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ABSTRACT

Neural networks were applied to the classification of two types of acoustic emission (AE) 
events, crack growth and fretting, from a simulated airframe joint specimen. Signals were 
obtained from four sensors at different locations on the test specimen. Multilayered neural 
networks were trained to classify the signals using the error backpropagation learning algorithm, 
enabling AE events arising from crack growth to be distinguished from those caused by fretting. 
In this paper we evaluate the neural network classification performance for sensor location 
dependent and sensor location independent training and testing sets. Further, we present a new 
training strategy which significantly reduces the time required to learn large training sets using the 
error backpropagation learning algorithm, and improves the generalization performance of the 
network.

1. INTRODUCTION

An acoustic emission (AE) is the transient wave resulting from the sudden release of stored 
energy during a deformation and failure process such as fretting or flaw growth in a material. This 
energy can be detected by a surface-mounted sensor, which is sensitive to displacement or 
velocity.

The detection of flaw growth is of particular engineering interest because of the need to 
nondestructively evaluate the structural integrity of a component in situ and to determine if the 
component has degraded beyond tolerance1. Pattern recognition and signal processing techniques 
have been successfully applied to develop classifiers for detecting flaw growth AE signals1-2. 
While these techniques can produce an accurate classifier, the process of selecting features is often 
uncertain, and the procedure is time consuming. Moreover, the resulting classifier is often 
computationally complex to the point of prohibiting real-time processing of AE data for on-line 
monitoring applications.

In recent years, neural networks have offered an alternative approach to pattern recognition and 
signal processing based on automated learning procedures for massively parallel networks of 
simple processing elements (for an excellent review, see Lippman3). Neural networks are attractive 
for detecting flaw growth signals not only because they may provide faster responses but because 
they are capable of automatically discovering features and patterns of interrelated features which 
serve to define the corresponding class of an AE signal. Further, as a consequence of the learning 
procedure, which attempts to discover regularities in the training patterns, the neural classifier is 
capable of generalizing to novel AE signals. Automatic feature discovery and generalization 
capabilities are essential for a classifier which must process variable information such as AE 
returns, where the signals vary due to sensor location and changes in the material or environment.

The problem addressed in this paper focuses on the discrimination of waveforms from two 
different AE returns in a simulated airframe joint specimen. The neural network is presented with 
waveforms of AE returns from crack and fretting events, and must learn to discriminate each by

aOperated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC06- 
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discovering features in the waveform. In this paper we evaluate the classification performance for 
sensor location dependent and sensor location independent training and testing sets. We also 
present a training strategy which reduces the time required to train the neural network and improves 
generalization performance.

The following section describes the neural network model, network design and the learning 
algorithm used in the study. The collection and preprocessing of the acoustic emission returns is 
described in the third section. The fourth and fifth sections describe the classification experiments 
and present experimental results. The sixth section discusses strategies for learning and improving 
the network generalization. The paper concludes with a brief discussion of the results.

2. NETWORK MODEL DESCRIPTION

To be useful for AE signal classification, a neural network must have a number of properties. 
First, it should have multiple layers of processing elements and sufficient interconnections between 
the processing elements in each of the layers. This is to ensure that the network will have the 
ability to learn complex nonlinear decision surfaces3-4-5. Second, the actual features or patterns of 
interrelated features learned by the neural network should be invariant under translation in time. 
Without this shift invariance the neural network would require precise alignment of the AE return. 
Since this is not always possible, in practice, the network must be able to accommodate slight 
misalignments of features in the acoustic emission waveform. Third, the number of connection 
weights in the neural network should be sufficiently small compared to the amount of training data 
so that the network is forced to encode the data by extracting regularity5. If the network has too 
many connection weights or there are too few training examples, it can "memorize" all of the 
correct responses. If the number of training examples is large, the learning procedure is forced to 
discover features common amongst all the examples in the training set; this enables the network to 
generalize and correctly classify AE returns that were not included in the training set.

In the following sections, we give a brief introduction to the Multilayered Perceptron (MLP) 
neural network model, that satisfies all of these criteria, and to the backpropagation learning 
procedure used in this study. Further details of the MLP and backpropagation learning algorithm 
can be found in Rumelhart et al.5 and in tutorial format in Lippman3.

2.1 The multilayered perceptron network for pattern recognition

The MLP is a layered network of homogeneous feed-forward processing elements which 
receive and transmit analog signals. The output signal from an individual element generates input 
signals for certain other elements after passing through a set of weighted connections. Each of 
these weighted connections multiplies the transmitting element's output .signal by a specific 
connection strength (weight) and presents that product as an input for the receiving processor. The 
weight for a given connection can take on any real value, so the effect of a specific element's 
output may vary considerably from one element to the next. Processing elements in the MLP 
network generally receive inputs from all processors in the preceding layer of elements and 
respond to the total received signal. For a given processor, different patterns of output signals at 
the preceding layer of processing elements will produce varying levels of total input. This 
behavior arises, because the specific pattern of connection weights will amplify some of the 
individual source signals more than others. The total input will be particularly high when the 
source processing elements send strong signals along connections with large weights, and it will 
decrease as strong signals are shifted to paths with smaller connection weights or the connections 
with large weights carry smaller signals. Thus, communication through the weighted connections 
enables the processors to detect differences in the pattern of transmitted signals. An analog transfer 
function, most commonly a sigmoid function5, produces the corresponding variations in the output 
signal. A schematic diagram of a MLP processing element is shown in Fig. 1.
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Figure 1 - Model processing element in the MLP network. Weighted connections, 
Wjj> multiply the transmitting processing element's output signal, Xj, and present 
that product as an input to the receiving processing element. A processing element 
generates its output signal by applying an analog transfer function to the sum of its 
input signals.

The MLP's processing elements are organized into distinct layers. All of these layers share a 
common structure wherein the processors have input connections only from elements in the 
previous layer and have output connections only to elements in the following layer, and signals 
traverse these layers in the same order. A schematic representation of this architecture is shown in 
Fig. 2, where an input pattern enters at the bottom and signals flow up to the top of the network. 
Output from any given level serves as input for the next layer, until a layer representing the final 
classification categories is reached. The system is strictly a feed-forward network where signals 
originate at the initial input layer and propagate towards the final output layer. A hierarchial 
structure is produced by connecting the processing elements in a "fan in" pattern, so that the 
number of elements gradually decreases as signals propagate into deeper levels of the system. 
Under this connection scheme, each processing element receives input signals from elements in the 
layers which immediately precede it. However, the number of indirect connections between a 
processing element and more distant predecessors grows significantly as the number of intervening 
layers increases. For any particular processing element, the complete set of input sources in an 
earlier layer will be referred to as the elements's "receptive field" on that layer. Since processing 
elements at deeper levels gain access to progressively larger portions of the input patterns, they can 
respond to progressively more complicated features, and simpler features will be detected over a 
progressively larger receptive field. The final output layer consists of elements whose receptive 
field covers the entire input layer. This hierarchial structure contributes to the MLP's ability to 
discover interrelated features and extract structure from input data, as well as it's capacity for shift 
invariant pattern recognition.

2,2 Network design

For the discrimination of acoustic emission signals, we constructed a four layer MLP network. 
The input layer of the network contained 250 processing elements, with the input level of each 
clamped to an amplitude value of the waveform to be classified. The input layer can be considered 
a "window" which looks at the waveform by sampling 250 equally spaced points. The output 
layer of the network consisted of two processing elements. The output signal of the processing



elements in the final layer determined the class of the waveform: (1,0) represented a return from a 
crack AE event, and (0,1) represented a return from a fretting AE event. Two middle, or hidden, 
layers of processing elements were used in the network since we believed that highly complex 
decision surfaces were necessary to properly perform classification in the light of the considerable 
acoustic variability in the returns15. The number of processing elements within each hidden layer 
was selected empirically from a number of alternatives. A diagram of the basic network is shown 
in Fig. 2.

Output Processing Elements 
(1,0) Crack AE event 
(0,1) Fretting AE event

o o
Hidden Processing Elements

Hidden Processing Elements

Input Processing Elements

Figure 2 - Architecture of the MLP network. The input layer consists of 250 
processing elements with their input signals "clamped" to the amplitude of the 
AE signal. Two processing elements in the output layer represented the class of 
the AE signal being processed. The two hidden layers of the network allow the 
network to extract the high-order signal features required for accurate classification 
and generalization to novel signals.

2.3 Network training procedures

Several techniques exist for learning in MLP networks3-5. For the present study, the error- 
backpropagation, or simply backpropagation learning algorithm5 was used. The connection 
weights in the MLP network were initialized to small random values uniformly distributed in the 
range [-0.3, 0.3]. This is necessary to prevent the processing elements in the hidden layers from 
acquiring identical connection weights during training5. The classification performance of the 
network was then gradually improved by changing the connection weights according to the 
backpropagation learning procedure. In our simulations, the error measured at each processing 
element at the output layer was back-propagated only when the difference between the actual and 
desired value of the output processing element was greater than a margin of 0.2. In all 
experiments, a learning rate of 0.05 and a momentum5 of 0.3 was used. These learning values are 
uncommonly small, compared to what we have used in other studies6, because we found that in 
order for the learning algorithm to converge, when using large training sets, it was necessary to 
take very small learning steps.

hit has been shown in Longstaff4 and Lippman3 that two hidden layers of processing elements are sufficient 
to form any arbitrarily complex decision surface.



The backpropagation learning procedure is rather computationally expensive, due to the many 
iterations necessary for learning in large networks and the number of examples in the training set. 
In our case, the training set consisted of approximately 500 AE returns, and between 200 and 3000 
epochs (presentations of the whole training set) were required to train the network. Two steps 
were taken to perform learning within a reasonable time. First, we implemented a distributed 
simulator for research on large-scale neural networks7, which allows local graphics workstations 
to utilize neural network simulators implemented on remote supercomputers and interactively 
display the results of the simulation. For this study, the MLP network and the backpropagation 
learning procedure were implemented in vectorized FORTRAN on a Cray X-MP supercomputer, 
and a graphics interface was implemented in C on a SUN 4 workstation. Our present system 
achieves a factor of 175 speedup in clock time over a VAX 11/780. The second step taken toward 
improving the learning time was to develop strategies for training a multilayered neural network, 
given a large number of training samples to be learned. These strategies are described in section 6. 
It is important to note, however, that the amount of computation considered here is necessary only 
for training the MLP network classifier and not for classification. Classification can easily be 
performed in real time on a workstation or personal computer.

3. ACOUSTIC DATA COLLECTION

The data used for the network experiments were acoustic returns collected from a test specimen 
made from 7075-T651 aluminum with a pinned joint to allow production of fretting noise as well 
as crack growth AE. The specimen was configured such that it generated AE from pin hole fretting 
and crack growth. Returns were collected from four wideband piezoelectric transducers which 
were epoxy-mounted to the specimen around the test joint in the positions shown in Fig. 3. The 
sensors were similar in construction, with a peak response band between 0.2 and 0.7 MHz. The 
data acquisition instrument used a Biomation 1010 transient recorder with a sample rate of 5 MHz 
and a buffer size of 4096 points, and a Kennedy recorder. During data collection, waveforms 
were accumulated and written to tape when an arriving AE event triggered the data acquisition 
device. Details of the test specimen and the data acquisition instrument are described in greater 
detail in another publication1.

Crack-
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Test Joint—

Figure 3 - Sensor locations on specimen.

Data collection from the test specimen was performed in two phases. The first phase was to 
collect returns from fretting AE events and the second to obtain returns from the crack growth AE 
events. During the fretting phase, events were recorded that were caused by friction between the 
pin at the unlubricated test joint and the inside surface of the joint hole. Load was applied to the 
specimen in the form of a sinusoidal load cycle ranging from 3 to 30 kip. Following the fretting 
phase, the pin was removed and the specimen was prepared for the second phase of data collection 
(crack growth phase) by polishing and lubricating the test joint and sawing a 0.64 cm long by 1.0



mm wide vertical notch in the edge of the test hole. After reassembly, cycling was continued with 
shutdowns every 1.3 mm of crack growth for examination and relubrication of the test joint and for 
calibration.

A set of 467 returns (230 fretting waveforms and 237 crack growth AE waveforms) were 
collected. The set of waveforms were sorted by AE event type and sensor location. For each 
waveform, noise preceding the wavefront was removed and the first 250 microseconds of the 
waveform was digitized to represent the signal on the input layer of the neural network0. Fig. 4 
shows a sample waveform from the fretting and crack growth AE event.

volis x 10'3

100.00 —

-100.00 —

50.00 100.00 200.00150.00 250.00 300.00

volis x 10'

-50.00
50.00 100.00 200.00 250.00 300.00150.00

Crack AE

microseconds

Fiel AE

microseconds

Figure 4 - Examples of crack event and fretting event AE returns from sensor location A.

4. CLASSIFICATION EXPERIMENTS

Classification experiments were designed to address two issues. The first, was to determine 
whether the MLP network could be trained to discriminate crack growth from fretting AE events. 
The second, was to evaluate the impact of sensor location information on the classification 
accuracy of the network. To perform this evaluation, we compare the performance of a network 
trained using AE returns from each of the four sensors (sensor location dependent) with the 
performance of a network trained on randomly selected AE returns (sensor location independent) 
using a test set designed to contain AE returns from all sensor locations. To illustrate the variation 
in AE returns due to sensor location, Fig. 5 displays the waveforms from each of the four sensor 
locations from a crack growth AE.

In each experiment, a given network was presented with a sequence of AE returns from the 
training set and the backpropagation learning algorithm was allowed to adjust the connection 
weights to improve the classification performance of the network. Training proceeded until the 
network had learned to correctly classify all of the AE returns present in the training set. During 
the training process, it was stipulated that the correct response for an AE return of a given class 
(crack or fretting) should be greater than 0.8 for the processing element corresponding to the 
retums's class, and less than 0.2 for the other processing element. After training, the network was 
presented with a set of AE returns excluded from the training set, referred to as the test set, to 
determine its ability to generalize. For testing purposes, the network was considered to have 
correctly classified the AE return if the processing element with the greater output signal was 
associated with the return's class. The network's performance on the test data was specified as the 
percent correct classification.

cNaturally, a number of alternative signal representations could be used as input to the neural network, but 
have not been tried in this study. The digitized waveform was selected for our initial studies because it required no 
complex feature extraction procedure before classification.



4.1 Single sensor experiment
For this experiment, the training and test sets were created using AE returns from a single 

sensor location. From the 112 available AE returns for crack and fretting events, seven disjoint 
test sets consisting of 17 AE returns were selected. The 95 AE returns remaining after each test set 
selection served as the corresponding training set for the network. In this way, each AE signal in 
the total set of 12 returns for sensor A served as both a training and test pattern at some point in the 
experiment. The MLP network was trained and tested on each of the seven training/test set pairs 
and classification performance was averaged to compute a realistic error rate estimate. This series 
approach, an extension of the "leave one out8" method, is designed to accurately compute the error 
rate estimate of a classifier when a large training set is in use9.

4.2 Sensor location dependent experiment
For this series of experiments, the training and test sets were designed to ensure that both 

contained AE returns from each sensor location with equal frequency of occurrence. From the 467 
available AE returns, seven training sets were built consisting of 150 AE returns. Seven testing 
sets were built consisting of 23 AE returns selected from all four sensor locations. These testing 
sets would be used in evaluating both the sensor location dependent and the sensor location 
independent network performance.

4.3 Sensor location independent experiment
For the sensor location independent experiment, seven training sets were built consisting of 95 

randomly selected AE returns, without regard to the sensor location. The test set used in this series 
of experiments were the same as the sensor location dependent experiments.
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Figure 5 - Crack AE waveform recorded at the sensor locations A, B, P and Q.



5. EXPERIMENTAL RESULTS

Tables 1-3 summarize the results of the classification experiments described above. The 
number of classification errors on the testing sets were recorded for each test in the experiment.
The recognition rate of the network classifier was computed by taking the average of the crack and 
fretting AE returns correctly classified. As can be seen in Table 1, the neural network classifier 
yielded perfect recognition rates for the classification of crack growth and fretting AE events from a 
single sensor location. The results of the sensor location dependent experiment, summarized in 
Table 2, suggest the network classifier was able to generalize from the AE returns from various 
sensor locations and was able to classify AE returns in the test set with a high degree of accuracy. 
Visual inspection of the AE returns used in the sensor location dependent test number four revealed 
that three of the five returns that were misclassified were exceptions in that the signal had very low 
amplitude and showed the effects of AE digitization which took place in data collection. In the 
other tests in this experiment, at least one of these patterns was present in the training set and the 
network was able to learn features useful for correctly classifying them.

Test Number of
errors

Recognition Rate

1 0 100%
2 0 100%
3 0 100%
4 0 100%
5 0 100%
6 0 100%
7 0 100%

Table 1 - Single sensor series

Test Number of
errors

Recognition Rate

1 6 74%
2 2 91%
3 6 74%
4 7 69%
5 2 91%
6 3 87%
7 3 87%

Table 3 - Sensor location independent series

Test Number of
errors

Recognition Rate

1 1 95%
2 2 91%
3 2 91%
4 5 78%
5 0 100%
6 1 95%
7 0 100%

Table 2 - Sensor location dependent series

Tables 1-3. Summary of the network classification experiments.

Comparison of the results shown in Table 2 to those in Table 3 indicates the performance of a 
network trained on examples from all sensors was consistently better than a network trained on AE 
returns from arbitrarily selected sensors. The lower recognition rate in the independent series can 
be attributed to particular training/test set pairs, where AE returns from a sensor location appeared 
in the test set but were not represented in the training set and were misclassified. This indicates 
that AE returns associated with specific sensor locations are important for accurate classification.



However, inspection of the training and test sets used in the independent experiment series also 
suggest the network does not require a large number of examples from a sensor location to 
correctly classify AE returns. For example, in test number five of the sensor location independent 
series, the network correctly classified eight AE returns from sensor location P, yet only seven of 
150 returns in the training set were from this sensor location. Overall, the results from these 
experiements were very encouraging.

6. STRATEGIES FOR IMPROVED LEARNING AND GENERALIZATION

As stated in section 2.3, the backpropagation learning procedure is computationally expensive 
and, as a result, it is difficult to accurately train the neural network classifier within a reasonable 
period of time. This problem is directly tied to the large number of AE examples required to train 
the network and the size of the network. There are numerous variations on the backpropagation 
learning procedure that are designed to accelerate the rate of learning. We experimented with 
several of these variations and found that while many accelerate the learning rate by as much as an 
order of magnitude or more10, the generalization performance of the network actually degraded. 
Thus, we were careful to select variations in the learning procedure which were robust, fast and 
maintained the generalization performance of the network. In fact, we were pleasantly surprised to 
find that the acceleration techniques we chose actually improved the generalization performance of 
the network.

6.1 Alternative learning strategy

In order to achieve the optimal classification accuracy from the MLP, it is necessary to ensure 
that there are a sufficient number of example patterns in the training set and that the network learns 
from each of them. In this way, the network is encouraged to discover regularities in the example 
patterns, and to de-emphasize those features that turn out to be merely irrelevant idiosyncracies of a 
few patterns. The learning strategy describes the way in which the training samples are presented 
to the network.

The typical backpropagation learning strategy is to present all of the example patterns in the 
training set to the network, and then allow the learning algorithm to adjust the connection weights. 
After performing numerous simulations of the learning procedure, we made the empirical 
observation that the efficacy of this learning strategy decreases as the size of the training set 
increases. This is particularly evident when there is a great deal of variation among the examples 
of a particular class of AE returns. Intuition suggests that this learning strategy has difficulty in 
detecting useful features and regularities when presented with numerous examples, since evidently 
the features learned from each pattern tend to get lost in the shuffle. This observation suggests that 
a more efficient learning strategy would be to gradually introduce the examples in the training set to 
the network.

In our learning strategy, two patterns are randomly selected from the training patterns available 
for each class. These patterns form the initial training set for the MLP network. Backpropagation 
learning then proceeds to improve the classification performance of the MLP using this limited 
training set. Given such a small training set, the learning procedure is able to learn the examples 
quite rapidly. As we might expect, the generalization performance of the network is quite low 
since it has only been exposed to a small percentage of the training patterns. A new training set is 
built containing twice the number of patterns, which are selected at random from the available 
training patterns, and the learning procedure is continued until, finally, the training set contains all 
the available training patterns.
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Figure 6 - Measured error versus number of training epochs (increasing the training set size).

Fig. 6 shows the progress of the learning strategy during the training of the MLP network for the 
crack-fretting experiment. The measured error is 1/2 the squared error of the two output 
processing elements, normalized for the number of training samples. In this run, the number of 
samples used were 4, 8, 16, 32, 64 and 112. As can be seen from Figure 6, the error briefly 
jumps up every time more variability is introduced by way of more training patterns. The network 
is then forced to improve its performance and to discover features that generalize better and de- 
emphasize those features that are merely irrelevant idiosyncracies of the limited training set. This 
learning strategy allows the network to rapidly discover a set of useful features and regularities in 
the training patterns, before the rather slow fine tuning of the features over all training samples 
begins.

6.2 Alternative network architectures

After performing a few early simulations of our network architecture, we observed after 
training the receptive field of processing elements (recall from section 2.1, that the receptive field 
of a processing element is the set of processing elements from which it receives input signals) in 
the first hidden layer were relatively small regions of the input layer of the network. In effect, the 
processing elements in this first hidden layer were using only a small portion of their available 
connections. Moreover, a processing element in the first hidden layer was only "monitoring" a 
relatively small region of the AE waveform, though collectively the receptive fields of all units in 
the first hidden layer covered the entire waveform.

Given this insight of how the network was processing the AE waveform, it was natural to 
constrain the receptive field of the processing elements in the first hidden layer to a small subset of 
processing elements in the input layer of the network. We experimented with various structures of 
receptive fields and found local receptive fields to be the best. In a local receptive field, the input to 
the processing element is constrained to a small local subset of the processing elements in the 
previous layer and, as such, local receptive fields preserve the topographical mapping between the 
AE waveform and the first hidden layer of processing elements.



7. DISCUSSION

In this paper we have presented a neural network approach to the classification of acoustic 
emission (AE) signals in a simulated airframe joint specimen. Three series of experiments were 
conducted to evaluate the performance of the neural network classifier: AE signal discrimination, 
sensor location independent discrimination and sensor location dependent discrimination. The AE 
signal discrimination series were designed using training and test sets from a single sensor 
location, with the objective of evaluating the feasibility of our approach. The sensor location 
dependent series were designed to ensure that returns from all sensor locations in the total set of 
returns were represented in both the training and test sets with equal frequency. Our object was to 
evaluate the ability of the neural network to select robust features to enable the classification of AE 
signals from multiple sensor locations. The sensor location independent series were designed with 
training sets selected at random from available AE returns, and test sets were designed to ensure 
that returns from all sensor locations would be evaluated.

Through these three experiments with the neural network classifier we have demonstrated three 
desirable properties related to the classification of AE returns. First, it can automatically discover 
features and patterns of interrelated features which serve to define the corresponding class of an AE 
signal. Examples in the crack-fretting classification series demonstrated the basic ability of the 
network to discriminate between the two AE signals for a single sensor location. Second, the 
classifier is shift invariant, that is, the features learned by the network are insensitive to small shifts 
in time. The sensor location independent experiments demonstrate that the network classifier was 
indeed able to learn AE features from varying signals and use them effectively to classify signals 
from different sensor locations. Third, it can generalize to novel AE returns. In the sensor 
location dependent experiments we evaluated the network performance on waveforms from 
different sensor locations.

In addition, we have demonstrated how local network architecture and learning strategies can 
significantly improve learning, by both reducing the number of training epochs required and 
improving the generalization performance of the network. However, the development of the 
network architecture and learning strategies were driven not by a theoretical analysis, but by 
observing problems that occurred in backpropagation learning and by attempting to cure these 
problems one by one. Now that we have seen what can be accomplished, it would be useful to try 
to develop a theoretical understanding of some of these tricks. For example, it might be possible to 
develop a better understanding of how best to present patterns from the training set to a neural 
network. This sort of understanding should ultimately lead us to more elegant theories of learning 
in artificial neural networks.

Although this is a limited study in many respects, the results suggest that neural network 
classifiers should provide a viable alternative to existing techniques for classifying AE returns. We 
have tried several variations of network architectures and training strategies, but many more 
variations, including alternative representations of the AE return, are conceivable. Some of these 
variations could potentially lead to significant improvements over the results presented in this 
study. Our goal here is to present neural networks as a new and promising approach for AE signal 
classification. Their power lies in their ability to develop shift invariant features of acoustic 
waveforms and use them in making optimal decisions. This holds significant promise for AE 
classification in general, as it could help overcome the representational weaknesses of recognition 
systems faced with the uncertainty and variability in real-world signals.

8. ACKNOWLEDGMENTS

The authors would like to express their gratitude to the Computational Sciences Department 
and the Automation and Measurement Sciences Department of Pacific Northwest Laboratory 
(PNL) for their support of this project. We would also like to thank the members of the 
Knowledge Based Systems Group at PNL, especially Debbie Gracio and Mark Whiting, for then- 
constant help in the various stages of this research and in the preparation of this manuscript.



9. REFERENCES

1. M.A. Friesel, "Application of Signal Analysis to Acoustic Emission from a Cyclically Loaded 
Aluminum Joint Specimen," Journal of Materials Evaluation, Vol. 47, pp. 842-848,1989.

2. R.B. Melton, "Classification of NDE Waveforms With Autoregressive Models," Journal of 
Acoustic Emission, Vol. 1, pp. 266 - 270, 1982.

3. R.P. Lippmann, "An Introduction to Computing With Neural Networks," IEEE ASSP Mag., 
Vol. 4, pp. 4-22, April 1987.

4. I.D. Longstaff and J.F. Cross, "A Pattern Recognition Approach to Understanding the Multi­
layered Perceptron, Pattern Recognition Letters, Vol. 5, pp. 315 - 319, 1987.

5. D.E. Rumelhart and J.L. McClelland, Parallel Distributed Processing: Explorations in the 
Microstructure of Cognition. Vol. I and n. M.I.T. Press, Cambridge, MA., 1986.

6. R.S. Barga, "Artificial Neurocomputing for Data Primitive Extraction," Proceedings of the 4th 
Annual Aerospace Applications of Artificial Intelligence Conference, Vol. l,pp. 106-117, 
Dayton, Ohio, 1988.

7. R.S. Barga and R.B. Melton, "Framework for Distributed Artificial Neural Network 
Simulation," International Joint Conference on Neural Networks, Vol. 2, pp. 94-97, Lawrence 
Erlbaum Associates, Inc., Washington DC, 1990.

8. G. Murray, "A Cautionary Note on Selection of Variables in Discrirninant Analysis", Applied 
Statistics, Vol. 26, pp. 246 - 250, 1977.

9. G.T. Toussaint, "Bibliography on Estimation of Misclassification," IEEE Transaction on 
Information Theory, Vol. 20, pp. 472 - 479, 1974.

10. R.A. Jacobs, "Increased Rate of Convergence Through Learning Rate Adaption," Neural 
Networks, Vol. 1, pp. 295-307, 1988.


