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Classification of acoustic emission waveforms
for nondestructive evaluation using neural networks

Roger S. Barga
Mark A. Friesel
Ronald B. Melton
Pacific Northwest Laboratory?
P.O. Box 999, Richland, WA 99352

ABSTRACT

Neural networks were applied to the classification of two types of acoustic emission (AE)
events, crack growth and fretting, from a simulated airframe joint specimen. Signals were
obtained from four sensors at different locations on the test specimen. Multilayered neural
networks were trained to classify the signals using the error backpropagation learning algorithm,
enabling AE events arising from crack growth to be distinguished from those caused by fretting.
In this paper we evaluate the neural network classification performance for sensor location
dependent and sensor location independent training and testing sets. Further, we present a new
training strategy which significantly reduces the time required to learn large training sets using the
error backpropagation learning algorithm, and improves the generalization performance of the
network.

1. INTRODUCTION

An acoustic emission (AE) is the transient wave resulting from the sudden release of stored
energy during a deformation and failure process such as fretting or flaw growth in a material. This
energy can be detected by a surface-mounted sensor, which is sensitive to displacement or
velocity.

The detection of flaw growth is of particular engineering interest because of the need to
nondestructively evaluate the structural integrity of a component in situ and to determine if the
component has degraded beyond tolerancel. Pattern recognition and signal processing techniques
have been successfully applied to develop classifiers for detecting flaw growth AE signals!.2.
‘While these techniques can produce an accurate classifier, the process of selecting features is often
uncertain, and the procedure is time consuming. Moreover, the resulting classifier is often
computationally complex to the point of prohibiting real-time processing of AE data for on-line
monitoring applications.

In recent years, neural networks have offered an alternative approach to pattern recognition and
signal processing based on automated learning procedures for massively parallel networks of
simple processing elements (for an excellent review, see Lippman3). Neural networks are attractive
for detecting flaw growth signals not only because they may provide faster responses but because
they are capable of automatically discovering features and patterns of interrelated features which
serve to define the corresponding class of an AE signal. Further, as a consequence of the learning
procedure, which attempts to discover regularities in the training patterns, the neural classifier is
capable of generalizing to novel AE signals. Automatic feature discovery and generalization
capabilities are essential for a classifier which must process variable information such as AE
returns, where the signals vary due to sensor location and changes in the material or environment.

The problem addressed in this paper focuses on the discrimination of waveforms from two
different AE returns in a simulated airframe joint specimen. The neural network is presented with
waveforms of AE returns from crack and fretting events, and must learn to discriminate each by
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discovering features in the waveform. In this paper we evaluate the classification performance for
sensor location dependent and sensor location independent training and testing sets. We also
present a training strategy which reduces the time required to train the neural network and improves
generalization performance.

The following section describes the neural network model, network design and the learning
algorithm used in the study. The collection and preprocessing of the acoustic emission returns is
described in the third section. The fourth and fifth sections describe the classification experiments
and present experimental results. The sixth section discusses strategies for learning and improving
the network generalization. The paper concludes with a brief discussion of the results.

2. NETWORK MODEL DESCRIPTION

To be useful for AE signal classification, a neural network must have a number of properties.
First, it should have multiple layers of processing elements and sufficient interconnections between
the processing elements in each of the layers. This is to ensure that the network will have the
ability to learn complex nonlinear decision surfaces3.45. Second, the actual features or patterns of
interrelated features learned by the neural network should be invariant under translation in time.
Without this shift invariance the neural network would require precise alignment of the AE return.
Since this is not always possible, in practice, the network must be able to accommodate slight
misalignments of features in the acoustic emission waveform. Third, the number of connection
weights in the neural network should be sufficiently small compared to the amount of training data
so that the network is forced to encode the data by extracting regularityS. If the network has too
many connection weights or there are too few training examples, it can "memorize" all of the
correct responses. If the number of training examples is large, the learning procedure is forced to
discover features common amongst all the examples in the training set; this enables the network to
generalize and correctly classify AE returns that were not included in the training set.

In the following sections, we give a brief introduction to the Multilayered Perceptron (MLP)
neural network model, that satisfies all of these criteria, and to the backpropagation learning
procedure used in this study. Further details of the MLLP and backpropagation learning algorithm
can be found in Rumelhart et al.5 and in tutorial format in Lippman3,

2.1 The multilayered perceptron network for pattern recognition

The MLP is a layered network of homogeneous feed-forward processing elements which
receive and transmit analog signals. The output signal from an individual element generates input
signals for certain other elements after passing through a set of weighted connections. Each of
these weighted connections multiplies the transmitting element’s output signal by a specific
connection strength (weight) and presents that product as an input for the receiving processor. The
weight for a given connection can take on any real value, so the effect of a specific element's
output may vary considerably from one element to the next. Processing elements in the MLP
network generally receive inputs from all processors in the preceding layer of elements and
respond to the total received signal. For a given processor, different patterns of output signals at
the preceding layer of processing elements will produce varying levels of total input. This
behavior arises, because the specific pattern of connection weights will amplify some of the
individual source signals more than others. The total input will be particularly high when the
source processing elements send strong signals along connections with large weights, and it will
decrease as strong signals are shifted to paths with smaller connection weights or the connections
with large weights carry smaller signals. Thus, communication through the weighted connections
enables the processors to detect differences in the pattern of transmitted signals. An analog transfer
function, most commonly a sigmoid functionS, produces the corresponding variations in the output
signal. A schematic diagram of a MLP processing element is shown in Fig. 1.
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Figure 1 - Model processing element in the MLP network. Weighted connections,
W;;, multiply the transmitting processing element's output signal, X;, and present

that product as an input 10 the receiving processing element. A processing element
generates its output signal by applying an analog transfer function to the sum of its
input signals.

The MLP's processing elements are organized into distinct layers. All of these layers share a
common structure wherein the processors have input connections only from elements in the
previous layer and have output connections only to elements in the following layer, and signals
traverse these layers in the same order. A schematic representation of this architecture is shown in
Fig. 2, where an input pattern enters at the bottom and signals flow up to the top of the network.
Output from any given level serves as input for the next layer, until a layer representing the final
classification categories is reached. The system is strictly a feed-forward network where signals
originate at the initial input layer and propagate towards the final output layer. A hierarchial
structure is produced by connecting the processing elements in a "fan in" pattern, so that the
number of elements gradually decreases as signals propagate into deeper levels of the system.
Under this connection scheme, each processing element receives input signals from elements in the
layers which immediately precede it. However, the number of indirect connections between a
processing element and more distant predecessors grows significantly as the number of intervening
layers increases. For any particular processing element, the complete set of input sources in an
earlier layer will be referred to as the elements's "receptive field" on that layer. Since processing
elements at deeper levels gain access to progressively larger portions of the input patterns, they can
respond to progressively more complicated features, and simpler features will be detected over a
progressively larger receptive field. The final output layer consists of elements whose receptive
field covers the entire input layer. This hierarchial structure contributes to the MLP's ability to
discover interrelated features and extract structure from input data, as well as it's capacity for shift
invariant pattern recognition.

2.2 Network design

For the discrimination of acoustic emission signals, we constructed a four layer MLP network.
The input layer of the network contained 250 processing elements, with the input level of each
clamped to an amplitude value of the waveform to be classified. The input layer can be considered
a "window" which looks at the waveform by sampling 250 equally spaced points. The output
layer of the network consisted of two processing elements. The output signal of the processing



elements in the final layer determined the class of the waveform: (1,0) represented a return from a
crack AE event, and (0,1) represented a return from a fretting AE event. Two middle, or hidden,
layers of processing elements were used in the network since we believed that highly complex
decision surfaces were necessary to properly perform classification in the light of the considerable
acoustic variability in the returnsb. The number of processing elements within each hidden layer
was selected empirically from a number of alternatives. A diagram of the basic network is shown
in Fig. 2.
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Figure 2 - Architecture of the MLP network. The input layer consists of 250
processing elements with their input signals "clamped" to the amplitude of the
AE signal. Two processing elements in the output layer represented the class of
the AE signal being processed. The two hidden layers of the network allow the
network to extract the high-order signal features required for accurate classification
and generalization to novel signals.

2.3 Network training procedures

Several techniques exist for learning in MLP networks3.5. For the present study, the error-
backpropagation, or simply backpropagation learning algorithm> was used. The connection
weights in the MLP network were initialized to small random values uniformly distributed in the
range [-0.3, 0.3]. This is necessary to prevent the processing elements in the hidden layers from
acquiring identical connection weights during trainingS. The classification performance of the
network was then gradually improved by changing the connection weights according to the
backpropagation learning procedure. In our simulations, the error measured at each processing
element at the output layer was back-propagated only when the difference between the actual and
desired value of the output processing element was greater than a margin of 0.2. In all
experiments, a learning rate of 0.05 and a momentumS5 of 0.3 was used. These learning values are
uncommonly small, compared to what we have used in other studies6, because we found that in
order for the learning algorithm to converge, when using large training sets, it was necessary to
take very small learning steps.

bIt has been shown in Longstaff4 and Lippman3 that two hidden layers of processing elements are sufficient
to form any arbitrarily complex decision surface.



The backpropagation learning procedure is rather computationally expensive, due to the many
iterations necessary for learning in large networks and the number of examples in the training set.
In our case, the training set consisted of approximately SO0 AE returns, and between 200 and 3000
epochs (presentations of the whole training set) were required to train the network. Two steps
were taken to perform learning within a reasonable time. First, we implemented a distributed
simulator for research on large-scale neural networks’, which allows local graphics workstations
to utilize neural network simulators implemented on remote supercomputers and interactively
display the results of the simulation. For this study, the MLP network and the backpropagation
learning procedure were implemented in vectorized FORTRAN on a Cray X-MP supercomputer,
and a graphics interface was implemented in C on a SUN 4 workstation. QOur present system
achieves a factor of 175 speedup in clock time over a VAX 11/780. The second step taken toward
improving the learning time was to develop strategies for training a multilayered neural network,
given a large number of training samples to be learned. These strategies are described in section 6.
It is important to note, however, that the amount of computation considered here is necessary only
Jor training the MLP network classifier and not for classification. Classification can easily be
performed in real time on a workstation or personal computer.

3. ACOUSTIC DATA COLLECTION

The data used for the network experiments were acoustic returns collected from a test specimen
made from 7075-T651 aluminum with a pinned joint to allow production of fretting noise as well
as crack growth AE. The specimen was configured such that it generated AE from pin hole fretting
and crack growth. Returns were collected from four wideband piezoelectric transducers which
were epoxy-mounted to the specimen around the test joint in the positions shown in Fig. 3. The
sensors were similar in construction, with a peak response band between 0.2 and 0.7 MHz. The
data acquisition instrument used a Biomation 1010 transient recorder with a sample rate of 5 MHz
and a buffer size of 4096 points, and a Kennedy recorder. During data collection, waveforms
were accumulated and written to tape when an arriving AE event triggered the data acquisition
device. Details of the test specimen and the data acquisition instrument are described in greater
detail in another publicationl.
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Figure 3 - Sensor locations on specimen.

Data collection from the test specimen was performed in two phases. The first phase was to
collect returns from fretting AE events and the second to obtain returns from the crack growth AE
events. During the fretting phase, events were recorded that were caused by friction between the
pin at the unlubricated test joint and the inside surface of the joint hole. Load was applied to the
specimen in the form of a sinusoidal load cycle ranging from 3 to 30 kip. Following the fretting
phase, the pin was removed and the specimen was prepared for the second phase of data collection
(crack growth phase) by polishing and lubricating the test joint and sawing a 0.64 cm long by 1.0



mm wide vertical notch in the edge of the test hole. After reassembly, cycling was continued with
shutdowns every 1.3 mm of crack growth for examination and relubrication of the test joint and for
calibration.

A set of 467 returns ( 230 fretting waveforms and 237 crack growth AE waveforms) were
collected. The set of waveforms were sorted by AE event type and sensor location. For each
waveform, noise preceding the wavefront was removed and the first 250 microseconds of the
waveform was digitized to represent the signal on the input layer of the neural networke. Fig. 4
shows a sample waveform from the fretting and crack growth AE event.
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Figure 4 - Examples of crack event and fretting event AE returns from sensor location A.
4. CLASSIFICATION EXPERIMENTS

Classification experiments were designed to address two issues. The first, was to determine
whether the MLP network could be trained to discriminate crack growth from fretting AE events.
The second, was to evaluate the impact of sensor location information on the classification
accuracy of the network. To perform this evaluation, we compare the performance of a network
trained using AE returns from each of the four sensors (sensor location dependent) with the
performance of a network trained on randomly selected AE returns (sensor location independent)
using a test set designed to contain AE returns from all sensor locations. To illustrate the variation
in AE returns due to sensor location, Fig. 5 displays the waveforms from each of the four sensor
locations from a crack growth AE.

In each experiment, a given network was presented with a sequence of AE returns from the
training set and the backpropagation learning algorithm was allowed to adjust the connection
weights to improve the classification performance of the network. Training proceeded until the
network had learned to correctly classify all of the AE returns present in the training set. During
the training process, it was stipulated that the correct response for an AE return of a given class
(crack or fretting) should be greater than 0.8 for the processing element corresponding to the
returns's class, and less than 0.2 for the other processing element. After training, the network was
presented with a set of AE returns excluded from the training set, referred to as the test set, to
determine its ability to generalize. For testing purposes, the network was considered to have
correctly classified the AE return if the processing element with the greater output signal was
associated with the return's class. The network's performance. on the test data was specified as the
percent correct classification.

CNaturally, a number of alternative signal representations could be used as input to the neural network, but
have not been tried in this study. The digitized waveform was selected for our initial studies because it required no
complex feature extraction procedure before classification.



4.1 Single sensor experiment

For this experiment, the training and test sets were created using AE returns from a single
sensor location. From the 112 available AE returns for crack and fretting events, seven disjoint
test sets consisting of 17 AE returns were selected. The 95 AE returns remaining after each test set
selection served as the corresponding training set for the network. In this way, each AE signal in
the total set of 12 returns for sensor A served as both a training and test pattern at some point in the
experiment. The MLP network was trained and tested on each of the seven training/test set pairs
and classification performance was averaged to compute a realistic error rate estimate. This series
approach, an extension of the "leave one out?" method, is designed to accurately compute the error
rate estimate of a classifier when a large training set is in use9.

4.2 Sensor location dependent experiment

For this series of experiments, the training and test sets were designed to ensure that both
contained AE returns from each sensor location with equal frequency of occurrence. From the 467
available AE returns, seven training sets were built consisting of 150 AE returns. Seven testing
sets were built consisting of 23 AE returns selected from all four sensor locations. These testing
sets would be used in evaluating both the sensor location dependent and the sensor location
independent network performance.

4.3 Sensor location independent experiment

For the sensor location independent experiment, seven training sets were built consisting of 95
randomly selected AE returns, without regard to the sensor location. The test set used in this series
of experiments were the same as the sensor location dependent experiments.
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Figure 5 - Crack AE waveform recorded at the sensor locations A, B, P and Q.



5. EXPERIMENTAL RESULTS

Tables 1-3 summarize the results of the classification experiments described above. The
number of classification errors on the testing sets were recorded for each test in the experiment.
The recognition rate of the network classifier was computed by taking the average of the crack and
fretting AE returns correctly classified. As can be seen in Table 1, the neural network classifier
yielded perfect recognition rates for the classification of crack growth and fretting AE events from a
single sensor location. The results of the sensor location dependent experiment, summarized in
Table 2, suggest the network classifier was able to generalize from the AE returns from various
sensor locations and was able to classify AE returns in the test set with a high degree of accuracy.
Visual inspection of the AE returns used in the sensor location dependent test number four revealed
that three of the five returns that were misclassified were exceptions in that the signal had very low
amplitude and showed the effects of AE digitization which took place in data collection. In the
other tests in this experiment, at least one of these patterns was present in the training set and the
network was able to learn features useful for correctly classifying them.

Test Numberof Recognition Rate Test Numberof Recognition Rate
erTors errors
1 0 100% 1 1 95%
2 0 100% 2 2 91%
3 0 100% 3 2 %1%
4 0 100% 4 5 78%
5 0 100% 5 0 100%
6 0 100% 6 1 95%
7 0 100% 7 0 100%
Table 1 - Single sensor series Table 2 - Sensor location dependent series

Test Numberof Recognition Rate

errors
1 6 74%
2 2 91%
3 6 74%
4 7 69%
5 2 91%
6 3 87%
7 3 87%

Table 3 - Sensor location independent series

Tables 1 - 3. Summary of the network classification experiments.

Comparison of the results shown in Table 2 to those in Table 3 indicates the performance of a
network trained on examples from all sensors was consistently better than a network trained on AE
returns from arbitrarily selected sensors. The lower recognition rate in the independent series can
be attributed to particular training/test set pairs, where AE returns from a sensor location appeared
in the test set but were not represented in the training set and were misclassified. This indicates
that AE returns associated with specific sensor locations are important for accurate classification.



However, inspection of the training and test sets used in the independent experiment series also
suggest the network does not require a large number of examples from a sensor location to
correctly classify AE returns. For example, in test number five of the sensor location independent
series, the network correctly classified eight AE returns from sensor location P, yet only seven of
150 returns in the training set were from this sensor location. Overall, the results from these
experiements were very encouraging.

6. STRATEGIES FOR IMPROVED LEARNING AND GENERALIZATION

As stated in section 2.3, the backpropagation learning procedure is computationally expensive
and, as a result, it is difficult to accurately train the neural network classifier within a reasonable
period of time. This problem is directly tied to the large number of AE examples required to train
the network and the size of the network. There are numerous variations on the backpropagation
learning procedure that are designed to accelerate the rate of learning. We experimented with
several of these variations and found that while many accelerate the learning rate by as much as an
order of magnitude or morel9, the generalization performance of the network actually degraded.
Thus, we were careful to select variations in the learning procedure which were robust, fast and
maintained the generalization performance of the network. In fact, we were pleasantly surprised to
find that the acceleration techniques we chose actually improved the generalization performance of
the network.

6.1 Alternative learning strategy

In order to achieve the optimal classification accuracy from the MLP, it is necessary to ensure
that there are a sufficient number of example patterns in the training set and that the network learns
from each of them. In this way, the network is encouraged to discover regularities in the example
patterns, and to de-emphasize those features that turn out to be merely irrelevant idiosyncracies of a
few patterns. The learning strategy describes the way in which the training samples are presented
to the network.

The typical backpropagation learning strategy is to present all of the example patterns in the
training set to the network, and then allow the learning algorithm to adjust the connection weights.
After performing numerous simulations of the learning procedure, we made the empirical
observation that the efficacy of this learning strategy decreases as the size of the training set
increases. This is particularly evident when there is a great deal of variation among the examples
of a particular class of AE returns. Intuition suggests that this learning strategy has difficulty in
detecting useful features and regularities when presented with numerous examples, since evidently
the features learned from each pattern tend to get lost in the shuffle. This observation suggests that
a more efficient learning strategy would be to gradually introduce the examples in the training set to
the network.

In our learning strategy, two patterns are randomly selected from the training patterns available
for each class. These patterns form the initial training set for the MLP network. Backpropagation
learning then proceeds to improve the classification performance of the MLP using this limited
training set. Given such a small training set, the learning procedure is able to learn the examples
quite rapidly. As we might expect, the generalization performance of the network is quite low
since it has only been exposed to a small percentage of the training patterns. A new training set is
built containing twice the number of patterns, which are selected at random from the available
training patterns, and the learning procedure is continued until, finally, the training set contains all
the available training patterns.
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Figure 6 - Measured error versus number of training epochs (increasing the training set size).

Fig. 6 shows the progress of the learning strategy during the training of the MLP network for the
crack-fretting experiment. The measured error is 1/2 the squared error of the two output
processing elements, normalized for the number of training samples. In this run, the number of
samples used were 4, 8, 16, 32, 64 and 112. As can be seen from Figure 6, the error briefly
jumps up every time more variability is introduced by way of more training patterns. The network
is then forced to improve its performance and to discover features that generalize better and de-
emphasize those features that are merely irrelevant idiosyncracies of the limited training set. This
learning strategy allows the network to rapidly discover a set of useful features and regularities in
the training patterns, before the rather slow fine tuning of the features over all training samples
begins.

6.2 Alternative network architectures

After performing a few early simulations of our network architecture, we observed after
training the receptive field of processing elements (recall from section 2.1, that the receprive field
of a processing element is the set of processing elements from which it receives input signals) in
the first hidden layer were relatively small regions of the input layer of the network. In effect, the
processing elements in this first hidden layer were using only a small portion of their available
connections. Moreover, a processing element in the first hidden layer was only "monitoring" a
relatively small region of the AE waveform, though collectively the receptive fields of all units in
the first hidden layer covered the entire waveform.

Given this insight of how the network was processing the AE waveform, it was natural to
constrain the receptive field of the processing elements in the first hidden layer to a small subset of
processing elements in the input layer of the network. We experimented with various structures of
receptive fields and found local receptive fields to be the best. In a local receptive field, the input to
the processing element is constrained to a small local subset of the processing elements in the
previous layer and, as such, local receptive fields preserve the topographical mapping between the
AE waveform and the first hidden layer of processing elements.

—] Error Rate
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7. DISCUSSION

In this paper we have presented a neural network approach to the classification of acoustic
emission (AE) signals in a simulated airframe joint specimen. Three series of experiments were
conducted to evaluate the performance of the neural network classifier: AE signal discrimination,
sensor location independent discrimination and sensor location dependent discrimination. The AE
signal discrimination series were designed using training and test sets from a single sensor
location, with the objective of evaluating the feasibility of our approach. The sensor location
dependent series were designed to ensure that returns from all sensor locations in the total set of
returns were represented in both the training and test sets with equal frequency. Our object was to
evaluate the ability of the neural network to select robust features to enable the classification of AE
signals from multiple sensor locations. The sensor location independent series were designed with
training sets selected at random from available AE returns, and test sets were designed to ensure
that returns from all sensor locations would be evaluated.

Through these three experiments with the neural network classifier we have demonstrated three
desirable properties related to the classification of AE returns. First, it can automatically discover
features and patterns of interrelated features which serve to define the corresponding class of an AE
signal. Examples in the crack-fretting classification series demonstrated the basic ability of the
network to discriminate between the two AE signals for a single sensor:location. Second, the
classifier is shift invariant, that is, the features learned by the network are insensitive to small shifts
in ime. The sensor location independent experiments demonstrate that the network classifier was
indeed able to learn AE features from varying signals and use them effectively to classify signals
from different sensor locations. Third, it can generalize to novel AE returns. In the sensor
location dependent experiments we evaluated the network performance on waveforms from
different sensor locations.

In addition, we have demonstrated how local network architecture and learning strategies can
significantly improve learning, by both reducing the number of training epochs required and
improving the generalization performance of the network. However, the development of the
network architecture and learning strategies were driven not by a theoretical analysis, but by
observing problems that occurred in backpropagation learning and by attempting to cure these
problems one by one. Now that we have seen what can be accomplished, it would be useful to try
to develop a theoretical understanding of some of these tricks. For example, it might be possible to
develop a better understanding of how best to present patterns from the training set to a neural
network. This sort of understanding should ultimately lead us to more elegant theories of learning
in artificial neural networks.

Although this is a limited study in many respects, the results suggest that neural network
classifiers should provide a viable alternative to existing techniques for classifying AE returns. We
have tried several variations of network architectures and training strategies, but many more
variations, including alternative representations of the AE return, are conceivable. Some of these
variations could potentially lead to significant improvements over the results presented in this
study. Our goal here is to present neural networks as a new and promising approach for AE signal
classification. Their power lies in their ability to develop shift invariant features of acoustic
waveforms and use them in making optimal decisions. This holds significant promise for AE
classification in general, as it could help overcome the representational weaknesses of recognition
systems faced with the uncertainty and variability in real-world signals.
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