
CouF' 90/1}

ON THE ADEQUACY OF MESSAGE-PASSING PARALLEL SUPERCOMPUTERS
FOR SOLVING NEUTRON TRANSPORT PROBLEMS*

Y. Y. Azmy
CONF-901121—6

DE90 016041

Engineering Physics and Mathematics Division

Oak Ridge National Laboratory
P.O. Box 2008, Bldg. 6025

Oak Ridge, TN 37831-6363
(615) 574-8069

To be published in the Proceedings of SUPER COMPUTING ’90
New York City, New York, November 12-16, 1990.

"The submitted manuscript has been
authored by a contractor of the U.S.
Government under contract No. DE-
AC05-84OR21400. Accordingly, the U.S.
Government retains a nonexclusive,
royalty-free license to publish or reproduce
the published form of this contribution, or
allow others to do so, for U.S. Government
purposes."

Research sponsored by Office of High Energy and Nuclear Physics, U.S. Department of
Energy under Contract No. DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.
This research was supported in part by the Office of Laboratory Computing of Oak Ridge
National Laboratory.

DISTRIBUTION OF THIS

1

DOCUMENT is unlimited

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

ON THE ADEQUACY OF MESSAGE-PASSING PARALLEL SUPERCOMPUTERS
FOR SOLVING NEUTRON TRANSPORT PROBLEMS*

Y. Y. Azmy
------------------- . . ’ ,

Engineering Physics and Mathematics Division
Oak Ridge National Laboratory

P.O. Box 200S, Oak Ridge, TN 37831-6363
I ■

i ABSTRACT

A coarse-grained, static-scheduling parallelization of the
standard iterative scheme used for solving the discrete-ordinates
approximation of the neutron transport equation is described.
The parallel algorithm is based on a decomposition of the angular
domain along the discrete ordinates, thus naturally producing a set
of completely uncoupled systems of equations in each iteration.
Implementation of the parallel code on Intel’s iPSC/2 hypcrcubc,
and solutions to lest problems are presented as evidence of the
high speedup and efficiency of the parallel code. The
performance of the parallel code on the iPSC/2 is analyzed, and
a model for the CPU time as a function of the problem size
(order of angular quadrature) and the number of participating
processors is developed and validated against measured CPU
limes. The performance model is used to speculate on the
potential of massively parallel computers for significantly speeding
up real-life transport calculations at acceptable efficiencies. We
conclude that parallel computers with a few hundred processors
arc capable of producing large spccdups at very high efficiencies
in very large three-dimensional problems.

I. INTRODUCTION

The neutron transport equation is a special case of the
general Boltzmann equation in which the highly improbable
collisions between neutrons are neglected, thus rendering the
Boltzmann collision term linear. Solutions for neutron transport
problems arc sought in many practical applications such as the
design and optimization of nuclear reactor cores, shield design,
calculation of heating rates in various reactor components, etc. In
most such situations the problem is loo complicated to be solved
analytically, and approximate methods arc inevitable. Indeed, over
the years many approximation methods, algorithms, and computer
codes have been developed, implemented, and used to obtain

, numerical solutions to the neutron transport equation,! 1]
providing a wide spectrum of approaches each having its own
range of physical problems for which it is most suitable.

A variety of parallel algorithms have been developed
recently for solving neutron transport problems each based on a

Research sponsored by Office of High Energy and Nuclear
Physics, U.S. Department of Energy under Contract No. DE-
AC05-840R21400 with Marlin Marietta Energy Systems, Inc.
This research was supported in part by the Office of Laboratory
Computing of Oak Ridge National Laboratory.

specific domain decomposition that is most suitable for a certain
class of problems.[2-6] Decomposition of the neutron energy
variable along the multigroup structure commonly employed in
nuclear applications has been shown to be particularly suitable for
problems involving upscattering (i.e. scattering from low to high
cnergies).[2] Also chaotic iterative schemes have been reported
for such problems, and found to possess several interesting
fcaturcs.[2] Decomposition of the spatial domain has been
considered in an attempt to provide a large number of concurrent
processes offering the potential of very high speedup.[5] The third
alternative for realizing a parallel algorithm is to decompose the
angular domain along the set of discrete ordinates employed in Sn
calculations. This has been done for two-dimensional Cartesian
geometry problems,[4] and for one-dimensional spherical
geometry.[6]

As will be discussed later, the angular domain
decomposition in Cartesian geometry occurs in a natural way,
unlike most other possible decompositions mentioned above. That
is to say, in Cartesian geometry the solution algorithm is
comprised of operations in each discrete direction (i.e. angle) that
are completely and naturally independent of all other discrete
directions. Hence, the original and decomposed algorithms are
identical in that they perform the same set of operations, on the
same set of initial and intermediate data, and therefore produce
identical intermediate and final results every step of the way.[4]
This is not true in the other cases where the decomposition is
artificially introduced into the solution algorithm, and often
requires a larger number of iterations to achieve convergence
compared to the undecomposed case.[5,6] Obviously this
disadvantages the parallel algorithm because the total amount of
computations performed (which is proportional to the number of
iterations) becomes larger in the decomposed algorithm, so that
specdups with respect to the undccomposcd algorithm (i.e.
sequential) that are proportional to the number of processors arc
practically impossible.

In the last fifteen years, nodal methods have been
developed, implemented, verified against conventional methods,
and heavily utilized in the solution of neutron transport problems
in various technical scltings.[7-10] These methods have been
shown to possess very high accuracies, thus permitting the use of
relatively coarse meshes, which eventually translates into high
computational efficiencies.[7-10] Furthermore, it has been shown
recently that general high-order versions of one particular variety,
the nodal integral method, can be written in a simple weighted
difference form,(10J making it easy to implement, or backfit, into
existing weighted difference production codes. The demonstrated
high computational efficiency of nodal methods (i.e. short CPU
time for a given accuracy as compared to conventional methods)
made it the method of choice in calculations for real-life
applications.

I
A! NU

" In ibis paper we explore the potential for achieving high
performance on massively parallel supercomputers in solving
multidimensional neutron transport problems. This is
accomplished by establishing a model for the performance of the
parallel nodal transport code. P-NT,[4] as a function of the
problem size and the number of processors. In Sect. II we discuss
the standard iterative scheme used in solving neutron transport
problems, and we describe its implementation on Intel’s iPSC/2
hypercubc. Two test problems that have been solved by P-NT on
the iPSG2 are presented in Sect. Ill, with particular emphasis on
the parallel performance of the code. The parallel performance
model is then developed in Sect. IV, and is validated against the
measured results described in Sect. III. We conclude with a
summary of the work and the most pertinent conclusions.

II. ANGULAR DOMAIN DECOMPOSITION OF THE
STANDARD ITERATIVE SCHEME

In order to illustrate the issues involved in developing a
parallel algorithm for solving the nodal transport equations
without being overwhelmed by algebraic details, we restrict our
discussion here to the lowest (zero) order nodal method. Our
parallel code P-NT has a first order (i.e. linear-linear) capability
which is used later to measure and model the performance of first
order methods. The reader interested in parallel high-order
methods will find it straightforward to apply the concepts
presented here to the general-order weighted difference equations
presented in Ref. 10, since the angular domain decomposition is
independent of the approximation order of the nodal method.

Like the general Boltzmann equation, the steady state
neutron transport equation in two-dimensional Cartesian geometry
has five independent variables: two spatial, two angular, and one
energy, variables. In mostly all numerical applications these
variables arc discrctiscd, and discrete values representing the
angular flux (the dependent variable) are defined with respect to
the discrete independent variables, and solved for algebraically.
The equations for the lowest order nodal method in
two-dimensional Cartesian geometry with monoenergetic neutrons
are given by,

Fk
23::

m-y m-y

*

jik
2b|j

m-x m-x
,k^>- tk(-V

°ij
♦ilk

(1)

m-
+uk

Yk (4aP i1 + a^/2

+ Y (-V I1 - (2)

m-x
'J'ijlc ’ ♦k ^*biP ^ + ^/2

m-x
+ (-V u - M/2 -kl1....N-

(3)

where (pk, T)k) are lhe x and y angle cosines for the k-th discrete
direction, k = l,....n(n + 2)/8, in an Sn order quadrature, (Zaij.Ibjj)
are the x and y dimensions of the ij-th computational cell,
of and o*j are the total and scattering cross sections in the ij-th

cell respectively, and Sy is a fixed neutron source. The spatial
weights in Eqs. (2) and (3) are derived consistently via the nodal
integral method, and are given by,[10]

ajjk - coth(oT a-y/pt) - pk/oy ay ,
|J U ij “y (4)

Pijk = COth^byfrik) - ilk/Oy bij • C5)

The discretised dependent variable is represented by three
quantities: ^ is the ij-th cell-averaged angular flux,

, m .X (iby) is the x-averaged angular flux evaluated at y - ±by,
! vk m-y
and analogously ^ (*ajj)> where m is the iteration index. The

angular flux is considered continuous across node boundaries, so
that
m x ...

i 4,k(+V m_x /us j m~y, s m_y, \♦k ^-bij*P’ 3nd ♦k (+a‘P “ I'k

The relationship among the dependent discrete-variables is
depicted in Fig. 1 on a typical computational cell, forpk, T)k>0;
for pk<0, and T|k<0 the sense of the horizontal, and vertical
arrows is reversed, respiectively. At a given cell, normally the
incoming angular flux (in the sense of the arrow) is known from
the neighboring cell, or from global boundary conditions if the
given cell is interior or adjacent to an external boundary,
rcsp>ectivcly. Then Eqs. (1-3) provide three linearly independent
equations that are solved for the cell-averagcd flux and the two
outgoing fluxes on x and y = constant surfaces, which by
continuity of the angular flux, are incoming fluxes to the adjacent
cells in the x, and y directions, respiectively. The process is
repeated in these adjacent cells until the entire mesh is covered;
this completes one "mesh sweep" in the k-th angular direction, to
be followed by sweeps in all other angular directions thus
completing one iteration. The quantity iterated upon is the scalar

m»
flux

iteration using,

a , which is updated at
Vjj

the conclusion of the m-lh

_ n(n*2V8 _m" ' _' m«
♦tj ’ g ^ tijk ’ (6)

I

i

I

(

Fig. 1. Relationship among dependent variables for a typical
computational cell; arrows indicate incoming and
outgoing angular directions for the case ,nk>0.

where uk is an angular weight defined consistently with the k-th
discrete direction. It is worthwhile mentioning that several
generalizations of the method described above can be achieved by
straightforward modifications; sec Ref. 10.

The solution of Eqs. (1-3) plus the global boundary
conditions constitutes the bulk of discrete ordinates transport
calculations, as it involves a very large number of unknowns to be
evaluated every iteration. For example, an S8 calculation on a
20 x 20 mesh, involves 12,000 cell and surface averaged angular
duxes to be calculated per iteration. In the standard iterative
scheme Eqs. (1-3) arc solved via the successive "sweeps' described
above. The lack of dependence between the angular dux in each
direction k and the angular duxes in all other directions represents
a naturally occurring decomposition in the angular domain which
we exploit in developing the parallel solution algorithm presented
below.

The Mathematical Sciences Section of the Engineering
Physics and Mathematics Division at Oak Ridge National
Laboratory owns and operates an Intel’s iPSC/2 hypcrcubc
computer which has 64 nodes (processors), each with 4 Mbytes of
memory, and connected to the other nodes via a six-dimensional
hypcrcubc scheme. Information is shared among nodes via explicit
message passing introduced into the code through extensions to
FORTRAN. The nodes communicate to external i/o devices
mainly through a host computer; hence a host program reads the
input data and passes it to all participating nodes, and at the
conclusion of the calculation, collects the solution from the nodes
and prints it out. The standard iterative scheme is performed
exclusively by the nodes. After receiving the input data from the
host, each node program determines the set of angular directions
it is to solve (static scheduling), and immediately starts sweeping
the mesh in these directions. Clearly the larger the number of
nodes participating in the calculation, the smaller the work load
for each node, and the faster the computation. At the conclusion

of the mesh sweep the global operator GDSUM is called to
perform the summation represented by Eq. (6), yielding the new
iterate of the cell averaged scalar flux on each of the participating
processors. Next, all nodes compare the pointwise relative
difference between the old and new scalar flux iterates to a user
specified convergence criterion. Upon convergence, node 0 sends
the host the converged solution, otherwise all nodes start a new
iteration by again sweeping the mesh each in the discrete
directions previously assigned to it.

III. PERFORMANCE OF P-NT ON THE iPSC/2

The parallel algorithm described above has some important
features that bear heavily on its performance. The parallelization
realized by the angular domain decomposition is very coarse
grained; this implies that number of data exchanges between the
participating nodes is very small, and this contributes positively to
the high efficiency of P-NT. On the other hand, the grain
coarseness sets a strict limit on the number of independent
processes available for concurrent execution, thus limiting the
potential for extremely large speedups on very massive parallel
computers. More specifically, the number of independent
processes available in a two dimensional problem with vacuum
boundary conditions on all global boundaries, in a calculation
employing an S10 quadrature set is 60; in three-dimensional
problems this number is 120. In extreme cases where very high
quadrature orders are necessary, e.g. - S20- two and three
dimensional problems offer 220 and 440 independent processes,
respectively, well below the full potential of massively parallel
supercomputers capable of supporting thousands of. processors.
Hence, it seems that for present applications the algorithm
presented here is suitable for high performance on low to medium
size parallel supercomputers.

Another difficulty resulting from the grain coarseness of
the parallel algorithm concerns load balance. If the number of
participating processors docs not divide the number of
independent processes, some nodes will remain idle in each
iteration until all directions are calculated. This is extremely
penalizing when a large number of processors is used, so that the
share of each processor is only a few directions, because in this
case the idle time will be of the same order as the busy time, thus
reducing the efficiency. Dynamic scheduling would not repair this
problem either because all independent processes have almost the
same length. This disadvantage is highlighted in a hypcrcubc
connection scheme where the number of processors available to
the user must be a power of two, which limits the cases in which
perfect load balance is achievable.

In the performance measurements presented in this
section, and the performance model presented in Sect. IV, we
side-step this disadvantage by assuming that arbitrary node
numbers are available to the user. This is not as bad an
assumption as it may appear, because it essentially extends the
applicability of our conclusions and performance model to other
connection schemes (e.g. grids) that do not restrict the choice of
the number of participating processors, as long as the CPUs and
communication speed arc comparable to those of the iPSC/2.
Hence in the performance measurements presented in this section,
we present results obtained on cubes that do not utilize all nodes
in that cube, and in such cases we calculate the efficiency based
only on the number of participating nodes, not all those included
in the attached cube.

t
i
I

i

AU liv

The parallel code P-NT with zero and first order spatial
approximations has been successfully implemented on the iPSC/2.
Because the angular domain decomposition occurs naturally as
discussed before, P-NT requires exactly the same number of
iterations as the equivalent sequential code , GONT,[10) and
converges to an identical solution (to within roundoff). This fact
has been checked to be true in all cases executed to verify the
correctness of the parallelization procedure. P-NT was used to
solve two test problems whose geometry and material composition
are presented in Fig. 2. The spatial discretization employed was
a uniform 36 x 16 mesh, and the two problems solved were an S8.
zero order case, and an S16, first order case. In order to evaluate
the performance of the parallel code, we monitored the CPU time
required for convergence as a function of the number of
participating processors, and used this data to evaluate the
performance of P-NT. We used two quantities to represent a
quantitative measure of the parallel performance of P-NT: the
speedup, S(P) = CPU time required by one processor/CPU time
required by P processors to solve the same problem, and the
efficiency, E(P) = 100 x S(P) / P. The speedup and efficiency vs
the number of participating processors for the two test problems
are shown in Figs. 3 and 4 respectively. As expected the second
test problem yields higher speedup and better efficiency for the
same number of participating processors. Two factors contribute
to this result First, the first order method requires more
computations than the zero order method, because in the former
four flux spatial moments are calculated per computational cell,
while in the latter only one spatial moment is calculated. It
should be clear also that in the first order case all four spatial
moments have to be summed globally via GDSUM, so that the net
improvement in performance implies that this additional burden
is more than compensated for by the increase in computation
lime. Second, the higher order quadrature provides a larger pool
of independent processes to be performed concurrently, thus

i

!

i
deducing the relative effect of the communication penally
compared to the useful computation time. Since- three
dimensional applications would produce similar effects, namely an
increase in the number of calculated flux spatial moments per cell,
and a two fold increase in the number of independent processes
for the same quadrature order, we conjecture that even higher
speedup and efficiency should be achievable. On the other hand,
it has been observed that increasing the number of computational
cells produces only marginal improvements to the speedup and
efficiency.[4]

to 26-

to 16-

• = Speedup
■ = Efficiency

Number of Processors, P

Fig. 3. Speedup and efficiency vs the number of processors for
the S8, zero order method test problem.

co

8 10 12 14 16 18 20 22
x, cm

Fig. 2. Geometry and nuclear properties of the test problem
with vacuum boundary conditions, i.e., zero incoming
angular flux, on all four external boundaries.

c;c0)

tx3

Fig. 4. Speedup and efficiency vs the number of processors for
the S16> first order method test problem.

Mi i ,!
i---- —i

i

MV. PERFORMANCE MODEL FOR P-NT ON THE iPSC/2

The full polcnlial of parallel codes for high performance
can noi be determined based on a few lest eases alone. For this
purpose it is desirable to develop mathematical models that
describe the performance of the parallel computer for a given
algorithm as a function of relevant parameters. In general this
process can be extremely complicated and it is often necessary to
use statistical methods to fit simplified models to measured
performance data, or to use very crude models, e.g. Amdahl’s law.
In contrast, the parallel algorithm described in Sect. II is for the
most part "clean and simple" enough to permit the development
of a fully mathematical model that describes its performance as a
function of problem size, represented by n, the angular quadrature
order, and the number of processors participating in the
calculation, P. This fact is a direct consequence of the coarse
grained and static scheduling features of the parallel algorithm,
which makes predictable the exact sequence of operations
performed on each processor. The only exception to this
predictability is the global operation, GDSUM, which is truly
statistical in nature, as discussed below.

There arc three main components of the CPU lime that
add up to the total computation time: a serial component that is
independent of the number of processors; a parallel component
that is inversely proportional to the number of processors; and a
"global summation" component which is dominated by
communication and therefore is directly proportional to the
dimension of the attached cube. Determining the full dependence
of each of these components on the spatial approximation order,
the mesh size, and the angular quadrature order is difficult. The
dependence on the approximation order is easily accounted for
parametrically, i.e. we develop separate models for the zero order
and first order methods. The dependence on the mesh size is
currently being developed and is complicated by the dependence
of the number of iterations on the number of computational cells.
As noted previously,[4] only minor gains in performance are
achievable by refining the mesh; so for the time being we develop
the performance model for a constant 16x36 mesh. In contrast
the number of iterations required for convergence depends very
weakly on the angular quadrature order. Hence it is reasonable
to approximate the parallel component dependence on n as
directly proportional to n(n+2)/2, because for a given mesh, one
mesh sweep takes the same amount of lime regardless of the
quadrature order. Also, the results presented in Sect. Ill indicate
that the serial and global summation time components arc much
smaller than the parallel component, and should grow much
slower with the quadrature order.

Let Tjq be the serial time component for the order o
method, o = 0, 1; T^ the time required to sweep the mesh once
for order o method; and T.0 the time required to porform the
global summation for order o method. According to the
simplifying argument presented in the previous paragraph T^,,
TpQ, and Tg0 arc indepondent of n and P on a given mesh. The
total CPU time immediately follows,

where [.] is the ceiling function, and the last term on the RHS is
equal to the attached cube dimension. The parallel component
of the model is capable of modeling poorly balanced situations,
even though we have intentionally avoided such eases in the lest
problems described in Sect. III.

In order to validate the model, Eq. (7), we installed clocks
at several locations in P-NT to monitor the various time
components for the zero and first order methods as a function of
the number of processors. The serial and parallel time
components behaved very consistently with the model, i.e., T^, and
T^ were practically constant for all values of P considered.
Because of the global nature of the summation operation, it is not
fully deterministic, so that repeating the same run can give slightly
different measurements of the consumed CPU lime. However,
the measured data seemed to closely follow a linear dependence
on the cube dimension as logically expxxled in a hypercubc
connection scheme. Therefore, we calculated Tg0 as the ratio of
the measured global summation time to the attached cube
dimension averaged over the various choices of P. The agreement
between measured and model data for this component is
reasonable. The measured and model lime components for the
Sg, zero order, and S16, first order lest problems are compared in
Figs. 5 and 6, rcsp>ectivcly; the observed good agreement
establishes the validity of the model.

TIME COMPONENTS(sec)
Model Serial

2.0-

• Measured Serial
Model Communication

z Measured Communication
Log Model Parallel

■ Log Measured Parallel

0 8-

. 0.6-

0 2-

Log2 P

Fig. 5. Comparison between experimental and measured time
components for the S8, zero order method test problem.

T0 (n, P) * Tjq + Tpo
n(n+2)

2P

•f

O

logP
2 o=0, 1,

I
| To explore the full potential for high efficiency parallel
performance by the parallel algorithm presented here on a
two-dimensional 16 x 16 Cartesian mesh for the zero and first
order methods we use the model, Eq. (7), to evaluate the
efficiency as a function of n and P. Figures 7 and 8 depict, w ith
pattern codes, the regions in the (n,P) plane at w^hich high
efficiencies arc predicted by the model for the zero and first order
methods, respectively. As expected, regions of high efficiency for

1

author

1

I ; ' :Vs i ’

TIME COMPONENTSfeec)
Model Serial

• Measured Serial
Model Communicalion

o Measured Communicalion
Log Model Parallel

■ Log Measured Parallel
2 B-

•2 0-

; 0.8-

I 0 4-

Fig. 6. Comparison between experimental and measured time
components for the S16, first order method test
problem.

the first order method cover a larger region in the (n,P) plane
than docs the zero order method because of the heavier
computational load in the former method. "Islands' of high
efficiency appear at locations in the (n,P) plane where the
computational load is well balanced at a few isolated points, and
is poorly balanced at surrounding points. One important
observation to be made from Figs. 7 and 8 is that load balance is
extremely crucial for achieving very high efficiencies in general,
but that for very large problems reasonably good efficiencies arc
still achievable on several tens of processors. The utility of
performance models, such as Eq. (7), is evident from
Figs. 7 and 8; a user solving a given Sn problem and interested in
high efficiency performance, i.e. lower computation cost, would
normally select P in a region surrounded by the darkest pattern on
a constant n line. In contrast, a user interested in the highest
speedup, i.e. shortest compulation lime, would select the largest
possible P, especially if it exists on an island of high efficiency.

V. SUMMARY AND CONCLUSIONS

We presented an angular domain decomposition of the
standard iterative scheme commonly used in solving neutron
transport problems that yields a coarse grained parallel algorithm.
We described our application of the parallel algorithm to the
highly accurate nodal method, and its implementation in the
parallel nodal transport code, P-NT. We demonstrated the very
high speedup and efficiency that the parallel code is capable of
achieving on Intel's iPSC/2 hypcrcubc using two test problems.
Also we developed and validated a model for the performance of
the parallel code on the iPSC/2, and wc used the model to explore

Number of Processors, P

Fig. 7. Pattern-coded map of the efficiency for the zero-order
method in the (n, P) plane.

c
t."
ID
•o
o

OJu3
“lOu
T3
133
or

i.i
Number of Processors, P

1 Fig. 8. Pattern-coded map of the efficiency for the first-order
I method in the (n, P) plane.

ii

i

II

J !' ivHU. I! Hi

the potential for high performance in even larger problems than
used here.

Our test problems and performance model suggest that the
limited number of processes that can be executed simultaneously
in this algorithm (dictated by its coarse grain) limits the size of
parallel computers that can be used to a few hundred processors.
Medium grained algorithms based on alternative domain
decompositions, combined with well established acceleration
schemes may provide a larger number of concurrent processes at
a relatively low iteration penalty. This should utilize to a fuller
extent massively parallel computers, with thousands of CPUs.
Also, alternative architectures, such as shared memory machines,
seem to be very well suited to take full advantage of the present
parallel scheme because of the smaller number of processors they
normally support. Finally, futuristic applications may arise in
science and technology which require using a very high order
angular quadrature in three dimensional geometry, in which case
the present algorithm will perform extremely well on massively
parallel computers.

REFERENCES
i

1. E. E. Lewis and W. F. Miller, "Computational Methods of
Neutron Transport," John Wiley and Sons, New York (1984).

Z B. R. Wienke and R. E. Hiromoto, "Parallel Sn Iteration
Schemes," Nuclear Science & Engineering, 90, 116 (1985).

3. W. A. Rhoades and R. L. Childs, "Sn Transport Calculations
on Vector and Parallel Processors," Transactions of the
American Nuclear Society, 55, 320 (1987).

4. Y. Y. Azmy, "Multidimensional Nodal Transport Methods for
• Multiple-Instruction Multiple-Data, Distributed Memory
Machines," Transactions of the American Nuclear Society, 56,
292 (1988).

5. M. Yavuz and E. W. Larsen, "Spatial Domain Decomposition
Methods for Discrete-Ordinates Problems," Proc. ANS
Topical Meeting on Advances in Nuclear Engineering
Computation and Radiation Shielding, Santa Fe, New
Mexico, April 9-13, 1989, No. 1Z (1989).

6. Alireza Haghighat and Ronald Maltis, "Parallcl/Vector
Algorithms for the Spherical Sn Transport Theory Method,"
to appear in the Proc. Int. Conf. on Supercomputing in
Nuclear Applications, Mito City, Ibaraki, Japan, March 12-19,
1990.

7. J. J. Doming, "Nodal Transport Methods After Five Years,"
Proc. Topical Mlg. Advances in Nuclear Engineering
Computational Methods, Knoxville, Tennessee, April 9-11,
1985, Vol. Z 412 (1985).

8. R. D. Lawrence, "Progress in Nodal Methods for the
Solution of the Neutron Diffusion and Transport Equations,"
Prog. Nuclear Energy, 17, 271 (1986).

9. W. A. Rhoades and R. L. Childs, The DORT
Two-Dimensional Discrete Ordinates Transport Code,"
Nuclear Science & Engineering, 99, 88 (1988).

10. Y. Y. Azmy, "The Weighted Diamond Difference Form of
Nodal Transport Methods," Nuclear Science & Engineering,
98, 29 (1988).

i
i

!

I

r-\t r;' !i.I

‘ i.V :i ■
...

I

