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; ABSTRACT

A coarse-grained, static-scheduling parallelization of the
standard ilcrative scheme uscd [or solving the discrete-ordinates
approximation of the ncutron transport equation is described.
The paralicl algorithm is bascd on a decomposition of 1hc_angular
domain along the discreie ordinatcs, thus naturally producing a set
of completely uncoupled systcms of cquations in each itcration.
Implementation of the parallel code on Intel’s iPSC/2 hypercube,
and solutions (o test problems are presented as evidence of the
high spccdup and efficicncy of the parallcl code.  The
performance of the paralicl code on the iPSC/2 is analyzed, a.nd
a model for the CPU time as a function of the problem size
(order of angular quadrature) and the number of participating
processors is developed and validated against measured CPU
times. The performance model is used to speculate on l'hc
potential of massively parallcl computers for significantly s'pccdmg
up real-lifc transport calculations at acceptablc cfficiencies. We
conclude that parallcl computers with a few hundred processors
arc capablc of producing large specdups at very high efficiencics
in very large three-dimensional problems.

I. INTRODUCTION

: The ncutron transport equation is a special case of the
'gcncral Boltzmann cquation in which the highly improbable
collisions between neutrons are neglected, thus rendering the
Boltzmann collision term lincar. Solutions for neutron transport
problems arc sought in many practical applications such as .thc
design and optimization of nuclear reactor cores, shicld design,
calculation of heating ratcs in various rcactor components, cte. In
most such situations the problem is too complicaicd to be solved
analytically, and approximatc mcthods are inevitable. Indced, over
thc years many approximation mcthods, algorithms, and computer
codes have been developed, implemented, and used to obtain
_numerical solutions to the ncutron transport cquation,1]
providing a wide spectrum of approaches cach having its own
range of physical probicms for which it is most suitable.
A varicty of paralicl algorithms -have been devcloped
recently for solving neutron transport problems cach bascd on a
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specific domain decomposition that is most suitable {or a certain
class of problems.[2-6] Decomposition of the neutron energy
variable along the multigroup structure commonly employed in
nuclear applications has been shown to be particularly suitable for
problems involving upscattering (i.e. scattering {rom low (o high
cnergies).[2] Also chaotic iterative schemes have been reported
for such problems, and found to possess several inicresting
fcatures.[2] Decomposition of the spatial domain has been
considered in an attempt to provide a large number of concurrent
processes offcring the potential of very high speedup.|5] The third
aliernative [or realizing a parallel algorithm is lo decompose the
angular domain along the set of discrete ordinates employed in S,
calculations. This has been done for two-dimensional Cartesian

geometry problems,[4] and for one-dimensional spherical
geometry.|6}
As will be discussed later, the angular domain

decomposition in Cartesian geomelry occurs in a natural way,
unlike most other possible decompositions mentioned above. Thal
is lo say, in Cartesian geometry the solution algorithm is
comprised of operations in cach discrete direction (i.c. angle) that
arc completely and naturally independent of all other discrete
directions. Hence, the original and decomposed algorithms are

identical in that they perform the same set of operations, on the
same set of initial and intermediate data, and therefore produce

identical intermediate and final results every step of the way.|4]
This is not true in the other cases where the decomposition is
artificially introduced into the solution algorithm, and oflen
requires a larger number of iterations to achieve convergence
compared o the undecomposed case.[5,6] Obviously this
disadvantages the parallel algorithm because the total amount of
compulations performed (which is proportional to the number of
itcrations) becomes larger in the decomposed algorithm, so that
specdups with respect 1o the undecomposed algorithm (ie.
sequential) that are proportional to the number of processors arc
practically impossible.

In the last fiftcen years, nodal methods have been
devcloped, implemented, verified against conventional methods,
and heavily utilized in the solution of neutron transport problems
in various (echnical settings.[7-10] These mcthods have been
shown 10 possess very high accuracics, thus permitting the use of
rclatively coarse meshes, which eventually translates into high
computational efficiencics.[7-10] Furthermore, it has been shown
recently that general high-order versions of one particular varicty,
the nodal integral method, can be writlen in a simple weighted
dilference form,[10} making it easy to implement, or backfit, into
existing weighied difference production codes. The demonstrated
high computational efficiency of nodal methods (i.e. short CPU
time for a given accuracy as compared 1o conventional methods)
made it the method of choice in calculations for rcal-life
applications.
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T In this papcr;\\?e explore the potential for achieving high’

performance on massively paralicl supercomputers in solving
multidimensional  ncutron  lransport  problems. This is
accomplished by establishing a model for the performance of the
parallel nodal transport code, P-NT,[4] as a function of the
problem size and the number of processors. In Sect. II we discuss
the standard iterative scheme uscd in solving ncutron transport
problems, and we describe its implementation on Intel's iPSCR2
hypercube. Two tcst problems that have been solved by P-NT on
the iPSC/2 are presented in Sect. 111, with particular cmphasis on
the parallel performance of the code. The paralicl performance
modcl is then developed in Scct. IV, and is validaled against the
mcasurcd results described in Sect. III. We conclude with a
summary of the work and the most pertinent conclusions.

II. ANGULAR DOMAIN DECOMPOSITION OF THE
STANDARD ITERATIVE SCHEME

In order to illustrate the issucs involved in developing a
parallel algorithm for solving the nodal transport equations
without being overwhelmed by algebraic details, we restrict our
discussion here to the lowest (zero) order nodal method. Our
parallel code P-NT has a first order (i.c. lincar-lincar) capability
which is uscd later to measure and model the performance of first
order methods. The reader interested in parallel high-order
mcthods will find it straightforward to apply the concepts
prescnted here to the general-order weighted difference equations
presented in Ref. 10, since the angular domain decomposition is
independent of the approximation order of the nodal mecthod.

Like the general Boltzmann cquation, the steady stale

‘neutron transport cquation in two-dimensional Cartesian geometry

has five indcpendent variables: two spatial, two angular, and one
encrgy, variables. In mostly all numecrical applications these
variables arc discretised, and discrete values representing the
angular flux (the dependent variable) are defined with respect to
the discrcte independent variables, and solved for algebraically.
The cquations for the lowest order nodal method in
two-dimensional Caricsian gcometry with monocnergetic neutrons
are given by,
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where (1, ny) are the x and y angle cosines for the k-th discrete
dircction, k=1,...n(n+2)/8, in an S, order quadrature, (2a;;.2by)
are the x and y dimensions of the ij-th computational ccll,

o;{ and o;ﬁ are the total and scatlering cross sections in the ij-th
cell respectively, and §;; is a [ixed neutron source. The spatial
weights in Egs. (2) and (3) are derived consisiently via the nodal

integral method, and are given by,[10)

4

T T
aijk = coth (°ij aij,pk) - pkloij aij ’
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pijk = coth (Oij b'J/“k) - nk/"ij bl]

The discreliseg] _dependent variable s represented by three
quantities: Vi is the ij-th cell-averaged angular [ux,
D)

‘m-x A
L ¥ (tbij) is the x-averaged angular flux evaluated at y = sby,

‘and analogously m;)‘" (*aij)' where m is the iteration index. The

angular flux is considered continuous across node boundarics, so
that

.m-x m-x S m-y m-y

Py (*bij) = ¥y ("bijq), and v (+aij) . T ('ai.m)-
The relationship among the dcpendent discrete-variables is
depicted in Fig. 1 on a typical computational cell, forp,, n,>0;
for p, <0, and n, <0 the sense of the horizontal, and vertical

arrows is reversed, respectively. At a given cell, normally the
incoming angular flux (in the sense of the arrow) is known from
the neighboring ccll, or from global boundary conditions if the
given cell is interior or adjacent to an extcrnal boundary,
respectively. Then Eqgs. (1-3) provide three lincarly independent
equations that are solved for the cell-averaged flux and the two
outgoing fluxes on x and y = constant surfaces, which by
continuity of the angular flux, are incoming fluxcs to the adjacent
cells in the x, and y directions, respectively. The process is
repeated in these adjacent cells until the entire mesh is covered;
this completes one "mesh sweep” in the k-th angular direction, to
be followed by sweeps in all other angular directions thus
completing one iteration. The quantity iterated upon is the scalar

m

fux ; which is updated at the conclusion of the m-th
P}

iteration using,

{ -
! M= n(n+2)38 M=
hat 3

"ijk ©
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Fig. 1.  Relationship among dependent variables for a typical

computational cell; arrows indicate incoming and
outgoing angular directions for the case g, 1, >0

where o, is an angular weight defined consistently with the k-th

discrete direction. It is worthwhile mentioning that scveral
gencralizations of the method described above can be achicved by
straightforward modifications; scc Ref. 10.

The solution of Egs. (1-3) plus the global boundary
conditions constitutes the bulk of discrete ordinaics transport
calculations, as it involvcs a very large number of unknowns to be
cvaluated cvery iteration. For cxample, an Sg calculation on a
20 x 20 mesh, involves 12,000 cell and surface averaged angular
fluxcs to be calculated per itcration. In the standard itcrative
scheme Eqgs. (1-3) are solved via the successive "sweeps” described
above. The lack of dependence between the angular flux in each
dircction k and the angular fluxes in all other directions represents
a naturally occurring decomposition in the angular domain which
we cxploit in developing the parallel solution algorithm presented
below.

The Mathematical Sciences Section of the Engincering
Physics and Mathematics Division at Oak Ridge National
Laboratory owns and operates an Intel’'s iPSC/2 hypercube
computer which has 64 nodes (processors), cach with 4 Mbytes of
memory, and connecled to the other nodes via a six-dimensional
hypereube scheme. Information is sharcd among nodes via explicit
message passing introduced into the code through extensions to
FORTRAN. The nodcs communicale to external i/o devices
mainly through a host computer; hence a host program reads the
input data and passcs it to all participating nodes, and at the
conclusion of the calculation, collects the solution from the nodcs
and prints it out. The standard itcrative scheme is performed
cxclusively by the nodes. Alflter receiving the input data from the
host, cach node program delermines the set of angular dircctions
it is to solve (static scheduling), and immediatcly starts sweeping
the mesh in these directions.  Clearly the larger the number of
nodes participaling in the calculation, the smaller the work load
for each node, and the faster the computation. At the conclusion
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'of the mesh sweep the global operator GDSUM is called to
perform the summation rcpresented by Eq. (6). yiclding 'll'.nc new
iterate of the ccll averaged scalar {lux on cach of the participating
processors.  Next, all nodes compare the pointwise relative
difference between the old and new scalar flux iterates to a uscr
specified convergence crilerion. Upon convergence, node 0 sends
the host the converged solution, otherwisc all nodes start a new
iteration by again swecping the mesh cach in the discrete
directions previously assigned to il

I11. PERFORMANCE OF P-NT ON THE iPSC2

The parallel algorithm described above has some important
features thal bear heavily on its performance. The paraliclization
realized by the angular domain decomposition is very coarse
grained; this implics that number of data exchanges between the
participating nodcs is very small, and this contributes positively o
the high cfficiency of P-NT. On the other hand, the grain
coarseness sels a strict limit on the number of independent
processes available for concurrent exccution, thus limiting the
potential for extremely large spcedups on very massive paralicl
compulers. More specilically, the number of independent
processes available in a two dimensional problem with vacuum
boundary conditions on all global boundaries, in a calculation
employing an S,, quadrature sct is 60; in three-dimensional
problems this number is 120. In extreme cascs where very high
quadrature orders are necessary. €.g., Sy, two and three
dimensional problems offer 220 and 440 indepcndent processcs,
respectively, well below the full potential of massively paralicl
supercompulers capable of supporling thousands of processors.
Hence, it secms that for present applications the algorithm
presented here is suitable for high performance on low 1o medium
size paraliel supercomputers.

Another difficulty resulting from the grain coarscness of
the parallel algorithm concerns load balance. I{ the number of
participating processors does not divide the number of
independent processcs, some nodes will remain idle in cach
iteration until all directions are calculated. This is cxtremcly
penalizing when a large number of processors is used, so thal the
share of cach processor is only a few directions, because in this
case the idle time will be of the same order as the busy time, thus
reducing the cfficiency. Dynamic schcduling would nol repair this
problem either because all independent processes have almost the
same length. This disadvantage is highlighted in a hypecrcube
conncection scheme where the number of processors available to
the user must be a power of two, which limits the cases in which
perfect load balance is achievable.

In the performance measurements presented in this
section, and the performance model presented in Sccl. 1V, we
side-step this disadvantage by assuming that arbitrary node
numbers are available to the user. This is not as bad an
assumption as it may appear, because it cssentially extends the
applicability of our conclusions and performance model to other
connection schemes (e.g. grids) that do not restrict the choice of
the number of participating processors, as long as the CPUs and
communication spced are comparable to those of the iPSC/2.
Hencc in the performance measurements presented in this section,
we present results obtained on cubes that do not utilize all nodes
in that cube, and in such cascs we calculate the cfficiency bascd
only on the number of participating nodces, not all thosc included
in the attached cube.



The paralicl code P-NT with zero and first order spatial
approximations has been successfully implemented on the iPSC/2.
Because the angular domain decomposition occurs naturally as
discussed before, P-NT requires exactly the same number of
itcrations as thc cquivalent sequential code , GONT,[10] and
converges 10 an identical solution (to within roundofT). This fact
has been checked o be true in all cases executed lo verily the
correctness of the paraliclization procedure. P-NT was used 10
solve two test probiems whose geometry and material composition
are presented in Fig. 2. The spatial discretization cmployed was
a uniform 16 x 16 mesh, and the two problems solved were an Sg,
zcro order case, and an S, first order case. In order to cvaluate
the performance of the paralicl code, we monitored the CPU time
required for convergence as a function of the number of
participating processors, and used this data to evaluate the
performance of P-NT. We uscd two quanlitics to represent a
.quantitative measure of the parallel performance of P-NT: the
‘speedup, S(P) = CPU time required by one processor/CPU time
required by P processors to solve the same problem, and the
‘efficiency, E(P) = 100 x S(P) / P. The speedup and efficicncy vs
the number of participating processors for the two test problems
are shown in Figs. 3 and 4 respectively. As expected the second
test problem yields higher speedup and better efficiency for the
same number of participating processors. Two factors contribute
to this result. First, the first order method requircs more
computations than the zero order method, because in the former
four flux spatial moments are calculated per computational cell,
while in the latier only one spatial moment is calculated. It
‘should be clear also that in the first order case all four spatial
.moments have to be summed globally via GDSUM, so that the net
‘improvement in performance implies that this additional burden
is more than compensated for by the increase in computation
time. Sccond, the higher order quadrature provides a larger pool
of indcpendent processes to be performed concurrently, thus
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Fig. 2 Geometry and nuclear propetties of the test problem
with vacuum boundary conditions, i.e., zero incoming

angular flux, on all four external boundaries.
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reducing the rclative cffect of the communication penalty
compared to the useful computation time.  Since. three
dimcnsional applications would produce similar cffects, namely an
increase in the number of calculated flux spatial moments per cell,
and a two [old increasc in the number of independent processes
for the same quadrature order, we conjccture that cven higher
speedup and cflicicncy should be achicvable. On the other hand,
it has been observed that increasing the number of computational
cclls produces anly marginal improvements to the speedup and
efficiency.[4]
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{Iv. PERFORMANCE MODEL FOR P-NT ON THE iPSC72

The full potential of parallel codes for high performance
can nol be determined hased on a fow test cases alone. For this
purposc it is desirable to develop mathematical models that
describe the performance of the parallct computcer for a given
algorithm as a function of rclevant paramcters. In genceral this
process can be cxtremely complicated and it is often necessary (o
usc statistical methods to fit simplified modcls to measured
performance data, or to use very crude models, c.g. Amdahl's Jaw.
In contrast, the paralicl algorithm described in Scet. 11 is for the
most part "clean and simplc” cnough to permit the development
of a [ully mathematical modcl that describes its performance as a
function of problem size, represented by n, the angular quadrature
order, and the number of processors participating in the
calculation, P. This {act is a dircct consequence of the coarse
graincd and static scheduling features of the parallcl algorithm,
which makes predictable the cxact sequence of operations
pcrformed on cach processor.  The only exception to this
predictability is the global opcration, GDSUM, which is truly
statistical in nature, as discussed below.

There arc threec main components of the CPU time that
add up to the total computation time: a scrial component that is
independent of the number of processors; a paralicl component
that is inversely proportional to the number of processors; and a
"global summation® component which is dominated by
communication and therefore is directly proportional to the
dimension of the attached cube. Determining the full dependence
of each of these components on the spatial approximation order,
the mesh size, and the angular quadrature order is difficuit. The
dependence on the approximation order is casily accounted for
parametrically, i.c. we develop separatc models for the zero order
and first order mcthods. The dependence on the mesh size is
currently being developed and is complicated by the dependence
~of the number of iterations on the number of computational cells.
As noted previously,[4] only minor gains in performance are
achicvable by refining the mesh; so for the time being we develop
the performance modcl for a constant 16 x 16 mesh. In contrast
the number of iterations required for convergence depends very
weakly on the angular quadrature order. Hence it is reasonable
to approximate the parallel component dependence on n as
directly proportional 10 n(n+2)/2, because for a given mesh, one
‘mesh sweep takes the same amount of time regardless of the
‘quadrature order. Also, the results presented in Scct. [ indicate
that the scrial and global summaltion time components arc much
smaller than the paralicl component, and should grow much
slower with the quadrature order.

Let Ty, be the scrial time component for the order o
mcthod, 0 = 0, 1; T, the time required (o sweep the mesh once
for order 0 method; and T, the time required (o perform the
global summation for ord‘é:r o mcthod. According to the
simplilying argument prescnted in the previous paragraph T,
T and T, arc independent of n and P on a given mesh. The
total CPU time immcdiatcly follows,

To (MP) = T + Ty [n(;;z)]

T loZgP

go ,0=0,1,

. 0.64 &

where [.] is the cciling function. and the last term on the RHS is’
cqual to the attached cube dimension. The parallel component
of the modcl is capable of modeling poorly balanced situations,
even though we have intentionally avoided such cases in the test
problems described in Sect. 111

In order to validate the model, Eq. (7), we instalied clocks
al scveral locations in P-NT 1o monitor the various time
componcnts for the zcro and first order methods as a function of
the number of processors.  The scrial and paralicl time
components behaved very consisiently with the model, i.e., T, and
T, were practically constant for all values of P considered.
Because of the global nature of the summation operation, it is not -
fully deterministic, so that repeating the same run can give slightly
different measurements of the consumed CPU time. However,
the measured data seemed to closely foliow a linear dependence
on the cube dimension as logically expected in a hypercube
connection scheme. Therefore, we calculated T, as the ratio of
the mcasured giobal summation time (o the attachcd cube
dimension averaged over the various choices of P. The agreement
between measured and model data for this component is
reasonable. The measured and model time components for the
SS, zero order, and S, [irst order iest problems are compared in
Figs. 5 and 6, respectively; the observed good agreement
establishes the validity of the model.
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Fig. 5. Comparison between experimental and measured time
components for the S, zero order method test problem.
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To explore the {ull potential for high efficiency parallcl
performance by the parallel algorithm presented here on a
two-dimensional 16 x 16 Cartesian mesh for the zero and first
order mcthods we use the model, Eq. (7), to cvaluate the
eflicicncy as a function of n and P. Figures 7 and 8 depict, with
pattern codes, the regions in the (n,P) plane at which high
cfTiciencics are predicted by the model for the zero and first order
methods, respectively. As expected, regions of high clficiency for
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components for the S first order mcthod test
problem.

the first order method cover a larger region in the (n,P) planc
than doecs the zero order mcthod because of the heavier
computational load in the former mcthod. "Islands™ of high
cfliciency appear at locations in the (n,P) plane where the
computational load is well balanced at a few isolated points, and
is poorly balanced at surrounding points. Onec important
obscrvation to be made (rom Figs. 7 and 8 is that load balance is
extremely crucial for achicving very high cfficiencics in general,
but that for very large problcms rcasonably good cfficiencics are
still achicvable on scvcral tens of proccssors.  The utility of
performance models, such as Eq. (7), is cvident [rom
Figs. 7 and 8; a uscr solving a given S, problem and intercsted in
high cfficicncy performance, i.c. lower computation cost, would
normally sclect P in a region surroundcd by the darkest pattcrn on
a constant n line. In contrast, a uscr inierested in the highest
speedup, i.c. shortest computation time, would sclect the largest
possiblc P, especially if it exists on an island of high cfficiency.

V. SUMMARY AND CONCLUSIONS
i We presented an angular domain decomposition of the
standard itcrative scheme commonly used in solving ncutron
transport problems that yiclds a coarse graincd paralicl algorithm.
We described our application of the parallel algorithm 1o the
highly accuralc nodal mecthod, and its implcmentation in the
parallcl nodal transport code, P-NT. We demonstrated the very
high specdup and efTicicncy that the parallicl code is capable of
achicving on Intcl’s iPSC/2 hypercube using two test problems.
Also we developed and validated a model for the performance of
the parallcl code on the iPSC/2, and we used the model to explore

|

) nuesen

i

|
w !
(o}

20

Quadrature Order, n

10

‘Fig. 7.

Quadrature Order, n

l
i
{
!
; Fig. 8.

) Elficiency < 80%

B2 80% < Efficiency < 85%
85% < Efficiency < 0%
BE 90% < Efficiency < 95%
W 957 < Efficiency < 100%
20 40 60 80
Number of Processors, P

100

Paticrn-coded map of the efficiency for the zero-order
method in the (n, P) plane.
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Pattern-coded map of the efficiency for the first-order
method in the (n, P) plane.
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the patcntial for high performance in even larger problems than
used here. )

Our test problems and performance model suggest thal the
limitcd number of processes that can be executed simultancously
in this algorithm (dictated by its coarse grain) limits the size of
parallel computers that can be used to a few hundred processors.
Medium grained algorithms based on allernative domain
dccompositions, combined with well established acceleration
schemes may provide a larger number of concurrent processes at
a rclatively low iteration penalty. This should utilize to a fuller
cxtent massively parallel computers, with thousands of CPUs.
Also, alternative architcctures, such as shared memory machincs,
secem to be very well suited to take full advantage of the present
parallel scheme because of the smalier number of processors they
normally support. Finally, futuristic applications may arise in
scicnee and technology which require using a very high order
angular quadrature in threc dimensional geometry, in which case
the present algorithm will perform extremely well on massively
parallel computers.
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