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ABSTRACT

We propose an extension of the effective, low-energy
chiral Lagrangian known as the Skyrme model, to one
formulated by a non-linear sigma model generalized to
include vector mesons in a symmetric way. The model is
based on chiral SU(6) x SU(6) symmetry spontaneously
broken to static SU(6). The -i and other vector mesons
are "dormant" Goldstone bosons since they are in the
came SU(6) multiplet as the pion and other pseudoscalars.
Hence the manifold of our generalized non— linear sigma
model is the coset space (SU(6) x SU(6))/SU(6). Rela-
tavistic effects, via a spin-dependent mass term, break
the static SU(6) and give the vectors a mass. The
model can then be fully relativistic and covariant.
The lcwest-lying Skyrmion in this model is the whole
baryonic 56-plet, which splits into the octet and decu-
plet in the presence of relativistic SD(6)-breaking.
Due to the built-in SU(6) and the presence of vector
mesons, the model is expected to have better phenomeno-
logical results, as well as providing a conceptually
more unified picture of mesons and baryons.

I. INTRODUCTION

Although ODe believes that quantum chromodynamics (QCD) is the

theory of the strong interactions, because it cannot (yet) be solved

exactly there is an important role, especially in low-energy physics,

for phenomenological, effective Lagrangians. Indeed one hopes that

eventually it will be possible to derive the correct, effective, low-
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energy Lagrangian from QCD in much the same way that the Landau-

Ginsberg equations are derived from the BCS theory of superconductivi-

ty. Until then we must content ourselves with guessing at the best

effective Lagrangian, bur. of course using both the guidance from the

experimental facts and their summarization in phenomenology on the one

hand and whatever hints we can gather from QCD itself on the other, to

help us in making an intelligent guess. In this pursuit, interest has

recently refocused on a model written down over twenty years ago by

Skyrme1). It is the scandard chiral SC(2) x SU(2) non-linear sigma

model of Goldstone pions, with the addition of a quartic term to

stablize the solitone, the classical solutions of the model which have

come to be called Skyrmions.

In order to establish notation and conventions, but without giving

many of the details^), we may write the Lagrangian using the group

currents

L (x) =* O"^ D , (1)

as

where fT = 93 MeV. U(x) is a field transforminc as a non-linear

realization of the chiral group (originally with Skyrme SU(2) x SU(2),

but more recently SU(3) x SU(3)) with the constraint that

UU1 - I, (3)

that is, 0 is unitary. For the case of two flavours, for example, we

may paraaetrize U(x) as a unit quaternionic field, U(x) = iji0 + ir»^,

with $ » 1 and $ being the triplet of pion fields. U(x) iitra takes

values on the non-linear manifold

the 3-sphere. The static sollton solution comes from Skyrme's hedgehog

ansatz:

D(x) = exp[i T • £ F(r)] (4)

with the boundary conditions F(0) = ir, F(«) = 0 .



As Witten has shown^), with the addition of another term to (2), the

Wess-Zumino term4) which describes the effects of non-Abelian

anomalies, one can demonstrate that the Skyrmion is a fermion for the

number of colours Nc odd, and in particular Nc = 3. This with

previous arguments going back to Skyrme establishes that the Skynnion

is a baryon.

Studies^) investigating the phenomenological consequences of the

Skyrme model have found results generally within about 30% of ex-

perimental values. This suggests that something important is missing,

and included in that something must surely be the vector mesons. There

are a number of reasons for believing that vector mesons should be

included in the model. To begin with one knows that p's and <o's, as

well as iji's and K*'s, are necessary to give a good description of

low-energy phenomenology and nuclear physics. One can phrase this in

another way by noting that since the Skyrme model is a non-renormaliz-

able, effective model requiring a cut-off, and that this cut-off is on

the order of a typical baryon mass, say 1-2 GeV, then one had better

include the p's and other vector mesons which are below this cut—off if

one hopes to describe the physics in this energy regime accurately.

Another argument for including vectors comes from QCD in the large

N limit. It is known**»?) that as N -t- «, QCD reduces to a theory of

frr mesons, with interactions appearing in O(l/N). But it is not just

spin-0 mesons which appear, but higher spins as well, all on the same

footing. Furthermore, there are various arguments^) to suggest that

baryons appear as solitons in this large N effective field theory that

would be obtained from QCD. Since this as yet not completely known,

large N effective field theory is supposed to reduce at low energy to

the Skyrme-type, non-linear sigma model, it behooves us again to

include the vector mesons in our model.

Motivated by not totally dissimilar reasoning, a number of authors

have already attempted to incorporate vector mesons in the chiral

model. The Syracuse group**) has followed the traditional method

going back to Sakurai^) of adding spin-1 mesons to the chiral

Lagrangian by using "covariant" derivative couplings as if the spin-1

fields were gauge fields. However, mass terms for the vector and axial



vectors are, as expected, also included. Although they were really not

concerned with the Skyrme model as such in that they did not study the

Skynnion-baryons, they did include the Wess-Zumino term. In such a

framework they have been able to obtain some nice results, especially

concerning u decays. However, there are some subtleties concerning the

explicit chiral-symmetry breaking which results from their using

Bardeen's form^) of the non-Abelian anomaly (i.e. non-anomalous

vector currents). We would like to argue that despite the successes of

thJ <= traditional approach, there are conceptual difficulties with

including vector mesons in this way for reasons, which will be

discussed below, concerning static SU(6).

Other, less complete attempts to add vector mesons include the

work of ^dkins and Nappi^D, in which only the OJ was coupled to the

baryonic current. While such a treatment eliminated the need for a

higher derivative term to stablize the Skyrmion, only slight improve-

ment of the phenomenological results was found. Finally a group at

Ohio State^) has considered vectors, but only in final state

interactions, in a model with the Wess-Zumino term (again not really

the Skyrmion situation); so their treatment does not really include

vector mesons in the effective Lagrangian.

What will be described here is an approach to the problem which is

essentially different from those mentioned above; indeed one might say

it is an orthogonal treatment. It i3 based on a very different picture

of the vector mesons which was developed some time ago by the author

and H. Pagels^). This description of the vector mesons keeps the

IT'S (really, all the pseudoscalars) and the p's (all the vectors) as

much as possible on the same footing. The motivation for this comes

from static SD(6), the relevant highlights of which we will briefly re-

view belo*' in Section II. This will lead us to a consideration of the

p-ir puzzle and our solution in which the p (along with :he other vector

mesons in the nonet) emerges as a "dormant" Goldstone boson of sponta-

neously broken chiral U(6) x U(6). (The pion and its pseudoscalar

octet partners are, of course, also Goldstone states; indeed they are

the remaining states of the whole Goldstone supermultiplet.) The term

dormant Goldstone boson is used since a spln-1 state can be a true



Goldstone state only in a nonrelativistic theory. Relativistic effects

break the static SU(6) symmetry and give the o a mass. (Throughout

this paper p will often, depending on the context, be used generically

for the whole vector Feson nonet, likewise for IT, mutatis mutandis.)

This scenario is realized in a generalized linear sigma model,

reviewed in Section II. Its consequences in a relativistic framework,

i.e. in QCD or at least in its progenitor, the quark model, are also

discussed in Section II, t.-here it is shown that how the p remembers it

is a dormant Goldstone boson is by being in a (3,3) + (3,3) representa-

tion of chiral SU(3) x SU(3), the same chiral representation content as

the pion. This leads to an understanding of vector-meson dominance

(VMD) as a consequence of spontaneous symmetry breaking, just as for

PCAC.

Having reviewed this description of vector mesons, we are able to

present the model in Section III, first pointing out that the Skyrme

model is an ideal framework to employ this picture of p's since it

already has a number of aspects of a. static model. We then give our

formulation first of the nonrelativistic, generalized non-linear sigma

model on the coset space (SU(6) x SU(6))/SU(6)» We discuss the

existence of the static, Skyrme-type solutions and the Wess-Zumino-type

term leading to the generalized Skyrmlon being quantized as a fermion,

and so being the whole baryonic 56-plet. We then consider the addition

of a spin-dependent mass term which breaks SD(6) and enables us to

formulate a fully relativistic, covariant model. Finally in Section IV

we draw some conclusions, point out the considerable work remaining to

be done on the model, and also discuss the relevance for this whole

approach of a simplified, one-flavour version of the model.

II. SD(6) AND THE p-* PUZZLE

A. The Static SU(6) Group

It is well appreciated, though perhaps by now somewhat hazily

remembered, that the symmetry which results from combining internal

SD(3) flavour symmetry with SU(2) of spin, namely static SU(6)



symmetry, leads to a rather successful description of many features of

hadronic phenomenology. Work on this symmetry goes back to the

mid-601s and is associated with Gursey and Radicati, Pais, and

Sakita^). As there exist a number of excellent reviews^) f we

will be extremely brief here. SU(6) is an approximate, dynamic, non-

relativistic (exact really only in the static limit) symmetry of the

quark model and so of its field theoretic embodiment, QCD. It is very

successful in providing: i) a classification of hadrons into static

SU(6) x 0(3) supermultiplets, and ii) relations among magnetic moments,

masses, mixing angles, decay rates, etc. We might note that for

simplicity one may limit the discussion to static SU(4) (originating

with Wigner*-') in 1937) which mixes spin and isospin, but for

studying phenomenological applications SU(6) leads to much better

results. At any rate what these static symmetries do is to mix an

internal symmetry with a spatial symmetry. (One should note that it is

not just a direct-product group like SU(3) x SU(2) that we are

concerned with, otherwise there would be no need for all the members of

a supermultiplet to have the same parity.)

Because of this mixing of spatial and internal symmetries, it was

quickly realized that SU(6) wruld run into troubles with relativity.

An easy wasy to see the difficulty is to note that a Lorentz boost only

affects the spin part (mixing spin and orbital angular momentum), while

the internal group is Lorentz invariant. There were actually a number

of no-go theorems proven which forbid a relativistic version of SU(6).

(Of course, later it was shown how to have a relativistic theory which

mixes spatial and internal symmetries, namely supersymmetry, which

avo-.ds the no—go theorems by being based on graded Lie algebras.) So

one Icnow6 that SU(6) is an approximate, dynamical symmetry much like

the approximate, dynamical spin SU(2) group used in Russell-Saunders

coupling in atoms. Nevertheless, because SU(6) does appear as an

approximate symmetry of nature, it is important to recover it in the

static limit, i.e. in the rest frame of a particle, where the particle

has no orbital angular momentum.



B. The p—w Puzzle

Presumably by now almost everyone (certainly everyone at this

Workshop) believes that the pion (etc.) is a Nambu-Goldstone boson of

spontaneously broken SU(3) x SU(3) chiral symmetry. But the p meson

(and its partners) is in the same static SU(6)-quark model (QCD) super-

multiplet as the pion: the 35-plet. The p-n puzzle is how to reconcile

this; or how is PCAC compatible with the quark model? The answer which

Pagels and I gave 13' is that the p is a "dormant" Golds tone boson.

In the static, nonrelativistic limit it is a Goldstone state which then

becomes massive in a relativistic theory which of necessity breaks

SD(6).

To see ^he puzzle and our solution a bit more quantitatively, we

note that under chiral SU(3) x SU(3) the pseudoscalars transform like

(3,3) + (3,3), that is in terms of quark bilinears, like ira -

qiy5(X /2)q. However, conventional vectors, i.e. p a - q-y (X /2)q,

transform like (1,8) + (8,1). This is difficult to reconcile with

static SU(6). Instead we assume that like the w's the p's also belong

to a (3,3) + (3,3) representation of chiral SU(3) x SU(3). This then

requires that the components of the vector-meson field operators be

part of an antisymmetric tensor quark-bilinear operator, i.e.

q a (X/2)q=t . Then the phenomenological vector-meson field is

projected out by

3»ta (.)

»>> - —7772 • «)
m z
P P

with the automatic consequence that

3Vp* - 0 , (6)

so that there are only three independent components as desired for a

massive spin-1 field. (In the static (tt=O) limit, or perhaps better in

the p's rest frame, p* - q oo±(x
a/2)q.)

From the dual of the antisymmetric tensor field,

V = 1/2 e .. taX5 = q iY5 a Qa/2)q,

one projects out the phenomenological field of the chiral partner of



the p meson in this picture, namely the 3(1235), Jpc = I"1"" axial

vector mason, by

3 V
B a = -Ji )£> (7a)
v Z

with

3 B a = 0 . (7b)

v v

This is a nice feature of our description of the spin-1 mesons since

the B is a well-established resonance, while the chiral partner of the

p in the traditional picture, namely the Aj axial-vector meson, JpC =

I"1"*", if one believes that it has finally been found, appears to have

too high a mass to satisfy the Weinberg sum rule prediction. For

details the reader is referred to our original papers^). Perhaps it

should be remarked here that this chiral representation assignment of

the spin-1 meson makes clear the role of the antisymmetric tensor

bilinear operators, a subject which has been of interest of late.

C. Chlral D(6) x D(6>

In order to make the ensuing discussion more intelligible, it is

probably useful to remind ourselves which algebra we are discussing.

There are 144 Hermitian currents which can be formed from quark

bilinears with 3 flavours:

V
u "

 q Yu ~ q' \ = q V 5 ~ q '

Sa = qfq, P* = qiY5^q, I^-q^fq, (8)

a - 0, ... 8.

The charges Q̂ - • Jd3x J^(x,t) defined from these currents, naively

using the canonical commutation relations for the quark fields, close

on the algebra U(12). Focusing just on Va and A a, we note that chiral

chiral U(3) x U(3) is generated by the charges

Qa = /d3x Va , 5Q a = Jd3x A3 , (9)

and

[Qa, Qb] - i fabc QC (10a)



[Qa, 5Qb] - i fabC V

. [5Qa, V j - i f3bc QC . (10c)5 Q a , V j - i f3bc QC

If we now also consider the charges defined from the spatial components

U
of Va and Aa:

Qa = /d3x Va , 5Qa = /d3x Aa , (11)

then the charges (9) and (11) together close on the chiral U(6) x U(6)

algebra of Feynman,Gell-Mann and Zweigl6). This is given by rela-

tions (10) plus

[Qa, Qb] = i fabc Qj (12a)

[5Qa, Qb] - i fabc 5Q^ (12b)

[Qa, 5
QJ] = i fabc \ l (12c)

[ V , 5oj] = I fabc Qj (12d)

[Qa, Qb] - i 5i:!f
abC QC ~ i e l j kd a b C 5Q^ (12e)

[5Qa, 5Qb] - i 6±if
abc QC - i e l j k d a b c 5Q^ (12f)

r.a 5_bi _ . fabc 5nc . ,abc c /,,.%
LQ±» QjJ = i 6 i j f Q ~ Eijk \ * (12g)

The "(6) subalgebra generated by Qa and 5Qia with commutation

relations given by (10a), (12c), and (12f) corresponds to the s t a t i c

U(6) group.

D. The Generalized Linear Sigma Modal

We have explici t ly realized our description of the vector mesons

as dormant Goldstone bosons by considering a generalization of the

linear sigma model to the chiral U(6) x U(6) symmetry we have jus t

reviewed. The reason for picking this group is that if one wants to

extend the D(3) x U(3) j model to include U(6), then the smallest group

which contains these groups and closes is U(6) x U(6). Of course, due



10

to the apparently insurmountable difficulties of achieving a

relativistic SU(6) symmetry, the model at first is only a static model,

but it still has Galilean invariance.

The following notation is useful. The charges which generate

chiral U(6) xU(6) obey the commutation relations

(13)

where A =» a or al, and a = 0, ...,8, i = 1,...,3. The generators

of static D(6) obey

T r AAAB = 2 6AB '

[AA, A 3] - 2 i FAfiC Ac ,

2 DABC V

_ f i > i / 2 .
Fabc ~ tyJ f

a b c ' Dabc

Fai,bj,ck ~ IT' eijk dabc + l p 5 i j fabc

^ = ^ 1 / 2 £ fabc J

where fabc
 an£^ ̂ abc a r e c^e u 8 u al SD(3) coefficients, and

doaa =• (2/3)1/2.

The mesons are classified into two 36-plets of static U(6). Using

Cartesian coordinates we identify an odd-parity 36-plet,

V Ma = »"• Mai = Pi '

and an even-parity 36-plet,

NA= N
a = ̂ » Nai = Bi • ( 1 ?

in terms of the usual phenomenological meson fields. Together these
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m u l t i p l e t s t r ans fo rm as a ( 6 , 6 ) + ( 6 , 6 ) r e p r e s e n t a t i o n of c h i r a l

U(6) x U(6) ,

[ QA, M»] = i /*C MC ,

[/, N3] = iD^M 0 . (17)

We should emphasize that the (6,6) + (6,6) representation is forcad

upon us once we '•ave the pseudoscalar mesons and vector mesons in the

same multiplet and then demand that the pseudoscalars be in

(3,3) + (3,3) under chiral SU(3) x SU(3), as they are in the usual

formulation of the sigma model. The requirement of the (6,6) + (6,6)

then fixes the charge conjugation property of the axial-vectors to be

the same as the vectors, i.e. odd, while the aa and -rra are even as

usual,

The interaction or potential part of the Lagrangian is

" " J " 2 ( M A M A + N

+ 2 M^N^Ng.) + 4 F^F^.^M^^,] . (18)

This is the most general U(6) x D(6)-invariant Lagrangian (restricted

to polynomials of degree _< 4). We note that there is no trilinear term

here, in contrast wit.h the case for SU(3) x SD(3), so that the maximal

group which leaves the Lagrangian invariant is U(6) x U(6) and not just

SD(6) x SU(6). However, we know how to solve the U^(l) problem via

its anomaly, and after SU(6)-breaking this can be implemented in the

phenomenological Lagrangian in a by-now-standard fashion, This is the

reason we are somewhat cavalier about distinguishing between D(6) and

SD(6) throughout this paper.

As in the usual linear sigma model, if p2 < 0 then c® has a vacuum
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expectation value <a°> = a, and the vacuum is just U(6)-invariant so

the 0(6) x U(6) symmetry is spontaneously broken. Standard analysis

yields the following masses for the various mesons:

mg2 = m^2 = y2 + 4a2(X-t-Y),

m 2 = m 2 = y2 + 4a2(X-h/3) = 0 . (19)

TT p

So the whole odd-parity 36-plet has become massless; it is the

Goldstone mode of the U(6) x U(6) symmetry broken to U(6).

The vector mesons cannot of course be true Goldstone bosons in a

realistic, relativistic theory. Indeed there exists a rigorous proof

against Goldstone bosons of spin > 1 in a relativistic theory^').

However, for a non-relativistic theory not only is there no theoretical

problem, but spin-1 Goldstone states (spin waves) have actually been

observed, for exar-'iie, in certain He systems*"'. We would also point

out that this picture of vector mesons as Goldstone bosons in the

static limit has subsequently bean confirmed in lattice calculations by

two different methods^). Nevertheless, they are still only dormant

Goldstone bosons, which are roused by relativistic effects to become

massive states.

To see this explicitly, we note that once one demands relativistic

invariance, because Lorentz boosts affect spin but not U-spin, U(6)

symmetry is broken by kinetic energy terms, and this must give rise to

spin-dependent mass terms. To include such an explicit U(6)-symmetry-

breaking mass term it is helpful to use the tensor notation

• i fij s£ + (a • e)J B~ , (20)

where P^ = (1//2) X ^ A v£ = (1//2) X^p 3, etc., and % is the polari-

zation vector. Combining these tensors into
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A A
T = N + i M

Tf = ^ - i $ T , (21)

we may write the mass operatoi as

= - i ii2(TT2+p2+a2+B2) - i 62(p2+B2), (22)

where [ ] indicates the spin trace. The spin-1 mesons are now spl i t

from their spin-0 multiplet partners, and the mass formulae are

mj = u2 + 62 + 4a2(X+r) ,

4a2U-Hf),

2 2

m2 = 0 . (23)
it

From (23) we obtain the relation

mp " < • < - ma« ( 2 4 )

which is in remarkably good agreement with the experimentally

determined masses. For example, putting in the masses of the 1 = 1

members of the octets, we obtain

m2 - m2 = m2 - m2 , (25)
p IT B J

0.547 GeV2 vss 0.577 GeV
2.

From this it appears that D(6)-symmetry breaking due to spin-dependent

effects independent of S0(3) breaking is rather well borne out experi-

mentally, with the parameter g2 » 0,6 GeV2.

E. Some Consequences of a Dormant Goldstone p

We would now like to mention some of the important

consequences of this description of the vector mesons in the context of

a relativistic theo ; or, to put it in more anthropomorphic terms, hovr

does the p remember its origin as a dormant Goldstone boson? The

answer lies in its being in a (3,3) + (3,3) representation of chiral
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SU(3) x SU(3). Perhaps this is as good a point as any to note that

in terms of chiral representation content there are at least two

possible pions, namely, the (1,8) + (8,1) representation in addition to

the (3,3) + (3,3). The same is true for the vectors. So perhaps the

physical states are mixtures. There is not much evidence of this for

the plon, and to emphasize our viewpoint we will ignore it for the

vectors as well. Certainly for the non-linear sigma model discussed

below this seems to be appropriate.

The implication of putting the vector mesons in (3,3) + (3,3) is

that vector-meson dominance is a consequence of spontaneous symmetry

breaking. Just as the i;[(3,3) + (3,3)] couples to the axial-vector

current [(1,8) + (8,1)] via a a going into the vacuum [Fig. l(a)], so

also the p[(3,3) + (3,3)] couples to the vector current [(1,8) + (8,1)]

by the same mechanism [Fig. l(b)]. Vacuum symmetry breaking in these

two instances corresponds to the nonvanishing vacuum values of

l / 2
5

a b <o- o >,

( 2 6 )

(U8)0(8J)I (3.3) e (3,3) CU8Ji®J©»JjJc 3.31 © (3,3)

(a) (b)

FIG. 1. Coupling of (a) axial-vector current to pion and (b) vector

current to the p via spontaneous breaking of chiral symmetry.
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In this description of VMD we can obtain an expression for the

currsnt-vector-meson coupling, 1/Y~ . defined by

<o|va(o) pb(k,e)> = - i e 6
3 -2- . (27)

This is analogous to the expression for the pion-axial-vector-current

coupling

<0 A (0) TTb(k)> = i k fT6
Sb. (28)

Using th& ralationship f = Z (2/3) <<j°>, we obtain the relation
IT IT

between I/y and f^ to be

I = (fl)^)1/2 . (29)
P P P

In the SU(6) limit, Z = Z , while with (Z /Z ) 1 / 2 = 1 . 5 one obtains
17 p ' IT p

the observed rate for p •»• e+ + e~. Our result (29) is similar to the

KSFR relation2^', but in our derivation we have an explanation for a

relationship between 1/Y., and f^, namely, both are consequences of

the same proce&<3 (Fig. 1). As discussed in Ref. 13, there has been no

really adequate derivation of the KSFR relation.

There are many other consequences of our description of the vector

mesons, including the usual universality y = gDrir, soft p decou-

pling theorems, and tensor-field identities. We also examined a number

of decay processes, as well as photon-p interactions. Referring the

interested reader again to Ref. 13 for the details, we may summarize

the situation by saying that not only is our picture consistent with

the experimental k^avior of vector mesons, but it also provides a

uulfied framework for understanding the phenomenology of both

pseudoscalar and vector mesons.

III. THE MODEL

A. Static Aspects of the Skyrne Model

With this review of the dormant Goldstone picture of the p's

completed, and with the reader (one hopes) at least partially

favourably disposed to allow its credibility, we are just about ready



16

to discuss our generalized Skyrme model. But first it is worth

pointing out that the usual Skyrme model already has some important

static aspects to it, which mak<; it an essentially ideal place to use

this formulation of vector mesons.

If we first look at the Skyrme ansatz, Eq. (4), we notice the

typical feature of such a soliton, namely that It mixes isospin and

spatial indices. Furthermore, upon quantization the spin and isospin

of the Skyrmion are intimately linked. Hence the usual Skrymion

already has the signal aspect of static SU(6).

Perhaps this is not too surprising in light of our second point,

which Is that the Skynaion, In so far as it can be considered the

baryon of large—N QCD, Is a static object. This is because in the

large N limit the baryon mass Is expected'' to be proportional to N,

i.e. to have the typical soliton behaviour with the mass proportional

to the inverse coupling = 1/(1/N).

But there is an even deeper sense in which the usual Skyrme model

is already a static model. As a number of authors^*) have recently

pointed out, the Skyrme model, the static nonrelativistic quark model,

and the static strong-coupling model are all related in that they share

the same symmetry group, namely static SD(6) (or SU(4) in the original

2-flavour cas«)» at least in the Nc •»• <= limit. As Ba-rlakci^l) in

particular has shown, however, there are problems In next-to-leading

order in 1/N, but these can be fixed at the cost of adding yet higher

derivative (6th order) terms to satisfy the static SU(4) algebra. It

seems to us th«t with all these strong clues, it is better to Include

static SU(4) or SU(6) from the start in the model. Of course, for a

realistic, relativistic. treatment of the meson sector, we will

eventually want to break the SD(6).

B. The Nonrelativlstic Model

In order to Investigate most of the properties of the generalized

Skyrmion which have been of principal interest for the usual Skynnion,

that is, the static properties of baryons, the following nonrelativis-

tfc model should be adequate. It is convenient to use for the

paraaietrizatlon of the meson field
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= exp((i/f ) A. M.(x)) (30)

with the notation of (14) and (15) for Kk and MA. A proto-

Lagrangian may then be written as

< 5 ? - j 1 **[»jrtj*T] • (31)

Again there is the all-important cons t r a in t s*^ 3 1, which would be

expressed in a vector version of the model as (•& ) + (p ) + o = 1 .

This is what provides the non-linearity of the model and hence not only

the interactions but also the non-trivial topology. So the manifold of

the model is the coset space (3U(6) x (SU(6))/SU(6) (or (SU(4) x

SU(4))/SU(4) without strangeness). The reader should be warned that

despite the appearance of (31), the Lagrangian is not covariant, due to

the spatial indices hiding on the p i a ' s in MA. Eq. (31) is only

to be understood as a nonrelativistic model. But this is perfectly

fine for the purposes of finding and studying stat ic finite energy

solutions, since being time—independent, they only involve 3^ . So

now, exactly as in the case for SU(2) or SO(3), the demand for finite

energy is met by requiring

(32)

at all times t, compactifyin^ R•»• S . 0/ (x) thus describes mappings

S + SU(6) and these are described by the third homotopy group

TT3(SU(6)). One of the crucial pieces of evidence that gives us

confidence that we cannot be fax wrong in ..jur approach is that

T:3(SU(6)) - Z5 (33)

so that the space is indeed topologically non-trivial and splits up

into an infinite set of topologically disconnected components.

Actually (33) is a consequence of the Bott periodicity theorem^) t

which tells us in this case that ir3(SU(n)) - Z for all n _> 2.

The next question concerns the quartic-derivative, Skyrme term.

Unlike the situation where one adds vector mesons on a different

footing from the pseudoscalars and they hence can provide stabiliza-

tion of the Skyrmion, in our case it is easy to show that the

Lagrangian (31) as it stands does not avoid the Derrick, sc al.
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theorem. So the price of Including vectors in this symmetric way is

that we must keep the Skyrme term, at least in the unbroken version of

the model. Hence the static Lagrangian so far, using the group

currents (1) generalized to<3/(30), is

f2

- ]̂L Tr(L±L1) + -^ TrCfL^L.]2). (34)

There is one more term we would like our Lagrangian to have, that

Is the Wess-Zumino term. This term is important, as Witten^) has

demonstrated, in establishing the Skynnion as a fermion, In reducing

the parity of the jiodel to that of QCD, and of course for its original

purpose, that of Incorporating the effects of the anomalies of current

algebra. Since we certainly would want to retain these features in our

generalized model, agair it is fortunate that the same topological

arguments that applied in the SU(3) case also apply in the case of

SU(6). To begin with, the chirai SD(6) x SD(6) current algebra

certainly is anomalous, having the anomalies from the SU(3) x SU(3)

subalgebra, as well as those associated with the remaining currents.

Nevertheless, at first sight it might appear that a Wess-Zumino term

for a nonrelativistic chirai SU(6) x SD(6) model would not be easily

admissible. That this turns out not tc be the case can be seen from

the remark") that the Wess-Zumino term is really most appropriately

written"' using differential forms and from this formulation one sees

that it is independent of the metric. Related to this is the

observation that the topological derivations of the Wess-Zumino term,

as is usual with topological discussions in general, are in the context

of Euclidean space-time, which Is compactified to a sphere besides.

The fact that the nonrelativistic model retains only Galilean

Invariance takes on much reduced significance in this context. (Please

also note some remarks in the following subsection.)

So following, for example, Witten's derivation-^24) y w e need to

know what ^(SU(6)) Is since ̂  is a mapping of the four-dimensional

sphere M Into the SU(6) manifold. Again the Bott periodicity theorem

ensures that 174(811(6)) = 0, just as for SU(3). So the four sphere in

SD(6) defined by<?/(x) is the boundary of a five-dimensional disc Q.
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Then because Q is not unique, in an argument analogous to magnetic

charge quantization, one has the requirement that on Q + Qf - S , a

closed five-dimensional sphere,

1laiIl = 2*.integer (35)

S5

for any S5 in the SU(6) iuanifold. So one needs to know TTS(SU(6)), and

once more the Bott periodicity theorem ensures that -^(SU^n)) « Z, for

n > 3, and so in particular for our case of SU(6). This then tells us

that every S5 in SU(6) is topologically a multiple of a basic five

sphere SQ which we use to normalize UJ. We can make thi3 more explicit

by defining the one-form related to the group current (1),

S =<%rl(3<^) dxu =q/~ld&. (36)

The normalization condition is then

G / Tr(g5) - 2ir . (37)

e 5S0

The proper normalization of C Tr(B ) fortunately has already been

carried out by Bott and Seely^^) w no proved that for C Tr(g^~^),

r _ - r i>N (N-l)l f .
C " 2 i T W (2H-1)I • (38)

The result is seen to depend on the dimension of the sphere and not on

the group. We thus obtain the same normalization for SU(6) as for

SU(3), and the Wess-Zumino term in our model can be written

(39)
240 ^ Q

The first term in the expansion in terms of the meson fields

M = AAMA so that & = (i/f^) dM + ..., is

Tuv V - r / Tr(d M)5 + ...
240 ^ f b Q

IT

j d 4 x e u v o t 6 Tr(M3 M3 M3 M3 M) + . . . . ( 4 0 )
240 Trzf s y v a B

As for the identification of n with the number of colours Nc,

this requires a comparison with the QCD triangle diagram prediction for
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ir° •+• Zy after gauging (39) with electromagnetism. This is then more

properly done in the relativistic model after SU(6) breaking^).

Assuming no unexpected complications, the result should be that n

indeed equals Nc and so for Nc = 3 the generalized Skynnion,

following the same argument^»24) as for SU(3), is indeed a fermion,

and so a baryoa.

As for the actual Skrymion solution, there are, not surprisingly

considering the larger nature of the group, a number of options, some

of which will presumably lead to exotic new states^/. We mention

here only the simplest option which corresponds to the lowest-lyi^g

state, ramely embedding the Skyrme ansatz (4) in an otherwise diagonal

SU(6) matrix, in a generalization of what has already been done-^^'.)

for SU(3). Dpon the standard quantization of the collective coordi-

nates, we should obtain that this Skyrmion is the whole baryonic

56-plef26). The first excitation of this object should then be the

whole baryonic 70-plet. In addition, there will also be an embedding

of an S0(3) ansatz, which corresponds to the SU(6) generalization of

the dibaryon2&) of the SU(3) model.

C. Relativistic Version

As we have already noted a number of times, in the end we want a

relativistic theory. As in the linear model we may add a spin-

dependent mass term which will provide explicit SU(6)-breaking.

Although such a term is presumed to be the effect of relativistic

kinetic energy terms in the Lagrangian (namely Eq. (31) now viewed as

valid In any Lorentz frame), an actual derivation seems to be excluded

by the dynamical nature of approximate SU(6) symmetry. At any rate the

actual spin-dependent mass term may be written in very much the same

way as Eq0 (22), with only notational differences to conform to the

non—linear model. So the mass term is

H^] • (41)

The parametrization
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$ - 1 I P + (o • e)V

P - X a A V - Xapa (42)

should i>sije it apparent that upon expansion of 3^, to lowest order (41)

implies (my2/2)V2. This will also result in the splitting of the

baryonic 56 into the octet and decuplet.

Having thus implemented explicit SU(6)-symmetry breaking, we may

formulate the model covariantly. Some subtleties still remain, so we

will here only briefly sketch one approach. The vector meson fields

can now be made four-vectors, pa(v). They are massive Proca fields,

but. instead of the usual Proca Lagrangian we are free to use

1 /•,, ax2 . 1 2r a^2
P j(\v) T (j (43)

with the condition 3up
ajJ = 0. This is fortunate since an Fuv-

type term would not naturally arise in the formalism using the group-

element field<^(x).

As long as we are able to remain in Euclidean space—time, then it

appears rather straightforward to write down a field<$/(x). There are

not the usual problems with unitarity here, with which attempts at

relativistic extensions of SU(6) were plagued*-*'. This is because a

partial way out of these problems, which arise from the noncompact

nature of the groups considered (due to the noncompactness of the

Lorentz group) is to use the Weyl unitary trick, which in these cases

essentially takes one to Euclidean space. So, for example, we may use

matrices Abased on the U(6,6) formulation1^) of Beg and Pais, but

again rotated via the Weyl unitary trick to Euclidean space. In this

formulation<2rtq) =• exp((i/firX^') with

J ^ ^, (44)

where e(q) - e + [q(q«£)/m(qo+m)] and E(j(q) = q«e/m. In the static

limit <JH = M the static SD(6) matrix. One can repeat the analysis of

the preceding subsection concerning both the non-trivial topology and

the Wess-Zumino term, but now for this U(12) group, with the results

essentially unchanged because of the Bott periodicity theorem.
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Eventually we must return to Minkowski space-time. But since we

have already broken the SU(6) symmetry, there should not be any

difficulty especially if, as will generally be the case, we work with

the expansion of <?/In terms of meson fields and with these explicitly

separated into the pseudoscalar and vector pieces.

IV. CONCLUDING REMARKS

The generalized Skyrme model we have presented has a number of

features which seem attractive. By including the vector mesons in a

manner symmetrical to the pions, the model is a more realistic

description of low-energy physics. Furthermore it goes some way

towards a raalization of the large N effective theory of QCD which a

semlclassical Lagrangian like the Skyrme model is supposed to simulate.

By incorporating approximate, static SD(6) symmetry, the phenome-

uological successes of that symmetry should be manifest in the

predictions of the model. Particularly noteworthy in this regard is

the famous SU(6) result for (up/yN) =* - 3/2. This is especially

significant because the usual Skyrme models have had troubles") with

the baryon magnetic moments. In generaJ it is to be hoped that the

model discussed here will improve on the 30% accuracy of the usual

Skynne models.

Of course being a new model, much of the work we have heard about

at this Workshop which has been done on the SU(2) and SU(3) Skyrme

models has to be repeated on this model before its true worth can be

determined. Unfortunately the analysis is rather more complicated

since a larger group is involved. Nevertheless, it is clear that

conceptually the model has some advantages. It gives a more unified

picture in which the IT'S and p's are collective excitations and the

baryons emerge as solitons. A rather rich spectrum also results from

this model. The danger is that it is perhaps too rich.

A final remark, due to Witten. If we simplify to a world of just

one flavour, then the lowest-lying meson in large-N QCD must be a

vector meson, the equivalent rw^Ldy of the oi. In the same theory the

lowest-lying baryon would be ehe equivalent of the A"*"*" and would emerge

as a sollton constructed from the vector-meson field. Its spin would

go like N/2. This not only lends additional credence to the model we
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have developed, but also offers a simplified testing ground to analyze

and verify its implications. The one-flavour model also of course

offers the opportunity to realize explicitly this prediction from

arguments based on large-N QCD. Work is currertly in progress along

these lines.

ACKNOWLEDGMENTS

This work was supported in part by Department of Energy Grant No.

DE-AC02-79ER10336.A and DE-AC02-76CH00016. It is a sincere pleasure to

thank A.P. Balachandran, K. Bardakci, E. Braaten, S.G, Rajeev,

H.C. Tze, and E. Witten for stimulating and enlightening

conversations. The author is especially grateful to Professor

Balachandran for his encouragement and insight. Thanks are also due to

the Lewes Center for Physics and the organizers of this Workshop for

providing the stimulating atmosphere in which part of this work was

done.

REFERENCES

1. H.R. Skyrme, Proc. Roy. Soc. (London) A260 (1961) 127; A262 (1961)

237; Nucl. Phys. 31 (1962) 556; J. Math. Phys. 12 (1971) 1735.

2. See, for example, N.K. Pak and H.C. Tze, Ann. Phys. (N.Y.) 117

(1979) 164; and the paper by A.P. Balachandran in these

Proceedings. For a review, look for that of D.G. Caldi, in

preparation.

3. E. Witten, Nucl. Phys. B223 (1983) 422, 433.

4. J. Wess and B. Zumino, Physo Lett. 37B (1971) 95.

5. See, for example, G.S. Adkins, C.R. Nappi and E. Witten, Nucl.

Phys. B223 (1983) 552; G.S. Adkins and C.R. Nappi, Nucl. Phys.

B233 (1984) 109; and many of the papers in thi6 Proceedings.

6. G. 't Hooft, Nucl. Phys. B72 (1974) 461; B75 (1974) 461.

7. E. Witten, Nucl. Phys. B160 (1979) 57.

8. 0. Kaymakcalan, S. Rajeev and J. Schecter, Syracuse preprint

SU-4222-278 (December, 1983).

9. For a review, see S. Gasiorowicz and D.A. Geffen, Rev. Mod. Phys.

41 (1969) 531.

10. W.A. Bardeen, Phys. Rev. 184 (1969) 1848.



24

1 1 . G.S. Adkins and C.R. Nappi. Princeton prepr in t (December, 1983).

12. G. Kramer, W.F. Palmer and S.S. Pinsky, Ohio S ta te prepr int

(December, 1983).

13. D.G. Caldi and H. Pagels, Phys. Rev. D14 (1976) 809; D15 (1977)

2668.

14. F. Gursey and L. Radica t t i , Phys. Rev. L e t t . 13 (1964) 173; A.

Pais , ibid_. 13 (1964) 175; B. Saki ta , Phys. Rev. 136 (1964) B1756.

15. For reviews, see A. Pais , Rev. Mod. Phys. 38 (1966) 215;

F . J . Dyson, Symmetry Groups in Nuclear and P a r t i c l e Physics,

(Benjamin, N.Y., 1966).

16. R.P. Feynman, M. Gell-Mann and G. Zweig, Phys. Rev. L e t t . 13

(1964) 678. See also K. Bardakci , J.M. Cornwall, P.G.O- Freund,

and B.W. Lee, i b id . 13 (.1964) 698.

17. D. Maison and H. Reeh, Commun. Math. Phys. 24 (1971) 67.

18. A.J. Leggett , Rev. Mod. Phys. 47 (1973) 331; J . C . Wheatley, i b i d .

415.

19. J . Smit, Nucl. Phys. B175 (1980) 307; B. Sve t i t sky , S.D. Dre l l ,

H.R. Quinn, and M. Weinstein, Phys. Rev. D22 (1980) 490, 1190.

20 . K. Kawarabayashi and M. Suzuki, Phys. Rev. L e t t . 16 (1966) 255;

Riazuddin and Fayyazuddin, Phys. Rev. 147 (1966) 1071.

2 1 . K. Bardakci, Berkeley prepr int UCB-PTH-83/21 (October, 1983);

J . - L . Gervais and B. Sakita, Phys. Rev. L e t t . 52 (1984) 87.

22 . See, for example, J . Milnor, Morse Theory, (Pr ince ton , 1963).

23 . We are g ra t e fu l to Professor Balachandran for emphasizing t h i s

po in t .

24. S.G. Rajeev, Syracuse prepr int SO-4222-266 (August 1983).

25 . R. Bott and R. Seely, Commun. Math. Phys. 62 (1978) 235.

26. D.G. Caldi , in preparat ion.

27 . E. Guadagnini, Nucl. Phys. B236 (1984) 35.

28 . A.P. Balachandran, A. Barducci, F . L lzz i , V.G.J. Rodgers and A.

Stern, Phys. Rev. Le t t . 52 (1984) 887.

29. See the papers by G.S. Adkins and C.R. Nappi in these Proceedings.


