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i ABSTRACT

A coarse-grained, static-scheduling parallelization of the 
standard iterative scheme used for solving the discrete-ordinates 
approximation of the neutron transport equation is described. 
The parallel algorithm is based on a decomposition of the angular 
domain along the discrete ordinates, thus naturally producing a set 
of completely uncoupled systems of equations in each iteration. 
Implementation of the parallel code on Intel’s iPSC/2 hypcrcubc, 
and solutions to lest problems are presented as evidence of the 
high speedup and efficiency of the parallel code. The 
performance of the parallel code on the iPSC/2 is analyzed, and 
a model for the CPU time as a function of the problem size 
(order of angular quadrature) and the number of participating 
processors is developed and validated against measured CPU 
limes. The performance model is used to speculate on the 
potential of massively parallel computers for significantly speeding 
up real-life transport calculations at acceptable efficiencies. We 
conclude that parallel computers with a few hundred processors 
arc capable of producing large spccdups at very high efficiencies 
in very large three-dimensional problems.

I. INTRODUCTION

The neutron transport equation is a special case of the 
general Boltzmann equation in which the highly improbable 
collisions between neutrons are neglected, thus rendering the 
Boltzmann collision term linear. Solutions for neutron transport 
problems arc sought in many practical applications such as the 
design and optimization of nuclear reactor cores, shield design, 
calculation of heating rates in various reactor components, etc. In 
most such situations the problem is loo complicated to be solved 
analytically, and approximate methods arc inevitable. Indeed, over 
the years many approximation methods, algorithms, and computer 
codes have been developed, implemented, and used to obtain 

, numerical solutions to the neutron transport equation,! 1] 
providing a wide spectrum of approaches each having its own 
range of physical problems for which it is most suitable.

A variety of parallel algorithms have been developed 
recently for solving neutron transport problems each based on a
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specific domain decomposition that is most suitable for a certain 
class of problems.[2-6] Decomposition of the neutron energy 
variable along the multigroup structure commonly employed in 
nuclear applications has been shown to be particularly suitable for 
problems involving upscattering (i.e. scattering from low to high 
cnergies).[2] Also chaotic iterative schemes have been reported 
for such problems, and found to possess several interesting 
fcaturcs.[2] Decomposition of the spatial domain has been 
considered in an attempt to provide a large number of concurrent 
processes offering the potential of very high speedup.[5] The third 
alternative for realizing a parallel algorithm is to decompose the 
angular domain along the set of discrete ordinates employed in Sn 
calculations. This has been done for two-dimensional Cartesian 
geometry problems,[4] and for one-dimensional spherical 
geometry.[6]

As will be discussed later, the angular domain 
decomposition in Cartesian geometry occurs in a natural way, 
unlike most other possible decompositions mentioned above. That 
is to say, in Cartesian geometry the solution algorithm is 
comprised of operations in each discrete direction (i.e. angle) that 
are completely and naturally independent of all other discrete 
directions. Hence, the original and decomposed algorithms are 
identical in that they perform the same set of operations, on the 
same set of initial and intermediate data, and therefore produce 
identical intermediate and final results every step of the way.[4] 
This is not true in the other cases where the decomposition is 
artificially introduced into the solution algorithm, and often 
requires a larger number of iterations to achieve convergence 
compared to the undecomposed case.[5,6] Obviously this 
disadvantages the parallel algorithm because the total amount of 
computations performed (which is proportional to the number of 
iterations) becomes larger in the decomposed algorithm, so that 
specdups with respect to the undccomposcd algorithm (i.e. 
sequential) that are proportional to the number of processors arc 
practically impossible.

In the last fifteen years, nodal methods have been 
developed, implemented, verified against conventional methods, 
and heavily utilized in the solution of neutron transport problems 
in various technical scltings.[7-10] These methods have been 
shown to possess very high accuracies, thus permitting the use of 
relatively coarse meshes, which eventually translates into high 
computational efficiencies.[7-10] Furthermore, it has been shown 
recently that general high-order versions of one particular variety, 
the nodal integral method, can be written in a simple weighted 
difference form,(10J making it easy to implement, or backfit, into 
existing weighted difference production codes. The demonstrated 
high computational efficiency of nodal methods (i.e. short CPU 
time for a given accuracy as compared to conventional methods) 
made it the method of choice in calculations for real-life 
applications.
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" In ibis paper we explore the potential for achieving high 
performance on massively parallel supercomputers in solving 
multidimensional neutron transport problems. This is 
accomplished by establishing a model for the performance of the 
parallel nodal transport code. P-NT,[4] as a function of the 
problem size and the number of processors. In Sect. II we discuss 
the standard iterative scheme used in solving neutron transport 
problems, and we describe its implementation on Intel’s iPSC/2 
hypercubc. Two test problems that have been solved by P-NT on 
the iPSG2 are presented in Sect. Ill, with particular emphasis on 
the parallel performance of the code. The parallel performance 
model is then developed in Sect. IV, and is validated against the 
measured results described in Sect. III. We conclude with a 
summary of the work and the most pertinent conclusions.

II. ANGULAR DOMAIN DECOMPOSITION OF THE 
STANDARD ITERATIVE SCHEME

In order to illustrate the issues involved in developing a 
parallel algorithm for solving the nodal transport equations 
without being overwhelmed by algebraic details, we restrict our 
discussion here to the lowest (zero) order nodal method. Our 
parallel code P-NT has a first order (i.e. linear-linear) capability 
which is used later to measure and model the performance of first 
order methods. The reader interested in parallel high-order 
methods will find it straightforward to apply the concepts 
presented here to the general-order weighted difference equations 
presented in Ref. 10, since the angular domain decomposition is 
independent of the approximation order of the nodal method.

Like the general Boltzmann equation, the steady state 
neutron transport equation in two-dimensional Cartesian geometry 
has five independent variables: two spatial, two angular, and one 
energy, variables. In mostly all numerical applications these 
variables arc discrctiscd, and discrete values representing the 
angular flux (the dependent variable) are defined with respect to 
the discrete independent variables, and solved for algebraically. 
The equations for the lowest order nodal method in 
two-dimensional Cartesian geometry with monoenergetic neutrons 
are given by,
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where (pk, T)k) are lhe x and y angle cosines for the k-th discrete 
direction, k = l,....n(n + 2)/8, in an Sn order quadrature, (Zaij.Ibjj) 
are the x and y dimensions of the ij-th computational cell,
of and o*j are the total and scattering cross sections in the ij-th 

cell respectively, and Sy is a fixed neutron source. The spatial 
weights in Eqs. (2) and (3) are derived consistently via the nodal 
integral method, and are given by,[10]
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The discretised dependent variable is represented by three 
quantities: ^ is the ij-th cell-averaged angular flux,

, m .X (iby) is the x-averaged angular flux evaluated at y - ±by, 
! vk m-y
and analogously ^ (*ajj)> where m is the iteration index. The

angular flux is considered continuous across node boundaries, so 
that
m x ...
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The relationship among the dependent discrete-variables is 
depicted in Fig. 1 on a typical computational cell, forpk, T)k>0;
for pk<0, and T|k<0 the sense of the horizontal, and vertical 
arrows is reversed, respiectively. At a given cell, normally the 
incoming angular flux (in the sense of the arrow) is known from 
the neighboring cell, or from global boundary conditions if the 
given cell is interior or adjacent to an external boundary, 
rcsp>ectivcly. Then Eqs. (1-3) provide three linearly independent 
equations that are solved for the cell-averagcd flux and the two 
outgoing fluxes on x and y = constant surfaces, which by 
continuity of the angular flux, are incoming fluxes to the adjacent 
cells in the x, and y directions, respiectively. The process is 
repeated in these adjacent cells until the entire mesh is covered; 
this completes one "mesh sweep" in the k-th angular direction, to 
be followed by sweeps in all other angular directions thus 
completing one iteration. The quantity iterated upon is the scalar

m»
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iteration using,
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Fig. 1. Relationship among dependent variables for a typical 
computational cell; arrows indicate incoming and 
outgoing angular directions for the case ,nk>0.

where uk is an angular weight defined consistently with the k-th 
discrete direction. It is worthwhile mentioning that several 
generalizations of the method described above can be achieved by 
straightforward modifications; sec Ref. 10.

The solution of Eqs. (1-3) plus the global boundary 
conditions constitutes the bulk of discrete ordinates transport 
calculations, as it involves a very large number of unknowns to be 
evaluated every iteration. For example, an S8 calculation on a 
20 x 20 mesh, involves 12,000 cell and surface averaged angular 
duxes to be calculated per iteration. In the standard iterative 
scheme Eqs. (1-3) arc solved via the successive "sweeps' described 
above. The lack of dependence between the angular dux in each 
direction k and the angular duxes in all other directions represents 
a naturally occurring decomposition in the angular domain which 
we exploit in developing the parallel solution algorithm presented 
below.

The Mathematical Sciences Section of the Engineering 
Physics and Mathematics Division at Oak Ridge National 
Laboratory owns and operates an Intel’s iPSC/2 hypcrcubc 
computer which has 64 nodes (processors), each with 4 Mbytes of 
memory, and connected to the other nodes via a six-dimensional 
hypcrcubc scheme. Information is shared among nodes via explicit 
message passing introduced into the code through extensions to 
FORTRAN. The nodes communicate to external i/o devices 
mainly through a host computer; hence a host program reads the 
input data and passes it to all participating nodes, and at the 
conclusion of the calculation, collects the solution from the nodes 
and prints it out. The standard iterative scheme is performed 
exclusively by the nodes. After receiving the input data from the 
host, each node program determines the set of angular directions 
it is to solve (static scheduling), and immediately starts sweeping 
the mesh in these directions. Clearly the larger the number of 
nodes participating in the calculation, the smaller the work load 
for each node, and the faster the computation. At the conclusion

of the mesh sweep the global operator GDSUM is called to 
perform the summation represented by Eq. (6), yielding the new 
iterate of the cell averaged scalar flux on each of the participating 
processors. Next, all nodes compare the pointwise relative 
difference between the old and new scalar flux iterates to a user 
specified convergence criterion. Upon convergence, node 0 sends 
the host the converged solution, otherwise all nodes start a new 
iteration by again sweeping the mesh each in the discrete 
directions previously assigned to it.

III. PERFORMANCE OF P-NT ON THE iPSC/2

The parallel algorithm described above has some important 
features that bear heavily on its performance. The parallelization 
realized by the angular domain decomposition is very coarse 
grained; this implies that number of data exchanges between the 
participating nodes is very small, and this contributes positively to 
the high efficiency of P-NT. On the other hand, the grain 
coarseness sets a strict limit on the number of independent 
processes available for concurrent execution, thus limiting the 
potential for extremely large speedups on very massive parallel 
computers. More specifically, the number of independent 
processes available in a two dimensional problem with vacuum 
boundary conditions on all global boundaries, in a calculation 
employing an S10 quadrature set is 60; in three-dimensional 
problems this number is 120. In extreme cases where very high 
quadrature orders are necessary, e.g. - S20- two and three 
dimensional problems offer 220 and 440 independent processes, 
respectively, well below the full potential of massively parallel 
supercomputers capable of supporting thousands of. processors. 
Hence, it seems that for present applications the algorithm 
presented here is suitable for high performance on low to medium 
size parallel supercomputers.

Another difficulty resulting from the grain coarseness of 
the parallel algorithm concerns load balance. If the number of 
participating processors docs not divide the number of 
independent processes, some nodes will remain idle in each 
iteration until all directions are calculated. This is extremely 
penalizing when a large number of processors is used, so that the 
share of each processor is only a few directions, because in this 
case the idle time will be of the same order as the busy time, thus 
reducing the efficiency. Dynamic scheduling would not repair this 
problem either because all independent processes have almost the 
same length. This disadvantage is highlighted in a hypcrcubc 
connection scheme where the number of processors available to 
the user must be a power of two, which limits the cases in which 
perfect load balance is achievable.

In the performance measurements presented in this 
section, and the performance model presented in Sect. IV, we 
side-step this disadvantage by assuming that arbitrary node 
numbers are available to the user. This is not as bad an 
assumption as it may appear, because it essentially extends the 
applicability of our conclusions and performance model to other 
connection schemes (e.g. grids) that do not restrict the choice of 
the number of participating processors, as long as the CPUs and 
communication speed arc comparable to those of the iPSC/2. 
Hence in the performance measurements presented in this section, 
we present results obtained on cubes that do not utilize all nodes 
in that cube, and in such cases we calculate the efficiency based 
only on the number of participating nodes, not all those included 
in the attached cube.

t
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The parallel code P-NT with zero and first order spatial 
approximations has been successfully implemented on the iPSC/2. 
Because the angular domain decomposition occurs naturally as 
discussed before, P-NT requires exactly the same number of 
iterations as the equivalent sequential code , GONT,[10) and 
converges to an identical solution (to within roundoff). This fact 
has been checked to be true in all cases executed to verify the 
correctness of the parallelization procedure. P-NT was used to 
solve two test problems whose geometry and material composition 
are presented in Fig. 2. The spatial discretization employed was 
a uniform 36 x 16 mesh, and the two problems solved were an S8. 
zero order case, and an S16, first order case. In order to evaluate 
the performance of the parallel code, we monitored the CPU time 
required for convergence as a function of the number of 
participating processors, and used this data to evaluate the 
performance of P-NT. We used two quantities to represent a 
quantitative measure of the parallel performance of P-NT: the 
speedup, S(P) = CPU time required by one processor/CPU time 
required by P processors to solve the same problem, and the 
efficiency, E(P) = 100 x S(P) / P. The speedup and efficiency vs 
the number of participating processors for the two test problems 
are shown in Figs. 3 and 4 respectively. As expected the second 
test problem yields higher speedup and better efficiency for the 
same number of participating processors. Two factors contribute 
to this result First, the first order method requires more 
computations than the zero order method, because in the former 
four flux spatial moments are calculated per computational cell, 
while in the latter only one spatial moment is calculated. It 
should be clear also that in the first order case all four spatial 
moments have to be summed globally via GDSUM, so that the net 
improvement in performance implies that this additional burden 
is more than compensated for by the increase in computation 
lime. Second, the higher order quadrature provides a larger pool 
of independent processes to be performed concurrently, thus

i

!

i
deducing the relative effect of the communication penally 
compared to the useful computation time. Since- three 
dimensional applications would produce similar effects, namely an 
increase in the number of calculated flux spatial moments per cell, 
and a two fold increase in the number of independent processes 
for the same quadrature order, we conjecture that even higher 
speedup and efficiency should be achievable. On the other hand, 
it has been observed that increasing the number of computational 
cells produces only marginal improvements to the speedup and 
efficiency.[4]

to 26-

to 16-

• = Speedup 
■ = Efficiency

Number of Processors, P

Fig. 3. Speedup and efficiency vs the number of processors for 
the S8, zero order method test problem.

co

8 10 12 14 16 18 20 22
x, cm

Fig. 2. Geometry and nuclear properties of the test problem 
with vacuum boundary conditions, i.e., zero incoming 
angular flux, on all four external boundaries.

c;c0)

tx3

Fig. 4. Speedup and efficiency vs the number of processors for 
the S16> first order method test problem.
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MV. PERFORMANCE MODEL FOR P-NT ON THE iPSC/2

The full polcnlial of parallel codes for high performance 
can noi be determined based on a few lest eases alone. For this 
purpose it is desirable to develop mathematical models that 
describe the performance of the parallel computer for a given 
algorithm as a function of relevant parameters. In general this 
process can be extremely complicated and it is often necessary to 
use statistical methods to fit simplified models to measured 
performance data, or to use very crude models, e.g. Amdahl’s law. 
In contrast, the parallel algorithm described in Sect. II is for the 
most part "clean and simple" enough to permit the development 
of a fully mathematical model that describes its performance as a 
function of problem size, represented by n, the angular quadrature 
order, and the number of processors participating in the 
calculation, P. This fact is a direct consequence of the coarse 
grained and static scheduling features of the parallel algorithm, 
which makes predictable the exact sequence of operations 
performed on each processor. The only exception to this 
predictability is the global operation, GDSUM, which is truly 
statistical in nature, as discussed below.

There arc three main components of the CPU lime that 
add up to the total computation time: a serial component that is 
independent of the number of processors; a parallel component 
that is inversely proportional to the number of processors; and a 
"global summation" component which is dominated by 
communication and therefore is directly proportional to the 
dimension of the attached cube. Determining the full dependence 
of each of these components on the spatial approximation order, 
the mesh size, and the angular quadrature order is difficult. The 
dependence on the approximation order is easily accounted for 
parametrically, i.e. we develop separate models for the zero order 
and first order methods. The dependence on the mesh size is 
currently being developed and is complicated by the dependence 
of the number of iterations on the number of computational cells. 
As noted previously,[4] only minor gains in performance are 
achievable by refining the mesh; so for the time being we develop 
the performance model for a constant 16x36 mesh. In contrast 
the number of iterations required for convergence depends very 
weakly on the angular quadrature order. Hence it is reasonable 
to approximate the parallel component dependence on n as 
directly proportional to n(n+2)/2, because for a given mesh, one 
mesh sweep takes the same amount of lime regardless of the 
quadrature order. Also, the results presented in Sect. Ill indicate 
that the serial and global summation time components arc much 
smaller than the parallel component, and should grow much 
slower with the quadrature order.

Let Tjq be the serial time component for the order o 
method, o = 0, 1; T^ the time required to sweep the mesh once 
for order o method; and T.0 the time required to porform the 
global summation for order o method. According to the 
simplifying argument presented in the previous paragraph T^,, 
TpQ, and Tg0 arc indepondent of n and P on a given mesh. The 
total CPU time immediately follows,

where [.] is the ceiling function, and the last term on the RHS is 
equal to the attached cube dimension. The parallel component 
of the model is capable of modeling poorly balanced situations, 
even though we have intentionally avoided such eases in the lest 
problems described in Sect. III.

In order to validate the model, Eq. (7), we installed clocks 
at several locations in P-NT to monitor the various time 
components for the zero and first order methods as a function of 
the number of processors. The serial and parallel time 
components behaved very consistently with the model, i.e., T^, and 
T^ were practically constant for all values of P considered. 
Because of the global nature of the summation operation, it is not 
fully deterministic, so that repeating the same run can give slightly 
different measurements of the consumed CPU lime. However, 
the measured data seemed to closely follow a linear dependence 
on the cube dimension as logically expxxled in a hypercubc 
connection scheme. Therefore, we calculated Tg0 as the ratio of 
the measured global summation time to the attached cube 
dimension averaged over the various choices of P. The agreement 
between measured and model data for this component is 
reasonable. The measured and model lime components for the 
Sg, zero order, and S16, first order lest problems are compared in 
Figs. 5 and 6, rcsp>ectivcly; the observed good agreement 
establishes the validity of the model.

TIME COMPONENTS(sec) 
Model Serial

2.0-

• Measured Serial
Model Communication 

z Measured Communication
Log Model Parallel

■ Log Measured Parallel

0 8-

. 0.6-

0 2-

Log2 P

Fig. 5. Comparison between experimental and measured time 
components for the S8, zero order method test problem.

T0 (n, P) * Tjq + Tpo
n(n+2)

2P

•f

O

logP
2 o=0, 1,

I
| To explore the full potential for high efficiency parallel
performance by the parallel algorithm presented here on a 
two-dimensional 16 x 16 Cartesian mesh for the zero and first 
order methods we use the model, Eq. (7), to evaluate the 
efficiency as a function of n and P. Figures 7 and 8 depict, w ith 
pattern codes, the regions in the (n,P) plane at w^hich high 
efficiencies arc predicted by the model for the zero and first order 
methods, respectively. As expected, regions of high efficiency for
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Model Serial

• Measured Serial
Model Communicalion 

o Measured Communicalion 
Log Model Parallel

■ Log Measured Parallel
2 B-

•2 0-

; 0.8-

I 0 4-

Fig. 6. Comparison between experimental and measured time 
components for the S16, first order method test 
problem.

the first order method cover a larger region in the (n,P) plane 
than docs the zero order method because of the heavier 
computational load in the former method. "Islands' of high 
efficiency appear at locations in the (n,P) plane where the 
computational load is well balanced at a few isolated points, and 
is poorly balanced at surrounding points. One important 
observation to be made from Figs. 7 and 8 is that load balance is 
extremely crucial for achieving very high efficiencies in general, 
but that for very large problems reasonably good efficiencies arc 
still achievable on several tens of processors. The utility of 
performance models, such as Eq. (7), is evident from 
Figs. 7 and 8; a user solving a given Sn problem and interested in 
high efficiency performance, i.e. lower computation cost, would 
normally select P in a region surrounded by the darkest pattern on 
a constant n line. In contrast, a user interested in the highest 
speedup, i.e. shortest compulation lime, would select the largest 
possible P, especially if it exists on an island of high efficiency.

V. SUMMARY AND CONCLUSIONS

We presented an angular domain decomposition of the 
standard iterative scheme commonly used in solving neutron 
transport problems that yields a coarse grained parallel algorithm. 
We described our application of the parallel algorithm to the 
highly accurate nodal method, and its implementation in the 
parallel nodal transport code, P-NT. We demonstrated the very 
high speedup and efficiency that the parallel code is capable of 
achieving on Intel's iPSC/2 hypcrcubc using two test problems. 
Also we developed and validated a model for the performance of 
the parallel code on the iPSC/2, and wc used the model to explore

Number of Processors, P

Fig. 7. Pattern-coded map of the efficiency for the zero-order 
method in the (n, P) plane.
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1 Fig. 8. Pattern-coded map of the efficiency for the first-order 
I method in the (n, P) plane.
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the potential for high performance in even larger problems than 
used here.

Our test problems and performance model suggest that the 
limited number of processes that can be executed simultaneously 
in this algorithm (dictated by its coarse grain) limits the size of 
parallel computers that can be used to a few hundred processors. 
Medium grained algorithms based on alternative domain 
decompositions, combined with well established acceleration 
schemes may provide a larger number of concurrent processes at 
a relatively low iteration penalty. This should utilize to a fuller 
extent massively parallel computers, with thousands of CPUs. 
Also, alternative architectures, such as shared memory machines, 
seem to be very well suited to take full advantage of the present 
parallel scheme because of the smaller number of processors they 
normally support. Finally, futuristic applications may arise in 
science and technology which require using a very high order 
angular quadrature in three dimensional geometry, in which case 
the present algorithm will perform extremely well on massively 
parallel computers.
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