts indicated in the user’s manuals.

A file must be created on the server machine that identifies or names the database. This
file should be defined per instructions in the SQL*NET manual for DECnet on the server
machine. This file is of great importance in that SQL*NET looks for this file to access the
database. This file is referenced by name in the command line when executing a tool from
the client microcomputer. SQL*NET looks for this same filename on the server machine to
grant the user access to the correct database. An example command line to connect to the
database is shown below.

SQL*PLUS *ORACLE USERID/PASSWORD@D:SERVER NODE NUMBER\'VMS USERNAME VMS
PASSWORD\":.\'TASK=DATABASE FILENAME\"

The backslashes preceding the quotation marks in the command string are to prevent
MS-DOS from stripping the quotes before passing the string to the program. VMS requires
that quotes be a part of the command line so that the request can be executed.®

TEST RESULTS

Once these procedures were completed, testing began on the retrieval and manipulating of
data in the remote database via SQL*NET and DECnet. It appears that multi-users trying to
query the same record or records can do so easily without interfering with the other user’s
data requests. In the case of updates and deletes to the database, the user whose process
retrieves the record first, issues a lock on that row in the database. That lock stays in
effect until his transaction is completed. In the meantime, the users that try to retrieve this
locked row or are viewing this record to also perform an update have no manipulation
capability. The user’'s microcomputer appears to be locked up. A message will appear at
the bottom of the screen display telling the user that this record is being updated and he
should requery to receive the new status of the record. The record lock does allow other
users to query other records in the same table as the updated record while the update
occurs.

Measuring the time it took for the client workstation to connect to the remote database was
difficult, since traffic on the network varied greatly. Observations did reveal that the initial
connection time was not exceptionally fast, but once into an ORACLE product, such as
SQL*PLUS or executing a SQL*FORM, data retrieval time was just as good as that on a
workstation with a Professional ORACLE local database or being a terminal tied directly into
the MicroVAX Ill. The accessing of a remote database was totally transparent to the client
workstation.

The testing environment contained two kinds of microcomputers. The DESKPRO and one

IBM PC/AT were equipped with extended memory. The other /BM PC/AT had only 640K of
memory. There are differences and restrictions in the capabilities of the ORACLE modules
depending on available memory.

The microcomputers with extended memory allowed SQL*FORMS and SQL *ReportWriter
development as well as execution. It should be noted that the SQL*ReportWriter can only
be installed and used in protected mode. This means that at least one megabyte (1MB) of
extended memory is required on the microcomputer. With extended memory, all of ORACLE
products included in the TOOL PACK are accessible. In dealing with a remote database
and no local database, a user should remember that a new SQL*FORM or a report should
always be generated before running against remote the database. This is to ensure that
every user executes the latest version of a company-wide report. When a report program is
updated, the new generated version is saved only to the database and to the user's
workstation who made the changes. This can be an advantage to microcomputer
workstation clients in that a user can store personal report versions on their own
workstation.

The microcomputer without extended memory presented quite a few limitations. First of all,
the SQL*ReportWriter cannot even be loaded because protected mode is not accessible
without extended memory. Therefore, the older version procedural RPT report writer or
SQL*PLUS will have to be used to generate any reports. These two products can only
produce considerably less sophisticated reports than the SQL*ReportWriter. Without

16

17

extended memory, the development of SQL*FORMS is impossible. There is a size limitation
on a form running under 640K of memory. SQL*MENU development also requires extended
memory, so this capability is unavailable. The other ORACLE products such as
SQL*LOADER and the Import/Export Utilities will execute under 640K.

Possibly the greatest advantage to distributed processing is that while the workstation and
the remote server are talking to one another, the data request (query) is not recorded or
logged in as an user with an account as a dumb terminal user would be. Llsing the
monitor commands available with the VMS operating system, only the transaction or
manipulation appears on the screen when it is executed. For example, the BWR process
which handles all write operations to the database appears for a split second when data is
added, deleted, or updated. This is extremely valuable in that much less CPU is required
since the host machine no longer has to manage the execution of the software products,
allocate space for each user to be productive, as well as control data retrieval. The host
machine or server has only to concentrate on sending the data to the users requesting it
and control the locking of data for concurrency and integrity.

CONCLUSIONS

The functionality of the ORACLE software when operating in a distributed processing client-
server architecture worked according to expectations, with some limitations. The modules
did work in an identical manner on both the microcomputer workstations and MicrovVAX
minicomputer hardware platforms, except for expected variances between installations due
to differences between the MS-DOS and DEC VMS operating systems.

Applications could be developed on the microcomputer workstation with a local copy of
SQL*FORMS and ported to the MicroVAX to function completely in that environment. They
could also be executed from the microcomputer workstation to access the MicroVAX
database. It was not necessary to have a local database on the microcomputer, as would
be the case when developing forms with the Professional ORACLE microcomputer product.
However, the limitations of some modules to work under the 640K DOS memory, became
evident even here, as only small forms could be developed on the microcomputer. More
memory was needed for large forms.

This became more evident with the SQL*ReportWriter module, which would not run under
640K at all. Only the older RPT reportwriter could be used, which is a much less “friendly"
product to users. SQL*Plus could also be used, but does not contain extensive report
formatting capabilities. SQL*Loader and the Import/Export Ulilities can also run under 640K,
but are of little help in using or developing applications. This means that for most serious
applications development or use, extended memory microcomputers will probably be
necessary.

Distributing the screen and forms handling, keyboard |/O, data validation, query
development, and applications development to the workstation are major advantages of this
architecture, if reduction of processing on the central host machine are desired. In addition
to the advantages of preserving database administration of a central "master" database in a
centrally managed manner, users can be offered computing tools for developing their own
applications, while possibly reducing an expectation of an immediate need for new hardware
for the central host computer. The prototype as tested confirms this as a reasonable
expectation.

The installation of this software product on two different operating systems (VMS and DOS)
along with the installation of LAN-based communications network software and drivers is
very complex. It demands a thorough knowledge of both the ORACLE products and the
telecommunications environment that will serve as the vital link between workstations and
the host. Performance monitoring of this client-server will require attention to the
communications environment, as well as the individual software modules. ORACLE software
users, applications developers, database administrators, and telecommunications managers
will all have to work together for the Client-Server Architecture to be able to deliver its full
potential.

18

REFERENCES

1. 8. Ceri and G. Pelagatti, Distributed Databases: Principles and Systems, McGraw-Hill
Publishing Company, NY, 1984.

2. J. Akoka and P.P.S. Chen, "Optimal Design of Distributed Information Systems", IEEE
Transactions on Computers C29(12), 1068-90 (December, 1980).

3. A. L. Scherr, "Distributed Data Processing," IBM Systems Journal 17(4), 324 (November 4,
1978).

4. C. K. Davis and J. C. Wetherbe, "An Analysis of the Impact of Distributed Processing on
Organizations in the 1980’s", MIS Quarterly 3(4), 47-56 (1979).

5. J. P. Buchanan and R. G. Linowes, "Understanding Distributed Data Processing", Harvard
Business Review 58(4), 143-52 (July-August, 1980).

6. J. Martin, pp. 5, 9 in Design and Strategy for Distributed Data Processing, Prentice-Hall
Inc., Englewood Cliffs, NJ, 1981.

7. Ref. 7, pp. 9-17.

8. R. G. Crepeau and J. R. Weitzel, "A Manager's Guide to Distributed Data Processing",
Journal of Systems Management 40(9), 17-21, (September, 1989).

9. C. Sivula, "Cooperative Processing - The Client-Server Perspective", Datarnation 35(19),
47-8 (October 1, 1989).

10. Ref. 7, pp. 87-104.
11. C. J. Date, "What is a Distributed Database", InfoDB 2(2), 3 (Summer 1987).
12. Ref. 12, p. 4.

13. C. J. Date, pp. 589-90 in An Introduction to Database Systems, Volume 1, 4th edition,
Addison-Wesley Publishing Company, 1986.

14. G. Wai, "Take Your Pick", BYTE 14(7), 215-23 (July, 1989).

15. J. Martin, pp. 36-64 in Computer Networks and Distributed Processing, Prentice-Hall,
Englewood Cliffs, NJ, 1981.

16. H. Edelstein, "Look for Relational to be 1990’s Data Model", Software Magazine 10(1),
59-60 (January, 1990).

17. R. Carnahan, "Richer SQL Poised on the Horizon," Systems Integration 23(1), 23
(January, 1990).

19

20

18. J. Soat, S. Leibs, and K. Myers, "The Race for Open Databases", Information Week 241,
12-3 (October 16, 1989).

19. Ref. 17, pp. 59-60.

20. S. Mace, "Distributed Data: Sizing up the Challenge", InfoWorld 11(31), 39-41 (July 31,
1989).

21. R. Francis, "Cooperative Processing, The PC Perspective", Datamation 35(18), 63-6
(September 15, 1989).

22. R. Letson, "Competition Heats Up in Database Servers", Systems Integration 23(1), 32-7
(January, 1990).

23. D. R. Vinzant, "SQL Database Servers", DataCommunications 19(1), 72-85 (January,
1990).

24. K. Watterson, "Soul of a Machine - SQL Server", Data Based Advisor 7(8), 80-4 (August,
1989).

25. K. Watterson, "Getting Under the Hood of SQL Server, Part 1", Data Based Advisor 8(1),
56-67 (January, 1990).

26. K. Watterson, "Getting Under the Hood of SQL Server, Part 2", Data Based Advisor 8(2),
102-12 (February, 1990).

27. N. Petreley, Z. Banapour and L. Slovik, "Dueling Servers", INFOWORLD 12(10), §7-75
(March 5, 1990).

28. K. Wattersdn, “DB Connections - The System Administrator®, Data Based Advisor 8(3),
84-98 (March, 1990).

29. M. L. Van Name and W. Catchings, "Serving Up Data", BYTE 14(9), 259-64 (September,
1989).

30. Ref. 15, pp. 215-23.

31. J. Gantz, "Client/Server Computing Offers Hidden Problems, No Panacea", InfoWorld
11(36), 36 (September 4, 1989).

32. B. Humphrey, "SQL*FORMS Application Transfer," Oracle Corporation’s Customer
Support Newsletter: Technical Alerts, S-2 (October/November, 1989).

33. "DECnet - Database ID String," Oracle Corporation’s Customer Support Newsletter:
Technical Alerts, 5-1 (October/November, 1989).

SELECTED BIBLIOGRAPHY

J. T. Perry and J. G. Lateer, Understanding ORACLE, Sybex Corporation, San Francisco, CA,
1989.

The New Questions and Answers about SQL*STAR, Revision 2, Oracle Corporation, Belmont,
CA, May 1988.

21

58.
59.
60.

Abercrombie, R. K.
Abercrombie, E. F.
Arnold, H. G.
Ashdown, B. G.
Beckwith, A. L.
Boling, M. E.
Elrod, M. H.
Green, P. L.
Gillespie, S. J.
Halsey, P. J.
Hammons, C. E.
Handler, B. H.
Hicks, S. E.
Huntley, Jr., A. F.
Johnson, G. L.
Kegley, W. P.
Kidd, G. V.
Kimmerly, W. C.
Kirk, P.

Leinius, R. P.
Light, K L.
Loebl, A. S.

INTERNAL DISTRIBUTION

27.
28.
29,
30-39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.

EXTERNAL DISTRIBUTION

K/DSRD-419

Lumley, J. J.
Lundberg, L. A
Pennewell, W. J.
Phillips, J. T.

FPopa, G. L.

Ragland, W. R.

Ruple, S. L.

Sexton, F. L.

Shelton, J. D.

Smith, A. A.

Smith, K. J.
Streetman, K. D.
Taylor, R. W.

Thomas, Jr.; B.
Tubbs, C. S.

Vickers, B. D.
Webber, L. S.

Wood, W. B.
Merriman, J. R.
ORGDP Plant Records
DSRD Resource Center
Applied Technology Library

R. Blackburn, Code 0320.1, Pacific Missile Test Center, Point Mugu, CA 93042

D. Kral, Code 0321, Pacific Missile Test Center, Point Mugu, CA 93042.

Office of Assistant Manager for Energy Research and Development, Department of
Energy, Oak Ridge Operations Office, Oak Ridge, TN 37831

i

I

DO NOT MICROFILM

THIS PAGE

