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ABSTRACT

We propose an extension of the effective, low—-energy
chiral Lagrangian known as the Skyrme model, to one
formulated by a non—linear sigma model generalized to
include vector mesons in a symmetric way., The model is
based on chiral SU(6) x SU(6) symmetry spontaneously
broken to static SU(6). The » and other vector mesons
are "dormant"” Goldstone bosons since they are in the
same SU(6) multiplet as the pion and other pseudoscalars.
Hence the manifold of our generalized non—linear sigma
model 18 the coset space (SU(6) x SU(6))/SU(6). Rela-
tavistic effects, via a spin—-dependent mass term, break
the static SU(5) and give the vectors a mass. The
model can then be fully relativistic and covariant.

The lcwest-lying Skyrmion in this model is the whole
baryonic 56-plet, which splits into the octet and decu-
plet fn the presence of relativistic SU(6)-breaking.
Due to the built-in SU(6) and the presence of vector
mesons, the model is expected tc have better phenomeno-
logical resulte, as well as providing a conceptually
more unified picture of mesons and baryons.

I. INTRODUCTION

Although ope believes that quantum chromodynamics (QCD) is the
theory of the strong interactions, because it cannot (yet) be solved
exactly there is an important role, especially in low-energy physics,
for phenomenological, effective Lagrangians. Indeed one hopes that

eventually it will be possible to derive the correct, effective, low-
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energy lagrangian from QCD in much the same way that the Landau-
Ginsberg equations are derived from the BCS theory of superconductivi-
tye. Tntil then we must content ourselves with guessing at the best
effective-Lagrangian, but of course using both the guidance from the
experimental facts and their summarization in phenomenology on the one
hand and whatever hints we can gather from QCD itself on the other, to
help us in making an intelligent guess., In this pursuit, interest has
recently refocused on a model written down over twenty years ago by
Skyrmel). It is the scandard chiral SU(2) x SU(2) non-linear sigma
model of Goldstone pions, with the addition of a quartic term to
stablize the solitone, the classical solutio.s of the model which have
come to be called Skyrmions.

In order to establish notation and conventions, but without giving
many of the detailsz), we may write the Lagrangian using the group

currents
~1
L(x) =10 1)
u( ) au ’ (n
as
£ 2

. 1
g, - TEL L)+ = Te([L L D) (2)

where f, = 93 MeV. U(x) is a field transforming as a non-linear
realization of the chiral group (originally with Skyrme SU(2) x SU(2),

but more recently SU(3) x SU(3)) with the constraint that

mw' -1, (3)

that 1s, U 1s unitary. For the case of two flavours, for example, we
may parametrize U(x) as a unit quaternionic field, U(x) = ¢0 + 114,
with ¢2 = ] and $ belng the triplet of pilon fields. U(x) iicre takes
values on the non-linear manifold

- SUC2) x SU(2) 3
M _._.Wir_.—u 50(4)/50(3) ~ S »

the 3-sphere. The static soliton solution comes from Skyrme's hedgehog
ansatz:

U(x) = exp[i T » @ F(r)] (4)
with the boundary conditioms F(0) = g, F(x) = 0.



As Witten has sbown3), with the addition of another term to (2), the
Wess-Zumino term?) which describes the effects of non-Abelian
anomalies, one can demonstrate that the Skyrmion is a fermlon for the
number of colours N, odd, and in particular N, = 3. This with
previous arguments going back to Skyrme establishes that the Skyrmion
is a baryon.

Studies3) investigating the phenomenological consequences of the
Skyrme model have found results generally within about 30Z of ex-
perimental values. This suggests that something important is missing,
and included in that something must surely be the vector mesons. There
are a number of reasons for believing that vector mesons should be
included in the model. To begin with one knows that p's and w's, as
well as ¢'s and K*'s, are necessary to give a good description of
low-energy phenomenology and nuclear physics. Cne can phrase this in
another way by noting that since the Skyrme model is a non-renormaliz-
able, effective model requiring a cut-off, and that this cut-off is on
the order of a typical baryon mass, say 1-2 GeV, then one had better
include the p's and other vector mesons which are below this cut—off if
one hopes to describe the physics in this energy regime accurately.

Another argument for including vectors comes from QCD in the large
N limit. it is known®:7) that as N + =, QCD reduces to a theory of
fr- mesons, with interactions appearing ic O(1/N). But it is not just
spin—-0 mesons which appear, but higher spins as well, all on the same
footing. Furthermore, there are various arguments7) to suggest fhat
baryons appear as solitons in this large N effective field theory that
would be obtained from QCD. Since this as yet not completely known,
large N effective field theory is supposed to reduce at low energy to
the Skyrme-type, non-linear sigma model, it behooves us again to
include the vector mesons in our model.

Motivated by not totally dissimilar reasoring, a number of authors
have already attempted to incorporate vector mesons in the chiral
model, The Syracuse group8) has followed the traditional method
golng back to Sakurai9) of adding spin-l mesons to the chiral
Lagrangian by using "covariant” derivative couplings as if the spin-1

fields were gauge fields, However, mass terms for the vector and axial




vectcrs are, as expected, also included. Although they were really not
concerned with the Skyrme model as such in that they did not study the
Skyrmion-baryons, they did include the Wess-Zumino term, In such a
framewerk they have been able to obtain some nice results, especially
concerning » decays. However, there are some subtleties concerning the
explicit chiral-symmetry breaking which results from their using
Bardeen's form!Q) of the non-Abelian anomaly (i.e. non-anomalous

vector currents). We would like to argie that despite the successes of
th’e traditional approach, there are conceptual difficulties with
including vector mesons in this way for reasons, which will be
discussed below, concerning static SU(6).

Other, less complete attempts to add vector mesons include the
work of Adkins and Nappill), in which only the @ was coupled to the
baryonic current. While such a treatment eliminated the need for a
higher derivazive term to stablize the Skyrmion, only slight improve-
ment of the phenomenological results was found. Finally a group at
Ohio Statel?) has considered vectors, but only in final state
interactions, in a model with the Wess-Zumino term (again not really
the Skyrmion situation); so their treatment does not really include
vector mesons in the effective Lagrangian.

What will be described here is an approach to the problem which is
essentially different from those mentioned above; indeed one might say
it is an orthogonal treatment. It i3 based on a very different picture
of the vector mesons which was developed some time ago by the author
and 4. Pagelsl3). This description of the vector mesons keeps the
n's (really, all the pseudoscalars) and the p's (all the vectors) as
much as possible on the same footing. The motivation for this comes
from static SU(6), the relevant highlights of which we will briefly re-
view below in Section II. This will lead us to a consideration of the
p—m puzzle and our solution in which the p (along with :he other vector
mesons in the nonet) emerges as a "dormant”™ Goldstone boson of sponta-
neously broken chiral U(6) x U(6). (The pion and its pseudoscalar
octet partners are, of course, also Goldstone states; indeed they are
the remaining states of the whole Goldstone supermultiplet,) The term

dorman. Goldstone boson is used since a spin-] state can be a true



Goldstone state only in a nonrelativistic theory. Relativistic effects
break the static SU(6) symmetry and give the g a mass. (Throughout
this paper p will often, depending on the context, be used generically
for the whole vector reson nonet, likewise for v, mutatis mutandis.)

This scenario is realized in a generalized linear sigma model,
reviewed in Section II. Its consequences in a relativistic framework,
i.e. in QCD or at least in its progenitor, the quark model, are also
discussed in Section II, where it 1s shown that how the p remembers it
is a dormant Goldstone boson 1s by being in a (3,3) + (3,3) representa-
tion of chiral SU(3) x SU(3), the same chiral representation content as
the pion, This leads to an understanding of vector-meson dominance
(VMD) as a consequence of spontanecus symmetry breaking, just as for
PCAC.

Having reviewed this description of vector mesona, we are able to
present the model in Section III, first pointing out that the Skyrme
model is an ideal framework to employ this picture of p's since it
already has a number of aspzcts of a static model., We then give our
formulation first of the nonrelativistic, generalized non-linear sigma
model on the coset space (SU(6) x SU(6))/SU(6). We discuss the
existence of the static, Skyrme-type solutions and the Wess-Zumino-type
term leading to the generalized Skyrmion being quantized as a fermion,
and so being the whole baryonic 56-plet. We then consider the addition
of a spin-dependent mass term which breaks SU(6) and enables us to
formulate a fully relativistic, covariant model. Finally in Section IV
we draw some conclusicns, point out the considerable work remaining to
be done on the model, and also discuss the relevance for this whole

approach of a simplified, one-flavour version of the model.

II. SU(6) AND THE p— PUZZLE
A. The Static SU(6) Group

It is well appreciated, though perhaps by now somewhat hazily
remembered, that the symmetry which results from combining internal

SU(3) flavour symmetry with SU(2) of spin, namely static SU(6)



symmetry, leads to a rather successful description of many features of
hadronic phenomenology. Work on this symmetry goes back to the
mid-60's and 18 associated with Girsey and Radicati, Pais, and
Sakital4), As there exist a number of excellent reviewsls), we
will be extremely brief here. SU(6) is an approximate, dynamic, non-
relativistic (exact really only in the static limit) symmetry of the
quark model and so of its field theoretic embodimenc, QCD. It is very
successful in providing: i) a classification of hadrons into static
SU(6) x 0(3) supermultiplets, and ii) relations among magnetic moments,
masses, mixing angles, decay rates, etc. We might note that for
simplicity one may limit the discussion to static SU(4) (originating
wich Wignerls) in 1937) which mixes spin and iscspin, but for
studying phenomenological applications SU{6) leads *o much better
results. At any rate what these static symmetries do is to mix an
internal symmetry with a spatial symmetry. {(One should note that it is
not just a direct-product group like SU(3) x SU(2) that we are
concerned with, otherwise there would be no need for all the members of
a supermultiplet to have the same parity.)

Because of this mixing of spatial and internal symmetries, it was
quickly realized that SU{6) wculd run into troubles with relativity.
An easy wasy to see the difficuity is to note that a Lorentz boost only
affects the spin part (mixiug spin and orbital angular momentum), while
the internal group is Lorentz invariant., There were actually a number
of no-go theorems proven which forbid a relativistic version of SU(6).
(0f course, later it was shown how to have a relativistic theory which
mixes spatial and internal symmetries, namely supersymmetry, which
avo.ds the no—go theorems by being based on graded Lie algebras.) So
one :nows that SU(6) is an approximate, dynamical symmetry much like
the approximate, dynamical spin SU(2) group used in Russell-Saunders
coupling in atoms. Nevertheless, because SU(6) does appear as an
approximate symmetry of nature, it is important to recover it in the
static limit, i.e. in the rest frame of a particle, where the particle

has no orbital angular momentum.




B. The p—x Puzzle

Presumably by now almost everyone (certainly everyone at this
Workshop) believes that the pion (etc.) is a Nambu-Goldstone boson of
spontaneously broken SU(3) x SU(3) chiral symmetry. But the p meson
(and its partners) is in the same static SU(6)-quark model (QCD) super-
multiplet as the pion: the 35-plet. The p-n puzzle is how to reconcile
this; or how is PCAC compatible with the quark model? The answer which
Pagels and I gave13) is that the p 1is a "dormant”™ Goldstone boson.

In the static, nonrelativistic limit it is a Goldstone state which then
becomes massive in a relativistic theory which of necessity breaks
Su(6).

To see :he puzzle and our solution a bit more quantitatively, we
note that under chiral SU(3) x SU(3) the pseudoscalars transform like
(3,3) + (3,3), that 1s in terms of quark bilinears, like 32 -
Hin(ka/Z)q. However, conventional vectors, i.e. pz - ayu(xa/Z)q,
transform like (1,8) + (8,1). This 1is difficult o reconcile with
static SU(6). Instead we assume that like the r's the p's also belong
to a (3,3) + (3,3) representation of chiral SU(3) x SU(3). This then
requires that the components of the vector-meson field operators be
part of an antisymmetric tensor quark-hilinear operator, i.e.

q qu(ka/Z)q = tiv. Then the phenomenological vector-meson field is

projected out by

a
Dv(x) —’m——lﬁ ’ (5)
pp
with the automatic consequence that

v a
aDv Ol (6)

8o that there are only three independent components as desired for a

massive spin-1 field. (In the static (k=0) limit, or perhaps better in
the p's rest frame, pi - q Uoi(xa/Z)q.)

From the dual of the antisymmetric tensor field,

*a _ axs§ _ - a
ty = 1/2 €oas © = q iyg v (A7 /2)q,

one projects out the phenomenological fileld of the chiral partner of



the p meson in this picture, namely the 3(1235), JPC = 1+ axial

vector ma2sou, by

* a

3 ot
B2 = M WY (7a)
v 2 1/2

"3 °p

with

3 B2 =0 . (7b)
AY) AYJ

This is a nice feature of our description of the spin-1 mesons since
the B 18 a well-established resonance, while the chiral partner of the
p in the traditional picture, namely the A, axial-vector meson, JPC =
1™*, if one believes that it has finally been found, appears to have
too high a mass to satisfy the Weinberg sum rule prediction. For
detalls the reader 1s referred to our original paper513). Perhaps it
should be remarked here that this chiral representation assignment of
the spin-l meson makes clear the role of the antisymmetric tensor

bilinear operators, a subject which has been of interest of late.
C. Chiral 0(6) x U(6)

In order to make the ensulng discussion more intelligible, it 1is
probably useful to remind curselves which algebra we are discussing.
There are 144 Hermitian currents which can be formed from quark
bilinears with 3 flavours:

a - xa a - xa
L I Al P A Tav95 379
a %] a
— d a —
=33 Peingia T =30 3 8)

a- 0’ LN N 4 8.
The charges QA = fdax JA(x,t) defined from these currents, naively
using the canonical commutation relations for the quark fields, close

on the algebra U(12). Focusing just on Vﬁ and Aﬁ, we note that chiral

chiral U(3) x U(3) is generated by the charges
3 5 3_ ,a
Q* = [¢'x vy, ‘o= [dxa] (9)
and

[Qa’ Qb] =1 fabc Qc (10a)



[Qa’ SQb] _— fabc SQc (10b)

[SQa’ SQb] i fabc Qe . (10¢)
If we now also consider the charges defined from the spatial components
of V2 and A%:

i H

a 3 a 5.,a _ 3 a

Q = [d7r V], Q = [d7x Ay, (11)
then the charges (9) and (11) together close on the chiral U(6) x U(6)

algebra of Feynman,Gell-Mann and Zweigle). This is given by rela-
tions (10) plus

[, ) =1 £ of (12a)
5.a b abc 5.c

(o7, o] =1 f Q (12b)

5.b bc 5 '

[®, Zq7] = 1 £2°¢ “qf (12¢)
5.a 5.by _ abc .c

(o%, "oy} =1 £ q (12d)
[Qa Qb] =18 fabc Qc -4 dabc SQc (12e)

13 f13x k

[SQi’ SQ?] =1 Gijfabc Qc - i eijkdabc SQE (12£)
[Qi’ 5Q§] =1 Gijfabc SQc - i Eijkdabc QE . (12g)

The ™(6) subalgebra generated by Q2 and SQia with commutation
relationsg given by (10a), (12¢), and (12f) corresponds to the static
U(6) group.

D. The Geperalized Lirear Sigma Model

We have explicitly realized our description of the vector mesons
as dormant Goldstone bosons by considering a generalization of the
linear sigma model to the chiral U(6) x U(6) symmetry we have just
reviewed. The reason for picking this group is that 1f one wants to
extend the U(3) » U(3) y model to include U(6), then the smallest group

which contains these groups and closes is U(6) x U(6). Of course, due
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to the apparently insurmountable difficulties of achieving a
relativistic SU(6) symmerry, the model at first is only a static model,
but it still has Galilean invariance.

The following notation is useful. The charges which generate
chiral U(6) xU(6) obey the commutation relations

A B C C
[ Q%] = 1 ¥ of,

1 P o5,

n

A B ¢ ,C
[0 401 = 1 F¥¢ o°, (13)

where A = a or ai, and 2 = 0, ...,8, 1 = 1,...,3. The generators Ap
of static U(6) obey

Tr Ajhg = 2 S, »

A, A =21F A
A B

ABC “C °

{Ags Agh = 2 Do Acs

P o (L2

1,1/2
abe 2 7) d

abe ? Dabc = (2 abce

_ (1)1/2

1,1/2
Faibi,ck = 7 dpe T (3)77 7 844 £

€1k abc 2 ij “abe

- (Y12

1,1/2
7 =)

D €19k fabe T (3

ai,bj,ck 855 4 ’ (14)

ij Tabe
where f . and dgp are the usual SU(3) coefficients, and
doaa = (2/N1/2,
The mesons are classified into two 36~plets of statfc U(6). Using
Cartesian coordinates we identify an odd-parity 36-plert,

a a
My: M_=n", M, =p,, (15)

and an even-parity 36-plet,
a ' a

N: N =, N_.=28B

A a ai i°? (1€)

in terms of the usual phenomenological meson fields. Together these



multiplets transform as a (6,6) + (3,6) representation of chiral

S IR
{GQA, NB] - 1 PBC NG,

]
[y
=
<4

[BQA, N°) ABC € (17)

We should emphasize that the (6,6) + (6,6) representation is forcad
upon us once we *rave the pseudoscalar mesons and vector mesons In the
same multiplet and then demand that the pseudoscalars be in

(3,3) + (3,3) under chiral SU(3) x SU(3), as they are in the usual
formulation of the sigma model. The requirement of the (6,6) + (§,6)
then fixes the charge conjugation property of the axial-vectors to be
the same as the vectors, i.e. odd, while the ¢2 and w2 are even as

usual.

The interaction or potertial part of the Lagrangian is

1 2 . 2
éz?pot 7 o0 (MM NN ) — A(M, M, +N Ny )

= ¥[DupcParprg (Mg, My N, NN, Ny,

+ 2 MMN, Npo) + 4 Foo Fyopa M, NpM, NGy (18)

This 1s the most general U(6) x U(6)-invariant Lagrangian (restricted
to polynomials of degree < 4). We note that there is no trilipear term
here, in contrast with the case for SU(3) x SU(3), so that the maximal
group which leaves the Lagrangian iuvariant is U(6) x U(6) and not just
SU(6) x SU(6). However, we know how to solve the Up(1l) problem via

its anomaly, and after SU(6)-breaking this can be implemented in the
phenomenological Lagrangian in a by-now-standard fashion. This is the
reason we are somewhat cavalier about distinguishing between U(6) and
SU(6) throughout this paper,

As in the usual linear sigma model, if uz < 0 then CO has a vacuum
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expectation value (oo> = a, and the vacuum is just U(6)-invariant so
the U(6) x U(6) symmetry is spontaneously broken. Standard analysis

yields the following masses for the various mesons:

m2 , = u2 + Aa2(3X+Y),
.
m.B2 = %&2 = u2 + &az(k+7),
mﬂz - mpz = w2+ s’/ =0 . (19)

So the whole odd-parity 36-plet has become massless; it 1s the
Goldstone mode of the U(6) x U(6) symmetry broken to U(6).

The vector mesons cannot of course be true Goldstone bosons 1in a
realistic, relativistic theory. Indeed there exists a rigorous proof
against Goldstone bosons of spin > 1 in a resativistic theory17).
However, for a non-relativistic theory not only is there no theoretical
problem, but spin-! Goldstone states (spin waves) have actually been
observed, for exarnlie, in certain He systemsla). We would also point
out that this picture of vector mesons as Goldstome bosons in the
static limit has subsequently bezn confirmed in lattice calculations by
two different sethodsl9). Nevertheless, they are still only dormant
Goldstone bosons, which are roused by relativistic effects to become
massive states.

To see this explicitly, we note that once one demands relativistic
invariance, because Lorentz boosts affect spin but not U-spin, U(6)
symmetry is broken by kinetic energy terms, and this must give rise to
spin—-dependent mass terms, To include such an explicit U(6)-symmetry-

breaking mass term it is helpful to use the tensor notation

ﬁ'=1sjp‘;+(§-§)i\fé‘

B j B
Mot sh+G-D]ny, (20)

where Pg = (1//2) Agava, Vg = (1/¢/2) Agapa, etc., and # is the polari~

zatlion vector. Combining these temsors into
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A
T ='§ + 1M

TT=?T-1QT, ' (21)
we may write the mass operator as

-3 rerr’ - L g2 e[S )3 ol

2( 2+ 2+02+BZ) é B2( 2

+B ), {22)

Nlr--

where [ ] indicates the spin trace. The spin-l1 mesons are now split

from their spin-0 multiplet partners, and the mass formulae are

n? = w2 + 82 + 4a%(0+y),

m%= u2 + 432(A+‘Y),

m§ = BZ!

=0 . (23)
n

From (23) we obtain the relation
2 z 2 2
- = - 4
mp B m m, (24>
which is in remarkably good agreement with the experimentally
determined masses. For example, ,utting in the masses of the I = 1
members of the octets, we obtain

n? ~ o =o? - o? , (25)

p =+ & 3

0.547 GeV? vs. 0.577 GeV2.
From this it appears that U(6)-symmetry breaking due to spin-dependent
effects independent of SU(3) breaking iz rather well borne out experi-

mentally, with the parameter 32 = 0.6 GeVZ.
E. Some Consequeaces of a Dormant Goldstone p

We would now like to mention some of the important
consequences of this descriptior of the vector mesons in the context of
a relativistic thev ;. or, to put it in more anthropomorphic terms, how
does the p remember its origin as a dormant Goldstone boson? The

answer lies In its being in a (3,3) + (3,3) representation of chiral
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SU(3) x SU(3). Perhape this is as good a point as any to note that

in terms of chiral representation content there are at least two
possible pions, namely, the (1,8) + (8,1) representation in addition to
the (3,3) + (3,3). The same is true for the vectors. So perhaps the
physical states are mixtures, There is not much evidence of this for
the pion, and to emphasize our viewpoiht we will ignore it for the
vectors as well. Certainly for the non-linear sigma model discussed
below this seems to be appropriate.

The implication of putting the vector mesons in (3,3) + (3,3) is
that vector-meson dominance is a consequence of spontaneous symmetry
breaking. Just as the ﬂ[(3,§) + (3,3)] couples to the axial-vector
current [(1,8) + (8,1)] via a o¥ going into the vacuum [Fig. 1{(a)], so
also the p[(3,§) + (3,3)] couples to the vector current [(1,8) + (8,1)]
by the same mechanism [Fig. 1(b)]}. Vacuum symmetry breaking in these

two instances corresponds to the nonvanishing vacuum values of

Loty 5P = -1 (P b,
<o}, e, = -1 (31/2 5% 514<a"> (26)

(1,8)® (8,1) (3,3);_(3.3) .8y e (8, | (3,3) & (3,3)

Al L Vi P

(a) | (b)

FIG. 1. Coupling of (a) axial-vector current to plom and (b) vector
current to the p via spontaneous breaking of chiral symmetry.



15

Tn this description of VMD we can obtain an expression for the

current-vector-meson coupliag, I/YD, defined by

a b ab n
<OIV“(O)lp (kye)>=-1¢ 6 £, (27)

This 1s analogous to the expression for the pilon—axial-vector-current

coupling
<O|Aa(0)|wb(k)> =1k £ 4§20, (28)
u b
_ 1/2 1/2 0 .
Using the relationship fn = Z1T (2/3) {g">, we obtain the relation
between l/yD and f_ to be
f A
1. (_“..)(_"_)1/2 . (29)
Y m Z
p p p

In the SU(8) lmit, Z =2, while with (zw/zp)l/2 = 1.5 one obtains
the observed rate for p » e¥ + e”. Our result (29) is similar to the
KSFR relationzo), but in our derivation we have an explanation for a
relationship between I/Yp and f., namely, both are consequences of
the same process (Fig. 1). As discussed in Ref. 13, there has been no
really adequate derivation of the KSFR relation.

There are many other consequences of our description of the vector
mesons, including the usual universality Yo = Bprme soft p decou—
pling theorems, and tensor-field identities. We alsc examined a number
of decay processgses, as well as photon—p interactions. Referring the
interested reader again to Ref. 13 for the details, we may summarize
the situation by egaying that not only 1is our picture consistent with
the experimental uv.“avior of vector mesons, but it also provides a
uuified framework for understandiung the phenomenology of both

pseudoscalar and vector mesons.
III. THE MODCL
A. Static Aspects of the Skyrme Model

With this review of the dormant Goldstone picture of the p's
completed, and with the reader (one hopes) at least partially

favourably disposed to allow 1its credibility, we are just about ready
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to discuss our generalized Skyrme model. But first it is worth
pointing out that the usual Skyrme model already has some important
static aspects to it, which make it an essentially ideal place to use
this formulation of vector mescns.

If we first look at the Skyrme ansatz, Eq. (4), we notice the
typical feature of such a soliton, namely that it mixes isospin and
spatial indices. Furthermore, upon quantization the spin and isospin
of the Sxkyrmion are intimately linked. Heace the usual Skrymion
already has the signal aspect of static SU(6).

Perhaps this is not too surprising in light of our second point,
which is that the Sky:mion, in so far as it can be considered the
baryon of large-N QCD, ig a sctatic object. This 1s lLecause in the
large N limit the baryon mass is expected7) to be proportional to N,
i.e. to have the typical soliton behaviour with the mass proportional
to the inverse coupling = 1/(1/N). i

But there 18 an even deeper sense in which the usual Skyrme model
is already a static model. As a number of authors?l) nave recently
polnted out, the Skyrme model, the static nontrelativistic quark model,
and the static strong-coupling model are all vrelated in that they share
the same symmetry group, namely static SU(6) (or SU(4) ir the original
2-flavour case), at least in the N, + « limit. As Ba=2akci2l) in
particular has shown, however, there are problems in next-to-leading
order in 1/N, but these can be fixed at the cost of adding yet higher
derivative (6th order) terms to satisfy the statiec SU(4) algebra. It
seems to us that with all these strong clues, it is better te include
static SU(4) or SU(6) from the start in the model, Of course, for a
realistic, relativistic treatment of the meson sector, we will

eventually want to break the SU(6).
B. The Nonrelativistic Model

In order to investigate most of the properties of the gemeralized
Skyrmion which have been of principal interest for the usual Skyrmion,
that is, the static properties of baryons, the following nonrelativis-—
ti¢c model should be adequate. It is convenient to use for the

parametrization of the meson field
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@ (x) = exp((1/£ ) A, M, (%)) (30)

with the notation of (14) and (15) for Ay and Mj. A proto-

Lagrangian may then be written as

2

Y- :—" Tr[aﬂu?la‘j?;] . (31)
Again there is the all-important constraintqyt%{= 1, which would be
expressed in a vector version of the model as (x?% + (pia)2 +g% =1,
This is what provides the non—linearity of the model and hence not omnly
the interrctions but also the ncn-trivial topology. So the manifold of
the model is the coset space (3U(6) x (SU(6))/SU(6) (or (SU(4) x
SU(4))/SU(4) without strangeness). The reader should be warned that
despite the appearance of (31), the Lagrangian is not covariant, due to
the spatial indices hiding on the pj3's in My. Eq. (31) is only
to be understood as a nonrelativistic model. But this i1s perfectly
fine for the purposes of finding and studying static finite energy
solutions, since being time-independent, they only involve 3j. So
now, exactly as in the case for SU(2) or SU(3), the demand for finite
energy is met by requiring

U —— 3 1 (32)

X| + o
at all times t, compactifying & » s¥. @ (x) thus describes mappings
sd SU(6) and these are described by the third homotopy group
73(SU{6)). One of the crucial pieces of evidence that gives us
confidence that we cannot be far wrong in cur approach is that
ﬂ3(SU(6)) ~ Z, (33)

so that the space is indeed topologicaily non-trivial and splits up
into an infinite set of topologically disconnected components.
Actually (33) 1is a consequence of the Bott periodicity theoremzz),
which tells us in this case that wx3(SU(n)) = Z for all n> 2,

The next question concerns the quartic-derivative, Skyrme term.
Unlike the situation where one adds vector mesons on a different
footing from the pseudoscalars and they hence can provide stabiliza-
tion of the Skyrmion, in our case it 1is easy to show that the

Lagrangian (31) as it stands does not avoid the Derrick. zz al.
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theorem. So the price of including vectors in this symmetric way is
that we must keep the Skyrme term, at least in the unbroken version of
the model., Hence the static Lagranglan so far, using the group

currents (1) generalized to 4 (30), is

£ 2
Q-- Tr(LL )+—Tr([L JL.19). (34)
4 8e2 1’73

There is one more term we would like our Lagrangian to have, that
is the Wess-Zumino term. This term is important, as witten3) has
demonstrated, in establishing the Skyrmion as a fermion, in reducing
the parity of the 1odel to that of QCD, and of course for 1its original
purpose, that of incorporating the effects of the anomalies of current
algebra, Since we certainly would want to retain these features in our
generalized model, agair it 1s fortunate that the same topological
arguments that applied in the SU(3) case also apply in the case of
SU(6). To begin with, the chirai SU(58) x SU(%) current algebra
certainly is anomalous, having the anomalies from the SU(3) x SU(3)
subalgebra, as well as those associated with the remaining currents,
Nevertheless, at first sight it might appear that a Wess—-Zumino term
for a nonrelativistic chirai SU(6) x SU(6) model would not be easily
admissible., That this turns out not tc be the case can be seeu from
the remark23) that the Wess-Zumino term is really most appropriately
written8) using diiferential forms and from this formulation one sees
that it 1s independent of the metric, Related to this is the
observation that the topological derivations of the Wess-Zumino term,
as is usual with topological discussions in general, are in the context
of Euclidean space—-time, which is compactified to a sphere besides,

The fact that the nonrelativistic model retains only Galilean
invariance takes on much reduced significance in this context. (Please
also note some remarks in the following subsection.)

So following, for example, Witten's derivation3=24), we need to
know what w,(SU(6)) 1s since @/ 1s a mapping of the four-dimensional
sphere M into the SU(6) manifold. Again the Bott periodicity theorem
ensures that 7, (SU(6)) = 0, just as for SU(3). So the four sphere in
SU(6) defined by4@s(x) is the boundary of a five-dimensional disec Q.
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Then because Q is not unique, in an argument analogous to magnetic
charge quantization, one has the requirement that on Q + Q' = SS, a
closed five-dimensional sphere,

ijkem

dg = 2geinteger (35)

J ®1jkam
SS

for any s3> in the SU(6) manifold. So one needs to know 7g(SU(6)), and
once more the Bott periodicity theorem ensures that zg(SU((n)} = 2, for
n > 3, and so in particular for our case of SU(6). This then tells us
that every S° in SU(6) is topologically a multiple of a basic five
sphere SQS which we use to normalize w. We can make this more explicit

by defining the one—-form related to the group current (1),

8 sqz'l(aﬁzz) ax” sapfldtw. (36)
The normalization condition is then
c | Tr(Bs) = 2r . : (37)
Sg°

The proper normalization of C Tr(B>) fortunately has already been
carried out by Bott and Seely25) who proved that for C Tr(BZN_l),

¢ = 21" AT - (38)

27
The result 1s seen to depend on the dimension of the sphere and not on
the group. We thus obtain the same normalization for SU(6) as for
SU(3), and the Wegs-Zumino term in our model can be written
M = =2 | (8”) . (39)
240 £ Q
The first term in the expansicn in terms of the meson fields

M = ApMj so that B = (1/f;) dM + ..., is

Ty = ———— | Tr(d M)° + ...
240 72£ 5 Q
w
= — 8 [ d* "B Tr(Mp M3 Ma M3 M) + ... . (40)
240 52£ 5 wov a8
m

As for the identification of n with the number of colours Nes

this requires a comparison with the QCD triangle flagram prediction for



70 s 2y after gauging (39) with electromagnetism. This is then more

properly done in the relativistic model after SU(6) breakingze).
Assuming no unexpected complications, the result should be that n
indeed equals N. and so for N, = 3 the generalized Skyrmion,
followlng the same argument3'24) as for SU(3), is indeed a fermion,
and so s baryon.

As for the actual Skrymion solution, there are, not surprisingly
considering the larger nature of the group, a number of options, some
of which will presumably lead to exotic new states26), We mention
here only the simplest option which corresponds to the lowest-lvirg
state, ramely embedding the Skyrme ansatz (4) 1In an otuesrwise diagonal
SU(6) matrix, in a generalizacion of what has alr=ady been done3»27)
for SU(3). Upon the standard quantization of the collective coordi-
nates, we should obtain that this Skyrmion is the whole baryonic
56—pler26). The first excitation of this object shonuld then be the
whele baryonic 70-plet. 1In addition, there will also be an embedding
of an S0(3) ansatz, which corresponds to the SU(6) generalization of
the dibaryonza) of the SU(3) model.

C. Relativistic Version

As we have already ooted a numbe: of times, in the end we want a
relativistic theory. As in the linear model we may add a spin-
dependent mass term which will provide explicit SU(6)-breaking.
Although such a term is presumed to be the effect of relativistic
kinetic energy terms in the Lagrangian (namely Eq. (31) now viewed as
valid in any Lorentz frame), an actual derivation seems to be excluded
by the dynamical nature of approximate SU(6) symmetry. At any rate the
sctual spin-dependent mass term may be written in very much the same
way as Eq. (22), with only notational differences to conform to the
non—linear model. So the mass term is

2¢ 2

I 3R eH" . “1)

The parametrization
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Zx) = exp( (1/£ M)

Reizr+@G.0v

p =223 v =3%? (42)
should wzie it apparent that upon expansion ofég, to lowest order (41)
implies (mvz/Z)Vz. This will also result in the splitting of the
baryonic 56 into the octet and decuplet.

Having thus implemented explicit SU(6)-symmetry breaking, we may
formulate the model covariantly. Some subtleties still remain, so we
will here only briefly sketch one approach. The vector meson fields
can now be made four-vectors, p:(X). They are massive Proca flelds,
but. instead of the usual Proca Lagrangian we are fres to use

o=z () 1)) 2)
with the condition 3,p2! = 0. This is fortunate since an F,-
type term would not naturally arise in the formalism using the group-
element field@/(x).

As long as we are able to remain in Fuclidean space-time, then it
appears rather straightforward to write down a field4/(x). There are
not the usual problems with unitarity here, with which attempts at
relarivistic extensions of SU(6) were plaguedls). This is because a
partial way out of these problems, which arise from the noncompact
nature of the groups considered (due tc the noncompactness of the
Lorentz group) is to use the Weyl unitary trick, which in these cases
essentially takes one to Euclidean space, So, for example, we may use
matrices .4 based on the U(6,6) formulationl3) of Beg and Pais, but
again rotated via the Weyl unitary trick to Euclidean space. In this
formulation4/Aq) = exp((i/f,)#) with

M D = = Wmdo 0 e (Vg - 1y, (44)

where E(q) = + [q(a-z)/m(q0+m)] and gg(q) = 4-¢/m. In the static
limit v‘(-’lz the static SU(6) matrix. One can repeat the analysis of
the preceding subsection concerning both the non-trivial topology and
the Wess-Zumino term, but now for this U(12) group, with the results
essentially unchanged because of the Bott periodicity theorem.



22

Eventually we must return to Minkowski space-time. But since we
have already broken the SU(6) symmetry, there should not be any
difficulty especially if, as will generally be the case, we work with
the expanéion of @7 in terms oif meson fields and with these explicitly

senarated into the pseudoscalar and vector pleces.
TV. CONCLUDING REMARKS

The generalized Skyrme model we have presented has a number of
features which seem attractive. By including the vector mesons in a
manner symmetrical to the pions, the model is a more realistic
description of low-energy physics. Furthermore it goes some way
towards a realization of the large N effective theory of QCD which a
semiclassical Lagrangian like the Skyrme model is supposed to simulate.

By incorporating approximate, static SU(6) symmetry, the phenome-
nological successes of that symmetry should be manifest in the
predictions of the model. Particularly noteworthy in this regard is
the famous SU(6) result for ("P/"N) = - 3/2, This 1is especially
significant because the usual Skyrme models have had troubles??) with
the baryon magnetic moments. In general it is to be hoped that the
model discussed here will improve on the 30% accuracy of the usual
Skyrme models.

Of course being a new model, much of the work we have heard about
at this Workshop which has been done on the SU(2) and SU(3) Skyrme
models has to be repeated on this model before its true worth can be
determined. Unfortunatelv the analysis is rather more complicated
since a larger group is involved. Nevertheless, it is clear that
conceontually the model has some advantages. It gives a more unified
picture in which the n's and p's are collective excitations and the
baryons emerge as solitoms. A rather rich spectrum also results from
this model. The danger is that it is perhaps too rich.,

A final remark, due to Witten. If we simplify to a world of just
one flavour, then the lowest-lying meson in large-N QCD must be a
vector meson, the equivalent Tiuytly of the w. In the same theory the
lowest-lying baryon would be the equivalent of the At and would emerge
as a soliton constructed from the vector-meson field. Its spin would

go like N/2. This not only lends additional credence to the model we
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have developed, but also offers a simplified testing ground to analyze
and verify its implications. The one-flavour model also of course
offers the oppcrtunity to realize wexplicitly this prediction from
arguments based on large-N QCD. Work is currertly in progress along

these lines.
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