

LA-9512-HDR

UC-66c

Issued: August 1982

LA--9512-HDR

DE83 001954

## Drilling of Hot-Dry-Rock Geothermal- Energy Extraction Well EE-3

John C. Rowley  
Richard S. Carden\*

### DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

\*Consultant. Grace, Shursen, Moore, & Associates, 5900 Mosteller Drive, Suite 316,  
Oklahoma City, OK 73112.

**Los Alamos** Los Alamos National Laboratory  
Los Alamos, New Mexico 87545

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

## **DISCLAIMER**

**This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

## **DISCLAIMER**

**Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.**

## CONTENTS

|                                                                          |     |
|--------------------------------------------------------------------------|-----|
| ABSTRACT . . . . .                                                       | 1   |
| I. INTRODUCTION . . . . .                                                | 1   |
| II. CHRONOLOGY OF DRILLING EE-3 . . . . .                                | 5   |
| III. CONTROLLED-TRAJECTORY DRILLING . . . . .                            | 35  |
| IV. DRILLING FLUIDS PROGRAM . . . . .                                    | 53  |
| V. DRILLING PROBLEMS AND SOLUTIONS . . . . .                             | 59  |
| VI. DESIGN AND INSTALLATION OF THE PRODUCTION CASING<br>STRING . . . . . | 72  |
| VII. COST COMPARISONS . . . . .                                          | 82  |
| VIII. CONCLUSIONS . . . . .                                              | 85  |
| ACKNOWLEDGMENTS AND DISCLAIMER . . . . .                                 | 87  |
| REFERENCES . . . . .                                                     | 87  |
| APPENDIX A: DAILY DRILLING LOG FOR EE-3 . . . . .                        | 90  |
| APPENDIX B: DETAILED EE-3 BIT RECORD . . . . .                           | 119 |

# DRILLING OF HOT DRY ROCK GEOTHERMAL ENERGY EXTRACTION WELL EE-3

by

John C. Rowley and Richard S. Carden

## ABSTRACT

The drilling of EE-3, the production well of the hot dry rock geothermal energy-extraction engineering system at the Fenton Hill site, was finished August 25, 1981. EE-3 was designed to be directionally drilled in the inclined reservoir section to be parallel to and spaced vertically 370 m (1200 ft) above EE-2, the injection well, which was drilled at 35° to the vertical. The reservoir heat transfer area will be formed by creating and extending several vertical parallel hydraulic fractures from EE-2 to EE-3. EE-3 required precision directional drilling because the borehole trajectory had to be drilled within specified tolerances with respect to EE-2. Well EE-2 was drilled with a packed (stiff) bottom-hole assembly that held the 35° inclination, but permitted the borehole to turn in azimuth. Directional drilling experience in EE-2 provided the basis to optimize the directional trajectory of EE-3 to within the desired tolerances.

The EE-3 well was drilled into hot granite reservoir rock to total depth at 370 m (1200 ft) parallel and above EE-2 at a measured (drill-string) depth of 4.25 km (13 933 ft), with a maximum lateral deviation of about 60 m (180 ft). A bottom-hole static temperature of 280°C (550°F) is estimated.

Two severe drill-pipe twist-offs extended the drilling time of EE-3 to 461 days. These, and other drilling problems, are recorded and solution approaches are discussed. Drilling costs of EE-2/EE-3 are shown to be comparable to commercial drilling of hydrothermal wells and to the US Department of Energy sponsored geothermal projects when these cost trends are extrapolated to 4.5-km (15 000-ft) depths.

---

## I. INTRODUCTION

The high-precision, controlled-trajectory drilling of EE-3 was dictated by the requirements of the reservoir. The borehole path was based upon the survey results, i.e., magnetic single-shot and gyro multishot, previously

obtained for the 22.2-cm (8-3/4-in.)-diam drilled portion of EE-2. This ~1000-m (3000-ft) length of borehole was drilled at an inclination of 35° and was directionally oriented into the northeast quadrant. This alignment was chosen to place the EE-2 and EE-3 boreholes approximately normal to the predicted northwest-southeast direction of the planes of the hydraulic fractures of the previous pair of hot dry rock (HDR) wells (GT-2/EE-1).<sup>1</sup> The EE-2 borehole was drilled by stiff or packed-hole holding assemblies that held the inclination angle of the borehole but allowed the azimuth to drift, or "walk," in accordance with the interaction of bit and bottom-hole drilling assembly with the rock.

The wellbore directional-drilling parameters set as targets for the reservoir portion of EE-3 were

- 370 m  $\pm$ 15 m (1200  $\pm$ 50 ft) vertically above EE-2,
- $\pm$ 30 m ( $\pm$ 100 ft) lateral deviations from the horizontal projection of the EE-2 trajectory, and
- total depth (TD) at true vertical depth (TVD) of 4030 km (13 230 ft); directly above the TD of the EE-2 wellbore at a TVD of 4398 m (14 405 ft).

These objectives were met within practical drilling limits and resource constraints. The maximum deviations observed were a slightly greater vertical spacing of 400 m (1300 ft) over the upper few meters of the reservoir, decreasing to within 370 m  $\pm$ 15 m (1200  $\pm$ 50 ft) below. The widest lateral deviation occurred at EE-3 TD, 4.247 km (13 933 ft) measured depth (MD)\*, or 3.977 km (13 048 ft) TVD, where the wellbore EE-3 had drifted to the north slightly and indicated a position displaced about 60 m (180 ft) north as evaluated from the magnetic single-shot survey data. The final relation of EE-3 above EE-2 is depicted in Figs. 1 and 2, which also illustrate the magnitudes of the deviations from the targets that were achieved with the controlled-trajectory drilling of EE-3.

The drilling plans for EE-3 closely followed those for EE-2, with modifications and improvements as learned from previous drilling operations and those changes dictated by the directional control required to place EE-3 above the reservoir portion of EE-2. This plan, in summary, follows.

\*All depths recorded are measured along the drillstring from the elevation of the Kelly Bushing (KB), unless otherwise noted. The EE-3 KB was 8.2 m (27 ft) above ground level.

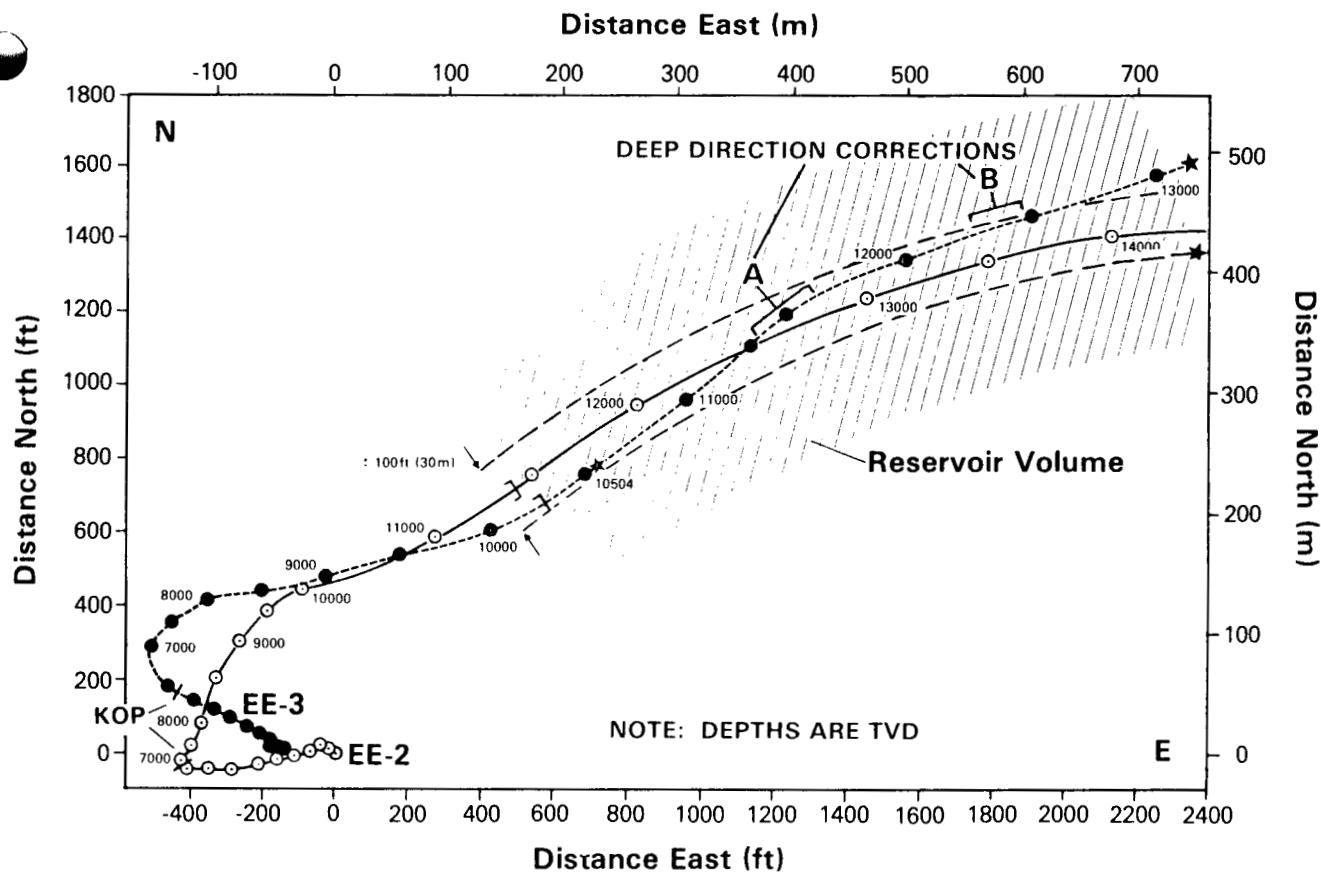



Fig. 1.  
Plan view of EE-2/EE-3 well trajectories and tolerance band for EE-3 directional drilling.

(1) Drill the 800-m (2500-ft) section of volcanic and sedimentary rocks as in the EE-2 plan,<sup>2</sup> but drill the lost-circulation zones without returns as far as feasible and run and cement the 34.0-cm (13-3/8-in.) casing about 50 m (150 ft) into the granite. This casing string would be tensioned after cementing so as to guard against compressive failure of the casing upon heat up during production.

(2) The kickoff point (KOP) for directional drilling of the 31.1-cm (12-1/4-in.)-diam borehole was to be at about 2000-m (6500-ft) depth where the inclination was to be raised and the azimuthal angle started to be directed into the northeast quadrant.

(3) Directional drilling of the 31.1-cm (12-1/4-in.)-diam hole would continue until an inclination angle of  $35^\circ \pm 1^\circ$  was established and an azimuth angle of  $N55^\circ \pm 5^\circ E$ , at a MD of about 3124 m (10 350 ft), [a TVD of 3109 m (10 200 ft)] at a vertical distance of  $370 \pm 15$  m (1200 50 ft) directly above

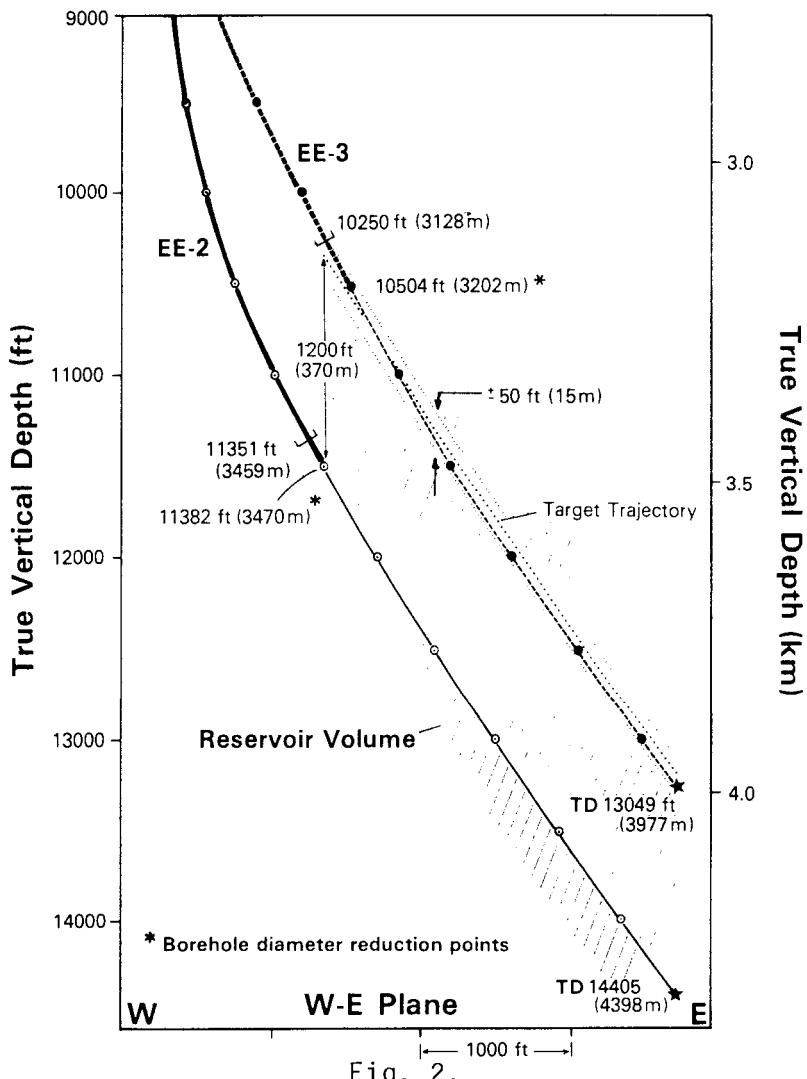



Fig. 2.

EE-2 and EE-3 trajectories projected into east-west vertical plane showing EE-3 target inclination and vertical-separation target tolerance.

the EE-2 hole diameter reduction point. This would place the EE-3 wellbore in such a position and orientation so that the tangent to the trajectory would be a vector parallel to the tangent to the EE-2 wellbore trajectory 370 m (1200 ft) below.

(4) Drill a 24.8-cm (9-7/8-in.)-diam transition hole about 6.1 m (20 ft) long.

(5) Drill reduced hole diameter with a 22.2-cm (8-3/4-in.)-diam bit, and use packed-hole (stiff) inclination-angle-holding assemblies.

(6) Take single-shot magnetic surveys every 20 m (60 ft) and apply directional (azimuthal) corrections by use of high-temperature turbodrill runs as

required to maintain the EE-3 borehole path parallel to EE-2 borehole to within the  $\pm 30\text{-m}$  ( $\pm 100\text{-ft}$ ) horizontal tolerances as listed above, and drill to TD.

(7) The well would be cased with 24.4-cm (9-5/8-in.)-o.d. production casing to the bottom of the 31.1-cm (12-1/4-in.) hole after the drilling had reached the planned TD of 4.03 km (13 230 ft) TVD or a TD of about 4.4-km (14 400 ft) MD. This production casing string would be run, cemented, and tensioned to prevent excessive thermal growths and stresses at the wellhead during production.

This plan was completed in all its essential features in 461 days. Discussion of the earlier problems with the EE-2 drilling can be found in Refs. 3, 4, and 5. The early part of the EE-3 directional drilling operations are reviewed in Refs. 6 and 7, and the drilling-fluid system established at Fenton Hill for the drilling of EE-2 and used for EE-3 is documented in Ref. 8.

## II. CHRONOLOGY OF DRILLING EE-3

### A. Drilling through the Volcanics and Sediments

The history of the drilling of well EE-3 is summarized in Fig. 3, a daily drilling log is included as Appendix A, and the detailed bit record is recorded in Appendix B. Depth progress is plotted vs days of drilling from May 21, 1980, to the rig release date of August 25, 1981, a total of 461 days.

The drill rig was skidded from the EE-2 site 50 m (165 ft) to the west without lowering the derrick. The 76.2-cm (30-in.)-diam conductor pipe and the cellar had been previously emplaced. A new drilling-fluid reserve pit, to be used in conjunction with the previously excavated EE-1 and EE-2 reserve pit, and an extension of the drill pad had been prepared before skidding the rig. The bottom-hole drilling assembly with a 62.4-cm (26-in.)-diam milled-tooth bit was picked up on May 21 and the hole was spudded on May 22, 1980. Drilling was performed in volcanic and sedimentary rocks with 62.4-cm (26-in.)-diam bits to a depth of 577 m (1894 ft) without serious lost-circulation problems, but at this depth, loss of drilling-fluid circulation was complete. Two attempts were made to cement-off the lost-circulation zone by pumping cement plugs into the hole using 500 sacks of thixotropic cement. The hole was drilled through the cemented zone after the first cementing attempt, and circulation was lost again. After the second cement-plug attempt, the hole was drilled into the cement to 541 m (1775 ft). Considerable sloughing of the hole walls and bridging of the hole above the

lost-circulation problem were experienced, and it was necessary to set the 50.8-cm (20-in.)-diam surface casing in order to continue drilling.

Fill that was in the bottom of the hole prevented the casing from reaching the bottom, and the casing was set with the cementing shoe at a 481-m (1580-ft) depth. A slurry containing 2400 sacks of cement was pumped into the annulus behind the 50.8-cm (20-in.) casing without filling the annulus. Additional cement slurry with 650 sacks of cement was pumped into the annulus from the surface, which filled it to the surface.

After waiting for the cement to harden, the cement was drilled out with a 44.5-cm (17-1/2-in.)-diam milled-tooth bit. Drilling was started again below the cement with a 44.5-cm (17-1/2-in.) bit, and circulation was lost again at 567 m (1860 ft). One attempt was made to cement up the lost circulation with a massive amount of cement (2500 sacks). This was unsuccessful. It was decided to drill on into the granitic formations without return of the drilling fluid. Drilling without returns was quite expensive as the water supply from La Cueva, 7.5 km (4.5 miles) away, was exhausted, and most of the water for this operation was hauled from Los Alamos, a distance of 45 km (27 miles) over mountainous roads. This also caused some delays because the usage rate exceeded the practical hauling rate. The granite was encountered at 732 m (2404 ft), and the drilling continued to 783 m (2567 ft), some 51 m (150 ft) into the crystalline rock.

A 34.0-cm (13-3/8-in.)-o.d. casing was run into the hole and cemented in two stages. The first stage consisted of a cement slurry containing 200 sacks of cement to bond the bottom of the casing to the granitic formation for about 45 m (150 ft). After this cement was set, the casing was tensioned with casing jacks to a load of  $373 \times 10^4$  N (725 000 lb<sub>f</sub>); an axial stretch of the casing of 48 cm (19 in.) was recorded at the wellhead. The tensioning was done to prevent the occurrence of excessive compression loads in the 34.0-cm (13-3/8-in.)-o.d. casing when it is heated by hot fluid production with the completion of the EE-2/EE-3 reservoir system. A considerable delay (5 days) was incurred while waiting for suitable casing jacks to arrive. Next the casing was cemented from 428 m (1403 ft) to the surface through a cementing stage collar and an expandable external casing packer (so-called DV tool) that had been included in the casing string at that depth. Drilling operations had been underway for 39 days, as the rigging up of flow lines, riser pipe, blowout-preventer (BOP) stack and associated hardware was accomplished in

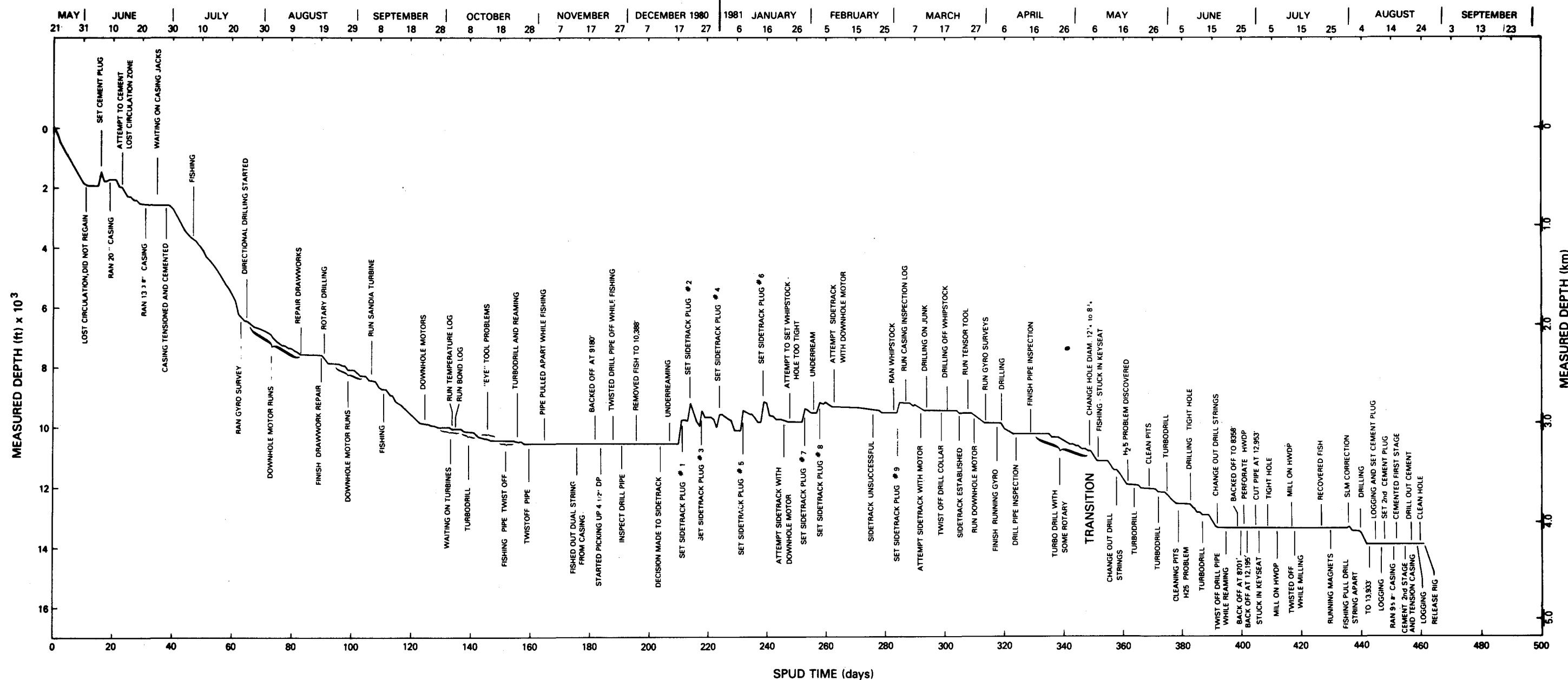



Fig. 3.  
EE-3 drilling chronology.



Preparation for drilling out cement in the 34-cm (13-3/8-in.)-o.d. casing. The casing shoe was located at a depth of 778 m (2552 ft) and the bottom of the 44.5-cm (17-1/2 in.)-diam hole at 782 m (2567 ft).

#### B. Drilling to the KOP

The first 31.1-cm (12-1/4-in.)-diam drilling assembly used a milled-tooth bit to drill out the cementing hardware (cementing sleeve, float collar, plugs and shoe) and the cement below the shoe. The first 31.1-cm (12-1/4-in.)-diam carbide insert button bit and bottom-hole assembly (BHA) was run in the hole and rotated very slowly (40 rpm) with a low load on bit,  $1.3 \times 10^4$  N (30 000 lb<sub>f</sub>), to avoid casing and cement damage. This precaution was continued until the top reamer of the BHA was below the 34.1-cm (13-3/8-in.)-o.d. casing shoe.

Rotary drilling of the 31.1-cm (12-1/4-in.)-diam hole continued using a variety of tungsten-carbide-insert (TCI) button bits to a depth of 1964 m (6444 ft). This drilling sequence was plagued by occasional washouts of the drill collars and two short fishing jobs but was the least troublesome of any of the drilling of EE-2 or EE-3. At this depth the hole had an inclination of 10° to the vertical and the azimuthal direction was trending in a northwest direction (N58°W) at that depth. The wellbore had to be turned to a northeasterly direction in order to drill in the proper direction relative to the trajectory of hole EE-2. This portion of the hole was surveyed approximately every 20 m (60 ft). The instantaneous drilling rate varied from 1.2 to 6.9 m/h (4.0 to 20.0 ft/h). Twelve bits were used in 17 bit runs. An inspection of the BHA components, boxes, and pin ends of collars especially, was carried out. A gyro survey of the hole trajectory through the 34.0-cm (13-3/8-in.)-o.d. casing was run on day 63 with the bottom of the hole at 1930 m (6334 ft) to check the hole trajectory in the cased section. The survey showed an inclination of 0.83° and an azimuth of N40°W at 762-m (2500-ft) depth (just above the cementing shoe). No severe doglegs\* were detected, the maximum being about 1°/100 ft at 144-m (500-ft) depth. Drilling and related operations for this portion of the hole took 26 days, and the stage was set for the first directional drilling.

\*The term dogleg severity (DLS) refers to the curvature of the borehole trajectory, and is usually measured in degrees/30 m (degs/100 ft).

### C. Directional Drilling to the Borehole Diameter Transition

This portion of the drilling program was intended to turn the borehole to the east, about  $80^{\circ}$  east from north ( $N80^{\circ}E$ ), and raise the inclination to  $35^{\circ}$ . Two major problems significantly delayed this segment of the drilling program: (1) a twist-off of the 12.7-cm (5-in.) drill pipe occurred at 3209-m (10 578-ft) depth. This required an extended unsuccessful fishing operation and (2) finally required a problem-plagued sidetracking of the hole at 2878-m (9444-ft) depth.

The initial borehole-trajectory elements were  $10^{\circ}$   $N63^{\circ}W$  ( $10^{\circ}$  inclination and an azimuth heading of  $63^{\circ}$  west from north) at a depth of 1920 m (6431 ft). The initial two directional drilling runs below the 1694-m (6444-ft) KOP depth were attempted using magnetic single-shot orienting tools to orient the down-hole motor direction. The intention was to rotate the azimuth of the hole and build angle only slightly. However, a sharp angle-build was experienced, increasing to  $14^{\circ}$ , with little azimuth change. After three directional drilling runs with a positive displacement motor (PDM) (Baker Service Tools), the inclination had increased sharply to  $14\frac{3}{4}^{\circ}$  from the vertical, but the azimuth, at  $N42^{\circ}W$  was not changing rapidly enough for the 81 m (266 ft) of depth and four days of effort. To monitor the orientation setting and progress of the downhole drilling motors, a continuous-readout steering tool, the Scientific Drilling Control (EYE) steering tool, was used on most subsequent directional runs.

The next 13 days were spent changing the hole azimuth to  $N62\frac{1}{2}^{\circ}E$  over a drilled section to 2280 m (7482 ft). A total of 10 directional drilling runs was performed during this trajectory-control sequence and the inclination had dropped to  $8\frac{3}{4}^{\circ}$ . A rotary reaming assembly was run in the hole to bring the gauge back to 31.1 cm (12-1/4 in.) and drilling was suspended at a depth of 2299 m (7542 ft) to provide for a routine inspection of the drill string. Five days were required to conduct the inspection. During this time the main drive-shaft on the rig draw-works was replaced (a severe fatigue crack had developed) and other components of the hoisting equipment were inspected.

Rotary drilling began again on day 91 of drilling operations with the plan to use a building BHA to increase the inclination while monitoring the azimuthal drift of the hole. This drilling started at 2300 m (7542 ft) and was continued to 2390 m (7840 ft) with another sharp inclination increase from  $7^{\circ}$  to  $14\frac{1}{4}^{\circ}$ . However, the azimuth angle rotated to the north, from  $N83^{\circ}E$  to

N46°E-- a change of 37° in 90 m (300 ft). Therefore, directional drilling with downhole motors was resumed. Problems with the EYE steering tool were encountered and test drilling of a new high-temperature Dyna-Drill 17.8-cm (7-in.)-diam turbine was performed but steering-tool problems restricted the test run to about 3 m (10 ft).

A sequence of eight motor runs was performed and the hole trajectory was corrected to a survey reading of 17-1/4°N88°E at a depth of 2562 m (8407 ft) in eleven days. Two more Dyna-Drill 17.8-cm (7-in.)-diam turbine tests were performed at the end of this directional drilling sequence. The depth was 2576 m (8453 ft).

A series of nine rotary drilling runs with either hold BHA or moderate-build characteristics was then completed to a depth of 3002 m (9850 ft) and the trajectory elements had been changed to 25-1/2°N67°E. The inclination angle was successfully building, but north drift was still occurring. Lack of availability of downhole motors dictated continuation of rotary drilling for three more bit runs. A washout in the box-end thread of a drill collar occurred at 2690-m (8827-ft) depth on day 111. This rotary drilling sequence ended on day 124.

Directional drilling was started again when a PDM downhole-motor run was attempted on days 125 and 131, but it was evident that the temperatures were too high for the elastomer components of the motors so it was decided to initiate use of the 19.7-cm (7-3/4-in.)-diam Maurer Engineering Inc. (MEI)<sup>\*</sup> turbodrills.

The original reserve pit had filled with cuttings by this time and required dredging of the reserve pit with a dragline and hauling of the solids to a nearby dump. Drilling operations continued using the smaller reserve pit adjacent to the drill rig. (This was the new westernmost pit and too small for extended effective cooling and cuttings settling.) A fluid-loss region encountered at about 3025 m (9924 ft) complicated the drilling fluid problems. Dredging continued for 11 days. The rotary drilling sequence was continued to 3653 m (10 017 ft) and trajectory survey results of 24° N67°E were determined at 3032 m (9946 ft).

<sup>\*</sup>Maurer Engineering, Inc. of Houston, Texas, developer of the special turbodrills for directional drilling.

A cement-bond log was run in the 34.0-cm (13-3/8-in.)-diam casing on day 135 to evaluate the extent of bonding of the cement to that casing string. The bottom 70 m (200 ft) showed good bond; the 430 to 560 m (1400 to 1900 ft) showed no bonding, and the remainder indicated partial bonding.

On day 138, directional drilling was initiated with the two Los Alamos MEI 19.7-cm (7-3/4-in.)-diam high-temperature-rated turbodrills. The objective was to build inclination angle and to hold or increase the westerly trend in the trajectory. The use of high-temperature MEI turbines was indicated by the loss in performance of the PDMs and due to the bottom-hole (static) temperature of 200°C (400°F). Alternate directional drilling runs and rotary reaming and inclination building runs were performed.

A reaming and build assembly, run on day 143, appeared to be building too rapidly, so bit weight was reduced, but apparently too rapidly, which caused the inclination to drop sharply. Figure 4 shows the inclination angle behavior in this section of the hole. During subsequent turbodrill runs this drop in angle was rebuilt. On day 145, the EYE steering tool jammed and was left in the BHA. When inspected on the rig floor it was discovered that the mule-shoe latch-in on the steering tool was jammed 170° away from the key pin in the orienting sub. This condition was due to wear of the components and was not detected because the seating procedures (multiple engagement and re-engagement of the seating) are performed routinely by the wireline operator. That procedure was being followed and monitored especially closely. The geometry of the BHA made it extremely unlikely that this misorientation could occur even once, let alone repeatedly. However, the consequences were that two sharp downward dips in the inclination were introduced into the EE-3 trajectory. This is illustrated in Fig. 4. Extremely tight-hole conditions were experienced upon reaming to bottom and the first reaming assembly with a six-point near-bit reamer had to be changed out for a three-point near-bit assembly. When very high torques of the BHA occurred, a survey at 3128 m (10 262 ft) indicated that the trajectory had the elements 26-3/4° N68°E confirming that the second loss of inclination had occurred.

Reaming continued with a more-limber or less severe build-assembly at 3157-m (10 357-ft) depth on day 150 when a twist-off of the 12.7-cm (5-in.)-diam drill pipe occurred. A fishing operation was initiated that retrieved the free pipe, 75 stands plus two joints of 19.6 lb/ft grade E drill pipe. The fish was successfully grappled. Indications were that the break

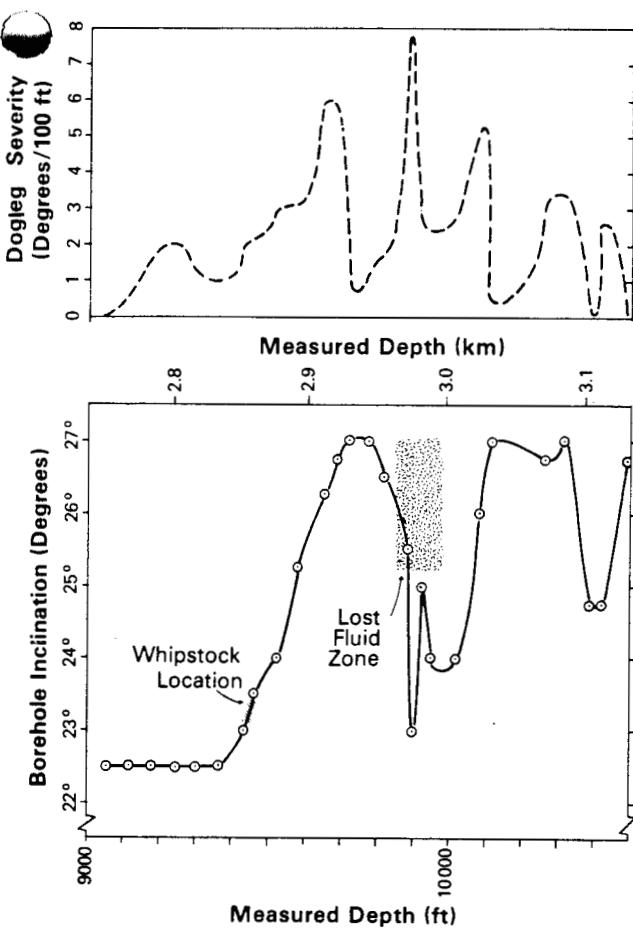



Fig. 4.  
Inclination and dogleg severity for  
3.0- to 3.2-km depth interval in EE-3.

#### D. Fishing and Sidetracking

The drilling of EE-3 was interrupted for 44 days (from day 160 to day 204) by a difficult fishing operation that did not retrieve the BHA, and the hole had to be sidetracked. The sidetracking was finally achieved using a permanent, cemented-in, whipstock.

Because the twist-off had occurred while reaming with the bit off bottom, it was assumed that the fish had fallen to the bottom. This might imply that there could be considerable bent or cork-screw buckled drill pipe above the BHA and that the BHA might be badly jammed into the hole. However, free-point surveys showed that the uppermost reamer was the tight spot so back-off shots were attempted just above this point. A back off on day 163 succeeded in parting the fish by a break in the middle of the drilling jars.

was in pipe body about 2/3 m (2 ft) below a coupling, and that the lowermost steel drill collar in the BHA had parted in the threads of the pin. Four days were spent grappling and loosening the fish, but on day 154 following the successful fishing, the hole was reamed to a depth of 3175 m (10 417 ft) where a survey yielded results of 24-3/4° N66°E and verified again a considerable drop in inclination. Directional drilling continued in an effort to obtain the desired inclination and more easterly trend. MEI turbodrill runs were alternated with reaming assemblies. Very tight-hole conditions continued to plague the directional drilling operations, and on day 159, a second drill-pipe twist-off occurred at about 2350 m (7070 ft). The BHA had fallen to bottom and the break was very jagged, (Fig. 5) and about 2/3 to 1 m (2 to 3 ft) below the coupling.

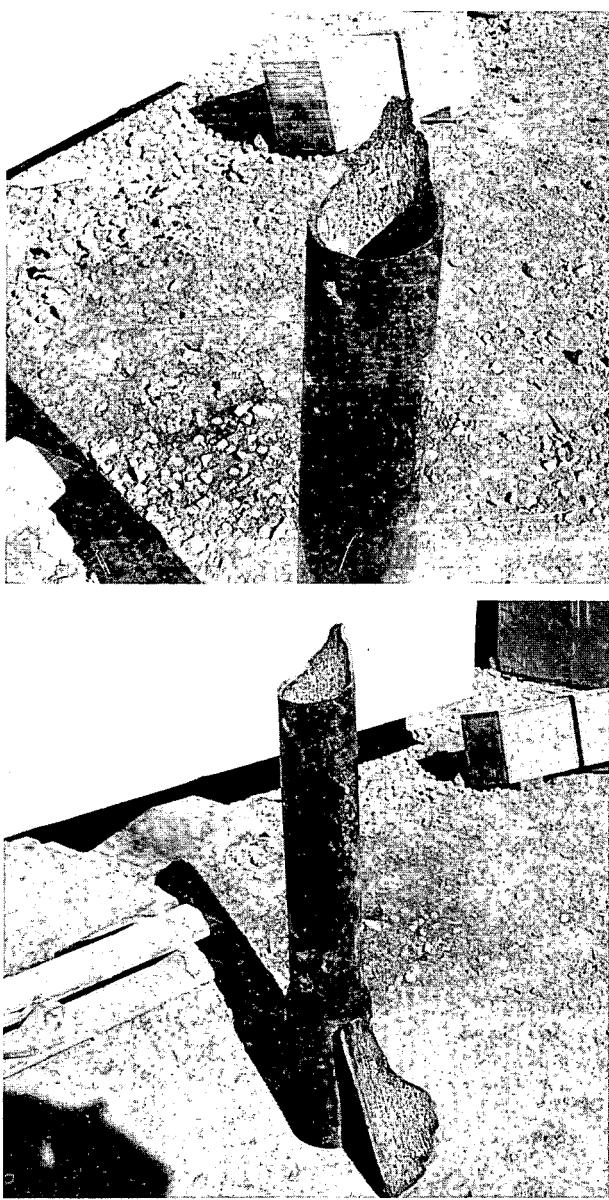



Fig. 5.  
Views of inside surface of 12.3-cm (5-in.) drill pipe showing severe corrosion pitting and nature of fracture. Box end of joint shown.

ft). Junk jammed on top of the fish, or an obstruction on the top box connection, required that the pipe be cut off with a special external cutting tool. Then the drill pipe had to be backed off to a depth of 2774 m (9100 ft) to clear the hole of badly bent pipe. All joints of the 12.7 cm (5 in.) pipe were being sent off to the rig contractor (Brinkerhoff-Signal Drilling Co.) in

The fish remaining had nine joints of heavy-weight drill pipe (HWDP) below it. A back-off shot unscrewed the HWDP but left the bit, bit reamer, stabilizer, and drill collars in the hole. While jarring and pulling out this fish (day 167), the drill-pipe string parted and the rebounding string separated the Kelly and damaged the swivel, cables, and hoisting block and then fell back down into the hole.

Subsequent tagging and a free-point survey indicated that the top section of the pipe had gone down beside the bottom section of drill pipe inside the 34.0-cm (13-3/8-in.)-o.d. casing. This double-parked situation caused the succeeding fishing operations to be very difficult and delicate. Back-off and jarring on the double-parked fish (drill string) and the lower string continued, until by attrition and nine days of judicious jarring, the shorter, double-parked fish was loosened and removed on day 176.

Attention was then directed once again to retrieving the BHA fish located on bottom with the top of the string connected to it at 720 m (2362

Farmington, New Mexico, and a new string of 11.4-cm (4-1/2-in.)-diam drill pipe was rented and started arriving on site. This decision to change out the drill string was based upon the nature of the pipe failure (twist-off). The break was very jagged with numerous extremely deep corrosion pits evident on the inside surface of the pipe. Figure 5 shows this corrosion pitting near the fractured end of the drill pipe. An additional factor was the long hours (greater than 3000) of heavy drilling accumulated during the previous drilling of EE-2. On day 183 the 34.0-cm (13-3/8-in.)-o.d. casing was inspected with a 64 arm-caliper casing inspection tool to assess whether the fishing (jarring especially) had caused any damage. A 31.1-cm (12-1/4-in.)-diam swedge was also run through the casing to assure that obstructions were not present. No significant damage or wear was detected. More new 11.4-cm (4-1/2-in.)-diam drill pipe was delivered to the site to be used for the remainder of the fishing operation and subsequent drilling. The No. 1 drilling fluid-circulation pump was replaced.

Fishing operations continued with the new 11.4-cm (4-1/2-in.) drill string. A screw-in sub was attached to the fish at 2774 m (9100 ft) but jarring would not loosen the fish. While attempting to torque up the screw-in sub, the new 4-1/2-in. drill pipe twisted off in a connection at about 1020 m (3350 ft). The failure was due to a cracked thread in a pin. Because the fish would not move, a deep back off at 3094 m (10 150 ft), above the collars, was undertaken on day 189.

The hook below the main traveling block was replaced because it was damaged during the Kelly-rebound episode. The 11.4-cm (4-1/2-in.) pipe that had twisted off had to be straightened and inspected. Fishing continued with a fishing assembly. Jarring moved the fish upward but the jars gave out, because of the elevated temperatures. While attempting to back-off the top of the collar on the fish with torque on the string, the fish broke off below the collars. When the upper part of the fish was on the rig floor, it was found that the jars had twisted off leaving about 42.7 m (140 ft) of BHA in the hole with the top at a depth of 3162 m (10 375 ft). Fishing operations consisted of attempts to grapple the broken-off end of the jars at the top of the fish. Finally, on day 203, a lead impression block was run in on top of the fish and confirmed that the 9.5-cm (3-3/4-in.)-diam mandrel portion of the jars, a hardened chromium-steel shaft, was lying over against the borehole wall.

Following two futile days of attempting to grapple the body of the jars and failure to hook the fish, it was decided to start sidetracking operations. It was judged at this point that further grappling or milling on the fish had a low probability of success, and the fishing operations were suspended. The two fishing episodes consumed 4, and 44 days respectively, a total of 48 days.

The sidetracking of the fish was planned to be performed using techniques similar to those used previously in the successful sidetracking of HDR well GT-2.<sup>10</sup> Underreaming (opening up of the borehole diameter) and placement of cement plugs were the approaches used. This technique required the use of downhole motors with side force applied to the bit. This in turn is optimized by large axial thrust (bit load) and slow penetration rates to force the bit against and to cut a groove into the side-wall of the borehole or underreamed section. Time drilling (controlled penetration rate with low bit loads) is usually necessary because cement plugs drill rapidly at the low bit weights developed with the higher-rpm drilling motors. Further, time drilling is not practical with the high-temperature turbodrills due to the runaway tendency at low torque and low bit load. The excellent rpm control of the PDMs is suited to this operation, but the elastomer stator temperature limit requires that depths in EE-3 be restricted to temperatures below 200°C (400°F), or less than 3.0-km (10 000-ft) depth (see Fig. 6).

To evaluate the possible locations for underreaming, a caliper log was run (by Dresser Atlas) on day 204, over the 2958- to 3154-m (8500- to 10 348-ft)-depth interval. A zone at 2975 to 2979 m (9760 to 9775 ft) was selected to underream. The Tri-State Oil Tool Company underreamer (a three-arm tool, with TCI buttons on the cones and especially designed for granite) was used. The tool was equipped to underream the wellbore from 31.1-cm (12-1/4-in.)-diam to 40.6-cm (16-in.)-diam. The initial attempt stuck the underreamer and lost two cones. The second underreamer run cut 4.3 m (14 ft) downward starting at 2926 m (9760 ft). A second interval, 3012 to 3017 m (9885 to 9900 ft), was also underreamed in a subsequent run.

A cement plug (designated plug No. 1) formulated of 500 sacks of class H cement was mixed by Dowell and spotted through open-ended drill pipe. It was designed to fill the borehole from 3149 m (10 331 ft), the top of the fish, to about 2911 m (9550 ft). However, when the drill string was tripped in to face off the cement, stringers were first met at 2968 m (9738 ft) instead of the planned 2911 m (9550 ft), a loss of about 55 m (180 ft). This loss could not

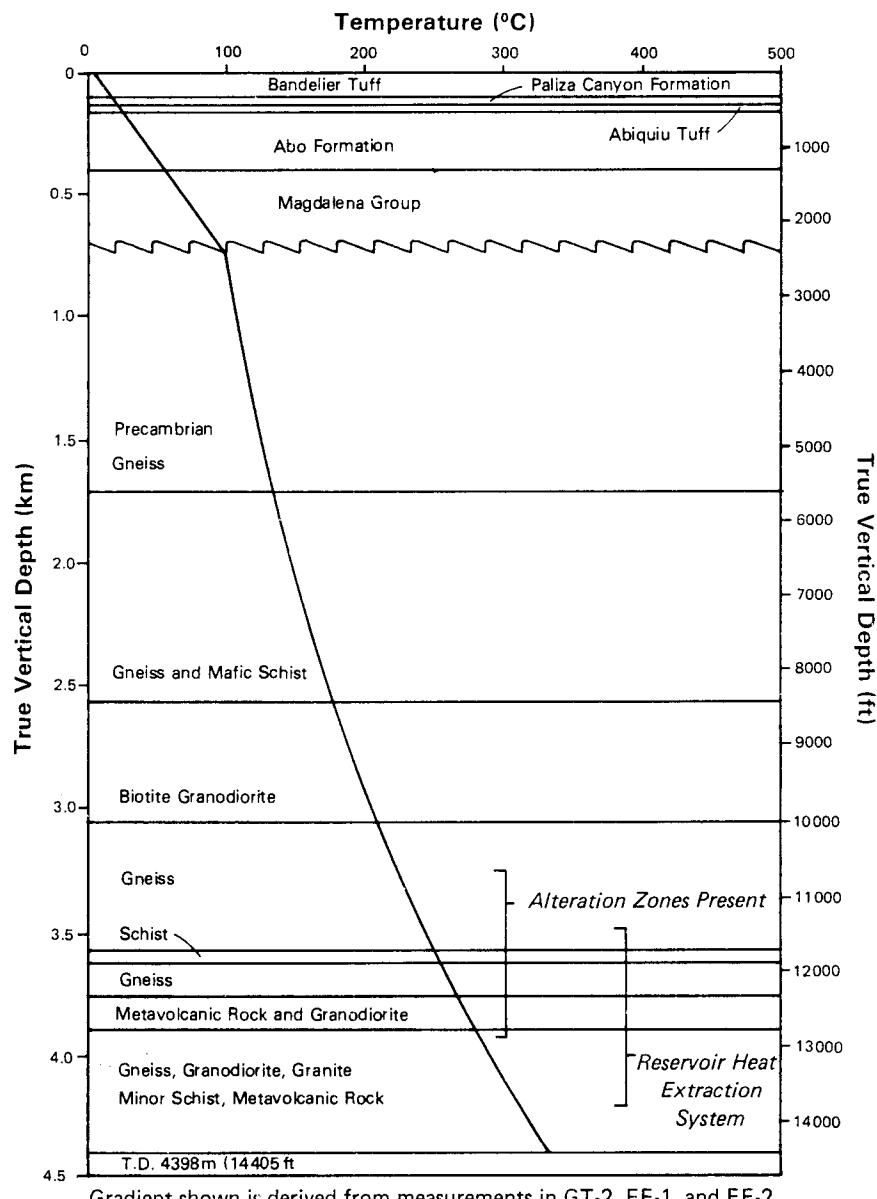



Fig. 6.  
Generalized geological section and static conductive temperature profile at Fenton Hill.

be accounted for. The plug was faced off to 2978 m (9770 ft) and a second plug of 400 sacks of class H cement was placed with open-ended drill pipe. The top of the plug was tagged at about 2800 m (9188 ft) and dressed off with a mill-tooth bit to 2926 m (9600 ft) in preparation for starting sidetracking operations on day 215. However, after waiting 24 h on the cement plug to harden, drilling continued down to 3033 m (9950 ft), below both underreamed zones, in very soft (fast drilling) cement.

It was decided to pour a third plug that would be proceeded by a chemical wash intended to clean contaminants from the hole, and that would have less retarder to assure a sufficiently hard plug to sidetrack from. Cement-sample tests (by the Dowell Laboratory) showed a 4.13-MPa (6 000-psi) strength in 36 h at 175°C (350°F). Drill out of plug No. 3 indicated soft cement, that is  $44.5 \times 10^3 \text{ N}$  (10 000 lb<sub>f</sub>) bit load drilled at 0.3 m/min (1 ft/min). A temperature survey, using the Los Alamos temperature tool, indicated that the cement had been emplaced at about 110°C (220°F), and not the 175°C (350°F) as planned, and the temperature for which the Dowell cement formulation was designed. An additional 24-h wait was initiated. Again the cement was found to be too soft, and it was drilled out to a depth of 9303 m (9950 ft). Another temperature survey was run and a projected placement temperature of 165°C (330°F) was derived and forwarded to Dowell. A special cooling program was suggested to lower the borehole temperature to 135°C (270°F), thought to be more nearly optimum for cement setting and hardening. Table I records the sequence and formulations of the cement plugs.

On January 1, 1981, day 225 since spud of the well, preparations for sidetracking were underway and the top of the fourth plug was tagged at 2913 m (9557 ft). However, drilling of this plug showed very soft cement. Rate of penetration was greater than 0.3 m/min (1 ft/min) with a  $22.3 \times 10^3 \text{ N}$  (5000 lb<sub>f</sub>) load on the bit. The cuttings showed no chips so the cement had not set after 40 h of waiting.

At this point it was clear that a basic problem with the cement plugs existed, and it was decided to try a Halliburton cement formulation, (see Table I). The fourth Dowell plug was drilled out to a depth of 3081 m (10 109 ft) and a cool-down circulation was started. A special latch-plug subassembly and centralizers were run on the open-ended pipe to cool the hole and assure minimum cement-slurry disturbance on placement. On day 232, the fifth cement plug was placed.

It seemed clear at this point that special efforts would be required to obtain a cement plug hard enough from which to sidetrack. The technical problem is that to develop side forces (lateral loads) on the bit, a significant axial load on the bit is needed. It is possible to increase the side force by (1) using larger angle bent subs above the downhole motor, (2) use of a pressure-(flow-) activated kick sub (a Dyna Flex tool) to provide even larger angle, and (3) run in with a downhole PDM with a bent housing.

TABLE I

## SUMMARY OF EE-3 SIDETRACKING CEMENT PLUGS

| Date And Company             | Cement Mix                                                                                                    | Design Thickening Time and Temp | Temp Survey Measurement | Design Compressive Strength | Preflush                                                                 | Type of Mixer | Depths Placement; Calc. Fill-up Tagged Top | Drilling Parameters                                                                    | Coring Results                | Core Compression Strength (psi) | Emplacement Method                                                   |
|------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------|-----------------------------|--------------------------------------------------------------------------|---------------|--------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------|---------------------------------|----------------------------------------------------------------------|
| 12-18-80<br>Dowell<br>(1)    | 500 sks<br>Class H<br>5% D-99<br>Retarder<br>1% D-65 TIC <sup>b</sup><br>35% D-66,<br>Si flour<br>(400 mesh)  | 8 h<br>370°F BHCT               | 338°F <sup>a</sup>      | 6000 psi<br>24 h            | Plain water,<br>1 h                                                      | Hopper        | 10331 ft<br>9552 ft<br>-196 ft             | ~1 ft/min,<br>5000 lbs<br>12-1/4 STC<br>DSJ tooth<br>bit; 48 h                         | ---                           | ---                             | Open-ended<br>DP @ 10 331 ft                                         |
| 12-21-80<br>Dowell<br>(2)    | 400 sks<br>Class H<br>5% D-99<br>Retarder<br>1% D-65 TIC <sup>b</sup><br>35% D-66,<br>Si flour<br>(400 mesh)  | 8 h<br>370°F BHCT               | 347°F <sup>a</sup>      | 6000 psi<br>24 h            | None                                                                     | Hopper        | 9744 ft<br>9218 ft<br>+30 ft               | ~1 ft/min,<br>5,000 lbs<br>12 1/4" DSJ<br>tooth bit;<br>72 h                           | ---                           | ---                             | Open-ended<br>DP @ 9744 ft                                           |
| 12-25-80<br>Dowell<br>(3)    | 300 sks<br>Class H<br>3.5% D-99<br>Retarder<br>1% D-65 TIC <sup>b</sup><br>35% D-30,<br>Si sand<br>(200 mesh) | 3 h<br>370°F BHCT               | 270°F <sup>a</sup>      | 5650 psi<br>24 h            | 2000 gal<br>CW-7<br>surfactant                                           | Hopper        | 9950 ft<br>9410 ft.<br>+30 ft.             | ~1 ft/min,<br>5,000 lbs<br>12-1/4 in. DSJ<br>Tooth bit;<br>72 h                        | ---                           | ---                             | Open-ended<br>DP @ 9550 ft                                           |
| 12-31-80<br>Dowell<br>(4)    | 400 sks<br>Class H<br>0.2% D-28<br>Retarder<br>1.25% TIC <sup>b</sup><br>0% Silica                            | 2 h<br>270°F BHCT               | 270°F                   | 6000 psi<br>24 h            | 2000 gal<br>CW-7<br>surfactant                                           | Hopper        | 9925 ft<br>9527 ft<br>+30 ft               | ~1 ft/min<br>5000 lbs<br>12-1/4 in. DSJ<br>Toothed bit;<br>120 h                       | ---                           | ---                             | Open-ended<br>DP @ 9925 ft                                           |
| 1-8-81<br>Halliburton<br>(5) | 450 sks<br>Class H<br>0.4% HR-12<br>Retarder<br>1% CFR-2<br><br>15% Si flour<br>15% Si sand<br>(20-40 mesh)   | 2 h<br>270°F BHCT               | 250°F                   | 2750 psi<br>12 h            | 2000 gal<br>7-1/2%<br>acetic acid,<br>bentonite<br>gel, 75 sks<br>Pozmix | Hopper        | 10 081 ft<br>-55 ft                        | ~1 ft/min,<br>9483 ft<br>9550-9565 ft<br>10 000 lbs,<br>12-1/4 in. DTJ<br>Toothed bit; | cored<br>5000 lbs,<br>96 hrs. | 543 4-1/2 days                  | Open-ended<br>DP @ 9951 ft<br>Reciprocated pipe<br>while displacing. |

<sup>a</sup>Estimated.<sup>b</sup>Turbulence enhancing compound.

TABLE I (cont.)

| Date And Company              | Cement Mix                                                                                 | Design Thickening Time and Temp | Temp Survey Measure-ment | Design Compressive Strength | Preflush                   | Type of Mixer | Depths Placement; Calc. Fill-up Tagged Top                             | Drilling Parameters                                                                               | Coring Results                  | Core Compression Strength (psi) | Emplacement Method                                    |
|-------------------------------|--------------------------------------------------------------------------------------------|---------------------------------|--------------------------|-----------------------------|----------------------------|---------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|-------------------------------------------------------|
| 1-15-81<br>Halliburton<br>(6) | 350 sks<br>Class H<br>0.75% CFR-2<br>40% Si flour<br>No retarder                           | 1.5 h<br>180°F BHCT             | 203°F                    | ---                         | 100 bbls<br>Plain<br>water | Hopper        | 9790 ft<br>9268 ft<br>+160 ft                                          | ~1 ft/min,<br>8000 lbs<br>48 h;<br>12-1/4 in. Smith<br>DTJ tooth<br>bit; 24 h                     | cored<br>9600-9607 ft           | 4240                            | Open-ended<br>2-7/8 in. tbg.<br>@ 9790 ft             |
| 1-29-81<br>Dowell<br>(7)      | 230 sks<br>Class H<br>0.2% D-28<br>Retarder<br>1% D-65 TIC <sup>b</sup><br>40% Si flour    | 2 h<br>225°F BHCT               | 230°F                    | 6000 psi<br>24 h            | Plain<br>water             | Hopper        | 9880 ft<br>9480 ft<br>+100 ft                                          | 0.3 ft/min,<br>10 000 lbs.<br>96 h<br>Dyna-Drill<br>w/Q936 bit<br>1 ft/min,<br>2000 lbs.<br>192 h | ---                             | ---                             | Open-ended<br>DP @ 9855 ft                            |
| 2-3-81<br>Dowell<br>(8)       | 300 sks<br>Class J<br>No retarder<br>20% Si flour <sup>b</sup><br>4% D-65 TIC <sup>b</sup> | 2 h<br>225°F BHCT               | ---                      | 250°F                       | Plain<br>water             | Batch         | 0.5 ft/min<br>5000 lbs<br>9500 ft<br>9220 ft<br>-45 ft                 | 1 ft/min<br>5000 lbs<br>12-1/4 in.<br>Smith<br>DSJ tooth<br>bit; 24 h                             | cored<br>9227-9242 ft           | 2876<br>3 days                  | 12 jts 2-7/8 in.<br>tbg. on bottom<br>of DP @ 9482 ft |
| 3-2-81<br>Halliburton<br>(9)  | 185 sks<br>Class H<br>0.2% HC-12<br>0.75% CFR-2<br>40% Si flour<br>(200 mesh)              | 2 h<br>275°F BHCT               | 250°F <sup>a</sup>       | 5275 psi<br>24 h            | Plain<br>water             | Batch         | set<br>whipstock<br>9501 ft<br>9200 ft + 27<br>(30 ft<br>9471-9501 ft) | 0.5 ft/min<br>10 000 lbs<br>12 1/4 in.<br>5DGH<br>tooth bit                                       | core<br>9270-9277 ft<br>12 ft/h | 6450<br>7 days                  | Pumped<br>through<br>whipstock                        |

<sup>a</sup>Estimated.<sup>b</sup>Turbulence enhancing compound.

However, it is also necessary to keep the bit in contact with the borehole wall for some extended time, so time drilling or low penetration rate is required for effective sidetracking. The fifth plug was also found to be soft. It was conjectured that a core sample of the cement might indicate the nature of the problem with the plugs. A core was taken from 2911 to 2915 m (9550 to 9565 ft). The cement in the core was quite hard and appeared to be a fairly good quality plug. Drilling of the remainder of the plug indicated soft cement, that is a rate of penetration about 20 m/h (1 min/ft) with  $22.5 \times 10^3 \text{ N}$  (5000 lb<sub>f</sub>) bit load, to a depth of 3078 m (10 100 ft).

In all, three more cement plugs were placed and several special placement procedures were followed; that is, the hole was especially well cooled to about 120°C (250°F). Water samples were analyzed, the hole preflushed, formulation changed to include 40% silica flour to replace the flour and sand mixture, and finally, the sixth through eighth cement plugs were cored and compressive strengths determined. Placement with a 7.1-cm (2-7/8-in.) centralized tubing string on bottom and no retarder was attempted on the sixth plug. This plug drilled relatively slowly (2-1/2 min/ft) with  $44.5 \times 10^2 \text{ N}$  (10 000 lb<sub>f</sub>) bit load, therefore, it was decided to attempt to sidetrack the fish. Compressive-strength measurements on the core [75-mm (3-in.)-diam] gave 28 MPa (4000 psi), and a 2.5-cm (1-in.)-diam sample yielded 90 MPa (13 000 psi) compressive strengths.

The attitude of the bit was established at 26°N 72°E, which meant that the motor was oriented to drill out east of the high side of the hole. But repeated drilling from 4 m (14 ft) above the underreamed interval, starting at 2975 m (9760 ft), to 2 m (6 ft) below the bottom ledge, gave no positive sidetracking indications. Although some granite cuttings were noted, no sign of increase of load on the bit was indicated.

At this point, it was decided to set a whipstock above the fish at about 2800 m (9400 ft). The initial attempt was made with a 0.30-m (12-in.)-diam stock (that is the diameter at the lower solid end of the tapered, curved wedge). The whipstock hung up at about 2190-m (7200-ft) depth when run in the hole and subsequent reaming of the hole and trimming-off of some of the metal still did not allow this whipstock to be run in the hole. While waiting for a smaller diameter whipstock, another plug was placed and another sidetracking attempt was made.

A cement plug (H class, No. 7) was placed at 3011 m (9880 ft) and faced off to 2876 m (9500 ft). A gamma log was then run and an altered zone at 2856 to 2881 m (9370 to 9354 ft) identified. It was suggested that underreaming at that depth interval would provide a softer rock in which the PDM sidetrack drilling could cut a side-wall groove. Two underreamer runs were required to produce an enlarged section from 2833 to 2844 m (9293 to 9330 ft). A two-independent-arm caliper log was run and showed that a symmetric enlargement had been achieved. A special class J cement plug (No. 8) was placed and allowed to harden for 48 h. During this time the scheduled 64-arm caliper inspection was performed on the 34.0-cm (13-3/8-in.)-diam intermediate casing, and indicated that no new wear or damage had been sustained.

This plug was cored and showed a fairly high compressive strength, but also indicated that there were some mixing problems because distinct inhomogeneities were present in the cores. Two PDM (Dyna-Drill) runs were made with 22.2-cm (8-3/4-in.)-diam TCI bits and two with a special diamond sidetracking bits. The drilling rates were held to 0.3 m/h (1 ft/h). The second diamond-bit run started to show some signs of granite cuttings after 9 h of working up and down on the side wall of the underreamed zone. A three-cone TCI bit 22.2-cm (8-3/4-in.)-diam was then run in on a PDM and drilled with some signs of granite cuttings, but the cone tips were dropped and had to be fished with a magnet run. A second bit run with an 21.2-cm (8-3/8-in.) diamond bit and PDM drilled with load on bit and appeared to be sidetracked. Cuttings showed considerable granite, and the next run drilled 13.1 m (43 ft) and it was judged to have sidetracked. A rotary build assembly was run in the hole but would not take weight on the bit without drilling very rapidly, and therefore after only 1.2 m (4 ft) of drilling, another PDM was picked up and oriented with an EYE steering tool to continue sidetracking. However, after 5.8 m (19 ft), it was concluded that the sidewall grooving had not actually resulted in a sidetrack. The cement was drilled out to a depth of 2896 m (9500 ft) and a 27.3-cm (10-3/4-in.)-diam whipstock was prepared to be cemented in.

On day 283, after a temperature survey and appropriate cooling program, the second whipstock was run in with the wedge angle set to drill off at about 40°E of the high side of the hole, and successfully cemented. To assure a good set-up the cement was allowed to cure for four days while drill-pipe inspection, a thickness survey of the 13-3/8-in. casing and hardbanding of

drill pipe was performed. The cement was tagged at 2781 m (9123 ft) and drilled with a 31.1-cm (12-1/4-in.)-diam mill tooth bit in hard cement to 2825 m (9270 ft). A core was taken and then the cement faced off just above the underreamed zone at 2835 m (9300 ft).

While drilling out the cement above the whipstock the bit encountered some junk (high-chromium steel), object(s) that were perhaps 1 m (3 ft) long. These object(s) required two runs with 21.9-cm (8-5/8-in.)-diam tapered and flat-ended mills and two magnet runs upon the approach to whipstock top at 2879 m (9444 ft). On day 299 the drill pipe twisted off in a collar connection, but the BHA was fished out promptly.

On day 302 a 31.1-cm (12-1/2-in.)-diam rotary assembly drilled down the length of the whipstock without problems. Two more magnet runs cleared the metal from the hole and on day 302, a 31.1-cm (12-1/4-in.)-diam TCI bit and a slick assembly drilled 2.4 m (8 ft) with clear indications of granite cuttings and therefore a 31.1-cm (12-1/4-in.)-diam inclination build assembly was run. On day 305 this building assembly drilled 296 m (97 ft) and verified by drilling rate, i.e., a rate of penetration 2.4 to 2.7 m/h (8 to 9 ft/h) with  $200 \times 10^3$  N (45 000 lb<sub>f</sub>) bit weight, that granite was being drilled. Therefore, the sidetracking operations were complete. They had consumed 101 days.

The first valid survey below the whipstock was at 2900 m (9516 ft) and indicated 24°N73°E. (The steel in the whipstock and 10 m (30 ft) long tail-pipe anchor influenced the compass readings above that depth). This caused some concern since it seemed to imply that the drill-off from the whipstock may have been to the left, or west side of the hole, instead of the top and east (right) side as planned. It was decided to continue to drill to the next drill-pipe connection, 2913 m (9558 ft) and then pull the bit, replace the rig BOP stack, and order out a magnetometer proximity tool to determine range and distance from the sidetracked hole to the whipstock. The MINIRANGE tool (Jenson, Inc., Austin, TX) is designed to do such proximity evaluations. A second survey at 2901 m (9518 ft) had a confirming trajectory element of 24°N73°E.

The MINIRANGE tool indicated at 2893 m (9491 ft) that the direction from the old EE-3 hole (the whipstock tail pipe) to the newly drilled borehole was N90° ±5°E and the distance was 76 ±1.5 cm (30 ±6 in.). A multishot gyro survey was also run across the whipstock interval to confirm the change in

direction of the new hole relative to the whipstock and the old EE-3 borehole. A directional drilling run with a PDM and the EYE steering tool was then made. The run consisted of 22 m (73 ft) and the steering tool indicated an inclination increase of 1° and a turn to the east of 7.5°. A build assembly with a six point near-bit reamer was then picked up and drilled ahead to 2962 m (9718 ft). A single-shot survey on the next rotary drilling build assembly yielded survey readings of 24-1/2°N 78°E at 2923 m (9753 ft) and 24-3/4°N 77°E at 2988 m (9805 ft).

The next few hundred feet of drilling were critical as the trajectory data indicated that the two holes could intersect. Attempts were therefore made to run another multishot gyro survey and a tandem magnetic multishot survey across the whipstock and into the newly drilled borehole. Instrument and operational problems plagued these surveys. Only one of the tandem multishot magnetic surveys was considered valid, and it generally confirmed the MINI-RANGE proximity tool data, so the decision was made to drill ahead with a build assembly. The conclusion was that the new hole would miss the old EE-3 borehole trajectory and no intersection would occur.

#### E. Continuation of Directional Drilling

The next 30 days were concentrated on orienting the EE-3 borehole properly above EE-2, establishing an inclination of 35°, and establishing a target trajectory vector for the EE-3 borehole that would be parallel to that of EE-2 and at the desired depth interval, i.e., 3230 to 3290 m (10 600 to 10 800 ft). Only about 300 m (1000 ft) of drilling remained to accomplish these objectives.

Using appropriate building assemblies, and six directional drilling runs with the high temperature MEI 19.7-cm (7-3/4-in.)-diam turbodrills, this section of the hole was completed. These 30 days included six days used for drill-pipe inspection, hard banding, and running of a 64-arm-caliper inspection log of the 34.0-cm (13-3/8-in.)-diam casing. On day 349, at a depth of 3289 m (10 791 ft), the hole diameter was reduced to 12.2-cm (8-3/4-in.)-diam by the drilling of a 6.0-m (20-ft) long section with a 25.1-cm (9-7/8-in.)-diam bit. The resulting trajectory elements for EE-3 in this reduced diameter transition section were determined to be very close to those planned.

#### F. EE-3 Trajectory at Hole-Diameter Reduction

At a TD of 3290 m (10 806 ft), TVD 3200 m (10 504 ft), a single-shot survey indicated 34-3/4°N 54°E, and that vector compared favorably with the

borehole section below on the EE-2 trajectory that had the elements of a MD of 3526 m (11 568 ft), TVD 3458 m (11 344 ft), at 34-1/2°N 58°E.

These two points are plotted on Figs. 1 and 2 and indicate the relative positions and orientations of the two wells at these points. The region below these transition sections of the two wells is the reservoir portion of the HDR system, which is the objective of the EE-2/EE-3 drilling campaign.

#### G. Drilling the 22.2-cm (8-3/4-in.)-Diam Hole

The following 93 days were spent drilling the 22.2-cm (8-3/4-in.)-diam hole inclined at 35°. The drilling plan called for single-shot surveys every 20 m (60 ft), drilling with hold or build assemblies, and (by close monitoring of trajectory results) use of directional drilling to control the course of EE-3 within the required tolerances.

The drilling operations extended from day 349 to 443 when TD was achieved. This time interval was extended considerably due to several problems. The most troublesome was an extended fishing operation of 45 days duration. Problems were also encountered when H<sub>2</sub>S formation was detected in the drilling-fluid reserve pits.

The first 8-3/4-in.-diam bit run was initiated at 3295 m (10 811 ft) and drilled steadily with a BHA designed to hold the inclination angle. After 24 m (309 ft) the slick-wire unit used to run the single-shot surveys failed and upon tripping out, while pulling wire, the drill string became jammed at a depth of 1918 m (6300 ft) in the 31.1-cm (12-1/4-in.)-diam hole. Fishing operations for the slick wire and unjamming the BHA took four days. The diagnosis was that a "keyseat" had formed in this zone, and the 17.1-cm (6-3/4-in.)-diam coupling on the drill string had worn a vertical groove into the borehole side wall sufficiently deep to jam the 17.1-cm (6-3/4-in.)-diam bodies of the drill collars or reamers in the 22.2-cm (8-3/4-in.)-diam BHA. When the BHA was on the rig floor, deep scrape marks were found only on the top of the topmost three-point reamer body, lending support to the theory of a keyseat. The keyseat zone was drilled and reamed out. A string reamer was also included on the next BHA to continue the reaming during the next bit run. A moderately strong rotary build assembly was used to drill to 3491 m (11 454 ft) and a single-shot survey showed 33-1/4°, N50°E.

On day 357 the drill string was laid down for inspection and the second string picked up. It had been decided that it was a significant time and cost saving to have a second string of drill pipe on hand so that drilling could

proceed while inspection was accomplished. The drill pipe consisted of about 100 joints [approximately 1000 m (3000 ft)] of E-grade drill pipe on the bottom of the string, and some 250 joints of S-grade, high-strength pipe in the upper portion. This arrangement placed the more fatigue-resistant E-pipe in the higher temperature, lower portion of the string where high-fatigue loads would be expected. The high-strength pipe in the upper portion was placed where the larger pulling loads were applied. The string weight at this time was about 119 500 kg (250 000 lb<sub>m</sub>), requiring a pulling force of  $1.113 \times 10^6$  N (250 000 lb<sub>f</sub>). The S-grade pipe was needed since drag of  $4.5 \times 10^5$  N (100 000 lb<sub>f</sub>) in excess of pipe weight was frequently experienced.

A build assembly was next run in the hole to correct the loss in inclination experienced by the previous bit run, but after only 43 m (141 ft) and two surveys, the BHA built 1-1/2° in 20 m (67 ft) and 2-1/2° in 42 m (137 ft). Drilling to a depth of 3631 m (11 914 ft), a survey indicated 36°N49°E. It was concluded that downhole-motor corrections would be required because the rotary drilling was continuing to drift too rapidly toward the left (north).

While a reaming assembly was being run to bottom, a piston rod on one of the drilling-fluid circulating pumps broke and suspicious-looking corrosion was inspected by a drilling-fluid field chemist (NL-Treating Chemicals). Hydrogen sulfide (H<sub>2</sub>S) was detected in the break, scale on the drill pipe, and dissolved in the drilling fluid. This condition required that a bactericide be used to treat the solids in the bottom of the pits and that the level of dissolved H<sub>2</sub>S in the fluid and the total sulfur\* level in the fluid be reduced.

The first directional correction in the 22.2-cm (8-3/4-in.)-diam borehole was made on day 363 with a 7.6-m (25-ft) run with the smaller 13.7-cm (5-3/8-in.)-diam high-temperature MEI turbodrill. A low bit load of  $2.2 \times 10^4$  N (5000 lb<sub>f</sub>) was used. The run was terminated when the bit apparently "locked up." Inspection of the bit indicated that the turbo-drill had spun off bottom and ground severe flats on the bit cones and terminated the run. The following reaming and drilling assembly with a hold BHA configuration got stuck twice as the lubricity of the drilling fluid had been lost due to the addition of the sulfur reducing chemicals to the reserve pits. The following drilling assembly also experienced very high torque and drag as reaming and drilling were attempted. Drilling to 3682 m (12 079 ft) was accomplished however. A test

\*An ammonium bisulfite system was being used for corrosion control. 8

bit run was then made to evaluate the drilling-fluid conditions and a very high torque and drag force of  $5.34 \times 10^5$  N (120 000 lb<sub>f</sub>) over string weight were present. The drilling-fluid specialists advised cleaning out the borehole, rig tanks, and reserve pits. The west reserve pit was emptied and recharged and the annulus was flushed. Drilling with the west reserve pit alone was initiated while the east pit was emptied and dredged out. The drill-pipe inspection of the original string indicated the presence of one cracked pin on the E-grade and eight cracked pins on the S-grade pipe.

Drilling continued to a depth of 4211 m (12 100 ft) with a survey result of 36°N 53°E. Two more directional runs with turbodrills brought the depth to 3833 m (12 576 ft) and had corrected the azimuth to 37°N 70°E. At this point the west reserve pit was channeling and rig-pump-suction temperature had reached 65°C (130°F) and some cuttings were being sucked into the rig circulating pumps. A four-day halt in drilling operations was necessary while the east reserve pit was cleaned out with a dragline, front loader, and vacuum trucks.

An earthen dam was placed across the middle of the east pit. These two separate pits thus formed would be used as the cuttings-settling and fluid-cooling system, and the western pit would be abandoned. The pits were now renamed numbers 1, 2, and 3, from west to east and pit No. 1 was abandoned.

On day 383, the chemical analysis of pit No. 2 showed less than 5 ppm H<sub>2</sub>S and a pH of 10.5 so drilling operations were resumed with a packed, inclination holding assembly. Drilling progressed smoothly with some high-torque and tight-hole conditions encountered. These troublesome conditions decreased as the concentration of the lubricity additive increased and the hole cooled down. At a depth of 3930 m (12 895 ft), the trajectory survey gave 36-3/4°N 66°E, and a second directional correction was required. Wireline, cable head, and turbodrill problems plagued this operation. The special high-temperature EYE steering tool equipment was sent from California. While awaiting these instruments, a rotary hold assembly was run. Drilling continued for three days and reached a depth of 4074 m (13 365 ft). A survey at 4061-m (13 324-ft) depth gave 36°N 73°E and indicated that the trajectory was drifting slowly toward the north and away from the desired N80°E orientation.

The accumulated 100-h rotating time on the drill string dictated that it should be laid down and inspected. The new string was picked up, and a 64-arm caliper survey inspection of the 34-cm (13-3/8 in.)-diam casing showed that no

additional wear had occurred. The new wireline was found to be spliced and had allowed water entry so the scheduled directional run was delayed and a packed, holding BHA was picked up.

It was necessary to start reaming at a depth of 4048 m (13 280 ft). At a bit depth of 4063 m (13 330 ft), the drill string twisted off with the bit 10 m (35 ft) above bottom. No excessive torque or drag had been experienced, and the string had just been inspected.

This twist-off had occurred at 1860 m (6102 ft) and was a result of a failure in a pin thread. The clearing of the fish required 45 days, and was finally completed on day 439.

Successful removal of the drill pipe and BHA required a progression of steps. The initial free-point survey indicated that the drill string was essentially free down to the BHA. Problems were encountered with all free-point and back-off shot tools due to the high temperatures. The approach to the fishing job was to back off and remove the upper part of the string, lay it down, and replace it with S-pipe. It was necessary to perforate the HWDP above the BHA in order to establish the circulation needed to cool the hole so that back-off shots would work.

After eight days, two joints of HWDP had been backed off, the E-pipe all removed, and a fishing assembly with heavy fishing jars was run into the hole to grapple the fish. The recovered E-pipe was only slightly bent, which was an encouraging sign because it indicated that the BHA might not have fallen very hard and was probably not jammed in the bottom of the hole. However, the subsequent jarring did not move the fish. This was very likely due to the cushioning effect of the remaining 25 joints of HWDP above the BHA. It was then necessary to remove as much as possible of the HWDP.

Back-off attempts failed, so a pipe-severing service (Jet Research Center, Houston, Texas) was called in to cut the HWDP. A premature firing occurred at 3989 m (13 088 ft), but did not cut the HWDP; apparently the detonator was affected by the temperature. The second jet severing tool fired properly at 3948 m (12 943 ft) down in the fifth joint of HWDP.

While tripping the fish and string out of the hole, the string jammed in the keyseat at 1920 m (6300 ft) but was cleared quickly, easily, and cleanly. The keyseat was reamed again with a 22.2-cm (8-3/4-in.)-diam reaming assembly run above a flat-ended mill with two three-point reamers back-to-back. The milling assembly encountered tight-hole conditions, so a reaming assembly was

run in. However, it became evident that the problem was drilling-fluid related, not a tight-hole condition, because the reaming apparently did not improve the drag situation. The milling BHA was circulated and washed to bottom on day 412 and the milling run ground off about 2 m (5 ft) of the HWDP, indicating that the tool joint (coupling) had been reached in the milling run.

This fact was confirmed by the wear on the mill. The overshot grapples would not hold the fish so another milling run was conducted, but the grapples still would not hold. During a third milling run, the drill string twisted off at about 1585 m (5200 ft) and required a grapple overshot to remove the milling assembly on day 419.

Chemistry check of the No. 2 reserve pit indicated that 40 ppm of  $H_2S$  was present (10 ppm  $H_2S$  is considered a critical level). A very large increase had occurred overnight. The rig pits were filled with clean water and the hole flushed clean. Grade-E drill pipe was used to avoid exposing the high-strength grade-S pipe to the high  $H_2S$  level.

Drill-string change out and inspection were performed on day 420 of the operations. Meanwhile, the drilling-fluid field engineers and chemists were attempting to clean up and control the  $H_2S$  levels in the No. 2 and 3 pits. Also the keyseat at 1980 to 2040 m (6500 to 6700 ft) was reamed again since the last milling run had indicated some tightness as the assembly was pulled up through this interval. The rig tanks were used for circulating fluid because the reserve pits were still too high in  $H_2S$  level and the bacteria were very active in them. The plan was to inoculate the bottom slime of pit No. 2 with a strong biocide using a jet nozzle and hose arrangement and to abandon pit No. 3. This procedure occupied three days.

Two final milling runs were conducted on days 423 and 424. The milling had cleaned the coupling and exposed the 11.4-cm (4-1/2-in.)-o.d. section of the HWDP. On day 427, after problems of setting overshot grapples were solved, the fish was pulled\* from the hole. Next a series of junk baskets and magnet runs was made to clear the large number of chunks of steel found on bottom. Ten magnet and junk-basket runs were required, interspersed with milling, tooth-bit, and carbide-insert-bit stirring runs to clean out the

\*The hydraulic drilling jars in the fish were operating effectively, in tandem with fishing jars, after 35 days exposure to the 260°C (500°F) static bore-hole temperature.

bottom of the hole. These clean-out operations consumed nine days before a final mill-tooth bit run assured that clean bottom of the hole was clean.

Drilling of the 22.2-cm (8-3/4-in.)-diam hole resumed on August 1, 1981. A packed, hold assembly was run in the hole and drilled to a depth of 4113 m (13 494 ft) when the drill string twisted off at a depth of 2951 m (9683 ft). The failure was again found to be a thread in a pin. Fishing this time occupied only one day because the BHA was on bottom drilling when the twist-off occurred. The grapple latched onto the box on the first try and the fishing jars loosened the fish with little effort.

Drilling with a packed-hole assembly continued, and the drill string was inspected joint by joint on the rig floor as it was run in the hole. Two pins with cracks in the threads were found, rejected, and laid down.

Drilling proceeded with only one further problem. The drilling jars washed out and leaked so a trip was required to replace the jars. Four days of steady drilling continued until the bit torqued up and stopped drilling at 4084 m (13 933 ft). It was decided this was to be the last bit run and the TD of the EE-3 well. The last bit had drilled 134 m (439 ft) in 34.5 h of drilling at a rate of penetration of 4.8 m (12.7 ft/h). The TD was about 150 m (500 ft) short of the planned 4.39 km (14 400 ft) depth.

A final single-shot survey was made at 4225 m (13 861 ft) and gave a trajectory element of 36-1/2°N 73°E. The borehole had started to drift back to the east slightly and the horizontal TD position of EE-3 projected to the location of the TD of EE-2, below, was estimated to be 60 m (180 ft) north.

#### H. Borehole Cleaning, Casing Running, and Cementing

The final 18 days of the EE-3 drilling operations were spent running the 24.4-cm (9-5/8-in.)-o.d. production casing, first-stage cementing, tensioning the casing, and cementing the second stage. And finally, drilling out cement, running cement bond and neutron-gamma logs over the cased interval, and performing a flush and cleaning operation for the open-hole reservoir section of the hole.

The initial cleaning consisted of running to TD of the well with a double set of scrapers above a 22.2-cm (8-3/4-in.)-diam bit. This BHA was then short tripped up to the 31.1-cm (12-1/4-in.)-diam transition point at 3292 m (10 800 ft) and then returned to TD. The reservoir portion of the hole was circulated and then its contained fluid displaced with a 2% detergent solution intended to soak in place until the casing was run and the final cleaning (that was

planned following the casing, cementing, and tensioning procedures) was performed.

A temperature survey, which included two dwells\* to obtain temperature recovery data, was performed by the Los Alamos instrumentation group. The temperature at 3353 m (11 000 ft) was recorded as 197.81°C with a recovery rate of 0.6°C/h. A Schlumberger borehole-geometry gauge (a two-independent-arm-caliper tool) was also run. These measurements were used to relay projected temperature levels to the cementing engineers at Dowell for sample testing and retarder additions, and to provide data for annulus volume calculations for cement-quantity determinations. A cement plug was set below the projected production casing shoe depth. This required the placement of two plugs, because the first plug flowed down into the 22.2-cm (8-3/4-in.) hole below. A compensated neutron-gamma log was then run (by Schlumberger) to provide for a before-and-after evaluation of possible water pockets left during the cementing.

The high strength (P-110 grade, 47 lb<sub>m</sub>/ft) casing was inspected both for body defects and for imperfections in threads and couplings. A total of 15 (5.3%) joints was rejected. This premium-grade-connection casing (Valercor, VAM type) was selected to avoid the potential failure modes of connection separations and collapse during the tensioning and heat-extraction-production phases, respectively, in the life of the casing.

The second cement plug was set and a preliminary flush (pH=12.2) was performed to clean the hole of "black gunk" that had been adhering as a heavy coating to all logging tools and the BHA that were removed from downhole. A triple tally of the casing was performed as it was placed on the pipe racks.

The second cement plug was faced off to a depth of 3170 m (10 400 ft). The casing jacks with sub-base and supports, were set on the cellar floor and adjusted. The 263 joints of casing were run into the hole without any difficulties. Two additional joints of casing were rejected (6% total rejection) when the torque-turn monitoring system indicated that they had failed to make up properly. The casing joint below the topmost joint had stress gauges installed so that the loads below the wellhead slips could be monitored during hang-off, cementing, flushing, and tensioning operations. This joint and the

\*A hold at one vertical station to record the temperature time recovery at that depth.

landing joint were selected to be a lower carbon steel and of heavier weight (L-80 grade at 53.5 lb<sub>m</sub>/ft) so that they would accommodate the gripping action of the wellhead slips and could be field welded during subsequent wellhead attachment and sealing.

The first-stage cementing was then performed. The formulation, Table II, was designed to have a preflush of water and of pozzolan (fly-ash) material, followed by a special H-class, high-temperature cement mixture designed to yield a high-strength and low-permeability cement. This first stage was designed to be pumped, with 25% excess provided, to fill the annulus for 1000 m (3000 ft) from the bottom. At the top of the first stage at a depth of 2219 m (7281 ft), a stage collar cementing valve (DV tool) had been installed in

TABLE II

CEMENT FORMULATIONS AND VOLUMES FOR THE EE-3 9-5/8 IN. PRODUCTION CASING

Stage 1

|              |                                                                                                                                                                                                                       |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preflush     | 20 bbls H <sub>2</sub> O followed by 350 sacks pozzolan (fly-ash), with 1.2% D-28 retarder.                                                                                                                           |
| Slurry       | 950 sacks class-H cement with 144 bbls H <sub>2</sub> O, 40% silica flour and 40% silica sand (100 mesh) with 0.75% D-65 turbulence enhancer, 2% D-20 bentonite, 0.2% L-10 retarder catalyst, and 1.2% D-28 retarder. |
| Displacement | Displaced with 701 bbls H <sub>2</sub> O (760 bbls design).                                                                                                                                                           |

Stage 2

|              |                                                                                                                                                                                                                                        |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preflush     | 20 bbls H <sub>2</sub> O                                                                                                                                                                                                               |
| Slurry       | 1200 sacks class-H cement with 1 ft <sup>3</sup> /sack perlite, 191 bbls H <sub>2</sub> O, 2% D-28 retarder, 20% silica flour, 20% 100 mesh silica sand, 0.75% D-65 turbulence enhancer, 2% bentonite and 0.2% D-46 antifoaming agent. |
| Displacement | Displaced with 517 bbls H <sub>2</sub> O.                                                                                                                                                                                              |

the casing string. This valve was opened after the cement was placed, and the excess cement in the annulus above the valve flushed out and displaced to the surface.

On day 453, nine days into the casing running and cementing operations, the 72-h period of waiting on the first-stage cement ended. A temperature survey was run by the Los Alamos instrumentation personnel. The temperature at the DV tool at a 2219 m (7282 ft) depth was 138°C with a rebound rate of 0.1°C/h. Testing and mixing of the second stage cement (Table II) was performed by Dowell. The Dowell fracturing truck (used to pressurize the hydraulic jacks), high-pressure plumbing, and all procedures were double checked, and a hydrostatic test run to 103 MPa (15 000 psi). The wellhead slips were adjusted and the jacks were reciprocated to work the tension down to about 1964 m (6444 ft) as determined by the observed stretching of the casing.

On day 455, the second-stage cementing job was completed. The volume of the slurry (Table II) had been carefully calculated from the caliper log to just fill the annulus to a depth of 1000 m (3000 ft), which was 1305 m (4282 ft) above the top of the first stage. The design was to provide about 150 m (500 ft) of open formation below the shoe of the 34.0-m (13-3/8-in.)-diam intermediate casing string. This should prevent any high pressures from building up in the upper annulus between the two casing strings. Figure 7 records the final well configuration for EE-3 with the casing and cementing details and depths recorded.

The second-stage cement mixing operations met with some difficulty when the first batch of lightening agent (perlite) would not mix into the slurry. This batch, and the second, were pumped with the perlite addition by running in on the fly into the hose line. The closing (bumper) plug was dropped and the stage cementing valve (DV tool) closed after a precise displacement with water.

The pretension of the upper part of the casing was then accomplished. Three loading cycles were sufficient to work the tension down and the final cycle to  $3.94 \times 10^6$  N (885 000 lb<sub>f</sub>) stretched the casing 2.8 m (8.1 ft). The slips were set and the top joint was cut off 1.5 m (5 ft) above the wellhead.

The plugs, DV tool, 93 m (275 ft) of cement, and the cementing shoe were drilled out with two trips with 21.6-cm (8-1/2-in.) mill-tooth bit. Junk baskets, run in the BHA above the bit, were retrieved with pieces of very hard

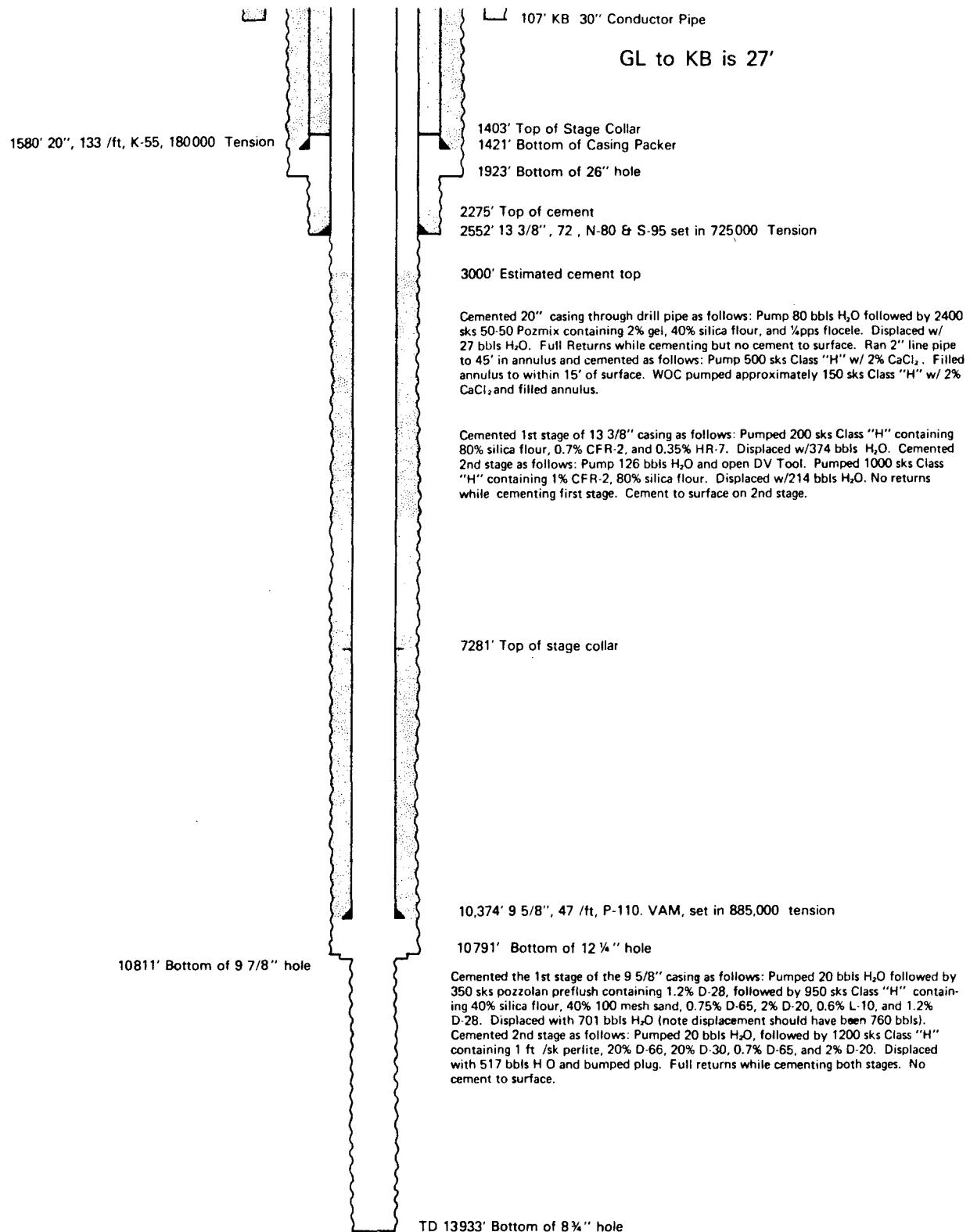



Fig. 7.  
Wellbore diagram for EE-3.

cement and the cuttings were in the form of hard chips verifying that a good initial set of the first-stage cement had occurred.

Following high-viscosity gel sweeps to clean out the cement cuttings thoroughly, the cement plugs below the casing shoe were drilled out from 3169 m to 3426 m (10 397 to 11 241 ft). Soft cement, with considerable black gunk (the thermally degraded lubricating agent), was encountered so the hole was circulated again with a gel sweep. The cement-bond log and postcementing run of the compensated-neutron and gamma-density log were accomplished on day 459. The final cleaning consisted of washing and reaming down to TD with a 21.6-cm (8-1/2-in.)-diam bit, two circulating volumes of high-alkaline (pH=12.5) flushing solution and a final displacement with clean water.

At 6:00 a.m. August 25, 1981, the drill pipe had been laid down, the flow line cut off, the conductor pipe removed from the wellhead, and Brinkerhoff Signal Drill Rig 56 was released.

### III. CONTROLLED-TRAJECTORY DRILLING

The planned controlled-trajectory drilling of EE-3 and the formation of the reservoir section above EE-2 required a high-precision application of directional drilling technology. The wellbore path of the injection well EE-2 had been established,<sup>2,11</sup> with the completion of drilling of that well on May 12, 1981. The directional drilling operations and equipment used in well EE-2 had established<sup>4-7</sup> the basic approach and had dictated the directional drilling procedures required to direct and control the trajectory of EE-3.

Various equipment items had been tested and two definite temperature limits were established. At temperatures less than about 200°C (400°F), PDMs could be used. This corresponds to depths less than about 3 km (10 000 ft) at Fenton Hill. These downhole drilling motors are constant-volume-displacement devices, and therefore bit rpm is controlled directly by the flow rate of the drilling fluid. The tools are widely available on a rental basis. Downhole bit reaction torques are reproducible and familiar to directional drilling engineers. This has the advantage of providing a relatively reliable preset of the reaction twist of the drill string. This often allows the directional control to be performed with single-shot surveys run between motor runs. Therefore PDM directional drilling may not necessarily require the use of the much more expensive continuous-readout directional-steering tool instrumentation.

At temperatures above 200°C (400°F) two sizes of all-metal, high-temperature rated turbodrills were available. The PDMs have elastomer stators and radial bearings and therefore are inherently temperature limited by the performance of these temperature sensitive components. The 19.7-cm (7-3/4-in.)-diam turbodrills were used in the directional drilling of EE-2.<sup>9</sup> A total of 21 directional runs was made in the 31.1-cm (12-1/4-in.)-diam portion of that well.<sup>10</sup> Two smaller 13.6-cm (5-3/8-in.)-diam turbodrills were tested at the TD of EE-2 and in the TerraTek Drilling Research Laboratory (Salt Lake City, Utah). These tools were designed to perform directional drilling in the 22.2-cm (8-3/4-in.)-diam borehole. Both sizes of MEI turbodrills were designed with specific operating characteristics to match the torque, bit weight, and power capacity required to drill granite with TCI three-cone rock bits of the sizes and types to be used in the Fenton Hill directional drilling operations.

A commercial firm (Scientific Drilling Controls, Irvine, California) had developed and successfully tested a high-temperature version of their EYE steering tool in the bottom portion of the EE-2 well. These tests had been performed during the trials of the smaller diameter MEI turbodrills.

The directional drilling strategy for EE-3 used downhole motor runs guided by a steering tool, that were alternated with rotary drilling assemblies intended to hold or build the inclination angle of the borehole trajectory. The downhole-motor runs were primarily used to change azimuth of the wellbore. The rotary assemblies were used to hold or build inclination, but primarily to drill hole, and secondarily to ream out an undergauge section or to ease a tight zone caused perhaps by a crooked hole created by previous directional runs.

#### A. Downhole Motor Directional Control

The 64 directional downhole motor runs are summarized in Table III. The typical BHAs used with these motor runs are listed on Table IV.

The planned KOP was 2010 m (6600 ft) and the wellbore was drilled initially with very tight-packed hole assemblies to the depth of 1964 m (6444 ft). The inclination built up steadily to 10° and drifted in the west-northwest direction. The drift experienced was very similar to that realized for the previous wells GT-2<sup>11</sup> and EE-1.<sup>12-14</sup> This drift apparently reflects the natural drilling characteristics of the granite in this depth interval. The first changes in azimuth were planned to be accomplished at low-inclination

TABLE III

## SUMMARY OF DIRECTIONAL DRILLING RUNS AND RESULTS FOR WELL EE-3

| Directional Drill Motor Run No. | Drill Motor <sup>a</sup> | Steering Tool Service <sup>b</sup> | Bent Sub Angle | Measured Depth <sup>c</sup> m (ft) | Borehole Trajectory | Distance Drilled m (ft) | Remarks                                                                                                |
|---------------------------------|--------------------------|------------------------------------|----------------|------------------------------------|---------------------|-------------------------|--------------------------------------------------------------------------------------------------------|
| 1                               | BPDM                     | SS                                 | 2°             | 1981 (6520)                        | 9 1/2°N, 53°W       | 23 (76)                 | Problems with motor                                                                                    |
| 2                               | BPDM                     | SS                                 | 2°             | 2027 (6649)                        | 14 3/4°N, 54°W      | 39 (129)                | Angle building excessively                                                                             |
| 3                               | BPDM                     | EYE                                | 2°             | 2075 (6809)                        | 14 3/4°N, 37°W      | 30 (99)                 | Replace bit                                                                                            |
| 4                               | DDPDM                    | EYE                                | 2°             | 2083 (6868)                        | 14 1/2°N, 20°W      | 17.9 (59)               | Plugged bit on connection (no float)                                                                   |
| 5                               | DDPDM                    | EYE                                | 2°             | 2168 (7114)                        | 13°N, 23°E          | 64.3 (211)              | Motor quit, bit very worn, 2.5 cm (1 in.) undergauge                                                   |
| 6                               | BPDM                     | EYE                                | 2°             | 2216 (7269)                        | 10 1/2°N, 43°E      | 27.4 (90)               | Motor stalled                                                                                          |
| 7                               | BPDM                     | EYE                                | 2°             | 2216 (7269)                        | ---                 | 0 (0)                   | Bit pinched and motor bent, hit ledge going into hole                                                  |
| 8                               | NPDM                     | EYE                                | 2°             | 2236 (7337)                        | 10 1/2°N, 43°E      | 20.7 (68)               | Bit worn                                                                                               |
| 9                               | NPDM                     | EYE                                | 2°             | 2264 (7427)                        | 8 3/4°N, 62 1/2°E   | 27.4 (90)               | Bit worn                                                                                               |
| 10                              | NPDM                     | EYE                                | 2°             | 2281 (7482)                        | 7°N, 47°E           | 16.8 (55)               | Bit worn, bit 13 mm (1/2 in.) undergauge                                                               |
| 11                              | DDT7D                    | EYE                                | 1 1/2°         | 2395 (7856)                        | ---                 | 0.3 (1)                 | Steering tool failed, test run of turbine                                                              |
| 12                              | DDPDM                    | EYE                                | 1 1/2°         | 2402 (7883)                        | 15 3/4°N, 51°E      | 8.2 (27)                | Dull bit                                                                                               |
| 13                              | DDPDM                    | EYE                                | 1 1/2°         | 2409 (7905)                        | 15°N, 47°E          | 6.7 (22)                | EYE quit, motor and bit worn out                                                                       |
| 14                              | DDPDM                    | EYE                                | 1 1/2°         | 2420 (7940)                        | 16°N, 51°E          | 10.7 (35)               | Motor quit                                                                                             |
| 15                              | NPDM                     | EYE                                | 1 1/2°         | 2454 (8052)                        | 16 1/4°N, 59°E      | 34.1 (112)              | Bit locked up                                                                                          |
| 16                              | NPDM                     | EYE                                | 1 1/2°         | 2457 (8062)                        | ---                 | 3.0 (10)                | Could not orient due to torque                                                                         |
| 17                              | NPDM                     | EYE                                | 1 1/2°         | 2486 (8159)                        | ---                 | 28.0 (92)               | Bit cones loose                                                                                        |
| 18                              | NPDM                     | EYE                                | 1 1/2°         | 2490 (8170)                        | ---                 | 3.4 (11)                | Motor quit                                                                                             |
| 19                              | NPDM                     | EYE                                | 1 1/2°         | 2519 (8265)                        | 16 1/4°N, 87°E      | 28.9 (95)               | Bit locked up                                                                                          |
| 20                              | DDT7S                    | ---                                | ---            | 2562 (8407)                        | 17 1/2°N, 84°E      | 0 (0)                   | Tachometer not operative, motor not rotating, straight hole tool with stabilizer, test run of turbine  |
| 21                              | DDT7S                    | ---                                | ---            | 2562 (8407)                        | 17 1/2°N, 84°E      | 0 (0)                   | Could not get to bottom, reamed 27 m (90 in.), straight hole tool with stabilizer, test run of turbine |
| 22                              | NPDM                     | EYE                                | 1 1/2°         | 3011 (9879)                        | 25 1/2°N, 66°E      | 8.8 (29)                | Bit dull                                                                                               |
| 23                              | NPDM                     | EYE                                | 1 1/2°         | 3011 (9879)                        | 25 1/2°N, 66°E      | 0 (0)                   | Motor wouldn't rotate, reached temperature limit of PDMs                                               |

TABLE III (cont.)

| Directional Drill Motor Run No. | Drill Motor <sup>a</sup> | Steering Tool Service <sup>b</sup> | Bent Sub Angle | Measured Depth <sup>c</sup> m (ft) | Borehole Trajectory | Distance Drilled m (ft) | Remarks                                                |
|---------------------------------|--------------------------|------------------------------------|----------------|------------------------------------|---------------------|-------------------------|--------------------------------------------------------|
| 24                              | DDT7D                    | EYE                                | 1 1/2°         | 3053<br>(10,017)                   | 24°N, 72°E          | 0<br>(0)                | Washout in drill string                                |
| 25                              | DDT7D                    | EYE                                | 1 1/2°         | 3053<br>(10,017)                   | 24°N, 72°E          | 0<br>(0)                | Turbine would not rotate                               |
| 26                              | MEIT7                    | EYE                                | 1 1/2°         | 3083<br>(10,116)                   | 27°N, 70°E          | 30.4<br>(99)            | Bit undergauge, build angle attempt                    |
| 27                              | MEIT7                    | EYE                                | 1 1/2°         | 3085<br>(10,123)                   | 27°N, 70°E          | 2.1<br>(7)              | Turbodrill quit, build angle attempt                   |
| 28                              | MEIT7                    | EYE                                | 1 1/2°         | 3094<br>(10,150)                   | 27°N, 67°E          | 8.2<br>(27)             | Bit locked up, build angle attempt                     |
| 29                              | MEIT7                    | EYE                                | 1 1/2°         | 3110<br>(10,204)                   | 27 3/4°N, 68°E      | 16.5<br>(54)            | Bit undergauge, build angle attempt                    |
| 30                              | MEIT7                    | EYE                                | 2°             | 3150<br>(10,334)                   | 27 1/4°N, 51°E      | 9.4<br>(31)             | Motor quit, build angle attempt                        |
| 31                              | MEIT7                    | EYE                                | 2°             | 3163<br>(10,378)                   | 24 3/4°N, 66°E      | 13.4<br>(44)            | Dropping angle, steering tool seated 170° from key     |
| 32                              | MEIT7                    | EYE                                | 2°             | 3175<br>(10,417)                   | 24 3/4°N, 66°E      | 11.9<br>(39)            | EYE failed                                             |
| 33                              | MEIT7                    | EYE                                | 2°             | 3189<br>(10,463)                   | 24 3/4°N, 66°E      | 14.0<br>(46)            | Motor quit, radial bearing failed, build angle attempt |
| 34                              | MEIT7                    | EYE                                | 1 1/2°         | 3197<br>(10,489)                   | 24 3/4°N, 66°E      | 7.9<br>(26)             | Bit locked up, undergauge, 0.9 cm (3/8-in.)            |
| 35                              | MEIT7                    | EYE                                | 1 1/2°         | 3209<br>(10,528)                   | 26 1/4°N, 66°E      | 0<br>(0)                | Motor would not rotate, tight hole                     |

Motor Runs For Sidetracking Attempts

|       |       |     |                   |                |                               |              |                                                  |
|-------|-------|-----|-------------------|----------------|-------------------------------|--------------|--------------------------------------------------|
| 36/37 | DDPDM | EYE | f                 | 2981<br>(9780) | (26°N, 72°E) <sup>d</sup>     | 16.8<br>(55) | Time drilling, first two sidetracking attempts   |
| 38    | DDPDM | SS  | (2°) <sup>e</sup> | 2836<br>(9304) | (22 1/2°N, 72°E) <sup>d</sup> | 1.2<br>(4)   | Plugged BHA                                      |
| 39    | DDPDM | SS  | f                 | 2840<br>(9319) | (22 1/2°N, 72°E) <sup>d</sup> | 4.6<br>(15)  | Time drilled, motor stalled                      |
| 40    | DDPDM | SS  | f                 | 2842<br>(9323) | (22 1/2°N, 72°E) <sup>d</sup> | 1.2<br>(4)   | Time drilling, diamond bit                       |
| 41    | DDPDM | SS  | f                 | 2842<br>(9323) | (22 1/2°N, 72°E) <sup>d</sup> | 0<br>(0)     | Time drilling, sidetracking attempt              |
| 42    | DDPDM | SS  | f                 | 2843<br>(9329) | (22 1/2°N, 72°E) <sup>d</sup> | 1.2<br>(4)   | Time drilling, sidetracking attempt, diamond bit |

TABLE III (cont.)

| Directional Drill Motor Run No.                                                             | Drill Motor <sup>a</sup> | Steering Tool Service <sup>b</sup> | Bent Sub Angle    | Measured Depth <sup>c</sup><br>m (ft) | Borehole Trajectory           | Distance Drilled<br>m (ft) | Remarks                                             |
|---------------------------------------------------------------------------------------------|--------------------------|------------------------------------|-------------------|---------------------------------------|-------------------------------|----------------------------|-----------------------------------------------------|
| 43                                                                                          | DDPDM                    | SS                                 | f                 | 2846<br>(9339)                        | (22 1/2°N, 74°E) <sup>d</sup> | 3.0<br>(10)                | Time drilling, sidetracking attempt, lost cone tips |
| 44                                                                                          | DDPDM                    | SS                                 | f                 | 2860<br>(9382)                        | (23 1/2°N, 72°E) <sup>d</sup> | 13.0<br>(43)               | Time drilling, sidetracking attempt, bit dull       |
| 45                                                                                          | DDPDM                    | EYE                                | (2°) <sup>e</sup> | 2870<br>(9416)                        | (21 3/4°N, 71°E) <sup>d</sup> | 8.5<br>(28)                | Time drilling, sidetracking attempt                 |
| 46                                                                                          | DDPDM                    | EYE                                | f                 | 2864<br>(9396)                        | (21 3/4°N, 71°E) <sup>d</sup> | 26.2<br>(86)               | Time drilling, last sidetracking attempt            |
| <u>Directional Control 31.3 cm (12 1/4-in.) Hole</u><br>[Whipstock Set at 2878 m (9444 ft)] |                          |                                    |                   |                                       |                               |                            |                                                     |
| 47                                                                                          | DDPDM                    | EYE                                | 1 1/2°            | 2913<br>(9559)                        | 24°N, 73°E                    | 0.3<br>(1)                 | Motor failed and plugged bit                        |
| 48                                                                                          | DDPDM                    | EYE                                | 1 1/2°            | 2936<br>(9631)                        | 24°N, 75°E                    | 21.9<br>(72)               | Turn hole to east, avoid old hole                   |
| 49                                                                                          | DDPDM                    | EYE                                | 2°                | 2978<br>(9771)                        | 24 1/2°N, 78°E                | 12.9<br>(42)               | Turn hole to east, avoid old hole                   |
| 50/51                                                                                       | MEIT7                    | EYE                                | 1 1/2°            | 3117<br>(10,226)                      | 31 1/2°N, 74°E                | 0<br>(0)                   | Float failed, plugged two turbodrills               |
| 52                                                                                          | MEIT7                    | EYE                                | 1 1/2°            | 3123<br>(10,245)                      | 31 1/2°N, 72°E                | 5.6<br>(19)                | Eye wireline failed <sup>h</sup>                    |
| 53                                                                                          | MEIT7                    | EYE                                | 1 1/2°            | 3155<br>(10,352)                      | 28°N, 67°E                    | 29.6<br>(97)               | Pulled due to drop in inclination                   |
| 54                                                                                          | MEIT7                    | EYE                                | 2°                | 3189<br>(10,462)                      | 30 3/4°N, 57°E                | 18.3<br>(60)               | Light weight on assembly, good run                  |
| 55                                                                                          | MEIT7                    | EYE                                | 1 1/2°            | 3245<br>(10,654)                      | 32°N, 56°E                    | 24.7<br>(81)               | Good run                                            |
| 56                                                                                          | MEIT7                    | EYE                                | 2°                | 3289<br>(10,791)                      | 34°N, 55°E                    | 17.4<br>(57)               | Both floats failed                                  |
| <u>Directional Control 22.2 cm (8 3/4 in.) Hole</u>                                         |                          |                                    |                   |                                       |                               |                            |                                                     |
| 57                                                                                          | MEIT5                    | EYE                                | 1 1/2°            | 3643<br>(11,951)                      | 35 1/4°N, 53°E                | 7.6<br>(25)                | Dull bit                                            |
| 58                                                                                          | MEIT5                    | EYE                                | 1 1/2°            | 3695<br>(12,123)                      | 36°N, 53°E                    | 7.3<br>(23)                | Dull bit                                            |
| 59                                                                                          | MEIT5                    | EYE                                | 1 1/2°            | 3714<br>(12,186)                      | 35 1/2°N, 59°E                | 19.2<br>(63)               | Pulled for survey                                   |
| 60                                                                                          | MEIT5                    | EYE                                | 1 1/2°            | 3752<br>(12,310)                      | 35°N, 72°E                    | 36.3<br>(119)              | Bit locked up, good run                             |
| 61                                                                                          | MELT5                    | EYE                                | 1 1/2°            | 3950<br>(12,961)                      | 36°N, 73°E                    | 20.1<br>(66)               | Radial bearing cage twisted                         |

TABLE III (cont.)

| Directional Drill Motor Run No.                                                              | Drill Motor <sup>a</sup> | Steering Tool Service <sup>b</sup> | Bent Sub Angle | Measured Depth <sup>c</sup><br>m (ft) | Borehole Trajectory | Distance Drilled<br>m (ft) | Remarks                                      |
|----------------------------------------------------------------------------------------------|--------------------------|------------------------------------|----------------|---------------------------------------|---------------------|----------------------------|----------------------------------------------|
| <u>Directional Control 31.3 cm (12 1/4-in.) Hole<br/>[Whipstock Set at 2878 m (9444 ft)]</u> |                          |                                    |                |                                       |                     |                            |                                              |
| 62                                                                                           | MEIT5                    | EYE                                | 1 1/2°         | 3950<br>(12,961)                      | 36°N, 73°E          | 0<br>(0)                   | Bit pinched                                  |
| 63                                                                                           | MEIT5                    | EYE                                | 1 1/2°         | 3950<br>(12,961)                      | 36°N, 73°E          | 0<br>(0)                   | Eye tool failed                              |
| 64                                                                                           | MEIT5                    | EYE                                | 1 1/2°         | 3950<br>(13,365)                      | 36°N, 73°E          | 0<br>(0)                   | Eye tool failed, motor plugged while waiting |

<sup>a</sup>Key for downhole motion types:

BPDM = Baker Service Tools.

DDPDM = Dyna-Drill (Smith International).

NPDM = Navi-Drill (Christensen Oil Tools).

DDT7D = Dyna-Drill, 7 in. directional turbine.

DDT7S = Dyna-Drill, 7 in. straight-hole turbine.

MEIT7 = Maurer Exploring Inc., 7 in. turbine.

<sup>b</sup>MEIT5 = Maurer Exploring Inc., 5 3/8 in. turbine.

<sup>c</sup>SS = Single-shot orientation; EYE = Scientific drilling contents steering tool.

<sup>d</sup>Measured depth at end of run.

<sup>e</sup>BHA oriented to drill out ~40° east of high side of borehole.

<sup>f</sup>Run with Dynrlex Unit.

<sup>g</sup>Bent Housing Dyna Drill.

<sup>h</sup>Started running tandem float valves.

<sup>i</sup>Used high temperature float seals for remainder of runs.

TABLE IV  
TYPICAL DOWNHOLE MOTOR BHA USED IN EE-3

| Bit or Hole<br>Diameter<br>cm (in.) | Motor<br>Type              | Typical Assembly                                                                                                                                                   | Remarks                                                                                                                         |
|-------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 31.1<br>(12-1/4)                    | PDM                        | Motor, float sub, bent sub, orienting sub, 8-in. Monel drill collar, 10 8-in. drill collars, jars, 17 joints HWDP.                                                 | Used at depths less than 3 km (10 000 ft) limited to maximum temperature of 200°C (400°F).                                      |
|                                     | MEIT7                      | Turbodrill, float sub, bent sub, orienting sub, 8-in. Monel drill collar, 13 8-in. drill collars, jars, 17 joints HWDP.                                            | High temperature, 200°C (400°F). Run No. 26-32 Table III.                                                                       |
|                                     | MEIT7                      | Turbodrill, float sub; bent sub, orienting sub, 2 6-3/4-in. Monel drill collars, 3 6-3/4-in. drill collars, 9 joints HWDP.                                         | Used in very crooked hole below 3.2 km (10 300 ft), Run No. 33-35. Table III, prior to twist-off.                               |
| 31.1<br>(12-1/4)                    | DDPDM                      | Motor, bent sub, float sub, orienting sub, 2 8-in. Monel collars, 5 8-in. collars, jars, 12 joints HWDP.                                                           | Used during sidetracking attempts 2840 m to 2980 m (9800 to 9300 ft).                                                           |
| 31.1<br>(12-1/4)                    | DDPDM<br>(Bent<br>Housing) | Motor, <sup>a</sup> Dyna Flex or bent sub, orienting sub, 2 6-3/4-in. Monel drill collars, 4 6-3/4-in. drill collars, 7 8-in. drill collars, jars, 12 joints HWDP. | Used during sidetracking attempts 2840 m to 2980 m (9800 to 9300 ft).                                                           |
| 22.2<br>(8-3/4)                     | MEIT5                      | Turbodrill, float sub, bent and orienting sub, 2 6-3/4-in. Monel collars, 5 6-3/4-in. drill collars jars, 27 joints HWDP                                           | Used for eight directional corrections below hole diameter reduction point at 3.29 km (10 800 ft)<br>Run No. 57 - 64 Table III. |

<sup>a</sup> Eight runs with 1-3/4° bent housing DDPDM.

angle because it is far easier operationally to correct azimuthal angle at low inclination. The objective was to redirect the wellbore from the northwest to the northeast quadrant while holding the inclination angle low.

As indicated in Table III, the first two directional downhole PDM runs were attempted without a steering tool. The first motor run (a Baker Service Tools PDM, denoted BPDM) torqued up and stalled repeatedly and was pulled.

Magnetic single-shot surveys were obtained as each joint of drill pipe 10 m

(30 ft) was drilled down. The second BPDM performed better, but there was difficulty experienced with excessive build rate in inclination angle and a SDL developed. (See section on DRILLING PROBLEMS below). The succeeding eight directional-control motor runs achieved close to the desired azimuth, N47°E, at a depth of 2281 m (7482 ft). However, the inclination dropped to 7°. Directional runs and rotary drilling continued relatively routinely. At a depth of 3184 m (9715 ft) the trajectory elements were 27°N 68°E when a rotary build assembly was noted to be building too fast so the load on the bit was reduced and this resulted in a very sharp inclination angle drop, see Fig. 3, at the 2988- to 3013-m (9805- to 9836-ft)-depth interval. The inclination dropped 3° to 23°.

At 3051 m (10 017 ft) the downhole motor use was switched to the 19.7-cm (7-3/4-in.)-diam MEI turbodrills (Run No. 26 in Table III) and a building run was made. This resulted in a very sharp increase in inclination angle to 27°. A subsequent motor run at 3150 m (10 334 ft) was misoriented, due to wear of the steering tool muleshoe and orienting sub, by 170° and the intended building run actually dropped inclination again. Tight-hole conditions were subsequently experienced during efforts to build angle and ream out the severe crooked hole section resulting from the oscillation in inclination in the borehole above. A twist-off of the drill pipe occurred at a bit depth of 3175 m (10 417 ft) and as the directional drilling attempts continued, tight-hole conditions dictated the replacement of the 20.3-cm (8-in.) drill collars with 17.1-cm (6-3/4-in.) drill collars. A serious twist-off occurred again at 3209 m (10 528 ft) while reaming the tight hole. Directional drilling was suspended for 145 days for fishing and sidetracking (see DRILLING PROBLEMS section below).

Eleven PDM runs were conducted during the sidetracking attempts, as shown on Table III (Runs 36 through 46). These were motor runs oriented with both single-shot surveys and steering tools, generally intended to drill out of the high side of the hole and to the east. Since time drilling was desired, and temperatures were below 200°C (400°F), PDMs were used. Although two of the time drilling sequences produced some evidence of granite (biotite) in the cuttings, all sidetracking attempts were unsuccessful.

Immediately following the rotary drill-off from the whipstock [(placed at 2879 m (9444 ft)] three PDM directional drilling runs were made, two successfully, to direct the hole toward the east and build angle. These were crucial

directional runs because the original EE-3 wellbore trajectory had an increasing inclination angle in this region (Fig. 4) and was trending eastwardly beyond the whipstock location. Rotary build assemblies were then used to build the inclination by  $7^\circ$  and hold the azimuth in the  $N70^\circ E$  to  $N80^\circ E$  range until a depth of 3116 m (10 226 ft) was reached. At this depth five MEI turbodrill directional runs out of seven attempts (Run Nos. 50-56 in Table III) succeeded in achieving a trajectory orientation of  $34^\circ N$   $55^\circ E$  at a depth of 3344 m (10 971 ft). This was close enough to an alignment parallel to EE-2 so that the hole diameter was reduced by drilling 7 m (20 ft) with a 22.5-cm (9-7/8-in.)-diam bit. A single-shot survey point at 3294 m (10 806 ft), in the middle of this transition, read  $34-3/4^\circ N$   $54^\circ E$ . The corresponding point 366 m (1200 ft) TVD below on EE-2 had trajectory elements of 3675 m (12 056 ft) TVD and survey elements of  $34^\circ N$   $55^\circ E$ .

The plan for the 22.2-cm (8-3/4-in.)-diam borehole, the reservoir section of the drilling program, was to straight-hole rotary drill with a very tightly packed BHA. Runs with these drilling assemblies would be interrupted only if the azimuth or inclination varied from parallelism with EE-2 by the tolerances stated in the drilling plan above. It was projected that the rotary hold BHA drilling would drift or walk in a manner similar to the rotary drilling response of the rock in well EE-2 at depths of 370 m (1200 ft) below.

In practice two sequences of directional turbodrill runs were successfully accomplished, as shown by the segments A and B on Fig. 2. In all, eight directional corrections were attempted as necessary when the hold assemblies drifted or walked north (to the left) too far. A third attempt, the last four runs in Table III, at 3951 m (12 961 ft) only accomplished a 20 m (66 ft) run but altered the azimuthal course of the trajectory by nearly  $7^\circ$ . From this point on the rotary drilling was allowed to continue to drift and swung off to the north, instead of drifting east as EE-2 had done. This deviation was only about 24 m (80 ft) beyond the tolerance limit at the TD of 4247 m (13 933 ft) for EE-3.

#### B. Downhole-Motor Performance

Table V records the performance of the downhole motor assemblies used. These BHA performance results include the collars, bent-sub, motor, bit, float valve, and steering tool. The behavior of such assemblies is dependent on the proper function of all components of the directional system. The major reasons for a directional run abort (in order of frequency) were when the

TABLE V

DOWNHOLE MOTOR DIRECTIONAL DRILLING ASSEMBLY<sup>a</sup> PERFORMANCE IN EE-3  
(Excluding Sidetracking Operations)

| Motor Type          | Total No. of Runs Attempted | No. of Runs that Drilled | Average <sup>b</sup> Distance per Run <sup>c</sup><br>m (ft) | Average <sup>b</sup> ROP per Run<br>m/h (ft/h) | Average <sup>b</sup> Duration of Run, h | Diam of Motor cm (in.) |
|---------------------|-----------------------------|--------------------------|--------------------------------------------------------------|------------------------------------------------|-----------------------------------------|------------------------|
| MEIT 7 <sup>d</sup> | 17                          | 14                       | 13.2 (43.3)                                                  | 3.9 (12.7)                                     | 3.4                                     | 19.7(7-3/4)            |
| MEIT 5 <sup>d</sup> | 8                           | 5                        | 18.1 (59.3)                                                  | 8.6 (28.2)                                     | 2.1                                     | 13.7(5-3/8)            |
| NPDM <sup>e</sup>   | 10                          | 9                        | 19.0 (62.2)                                                  | 4.5 (14.8)                                     | 4.0                                     | 20.3(8)                |
| DDPDM <sup>e</sup>  | 8 <sup>f</sup>              | 8                        | 18.2 (59.6)                                                  | 3.3 (10.8)                                     | 5.5                                     | 19.7(7-3/4)            |
| BPDM <sup>e</sup>   | 5                           | 4                        | 30.0 (98.5)                                                  | 2.1 (7.0)                                      | 14.0                                    | 17.1(6-3/4)            |

<sup>a</sup> The assembly performance includes bit, motor, float valve, bent and orienting subs, and steering tool.

<sup>b</sup> Based upon successful runs; i.e., those that drilled.

<sup>c</sup> Note that most directional runs were set up with a 20 m (60 ft) length, 2 joints, of drill pipe initially in the derrick.

<sup>d</sup> High temperature turbodrills.

<sup>e</sup> NPDM = Navidrill (Christensen Tool Co.); DDPDM = Dyna-Drill (Smith International Inc.); BPDM = Baker Motor (Baker Service Tools, Inc.).

<sup>f</sup> Excluding those used for sidetracking.

orienting or steering tool failed, bit dulled, float valve leaked (plugging motor), or the motor failed. Another mode of failure experienced was those occasions when the motor would not start when oriented properly. In the directional drilling of EE-3 this was usually due to too tight a hole, caused by a too-sharp directional change (SDL) or by insufficient reaming. This problem was often solved by reaming to bottom with the motor, or starting the motor drilling in a series of short runs (a bit length each) with successive small azimuth-rotation increments until the proper orientation was established and the motor would then rotate.

It is noted in Table V that the three PDM tools performed about equally well. The BPDM ran longer and thus achieved an average distance drilled of three joints of drill pipe. This motor has the lowest rpm and highest torque characteristics of the three PDMs and therefore, provides a more extended bit life. This lower rpm performance also resulted in the observed lower penetration rates for the BPDM.

Two types of commercial all metal turbine motors were tested during the EE-3 drilling program. Two 17.8-cm (7-in.)-diam Dyna-Drill (Smith International) directional motor tests, denoted as DDT7D in Table III, Run Nos. 11, 24, and 25 were conducted. These high-temperature Dyna-Drill directional turbodrills were also candidates for use for directional corrections in the high-temperature section of EE-3. Also, two straight-hole (DDT7S, in Table II, Run Nos. 20 and 21) high-temperature Dyna-Drill turbodrills were run with limited success due to hole conditions. The Dyna-Drill turbine runs were supported by the Sandia National Laboratory Geothermal Drilling and Completions R&D Program. It appears that these motors have excellent high-temperature capabilities and will find application in geothermal well directional drilling operations where their performance characteristics (e.g., torque capability) are applicable.

The two sizes of high-temperature MEI turbodrills generally operated very satisfactorily. The 19.7-cm (7-3/4-in.)-diam tools were used in the 31.1-cm (12-1/4-in.)-diam hole. In all, there were 17 total attempts and 14 drilling runs were achieved. The three turbodrill failures were due to two cases of float valve failures that resulted in plugged bearings and one incident where the motor was stalled due to tight-hole conditions (Run No. 35, Table III). Termination of directional runs with these motors was most often due to the EYE steering tool malfunctions; second in frequency was failed float valves, and the third ranked cause was from worn (usually locked-up bearings or undergauge) bit.

The eight directional drilling attempts with the 13.7-cm (5-3/8-in.)-diam MEI turbodrills were all conducted in the 22.2-cm (8-3/4-in.)-diam reservoir section of the borehole. These tools had been tested in EE-2 and in the laboratory with the EE-3 directional operations as a goal. All three aborted runs, the last three attempts (Run Nos. 62-64 in Table III), were terminated due to EYE steering tool failures. Had these last three runs been successful, it is likely that the deepest part of the EE-3 trajectory could have been directed within the lateral tolerances originally planned. These two smaller diameter turbodrills performed very well. The operations were stable and reliable once the directional drilling engineer learned that a high load on bit, 89 000 to 1 113 000 N (20 000 to 25 000 lb<sub>f</sub>) was required. Problems with excessive bit wear, bit lift-off, and turbine-speed run-away conditions experienced in three short runs (Nos. 57-59 in Table III) resulted from this

problem of insufficient bit weight. The result was extremely rapid flat wear on the bit cones, Fig. 8, when the turbodrill spun off bottom. It was as though the bit was run up against a high-speed grinding wheel. The anticipated problems with inability to control speed and keep a consistent bit load were not experienced. Performance was monitored by the attainment of a steady rate of penetration (ROP), and generally indicated rotational speeds of 350 to 450 rpm as derived from rotary and turbodrill drilling tests in granite blocks and the turbodrill performance curves developed in laboratory tests.<sup>16</sup>

### C. Rotary Drilling

Most of the drilling of both EE-2 and EE-3 was performed using rotary drilling methods with TCI button bits. Blade-type stabilizers were initially used in the BHAs to keep the hole straight. Because these wore rapidly in the granitic formations, they were replaced by six-point and three-point roller stabilizers with replaceable rotating rollers. Smooth-faced rollers were used when wall contact was required for stabilization, and knobby roller-cutters with TCI were used for reaming.<sup>6,7</sup> A near-bit reamer was included in all rotary BHAs. The near-bit reamer is required to prevent too rapid decrease in hole diameter as the bit gauge wears. Standard "fulcrum" type lifting or build assemblies were used for increasing the inclination of the borehole during rotary drilling. However, the borehole trajectory usually walked or drifted to the left or right at unpredictable rates when using rotary drilling for building angle with these assemblies. The walk tendencies of EE-3 differed from those experienced in EE-2.

Several different types of rotary BHAs can be used to build, drop, or hold inclination angle. For EE-3, only build and hold assemblies were used, and Figure 9 shows simplified schematic sketches of typical BHAs and their functions. Table VI records some of the principle assemblies used for the rotary drilling of EE-3.

Drilling of the 66.0-cm (26-in.)-diam hole was started with an unstabilized BHA (entry 1, in Table VI); however, the assembly tended to build angle rapidly. A hold assembly (No. 2 in Table VI), was substituted. That BHA used nonrotating stabilizers. This hold assembly worked well and inclination buildup was held to less than 2°. The nonrotating stabilizer used was a four-bladed, full-gauge rubber sleeve tool that rotates freely on a mandril. The drill string rotates, but the sleeve does not. This kept the stabilizer

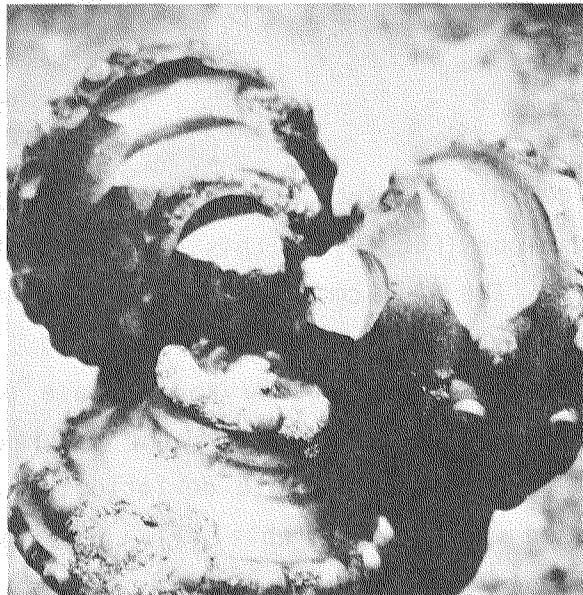
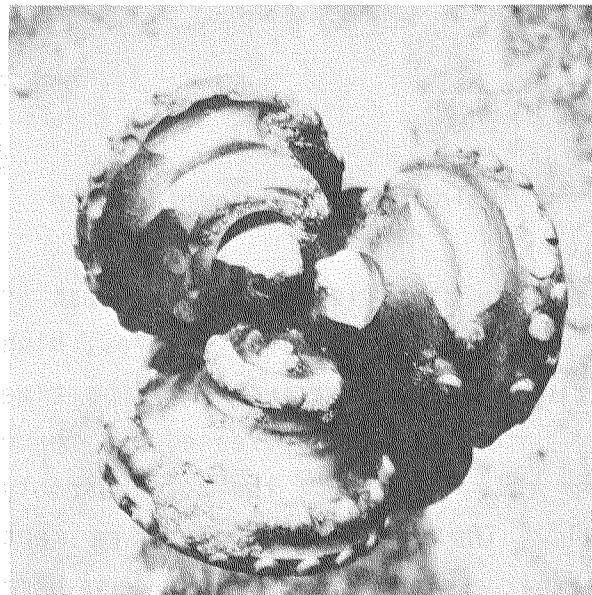
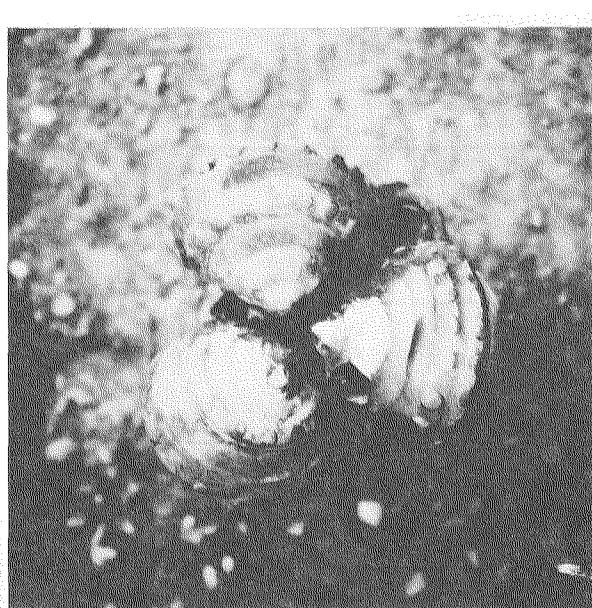





Fig. 8. Views of 8-3/4-in. bits with severe wear flats due to turbodrill overspeed at too-light bit loading.

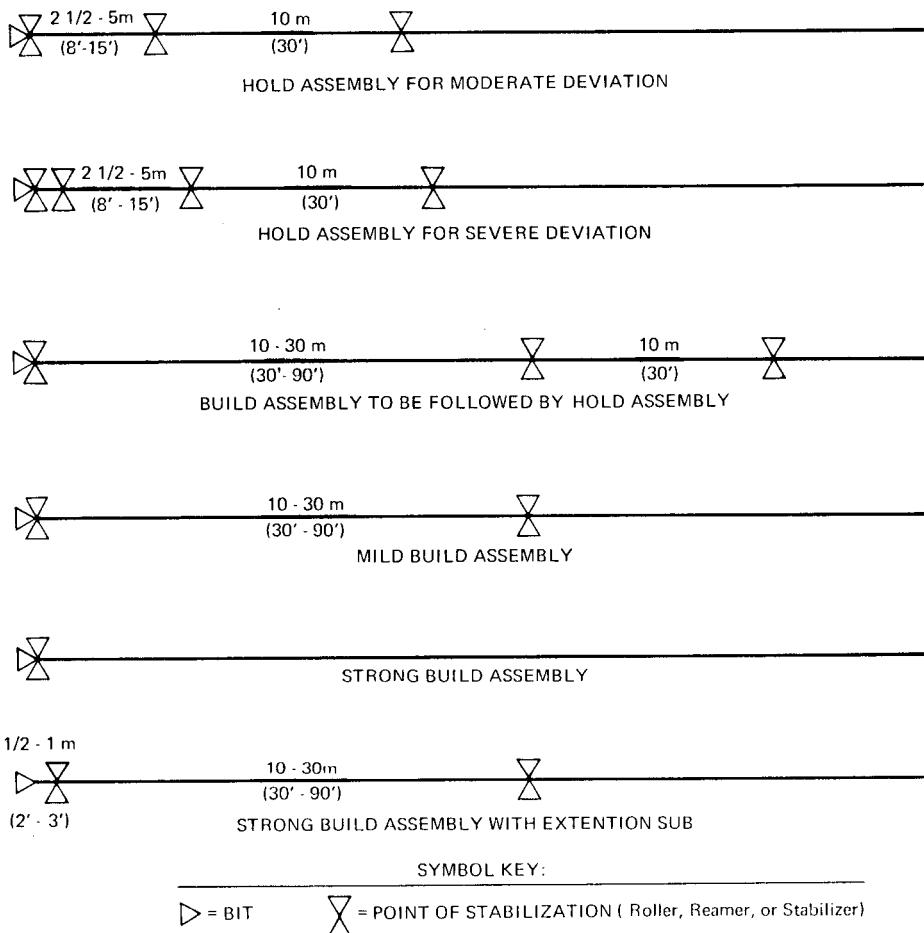



Fig. 9.  
Typical BHAs used in EE-3.

from digging into the borehole wall of the soft volcanic and sedimentary formations (Fig. 6) in this section of the hole.

The 44.5-cm (17-1/2-in.)-diam hole was fully stabilized. Because most of this section of the hole (see Fig. 7) was drilled without fluid returns, high bit loads were needed to increase penetration rate to minimize drilling time required and the quantity of water used. Unfortunately, increased bit force may tend to cause hole deviation at a faster rate. However, the hold assembly used (No. 3 in Table VI), performed well. The hole inclination was kept within the desired limits ( $<1^\circ$ ). A near-bit three-point reamer was used instead of a nonrotating stabilizer to keep the hole in-gauge while drilling the harder limestones and granite in the lower section of the 17 1/2-in.-diam hole.

The blade-type stabilizers used in the 66.0-cm (26-in.)-diam and 44.5-cm (17-1/2-in.) holes, were replaced by roller reamers or roller stabilizers in

TABLE VI  
TYPICAL BHA USED TO ROTARY DRILL EE-3

| Number | Hole Size  | Typical BHA                                                                                                                                                                     | Type     | Remarks                                                                                                                                                                                                           |
|--------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | 26 in.     | Bit X-0, 9-in. DC, Shock Sub, Monel DC, 5 9-in. DC's, 14 8-in. DC's, Jars, X-0, 5 6-3/4-in. DC's.                                                                               | Drilling | A soft-formation assembly that can be used where deviation is not a problem.                                                                                                                                      |
| 2      | 26 in.     | Bit X-0, X-0, Stabilizer, <sup>a</sup> Shock Sub, Stabilizer, Monel DC, Stabilizer, 6 9 in. DC's, 14 8 in. DC's, Jars, X-0, 6 6-3/4 in. DC's.                                   | Hold     | A soft-formation assembly used to hold angle.                                                                                                                                                                     |
| 3      | 17-1/2 in. | Bit, X-0, Three-Point Reamer, X-0, Shock Sub, Stabilizer, <sup>a</sup> Monel DC, Stabilizer, 6 9 in. DC's, 14 8 in. DC's, Jars, X-0, 6 6-3/4 in. DC's.                          | Hold     | Used to hold angle. Three-point reamer is used for gauge protection.                                                                                                                                              |
| 4      | 12-1/4 in. | Bit, Six-Point Reamer, Three-Point Reamer, X-0, Shock Sub, Three-Point Reamer, Monel DC, Three-Point Reamer, 14 8 in. DC's, X-0, 10 6-3/4 in. DC's, 20 Joints HWDP.             | Hold     | Used to keep the upper portion of the 12-1/4 in. hole straight.                                                                                                                                                   |
| 5      | 12-1/4 in. | Bit, Three-Point Reamer, Short Drill Collar, Three-Point Reamer, Monel DC, Three-Point                                                                                          | Ream     | Assembly was used to ream after                                                                                                                                                                                   |
| 6      | 12-1/4 in. | Bit, Three-Point Reamer, X-0, Shock Sub X-0, 6-3/4 in. Monel, 1 6-3/4 in. DC, X-0 Three-Point Reamer, 1 8 in. DC, Three Point Reamer, 11 8 in. DC's, Jars, X-0, 17 Joints HWDP. | Build    | Used to build angle. Built too fast.                                                                                                                                                                              |
| 7      | 12-1/4 in. | Bit, Six-Point Reamer, Float Sub, Shock Sub, Monel, DC, 9 8 in. DC's, X-0, Jars, X-0, 12 Joints HWDP.                                                                           | Build    | Six-point reamer was used to keep the assembly from building too fast. Also used for reaming turbodrill runs since the hole drag is high. Three-point reamer had been substituted at times to build angle faster. |
| 8      | 12-1/4 in. | Bit, Float Sub, DCs, Three-Point Reamer, Shock Sub, 2 8 in. Monel, 7 8 in. DC's, X-0, Jars, X-0, 15 Joints, HWDP.                                                               | Build    | The float sub between the bit and three-point reamer is used to increase the side force of the bit and thus build angle faster.                                                                                   |
| 9      | 8-3/4 in.  | Bit, Six-Point Reamer, X-0, Short Drill Collar, Three-Point Reamer, Monel, Three-Point Reamer, Monel, X-0, 11 6-3/4 in. DC's, Jars, X-0, 15 Joints HWDP.                        | Hold     | A holding assembly used to drill the 8-3/4-in. hole.                                                                                                                                                              |

| Number | Hole Size | Typical BHA                                                                                                                                   | Type | Remarks                                                                                                                                                                                                                                                   |
|--------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10     | 8-3/4 in. | Bit, Three-Point Reamer, Float Sub, X-0, Monel, Three-Point Reamer, X-0, 5 6-3/4 in. DC's, Jars, X-0, 37 Joints HWDP.                         | Hold | Mild holding assembly. The three-point reamer was substituted for the six-point reamer to reduce hole drag. A 30 ft monel was used between the first two stabilizers to obtain surveys closer to bottom, even though it makes the assembly more flexible. |
| 11     | 8-3/4 in. | Bit, Three-Point Reamer, Short Drill Collar, Three-Point Reamer, Monel, Three-Point Reamer, X-0, 5 6-3/4 in. DC's, Jars, X-0, 37 Joints HWDP. | Hold | Three-point reamer used to reduce hole drag.                                                                                                                                                                                                              |

Nominal Length of BHA Components

|                      |         |                    |         |
|----------------------|---------|--------------------|---------|
| Drill Collar (DC)    | 30.5 ft | Short Drill Collar | 10.0 ft |
| Monel Drill Collar   | 30.0 ft | Shock Sub          | 10.0 ft |
| Hevi-Wate Drill Pipe | 30.5 ft | Float Sub          | 2.0 ft  |
| Six-Point Reamer     | 8.0 ft  | Cross Over (X-0)   | 1.5 ft  |
| Three-Point Reamer   | 5.0 ft  | Drilling Jars      | 32.0 ft |

<sup>a</sup>Blade stabilizer.

<sup>b</sup>Nonrotating blade (rubber) stabilizer.

the 31.1-cm (12-1/4-in.)-diam hole. This was necessary because the rubber stabilizers wear much too quickly on granite and will not take high temperatures. Rotating metal-blade stabilizers also wear excessively and cause too much hole drag and high torque at the rotary table. So roller reamers were used for stabilization. The rotating cutters act as bearings between the BHA and borehole wall. They do not have enough wall contact to be used as stabilizers in softer formations; but in granite, the reamers perform satisfactorily.

The 31.0-cm (12-1/4-in.) hole was drilled from 783 m (2567 ft) to 1964 m (6444 ft) using a hold assembly. This was intended to be the straight section of the hole in the crystalline rock. The principal assembly used to drill this section of the hole is entered as No. 4 in Table VI. The upper section of this hole drilled relatively straight, but the lower section was slightly inclined due to formation effects. Bit load had to be reduced to keep from building angle too quickly even though a tightly packed hold assembly was run. The inclination had built to  $10^\circ$  at 6444 ft. This depth was the KOP for EE-3 — the point at which the directional drilling started.

At the KOP, downhole motors were run to change the azimuthal direction of the well from northwest to northeast. A section of hole drilled with high-speed downhole motors has to be reamed because the TCI bits used on downhole motors wear and lose gauge very rapidly. A reaming assembly similar to No. 5 in Table VI is run to bring the hole back into gauge. Note that this assembly is also a stiff packed or hold assembly. A hold assembly is the stiffest assembly that will be run in the hole; therefore, any other assembly can follow it. If the hole had been reamed out with a less-rigid assembly, a subsequent more-rigid hold assembly would have to be reamed to bottom should it become necessary to run one in the following rotary drilling sequence.

At 2280 m (7482 ft) the azimuth direction of EE-3 had been changed to parallel the trajectory of EE-2, a build assembly (No. 6 in Table VI) was run to build angle at  $1^\circ - 1-1/2^\circ$  per 30 m (100 ft); however, this assembly built angle too fast. It is interesting to note that the same assembly built angle at a maximum of  $1-1/2^\circ/100$  ft in EE-2, but in EE-3, the assembly built angle at  $2-1/2^\circ/100$  ft. The 17.1-cm (6-3/4-in.) drill collars in this build assembly were run in place of the 20.3-cm (8-in.) drill collars so that the assembly would build angle faster. This is because the 17.1-cm (6-3/4-in.) collars are

more flexible than the 20.3-cm (8-in.) collars and bend more sharply at comparable bit loads.

Three reamers were run in this assembly even though one or two reamers can be used to build angle effectively. The purpose of the second and third reamer is to make the assembly stiffer without affecting the ability to build angle. Also, the third reamer reduced the amount of reaming required by the subsequent hold assembly to be run to bottom.

At the depth of 2390 m (7840 ft) more direction change was required and downhole motors were again used to change the direction from N46°E to N88°E at 2562 m (8407 ft). In order to be 370 m (1200 ft) vertically above EE-2 at an inclination of 35° and at a measured depth of approximately 3170 m (10 400 ft), a hold assembly was consequently run. If angle building had continued, EE-3 would have been more than 1200 ft above EE-2 when 35° inclination had been reached. The hold assembly worked well as the inclination did not change. The previous building assembly was then run and, again, built angle too fast. Therefore, another assembly was run with the distance between the reamers shortened from 30 m (90 ft) to 20 m (60 ft). This assembly still built rapidly, so the load on bit was reduced to control the rate of build (see Fig. 3). The rate of build slowed, but the inclination began to drop at the end of the bit run, probably due to formation effects. The next bit run continued to drop angle so a turbodrill had to be used at a depth of 3011 m (9879 ft) to redirect the hole back upwards. Fishing and sidetracking operations were necessary shortly thereafter.

After EE-3 was successfully sidetracked, alternating build assemblies and motor runs were made. Entry 7 in Table VI shows one of the typical assemblies run. A six-point reamer was used to keep from building angle too fast. Also, it is noted that only one reamer was run. At this point, it was assumed that a hold assembly would no longer be necessary in the 31.1-cm (12-1/4-in.) hole. The previous assembly would not build angle fast enough below 3109 m (10 200 ft); therefore, a three-point reamer with an extension sub between bit and bottom reamer was substituted for the six-point reamer. This assembly should have built angle faster, but it built angle at a maximum of 1-1/2°/100 ft. It is interesting to note that this performance corresponds to that of EE-2 at similar depths. This sequence of rotary runs shows the unpredictable then "predictable" role that the formation effects can play in directional drilling.

Through a sequence of turbodrill runs and use of building assemblies similar to the one mentioned above, an inclination of  $34\frac{1}{2}^{\circ}$  and azimuth of N $54^{\circ}$ E were obtained, almost exactly as planned.

The 22.2-cm (8-3/4-in.) hole was to be drilled as a straight hole inclined at  $34\frac{1}{2}^{\circ}$ . Therefore, hold assemblies were run throughout the length of the 22.2-cm (8-3/4-in.) hole, with one exception. That exception was one run with a build assembly. Turbodrill azimuth corrections were attempted three times in the 22.2-cm (8-3/4-in.) hole, with two successful azimuth changes achieved.

Initially the packed-hole hold assemblies used were those depicted as No. 9 in Table VI. The assembly did hold, but inclination tended to drop angle slightly, at a rate less than  $1/2^{\circ}/100$  ft. A building assembly was then successfully used to rebuild angle. The assembly built  $3\frac{1}{2}^{\circ}$  in 200 ft. Assembly 10 in Table VI has 10 m (30 ft) between the first and second reamers, which makes it a build assembly at high bit loads; however, the assembly was run primarily to ream motor runs, and therefore did not drill very far. The purpose of this assembly was to obtain single shot surveys closer to bottom. In this assembly, the Monel drill collar was placed just above the bottom three-point near-bit reamer, which locates the survey approximately 7 m (20 ft) deeper than for a more conventional hold assembly.

The remainder of the hole was drilled with assembly No. 11 in Table VI. In this assembly the six-point reamer was replaced with a three-point reamer to reduce hole drag. The assembly drilled at a relatively constant inclination angle. The angle fluctuated between  $35^{\circ}$  and  $36^{\circ}$ , which is about as expected. The hold assemblies used for the 22.2-cm (8-3/4-in.) EE-2 also fluctuated slightly, with about a  $1^{\circ}$  amplitude, so both wells drilled similarly in that respect.

For the most part, the rotary assemblies run in EE-3 did what they were designed to do, but the rate at which they changed inclination angle was neither predictable nor easy to control.

#### IV. DRILLING FLUIDS PROGRAM

##### A. Volcanics and Sediments

The drilling-fluid-system additives used for EE-3 were direct extensions of those previously used for wells GT-2, EE-1, and EE-2 at Fenton Hill.<sup>2,8,12-15</sup> The upper volcanic and sedimentary rocks were drilled using a

bentonite-based drilling fluid. Due to the large, 66.0-cm (26-in.) and 44.5-cm (17-1/2-in.) hole sizes, an inverted-rheology fluid was selected to assure adequate hole cleaning. This property was provided by adding a polymeric flocculant. Solids control de-silters were used to remove cuttings and prevent mud weight build up that could fracture the formations. No temperature problems with additives were experienced, or expected, since the maximum temperature of 100°C (200°F) is experienced at the contact with the granite at about 800 m (2400 ft).

Lost circulation was again the major problem associated with the upper volcanic and sedimentary formations. Slight losses of returns that occurred in fractured portions of the volcanic tuff [surface to 137 m (450 ft)] were quickly and easily plugged with conventional fibrous bridging agents such as cottonseed hulls, cedar fiber, and aspen fiber. In sharp contrast, very severe loss occurred in the cavernous-limestone portion of the Pennsylvanian, Sandia, and Madera Formations. This loss of returns resulted in a drastic loss of hydrostatic head (fluid level 274-518 m (900-1700 ft)] leaving no fluid in contact with portions of the unstable Abo Formation. As a direct result of this situation were problems of stuck pipe, repetitive reaming of sections of the borehole, and a poor casing cement job for the intermediate casing string [34.0-cm (13-3/8-in.)] for EE-2.

Loss of circulation in the Abo Formation was minimal. In earlier wells drilled at Fenton Hill (GT-2 and EE-1) almost no loss occurred, but the two later wells (EE-2 and EE-3) did experience slight losses (175 and 200 bbls) into this formation at 316 m (1037 ft) and 165 m (540 ft). Both zones were quickly sealed off with fibrous bridging agents. Lenses of red clay within the Abo Formation caused a considerable increase in viscosity of the drilling fluid (usually a 40- to 60-s rise in funnel viscosity) when hydrated. The method used to control viscosity and mud weight was simple dilution since adequate water and reserve-pit space was available.

By far the most troublesome and severe loss of drilling fluids occurred in the cavernous-limestone portions of the Madera and Sandia Formations (Fig. 6). Voids encountered in the cavernous Sandia at about 616 m (2350 ft) ranged from 1 to 5 m (3 to 16 ft) in height. Two loss zones required considerable time and effort to overcome the urgent and continuing problems. The loss zone within the Madera Formation was variable in severity for the four wells. Table VII records the quantities of materials used in attempts to control the

TABLE VII  
LOST-CIRCULATION MATERIAL SUMMARY

|                                 | GT-2 | EE-1 | EE-2 | EE-3 |
|---------------------------------|------|------|------|------|
| Cement (sacks)                  | 3000 | 500  | 5000 | 3500 |
| Lost Circulation Material (bbl) | 1600 | 8300 | 3500 | 2300 |

lost-circulation problems. In EE-3 a 1-m (3-ft) cavern was encountered at 576 m (1890 ft). The resultant sloughing of the Abo and Madera Formations was almost identical to that experienced in GT-2. Finally the 50.8-cm (20-in.) casing was set at 482 m (1580 ft) to seal off the Abo and upper Madera loss zones.

The cavernous portion of the Sandia Formation is at the bottom of the Magdalena Group and is located about 15 m (50 ft) above the contact with the basement crystalline complex rocks (Fig. 6). All four wells at Fenton Hill encountered this cavernous limestone and no remedial efforts attempted succeeded in regaining circulation.

Several different techniques had been used in attempts to restore circulation in the Sandia Formation. The use of air mist and the use of a "gel" foam were tried without success in GT-2. Both approaches restored circulation temporarily, but neither provided enough hydrostatic pressure to prevent sloughing of the exposed shale sections. This sloughing caused repetitive reaming, large volumes of fill on trips and the sticking of the drill string. Attempts to bridge the cavern with lost-circulation material (15 700 bbls with up to 60% by volume lost-circulation material), gunk squeezes (300 bbls) and massive cementing efforts (a total of 12 000 sacks on all four wells) all proved futile. The plan finally adopted was to minimize the amount of open hole exposed by choice of casing program when the cavern was first encountered. As soon as full returns were lost, the plan was to drill without returns into the basement complex and then set intermediate casing. This program was adopted for EE-2 and EE-3. The casing program in both EE-2 and EE-3 was to run the 20-in. surface casing near the top of the first troublesome loss zone at about 580 m (1900 ft) and then drill through both loss zones without returns as rapidly as possible and then into the basement complex. In both wells this

intermediate casing string of 34.0-cm (13-3/8-in.) was set only after some reaming and washing through bridges and fill.

No totally problem-free method has been devised to overcome the loss of circulation in this cavernous zone. The plan to drill EE-3 without returns was successful, but was costly due to the necessity of hauling water. The local, nearby source at La Cueva was used up and delays occurred when water hauling from Los Alamos was necessary. The intermediate casing was successfully run and cemented in a two-stage procedure that assured a 45-m (150-ft) anchor into the granite and, after tensioning, provided a cement sheath behind the casing from 428 m (1403 ft) to the surface. However the zone from 428 m to 693 m (1403 to 2275 ft) was uncemented (see Fig. 7) and no solution has as yet been perfected to avoid this situation.

#### B. Crystalline Rock

The remainder of the hole was drilled in a Precambrian metamorphic and igneous crystalline rock-complex. Drilling fluid related problems with this portion of EE-3 were extreme abrasiveness, high temperatures [ $280^{\circ}\text{C}$  ( $550^{\circ}\text{F}$ )], and some areas of apparent permeability. Due to the inclination of the hole ( $35^{\circ}$  from vertical), and the fact that clear water was used as the primary circulating fluid, a combination of the large circulating volume used and the abrasiveness of the metamorphic and igneous rocks caused special torque-reduction problems. The best lubricating agent tried was a mixture of triglycerides and alcohols. The effects of the lubricant was temporary at higher temperatures [ $>190^{\circ}\text{C}$  ( $>375^{\circ}\text{F}$ )]. Therefore, the lubricant had to be constantly replenished. Furthermore, extremely high torque and drag placed high priority on minimizing drill-pipe failure due to corrosion. Corrosion inhibition was complicated by high temperatures and the circulation of high volumes (15 000 bbls) of water to provide adequate cooling. An oxygen scavenger (ammonium bisulfite) and maintenance of a basic pH successfully moderated this corrosion problem. However, the presence of high sulfur content in the fluid caused a significant problem with bacteria-derived  $\text{H}_2\text{S}$  generated in the reserve pits during the later stages of the EE-3 drilling program. It was also observed that  $\text{H}_2\text{S}$  was generated downhole if the borehole was static for an extended period (e.g., during fishing). This was apparently due to breakdown of the oxygen scavenger and hydrocarbons in the lubricity additives.

The drilling fluids system, fluid cooling, cutting settling, and additive programs were a direct extension of the EE-2 drilling experience. A large reserve pond (approximately 1/2 acre of surface area) was provided to cool the fluid and settle cuttings as it exited from the borehole. The large surface area not only cooled the water effectively, but allowed for ample surface exchange of oxygen. Therefore to prevent pumping water downhole with large concentrations of oxygen, large quantities of oxygen scavenger (ammonium bisulfite) were added to the water prior to pumping downhole in order to remove the oxygen dissolved in the water. A basic pH (9.5 to 10.5) was maintained to further reduce corrosion. Scaling was controlled by the use of a phosphonate compound that removed the cations available for precipitate formation. Results were monitored by corrosion coupons (Table VIII) and revealed that whenever the above treatments were followed, corrosion was kept to a minimum. However, toward the later part of the EE-3 drilling campaign the exterior surfaces and pin-end face seals of the S-grade drill pipe were showing some signs of sharply etched corrosion pitting. This corrosion was assumed to be due to the downhole-generated  $H_2S$  and residual oxygen in the drilling fluid. Lubrication of the drill string and BHA is extremely important at the greater depths due to excessive frictional torque and drag generated with the clear water fluid system. The drill string was occasionally subjected to the upper limits of stress recommended by API tables as a result of dog legs produced by the directional drilling in the abrasive basement rocks. The frequent drill-pipe failures that were a direct consequence of these problems resulted in extremely lengthy fishing operations in EE-3. Several methods of lubrication were evaluated and used. The use of granular objects such as walnut hulls or Teflon beads, to reduce torque, was eliminated because of their inability to suspend in clear water and also because of possible bridging effects in future fracturing operations. An oil base drilling fluid was also eliminated because of the high cost of such fluids, the fact that Fenton Hill lies

TABLE VIII  
CORROSION RATES ON DRILL PIPE<sup>a</sup>

| Well Name and No.       | Corrosion Range Observed (lbs/sq ft/yr) |
|-------------------------|-----------------------------------------|
| EE-1                    | 0.005 to 1.81                           |
| EE-2                    | 0.01 to 5.10                            |
| EE-3<br>(to date 11/22) | 0.20 to 3.90                            |

<sup>a</sup>From corrosion monitoring rings installed in the drill string (NL-Baroid).

within an area of environmental sensitivity, and temperature degradation above 200°C (400°F). A biodegradable, soluble chemical added to the water was therefore selected as the best possibility for providing acceptable torque and drag reduction.

An additional limitation was placed upon the lubricating additive due to the high downhole temperatures. Several soluble chemicals were tested in the laboratory but only two were found suitable to test downhole (Table IX). The best additive was a conventional agent that consisted of modified triglycerides and alcohols. The effect of the lubricant was found to be only temporary in the hottest bottom-hole sections of the well. Therefore the lubricant had to be constantly replenished while drilling. This was accomplished by batch-wise additions of the chemical. The use of this chemical additive succeeded in reducing excessive wear to the drill string and surface equipment. It also allowed more load to be placed on the cutting surface of the bit rather than the side of the borehole.

A serious problem with this lubricity agent was the tendency to degrade downhole due to temperature. The degraded residue apparently combined with pipe scale, cuttings, and pipe dope to form a heavy "black gunk" that coated the BHA, logging tools, and the borehole walls. Use of a high pH (pH = 12.5)

TABLE IX  
DRILLSTRING TORQUE AND DRAG REDUCTION LUBRICATING AGENTS  
DETERMINED IN EE-2 DRILLING PROGRAMS

| Additive & Concentration                                          | Torque (amps) |       | Duration |
|-------------------------------------------------------------------|---------------|-------|----------|
|                                                                   | Before        | After |          |
| 2 ppb <sup>a</sup> oil base lubricant                             | 600           | 450   | 30 min   |
| 1 ppb oil base lubricant<br>plus 1 ppb triglycerides<br>& alcohol | 600           | 500   | 1 h      |
| 2 ppb triglycerides and<br>alcohol                                | 600           | 400   | 2 h      |
| 20 ppb bentonite                                                  | 600           | 550   | 30 min   |

<sup>a</sup> Pounds per barrel.

and a surfactant (detergent) was required to dissolve and flush out this material in EE-3. The reservoir section was mechanically scraped in an attempt to loosen the material prior to flushing and displacing with clean water.

#### C. $H_2S$ Difficulties

In the later stages of the EE-3 drilling operation, first noted on day 362, the bacteria in the reserve pits started to produce  $H_2S$ . The diagnosis was made that anaerobic bacteria in the bottom slime were converting the sulfur compounds (used in the drilling fluid to control corrosion) to  $H_2S$ . Conditions of low oxygen content, warmth, organic residues (from the lubricating additive) and gel (bentonite) sweeps were ideal for their growth. Solution of this problem required the dredging of the pits, use of a treatment with biocides, and strict sulfur control through use of additions of iron sponge and daily monitoring of sulfite additions. Diligent monitoring of  $H_2S$  levels, lubricity effectiveness and pH of the fluids was also necessary. Finally an in situ biocide inoculation of the residual bottom slime of the reserve pit was resorted to and held the  $H_2S$  production and level to an acceptable value (<5 ppm).

In retrospect, a review of the drilling fluid system approach seems warranted. One approach would consider use of cooling towers, cuttings-removal filters and a nitrogen-based corrosion control method. The major problem would be to remove effectively and practically in the field the very fine cuttings. Another approach would be to continue to circulate the reserve pits, but substitute a nitrogen purge oxygen-scavenger system to replace the sulfur based chemistry. Overall costs would dictate the future choice and selection of an improved drilling fluid system.

### V. DRILLING PROBLEMS AND SOLUTIONS

The problems encountered in the drilling of EE-3 were severe but not abnormal for such a high-temperature deep-drilling operation. The drilling history of Fig. 3 is laid out in the diagram in Fig. 10. Two major and three minor problem areas are identified. These problems and their solutions represented over 50% of the time required to drill EE-3--about 235 days of the 461 total. Two major time-increments for fishing and sidetracking are shown and represent 86% of the problems that plagued the drilling campaign. The fishing episodes derive from twist-offs or washouts of the BHA or drill

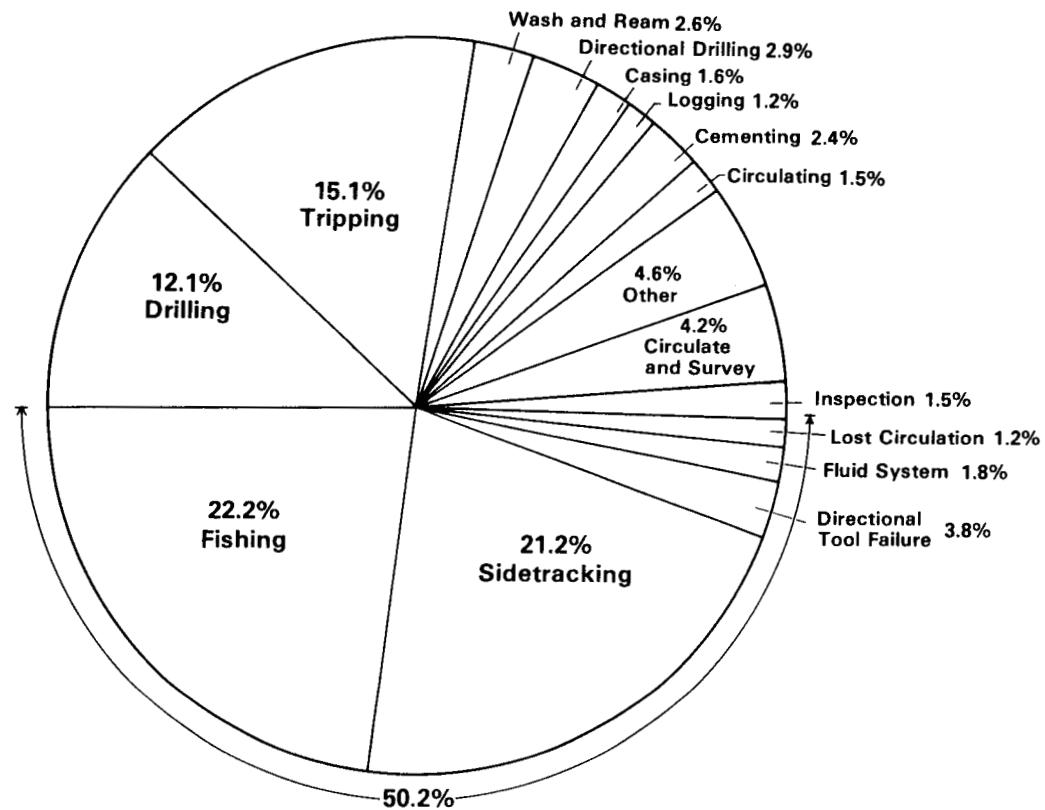



Fig. 10.  
Percentage of EE-3 time spent in drilling operations and solving problems.

string. These failures required in turn that the BHA and drill string remaining downhole must be removed or retrieved (fished) from the well. (Note: fishing can also occur when an object falls into the well.)

#### A. Drill-String Failures

A twist-off in drill pipe is defined as the parting, separation or breaking of a joint [10 m (30 ft) length] of drill pipe by the forces (torque and tension) applied to the drill pipe. The number of stress cycles, or fatigue, can also cause twist-offs. Several of the drill pipe and BHA failures in EE-3 have been referred to as "twist-offs" but do not fit the strict definition. The largest number of failures encountered were washouts in the drill collars (that also often resulted in fishing operations). A washout is usually defined as a crack in the tube or thread of a connection that is washed or eroded by drilling fluid and results in a strength reduction in the component (drill pipe, collar, or other BHA member). Usually a washout will erode away slowly up to 2/3 of the total metal in the cross section, at

which point the remaining metal will mechanically fail by torque or tension loadings.

Table X is a comparison between EE-2 and EE-3 of the four different major types of drill-string failures. There were four times as many drill-string failures in EE-3 operations as compared to EE-2. The majority of the failures in EE-3 were in the BHA, but the most severe and the longest delays were caused by drill-pipe failures.

There were five twist-offs in EE-3 compared to none in EE-2. The first two were twist-offs of the tube on the 12.7-cm (5-in.) drill pipe. The second of these twist-offs caused the longest (unsuccessful) fishing job and eventually required a sidetrack of the hole.

The 12.7-cm (5-in.) drill string was laid down, returned to the drilling contractor, and an 11.4-cm (4-1/2-in.) string was substituted during these fishing operations. It was felt that the 12.7-cm (5-in.) string was badly fatigued during the drilling of EE-2 and initial drilling of EE-3 and continued use would only result in more-frequent fishing operations. An evaluation of the two fractures in the pipe indicated severe corrosion pitting (see Fig. 5). A detailed post-failure analysis<sup>17</sup> of the fracture confirmed that fatigue was responsible for the fracture.

The remaining three twist-offs occurred in the 11.4-cm (4-1/2-in.) drill pipe. In each of these cases, the threaded pin on the tool joint cracked and failed (there was no fluid washing involved).

TABLE X  
COMPARISON OF EE-2 AND EE-3 DRILL-PIPE AND BHA FAILURES

| Type Failure                      | EE-2 | Remarks                                                       | EE-3 | Remarks                                                   |
|-----------------------------------|------|---------------------------------------------------------------|------|-----------------------------------------------------------|
| Washout without fishing operation | 4    | 2 in BHA<br>2 in drill-pipe tube                              | 11   | 10 in BHA<br>1 in drill-pipe tube                         |
| Washout with fishing operation    | 1    | Pipe-tube washout while drilling (fell apart on trip out)     | 4    | All in BHA                                                |
| Twist-off                         | 0    | -                                                             | 5    | 2 in 5-in. tube<br>3 in 4-1/2-in. pin                     |
| Parted string                     | 1    | Crossover sub fell apart while tripping in the hole (pin end) | 3    | 1 in 5-in. tube<br>1 in 4-1/2-in. pin<br>1 in accelerator |
| Totals                            | 6    |                                                               | 23   |                                                           |

There were also three drill-string failures during EE-3 drilling operation where the drill string was pulled apart. The first one was in the 12.7-cm (5-in.) drill pipe. The tube of the pipe failed well below the API minimum tensile strength. The failure added 31 days to the total fishing operations. The next failure occurred while jarring on a fish. An accelerator used in the fishing BHA to enhance the effect of the jars, was pulled apart. The third parting failure occurred while making a connection. The threaded pin on a tool joint pulled apart at loads far below the API specified minimum tensile strength. It was assumed that the pin had been cracked resulting in the premature failure.

The EE-3 drill-string failures that caused the greater time delays were: (1) the twist-off of the 12.7-cm (5-in.) tube while reaming to bottom, (2) the parted drill pipe while jarring on a fish, and (3) the twist-off of the 11.4-cm (4-1/2-in.) drill-pipe connection (pin) while reaming to bottom. The four washouts resulted in fishing operations that caused only short delays.

Two procedures or practices were used to minimize, or guard against, drill-string failures. Drill-pipe inspections were regularly conducted every 30 days or 500 rotating h, whichever came first. This practice was routinely followed after the 12.7-cm (5-in.)-diam drill string was replaced. A second measure instigated was to have a complete second alternate, 11.4-cm (4-1/2-in.) string on site. This allowed one string to be laid down and inspected while the second string (previously inspected) was run in and drilling continued. This saved 4-1/2 days of the 5 to 6 days of downtime usually required for an inspection. More importantly, it allowed more time and care during the inspection, thus making it more likely that flaws and incipient failures were detected. This is especially important during difficult weather conditions.

During the final bit runs the added precaution was instituted of rig-floor inspection of all tool joints (pins and boxes) of each drill-string section or joint as it was being added. This procedure detected and rejected three cracked pins, perhaps avoiding a recurrence of the final twist-off that occurred on day 438.

The less-frequent drill-string failures in EE-2 was probably due in part to the lower DLS of that well as compared in Fig 11. It is important to monitor and control the DLS during directional drilling operations and to hold DLS to less than 2 to 3° per 100 ft maximum. It is particularly important to

avoid the sharp s-curved crooked hole condition generated in EE-3 in the 1980 to 2190 m (6500 - 7200 ft) interval and the 2960 to 3200 m (9700 to 10 500 ft) zone in the original drilled portion of the 31.1-cm (12-1/4-in.)-diam hole. A strict dogleg minimization strategy is particularly important because even very extensive and intensive reaming with an extremely stiff BHA (e.g., two six-point reamers back-to-back) is of limited effectiveness in reducing such crooked hole conditions in crystalline rocks.

#### B. Sidetracking

On October 28, 1980, day 160, a twist-off occurred in EE-3 while drilling the 31.1-cm (12-1/4-in.) hole at a depth of 3200 m (10 528 ft). Fishing continued until December 15, when the sidetracking operation was initiated to bypass the stuck BHA. Figure 12 records the EE-3 configuration for the sidetracking operations. The hole was underreamed to a 40.6-cm (16-in.)-diam from 2975 to 2979 m (9760 to 9774 ft) and from 3013 to 3016 m (9885 to 9900 ft).

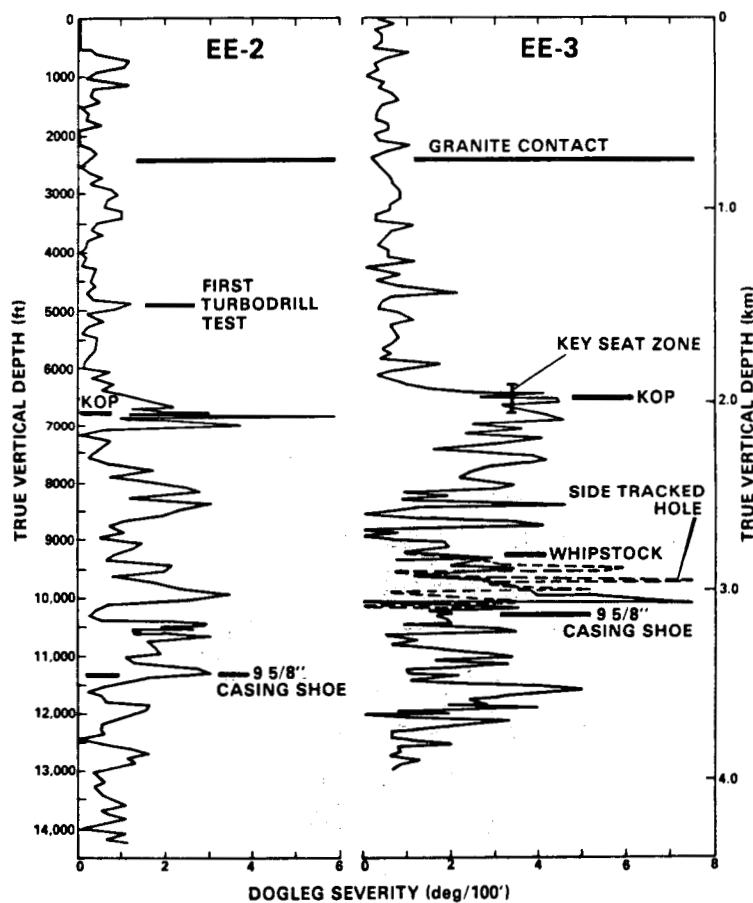



Fig. 11.  
Comparison of EE-2 and EE-3 DLS.

Six cement plugs were set before a plug with satisfactory hardness was placed. The penetration rate while facing off the first five plugs was about 0.3 m/min (1 ft/min) at  $22 \times 10^3$  N (5 000 lb<sub>f</sub>) bit load; the sixth plug was drilled at 0.1 m/min (0.3 ft/min) with  $45 \times 10^3$  N (10 000 lb<sub>f</sub>) bit load (see Table I).

Two Dyna-Drill runs with a Smith 25.1-cm (9-7/8-in.) Q9JL TCI bit and 2° bent sub were made in plug No. 6 to 2981 m (9780 ft), at a penetration rate of 2 m/h (7 ft/h) and bit load of  $9 \times 10^3$  N (2000 lbs), without any indication of weight increase or sidetracking action.

An attempt was then made to run a 30.5-cm (12-in.)-o.d. whipstock, but the whipstock started to drag at about 2070 m (6800 ft) and would not go past the DLS portion of the hole near 2195 m (7200 ft). To avoid shearing the shear pin holding the whipstock to the drill string [set for  $111 \times 10^3$  N (25 000 lb<sub>f</sub>)], the whipstock was not forced and was subsequently pulled from the hole.

While a 26.7-cm (10-1/2-in.) whipstock was being built, another attempt was made to sidetrack off a cement plug. A gamma-ray log located an altered or fractured zone higher in the hole, where it was presumed that the softer rock might offer a better chance for drilling out. This zone was underreamed to 41-cm (16-in.)-diam from 2833 to 2844 m (9293 to 9330 ft). The eighth cement plug (Class J Cement) was placed and a sidetracking assembly was used that consisted of a 22.2-cm (8-3/4-in.) TCI button bit, a Dyna-Drill PDM with 2° bent housing, and a 2° Dyna-Flex. Drilling through the underreamed section progressed at a timed rate of 0.3 m/h (1 ft/h) with no load. After drilling 1.3 m (4 ft) the assembly was picked up 3 m (10 ft) and reamed slowly back to bottom. Three button bits and one sidetracking diamond bit were used in six separate motor runs in which a total of 24 m (78 ft) was drilled. It appeared that the diamond bit had started to sidetrack at the bottom of the underreamed section, because the load on the bit increased from  $4 \times 10^3$  N (1000 lb<sub>f</sub>) to  $65 \times 10^3$  N (15 000 lb<sub>f</sub>) while the penetration rate of 0.3 m/h (1 ft/h) remained constant. Two TCI button-bit runs following the diamond bit also indicated that sidetracking had been started, both from the wear pattern on the bits and increased percentage of granite chips in the cuttings. Assuming that a sidetrack had been established, an angle building assembly was run in, but continued drilling produced only cement cuttings, indicating continuation in the old hole.

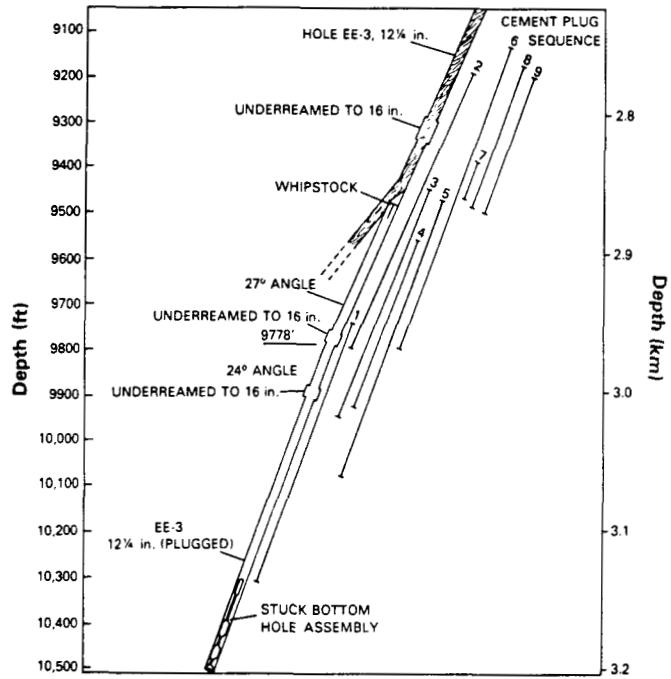



Fig. 12.  
Diagram of EE-3 sidetracking operations (see Table I).

A 27-cm (10-1/2-in.)-o.d. whipstock, Fig. 13, with a 3-m (10-ft) slide designed with curvature to accommodate a 31.1-cm (12-1/4-in.) bit was run in with 10 m (30 ft) of tailpipe below, and was oriented and cemented with the ninth cement plug. The top of the whipstock was set at 2879 m (9444 ft). The top of the whipstock-anchoring plug was at 2804 m (9200 ft) to allow another chance at sidetracking in the underreamed section. Various slow time-drilling penetration rates were tried at the underreamed zone in drilling down to the whipstock using button bits on a Dyna-Drill PDM, but sidetracking was not accomplished.

Junk was encountered at 2875 m (9432 ft), about 3 m (10 ft) above the top of the whipstock while drilling cement down to the whipstock located at 2879 m (9444 ft). The junk was cleaned up through a series of bit, mill, and magnet runs\*. The junk was determined to be a high-chrome steel piece perhaps 1- to 1.2-m (3- to 4-ft) long, and not the cast steel of the whipstock. A BHA consisting of a 31.1-cm (12-1/4-in.) Q9JL bit, one 17.1-cm (6-3/4-in.) drill collar, jars, and 15 joints of HWDP was used to drill off the whipstock.

\*About 2/3 m (2 ft) of junk was actually drilled up with a TCI bit, a Smith Tool Co. Q9JL bit.

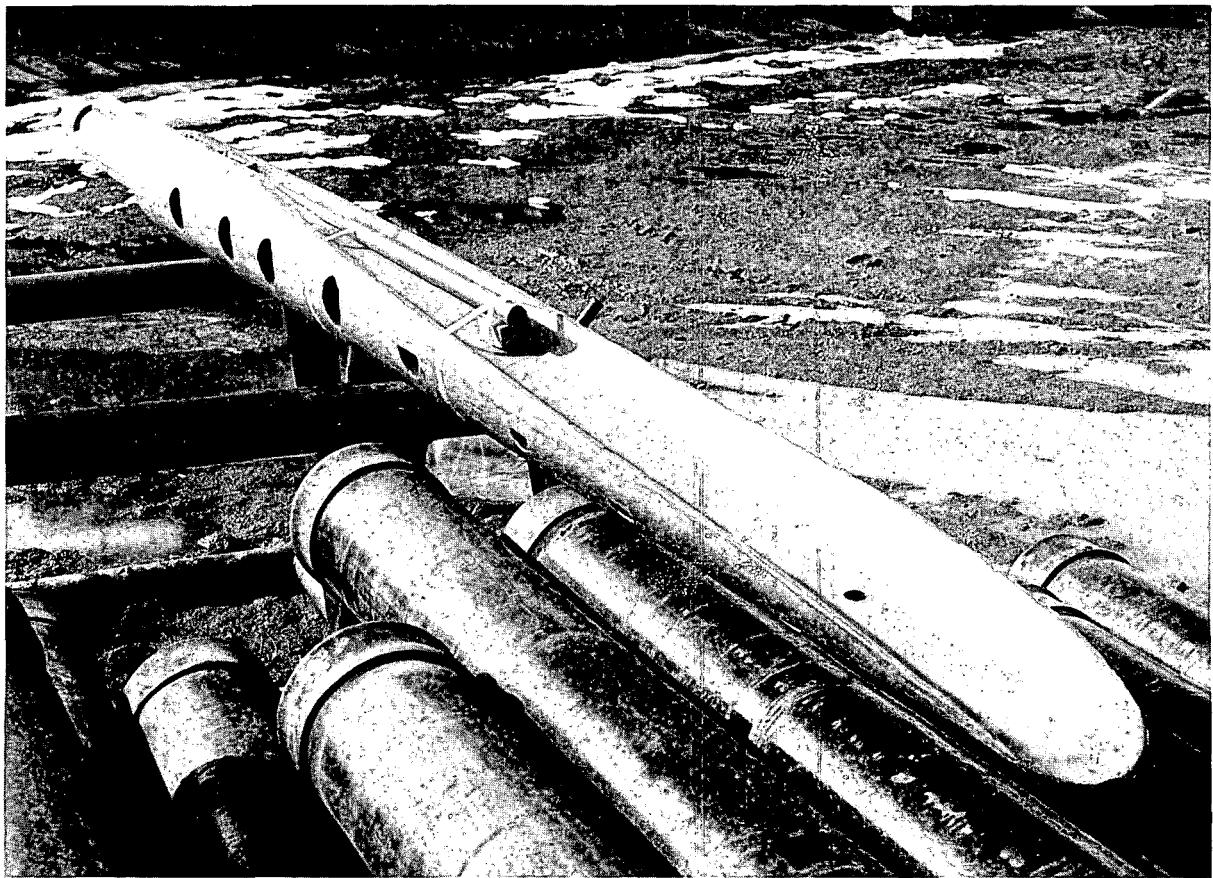



Fig. 13.  
Photograph of 10-3/4-in.-diam whipstock.

The bit drilled 5 m (15 ft) in 15.5 h with  $22 \times 10^3$  to  $67 \times 10^3$  N (5000 to 15 000 lb<sub>f</sub>) bit load. As the amount of granitic chips in the cuttings was increasing steadily, an angle-building assembly was made up and 30 m (97 ft) of new hole were drilled, which definitely established the successful sidetrack on March 22, after three months of attempts.

In retrospect, considering the ease that the 31.1-cm (12-1/4-in.) button bit finally drilled off the whipstock, it would seem that any further sidetracking attempts in similar situations should consider using a whipstock as the initial attempt. Either permanent or temporary tools might be considered. If a large number of bit runs or trips must be made past a whipstock, the permanent, cemented-in-place variety, would appear to be the better solution. Use of cement plugs and underreaming, a technique used routinely in soft and medium-hard formations, would seem of limited value in HDR wells, even though GT-2 was previously sidetracked twice by these techniques.<sup>10</sup> Current

Portland-cement-based plugs, at least, seem a poor basis upon which to plan a sidetracking operation in granite, or other very hard formations. Research work on a more reliable, and far harder (harder to drill) "cement"-like material for such sidetracking applications would seem appropriate and might improve the odds of sidetracking by this method. Effective alternate sidetracking methods (and alternates for any other particular drilling or remedial operation) are always a distinct benefit to drilling success.

C. Keyseat.

The section of the 31.1-cm (12-1/4-in.) hole from about 1980 m (6500 ft) to 2195 m (7200 ft) caused several problems during the drilling of EE-3. A keyseat is assumed to have been formed, centered at about 1980 m (6500 ft) depth. At least a keyseat would explain the problems encountered in this section of the well. The usual description of a keyseat is a channel or vertical groove cut in the high side of an inclined hole by the drill-string rotation and drag. The groove is worn parallel to the axis of the hole. Keyseating of the BHA or drill pipe occurs when the larger o.d. BHA or a drill-pipe tool joint is pulled up into the channel cut by the drill pipe or drill-pipe connections. A dogleg or sharp turn in a hole must be present for a keyseat to form. A keyseat does not restrict drilling fluid circulation. A sketch of a keyseat is shown in Fig. 14.

The directional drilling in EE-3 started at 1964 m (6444 ft). At the KOP the first PDM directional drilling run was attempted using a 2° bent sub. Instead of using a steering tool, the single-shot instrument was used to orient the directional assembly. With the single shot, there is no continuous readout of tool orientation at the surface; therefore, use of the single-shot survey does not monitor the borehole trajectory as it is drilled, as in the case of a steering tool. In these first two directional drilling motor runs, the hole went from 10°N58°W at 1923 m (6431 ft) to 14-3/4°N42°W at 2030 m (6662 ft). In this section the SDL averaged 3.6°/100ft and was as high as 5.6°/100 ft (see Figs. 4 and 11). It was obvious that the downhole motors could not be sufficiently well monitored with the single-shot tool and the EYE steering tool was used after the second run (see Table III). Directional drilling continued with downhole motors with the primary object to turn the hole azimuth. During the following directional drilling sequences the desired azimuthal correction was achieved, but a severe drop in inclination also occurred. The survey data went from 14-3/4°N42°W at 2030 m (6662 ft) to

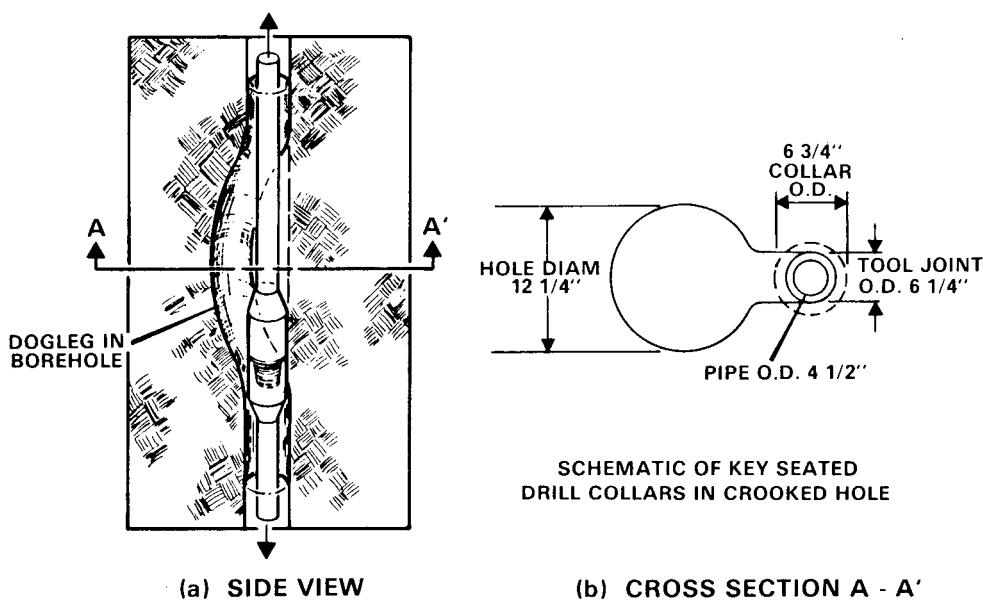



Fig. 14.  
Schematic of keyseat.

8-1/4° N63°E at 2260 m (7400 ft). The DLS averaged 3.8°/100 ft. The resulting "S"-shaped portion of the wellbore had established the conditions for a keyseat to form. The many hours of rotary drilling and many trips below this crooked-hole zone provided the cutting mechanism for the keyseat channel by both drill pipe and (especially) the hardbanded connections.

The keyseat did not present any problems until the first 22.2-cm (8-3/4-in.) bit was run on day 350 with 17.1-cm (6-3/4-in.) collars. This was due to two factors: (1) The previously used 20.3-cm (8-in.)-o.d. drill collars were sufficiently large to keep them out of the smaller-diameter keyseat channel cut by the 16.5-cm (6-1/4-in.) pipe connections. The 17.1-cm (6-3/4-in.)-o.d. collars were not large enough and they wedged in the keyseat channel. (2) The 17.1-cm (6-3/4-in.)-o.d. collars are more flexible. Because there were 11 17.1-cm (6-3/4-in.)-o.d. collars in the BHA, the top collar tended to ride the high side of the hole where the keyseat channel was located.

The two times that the drill collars were stuck at approximately 1980 m (6500 ft) the drill string was being pulled out of the hole. In each instance the collars were jarred and worked loose downward, and then worked upward past the keyseat. Also, there was no problem circulating past the stuck-point when the BHA was stuck in the keyseat channel.

After the second time the BHA was keyseated, string reamers were run to increase the diameter of the keyseat channel to 22.2 cm (8-3/4-in.)

The single-arm caliper log (Fig. 15) shows a diameter greater than 50.8 cm (20-in.) (the caliper arm is at the maximum extension) between 1980 m and 2010 m (6500 and 6600 ft), so the lateral extent of the keyseat was not determined.

Therefore all available data points to the formation of a keyseat in the wellbore in the 1980 to 2010 m (6500 to 6600 ft) interval.

D. Elastomer Seals. The temperature limits of commonly used elastomeric seals contributed to failures, or life reduction, of many downhole tools and instruments. Unsealed drill bits that do not depend on sealed lubricant in the bearings must be selected. Lubrication and cooling by drilling fluid containing cuttings obviously reduces bit bearing life.

Other necessary BHA components--drilling and fishing jars, shock absorbers, over-shot fishing grapples, and PDM motors--depend upon elastomers. At temperatures above about 165°C (350°F) many of these elastomers fail or degrade rapidly.

One major problem area encountered was due to the failure of seals used on near-bit float (check) valves. These valves are included in the BHA near the bit, usually in a float sub, to prevent back flow of drilling fluids and cuttings up the drill-pipe i.d. This most often occurs when a joint or stand of pipe is added to the string, and is due to the excess weight of the cuttings carried in the drill pipe-to-wellbore annulus. This is in turn caused by the limited cuttings-carrying capacity of the clear-water drilling-fluid system. The U-tube effect of the higher density annulus fluid then carries cuttings into the BHA, often plugging collars and downhole motors. This plugging usually cannot be cleared by the rig pumps and requires a time-consuming round trip out of the hole. The cleaning of the plugged collar often required a trip to a shop in Farmington, New Mexico. The plugged-motor occurrences were especially disruptive as the steering tool had to be rigged down and then re-rigged after the motor was changed out. Disassembly, cleanout, and rebuild of the MEI turbodrills was always necessary because the unsealed bearings invariably plugged when the float valve failed.

A solution to the float-valve-seal problem was initiated during the drilling of EE-2. The float-valve supplier (Barkerline, San Antonio, Texas) was contacted and initiated a development to replace the standard elastomer

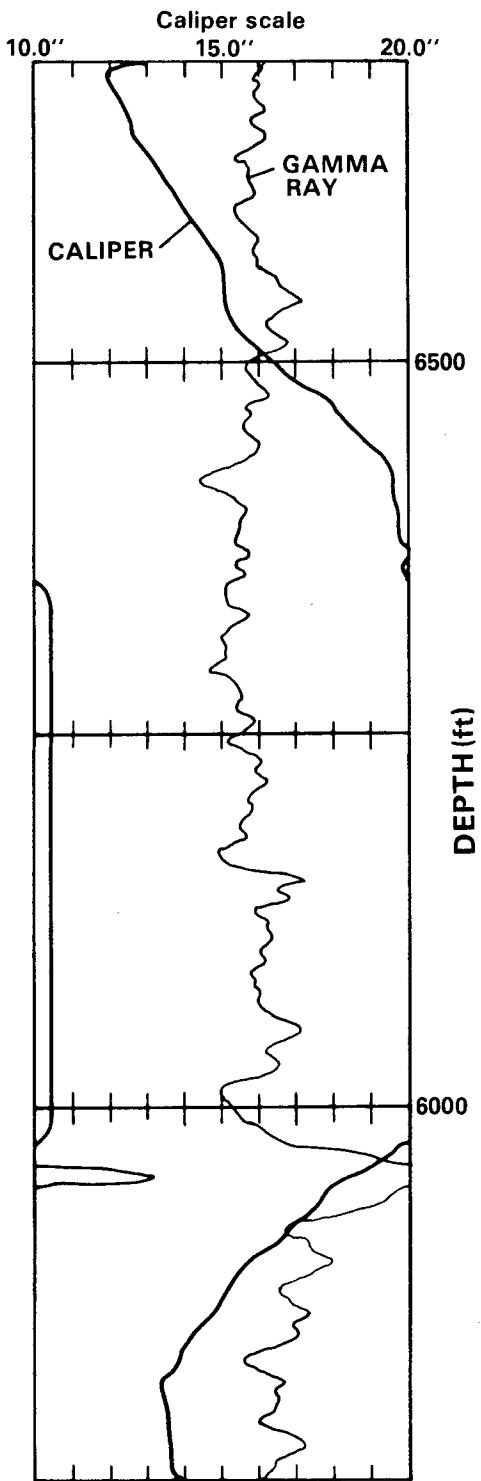



Fig. 15.  
Single arm caliper log showing keyseat zone.

seals, Fig. 16, with a high-temperature material. After several prototype runs by several elastomer suppliers, an EPDM formulation provided a seal that tested successfully in the Los Alamos autoclave, for 30-to-40-h rotary-drilling runs and for the 3-to-5-h turbodrill runs; all to at least 280°C (550°F). In addition a strategy that employed two float valves in tandem, one in the top turbodrill sub, and one in a float sub above the turbodrill, gave added insurance against the float valve failures on the directional motor runs.

The solution of the elastomer-seals problem was the application of an EPDM formulation and was aided and guided by the recent successful U.S. DOE funded R&D project by L'Garde, Newport Beach, California.<sup>18,19</sup> It may help point the way toward solutions to high-temperature elastomer problems in other drilling components.

**E. Wireline Tools.** Nearly all wireline-deployed tools are severely limited in high-temperature performance. A generic problem exists in cable heads and cables, and is a recognized problem throughout the geothermal industry. Problems with diagnostic logs such as calipers, gamma surveys, casing inspection, and cement-bond evaluations result

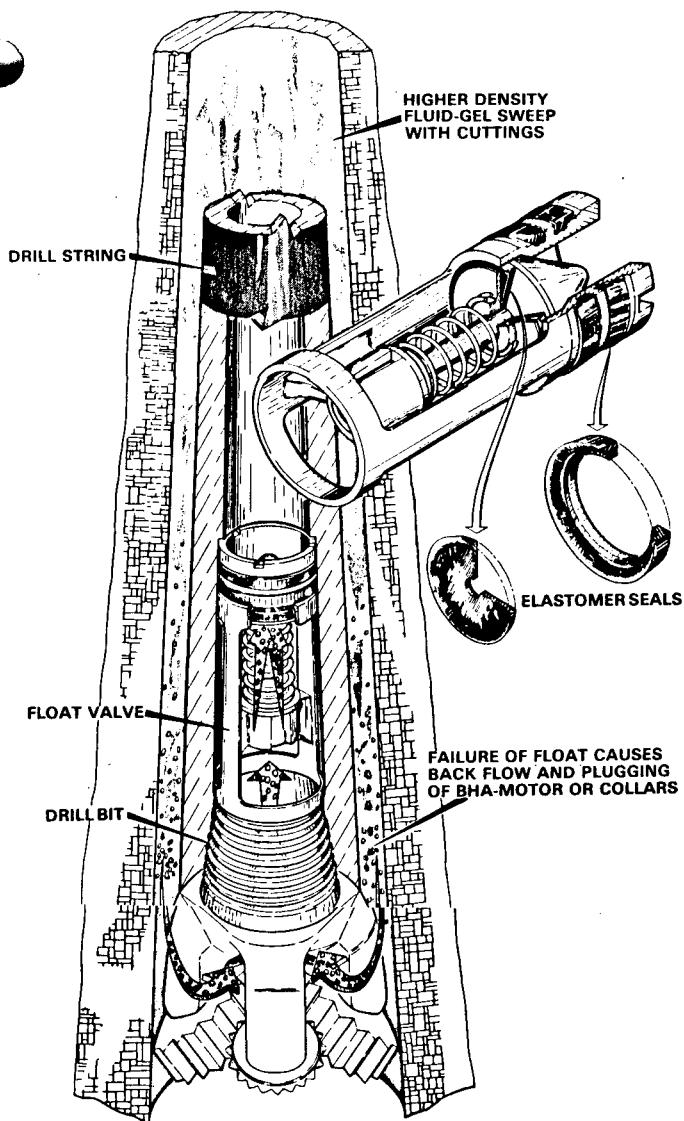



Fig. 16.  
Float-valve-seal function in drill string.

from temperature limitations and are often plagued with poor quality and unreliable performance. Fishing tools such as free-point surveys, perforators, back-off shots, and pipe-severing services are also affected. These operations often require repeated attempts, lose effectiveness when successful, and may require extended cooldown by lengthy circulation. High-temperature detonators are a definite need, and a problem needing solution for all geothermal fishing operations.

The directional-drilling steering-tool problem had been tackled in EE-2 by Scientific Drilling Controls (Irvine, California) and a special hot-hole cable, cablehead and, dewar-protected downhole-electronics system afforded adequate steering-tool performance for the azimuthal corrections in the deep, hot reservoir section of the 27.2-cm (8-3/4-in.)-diam borehole of EE-3.

**F. Cement Plugs.** Portland cements for high-temperature oil, gas, and geothermal wells have been recognized as a major problem.<sup>20</sup> Use of cement plugs for effective and reliable sidetracking operations in extremely hard, crystalline rocks will require a considerable effort in a search for a "cement" that will drill hard relative to a granite formation. That is because a side tracking bit must take a relatively high bit-load to generate sufficient side-cutting force and action to groove the sidewall. Low-penetration rate to effect an efficient grooving action is required and this in turn requires a slow drilling rate. Thus an extremely hard plug is required. Development of

special types of side-cutting bits, i.e., especially designed diamond bits and skewed-axis three-cone bits would be valuable.

One further comparison is given on Table XI where the various types of drilling problems and troubles for EE-3 (and EE-2), and the nearby Baca hydro-thermal drilling operations (conducted by Union Geothermal Div.), are tabulated as the percent of total time required to solve the particular problem expressed in percent of total drilling time spent solving all the problems. The noted differences are about as expected, with hydrothermal drilling experiencing more lost-circulation and stuck-pipe (formation caving and sloughing into well that traps the drill string or BHA) problems than the deeper hot dry rock drilling. The directional-drilling problems are not encountered in the Baca hydrothermal wells because no azimuth control has been required there.

## VI. DESIGN AND INSTALLATION OF THE PRODUCTION CASING STRING

### A. Casing Design

The unexpectedly high bottom-hole static reservoir temperature potential achieved by EE-2 [275°C (550°F) projected vs 320°C (608°F) measured], the actual DLS, and desirability of suppression of wellhead growth during production, required a review of the EE-3 production casing design and cementing plan. The result of the review was a decision to replace the original 24.4-cm (9-5/8-in.)-o.d., 59.6 kg/m (40 lb<sub>m</sub>/ft), S-95 and N-80 grades, buttress-thread-connection casing string with a heavier-weight, premium-connection, higher strength steel string. This design change was judged to provide a greater margin against collapse and coupling-connection failures, and a longer life relative to wear and corrosion.

The selected replacement, a choice dictated partly by availability, was a 70.0 kg/m (47 lb<sub>m</sub>/ft), VAM connection, P-110 grade casing. This heavier casing would restrict tools and bits to a 21.6-cm (8-1/2-in.) maximum diameter.

The change in cementing plan was based upon a two-stage cementing procedure. A high-strength, low permeability, and high-temperature-curing cement was formulated for the bottom 1000 m (3000 ft), as the first stage. A stage cementing valve (DV tool) was included at the top of the first stage and a second stage of lightened (low-density) cement was to be placed above the stage collar (DV tool) and designed to extend up to a depth of 1000 m (3000 ft). This strategy would provide lateral support and stability to the upper portion of the casing in the deviated hole section, yet provide approximately

TABLE XI

COMPARISON OF RELATIVE PERCENTAGE OF TIME REQUIRED TO  
SOLVE VARIOUS MAJOR PROBLEMS  
BACA, EE-2, AND EE-3

| Type of Problem Solved  | Percentage of Time Required to Solve Problem, % |              |              |
|-------------------------|-------------------------------------------------|--------------|--------------|
|                         | BACA                                            | EE-2         | EE-3         |
| 1. Lost circulation     | 14.3                                            | 6.9          | 2.4          |
| 2. Stuck pipe           | 26.9                                            | --           | <sup>a</sup> |
| 3. Twist off            | 2.7                                             | 15.5         | 11.9         |
| 4. Sidetrack            | 12.6                                            | --           | 30.2         |
| 5. Rig/Fluid Problems   | 5.1                                             | 4.9          | 3.6          |
| 6. Casing problems      | 19.5                                            | 63.4         | <sup>a</sup> |
| 7. Cementing Problems   | 13.4                                            | <sup>a</sup> | 12.0         |
| 8. Fishing & Junk       | 5.5                                             | 5.5          | 32.3         |
| 9. Directional Problems | --                                              | 2.3          | 7.6          |
|                         | 100                                             | 100          | 100          |

<sup>a</sup>Less than 1%.

150 m (500 ft) of exposed open borehole to relieve any buildup of annulus pressure. A tension load of about  $40 \times 10^5$  N (900 000 lb<sub>f</sub>) was designed to pre-stretch the casing sufficiently to compensate for about one-half of the expected thermal growth. The welded and sealed wellhead would then be designed to contain the expected thermal growth with a hold-down force of about  $20 \times 10^5$  N (450 000 lb<sub>f</sub>). Figures 7 and 17 summarize the final EE-3 casing configurations and cementing program.

B. Installation of the Production Casing

1. Summary Chronology. Total depth was reached on August 7, 1981 (day 443) and cleaning of the wellbore started as soon as the last bit run and single-shot survey were completed. Initial cleaning of the wellbore was completed on August 8 and the logging of the well began that same day and continued into August 9. The logs were finished on August 9 and the first cement plug was placed later that same day. This plug was placed to prevent

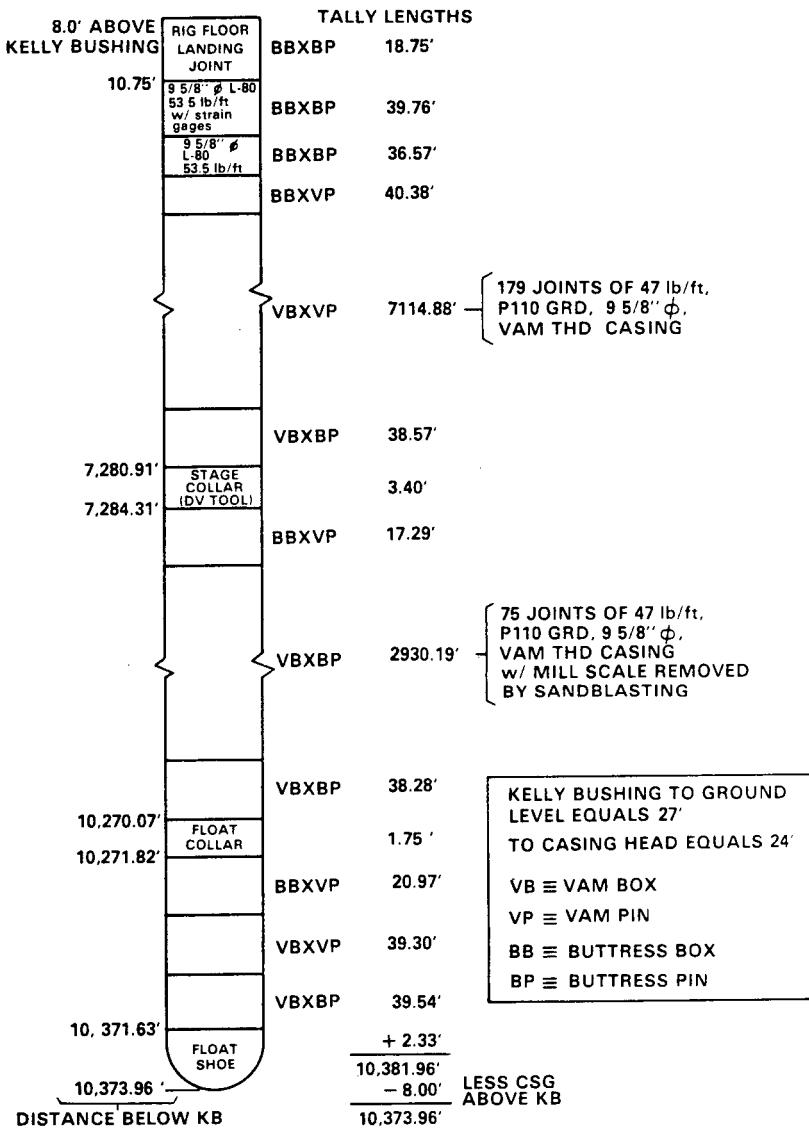



Fig. 17.  
Details of 9-5/8-in. casing measured depths from tally.

the first stage cement from sliding down into the 22.2-cm (8-3/4-in.) diam hole. Additional logs were run on August 10 and 11. The second cement plug (the first plug slipped downhole) was placed on the August 12 and was allowed to harden 12 h and was faced off to 3170 m (10 400 ft) on August 13. The casing tensioning jacks were installed and casing run-in initiated on August 14, day 450. The running of the casing was completed on the next day and the first stage of the casing cementing began that same day and was completed the next day, August 16. While waiting on the cement to harden, a temperature

survey was made. The casing was tensioned and stretched and the second stage of the casing cementing was completed on August 18. The casing was also landed in the wellhead and cut off on day 454. All operations were conducted as planned, operations proceeded as scheduled and the casing installation was accomplished in an essentially trouble-free manner.

2. Initial Cleaning. Immediately after drilling stopped, two  $12 \text{ m}^3$  (75 bbl) gel-mud-sweep pills were pumped downhole through the BHA and drill bit. Each gel pill consisted of 34 sacks of bentonite gel, two sacks of "Benex" polymer and two sacks of caustic soda (to raise the pill pH). Four hours after being pumped downhole the gel-mud-sweep pills were circulated to the surface.

The fluid in the open hole [22.2 cm (8-3/4-in.)] section at the bottom of the well was then displaced with a detergent solution. This was made by mixing drums of concentrated detergent with fresh well water using a ratio of  $0.42 \text{ m}^3$  (110 U.S. gal) of detergent to every  $16 \text{ m}^3$  (100 bbls) of fresh water. The solution was placed in the hole by sequentially pumping  $4 \text{ m}^3$  (26 bbls) of solution, pulling three stands [ $\sim 30 \text{ m}$  (90 ft)] of drill pipe out of the hole, pumping  $4 \text{ m}^3$  (26 bbls) more of the solution, pulling 3 more stands of drill pipe, etc. When the bit was at 3350 m (11 000 ft) the balance of the drill string was tripped out. A new BHA that included specially fabricated borehole scrapers was lowered back downhole. The scraper BHA consisted of a 22.2-cm (8-3/4-in.)-diam bit, a short drill collar, two modified stabilizer bodies with a brazed-on, looped cable scraper attached to each body. The scraper assembly was pushed to the hole bottom. The scraper BHA was then pulled up hole to 3295 m (10 811 ft) and then pushed back to the hole bottom, and  $102 \text{ m}^3$  (639 bbls) of approximately 2% detergent solution were then pumped into the hole. The scraper BHA was then tripped out of the hole. When on the rig floor, it was noted that the scraper elements had worn badly and some had been left downhole.

3. Cement Plug Placement. The Los Alamos temperature-survey tool was used to determine the borehole temperature and to record temperature-recovery rates.

The drill pipe was tripped in open ended in order to place the cement plug to 3322 m (10 900 ft). Then  $3 \text{ m}^3$  (20 bbls) of fresh well water were pumped down hole as a cementing preflush. Next  $9 \text{ m}^3$  (58 bbls) of  $1980 \text{ kg/m}^3$  (16.5 ppg) cement--consisting of 210 sacks of class H cement,  $4.3 \text{ m}^3$  (27 bbls)

of fresh water, 20% silica flour, 20% 100-mesh silica sand, 0.75% D-65 turbulence enhancer, 1.4% L-10 and 2-8% D-28 retarder--were mixed and pumped down-hole in 16 min. The cement slurry was displaced out of the drill pipe by 23.7 m<sup>3</sup> (149 bbls) of fresh water. The drill pipe was then pulled out of the hole and the cement plug was allowed to harden for 18 h.

When a milled-tooth-bit BHA was tripped in, it reached 3287 m (10 783 ft), at the approximate location of the transition between the 31.1-cm (12-1/4-in.) and 22.2-cm (8-3/4-in.)-diam holes, without encountering the plug. The drill string was believed to be resting on the hole wall in the transition region, which meant that the cement plug had slid toward the bottom of the hole or was mushy and couldn't support drill-string weight. The BHA was kept at 3287 m (10 783 ft) and circulated for 6 h; returns reaching the surface were fine sand. The BHA and drill pipe were then pulled out of the well while an alternate cement plug was formulated. Schlumberger was rigged up to log with gamma ray, compensated formation density, compensated neutron, and one-arm caliper tools. The survey was run up from 3290 m (10 800 ft) to 1000 m (3000 ft) and when the logging tools reached the surface they and the bottom 30 m (100 ft) of logging cable were coated with a gray-green-colored crust that contained cement. Schlumberger then ran a borehole geometry (two-independent-arm caliper and dipmeter) log from 2960 m (9500 ft) up hole to 1800 m (5900 ft) where the tool failed. When the borehole geometry tool reached the surface it was also coated with a gray-green-colored crust that contained cement; there were also indications of this gunk on the bottom 460 m (1500 ft) of logging cable. The caliper logs were intended to provide data for cement-volume calculations. The neutron-gamma log suite was provided to detect water pockets after the cementing was completed, by use of before-and-after log comparisons.

The Los Alamos temperature survey tool was then rerun to measure temperature from the surface to 3290 m (10 800 ft). When a 3290-m (10 800-ft) depth was reached the tool response to temperature became inhibited and tool behavior indicated it was insulated from the borehole environment. The tool was moved up and down the hole in an attempt to clean the tool, but cleaning didn't occur and the tool was pulled out of the hole. When the temperature sonde reached the surface it was again found to be coated with a gray-green wax-like crust. The tool's thermistor was cleaned and the tool was run back in the hole to 2230 m (7300 ft) where it measured a temperature-recovery rate

of  $4^{\circ}\text{C}/\text{h}$  ( $8^{\circ}\text{F}/\text{h}$ ). The tool was then lowered to 3260 m (10 700 ft) where a temperature of  $185^{\circ}\text{C}$  ( $370^{\circ}\text{F}$ ) and a recovery rate of  $0.5^{\circ}\text{C}/\text{h}$  ( $0.9^{\circ}\text{F}/\text{h}$ ) were recorded. The temperature probe was then lowered further downhole to sound for the cement plug. The tool bottomed at approximately 3295 m (10 810 ft). When the tool was pulled out of the hole it was again found to be heavily coated with the gray-green waxy gunk.

The uncertainty about the competency of the previously placed cement plug dictated the placement of a second plug before running the casing. The drill pipe was lowered open ended into the hole to 3287.9 m (10 787 ft) where the string lost 20 000 lbs of weight. (The string was possibly resting on the first cement plug). The drill pipe was pulled up hole 3 m (10 ft) where  $8 \text{ m}^3$  (50 bbls) fresh-water preflush was pumped downhole. Next  $6 \text{ m}^3$  (35 bbls) of  $1980 \text{ kg/m}^3$  (16.5 ppg) cement slurry was mixed and pumped downhole. The slurry formulation consisted of 144 sacks of class H cement,  $3 \text{ m}^3$  (19 bbls) of fresh water, 40% silica flour, 0.75% turbulence enhancer, 0.6% L-10 and 1.2% D-28 retarders. A lightened  $1350 \text{ kg/m}^3$  (11.3 ppg) cement slurry was then mixed and  $20 \text{ m}^3$  (66 bbls) pumped downhole. The  $1350 \text{ kg/m}^3$  (11.3 ppg) cement slurry consisted of 126 sacks of class H cement,  $7 \text{ m}^3$  (43 bbls) of fresh water,  $7.1 \text{ m}^3$  (252 ft<sup>3</sup>) of expanded perlite, 2% bentonite, 40% silica flour, 0.75% D-65 turbulence enhancer, 1% L-10 and 2% D-28 retarders. A tail of  $0.5 \text{ m}^3$  (3 bbls) of the  $1980 \text{ kg/m}^3$  (16.5 ppg) cement slurry was then pumped downhole as a hard cap for the lightened plug. The cement was then displaced out of the drill pipe with  $21 \text{ m}^3$  (132 bbls) of fresh water.

After a 9-h wait, the face-off BHA contacted stringers at 3114 m (10 215 ft), and then the second cement plug was drilled (19-1/2 h after placement) down to 3170 m (10 400 ft). Two  $12 \text{ m}^3$  (75 bbls) gel-mud-sweep pills were used to clean the cement cuttings from the hole. A pH = 12.0 was maintained in the drilling fluid while the gel pills were circulating by adding caustic soda.

4. Running Casing. The BOP stack was removed from the rig sub-structure. Timber sills, the steel support cribbing and casing tensioning jacks were located around the wellhead. Casing handling and torque-turn monitoring equipment were assembled and installed on the drilling rig.

The cementing float shoe, float-valve collar, stage collar cementing tool (DV tool), 24.4-cm (9-5/8-in.) casing string [ $70 \text{ kg/m}$  (47 lb/ft)], and two landing joints of  $80 \text{ kg/m}$  (53.5 lb/ft) L-80 grade were picked up and run in the hole to 3162.0 m (10 374 ft) as shown in Fig. 15.

The float shoe, float collar, and cementing stage collar (DV tool) had received black-light end-area and full-dimensional inspections. All of the 24.4-cm (9-5/8-in.) casing used in the string received Analog IV (AMF Tuboscope), special end-area and full-length drifting inspections and were tallied and length checked three times independently. The Vallouvec VAM connections were torqued together at  $18\ 400 \pm 2000\ N\cdot m$  ( $13\ 500 \pm 1500\ ft\cdot lb_f$ ) and all buttress thread connections were torqued to midway up the triangle mark or to  $1225\ N\cdot m$  ( $9000\ ft\cdot lb_f$ ) maximum torque.

The only problem encountered was while running casing joint number 262 when the casing string lost weight. An attempt to lift the casing string was made;  $2 \times 10^6\ N$  ( $450\ 000\ lb_f$ ) pull by the drawworks only accomplished a stretch of the casing by 1.0 m (3.5 ft). The casing string appeared to be resting on some type of obstruction. A cementing head was attached to the top of the casing string and, using the rig pumps, the string was easily washed through the obstruction. The remaining joints of the string were run in without any problems. All available 24.4-cm (9-5/8-in.) casing was run.

Once the casing was run in, a stretch test on the casing string was conducted. An initial  $1.70 \times 10^6\ N$  ( $379 \times 10^3\ lb_f$ ) load (that was equal to the net string weight less hole friction being supported) on the rig's drawworks was increased to  $1.93 \times 10^6\ N$  ( $434\ 000\ lb_f$ ) and resulted in only a 26.7-cm (10.5-in.) movement of the casing out of the hole. A  $2.22 \times 10^6\ N$  ( $500\ 000\ lb_f$ ) pull resulted in a total casing movement of 60.9 cm (24 in.). When the pull force was lowered back to  $1.70 \times 10^6\ N$  ( $380\ 000\ lb_f$ ) the casing moved back down hole 71.1 cm (28-in.), 10.2 cm (4-in.) further into the hole than before the stretch test was started.

5. Casing Cementing. After rigging down the casing-running hardware, a cementing head was installed and a  $127\ m^3$  (801 bbls) clear-water preflush was pumped down the casing. The preflush was fresh water with a pH of 12.0. The preflush was followed by  $3\ m^3$  (19 bbls) of a fresh water spacer with a pH of 7.0 mixed with 1.2% D-28 cement retarder. Next,  $13\ m^3$  (84 bbls) of  $1258\ kg/m^3$  (10.5 ppg) pozzolan scavenger cement slurry was mixed and pumped down the casing. The pozzolan cement slurry consisted of 288 sacks of pozzolan cement,  $8.9\ m^3$  (56 bbls) of fresh water and 1.2% D-28 retarder.

Then the first stage cementing was performed by pumping  $90.8\ m^3$  (200 bbls) of a  $1992\ kg/m^3$  (16.6 ppg) cement slurry. This slurry had been premixed

during the preceding 4-3/4 h. This first-stage-cement slurry formulation consisted of 950 sacks of class H cement,  $22.9 \text{ m}^3$  (144 bbls) of fresh water, 40% silica flour, 40% 100 mesh silica sand, 2% bentonite, 0.75% D-65 turbulence enhancer, 0.6% L-10 and 1.2% D-28 retarders. This volume of cement,  $90.8 \text{ m}^3$  (50 bbls), had been calculated to be 25% in excess of that needed to fill the annulus between the cement-plug shoe and the DV tool.

The wiper plug was then released from the cementing head and immediately followed with  $111.6 \text{ m}^3$  (702 bbls) of displacement water. The first  $1.6 \text{ m}^3$  (10 bbls) of the displacement water was fresh, had a pH of 7, and contained 1.2% D-28 cement retarder mixed in. The balance of the displacement water was fresh water with a pH of 12.0. The calculated displacement volume needed to displace all the cement to the float collar was  $119.3 \text{ m}^3$  (750 bbls). However, the system pressured up to 22.8 MPa (3300 psi) at a volume  $7.6 \text{ m}^3$  (48 bbls) short of the desired displacement. The casing pressure was released and approximately  $1.6 \text{ m}^3$  (10 bbls) of water flowed back out of the casing. The flow stopped, indicating that the float was holding. An estimated  $6.4 \text{ m}^3$  (40 bbls) of cement apparently remained in the bottom 200 m (650 ft) of casing.

The stage-collar-opening bomb was dropped and 40 min later the stage collar (DV tool) was opened by a surface pressure of 8.3 MPa (1200 psi) and pumping  $0.3 \text{ m}^3$  (2 bbls) of pH 12.0 fresh water down the casing. After the stage collar opened an additional  $3 \text{ m}^3$  (20 bbls) of pH 12.0 fresh water was pumped down the casing. Circulation through the stage collar then began using the rig pump and continued until cement was detected in returns. Circulation continued further until the returns became clear. Approximately 25 h after the completion of circulation through the stage collar a temperature survey was run. The tool was run down inside the casing to a (wireline) depth of 2219.6 m (7282 ft), confirming the location of the stage collar bomb blocking the casing i.d. The tool was then pulled up the casing to 2217.4 m (7275 ft) where a dwell for 2 h measured temperature and recovery rate of  $138^\circ\text{C}$  ( $280^\circ\text{F}$ ) and  $0.1^\circ\text{C}/\text{h}$  ( $0.05^\circ\text{F}/\text{h}$ ), respectively.

After waiting 72 h for the first-stage cement to set, the second stage and casing tensioning operations were begun. The casing slips and slips-restraining fixture were installed in the casing head. Next the hydraulic jack power-fluid piping system and casing tensioning jacks were tested (see Fig. 18). After testing, the jacks were cycled up and down five times to

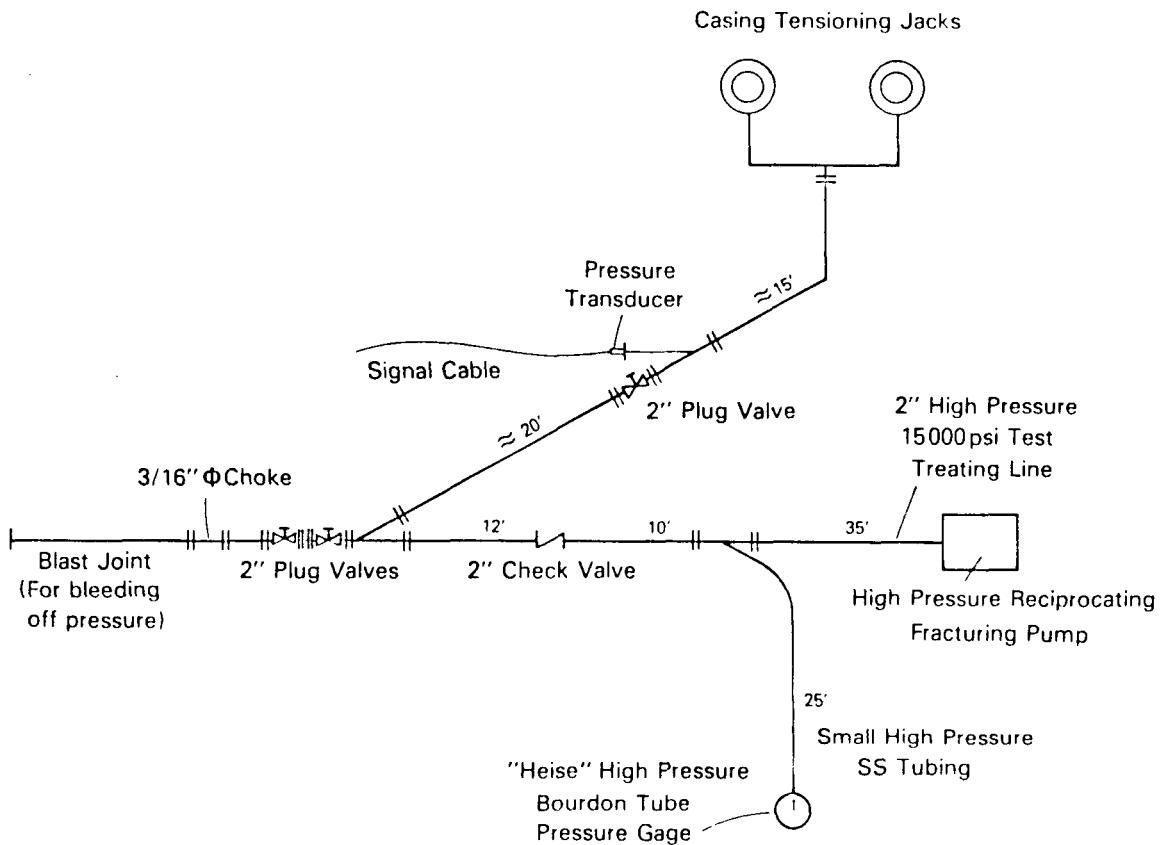



Fig. 18.  
Schematic diagram of casing-jack power-fluid piping system.

stretch the casing and work tension down the casing. These cycles resulted in the following casing stretch.

| Cycle No. | Casing<br>Stretch, m (ft) | Jack<br>Load, N ( $lb_f$ )   |
|-----------|---------------------------|------------------------------|
| 1         | 0.68 (2.25)               | $2.40 \times 10^6$ (539,000) |
| 2         | 0.57 (1.9)                | $2.22 \times 10^6$ (498,600) |
| 3         | 0.57 (1.9)                | $2.21 \times 10^6$ (496,700) |
| 4         | 1.24 (4.1)                | $2.86 \times 10^6$ (643,000) |
| 5         | 1.24 (4.1)                | $2.84 \times 10^6$ (639,100) |

Upon the completion of cycling, the pressure on the jacks was released and the full casing load was placed on the jack cross head with cylinders in retracted position. Tension resulting from the jack cycling was worked down

to approximately 1963 m (6440 ft) and 0.91 m (3.0 ft) of casing stretch was retained. The casing slips were then set in the casing head.

The second-stage cementing was preceded by the pumping of a 3 m<sup>3</sup> (20 bbls), pH 12.0, fresh-water preflush. The preflush was followed by a 3 m<sup>3</sup> (20 bbls) pH 7.0 fresh-water spacer containing 2% D-28 retarder. Next 52.5 m<sup>3</sup> (383 bbls) of a 1665 kg/m<sup>3</sup> (14 ppg) class H, perlite-lightened cement slurry was mixed and pumped down the casing; 30 m<sup>3</sup> (50 bbls) were premixed. The class H perlite slurry consisted of 1200 sacks of class H cement, 30.4 m<sup>3</sup> (191 bbls) of fresh water premixed with 2% D-28 retarder, 34 m<sup>3</sup> (1200 ft<sup>3</sup>) of expanded perlite, 20% silica flour, 20% 100 mesh silica sand, 0.75% D65 turbulence enhancer, 2% bentonite and 0.2% D-46 anti-foam agent.

The rubber top wiper plug was then released and displaced by 82.2 m<sup>3</sup> (517 bbls) of pH 11 to 12 fresh water. A pressure of 21.4 MPa (3100 psi) displacement indicated that the plug had reached the stage collar. The calculated displacement volume was 84.7 m<sup>3</sup> (533 bbls). Surface pressure was released and 0.7 m<sup>3</sup> (5 bbls) of displacement water flowed back, but the flow ceased, indicating that the stage collar had closed.

The casing-tensioning jacks were then activated with 72.3 MPa (10 500 psi) and only negligible movement 0.6 cm (1/4-in.) of the casing occurred. Only one jack cylinder had moved and the jacks appeared to be binding. The problem was solved by releasing pressure on the jacks and centering the casing by pushing the casing slips down into the casing spool. Then the casing running slips on the rig were set and the rig line and drawworks were used to pull  $2.11 \times 10^6$  N (475 000 lb<sub>f</sub>) on the casing while repressurizing the jacks. This procedure unbound the jacks and the jacks and casing began moving up. Chocks were placed between the casing landing spool and the casing slips restraining fixture, and the rig line and rig floor slips were slacked off and released.

The jacks were cycled up and down three times resulting in the casing being stretched an additional 1.55 m (5.1 ft) for a total [including 0.91 m (3.0 ft) of pre-second stage cementing casing stretch] of 2.47 m (8.1 ft). A pressure of 79.2 MPa (11 500 psi) was applied to the jacks and resulted in a final tensioning force of  $4.02 \times 10^6$  N (885 000 lb<sub>f</sub>) that produced a 1.55 m (5.1 ft) increment of casing stretch. The chocks were pulled out and the casing slips were set in the casing landing spool. The jacks were lowered and only 0.03 m (0.1 ft) of casing stretch was lost.

The casing run-in and cementing procedures and operations occupied 13 days. The cement was allowed to set for 72 h, the cement was drilled out without incident on day 458 and the drill pipe was laid down. A Schlumberger cement bond log (CBL) was run on day 459. Review of the CBL has indicated that the logging tool had been improperly centralized and therefore the CBL results are unreliable. The density and neutron logs show possible weak bonding from 3073 to 3138 m (10 082 to 10 296 ft) with good bonding elsewhere. A second CBL has been recommended before fracturing operations are initiated.

## VII. COST COMPARISONS

The drilled depth of well EE-3 (and EE-2) is unique in the development of high-grade U.S. geothermal resources. The majority of available drilling and cost data are for drilled depths of 3 km (10 000 ft) or less. The majority of such data are for hydrothermal development drilling and represent a data and experience base of less than 100 wells drilled in the U.S. per year<sup>21</sup> with total footage averaging about 180 km (500 000 ft) per year and for an average depth of about 2.2 km (7200 ft). Because five HDR wells have now been drilled at Fenton Hill, it is possible to compare these wildcat well costs to the experience with hydrothermal drilling costs and to project a "trouble-free" HDR drilling costs and to project a "trouble-free" HDR drilling cost trend for Fenton Hill conditions.

As another point of reference, about 2500 geothermal wells have been drilled worldwide and currently produce 2500 MW(e) of electricity from 163 high-grade hydrothermal fields.

### A. Comparison With Hydrothermal Drilling Costs

A recent summary by Carson and Lin<sup>22</sup> is presented in Fig. 19, where the total drilling cost in 1979 dollars is plotted on a logarithmic scale vs well depth. These are the total costs paid to the drilling contractor. The average cost trend for drilling U.S. onshore oil and gas wells is plotted for reference and is noted to be an exponential function of depth. The hydrothermal drilling costs range from about 2 to 4 times those for average oil and gas wells at a comparable depth. The reasons for these increased costs are due to the high temperatures, lost-circulation conditions, and hard rocks encountered in most hydrothermal reservoir areas. The trend noted for the Imperial Valley drilling costs reflect mostly the influences of higher temperatures because the subsurface formations are a sedimentary (sandstone-shale)

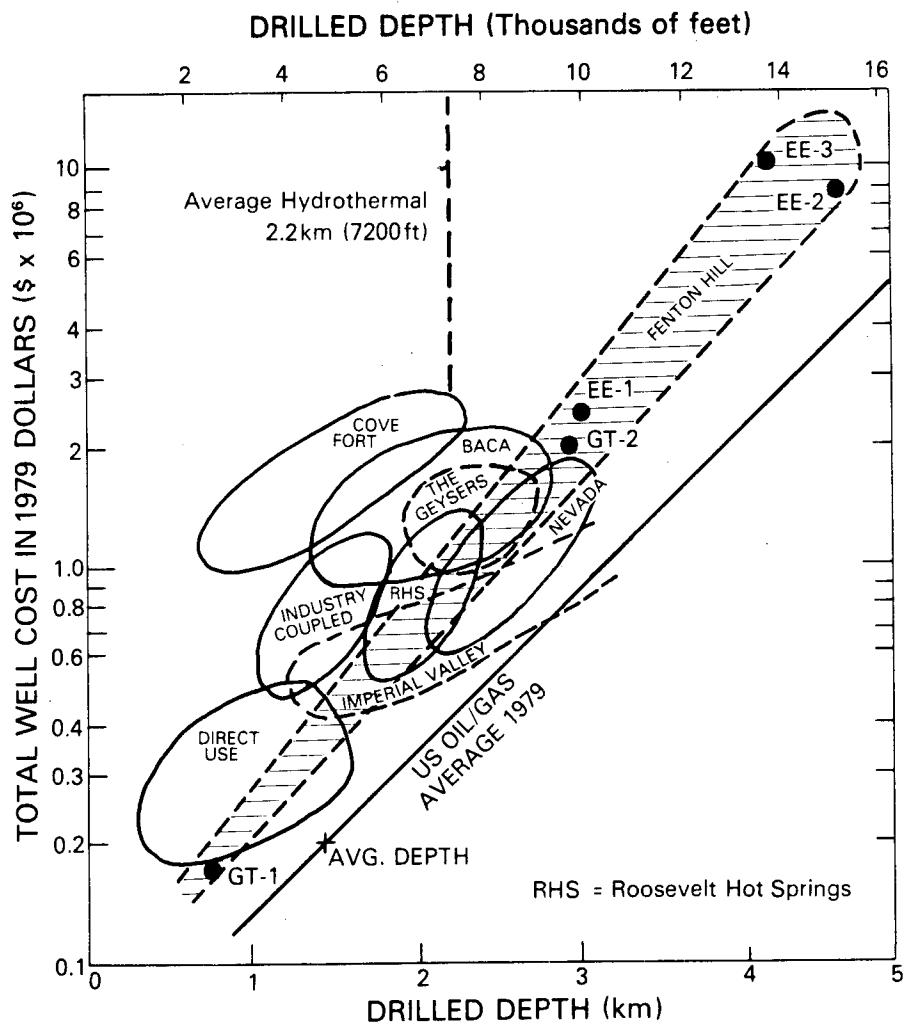



Fig. 19.  
Comparison of commercial hydrothermal-well and Fenton Hill drilling costs.

stratigraphic sequence more closely related to the rocks and conditions encountered in oil and gas well drilling. The costs for HDR drilling at Fenton Hill are plotted on Fig. 19, adjusted to 1979 dollars, using the 17% per year escalation factor of Carson and Lin. The large spread noted for the hydrothermal drilling costs reflect the often wildcat nature of this type of drilling and compounding of problems due to high temperatures; i.e., problem solving procedures and techniques are adversely affected by elevated temperatures.

Figure 20 is a plot of drilling costs for U.S. DOE supported hydrothermal wells that was adapted from Ref. 23, and on the same scales, format and basis

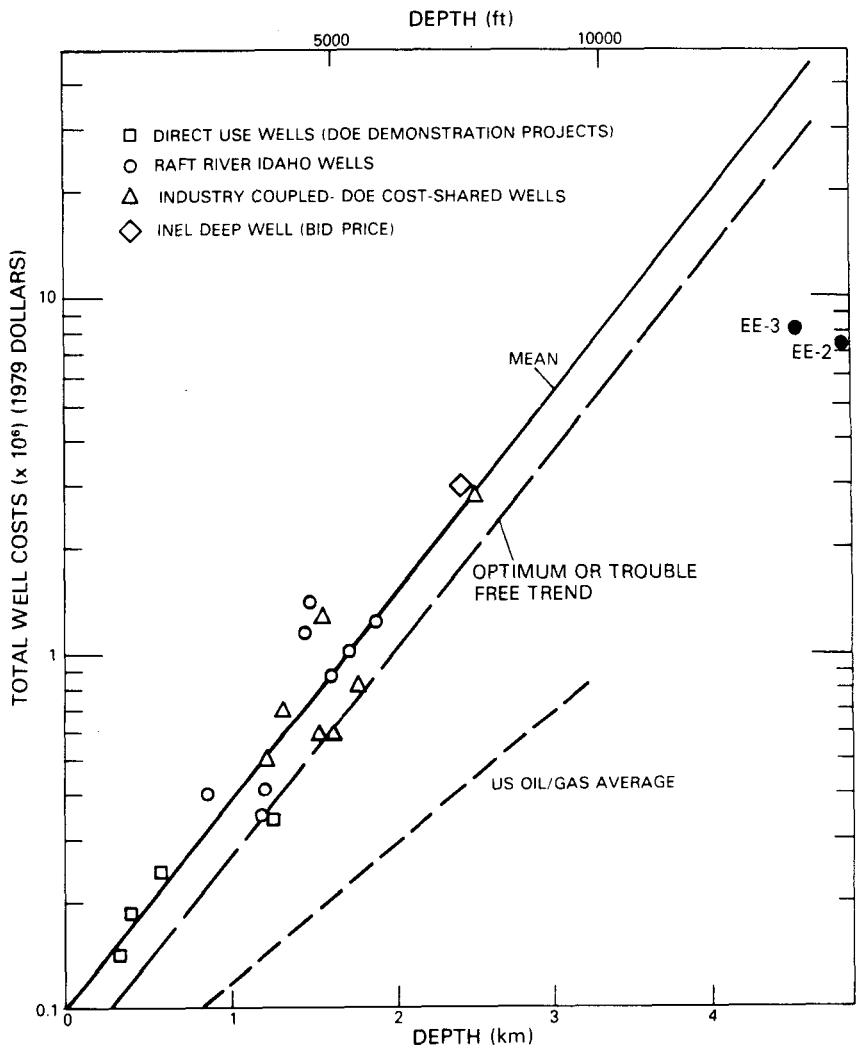



Fig. 20.  
Comparison of DOE-sponsored hydrothermal-well to Fenton Hill drilling costs.

as Fig. 19. Again the authors have adjusted costs to 1973 dollars and projected an optimum or trouble-free drilling cost trend. The EE-2 and EE-3 costs are included for comparison with the extrapolated depth trends.

#### B. Estimation of Trouble-free Fenton Hill Drilling Costs

It is common practice in most drilling situations to attempt to project drilling costs after the experience of the first few wells in a reservoir area has been established. The costs of major problems and experiments conducted in the four deep HDR wells at Fenton Hill were available and can be removed from the total drilling costs. This was done<sup>24</sup> and the results are tabulated in Table XII. In this tabulation the Fenton Hill drilling costs were escalated to 1981 by the 17% annual rate suggested by Carson and Lin. In

reviewing the costs for EE-3 it should be recognized that the drilling costs include directional drilling with precise inclination control and the directional drilling corrections in the deepest, hottest portion of the well required to keep the wellbore trajectory close to the N70°E vertical plane. The raw-cost-data ratio in Table XII shows that EE-3 cost about 3.1 times a comparable-depth oil and gas well. The projection to a trouble-free well cost reduces this ratio to 1.9. The trouble-free cost projection for EE-3 eliminated only the costs of solving the major fishing and sidetracking problems. Any improvements that might be expected to reduce problems associated with the 54 (compared to 30 for EE-2) directional drilling runs were not included in the cost reduction for EE-3. These additional directional runs account for the major part of the difference noted between EE-2 and EE-3 in the last column of Table XII, i.e., a ratio of 1.3 for EE-2 and 1.9 for EE-3 to oil and gas well drilling costs at comparable depths.

As a note of caution, it should be made clear that direct extension of Fenton Hill drilling costs to other areas should not be attempted. Overburden formations, crystalline rock, and temperature differences could bias costs significantly, especially for a first, or wildcat, well in a new area.

#### VIII. CONCLUSIONS

The controlled trajectory drilling of HDR well EE-3 was accomplished within very close dimensional tolerances as specified with respect to well EE-2. The vertical spacing of the inclined portion is  $370 \pm 30$  m ( $1200 \pm 50$  ft) and the lateral location was maintained directly above EE-2 to within  $\pm 30$  m ( $\pm 100$  ft), except for the bottommost section that drifted north slightly to about a 55 m (180 ft) offset from the EE-2 trajectory.

A large number of drilling problems were solved during the drilling operations. Drill pipe and BHA failures were the most serious. One twist-off required an extensive fishing procedure that failed to retrieve 43 m (140 ft) of the BHA. This, in turn, necessitated a sidetracking operation that proved to be very lengthy. This major problem occupied nearly 50% of the total drilling time. Close monitoring, and prevention of, crooked-hole conditions, improved high-temperature lubricity additives, strict drill-pipe inspection procedures, and improvements in some fishing tools (e.g. high-temperature wirelines and detonators for back-off shots) should minimize the impact of such problems in future HDR drilling programs. The completion of the drilling

TABLE XII  
FENTON HILL HDR DRILLING COST COMPARISONS<sup>a</sup> TO AVERAGE OIL & GAS DRILLING COSTS

| Fenton Hill<br>HDR Well | Date<br>Completed | Total<br>Depth <sup>b</sup><br>km (ft) | Cost, 10 <sup>6</sup> \$,<br>at Date<br>Completed | Cost, 10 <sup>6</sup> \$<br>Escalated<br>to 1981 | Oil & Gas<br>Avg, 10 <sup>6</sup> \$,<br>Escalated to<br>1981 | Ratio, 1981<br>Well Costs to<br>Oil & Gas Avg. | Trouble Free<br>1981 Well Costs<br>10 <sup>6</sup> \$, with HDR<br>Experiments &<br>Major Problems<br>Removed, Costs | Ratio 1981 HDR Well Costs<br>with Major Problems & Exps.<br>Removed, to Oil & Gas Avg |
|-------------------------|-------------------|----------------------------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| GT-2                    | 10/1974           | 2.93 (9620)                            | 1.9                                               | 5.2                                              | 1.1                                                           | 5.2                                            | 3.3                                                                                                                  | 3.0                                                                                   |
| EE-1                    | 10/1975           | 3.06 (10,050)                          | 2.3                                               | 5.9                                              | 1.3                                                           | 4.5                                            | 3.2                                                                                                                  | 2.4                                                                                   |
| EE-2                    | 5/1980            | 4.66 (15,290)                          | 7.3                                               | 8.5                                              | 4.9                                                           | 1.7                                            | 6.3                                                                                                                  | 1.3                                                                                   |
| EE-3                    | 8/1981            | 4.25 (13,930)                          | 11.5                                              | 11.5                                             | 3.7                                                           | 3.1                                            | 6.9                                                                                                                  | 1.9                                                                                   |

<sup>a</sup> Adapted from the analysis of Ref. 24.

<sup>b</sup> Measured depth.

<sup>c</sup> Using a 17% per year, per Ref. 22.

<sup>d</sup> Oil & Gas Avg. Costs, extrapolated to 4.5 km and escalated at 17% per year.

of EE-3 provides an open-hole reservoir rock volume of 1.0 km (3000 ft) along the wellbore and nearly 580 m (1900 ft) horizontal in which to space the vertical fractures of the heat transfer/extraction system.

#### ACKNOWLEDGMENTS AND DISCLAIMER

The authors thank the many individuals who supported the EE-3 drilling campaign with their expertise, and acknowledge the firms that provided the equipment, instruments, services, and supporting personnel. The supervisory and crew members of the Brinkerhoff-Signal Rig No. 56 contributed significantly to the success of these drilling operations. We especially note with appreciation and gratitude those companies that supplied innovative and developmental high-temperature-rated hardware and tools for evaluation and use.

However, specific references to a company, product name, service, tool, or equipment item does not imply approval or recommendation of the product, service or hardware by the University of California (Los Alamos National Laboratory) or the U.S. Department of Energy, to the exclusion of others that may be suitable.

#### REFERENCES

1. Z. V. Dash, J. D. Murphy, and G. M. Cremer, "Hot Dry Rock Geothermal Reservoir Testing: 1978-1980," Los Alamos National Laboratory report LA-9080-SR (November 1981).
2. R. A. Pettitt, S. Koczan, C. Helmick, and R. E. Williams, "Drilling of Hot Dry Rock Geothermal Well EE-2," Los Alamos National Laboratory report LA-9302-HDR (April 1982).
3. R. E. Williams, J. C. Rowley, J. W. Neudecker, and T. L. Brittenham, "Equipment for Drilling and Fracturing Hot Granite Wells," Soc. Pet. Eng. paper No. 8268, Las Vegas, Nevada (1979).
4. T. L. Brittenham, J. W. Neudecker, J. C. Rowley, and R. E. Williams, "Directional Drilling Equipment and Techniques for Deep, Hot Granite Wells," Soc. Pet. Eng. paper No. 9227, Dallas, Texas (1980).
5. T. L. Brittenham, R. E. Williams, J. C. Rowley, and J. W. Neudecker, "Directional Drilling Operations, Hot Dry Rock Well EE-2," Geotherm. Resour. Coun. Transactions, V. 4, pp. 273-276 (1980).
6. R. E. Williams, J. W. Neudecker, J. C. Rowley, and T. L. Brittenham, "Directional Drilling and Equipment for the Granite Wells," Proc. Int'l. Conf. Geothermal Drilling and Completion Technology, Albuquerque, New Mexico, pp. 9-1 to 9-24 (1981).

7. T. L. Brittenham, J. W. Neudecker, J. C. Rowley, and R. E. Williams, "Hot, Abrasive Formation Test New Drilling Equipment," *World Oil*, pp. 95-102 (October 1980).
8. E. B. Nuckles, D. J. Miles, R. Laney, G. Polk, H. Friddle, G. Simpson, "Drilling Fluids and Lost Circulation in Hot Dry Rock Geothermal Wells at Fenton Hill," *Proc. Int'l. Conf. Geothermal Drilling and Completion Technology*, Albuquerque, New Mexico, pp. 24-1 to 24-22 (January 1981).
9. J. W. Neudecker and J. C. Rowley, "High Temperature Directional Drilling Turbodrill," Los Alamos National Laboratory report LA-9231-MS (February 1982).
10. R. A. Pettitt and R. S. Carden, "Sidetracking Experience in Hot Granite Wellbores," *Geotherm. Resour. Coun. Trans.* V. 5, pp. 267-270 (October 1981).
11. M. A. Mathews, R. A. Pettitt, and D. J. Miles, "High-Temperature Logging for Basic Development of HDR Reservoirs," *Geotherm. Resour. Coun. Trans.* V. 5, pp. 299-302 (October 1981).
12. R. A. Pettitt, "Planning, Drilling, and Logging of Geothermal Test Hole GT-2, Phase I," Los Alamos Scientific Laboratory report LA-5819-PR (January 1975).
13. R. A. Pettitt, "Testing, Drilling, and Logging of Geothermal Test Hole GT-2, Phase II," Los Alamos Scientific Laboratory report LA-5897-PR (March 1975).
14. R. A. Pettitt, "Testing, Drilling, and Logging of Geothermal Test Hole GT-2, Phase III," Los Alamos Scientific Laboratory report LA-5965-PR (June 1975).
15. R. A. Pettitt, "Planning, Drilling, and Logging of Energy Extraction Hole EE-1, Phases I and II," Los Alamos Scientific Laboratory report LA-6906-MS (August 1977).
16. G. M. Cremer, (ed.), "HDR Geothermal Energy Development Program, Annual Report Fiscal Year 1980," Los Alamos National Laboratory report LA-8855-HDR, pp. 139-140 (July 1981).
17. D. M. Anliker, "Failure Analysis Report - Drill Pipe Sections," Radian Corp. (April 1981).
18. A. R. Hirasuna, G. D. Bilyeu, D. C. Davis, R. A. Sedwick, C. S. Stephens, and G. R. Veal, "Geothermal Elastomer Program, Final Report," DOE SAN 1308-2 (July 1979).
19. A. F. Friedlander, "Geothermal: Part II, Review of New and Future Products," *Drilling*, pp. 142-144 (July 1981).
20. L. E. Kubacka, "Current Status of Geothermal Well Cement Development," *Proc. Int'l. Conf. Geothermal Drilling and Completion Technology*, Albuquerque, New Mexico, pp. 13-1 to 13-16 (January 1981).

21. W. J. Ehni, "Summary of 1980 Geothermal Drilling in Western U.S.," *Geothermal Energy*, Vol. 9, No. 8, pp 4-15 (August 1981).
22. C. Carson and Y. T. Lin, "Geothermal Well Costs and Their Sensitivities to Changes in Drilling and Completion Operations," *Proc. Int. Conf. on Geothermal Drilling and Completion Technology*, Albuquerque, New Mexico, pp. 8-1 to 8-26 (January 1951).
23. D. N. Anderson, J. W. Lund, eds., "Direct Utilization of Geothermal Energy: A Technical Handbook," *Geotherm. Resour. Coun.*, Spec. Report No. 7, Chapter 3, pp. 3-17 to 3-22 (February 1979).
24. H. Murphy, R. Drake, J. Tester, and G. Zyvoloski, "Economics of a 75-MW(e) Hot Dry Rock Geothermal Power Station Based upon the Design of the Phase II Reservoir at Fenton Hill," Los Alamos National Laboratory report LA-9242-MS (February 1982).

---

APPENDIX A  
DAILY DRILLING LOG FOR EE-3

Abbreviations used:

|         |                       |     |                             |
|---------|-----------------------|-----|-----------------------------|
| BHA     | bottom-hole assembly  | LCM | lost-circulation material   |
| BOP     | blow-out preventer    | POH | pull out of hole            |
| CBL     | cement bond log       | Sii | Smith International, Inc.   |
| DC      | drill collar          | SLM | strapped linear measurement |
| DV tool | cementing stage valve | TD  | total depth                 |
| HWDP    | Hevi-Wate drill pipe  | TIH | trip into hole              |
| KB      | Kelly Bushing         | WOC | waiting on cement           |
| KOP     | kick-off point        |     |                             |

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                                     |
|---------|---------|-------------------------------|---------------------|-------------------|-----------------------------------------------------------------------------|
| 1       | 5/22/80 | 141                           | 26                  | 141               | Spudded EE-3, drilling ahead no problems, 26-in. hole.                      |
| 2       | 5/23/80 | 480                           | 26                  | 339               | Drilling ahead, 26-in. hole.                                                |
| 3       | 5/24/80 | 642                           | 26                  | 162               | Circulation lost while drilling at 540 ft. Mixed LCM to regain circulation. |
| 4       | 5/25/80 | 865                           | 26                  | 223               | Partial circulation loss at 830 ft, Quick-Seal Pill alleviated problem.     |
| 5       | 5/26/80 | 989                           | 26                  | 124               | Drilling ahead, changed to Bit No. 2 (button type).                         |
| 6       | 5/27/80 | 1158                          | 26                  | 169               | Drilling ahead, changed to toothed bit, Bit No. 3.                          |
| 7       | 5/28/80 | 1348                          | 26                  | 190               | Drilling ahead, 1-1/2° off vertical.                                        |
| 8       | 5/29/80 | 1559                          | 26                  | 211               | Drilling ahead, penetrated Madera formation.                                |
| 9       | 5/30/80 | 1696                          | 26                  | 137               | Drilling ahead, rerun Bit No. 2 (button bit).                               |

APPENDIX A (cont.)

| Day No.                                | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                                                                                           |
|----------------------------------------|---------|-------------------------------|---------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 10                                     | 5/31/80 | 1872                          | 26                  | 176               | Drilling ahead, hole conditions stable.                                                                                           |
| 11                                     | 6/1/80  | 1923                          | 26                  | 51                | Lost circulation, drilled into cavern, hit bridge at 480 ft. Regained returns while washing to bottom.                            |
| 12                                     | 6/2/80  | 1923                          | 26                  | 0                 | Drilled through bridge and reopened hole, to 505 ft., severe obstruction.                                                         |
| 13                                     | 6/3/80  | 1923                          | 26                  | 0                 | Lost returns at 1894 ft while reaming to bottom. Set cement plug at TD (500 sacks).                                               |
| 14                                     | 6/4/80  | 1923                          | 26                  | 0                 | Plug not successful, hit bridge at 458 ft, washed and reamed to TD.                                                               |
| 15                                     | 6/5/80  | 1472                          | 26                  | -451              | Washed and reamed to 1792 ft, set second plug (500 sacks of cement).                                                              |
| 16                                     | 6/6/80  | 1472                          | 26                  | 0                 | Hit bridge at 439 ft, washed to 459 ft without returns. Ran drill pipe to 1492 ft. Ran temperature log. Regained partial returns. |
| 17                                     | 6/7/80  | 1775                          | 26                  | 303               | Corrected unstable hole and drilled cement to 1775 ft.                                                                            |
| 18                                     | 6/8/80  | 1775                          | 26                  | 0                 | Waiting on casing crews and circulating, hole conditions stable.                                                                  |
| <u>Set 20-in. Casing at 1580-ft KB</u> |         |                               |                     |                   |                                                                                                                                   |
| 19                                     | 6/9/80  | 1710                          | 26                  | -65               | Ran 20-in. casing to 1580 ft, preparing to cement. SLM 1710 ft.                                                                   |
| 20                                     | 6/10/80 | 1710                          | 26                  | 0                 | Cemented 20-in. casing with 2400 sacks through shoe, 500 sacks down annulus.                                                      |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                                                      |
|---------|---------|-------------------------------|---------------------|-------------------|----------------------------------------------------------------------------------------------|
| 21      | 6/11/80 | 1710                          | 20                  | 0                 | Put 150 additional sacks of cement into annulus (3050 sacks total).                          |
| 22      | 6/12/80 | 1989                          | 17-1/2              | 279               | Drilled cement and shoe to 1860 ft, lost circulation, drilled to TD without circulation.     |
| 23      | 6/13/80 | 1989                          | 17-1/2              | 0                 | Attempted to cement leak, 2500 sacks of cement pumped down.                                  |
| 24      | 6/14/80 | 2141                          | 17-1/2              | 152               | Drilled cement from 1825 ft to 1930 ft, lost circulation, no cement from 1930 ft to 1989 ft. |
| 25      | 6/15/80 | 2298                          | 17-1/2              | 157               | Drilled to TD without returns, depleted on-site water.                                       |
| 26      | 6/16/80 | 2298                          | 17-1/2              | 0                 | No drilling, waiting on water.                                                               |
| 27      | 6/17/80 | 2407                          | 17-1/2              | 109               | Drilled to TD without returns, tag granite at 2404 ft.                                       |
| 28      | 6/18/80 | 2407                          | 17-1/2              | 0                 | No drilling, waiting on water.                                                               |
| 29      | 6/19/80 | 2538                          | 17-1/2              | 131               | Drilling ahead without returns.                                                              |

Set 13-3/8-in. Casing at 2552-ft KB

|    |         |      |        |    |                                                                  |
|----|---------|------|--------|----|------------------------------------------------------------------|
| 30 | 6/20/80 | 2566 | 17-1/2 | 28 | Drilled to TD, conditioned hole for 13-3/8-in. casing.           |
| 31 | 6/21/80 | 2566 | 17-1/2 | 0  | Ran casing to 2552 ft, cemented casing into granite (200 sacks). |
| 32 | 6/22/80 | 2566 | 17-1/2 | 0  | Waiting on cement.                                               |
| 33 | 6/23/80 | 2566 | 17-1/2 | 0  | Waiting on casing jacks.                                         |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                                                       |
|---------|---------|-------------------------------|---------------------|-------------------|-----------------------------------------------------------------------------------------------|
| 34      | 6/24/80 | 2566                          | 17-1/2              | 0                 | Waiting on casing jacks.                                                                      |
| 35      | 6/25/80 | 2566                          | 17-1/2              | 0                 | Waiting on casing jacks.                                                                      |
| 36      | 6/26/80 | 2566                          | 17-1/2              | 0                 | Waiting on casing jacks.                                                                      |
| 37      | 6/27/80 | 2566                          | 17-1/2              | 0                 | Waiting on 13-3/8-in. casing slips, jacks finally on hand.                                    |
| 38      | 6/28/80 | 2566                          | 17-1/2              | 0                 | Casing was tensioned to 725 000 lb <sub>f</sub> and 1000 sacks cement pumped through DV tool. |
| 39      | 6/29/80 | 2566                          | 12-1/4              | 0                 | Rigged BOP, drilled out shoe.                                                                 |
| 40      | 6/30/80 | 2640                          | 12-1/4              | 74                | Drilling ahead in pink granite.                                                               |
| 41      | 7/1/80  | 2882                          | 12-1/4              | 242               | Drilling ahead, 1-1/2° off vertical.                                                          |
| 42      | 7/2/80  | 3032                          | 12-1/4              | 150               | Drilling ahead, 10 ft/h.                                                                      |
| 43      | 7/3/80  | 3237                          | 12-1/4              | 205               | Drilling ahead.                                                                               |
| 44      | 7/4/80  | 3445                          | 12-1/4              | 208               | Drilling ahead.                                                                               |
| 45      | 7/5/80  | 3538                          | 12-1/4              | 93                | Drilling ahead, 2-1/4° off vertical.                                                          |
| 46      | 7/6/80  | 3666                          | 12-1/4              | 128               | Drilling ahead, broke slickline, hole trending northwest.                                     |
| 47      | 7/7/80  | 3734                          | 12-1/4              | 68                | Twisted off between 5th and 6th drill collar, fished out OK.                                  |
| 48      | 7/8/80  | 3779                          | 12-1/4              | 45                | Washed out in a monel, Bit No. 12, hole 3-1/4° off vertical.                                  |
| 49      | 7/9/80  | 3965                          | 12-1/4              | 186               | Drilling ahead, hole now 4-3/4° northwest.                                                    |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                                         |
|---------|---------|-------------------------------|---------------------|-------------------|---------------------------------------------------------------------------------|
| 50      | 7/10/80 | 4079                          | 12-1/4              | 114               | Drilling ahead, washout in DC, in with Bit No. 14.                              |
| 51      | 7/11/80 | 4298                          | 12-1/4              | 219               | Drilling ahead, hole 4-1/4° off vertical northwest.                             |
| 52      | 7/12/80 | 4358                          | 12-1/4              | 60                | Pump pressure loss, could not find the washout. Inspect BHA.                    |
| 53      | 7/13/80 | 4485                          | 12-1/4              | 127               | Found washout in HWDP, resumed drilling.                                        |
| 54      | 7/14/80 | 4610                          | 12-1/4              | 125               | Washout detected, removed three drill collars and discarded.                    |
| 55      | 7/15/80 | 4760                          | 12-1/4              | 150               | Drilling ahead, hole 5° off vertical.                                           |
| 56      | 7/16/80 | 4890                          | 12-1/4              | 130               | Drilling ahead 7-8 ft/h.                                                        |
| 57      | 7/17/80 | 5120                          | 12-1/4              | 230               | Drilling ahead.                                                                 |
| 58      | 7/18/80 | 5248                          | 12-1/4              | 128               | Washout detected, hole 6° off vertical.                                         |
| 59      | 7/19/80 | 5420                          | 12-1/4              | 172               | Another washout, replaced all 6-3/4-in. DC with 8-in.                           |
| 60      | 7/20/80 | 5538                          | 12-1/4              | 118               | Another washout in 8-in. DC and HWDP, hole is 7° off vertical toward northwest. |
| 61      | 7/21/80 | 5737                          | 12-1/4              | 199               | Drilling ahead at 14.5 ft/h.                                                    |
| 62      | 7/22/80 | 6205                          | 12-1/4              | 468               | Drilling ahead in white feldspar and biotite at 24 ft/h.                        |
| 63      | 7/23/80 | 6334                          | 12-1/4              | 129               | Drilling ahead, gyro survey, hole 8-9° northwest at bottom.                     |
| 64      | 7/24/80 | 6444                          | 12-1/4              | 110               | Twist off, drill collar failure, recovered OK.                                  |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                                                               |
|---------|---------|-------------------------------|---------------------|-------------------|-------------------------------------------------------------------------------------------------------|
| 65      | 7/25/80 | 6444                          | 12-1/4              | 0                 | KOP, preparation for directional run to turn hole to northeast.                                       |
| 66      | 7/26/80 | 6512                          | 12-1/4              | 68                | Motor run, drilling slowly as motor stalls easily.                                                    |
| 67      | 7/27/80 | 6618                          | 12-1/4              | 106               | Motor run, drilling slowly, trouble orienting tool face.                                              |
| 68      | 7/28/80 | 6668                          | 12-1/4              | 50                | Can't orient downhole motor with single shot, reamed from 6440 ft to 6649 ft, angle 14° off vertical. |
| 69      | 7/29/80 | 6710                          | 12-1/4              | 42                | Motor run, waiting on Scientific Drilling's "EYE" tool.                                               |
| 70      | 7/30/80 | 6710                          | 12-1/4              | 0                 | Motor run, waiting on EYE tool.                                                                       |
| 71      | 7/31/80 | 6764                          | 12-1/4              | 54                | Motor run with EYE tool, 5 ft/h.                                                                      |
| 72      | 8/1/80  | 6809                          | 12-1/4              | 45                | Motor run with Dyna-Drill, hole is turning toward northeast.                                          |
| 73      | 8/2/80  | 6903                          | 12-1/4              | 94                | Motor run, reaming, and rotary drilling.                                                              |
| 74      | 8/3/80  | 7017                          | 12-1/4              | 114               | Motor run, hole turned to N4°E.                                                                       |
| 75      | 8/4/80  | 7114                          | 12-1/4              | 97                | Motor run.                                                                                            |
| 76      | 8/5/80  | 7179                          | 12-1/4              | 65                | Reamed to bottom and rotary drilled to TD.                                                            |
| 77      | 8/6/80  | 7269                          | 12-1/4              | 90                | Motor run, Baker motor, 5-10 ft/h.                                                                    |
| 78      | 8/7/80  | 7269                          | 12-1/4              | 0                 | Motor damaged while TIH, waiting on new motors.                                                       |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                                   |
|---------|---------|-------------------------------|---------------------|-------------------|---------------------------------------------------------------------------|
| 79      | 8/8/80  | 7334                          | 12-1/4              | 65                | Motor run, Navidrill, same difficulty getting to TD.                      |
| 80      | 8/9/80  | 7337                          | 12-1/4              | 3                 | Bit damaged and washout, run magnet to check for junk. Some small pieces. |
| 81      | 8/10/80 | 7427                          | 12-1/4              | 90                | Motor run.                                                                |
| 82      | 8/11/80 | 7482                          | 12-1/4              | 55                | Motor run, end of directional drilling.                                   |
| 83      | 8/12/80 | 7542                          | 12-1/4              | 60                | Ream and rotary drill.                                                    |
| 84      | 8/13/80 | 7542                          | 12-1/4              | 0                 | Lay down drillpipe for inspection. Repair drawworks and inspect pipe.     |
| 85      | 8/14/80 | 7542                          | 12-1/4              | 0                 | No drilling, repair drawworks and inspect pipe.                           |
| 86      | 8/15/80 | 7542                          | 12-1/4              | 0                 | No drilling, repair drawworks and inspect pipe.                           |
| 87      | 8/16/80 | 7542                          | 12-1/4              | 0                 | No drilling, repair drawworks and inspect pipe.                           |
| 88      | 8/17/80 | 7542                          | 12-1/4              | 0                 | No drilling, repair drawworks and inspect pipe.                           |
| 89      | 8/18/80 | 7542                          | 12-1/4              | 0                 | No drilling, repair drawworks.                                            |
| 90      | 8/19/80 | 7542                          | 12-1/4              | 0                 | TIH to resume drilling.                                                   |
| 91      | 8/20/80 | 7677                          | 12-1/4              | 135               | Drilling ahead.                                                           |
| 92      | 8/21/80 | 7845                          | 12-1/4              | 168               | Drilling, prepare for directional run.                                    |
| 93      | 8/22/80 | 7845                          | 12-1/4              | 0                 | Waiting on downhole motors.                                               |
| 94      | 8/23/80 | 7845                          | 12-1/4              | 0                 | Attempted motor run, problem with EYE tool.                               |
| 95      | 8/24/80 | 7856                          | 12-1/4              | 11                | Motor test, Sii turbine, problem with EYE tool.                           |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                                     |
|---------|---------|-------------------------------|---------------------|-------------------|-----------------------------------------------------------------------------|
| 96      | 8/25/80 | 7863                          | 12-1/4              | 7                 | Reamed to bottom, problem with EYE tool.                                    |
| 97      | 8/26/80 | 7905                          | 12-1/4              | 42                | Motor run, intermittent problem with EYE tool.                              |
| 98      | 8/27/80 | 7940                          | 12-1/4              | 35                | Motor run.                                                                  |
| 99      | 8/28/80 | 8052                          | 12-1/4              | 112               | Motor run, tight hole.                                                      |
| 100     | 8/29/80 | 8061                          | 12-1/4              | 9                 | Ream and motor run. High torque, having trouble orienting motor.            |
| 101     | 8/30/80 | 8067                          | 12-1/4              | 6                 | Ream and rotary drill.                                                      |
| 102     | 8/31/80 | 8159                          | 12-1/4              | 92                | Motor run, problem with orienting motor.                                    |
| 103     | 9/1/80  | 8230                          | 12-1/4              | 71                | Motor run, plugged motor.                                                   |
| 104     | 9/2/80  | 8265                          | 12-1/4              | 35                | Motor run, problem with EYE tool.                                           |
| 105     | 9/3/80  | 8265                          | 12-1/4              | 0                 | Ream and rig for rotary drilling.                                           |
| 106     | 9/4/80  | 8407                          | 12-1/4              | 142               | Drilling ahead, washout suspected.                                          |
| 107     | 9/5/80  | 8407                          | 12-1/4              | 0                 | Sii turbine test, won't drill.                                              |
| 108     | 9/6/80  | 8453                          | 12-1/4              | 46                | Hit bridge at 7140 ft. Ream with Sii turbine 7140 to 7230 ft. Rotary drill. |
| 109     | 9/7/80  | 8624                          | 12-1/4              | 171               | Drilling ahead.                                                             |
| 110     | 9/8/80  | 8727                          | 12-1/4              | 103               | Drilling ahead.                                                             |
| 111     | 9/9/80  | 8827                          | 12-1/4              | 100               | Twist off at DC, hooked fish. SLM 8827 ft KB.                               |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                             |
|---------|---------|-------------------------------|---------------------|-------------------|---------------------------------------------------------------------|
| 112     | 9/10/80 | 8827                          | 12-1/4              | 0                 | POH with fish, try Sandia Stratapax bit, o.d. too large for casing. |
| 113     | 9/11/80 | 8925                          | 12-1/4              | 98                | Drilling ahead.                                                     |
| 114     | 9/12/80 | 8942                          | 12-1/4              | 17                | Drilling ahead, laying down pipe for hard banding.                  |
| 115     | 9/13/80 | 9113                          | 12-1/4              | 171               | Drilling ahead.                                                     |
| 116     | 9/14/80 | 9190                          | 12-1/4              | 77                | Drilling ahead, change bit and ream to bottom.                      |
| 117     | 9/15/80 | 9234                          | 12-1/4              | 44                | Drilling ahead, tight hole, stuck in hole 2 h.                      |
| 118     | 9/16/80 | 9348                          | 12-1/4              | 114               | Reamed to bottom, drilling ahead.                                   |
| 119     | 9/17/80 | 9453                          | 12-1/4              | 105               | Drilling ahead.                                                     |
| 120     | 9/18/80 | 9547                          | 12-1/4              | 94                | Drilling ahead.                                                     |
| 121     | 9/19/80 | 9662                          | 12-1/4              | 115               | Drilling ahead.                                                     |
| 122     | 9/20/80 | 9728                          | 12-1/4              | 66                | Drilling ahead.                                                     |
| 123     | 9/21/80 | 9822                          | 12-1/4              | 94                | Drilling ahead, called out directional drilling.                    |
| 124     | 9/22/80 | 9850                          | 12-1/4              | 28                | Drilling ahead, rig for motor run.                                  |
| 125     | 9/23/80 | 9879                          | 12-1/4              | 29                | Motor run, problem with motor.                                      |
| 126     | 9/24/80 | 9879                          | 12-1/4              | 0                 | Fish slip handle from hole.                                         |
| 127     | 9/25/80 | 9924                          | 12-1/4              | 45                | Sloughing, possible leak in 13-3/8-in. casing.                      |
| 128     | 9/26/80 | 9924                          | 12-1/4              | 0                 | Leak stopped.                                                       |
| 129     | 9/27/80 | 9987                          | 12-1/4              | 63                | Sloughing, soft formation at TD.                                    |

## APPENDIX A (cont.)

| Day No. | Date     | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                                     |
|---------|----------|-------------------------------|---------------------|-------------------|-----------------------------------------------------------------------------|
| 130     | 9/28/80  | 9987                          | 12-1/4              | 0                 | Waiting on turbines.                                                        |
| 131     | 9/29/80  | 9987                          | 12-1/4              | 0                 | Waiting on turbines, dredging reserve pit.                                  |
| 132     | 9/30/80  | 9987                          | 12-1/4              | 0                 | Waiting on turbines.                                                        |
| 133     | 10/1/80  | 9987                          | 12-1/4              | 0                 | Waiting on turbines, lost circulation zone at TD.                           |
| 134     | 10/2/80  | 10 017                        | 12-1/4              | 30                | Drilling, waiting on turbines, lost circulation zone at TD, ran LCM sweeps. |
| 135     | 10/3/80  | 10 017                        | 12-1/4              | 0                 | Ran bond log.                                                               |
| 136     | 10/4/80  | 10 017                        | 12-1/4              | 0                 | Attempted Sii Dyna-Drill turbine run, possible washout.                     |
| 137     | 10/5/80  | 10 017                        | 12-1/4              | 0                 | Waiting on Maurer turbines.                                                 |
| 138     | 10/6/80  | 10 116                        | 12-1/4              | 99                | Turbine run.                                                                |
| 139     | 10/7/80  | 10 116                        | 12-1/4              | 0                 | Reamed directional hole.                                                    |
| 140     | 10/8/80  | 10 123                        | 12-1/4              | 7                 | Turbine run, motor locked up.                                               |
| 141     | 10/9/80  | 10 150                        | 12-1/4              | 27                | Turbine run, intermittent water losses.                                     |
| 142     | 10/10/80 | 10 261                        | 12-1/4              | 111               | Turbine run, hole now at 27° from vertical.                                 |
| 143     | 10/11/80 | 10 303                        | 12-1/4              | 42                | Drilling ahead, ream to bottom.                                             |
| 144     | 10/12/80 | 10 334                        | 12-1/4              | 31                | Turbine run, problem with EYE tool.                                         |
| 145     | 10/13/80 | 10 369                        | 12-1/4              | 35                | Reamed to TD, turbine run.                                                  |
| 146     | 10/14/80 | 10 378                        | 12-1/4              | 9                 | Turbine run, EYE tool stuck.                                                |
| 147     | 10/15/80 | 10 417                        | 12-1/4              | 39                | Turbine run, EYE tool repair.                                               |
| 148     | 10/16/80 | 10 417                        | 12-1/4              | 0                 | Waiting on EYE tool repair.                                                 |

## APPENDIX A (cont.)

| Day No. | Date     | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                                        |
|---------|----------|-------------------------------|---------------------|-------------------|--------------------------------------------------------------------------------|
| 149     | 10/17/80 | 10 417                        | 12-1/4              | 0                 | Reamed to TD, hole very tight.                                                 |
| 150     | 10/18/80 | 10 417                        | 12-1/4              | 0                 | Reaming, twist off at mid-string, fishing.                                     |
| 151     | 10/19/80 | 10 417                        | 12-1/4              | 0                 | Part of lost string fished out.                                                |
| 152     | 10/20/80 | 10 417                        | 12-1/4              | 0                 | Fishing, no luck.                                                              |
| 153     | 10/21/80 | 10 417                        | 12-1/4              | 0                 | Fishing, no luck.                                                              |
| 154     | 10/22/80 | 10 417                        | 12-1/4              | 0                 | Pulled out fish, reamed to TD.                                                 |
| 155     | 10/23/80 | 10 417                        | 12-1/4              | 0                 | Attempted turbine run, EYE tool problems.                                      |
| 156     | 10/24/80 | 10 463                        | 12-1/4              | 46                | Turbine run, new EYE tool.                                                     |
| 157     | 10/25/80 | 10 463                        | 12-1/4              | 0                 | Reamed to TD.                                                                  |
| 158     | 10/26/80 | 10 505                        | 12-1/4              | 42                | Turbine and rotary drilling.                                                   |
| 159     | 10/27/80 | 10 528                        | 12-1/4              | 23                | Rotary drilling, problem with tight hole and turbo.                            |
| 160     | 10/28/80 | 10 528                        | 12-1/4              | 0                 | Reaming, twist off at 7070 ft, fishing.                                        |
| 161     | 10/29/80 | 10 528                        | 12-1/4              | 0                 | Waiting on wireline and back-off tools.                                        |
| 162     | 10/30/80 | 10 528                        | 12-1/4              | 0                 | Attempted backoff at 10 405 ft, no luck.                                       |
| 163     | 10/31/80 | 10 528                        | 12-1/4              | 0                 | Back-off shot got 1/2 jar and some string.                                     |
| 164     | 11/1/80  | 10 528                        | 12-1/4              | 0                 | Back-off shot got everything down to collars.                                  |
| 165     | 11/2/80  | 10 528                        | 12-1/4              | 0                 | Pipe pulled in two. Kelly wedged in rotary table, broke, and was lost in hole. |

## APPENDIX A (cont.)

| Day No. | Date     | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                                 |
|---------|----------|-------------------------------|---------------------|-------------------|-------------------------------------------------------------------------|
| 166     | 11/3/80  | 10 528                        | 12-1/4              | 0                 | Rig up to try to back-off Kelley fish. Backed off and pulled 36 joints. |
| 167     | 11/4/80  | 10 528                        | 12-1/4              | 0                 | Jarring on upper fish, no good, three fish in hole.                     |
| 168     | 11/5/80  | 10 528                        | 12-1/4              | 0                 | Five joints of drill pipe backed off and out.                           |
| 169     | 11/6/80  | 10 528                        | 12-1/4              | 0                 | Fifteen and one half joints of drill pipe backed off and out.           |
| 170     | 11/7/80  | 10 528                        | 12-1/4              | 0                 | Five joints of drill pipe backed off and out.                           |
| 171     | 11/8/80  | 10 528                        | 12-1/4              | 0                 | Jarring moved fish 8 ft. Jarred drill pipe in two below screw-in sub.   |
| 172     | 11/9/80  | 10 528                        | 12-1/4              | 0                 | Seventeen foot piece of drill pipe fished out.                          |
| 173     | 11/10/80 | 10 528                        | 12-1/4              | 0                 | Lost jars and drill collars, fish No. 4. Accelerator parted.            |
| 174     | 11/11/80 | 10 528                        | 12-1/4              | 0                 | Jarring. Run back-off shot.                                             |
| 175     | 11/12/80 | 10 528                        | 12-1/4              | 0                 | Fish No. 4 pulled, fish No. 3 hooked and started out.                   |
| 176     | 11/13/80 | 10 528                        | 12-1/4              | 0                 | Removed fish No. 3, worked on No. 2.                                    |
| 177     | 11/14/80 | 10 528                        | 12-1/4              | 0                 | Fishing, no luck, fish blocked on inside by piece of metal.             |
| 178     | 11/15/80 | 10 528                        | 12-1/4              | 0                 | Fishing, waiting on washover and cutter tools.                          |
| 179     | 11/16/80 | 10 528                        | 12-1/4              | 0                 | Fishing, unsuccessful washover try. Using outside cutter.               |

## APPENDIX A (cont.)

| Day No. | Date     | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                                    |
|---------|----------|-------------------------------|---------------------|-------------------|----------------------------------------------------------------------------|
| 180     | 11/17/80 | 10 528                        | 12-1/4              | 0                 | Fishing, cut and removed 1-1/2 joints drill pipe.                          |
| 181     | 11/18/80 | 10 528                        | 12-1/4              | 0                 | Backed off and pulled 1-1/2 joints.                                        |
| 182     | 11/19/80 | 10 528                        | 12-1/4              | 0                 | Backed off at 9180 ft.                                                     |
| 183     | 11/20/80 | 10 528                        | 12-1/4              | 0                 | Pulled back off section, ran casing caliper.                               |
| 184     | 11/21/80 | 10 528                        | 12-1/4              | 0                 | Picked up 4-1/2-in. drill pipe.                                            |
| 185     | 11/22/80 | 10 528                        | 12-1/4              | 0                 | Ran swage run into 13-3/8-in. casing. Picked up more 4-1/2-in. drill pipe. |
| 186     | 11/23/80 | 10 528                        | 12-1/4              | 0                 | Hooked fish at 9180 ft, could not pull.                                    |
| 187     | 11/24/80 | 10 528                        | 12-1/4              | 0                 | Lost part of back-off tool. Back-off pipe at 9229.                         |
| 188     | 11/25/80 | 10 528                        | 12-1/4              | 0                 | Removed fish and back-off tool to 9229 ft, twisted off 3550 ft.            |
| 189     | 11/26/80 | 10 528                        | 12-1/4              | 0                 | Backed off at 10 150 ft.                                                   |
| 190     | 11/27/80 | 10 528                        | 12-1/4              | 0                 | Tripped out fish.                                                          |
| 191     | 11/28/80 | 10 528                        | 12-1/4              | 0                 | Inspect and straighten pipe.                                               |
| 192     | 11/29/80 | 10 528                        | 12-1/4              | 0                 | Pick up drill pipe.                                                        |
| 193     | 11/30/80 | 10 528                        | 12-1/4              | 0                 | Fishing at 10 180 ft.                                                      |
| 194     | 12/1/80  | 10 528                        | 12-1/4              | 0                 | Fishing at 10 180 ft, unsuccessful back-offs.                              |
| 195     | 12/2/80  | 10 528                        | 12-1/4              | 0                 | Fishing at 10 180 ft.                                                      |
| 196     | 12/3/80  | 10 528                        | 12-1/4              | 0                 | Pulled out all but 140 ft of fish.                                         |

## APPENDIX A (cont.)

| Day No. | Date     | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                         |
|---------|----------|-------------------------------|---------------------|-------------------|-------------------------------------------------|
| 197     | 12/4/80  | 10 528                        | 12-1/4              | 0                 | Inspecting pipe.                                |
| 198     | 12/5/80  | 10 528                        | 12-1/4              | 0                 | Inspecting pipe.                                |
| 199     | 12/6/80  | 10 528                        | 12-1/4              | 0                 | Fishing, moved fish up 5 ft.                    |
| 200     | 12/7/80  | 10 528                        | 12-1/4              | 0                 | Fishing.                                        |
| 201     | 12/8/80  | 10 528                        | 12-1/4              | 0                 | Fishing at 10 338 ft, no luck.                  |
| 202     | 12/9/80  | 10 528                        | 12-1/4              | 0                 | Fishing at 10 338 ft, no luck.                  |
| 203     | 12/10/80 | 10 528                        | 12-1/4              | 0                 | Fishing at 10 338 ft, no luck.                  |
| 204     | 12/11/80 | 10 528                        | 12-1/4              | 0                 | Decision to sidetrack made.                     |
| 205     | 12/12/80 | 10 528                        | 12-1/4              | 0                 | Waiting on tools.                               |
| 206     | 12/13/80 | 10 528                        | 12-1/4              | 0                 | Waiting on tools.                               |
| 207     | 12/14/80 | 10 528                        | 12-1/4              | 0                 | Waiting on tools, rig to underream.             |
| 208     | 12/15/80 | 10 528                        | 12-1/4              | 0                 | Underreaming, stuck tool.                       |
| 209     | 12/16/80 | 10 528                        | 12-1/4              | 0                 | Underreaming at 9760 ft, 14 ft cut.             |
| 210     | 12/17/80 | 10 528                        | 12-1/4              | 0                 | Underreaming at 9885 ft, 15 ft cut.             |
| 211     | 12/18/80 | 9738                          | 12-1/4              | -790              | Cemented hole, 500 sacks of Class H.            |
| 212     | 12/19/80 | 9738                          | 12-1/4              | 0                 | Tagged cement, drill to 9770 ft in soft cement. |
| 213     | 12/20/80 | 9770                          | 12-1/4              | 32                | Waiting on cement.                              |
| 214     | 12/21/80 | 9188                          | 12-1/4              | -582              | Cemented plug, 400 sacks of Class H.            |
| 215     | 12/22/80 | 9494                          | 12-1/4              | 306               | Drilling soft cement.                           |
| 216     | 12/23/80 | 9786                          | 12-1/4              | 292               | Drilling soft cement, will not set.             |

## APPENDIX A (cont.)

| Day No. | Date     | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                           |
|---------|----------|-------------------------------|---------------------|-------------------|---------------------------------------------------|
| 217     | 12/24/80 | 9950                          | 12-1/4              | 164               | Drilling soft cement.                             |
| 218     | 12/25/80 | 9440                          | 12-1/4              | -510              | Cemented plug, 300 sacks of Class H.              |
| 219     | 12/26/80 | 9635                          | 12-1/4              | 195               | Drilling soft cement, will not set.               |
| 220     | 12/27/80 | 9665                          | 12-1/4              | 30                | Drilling soft cement, ran temperature log.        |
| 221     | 12/28/80 | 9665                          | 12-1/4              | 0                 | Waiting on cement.                                |
| 222     | 12/29/80 | 9720                          | 12-1/4              | 55                | Drilling soft cement.                             |
| 223     | 12/30/80 | 9998                          | 12-1/4              | 278               | Drill out soft cement plug.                       |
| 224     | 12/31/80 | 9557                          | 12-1/4              | -441              | Recement plug (fourth try), 400 sacks of Class H. |
| 225     | 1/1/81   | 9557                          | 12-1/4              | 0                 | Waiting on cement.                                |
| 226     | 1/2/81   | 9653                          | 12-1/4              | 96                | Drilling soft cement.                             |
| 227     | 1/3/81   | 9704                          | 12-1/4              | 51                | Drilling soft cement.                             |
| 228     | 1/4/81   | 9721                          | 12-1/4              | 17                | Drilling soft cement.                             |
| 229     | 1/5/81   | 10 100                        | 12-1/4              | 379               | Drilled out soft plug.                            |
| 230     | 1/6/81   | 10 101                        | 12-1/4              | 0                 | Set up to recement. SLM 10 101.                   |
| 231     | 1/7/81   | 10 101                        | 12-1/4              | 0                 | Set up to recement.                               |
| 232     | 1/8/81   | 9428                          | 12-1/4              | -673              | Fifth try at cementing, 450 sacks of Class H.     |
| 233     | 1/9/81   | 9498                          | 12-1/4              | 70                | Drilled into harder cement.                       |
| 234     | 1/10/81  | 9550                          | 12-1/4              | 52                | Drilled into harder cement, not much harder.      |
| 235     | 1/11/81  | 9565                          | 12-1/4              | 15                | Coring into harder cement.                        |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                      |
|---------|---------|-------------------------------|---------------------|-------------------|----------------------------------------------|
| 236     | 1/12/81 | 9778                          | 12-1/4              | 213               | Drilling into medium hard cement.            |
| 237     | 1/13/81 | 9820                          | 12-1/4              | 42                | Drilling into medium hard cement.            |
| 238     | 1/14/81 | 9820                          | 12-1/4              | 0                 | Temperature log and cooling.                 |
| 239     | 1/15/81 | 9128                          | 12-1/4              | -692              | Sixth try at cementing, 350 sacks of cement. |
| 240     | 1/16/81 | 9175                          | 12-1/4              | 47                | Drilling soft cement.                        |
| 241     | 1/17/81 | 9600                          | 12-1/4              | 425               | Drilling soft cement.                        |
| 242     | 1/18/81 | 9619                          | 12-1/4              | 19                | Core out hard cement.                        |
| 243     | 1/19/81 | 9724                          | 12-1/4              | 105               | Rig up to directional drill a sidetrack.     |
| 244     | 1/20/81 | 9724                          | 9-7/8               | 0                 | Rig up to directional drill a sidetrack.     |
| 245     | 1/21/81 | 9724                          | 9-7/8               | 0                 | Clear obstruction in string.                 |
| 246     | 1/22/81 | 9767                          | 9-7/8               | 43                | Attempt to sidetrack.                        |
| 247     | 1/23/81 | 9780                          | 9-7/8               | 13                | Attempt to sidetrack, not successful.        |
| 248     | 1/24/81 | 9800                          | 12-1/4              | 20                | Try to set Whipstock, hit tight spot.        |
| 249     | 1/25/81 | 9800                          | 12-1/4              | 0                 | Ream from 6855 to 6978 ft.                   |
| 250     | 1/26/81 | 9800                          | 12-1/4              | 0                 | Ream to 7387.                                |
| 251     | 1/27/81 | 9800                          | 12-1/4              | 0                 | Attempt to set whipstock, no go.             |
| 252     | 1/28/81 | 9800                          | 12-1/4              | 0                 | Readied to re cement and directional drill.  |
| 253     | 1/29/81 | 9379                          | 12-1/4              | -421              | Cemented plug, 230 sacks of cement.          |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                                        |
|---------|---------|-------------------------------|---------------------|-------------------|--------------------------------------------------------------------------------|
| 254     | 1/30/81 | 9409                          | 12-1/4              | 30                | Drilled off top of soft cement.                                                |
| 255     | 1/31/81 | 9500                          | 12-1/4              | 91                | Drilled out soft cement.                                                       |
| 256     | 2/1/81  | 9500                          | 12-1/4              | 0                 | Underreamed 21 ft, 9293 ft to 9314 ft, 16-in. diam.                            |
| 257     | 2/2/81  | 9500                          | 12-1/4              | 0                 | Underreamed to 9314 ft to 9330 ft, 16-in. diam.                                |
| 258     | 2/3/81  | 9175                          | 12-1/4              | -325              | Cement Plug No. 8, 300 sacks of Class J.                                       |
| 259     | 2/4/81  | 9195                          | 12-1/4              | 20                | Dress off cement plug.                                                         |
| 260     | 2/5/81  | 9158                          | 12-1/4              | 0                 | Core run on top of cement, looks hard. SLM 9158 ft.                            |
| 261     | 2/6/81  | 9250                          | 12-1/4              | 92                | Core and facing off cement.                                                    |
| 262     | 2/7/81  | 9300                          | 8-3/4               | 50                | Dress off cement plug.                                                         |
| 263     | 2/8/81  | 9300                          | 8-3/4               | 0                 | Attempted sidetrack with motor.                                                |
| 264     | 2/9/81  | 9300                          | 8-3/4               | 0                 | Attempted sidetrack with motor.                                                |
| 265     | 2/10/81 | 9304                          | 8-3/4               | 4                 | Attempted sidetrack with motor.                                                |
| 266     | 2/11/81 | 9319                          | 8-3/4               | 15                | Attempted sidetrack with motor.                                                |
| 267     | 2/12/81 | 9323                          | 8-3/4               | 4                 | Attempted sidetrack with motor.                                                |
| 268     | 2/13/81 | 9323                          | 8-3/4               | 0                 | Attempted sidetrack with motor. Magnet run.                                    |
| 269     | 2/14/81 | 9323                          | 8-3/4               | 0                 | Magnet run, no junk.                                                           |
| 270     | 2/15/81 | 9325                          | 8-3/4               | 2                 | Attempted sidetrack with motor; toothed bit run with junk basket for clean up. |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                               |
|---------|---------|-------------------------------|---------------------|-------------------|-------------------------------------------------------|
| 271     | 2/16/81 | 9329                          | 8-3/4               | 4                 | Attempted sidetrack.                                  |
| 272     | 2/17/81 | 9339                          | 8-3/4               | 10                | Attempted sidetrack, some granite cuttings.           |
| 273     | 2/18/81 | 9382                          | 8-3/4               | 43                | Attempted sidetrack, fished out cones.                |
| 274     | 2/19/81 | 9386                          | 8-3/4               | 4                 | Attempted sidetrack, EYE tool problems.               |
| 275     | 2/20/81 | 9397                          | 8-3/4               | 11                | Attempted sidetrack.                                  |
| 276     | 2/21/81 | 9416                          | 8-3/4               | 19                | Attempted sidetrack.                                  |
| 277     | 2/22/81 | 9416                          | 12-1/4              | 0                 | Opened hole up to 12-1/4 in.                          |
| 278     | 2/23/81 | 9416                          | 12-1/4              | 0                 | Opened hole up to 12-1/4 in.                          |
| 279     | 2/24/81 | 9497                          | 12-1/4              | 81                | Opened hole up to 12-1/4 in.                          |
| 280     | 2/25/81 | 9501                          | 12-1/4              | 4                 | Opening up hole, run single shot surveys.             |
| 281     | 2/26/81 | 9501                          | 12-1/4              | 0                 | Cooled hole for whipstock installation.               |
| 282     | 2/27/81 | 9501                          | 12-1/4              | 0                 | Cooled hole for whipstock installation.               |
| 283     | 2/28/81 | 9501                          | 12-1/4              | 0                 | Cooled hole for whipstock installation.               |
| 284     | 3/1/81  | 9501                          | 12-1/4              | 0                 | Whipstock on bottom, problem orienting.               |
| 285     | 3/2/81  | 9173                          | 12-1/4              | -328              | Whipstock oriented and cemented with 185 sacks.       |
| 286     | 3/3/81  | 9173                          | 12-1/4              | 0                 | Waiting on cement. Run bond log on 13-3/8-in. casing. |
| 287     | 3/4/81  | 9173                          | 12-1/4              | 0                 | Running wall thickness log, 13-3/8-in. casing.        |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                       |
|---------|---------|-------------------------------|---------------------|-------------------|---------------------------------------------------------------|
| 288     | 3/5/81  | 9173                          | 12-1/4              | 0                 | Hardband drill pipe.                                          |
| 289     | 3/6/81  | 9263                          | 12-1/4              | 90                | Hit bridge @ 6838 ft while tripping in hole. Drilling cement. |
| 290     | 3/7/81  | 9277                          | 12-1/4              | 14                | Coring and facing off cement.                                 |
| 291     | 3/8/81  | 9325                          | 12-1/4              | 48                | Facing off cement and attempted sidetrack.                    |
| 292     | 3/9/81  | 9396                          | 12-1/4              | 71                | Motor run, attempt to sidetrack.                              |
| 293     | 3/10/81 | 9432                          | 12-1/4              | 36                | Rotary drill to whipstock.                                    |
| 294     | 3/11/81 | 9435                          | 12-1/4              | 3                 | Drill on junk.                                                |
| 295     | 3/12/81 | 9439                          | 12-1/4              | 4                 | Drill on junk.                                                |
| 296     | 3/13/81 | 9439                          | 12-1/4              | 0                 | Five junk runs, metal scrap in basket.                        |
| 297     | 3/14/81 | 9440                          | 12-1/4              | 1                 | Junk and magnet runs, something in hole. Milling.             |
| 298     | 3/15/81 | 9443                          | 12-1/4              | 3                 | Milling run on whipstock.                                     |
| 299     | 3/16/81 | 9443                          | 12-1/4              | 0                 | Twisted off at DC, fishing.                                   |
| 300     | 3/17/81 | 9446                          | 8-5/8               | 3                 | Pulled fish, milling on bottom of hole.                       |
| 301     | 3/18/81 | 9451                          | 8-5/8               | 5                 | Milling off whipstock.                                        |
| 302     | 3/19/81 | 9451                          | 12-1/4              | 0                 | Open hole out to 12-1/4 in. with tapered mill and bit.        |
| 303     | 3/20/81 | 9451                          | 12-1/4              | 0                 | Two magnet runs.                                              |
| 304     | 3/21/81 | 9461                          | 12-1/4              | 10                | Drilling off whipstock.                                       |
| 305     | 3/22/81 | 9558                          | 12-1/4              | 97                | EE-3 is sidetracked, drilling granite.                        |
| 306     | 3/23/81 | 9558                          | 12-1/4              | 0                 | Changed out BOP stack.                                        |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                |
|---------|---------|-------------------------------|---------------------|-------------------|--------------------------------------------------------|
| 307     | 3/24/81 | 9558                          | 12-1/4              | 0                 | Reamed to bottom.                                      |
| 308     | 3/25/81 | 9558                          | 12-1/4              | 0                 | Hole is sidetracked to east, magnet run.               |
| 309     | 3/26/81 | 9558                          | 12-1/4              | 0                 | Attempted motor run, EYE trouble.                      |
| 310     | 3/27/81 | 9631                          | 12-1/4              | 73                | Motor run.                                             |
| 311     | 3/28/81 | 9718                          | 12-1/4              | 87                | Reamed to bottom and drilled ahead.                    |
| 312     | 3/29/81 | 9771                          | 12-1/4              | 53                | Motor run.                                             |
| 313     | 3/30/81 | 9843                          | 12-1/4              | 72                | Ream and drill ahead.                                  |
| 314     | 3/31/81 | 9883                          | 12-1/4              | 40                | Drill ahead and gyro survey, no good.                  |
| 315     | 4/1/81  | 9883                          | 12-1/4              | 0                 | Re-survey.                                             |
| 316     | 4/2/81  | 9883                          | 12-1/4              | 0                 | Re-survey.                                             |
| 317     | 4/3/81  | 9884                          | 12-1/4              | 1                 | Reamed to bottom.                                      |
| 318     | 4/4/81  | 9884                          | 12-1/4              | 0                 | Attempt to gyro survey, no go.                         |
| 319     | 4/5/81  | 9890                          | 12-1/4              | 6                 | Drilling ahead, good survey.                           |
| 320     | 4/6/81  | 10 037                        | 12-1/4              | 147               | Drilling ahead.                                        |
| 321     | 4/7/81  | 10 106                        | 12-1/4              | 69                | Drilling ahead.                                        |
| 322     | 4/8/81  | 10 170                        | 12-1/4              | 64                | Drilling ahead.                                        |
| 323     | 4/9/81  | 10 226                        | 12-1/4              | 56                | Drilling ahead, fixed washout, survey tool backed out. |
| 324     | 4/10/81 | 10 226                        | 12-1/4              | 0                 | Layed down drill pipe.                                 |
| 325     | 4/11/81 | 10 226                        | 12-1/4              | 0                 | Pipe inspection and casing log, no problems.           |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                 |
|---------|---------|-------------------------------|---------------------|-------------------|-----------------------------------------|
| 326     | 4/12/81 | 10 226                        | 12-1/4              | 0                 | Hard banding and inspection operations. |
| 327     | 4/13/81 | 10 226                        | 12-1/4              | 0                 | Pipe inspection.                        |
| 328     | 4/14/81 | 10 226                        | 12-1/4              | 0                 | Pipe inspection completed.              |
| 329     | 4/15/81 | 10 226                        | 12-1/4              | 0                 | Pick up pipe and run into hole.         |
| 330     | 4/16/81 | 10 226                        | 12-1/4              | 0                 | Rig for motor run.                      |
| 331     | 4/17/81 | 10 226                        | 12-1/4              | 0                 | Turbine and EYE tool problems.          |
| 332     | 4/18/81 | 10 226                        | 12-1/4              | 0                 | Turbine and EYE tool problems.          |
| 333     | 4/19/81 | 10 226                        | 12-1/4              | 0                 | No turbine run, tool problems.          |
| 334     | 4/20/81 | 10 245                        | 12-1/4              | 19                | Turbine run, tool problems.             |
| 335     | 4/21/81 | 10 245                        | 12-1/4              | 0                 | Reamed to TD.                           |
| 336     | 4/22/81 | 10 352                        | 12-1/4              | 107               | Short turbine run.                      |
| 337     | 4/23/81 | 10 352                        | 12-1/4              | 0                 | Ream to TD, reaming hard.               |
| 338     | 4/24/81 | 10 352                        | 12-1/4              | 0                 | Ream to TD, reaming hard.               |
| 339     | 4/25/81 | 10 400                        | 12-1/4              | 48                | Ream and drill ahead.                   |
| 340     | 4/26/81 | 10 440                        | 12-1/4              | 40                | Turbine run.                            |
| 341     | 4/27/81 | 10 512                        | 12-1/4              | 72                | Ream and drill ahead.                   |
| 342     | 4/28/81 | 10 573                        | 12-1/4              | 61                | Ream and drill ahead.                   |
| 343     | 4/29/81 | 10 573                        | 12-1/4              | 0                 | Ream to TD.                             |
| 344     | 4/30/81 | 10 633                        | 12-1/4              | 60                | Turbine run.                            |
| 345     | 5/1/81  | 10 658                        | 12-1/4              | 25                | Turbine run and ream.                   |
| 346     | 5/2/81  | 10 734                        | 12-1/4              | 76                | Ream and drill ahead.                   |
| 347     | 5/3/81  | 10 734                        | 12-1/4              | 0                 | Turbine problems.                       |

## APPENDIX A (cont.)

| Day No. | Date   | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                             |
|---------|--------|-------------------------------|---------------------|-------------------|---------------------------------------------------------------------|
| 348     | 5/4/81 | 10 791                        | 12-1/4              | 57                | Turbine run.                                                        |
| 349     | 5/5/81 | 10 811                        | 9-7/8               | 20                | Ream and drill ahead, change to 9-7/8-in. bit, 10 791 to 10 811 ft. |

Reduced Hole Diam Drilling Into Reservoir Section

|     |         |        |       |     |                                                                                                 |
|-----|---------|--------|-------|-----|-------------------------------------------------------------------------------------------------|
| 350 | 5/6/81  | 10 938 | 8-3/4 | 127 | Drilling ahead, 8-3/4 in. bit.                                                                  |
| 351 | 5/7/81  | 11 120 | 8-3/4 | 182 | Drilling ahead, lost slickwire in string.                                                       |
| 352 | 5/8/81  | 11 120 | 8-3/4 | 0   | Stuck in hole, keyseated, lost wireline, fishing.                                               |
| 353 | 5/9/81  | 11 120 | 8-3/4 | 0   | Recovered wireline, string still stuck.                                                         |
| 354 | 5/10/81 | 11 120 | 8-3/4 | 0   | Jarred pipe loose.                                                                              |
| 355 | 5/11/81 | 11 156 | 8-3/4 | 36  | Tripped 12-1/4 in. bit through stuck zone approx. 6500 ft. Encountered nothing. Drilling ahead. |
| 356 | 5/12/81 | 11 359 | 8-3/4 | 203 | Drilling ahead 12 ft/h.                                                                         |
| 357 | 5/13/81 | 11 454 | 8-3/4 | 95  | Drilling ahead, some tight hole problems.                                                       |
| 358 | 5/14/81 | 11 454 | 8-3/4 | 0   | String layed down and exchanged for inspection.                                                 |
| 359 | 5/15/81 | 11 595 | 8-3/4 | 141 | Drilling ahead.                                                                                 |
| 360 | 5/16/81 | 11 730 | 8-3/4 | 135 | Drilling ahead.                                                                                 |
| 361 | 5/17/81 | 11 913 | 8-3/4 | 183 | Drilling ahead, some tight hole.                                                                |
| 362 | 5/18/81 | 11 926 | 8-3/4 | 13  | Ream and drill ahead, H <sub>2</sub> S problem found.                                           |
| 363 | 5/19/81 | 11 926 | 8-3/4 | 0   | Treating H <sub>2</sub> S problem.                                                              |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                            |
|---------|---------|-------------------------------|---------------------|-------------------|----------------------------------------------------|
| 364     | 5/20/81 | 11 951                        | 8-3/4               | 25                | Turbine run.                                       |
| 365     | 5/21/81 | 11 982                        | 8-3/4               | 31                | Ream and drill, string stuck temporarily.          |
| 366     | 5/22/81 | 12 059                        | 8-3/4               | 77                | Drilling ahead, excessive torque and drag.         |
| 367     | 5/23/81 | 12 079                        | 8-3/4               | 20                | Stuck pipe, jarred loose, high drag.               |
| 368     | 5/24/81 | 12 079                        | 8-3/4               | 0                 | Washed with water which reduced drag.              |
| 369     | 5/25/81 | 12 079                        | 8-3/4               | 0                 | Cleaning pits.                                     |
| 370     | 5/26/81 | 12 100                        | 8-3/4               | 21                | Drilling ahead with water and torque trim.         |
| 371     | 5/27/81 | 12 100                        | 8-3/4               | 0                 | Waiting for heat shield for EYE tool.              |
| 372     | 5/28/81 | 12 186                        | 8-3/4               | 86                | Turbine run.                                       |
| 373     | 5/29/81 | 12 191                        | 8-3/4               | 5                 | Ream to TD and drill.                              |
| 374     | 5/30/81 | 12 191                        | 8-3/4               | 0                 | Rig drum clutch repair.                            |
| 375     | 5/31/81 | 12 310                        | 8-3/4               | 119               | Turbine run.                                       |
| 376     | 6/1/81  | 12 412                        | 8-3/4               | 102               | Ream to TD. Drilling ahead, up to 15 ft/h.         |
| 377     | 6/2/81  | 12 511                        | 8-3/4               | 99                | Drilling ahead.                                    |
| 378     | 6/3/81  | 12 576                        | 8-3/4               | 65                | Drilling. Picking up a lot of cuttings from ponds. |
| 379     | 6/4/81  | 12 576                        | 8-3/4               | 0                 | Cleaning ponds.                                    |
| 380     | 6/5/81  | 12 576                        | 8-3/4               | 0                 | Cleaning ponds, H <sub>2</sub> S problem.          |
| 381     | 6/6/81  | 12 576                        | 8-3/4               | 0                 | Cleaning ponds, H <sub>2</sub> S problem.          |
| 382     | 6/7/81  | 12 576                        | 8-3/4               | 0                 | Cleaning ponds, H <sub>2</sub> S problem.          |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                                         |
|---------|---------|-------------------------------|---------------------|-------------------|---------------------------------------------------------------------------------|
| 383     | 6/8/81  | 12 609                        | 8-3/4               | 33                | Drilling ahead, hole is getting tight.                                          |
| 384     | 6/9/81  | 12 728                        | 8-3/4               | 119               | Drilling ahead, H <sub>2</sub> S OK. Hole tight.                                |
| 385     | 6/10/81 | 12 874                        | 8-3/4               | 146               | Drilling ahead at 12 ft/h.                                                      |
| 386     | 6/11/81 | 12 895                        | 8-3/4               | 21                | Drilling ahead, bit change.                                                     |
| 387     | 6/12/81 | 12 961                        | 8-3/4               | 66                | Turbine run. Hole tight.                                                        |
| 388     | 6/13/81 | 12 961                        | 8-3/4               | 0                 | Attempted turbine run.                                                          |
| 389     | 6/14/81 | 12 961                        | 8-3/4               | 0                 | Attempted turbine run.                                                          |
| 390     | 6/15/81 | 13 117                        | 8-3/4               | 156               | Drilling ahead.                                                                 |
| 391     | 6/16/81 | 13 312                        | 8-3/4               | 195               | Drilling ahead.                                                                 |
| 392     | 6/17/81 | 13 365                        | 8-3/4               | 53                | Drilling ahead, lay down string.                                                |
| 393     | 6/18/81 | 13 365                        | 8-3/4               | 0                 | Pick up new string, set up for motor run.                                       |
| 394     | 6/19/81 | 13 365                        | 8-3/4               | 0                 | Attempted turbine run.                                                          |
| 395     | 6/20/81 | 13 365                        | 8-3/4               | 0                 | Tight hole. Run reaming assembly. Twist off at 6500 ft while reaming to bottom. |
| 396     | 6/21/81 | 13 365                        | 8-3/4               | 0                 | Fishing, jars in fish will not operate.                                         |
| 397     | 6/22/81 | 13 365                        | 8-3/4               | 0                 | Fishing, rig to try back off.                                                   |
| 398     | 6/23/81 | 13 365                        | 8-3/4               | 0                 | Fishing, free point 13 200 ft.                                                  |
| 399     | 6/24/81 | 13 365                        | 8-3/4               | 0                 | Fishing, back off at 8358 ft.                                                   |
| 400     | 6/25/81 | 13 365                        | 8-3/4               | 0                 | Fishing, back off @ 8701 ft.                                                    |
| 401     | 6/26/81 | 13 365                        | 8-3/4               | 0                 | Fishing, perforate @ 12 216 and 12 915 ft to circulate and cool hole.           |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                                    |
|---------|---------|-------------------------------|---------------------|-------------------|----------------------------------------------------------------------------|
| 402     | 6/27/81 | 13 365                        | 8-3/4               | 0                 | Fishing, backed off at 12 195 ft.                                          |
| 403     | 6/28/81 | 13 365                        | 8-3/4               | 0                 | Fishing, TIH with S-pipe and jar.                                          |
| 404     | 6/29/81 | 13 365                        | 8-3/4               | 0                 | Fishing, 4 back-off shots.                                                 |
| 405     | 6/30/81 | 13 365                        | 8-3/4               | 0                 | Explosive cut off at 12 953 ft.                                            |
| 406     | 7/1/81  | 13 365                        | 8-3/4               | 0                 | String keyseated at 6550 ft on way out.                                    |
| 407     | 7/2/81  | 13 365                        | 8-3/4               | 0                 | Back off at 6483 ft, jarred free and POH.                                  |
| 408     | 7/3/81  | 13 365                        | 8-3/4               | 0                 | Reaming keyseat at 6500 ft.                                                |
| 409     | 7/4/81  | 13 365                        | 8-3/4               | 0                 | Attempted ream, hole tight near bottom.                                    |
| 410     | 7/5/81  | 13 365                        | 8-3/4               | 0                 | Reaming tight hole.                                                        |
| 411     | 7/6/81  | 13 365                        | 8-3/4               | 0                 | Work tight hole.                                                           |
| 412     | 7/7/81  | 13 365                        | 8-3/4               | 0                 | Milled top of fish.<br>Attempted hook on to fish, no go.                   |
| 413     | 7/8/81  | 13 365                        | 8-3/4               | 0                 | Hooked fish but fell off.                                                  |
| 414     | 7/9/81  | 13 365                        | 8-3/4               | 0                 | Hardbanding interfering with grappel. Milling off hardband.                |
| 415     | 7/10/81 | 13 365                        | 8-3/4               | 0                 | Attempt to hook fish, no go.                                               |
| 416     | 7/11/81 | 13 365                        | 8-3/4               | 0                 | Mill on fish. Hole tight.                                                  |
| 417     | 7/12/81 | 13 365                        | 8-3/4               | 0                 | String broke at old cut off spot, 1-1/2 joints in. Mill on 2nd shot point. |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                                                          |
|---------|---------|-------------------------------|---------------------|-------------------|--------------------------------------------------------------------------------------------------|
| 418     | 7/13/81 | 13 365                        | 8-3/4               | 0                 | Milling, twist off and back off, 5100 ft and 600 ft respectively.                                |
| 419     | 7/14/81 | 13 365                        | 8-3/4               | 0                 | Both fish pulled from hole H <sub>2</sub> S up.                                                  |
| 420     | 7/15/81 | 13 365                        | 8-3/4               | 0                 | Circulated hole, treated H <sub>2</sub> S problem.                                               |
| 421     | 7/16/81 | 13 365                        | 8-3/4               | 0                 | Reaming keyseat at 6500 ft, inspecting string.                                                   |
| 422     | 7/17/81 | 13 365                        | 8-3/4               | 0                 | Reaming keyseat and milling on fish, inspecting string.                                          |
| 423     | 7/18/81 | 13 365                        | 8-3/4               | 0                 | Milling on fish, inspecting string.                                                              |
| 424     | 7/19/81 | 13 365                        | 8-3/4               | 0                 | Finished inspecting string. Work overshot, no luck.                                              |
| 425     | 7/20/81 | 13 365                        | 8-3/4               | 0                 | Hooked fish, moved up about 200 ft, overshot kept slipping off. Drilling jars working.           |
| 426     | 7/21/81 | 13 365                        | 8-3/4               | 0                 | Grapple not holding, fish loose but still in hole. Run smaller grapple, fish coming out of hole. |
| 427     | 7/22/81 | 13 365                        | 8-3/4               | 0                 | Fish pulled from hole. Run magnet.                                                               |
| 428     | 7/31/81 | 13 365                        | 8-3/4               | 0                 | Magnet and junk basket run, recovered some junk.                                                 |
| 429     | 7/24/81 | 13 365                        | 8-3/4               | 0                 | Run bit, would not drill. Torquing on bottom.                                                    |
| 430     | 7/25/81 | 13 365                        | 8-3/4               | 0                 | Two magnet runs, recovered junk.                                                                 |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                                                         |
|---------|---------|-------------------------------|---------------------|-------------------|-------------------------------------------------------------------------------------------------|
| 431     | 7/26/81 | 13 365                        | 8-3/4               | 0                 | Another magnet run. Drilled on junk and torqued up. Rig repairs.                                |
| 432     | 7/27/81 | 13 365                        | 8-3/4               | 0                 | Milled on junk. Rig repairs.                                                                    |
| 433     | 7/28/81 | 13 365                        | 8-3/4               | 0                 | Two magnet and junk basket runs. Recovered large pieces of metal.                               |
| 434     | 7/29/81 | 13 365                        | 8-3/4               | 0                 | Magnet and junk basket run.                                                                     |
| 435     | 7/30/81 | 13 365                        | 8-3/4               | 0                 | Two magnet and junk basket runs. Junk cleaning up.                                              |
| 436     | 7/31/81 | 13 338                        | 8-3/4               | 0                 | Magnet and junk basket run. Drilled new hole with mill-toothed bit. Pipe strap corrected depth. |
| 437     | 8/1/81  | 13 484                        | 8-3/4               | 146               | Normal drilling. Slightly high torque. One magnetic single shot survey.                         |
| 438     | 8/2/81  | 13 494                        | 8-3/4               | 10                | Pulled drill string apart at 9683 ft. Fishing.                                                  |
| 439     | 8/3/81  | 13 494                        | 8-3/4               | 0                 | Recovered fish. Inspecting all tool joints on rig floor.                                        |
| 440     | 8/4/81  | 13 519                        | 8-3/4               | 25                | Resumed drilling. Tripped to change leaky jars.                                                 |
| 441     | 8/5/81  | 13 701                        | 8-3/4               | 182               | Drilled ahead. High torque.                                                                     |
| 442     | 8/6/81  | 13 911                        | 8-3/4               | 210               | Drilled smoothly, using Torq-Trim. Three directional surveys.                                   |
| 443     | 8/7/81  | 13 933                        | 8-3/4               | 22                | Reached TD. Cleaning hole.                                                                      |
| 444     | 8/8/81  | 13 933                        | 8-3/4               | 0                 | Cleaned and scraped hole. Displaced fluid with soap. Ran temperature survey.                    |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                                                     |
|---------|---------|-------------------------------|---------------------|-------------------|---------------------------------------------------------------------------------------------|
| 445     | 8/9/81  | 13 933                        | 8-3/4               | 0                 | Schlumberger attempted to run borehole geometry log. Dowell set retaining plug. WOC.        |
| 446     | 8/10/81 | 13 933                        | 8-3/4               | 0                 | Dress cement plug. Plug not solid. Circulated to cool for logging.                          |
| 447     | 8/11/81 | 13 933                        | 8-3/4               | 0                 | Ran Los Alamos temperature survey and Schlumberger neutron density and gamma logs.          |
| 448     | 8/12/81 | 13 933                        | 8-3/4               | 0                 | Recemented retainer plug with 270 sacks. WOC.                                               |
| 449     | 8/13/81 | 13 933                        | 8-3/4               | 0                 | Faced off plug to 10 400 ft.                                                                |
| 450     | 8/14/81 | 13 933                        | 8-3/4               | 0                 | Set casing jacks and started running 9-5/8-in. casing. Set 9-5/8-in. casing @ 10 374 ft KB. |
| 451     | 8/15/81 | 13 933                        | 8-3/4               | 0                 | Landed 9-5/8-in. casing at 10 374 ft. Circulated 12 pH water.                               |
| 452     | 8/16/81 | 13 933                        | 8-3/4               | 0                 | Dowell cemented first stage with 950 sacks.                                                 |
| 453     | 8/17/81 | 13 933                        | 8-3/4               | 0                 | WOC. Ran Los Alamos temperature survey.                                                     |
| 454     | 8/18/81 | 13 933                        | 8-3/4               | 0                 | WOC.                                                                                        |
| 455     | 8/19/81 | 13 933                        | 8-3/4               | 0                 | Tensioned 9-5/8-in. casing to 885 000. Second stage cemented with 1200 sacks. WOC.          |
| 456     | 8/20/81 | 13 933                        | 8-3/4               | 0                 | Flow nipple installed on 9-5/8-in. casing. Trip in hole.                                    |
| 457     | 8/21/81 | 13 933                        | 8-3/4               | 0                 | Drilling out cement.                                                                        |
| 458     | 8/22/81 | 13 933                        | 8-3/4               | 0                 | Drilling out cement.                                                                        |

## APPENDIX A (cont.)

| Day No. | Date    | Measured Depth At 2400 h (ft) | Hole/Bit Size (in.) | Days Footage (ft) | Remarks                                                                                |
|---------|---------|-------------------------------|---------------------|-------------------|----------------------------------------------------------------------------------------|
| 459     | 8/23/81 | 13 933                        | 8-3/4               | 0                 | Schlumberger ran CBL and neutron density-gamma logs.                                   |
| 460     | 8/24/81 | 13 933                        | 8-3/4               | 0                 | Ran bit to bottom. Flushed with high pH fluid. Displaced hole with clean, fresh water. |
| 461     | 8/25/81 | 13 933                        | 8-3/4               | 0                 | Layed down pipe. Released rig at 0600 am.                                              |

APPENDIX B  
DETAILED EE-3 BIT RECORD

List of Abbreviations:

|      |                                           |
|------|-------------------------------------------|
| BHA  | bottom-hole assembly                      |
| EYE  | Scientific Drilling Control steering tool |
| HTC  | Hughes Tool Co.                           |
| HWDP | Hevi-Wate Drill Pipe                      |
| POH  | pull out of hole                          |
| Sec  | Dressers Security                         |
| STC  | Smith Tool Co.                            |
| TIH  | trip in hole                              |
| TOH  | trip out of hole                          |
| DC   | drill collar                              |
| DP   | drill pipe                                |

| Bit Number | Size    | Make | Type  | Jets     | Depth Out | Feet Drilled | Rotating Hours | Ft/Hr | Bit Weight | Pounds Per Dia in. | RPM    | Pump Rate (GPM) | Pump Pressure (PSI) | HHP/in. <sup>2</sup> | Mud Weight | Plastic Viscosity | Condition    | Hrs on Shock Sub | Hrs on Jars | Deviation                                                                                         | BHA                                                                                                      | Remarks                                                                                      |                                                  |
|------------|---------|------|-------|----------|-----------|--------------|----------------|-------|------------|--------------------|--------|-----------------|---------------------|----------------------|------------|-------------------|--------------|------------------|-------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------|
| 1          | 26"     | STC  | DG    | Ctr Circ | 890       | 785          | 73             | 10.75 | 5-50       | Avg 1058           | 40-110 | 850             | 800                 | -                    | 9.2        | 6                 | 5-6-I        | 73               | 22          | 2-N-10-E                                                                                          | Bit, Bit sub, 9"DC, SS, 8" monel, 5-9" DC's, 14-8" DC's, Jars, X-0, 5-6-3/4"DC's                         | Pulled to change BHA; spud 5/22/80, bit balling problems                                     |                                                  |
| 2          | 26"     | STC  | 2JS   | 22-22-22 | 1066      | 176          | 24             | 7.33  | 45         | 1731               | 40-60  | 829             | 1200                | 0.414                | 9.0        | 6                 | 2-2-I        | 97               | 46          | 1-1/4" N-55-E                                                                                     | Bit, X-0, Bit sub, Stab, SS, Stab, 8" monel, stab, 6-9" DC's, 14-8" DC's, Jars, X-0, 6-6-3/4" DC's, HWDP | Formation too soft; bit balled up                                                            |                                                  |
| 3          | 26"     | STC  | DG    | Ctr Circ | 1570      | 504          | 49.5           | 10.18 | 65-85      | Avg 2500           | 90     | 875             | 1100                | -                    | 9.2        | 10                | 5-6-I        | 146.5            | 95.5        | 1°-N-43°-E                                                                                        | Bit, X-0, Bit sub, Stab, SS, Stab, 8" monel, stab, 6-9" DC's, 14-8" DC's, Jars, X-0, 6-6-3/4" DC's, HWDP | -                                                                                            |                                                  |
| RR#2       | 26"     | STC  | 2JS   | 22-22-22 | 1923      | 353          | 44.5           | 7.93  | 75         | 2884               | 65     | 790             | 1200                | 0.372                | 9.1        | 10                | 2-4-I        | 191              | 140         | "                                                                                                 | Bit, X-0, Bit sub, Stab, SS, Stab, 8" monel, stab, 6-9" DC's, 14-8" DC's, Jars, X-0, 6-6-3/4" DC's, HWDP | Lost returns at 1923'; trip out                                                              |                                                  |
| 4          | 17-1/2" | STC  | DJS   | Open     |           |              |                |       |            |                    |        |                 |                     |                      |            |                   |              |                  |             |                                                                                                   | Bit, X-0, Bit sub, Stab, SS, Stab, 8" monel, stab, 6-9" DC's, 14-8" DC's, Jars, X-0, 6-6-3/4" DC's, HWDP | Wash and ream 26" hole                                                                       |                                                  |
| RR#2       | 26"     | STC  | 2JS   | 22-22-22 |           |              |                |       |            |                    |        |                 |                     |                      |            |                   |              |                  |             |                                                                                                   | Bit, X-0, Bit sub, Stab, SS, Stab, 8" monel, stab, 6-9" DC's, 14-8" DC's, Jars, X-0, 6-6-3/4" DC's, HWDP | Wash and ream; drill cement 26" hole                                                         |                                                  |
| RR#4       | 17-1/2" | STC  | DJS   | 18-18-20 | 1989      | 66           | 2              | 33    | 55         | 3143               | 90     | 594             | 1200                | 0.605                | Water      | -                 | 3-4-I        | 201              | 150         | -                                                                                                 | Bit, X-0, 3 pt, X-0, SS, stab, monel, stab, 6-9" DC's, 14-8" DC's, jars, X-0, 6-6-3/4" DC's, 18 jts HWDP | Drill cement 1534' to 1903'; lost returns; drill w/water to 1989'; POH to cement             |                                                  |
| RR#4       | 17-1/2" | STC  | DJS   | 15-15-18 | 2141      | 152          | 5              | 30.4  | 60-70      | 3714               | 75     | 378             | 500                 | 0.298                | "          | -                 | 6-5-I        | 208              | 157         | -                                                                                                 | Bit, X-0, 3 pt, X-0, SS, stab, monel, stab, 6-9" DC's, 14-8" DC's, jars, X-0, 6-6-3/4" DC's, 18 jts HWDP | Drill cement 1825' to 1930'; no returns; drill 1989' to 2141' w/no returns                   |                                                  |
| 5          | 17-1/2" | STC  | DJS   | 13-13-13 | 2407      | 266          | 4.5            | 59.1  | 60-90      | 4285               | 120    | 378             | 600                 | 0.6616               | "          | -                 | 8-3-I        | 212.5            | 161.5       | "                                                                                                 | Bit, X-0, 3 pt, X-0, SS, stab, monel, stab, 6-9" DC's, 14-8" DC's, jars, X-0, 6-6-3/4" DC's, HWDP        | RR from Sigma Mesa; drilling w/o returns                                                     |                                                  |
| 6          | 17-1/2" | STC  | 4JS   | 11-11-11 | 2566      | 159          | 13             | 12.2  | 85         | 4857               | 65     | 459             | 2000                | 2.616                | "          | -                 | 5-2-1/8      | 225.5            | 174.5       | "                                                                                                 | Bit, X-0, 3 pt, X-0, SS, stab, monel, stab, 6-9" DC's, 14-8" DC's, jars, X-0, 6-6-3/4" DC's, HWDP        | Drill granite without returns                                                                |                                                  |
| 7          | 17-1/2" | STC  | V2J   | Open     |           |              |                |       |            |                    |        |                 |                     |                      |            |                   |              |                  |             | Bit, X-0, 3 pt, X-0, SS, stab, monel, stab, 6-9" DC's, 14-8" DC's, jars, X-0, 6-6-3/4" DC's, HWDP | Clean 17-1/2" hole to run casing                                                                         |                                                                                              |                                                  |
| 8          | 12-1/4" | STC  | L4HJ  | Open     |           |              |                |       |            |                    |        |                 |                     |                      |            |                   |              |                  |             | Bit, X-0, 3 pt, X-0, SS, stab, monel, stab, 6-9" DC's, 14-8" DC's, jars, X-0, 6-6-3/4" DC's, HWDP | Drill stage collar and shoe jts                                                                          |                                                                                              |                                                  |
| 9          | 12-1/4" | Sec  | H-100 | 11-11-12 | 2882      | 316          | 45.5           | 6.9   | 25.70      | Avg 5306           | 40-65  | 418             | 2000                | 3.31                 | Water      | -                 | 5-8-1/4      | 45.5             | -           | 1-1/2" N-60°E                                                                                     | Bit, 6 pt, X-0, SS, 3 pt, monel, 3 pt, 14-8" DC's, X-0, 6-6-3/4" DC's, 20 jts HWDP                       | Run 25-30,000 on bit until below casing                                                      |                                                  |
| 10         | 12-1/4" | Sec  | H-100 | 13-15-11 | 3445      | 563          | 57             | 9.9   | 70         | 5714               | 65     | 441             | 1500                | 2.29                 | "          | -                 | 6-4-1/4      | 102.5            | -           | 2" N-50°W                                                                                         | Bit, 6 pt, X-0, SS, 3 pt, monel, 3 pt, 14-8" DC's, X-0, 6-6-3/4" DC's, 20 jts HWDP                       | Pulled because of increasing deviation                                                       |                                                  |
| 11         | 12-1/4" | STC  | F-4   | 14-14-14 | 3631      | 186          | 23.5           | 7.9   | 40-60      | Avg 4081           | 55-60  | 441             | 1400                | 1.57                 | "          | -                 | 6-2-1/4      | 125.5            | -           | 2-1/2" N-55°W                                                                                     | Wireline broke on survey tool; had to pull; buttons on bit wore down, no broke                           | Wireline broke on survey tool; had to pull; buttons on bit wore down, no broke               |                                                  |
| 12         | 12-1/4" | STC  | 09JL  | 13-13-8  | 3734      | 103          | 18             | 5.72  | 60         | 5306               | 65-75  | 487             | 1400                | Air Bit              | "          | -                 | 4-4-I        | 143.5            | -           | 3-1/4" N-70°W                                                                                     | Drill collars twisted off                                                                                | Drill collars twisted off                                                                    |                                                  |
| RR#12      | 12-1/4" | STC  | 09JL  | 13-13-8  | 3749      | 15           | 3-3/4          | 4.0   | 45         | 3673               | 70     | 893             | 456                 | Air Bit              | 0          | -                 | 6-5-1/4      | 147.25           | -           | No survey                                                                                         | Bit, 6 pt, 3 pt, X-0, SS, 3 pt, monel, 3 pt, 14-8" DC, X-0, 10-6-3/4" DC, 20 HWDP                        | Cracked monel DC; limited WOB below 3723' to control deviation                               |                                                  |
| 13         | 12-1/4" | STC  | F5    | 14-14-8  | 4062      | 313          | 38-1/2         | 8.1   | 45         | 3673               | 70     | 893             | 433                 | 1830                 | 3.4        | (Laid Dnss)       | 8-SE-1/4     | -                | See reports | Bit, 6 pt, 3 pt, X-0, 15" x 8" monel, 3 pt, 8" DC, 3 pt, 13-8" DC, X-0, 10-6-3/4" DC, 20 HWDP     | Cracked 6-3/4" DC; as above                                                                              |                                                                                              |                                                  |
| 14         | 12-1/4" | Sec  | H100  | 14-14-8  | 4342      | 280          | 30             | 9.3   | 55-65      | 4490               | 5306   | 65              | 893                 | 407                  | 1950       | 2.8               | "            | "                | "           | Bit, 6 pt, 3 pt, X-0, 15" x 8" monel, 3 pt, 8" DC, 3 pt, 13-8" DC, X-0, 9-6-3/4" DC, 20 HWDP      | Lost pump press; as above                                                                                | Lost pump press; as above                                                                    |                                                  |
| 15         | 12-1/4" | HTC  | J44   | 14-14-8  | 4358      | 16           | 1-1/2          | 10.7  | 30-55      | 2449               | 4490   | 30-65           | 893                 | 407                  | 1950       | 2.8               | 1-SE-I       | "                | "           | None                                                                                              | Bit, 6 pt, 3 pt, X-0, 15" x 8" monel, 3 pt, 8" DC, 3 pt, 13-8" DC, X-0, 8-6-3/4" DC, 20 HWDP             | Lost pump press; breaking in bit                                                             | Lost pump press; crack in HWDP                   |
| RR#15      | 12-1/4" | HTC  | J44   | 14-14-8  | 4379      | 21           | 1-1/2          | 14.0  | 55         | 4490               | 65     | 893             | 453                 | 1800                 | Leak in DP | "                 | Not surfaced | "                | "           | None                                                                                              | Bit, 6 pt, 3 pt, X-0, 15" x 8" monel, 3 pt, 8" DC, 3 pt, 13-8" DC, X-0, 8-6-3/4" DC, 20 HWDP             | Pulled due to gauge wear                                                                     | Pulled due to gauge wear                         |
| RR#15      | 12-1/4" | HTC  | J44   | 14-14-8  | 4550      | 171          | 15-1/4         | 11.2  | 55         | 4490               | 65     | 893             | 453                 | 1800                 | 3.1        | "                 | 5-SE-I       | "                | "           | See reports                                                                                       | Bit, 6 pt, 3 pt, X-0, 15" x 8" monel, 3 pt, 8" DC, 3 pt, 13-8" DC, X-0, 8-6-3/4" DC, 20 HWDP             | Lost pump press; cracked 6-3/4" DC                                                           | Lost pump press; cracked 6-3/4" DC               |
| 16         | 12-1/4" | STC  | 09JL  | 12-12-8  | 4613      | 63           | 4-1/4          | 14.8  | 50         | 4082               | 65     | 895             | 423                 | 1400                 | Air Bit    | 0                 | "            | "                | "           | Bit, 6 pt, 3 pt, X-0, 15" x 8" monel, 3 pt, SS, 8" SDC, 3 pt, 14-8" DC, 8-6-3/4" DC, 19 HWDP      | Pulled due to hours                                                                                      | Pulled due to hours                                                                          |                                                  |
| RR#16      | 12-1/4" | STC  | 09JL  | 12-12-8  | 4856      | 243          | 32-3/4         | 7.4   | 50-55      | 4082-4490          | 65     | 895             | 423                 | 1400                 | Air Bit    | 0                 | 6,7, 1/16    | 184.25           | -           | Bit, 6 pt, 3 pt, X-0, 15" x 8" monel, 3 pt, SS, 8" SDC, 3 pt, 14-8" DC, 8-6-3/4" DC, 19 HWDP      | Bit, 6 pt, 3 pt, X-0, 15" x 8" monel, 3 pt, SS, 8" SDC, 3 pt, 14-8" DC, 8-6-3/4" DC, 19 HWDP             | Bit, 6 pt, 3 pt, X-0, 15" x 8" monel, 3 pt, SS, 8" SDC, 3 pt, 14-8" DC, 8-6-3/4" DC, 19 HWDP |                                                  |
| 17         | 12-1/4" | STC  | F5    | 14-14-8  | 5203      | 347          | 35-1/4         | 9.8   | 55         | 4490               | 65     | 893             | 437                 | 1750                 | 3.5        | "                 | 7, SE, 1/8   | 219.50           | -           | Not surfaced                                                                                      | Bit, 6 pt, 3 pt, X-0, 15" x 8" monel, 3 pt, SS, 8" SDC, 3 pt, 14-8" DC, 8-6-3/4" DC, 19 HWDP             | Lost pump press; top jt HWDP cracked                                                         | Lost pump press; bottom 6-3/4" DC, and 6th-8" DC |
| 18         | 12-1/4" | HTC  | J55   | 14-14-8  | 5248      | 45           | 3              | 15.0  | 55         | 4490               | 70     | 893             | 437                 | 1750                 | 3.5        | "                 | Not surfaced | 222.50           | -           | Not surfaced                                                                                      | Bit, 6 pt, 3 pt, X-0, 15" x 8" monel, 3 pt, SS, 9-8" SDC, 3 pt, 14-8" DC, 4-6-3-4" DC, 19 HWDP           | Pulled due to torque                                                                         | Pulled due to torque</                           |



APPENDIX B (CONT)

| Bit Number | Size    | Make | Type  | Jets     | Depth Out | Feet Drilled | Rotating Hours | Bit Weight Ft/Hr | Pounds Per 1000# | Dia in.   | RPM             | Pump Pressure (PSI) | Pump Rate (GPM) | HHP/in. <sup>2</sup> | Mud Weight | Plastic Viscosity | Condition | Hrs on Shock Sub | Hrs on Jars                                                                             | Deviation                                                                                                       | BHA                                                                                                                         |                                                        | Remarks                                                                               |
|------------|---------|------|-------|----------|-----------|--------------|----------------|------------------|------------------|-----------|-----------------|---------------------|-----------------|----------------------|------------|-------------------|-----------|------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------|
|            |         |      |       |          |           |              |                |                  |                  |           |                 |                     |                 |                      |            |                   |           |                  |                                                                                         |                                                                                                                 |                                                                                                                             |                                                        |                                                                                       |
| 30         | 12-1/4" | Sec  | H8J   | 14-14-14 | 7482      | 55           | 6              | 9.2              | 10               | 816       | 10. Navi-Drill  | 893% 409            | 950             | Air Bit              | Water      | 0                 | 8-8-1/2"  | -                | -                                                                                       | "                                                                                                               | Bit, Navi-Drill, float sub, X-0, 2° bent sub, X-0, 8" monel, 9-8" DC's, X-0, 17 jts HWDP                                    |                                                        | Cone locked up                                                                        |
| RR#25      | 12-1/4" | HTC  | X-44  | 14-14-B  | 7542      | 60           | 5-1/2          | 10.9             | 60               | 5306      | 65              | 893% 385            | 1600            |                      |            |                   | 4-5-1/4"  | 10.5             | -                                                                                       | "                                                                                                               | Bit, 3 pt, SS, 3 pt, 30'-8" monel, 3 pt, 18-8" DC, X-0, 17 jts HWDP                                                         |                                                        | Put rig on standby; out of funds                                                      |
| 31         | 12-1/4" | STC  | F5    | 14-13-B  | 7845      | 303          | 25-3/4         | 11.8             | 45-63            | 3673-5143 | 65-45           | 893% 384            | 1850            | 2.75                 |            |                   | 6-SE-1/8" | 25.75            | 25.75                                                                                   | "                                                                                                               | Bit, 8H, 3 pt, X-0, X-0, SS, X-0, 30'-6-3/4" monel, 30'-6-3/4" DC, X-0, 3 pt, 30'-8" DC, 3 pt, 16-8" DC, 7-3/4 jts HWDP     |                                                        | Pulled due to steering tool failure                                                   |
| 32         | 12-1/4" | Sec  | H8J   | 14-14-14 | 7856      | 11           | 1              | 11.0             | 5-10             | 408-816   | 11. DynaTurbine | 893% 450            | 1530            | 1.00                 |            |                   | 2-3-3/16" | -                | 26.75                                                                                   | "                                                                                                               | Bit, X-0, Turbine, X-0, BS, MSS, SS, X-0, 8" monel 30', 9-8" DC, jars, X-0, 17 jts HWDP                                     |                                                        | Dyna Drill quit                                                                       |
| 33         | 12-1/4" | STC  | Q9JL  | 20-20-20 | 7883      | 27           | 6.5            | 4.15             | 10-15000         | Avg 1020  | 12. Dyna-Drill  | 385                 | 1050            | Air Bit              | 8.33       | 0                 | 5-7-I     | -                | 33.25                                                                                   | "                                                                                                               | Bit, Dyna-Drill, X-0, X-0, float, X-0, 1-1/2° bent sub, mule shoe, X-0, 8" monel, 11-8" DC's, jars, X-0, 17 jts HWDP        |                                                        | Eye tool quit                                                                         |
| 34         | 12-1/4" | STC  | Q9JL  | 20-20-20 | 7905      | 22           | 4.0            | 5.50             | 5-20000          | Avg 1224  | 13. Dyna-Drill  | 385                 | 1050            | Air Bit              | 8.33       | 0                 | 5-5-I     | -                | 37.25                                                                                   | "                                                                                                               | Bit, Dyna-Drill, X-0, X-0, float, X-0, 1-1/2° bent sub, mule shoe, X-0, 8" monel, 11-8" DC's, jars, X-0, 17 jts HWDP        |                                                        | Dyna Drill quit                                                                       |
| 35         | 12-1/4" | STC  | Q9JL  | 24-24-24 | 8052      | 112          | 4.5            | 24.89            | 15000            | 1224      | 14. Dyna-Drill  | 385                 | 1000            | Air Bit              | 8.33       | 0                 | 5-7-1/8   | -                | 39.25                                                                                   | "                                                                                                               | Bit, Navi-Drill, X-0, X-0, float, X-0, 1-1/2° bent sub, mule shoe, X-0, 8" monel, 11-8" DC's, jars, X-0, 10 jts HWDP        |                                                        | Good run finally                                                                      |
| RR#34      | 12-1/4" | STC  | Q9JL  | 24-24-24 | 8052      | 0            | 8.5            | -                | 5-10000          | -         | 40              | 443                 | 600             | Air Bit              | 8.33       | 0                 | 5-5-1/8   | 19               | 52.25                                                                                   | 16-1/4°N9E                                                                                                      | Bit, 6 pt, SS, 3 pt, 8" monel, 3 pt, 11-8" DC's, jars, X-0, 17 jts HWDP                                                     |                                                        | Reaming torque 500 amps, Drillco 8" shock sub bad                                     |
| 37         | 12-1/4" | STC  | Q9JL  | 24-24-24 | 8062      | 10           | 1              | 10               | 15000            | 1224      | 16. Navi-Drill  | 366                 | 1050            | Air Bit              | 8.33       | 0                 | 2-2-I     | -                | 53.25                                                                                   | "                                                                                                               | Bit, Navi-Drill, X-0, X-0, float, X-0, 1-1/2° bent sub, mule shoe, X-0, 8" monel, 11-8" DC's, jars, X-0, 17 HWDP            |                                                        | Could not orient because of torque                                                    |
| RR#34      | 12-1/4" | STC  | Q9JL  | 24-24-24 | 8067      | 5            | -              | 10.00            | 10000            | -         | 55              | 443                 | 600             | Air Bit              | 8.33       | 0                 | 5-5-1/8   | -                | 57.25                                                                                   | "                                                                                                               | Bit, 6 pt, 5 DC, 3 pt, 8" monel, 3 pt, 11-8" DC's, jars, X-0, 17 jts HWDP                                                   |                                                        | Ream hole again                                                                       |
| R#37       | 12-1/4" | STC  | Q9JL  | 24-24-24 | 8159      | 92           | 5              | 18.40            | 30000            | 2449      | 17. Navi-Drill  | 375                 | 1050            | Air Bit              | 8.33       | 0                 | 5-6-I     | -                | 62.25                                                                                   | "                                                                                                               | Bit, Navi-Drill, X-0, X-0, float, X-0, 1-1/2° bent sub, mule shoe, X-0, 8" monel, 11-8" DC's, jars, X-0, 17 jts HWDP        |                                                        | Navi-Drill froze up                                                                   |
| 38         | 12-1/4" | STC  | Q9JL  | 20-20-20 | 8170      | 11           | .50            | 22.00            | 30000            | 2449      | 18. Navi-Drill  | 385                 | 1100            | Air Bit              | 8.33       | 0                 | 2-2-I     | -                | 62.75                                                                                   | "                                                                                                               | Bit, Navi-Drill, X-0, X-0, float, X-0, 1-1/2° bent sub, mule shoe, X-0, 8" monel, 11-8" DC's, jars, X-0, 17 jts HWDP        |                                                        | Ream motordrill hole; reamed hard                                                     |
| RR#38      | 12-1/4" | STC  | Q9JL  | 20-20-20 | 8265      | 0            | Rream 16       | -                | 5000             | -         | 60              | 457                 | 700             | Air Bit              | 8.33       | 0                 | 5-5-1/4   | -                | 66.25                                                                                   | 16-3/4°N8E                                                                                                      | Bit, 6 pt, SDC, 3 pt, 8" monel, 3 pt, 14-8" DC's, jars, X-0, 17 jts HWDP                                                    |                                                        | Trip for hole in drill string                                                         |
| 39         | 12-1/4" | STC  | F-5   | 13-13-12 | 8407      | 142          | 10-1/2         | 13.52            | 50000            | 4081      | 60              | 450                 | 1650            | 2.56                 |            | 2-2-1/8           | -         | 92.75            | 17-1/4°N8E                                                                              | Bit, bit sub, turbine, X-0, X-0, float, 12-8" DC's, jars, X-0, 17 jts HWDP                                      |                                                                                                                             | Tachometer not working; could not get turbine to drill |                                                                                       |
| 40         | 12-1/4" | STC  | Q9JL  | 16-16-16 | 8407      | 0            | 2-1/2          | -                | -                | -         | 20. Dyna-Drill  | 362                 | 1800            | Air Bit              | 8.33       |                   | Pinched   | -                | 2.5                                                                                     | "                                                                                                               | Bit, 6 pt, SS, 3 pt, float sub, X-0, 8" monel, 11-8" DC's, jars, X-0, 17 jts HWDP                                           |                                                        | Hit obstruction at 7130'; jar loose; ream 7130' to 7230' w/turbine tachometer working |
| 41         | 12-1/4" | STC  | Q9JL  | 16-16-16 | 8407      | 0            | 0              | -                | -                | -         | 21. Dyna-Drill  | 346                 | 2300            | Air Bit              | 8.33       | 0                 | 1-2-1/4   | -                | 2.5                                                                                     | "                                                                                                               | Bit, 6 pt, SS, 3 pt, float sub, X-0, 8" monel, 11-8" DC's, jars, X-0, 17 jts HWDP                                           |                                                        | Pulled to run building assembly                                                       |
| RR#39      | 12-1/4" | STC  | F-5   | 13-13-12 | 8727      | 320          | 32-1/2         | 9.85             | 50000            | 4081      | 55              | 438                 | 1650            | 2.32                 |            | 32-1/2            | 34.5      | 8-1/4°N8E        | Bit, 6 pt, SS, 3 pt, float sub, X-0, 8" monel, 3 pt, 14-8" DC's, jars, X-0, 17 jts HWDP |                                                                                                                 | Twisted off box on 6-3/4" DC                                                                                                |                                                        |                                                                                       |
| 42         | 12-1/4" | HTC  | X-44  | 12-12-14 | 8827      | 100          | 8-1/2          | 11.76            | 45000            | 3673      | 50              | 428                 | 1600            | 2.13                 |            | 2-4-1/4           | 8-1/2     | 43               | 10-1/2                                                                                  | Bit, 3 pt, X-0, SS, X-0, 1-6-3/4" monel, 1-6-3/4" DC, X-0, 3 pt, 11-8" DC, jars, X-0, 17 jts HWDP               |                                                                                                                             | Building too fast                                      |                                                                                       |
| 43         | 12-1/4" | STC  | F-4   | 12-12-13 | 8925      | 98           | 10-1/2         | 9.33             | 50000            | 4082      | 50              | 414                 | 1650            | 2.17                 |            | 2-4-1/8           | -         | 36               | "                                                                                       | Bit, 3 pt, float, X-0, X-0, SS, X-0, 1-6-3/4" monel, 1-6-3/4" DC, X-0, 3 pt, 11-8" DC's, jars, X-0, 20 jts HWDP |                                                                                                                             | Ream for bit                                           |                                                                                       |
| RR#43      | 12-1/4" | STC  | F-4   | 12-12-13 | 9142      | 217          | 25-1/2         | 8.51             | 55000            | 4490      | 50              | 433                 | 1800            | 2.48                 |            | 7-6-1/4           | -         | 47               | "                                                                                       | Bit, 6 pt, float, X-0, 30'-9" DC, X-0, 3 pt, X-0, 30' monel, 3 pt, 13-8" DC, jars, X-0, 20 HWDP                 |                                                                                                                             | Pulled due to excessive hole drag                      |                                                                                       |
| RR#44      | 12-1/4" | STC  | F-5   | 12-12-13 | 9234      | 92           | 11             | 8.36             | 55000            | 4490      | 50              | 418                 | 1700            | 2.16                 |            | 8, SF-1/4 #1      | -         | 60-1/4           | "                                                                                       | Bit, 6 pt, float, X-0, 30'-9" DC, X-0, 3 pt, X-0, 8'30' monel, 3 pt, 13-8" DC's, jars, X-0, 20 jts HWDP         |                                                                                                                             | Trip for building assembly                             |                                                                                       |
| 45         | 12-1/4" | HTC  | J-55  | 12-12-14 | 9547      | 199          | 19-1/2         | 10.21            | 55-58            | 4490-4735 | 50              | 416                 | 1500            | 1.96                 |            | 7, SF, 1/8 #1, 2  | -         | 79-3/4           | "                                                                                       | Bit, 3 pt, float, X-0, X-0, X-0, 6-3/4" monel, 1-6-3/4" DC, X-0, 3 pt, 13-8" DC's, jars, X-0, 20 jts HWDP       |                                                                                                                             | Walking to left too fast                               |                                                                                       |
| 46         | 12-1/4" | STC  | F-4   | 3-12     | 9728      | 181          | 28-1/4         | 6.41             | 35-50            | Avg 3469  | 55              | 404                 | 1750            | 1.69                 |            | 6-6-1/4           | -         | 108              | 26-3/4°N7E                                                                              | Bit, 3 pt, float, X-0, X-0, X-0, 6-3/4" monel, 1-6-3/4" DC, X-0, 3 pt, 13-8" DC's, jars, X-0, 20 jts HWDP       |                                                                                                                             | Pulled to make motor run                               |                                                                                       |
| 47         | 12-1/4" | STC  | F-4   | 3-12     | 9850      | 122          | 20             | 6.10             | 40000            | 3265      | 50              | 385                 | 1650            | 1.58                 |            | 4-4-1/8           | -         | 128              | 26-1/2°N7E                                                                              | Bit, 3 pt, float, X-0, X-0, X-0, 6-3/4" monel, 1-6-3/4" DC, jars, X-0, 20 jts HWDP                              |                                                                                                                             | Motor stopped                                          |                                                                                       |
| 48         | 12-1/4" | HTC  | HH-77 | Open     | 9879      | 29           | 1              | 29.0             | 20000            | 1633      | 22. Navi-Drill  | 385                 | 1100            | Air Bit              | 8.33       | 0                 | 6-4-1/8   | -                | 129                                                                                     | "                                                                                                               | Bit, Navi-Drill, X-0, X-0, float sub, WSS, X-0, 1-1/2° bent sub, WSS, X-0, 1-1/2° monel, 13-8" DC's, jars, X-0, 20 jts HWDP |                                                        | Ream hole                                                                             |
| 49         | 12-1/4" | STC  | Q9JL  | 24-24-24 | 9879      | 0            |                |                  |                  |           |                 |                     |                 |                      |            |                   |           |                  |                                                                                         |                                                                                                                 |                                                                                                                             |                                                        |                                                                                       |



## APPENDIX B (CONT)

| dit<br>Number | Size    | Make | Type     | Jets     | Depth | Feet<br>Out | Drilled | Rotating<br>Hours | Ft/Hr      | Bit<br>Weight<br>1000# | Pounds<br>Per<br>Dia in. | RPM        | Pump<br>Rate<br>(GPM) | Pump<br>Pressure<br>(PSI) | HHP/in. <sup>2</sup> | Mud<br>Weight | Plastic<br>Viscosity | Condition | Hrs on<br>Shock Sub | Hrs on<br>Jars | Deviation                                                                                                      | BHA                                                                                                            |                                                                                                       |                                      | Remarks |
|---------------|---------|------|----------|----------|-------|-------------|---------|-------------------|------------|------------------------|--------------------------|------------|-----------------------|---------------------------|----------------------|---------------|----------------------|-----------|---------------------|----------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------|---------|
|               |         |      |          |          |       |             |         |                   |            |                        |                          |            |                       |                           |                      |               |                      |           |                     |                |                                                                                                                | BHA                                                                                                            |                                                                                                       |                                      |         |
| 80            | 8-3/4"  | STC  | 7GA      | 16-16-16 | 9386  | 4           | 0.5     | 8.0               | 10000      | 816                    | 45                       | 402        | 1200                  | -                         | 8.3                  | -             | 2-2-1/8              | -         | -                   | -              | Bit, 3 pt, float, 2-6-1/4" monel, 4-6-3/4" DC's, X-0, 7-8" DC's, X-0, jars, X-0, 12 jts HWDP                   | Bit, DD, Dynaflex, X-0, float, MSS, 2-6-1/4" monel, 4-6-3/4" DC's, X-0, 7-8" DC's, X-0, jars, X-0, 12 jts HWDP | Drilling too fast; decided to run motor                                                               |                                      |         |
| RR#80         | 8-3/4"  | STC  | 7GA      | 16-16-16 | 9416  | 28          | 18.5    | 1.5               | Time Drill | 402                    | 1500                     | 439        | 1000                  | -                         | 8.3                  | -             | 4-8-1/8              | -         | -                   | -              | Bit, DD, Dynaflex, X-0, float, MSS, 2-6-1/4" monel, 4-6-3/4" DC's, X-0, 7-8" DC's, X-0, jars, X-0, 12 jts HWDP | Bit, DD, Dynaflex, X-0, float, MSS, 2-6-1/4" monel, 4-6-3/4" DC's, X-0, 7-8" DC's, X-0, jars, X-0, 12 jts HWDP | Still not sidetracked?                                                                                |                                      |         |
| RR#73         | 12-1/4" | STC  | DSJ      | Open     | 9329  | 42          | 5.0     | 8.4               | 5000       | 408                    | 55                       | 439        | 1000                  | -                         | 8.3                  | -             | 8-2-1/8              | -         | -                   | -              | Bit, bit sub, float, 2-6-1/4" monel, 4-6-3/4" DC's, X-0, 12 jts HWDP                                           | Bit, bit sub, float, 2-6-1/4" monel, 4-6-3/4" DC's, X-0, 12 jts HWDP                                           | Ream 8-3/4" hole, granite wore bit                                                                    |                                      |         |
| 81            | 12-1/4" | Sec  | H-0      | Open     | 9377  | 42          | 5.0     | 8.4               | 5000       | 408                    | 55                       | 439        | 1000                  | -                         | 8.3                  | -             | 8-8-1-1/2            | -         | -                   | -              | HO, X-0, float sub, 7-8" DC's, X-0, jars, X-0, 12 jts HWDP                                                     | HO, X-0, float sub, 7-8" DC's, X-0, jars, X-0, 12 jts HWDP                                                     | Drilling partially granite                                                                            |                                      |         |
| 82            | 12-1/4" | STC  | DST      | Open     | 9385  | 8           | 1.5     | 6.8               | 30000      | 2449                   | 50                       | 455        | 1000                  | -                         | 8.3                  | -             | 2-2-I                | -         | -                   | -              | Bit, junk basket, X-0, 6-8" DC's, X-0, jars, X-0, 12 jts HWDP                                                  | Bit, junk basket, X-0, 6-8" DC's, X-0, jars, X-0, 12 jts HWDP                                                  | Finish drilling cement                                                                                |                                      |         |
| 83            | 12-1/4" | STC  | Q9JL     | Open     | 9501  | 115         | 17      | 6.8               | 10000      | 816                    | 60                       | 415        | 1000                  | -                         | 8.3                  | -             | Metal in bit         | -         | -                   | -              | Bit, core bbl, X-0, float sub, 6-8" DC's, X-0, jars, X-0, 12 jts HWDP                                          | Bit, core bbl, X-0, float sub, 6-8" DC's, X-0, jars, X-0, 12 jts HWDP                                          | Pin from whipstock setting tool jammed in bit                                                         |                                      |         |
| 84            | 12-1/4" | STC  | DSJ      | Open     | 9270  | 97          | 6.5     | 14.9              | 10000      | 816                    | 60                       | 110        | 125                   | -                         | 8.3                  | -             | 2-2-I                | -         | -                   | -              | Bit, junk basket, X-0, 6-8" DC's, X-0, jars, X-0, 12 jts HWDP                                                  | Bit, junk basket, X-0, 6-8" DC's, X-0, jars, X-0, 12 jts HWDP                                                  | Jammed; looks hard; drills soft                                                                       |                                      |         |
| RR#74         | 7-7/8"  | STC  | Core Bit |          | 9277  | 7           | 1       | 7.0               | 8000       | 653                    | 40                       | 415        | 1000                  | -                         | 8.3                  | -             | 2-5-1/8              | -         | -                   | -              | Bit, DynaDrill, X-0, MSS, 2-6-1/4" monel, 4-6-3/4" DC's, X-0, 6-8" DC's, X-0, jars, X-0, 12 jts HWDP           | Bit, DynaDrill, X-0, MSS, 2-6-1/4" monel, 4-6-3/4" DC's, X-0, 6-8" DC's, X-0, jars, X-0, 12 jts HWDP           | Drill cement - pulled to attempt sidetrack                                                            |                                      |         |
| 85            | 12-1/4" | STC  | SDGH     | Open     | 9310  | 33          | 2       | 16.5              | 5.2        | Time Drill             | -                        | Dyna-Drill | 315                   | 1050                      | -                    | 8.3           | -                    | 3-4-I     | -                   | -              | -                                                                                                              | Bit, float sub, 3 pt, X-0, 2-6-1/4" monel, 4-6-3/4" DC's, X-0, 6-8" DC's, X-0, jars, X-0, 12 jts HWDP          | Bit, float sub, 3 pt, X-0, 2-6-1/4" monel, 4-6-3/4" DC's, X-0, 6-8" DC's, X-0, jars, X-0, 12 jts HWDP | 18 hrs drilling 9432-9435 whipstock? |         |
| 86            | 8-3/4"  | STC  | H-88     | 18-18-18 | 9396  | 86          | 16.5    | 5.2               | 10000      | 816                    | 60                       | 395        | 1200                  | -                         | 8.3                  | -             | 8-3-I                | -         | -                   | -              | Bit, float sub, 3 pt, X-0, 2-6-1/4" monel, 4-6-3/4" DC's, X-0, 6-8" DC's, X-0, jars, X-0, 12 jts HWDP          | Bit, float sub, 3 pt, X-0, 2-6-1/4" monel, 4-6-3/4" DC's, X-0, 6-8" DC's, X-0, jars, X-0, 12 jts HWDP          | Nose pieces missing off of bit; may not be whipstock, may be junk                                     |                                      |         |
| RR#83         | 12-1/4" | STC  | Q9JL     | 16-16-16 | 9435  | 39          | 25.0    | 1.6               | 10-30000   | Avg 612                | 60                       | 403        | 1250                  | -                         | 8.3                  | -             | 8-8-1/4              | -         | -                   | -              | Bit, JB, 3 pt, X-0, 2-6-1/4" monel, 4-6-3/4" DC's, X-0, 6-8" DC's, X-0, jars, X-0, 12 jts HWDP                 | Bit, JB, 3 pt, X-0, 2-6-1/4" monel, 4-6-3/4" DC's, X-0, 6-8" DC's, X-0, jars, X-0, 12 jts HWDP                 | Noise pieces missing again; run mill                                                                  |                                      |         |
| 87            | 12-1/4" | STC  | Q9JL     | 16-16-16 | 9439  | 4           | 21.5    | 0.2               | 10-30000   | Avg 612                | 60                       | 381        | 1600                  | -                         | 8.3                  | -             | 3-2-I                | -         | 10.5                | -              | Bit, X-0, 6-1/4" monel, jars, X-0, 12 jts HWDP                                                                 | Bit, X-0, 6-1/4" monel, jars, X-0, 12 jts HWDP                                                                 | 18 hrs drilling 9432-9435 whipstock?                                                                  |                                      |         |
| RR#85         | 12-1/4" | STC  | SDGH     | 15-15-12 | 9441  | 2           | 3       | 0.7               | 10-20000   | Avg 1224               | 60                       | 388        | 1200                  | Air Bit                   | 8.3                  | -             | 4-2-I                | -         | 15.5                | -              | Bit, JB, X-0, 6-1/4" monel, jars, X-0, 12 jts HWDP                                                             | Bit, JB, X-0, 6-1/4" monel, jars, X-0, 12 jts HWDP                                                             | Drilling off whipstock; junk on bottom                                                                |                                      |         |
| 88            | 12-1/4" | STC  | Q9JL     | 13-13-14 | 9452  | 8           | 10.5    | 0.8               | 10-20000   | Avg 612                | 45-60                    | 395        | 1200                  | Air Bit                   | 8.3                  | -             | 3-2-1/4              | -         | 29.0                | -              | Bit, float sub, 3 pt, X-0, 2-6-1/4" monel, 4-6-3/4" DC's, X-0, 9-8" DC's, X-0, jars, X-0, 12 jts HWDP          | Bit, float sub, 3 pt, X-0, 2-6-1/4" monel, 4-6-3/4" DC's, X-0, 9-8" DC's, X-0, jars, X-0, 12 jts HWDP          | Finish drilling off whipstock                                                                         |                                      |         |
| RR#88         | 12-1/4" | STC  | Q9JL     | 13-13-14 | 9461  | 9           | 5       | 1.8               | 10-15000   | Avg 1020               | 60                       | 395        | 1925                  | Air Bit                   | 8.3                  | -             | 1-1-I                | -         | 29.25               | -              | Bit, DynaDrill, (7-3/4"), float, 1-1/2" bent sub, 28" monel, 9-8" DC's, X-0, jars, X-0, 12 jts HWDP            | Bit, DynaDrill, (7-3/4"), float, 1-1/2" bent sub, 28" monel, 9-8" DC's, X-0, jars, X-0, 12 jts HWDP            | Drilling granite; pulled to run down hole motor                                                       |                                      |         |
| 89            | 12-1/4" | STC  | 4JS      | 11-13-14 | 9558  | 97          | 13.5    | 7.2               | 45000      | 3673                   | 45                       | 337        | 1925                  | Air Bit                   | 8.3                  | -             | 2-2-I                | -         | 34.25               | -              | Bit, DynaDrill (7-3/4") float, 1-1/2" bent sub, 28" monel, 9-8" DC's, X-0, jars, X-0, 12 jts HWDP              | Bit, DynaDrill (7-3/4") float, 1-1/2" bent sub, 28" monel, 9-8" DC's, X-0, jars, X-0, 12 jts HWDP              | Motor failed                                                                                          |                                      |         |
| 90            | 12-1/4" | STC  | Q9JL     | 16-16-16 | 9559  | 1           | 0.5     | 1.0               | 10000      | 8000                   | Dyna-Drill               | 325        | 1500                  | Air Bit                   | 8.3                  | -             | 46.75                | -         | 46.75               | -              | Bit, float, 6 pt, monel, 9-8" DC, X-0, jars, X-0, 12 jts HWDP                                                  | Bit, float, 6 pt, monel, 9-8" DC, X-0, jars, X-0, 12 jts HWDP                                                  | Turn hole to right                                                                                    |                                      |         |
| 91            | 12-1/4" | STC  | Q9JL     | 16-16-16 | 9631  | 72          | 5.0     | 14.4              | 5-15000    | 1224                   | Dyna-Drill               | 325        | 1500                  | Air Bit                   | 8.3                  | -             | 49.75                | -         | 49.75               | -              | Bit, DynaDrill, float, 2 <sup>nd</sup> bent sub, 1 monel, 9-8" DC, X-0, jars, X-0, 12 jts HWDP                 | Bit, DynaDrill, float, 2 <sup>nd</sup> bent sub, 1 monel, 9-8" DC, X-0, jars, X-0, 12 jts HWDP                 | Drilling granite                                                                                      |                                      |         |
| 92            | 12-1/4" | STC  | F-4      | 13-13-13 | 9729  | 98          | 12.5    | 7.8               | 45000      | 3673                   | 60                       | 351        | 1800                  | Air Bit                   | 8.3                  | -             | 65.75                | -         | 65.75               | -              | Bit, 3 pt, float, 1 monel, 9-8" DC, X-0, jars, X-0, 12 jts HWDP                                                | Bit, 3 pt, float, 1 monel, 9-8" DC, X-0, jars, X-0, 12 jts HWDP                                                | Run multishots                                                                                        |                                      |         |
| RR#90         | 12-1/4" | STC  | Q9JL     | 24-24-24 | 9771  | 42          | 3.0     | 14.0              | 15000      | 1224                   | Dyna-Drill               | 351        | 1800                  | Air Bit                   | 8.3                  | -             | 66.00                | -         | 66.00               | -              | Bit, 3 pt, float, 2 monels, 3 pt, 9-8" DC, X-0, jars, X-0, 12 jts HWDP                                         | Bit, 3 pt, float, 2 monels, 3 pt, 9-8" DC, X-0, jars, X-0, 12 jts HWDP                                         | Drilled one foot; granite; run multishot; strap in hole 9879.24', inspected BH                        |                                      |         |
| 93            | 12-1/4" | STC  | F-5      | 13-13-13 | 9883  | 0           | 0       | 0                 | 0          | -                      | -                        | 322        | 1500                  | Air Bit                   | 8.3                  | -             | 4-3-1/4              | -         | 95.5                | -              | Bit, 3 pt, float, 2 monels, 3 pt, 9-8" DC, X-0, jars, X-0, 12 jts HWDP                                         | Bit, 3 pt, float, 2 monels, 3 pt, 9-8" DC, X-0, jars, X-0, 12 jts HWDP                                         | Drilling granite                                                                                      |                                      |         |
| RR#93         | 12-1/4" | STC  | F-5      | 13-13-13 | 9884  | 1           | 0.25    | 4                 | 40000      | 3265                   | 45                       | 344        | 1800                  | Air Bit                   | 8.3                  | -             | 5-8-1/4              | -         | 95.5                | -              | Bit, 6 pt, float, shock sub, 1 monel,                                                                          |                                                                                                                |                                                                                                       |                                      |         |