
;V " SLAC-PUB—3221 ( b » ; F - f r t j ' V ? - - * 
SLAC-PUB-3221 

DE84 0 0 7 9 1 1 September 1983 
(A) 

ELEMENTARY PRINCIPLES OF LINEAR ACCELERATORS* 

Gregory A. Low 
Stanford Linear Accelerator Outer 

Stanford University, Stanford, California 04305 
and 

Richard Talmas 
Laboratory of Nuclear Studies 

Cornell University, Ithaca, New York 14853 

TABLE OF CONTENTS 
1. Introduction 2 

1.1 The Accelerating Structure and the Broin 2 
1.2 Plan of the Lectures 4 

2. Some Historical Milestones 7 
3. Proton Linear Accelerators 11 

3.1 General Features n 
3.2 Transit Time Factor 11 
3.3 Shunt Impedance 11 
3.4 Cavity Q, r/Q and Filling Time 15 
3.5 Phase Stability and Adiabatic Damping 16 
3.6 Transverse Deforcing 22 
3.7 Applications and Some Practical Aspect* 2> 
3.8 Recent Developments .10 

4. Particle Acceleration by Guided Waves 37 
4.1 Motivation 37 
4.2 Wave Confined by Parallel Planes 3? 
4.3 Circular Waveguide 45 
4.1 Cylindrical Resonator 46 
4.5 Wave Propagation in Coupled Resonator Chains 4« 
4.6 Periodically Loaded Structures 52 
4.7 Space Harmonics 56 
4.8 Traveling Waves or Standing Waves? 61 
4.0 Resonant Coupling 64 

5. Electron Linear Accelerators 67 
5.1 The Main Elements 67 
5.2 Structure Design, Choke of Parameters and Enercy f*w» 70 
5.3 Beam Current, Emittance, BuDch Length and Beam Loading . . . 78 
5.4 Recent Developments and Future Challenges 87 

* Work supported by the Department of Energy, contract DE-AC03-76SF00515 
(Presented at the Second Summer School on High Energy Particle Accelerator. 
Stanford Ltbear Accelerator Center, Stanford, California, August 3-13, 1082.) 



DR- ziy$-Z 
T>t 

U I&trodo'itoB 

The field of linear accelerators Has (frown to be so vofuminowr that compressing 
it into » few elementary lectures, as is oaf intention, requires one to be selective in 
some a-'jitrary way. In thb first section, we will list some of the broad topics which 
the subject of linear accelerators encompasses and then indicate wbieb of these will be 
covered in some detail. 

i.l THE ACCE!..ERAT1N« STRt'CTTRE ANO THE BEAM 

I.inrar accelerators consist of two bufc elements: the accelerating structure and 
the particle beam. 

The accelerating structure depends on I he type of linac. The main types of linacs 
are: 

I DC linacs, like Van de Ciraafo, ID which the structure consists of some kind 
nF column or electrodes. These "tetrodes sustain a DC electric field which 
accc'oratre a continuous stream of particles. DC linacs arc limited to a few tens 
or M ;V. 

2. Induction linac.H in which the Accelerating electric fields are obtained, according 
to Faraday's taw, from changing magnetic fluxes. These changing magnetic 
fluxes arc generated by large pulsed currents driven through linear arrays of 
magnetic toroids. The beam path, along which the electric field develops, can 
be considered as the single turn sccniNrv of a transformer, Induction linacs 
are generally used in nv»t"'<n-eii ..^-current pulsed applications. 

3. RF linn ' <* type on which we will concentrate here, can be categorized in 
iinL.iT of ways- low frequency ll'IIF). microwave frequency (L, S, C. or X-

band). laser treqtienrv; CVY or pisUfd, Iraveling-wave or standing-wave; room 
u-mpcrature or supcrcondu-nng In all these casws, the structure Li a conduct­
ing array of gaps, cavities or gratt»g» along which rf waves with an electric field 
parallel to the beam can tw tupported and built up through some resonant pro-
n-is. RF linac* are used for a wide spectrum of applications from injectors into 
cirrular aiceleraiors, to entire high-energy accelerators such as SLAC, medical 
accelerators, and many others. 
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While the accelerating structure ccn he considered ibe heart of each individual 
machine, it cannot work without i ts auociated systems such as the power source, die 
vacuum, cooling, support and alignment, and instrumentation and control systems. It 
is important to tlOte that a technological breakthrough in any one of these associated 
systems can have profound effects on the main design of the accelerator 

The second basic element of the linac is, of course, the beam and the particles which 
compose it. The 1 sst majority of linacs today are electron (or positron) niachinos; they 
number about 1400 accelerators of which a large percentage are commercial radiation 
therapy machinns. The other linacs accelerate protons (//*) and in a few cases ions. 
There are abuut 50 proton or ioo linacs in existence in the world. 

Very little will be 5Ald in those lectures about the sources of these particles, RIJIIS, 
ion -ources, duoplasmatrons, polarized beams, strippers, positron radiators, etc This 
is an encyclopedic subject by itself with many specialties and sub-specialties which 
cannot profitably be summarized here. The reader should not conclude that because 
the subject htw been left out, it is not of crucial importance to the design and operation 
of & given linac. Not only floes the source have an effect on how well the accelerator 
can perform its function, but in some cases it determines how a new concept can or 
cannot be approached. An example of this is the electron source for the linear collider 
for which a conventional electron gun cannot create a beam with a sufficiently small 
omittance and must be followed by a damping rin^ to Vool" it down. 

The fundamental problems in beam dynamics are; 

1. Longitudinal bunching and stability. 

3. Focusing and transverse, stability, and 

3. Steering and transport to a target or interaction area. 

As long as the number *t particles or current density is not ton high, the analysis 
of many of these problems can be carried out by following single particle trajectories 
and then formulating the behavior or the beam in terms of its envelope. The important 
parameters are transverse omittance, bunch length and energy spectrum. 

Far more difficult are the beam dynaniirs associated with collective effects such as 
omittance growth, beam break-up, beam-wall and wakefield efterls in general. These 
problems are treated in other chapters or this bunk. 
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'I licsv lecture* nitJit1 in five jirtioTis. The first is this introduction, The wwnd is 
a short rhrtmoln^y of what are viewed as important milestones ill the flfld, 

The third rovers p/o(«n linios. Ii introduces elementary concepts such u transit 
lime, shunt impedance, Q. but defers a more systematic discussion or periodic ac­
celerating structures to tlr.- next, section. Criticai issues such as phase stability and 
ir.insvrrsi- forces are discussed Finally, examples or existing facilities are (riven and 
modern developments ?re mentioned. 

The fourth section contains an elementary discussion of waveguide accelerating 
structures. It can be regarded as an introduction to some of the more Advanced .real-
ments of the subject, such as arc contained in the book on Lintif Atttlitatort, edited 
by ['. I.npost^ilc and A. Septior in 1070, which, except for some recent development!!, 
is undoubtedly the best single source of detailed information on the subject, The en­
cyclopedic nature of this volume, to which we will henceforth refer to as L,_\., partially 
excuses liie sparsity of other references ^iven in these lectures. 

The final section Li devoted to electron accelerators. Taking SLAC as an example, 
various topics are discussed such as structure design, rhnico oT para met on, frequency 
optimization, beam current, ermttanc?, bunch length and beam loading, Itecent de­
velopments and future f-h;»l]pnges are mentioned briefly, 

Since proton and electron machines will be discussed separately, it may be UNCTUI, 
before starting, to take i broad look at the full spectrum of linear accelerator appli­
cations shown in Fig 1 In this figure, the kinetic energy Eff, which is tho variitblv oT 
greatest interest for most physics applications, is shown in the horizontal axis and the 
normalized velocity (in the Tnrm J = r/r). which determines much of the linac deaign 
is plotted along the vertical axis. For particles of a given mass ma, these variables are 
related by the formulae: 

i-K = , - - " ' " l i e 1-1 

= mnr" |non — relativistically) (1,2) 
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P|g. I. The full spectrum of linear accelerator applications, displayed at appropriate 
energies and velocities. 
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2, Sonw Historical Milestones 

The history of linear accelerators is briefly described by J. Rlewett in the book l,A 
A technical discussion of wine early project* b contained in the "Lintar Arbitrator 
luut" of the Review of Scientific Instruments (February 1955). 

Here we have chosen to enumerate only some of the important milestones. The 
choice has led them to be spread more or less uniformly in time emphasizing the 
remarkable continuity of progress over a period d more than half a century which 
promises to continue into the future. This uniform spread results perhaps in the 
slighting of some of the early work when parallel progress was being made at many 
laboratories. 

The history of linacs can be viewed tut a sequence of attempts to fool charged 
particles so (hat they see cumulatively acting Voltages across linear arrays or gaps. A 
chronology follows, References can tic traced through LA 

102| A theoretical paper by CJ, Ising, Stockholm, describes a method for accelerating 
positive ions (canal rays) by applying the electrical wnvefront from a spark discharge 
to an array or drift tubes via trans mission lines of successively greater lengths. 

1828 An experimental paper (including the theory of the betatron) by R. Wideroe, 
Switzerland, describes the successful acceleration of potassium ions to 50 kV. Figure 
2 inriirati's schematically the setup in which the ions pass successively through three 
drift tubes: the first and last are grounded, the center one is attached to a I MHz 
oscillator with a voltage of 35 kV. The distance d between gaps is adjusted so that 

where / is the frequency and XQ the free space wavelength at that frequency. The 
potassium ions travel from one gap to the next in nn*-ba]f an RF period. Since higher 
frequency oscillators did not exist at Ibe lime, lighter particles traveling faster tould 
not be accelerated. 
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Fig. 2. The Widwoe linac. 

Iv-ll-V* K. Kingdoii |(> I'..). L Snoddy (I'niv. of Virginia) ct al.. accelerate electrons 
from 29 keV o> 2.!> MeV by applying progressive ttawfronts to a drift tube array. 

103;-31 E. Uwrinre, D Sloan ct al., \V.C at Berkeley) build a Wideroe-type linoc 
( i f . d = ;JXo/2| with 30 drift tubes, oscillating to 42 kV, driven by 7 MHz oscillators. 
Mercury ions are accelerated to 1.28 NfeV. Oscillators of high enough frequency for 
protons are still not available. Similar work continue at Cornell, in Japan and in 
England. 

HW7-1S W. Hansen and die Varian brothers invent the klystron (at first a low 
power device) at Stanford. Subsequently, the high power magnetron (!2 MW pu) ed) is 
developed in (ireat Hriiain for radar purposes M part of the war eiTort. 

loir.-17 L Aivarei. W. Panufsky it al. [V. ('. Derkeley) build a 32 McV proton drift 
tube linar (Fig .'J) three-feet in diameter, forty feet long, powered by 200 MHz war 
surplus radar equipment. As indicated, the Aivarei structure differs from the Widrritc 
>(ru< inn- in that all (nhi-s ate contained in one Urge cylindrical tank and are powered 
at (lie sarin- pliiLv: I In- di*tan<v between drift tubes is arranged so that the particles 
art- >hicldi'd from (ho fi'-M* wh^n they are in the decelerating phxue Adequate beam 
arerjilance required that the accelerating field not have much variation with radius. 
thus precluding "perali<>n at higher frequency As will lie explained Iat"r, longitudinal 
phase stability turner! out to be satisfactory but transverse focusing was problematical. 

SOheV 
IONS 
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Fig. 3. An Alvarez Itnac. 

1917-1* At Stanford, W. Hansen, E. Ginzlon, W, Kennedy ct al.. build the Mark I 
disk-loaded linae yielding •*••'» MeV electron!) in a nine-foot structure powered to I MW 
at 2856 MHz. It is the first of a serie* Mark It (40 MeV); Mark II! (1.3 GeV|: and 
SLAC (30 fieV). Parallel efforts take place in (ireat Britain, France and the I.'SSIt. 
and at M.I.T. nnd Yale in the U.S.A. 

I0!»2 J. IJlewelt al ItNI, shows that alternating-gradient forunins works witli <jit»dru-
pole coils inserled in the drift tubes, solving the transverse focusing problem for 
protons. The Alvarez linae (with some modifications) from then on serves as the 
model for must subsequent proton and ion linaes (up to '200 MeV). 

IGJfcSS I*. Wilson, A. Schwettman et al . at ItEPL, Stanford, report the first suc­
cessful operation of A superconducting linac producing 500 fceV electrons with three 
lead-coated cells. 

1007-00 V. Sarantsev et al., at Dunn*. I'SSR. build a linear induction amlerator. 
as do D, Keefe et al., at LUL, shortly thereafter, both groups with the intent of 
accelerating electron rings. 

11171 R. Koontz, O. I/ww, and R. Miller at SLAC for the first time accelerate a single 
electron bunch through the ."* im linac and show experimentally that beam loading is 
energy independent. 

1072 D, Nagle. E. Knapp et al., at I.ASL, IJOS Alamos, successfully operate their 
SOO-MHz side-coupkd cavity linac. LAMPF, and produce 800 MeV protons. 



1073 I'. Wilson. D Farkas and II. Hogg at SLAC invent the rf energy compression 
srhrnjf r,ilh"l SI.HD which in the next five subsequent years gets installed on the 3-kffl 
Jinar, fowsting its energy up to 30 GeV, 

IfW) K. Stokes i-t ril., at LASL, sucetssfully test RF quadrupoles (up to 2 MflV) 
following a 1070 s l i g h t inn of I. Knpchinskii and V. Teplyakov, ITKI', Moscow, 

lfl?2 If. ftrundcr, F. Selph, et al., at LB1-. use the IULAC' and ffevatron to accelerate 
(-»3» w j([ , charge state — 60. 
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3, Proton Lmrar Accelerators 

.t I (tKXKKAt. Vl.\ ITltKS 

As wan ii!i':ili(inc(| previously, till) oafly linenr accelerators were restricted to pro­
ton* and heavier particle*. Vacuum tubes with inferior high frequency characteristics 
and various discharge devices were the only HP power .sources available. In a single cy­
cle of a 1 MHz oscillator, a highly relativist it particle travels 300 m a length hard to 
conceive for a piece of apparatus in the early days or accelerator physics. A frequency 
mo;e typical of modern proton accelerators is 200 MHz. The corresponding free space 
wavelength XQ is 

\ 0 = r ^. i.il m . (.1.1) 

tf (he input velocity of a proton is such chat 

ti ^= o.or. 
e 

corresponding to a kinetic energy 
HK ™ 1.17 MeV , 

then the distanre. it travels in one cycle is 

f 
d = Xn = 7.5 cm . 

r 
If we use drift tubes i<> shield Die proton Trom decelerating forces, their length most 
be at least half this distance. Precise parameters for toe FN'AL 200 MeV prot»n 
Unae injector arc given in Table 1. It can be seen that, even at the output end. 
the particle* an; not highly rclalivislic. This means that the much higher frequency 
periodic structural typical of electron accelerators are not yet appropriate (for reasons 
of inefficiency and radial effects to which we will return}. 
3.2 T K A N S I T T I M E FACTOR 

Consider a proton passing through a pill-lux cavity as shown in Fig. 4. in which the 
maximum potential difference is VQ. If the gap length is g and the instantaneous electric 
Geld B; in the gap is independent ot the longitudinal coordinate :, the maximum 
electric field is given by 

l i 



Table I . F N A L SOO-MrV Llaear Accelerate* SpectfteMtoM 

Output canrjr loo 30 MeV 
Output momentum rpread. 3 7 X 10"* 

iottl for WS of bom 
Peik Bfun <grrnt IOO mA 
Emiltanee it MO MfV 1.5- -3.0 tnrad-crc i 

(each uiajvmc node) 
Bnm pobe Icr." h 100; Kite 
Pube i» petition l i t * ISpps 
Cavity NHatat frcqueacy 301.! 21 Mlb 
RF pake length, variable to 400 pace 
HF duty ftelof.: maximum .008 
Synrhronom pbi uwaagt*. _3J» 

from if peak 

Cavity number I 3 a 4 & • 7 8 8 
Prolog energy in (MeV) 0.75 1042 3*54 883 03.fi 116.5 130.0 1805 181,0 
Prolog encrrj nut (MeV) 10 42 37 54 8818 03,80 U8.li taoo 180,5 181.0 300,3 
Cmi> Iporth |m) 7.14 10.02 IB S3 18.88 15.51 issi 15.63 15.88 15.T3 
Canity djameter (tin) 04 t » 88 88 84 84 84 84 84 
Drih-Kiln1 diameter (cm) 18 10 18 10 18 16 18 M 
Bore-hole diameter (cm! 3 0 3 0 3.0 3 0 4.4) 4.0 4.0 40 4,0 

Cell Int tb L 

3 0 

(6r>t cell) (cm) 604 233 41.1 533 81A 883 73.3 77.6 61.3 
(last cell) (cm) 118 40 8 53 8 81 5 87.* 73.1 77.4 81.1 84.3 

Gap length (! 
(first retl) fem j 130 44 13.2 10.5 336 371 30.9 34.3 87,3 
(tut celt) |tm| 6.70 127 IB 3 25.1 28.9 ao.B 34.3 37.1 307 

OVI. 
|fir*t cell) 0.31 0.20 0.30 0.37 0.37 0,40 0.42 0.44 0.46 
(la.-i( c*'.ii 031 031 0.30 041 0.40 0.43 0.44 0.46 0.47 

Axial trioiit-time factor 
(flr« cell| 0.S4 0.86 OJIZ 07S 0.73 0.88 0.84 081 0.58 
jla.il evil] OBI 0.81 0.75 0.80 0,88 0.8S 0.81 0.58 0.58 

EDfrlitr shunt impedaar* 
(nut ctUMMfl/ml JTO S3S 4 t a 85.0 » . 8 148 31 £ i».o 187 
llfel rell) |Mfr/m> 47 07 44.8 3S.2 28* 25.0 31,7 1D.0 16.8 14.0 

Drift spier following ca«it* |m) 0,22 0 6 07» 10 1 / / 1.0 1.0 1.0 . 
N'umher of full drift tube 55 SO 34 » 23 31 30 10 IS 
Atcrage Mil l Seld (MV/m) ieo 

231 
30 38 38 3S6 3.58 2 56 258 3.56 

Average gap field 
<fi»l «UHMV/tn | 141 100 ST 70S 69 64 6.1 S.8 5.6 
(tut cell) I MV/m) 7.4S 6.45 7.2 8.4 8.1 8.1 S.8 S.6 8.4 

Peak aurfacr field 
(fint nil) (MV/m) SO 13 8 131 13 P 140 141 14.3 14.3 14.5 
|last « l l ) (MV/tn) 10.1 0.7 11.0 13.3 14.1 14.3 14.3 I4.S 14,8 

Cavity excitation power (MW) 061 138 3.345 3.48 3.49 233 2.05* 3.T" MV 
Total prwer per cavity for IDO mA (MW) l 1.58 409 5.11 S.J* 488 4.58 441 4.75 4.68 

Tola! accumulated Itoftb 1 4 4 8 M 
Total number of Bail eclti 2».D 
Total number of full drift tubes 277.0 
TMil cavity exnlalion power IP 8 MW 
Total liear rf power for 100 mA 39 BMW 

'Ettimated 
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EtQ = V9 (3.2) 

and the field varies as 

Ei = — cos w< (3.3) 

«• Z 

PROTON 

• — P -
RF POWER 
SOURCE 

Fig. 4, Pill-box resonator accelerating cells. 
If the proton has an average velocity v and passes through the center of the eavity 

at t = 0, its coordinate is given by 

; p — vt 

and its kinetic energy gain wbile passing through the privity is 

A/it- = / -cos dz~ 

(3,1) 

f or-
3/2 g v 

sin ~jg/2v 
ug/2v (.TS) 

(381 

where the familiar sin xjx term is called the transit time factor 1\T 
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If the proton passes through a scries of cavitire, each phased so that the field is 
maximum when the particle goes through the center, then cumulative acceleration can 
take place. Wc sew, however, that if each resonator gap g is equal to ,?Xo/2 where Xo is 
the free apace wavelength and & = vfc, then Ttr » only equal to 0.81 [(sin ir/2)/(ir/2)|, 
appreciably less than unity. To improve upon this situation, for a given Vo or power per 
unit lemjth, it Li clearly advantageous to reduce the gap length g: this leads naturally 
(o the configurations .shown in Kig. 5. 

P=\ iC" 3 
J!E__rt!c 
CAVITY NOSE CONES 

—q—j 

ALVAREZ DRIFT TUBE 

Fig. 5. Structures which increase the transit time factor 7| r by decreasing g. 

The cavity nose "one and the length of the gaps between Alvarez drift lubes ran 
both bp adjusted to bring 7j r closer to unity. Ultimately, redu(.:i^ g lends to sparking 
due to excessive field gradients. There is little to be gained in TjP by reducing g to 
less than, say 0XQ/4. Table 1 shows bow the gaps between successive drift tubes in 
the nine FNAJ, Ahaxez tanks have been adjusted to handle these problems. 

3.3 SHL'NT IMI'KDANCE 

The next question that arises is: How much power do we need to obtain a given 
amount of energy g;iin? Power w consumed in basically four areas: the cavity walls, 
the beam, the transmission line between the source and the cavity, find in reflections 
which decrease ihe power delivered to the cavity. For now, let us neglect all but the 
first. I'nlrss one tî cs a supercomiuriing cavity, appreciable power is dissipated in the 
walls of a cavity to maintain high field-; in it The power Inst in "lie cell. /*(o>|. i* , 
proportional to l' (j\ The shunt impedance R of the cavity Ls defined as: 

R 
Plat 

(J 7] 

If the cavity b of length i', then for a muki-ca> ity accelerator it is also customary to 
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dclinc a»liutit IITI|KMI:III I- per unit li'iiglh r whore 

ff_(V0/rf)2 

r'or a negligible heain intensity and a lossless matched line between the power source 
and the cavity, one has by definition: 

and the achievable value of VQ becomes 

Vo^fliP^Z (3.10) 

where the peak energy gain, from (3.6) is 

^ h - = e v / « 7 ? r f t ^ 7 c (3.111 

Referring again to Table 1 for a numerical example, it can be seen that al the injection 
end of the FNAL linac, the fir si tank containing 55 drift tub™ has an average shunt 
impedance 

/? = 38 X 10° X 7.4 = 281.2 Megohms 

and 

7} r =0.75 . 

Then with Ptourtx = 0.6 MW 

AEK = c ̂ 281.2 X (0.75)2 X 0~6 = 11.74 MeV . 

3.4 CAVITY Q, r/Q AND FILLING TIME 

To calculate P(D j ( it is necessary to know the quality factor Q of the cavity which 
is defined by 

Q = '--'* (3.12) 
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where w,( is the maximum sdwd <-n<-rpy and ii is xssuim-i ilmi ihi> <#nl>- in-t llnw nf 
power into the cavity exactly replenishes Piatt. Combining (3.7) and (3.12) one obtains 
the important ratio 

R VJ 
A = • = " (3-13) 

or per unit length, 

Q u[wttJd) ' 

Notice that, at a given frequency, this ratio is purely a property of the cavity geometry 
and does not depend on the wall material or condition, or on the quality or welds, joints, 
etc. It can be measured using dielectric beadd on threads or rods. On the other hand, 
the separate quantities It, r and Q depend on all these factors. 

We will return later U. a discussion of power flow along s chain of resonators, but 
for now let us notice that the natural damping of a free excited single cavity, by (3,12), 
is 

d't' = -Qv*t (3.15) 

As a result, the time for the electric field to decay to 1/c of its initial value is 

3.5 PHASE STABILITY ANI> AWAHATK" DAMPING 

When a bunch of protons » injected into a linac, it inevitably has a spread of 
velocities. Superficially this suggests that in a sufficiently long accelerator, all protons 
will eventually drop out of step with the accelerating fields. Fortunately, phase stability 
prwents this from occurring. 

The important idea is that a particle whose velocity is somewhat too low gradually 
drops back in tbe bunch, thereby passing the structure at a phase where the acceler­
ation is greater, permitting it eventually to catch up and even overtake the center of 
the bunch. It is presupposed that tbe drih tubes, gaps and fields arc so arranged that 
one can speak of a reference or synchronous particle which is accelerated tb'ough tbe 
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structure without any longitudinal oscillation and defines the bunch renter. In prac­
tice, this is achieved by empirically Adjusting the phases of the drive to the successive 
individual aecti-jns of the linac. 

It turns out to be simpler to use ;, the distance along the accelerator as the 
independent variable rather th^n time. In this section we will use capital letters to 
represent the dependent variables for a specific particle. This will permit us to use 
lower-case letters to represent deviations away from the variables of the reference 
particle. For example, let Hie particle pass point t at time T. At this time the phase 
of the RF accelerating field is 4> = u)T. The synchronous particle passes the same 
point at time Ts and phase $>t = uTf. The time and phase differences are 

t=T-T, 
(3.17) 

< > = * - * , = w ( 7 ' - r a f = <j( . 

Referring back to Rq. (3.3), the rate of increase of energy of the synchronous 
particle is given by 

dEtr, , 

where EZy. ^presents the average electric Getf a the vicinity of z, including the transit 
time correction. For maximum acceleration, <fc* should be adjusted to zero but this 
would not yield phase stability as we shall see. For the general particle the rate of 
energy gain is 

dEK , 
. =1 £ _ _ « » * . (3.18) 

The energy offset e = E^ — E^3 satisfies 

e = r = <7 EM [cos(*, + <>) - cos*,,] (3.19a) 

— - ? £ ; O 0 s i n * , (3.106) 

where the dot notation is intended to remind the reader that r enters the equations 
the way time docs in regular mechanics. Note that wc arc using q for charge to free 
up the symbol e for energy offset. 

17 



Our intention here (and elsewhere in these lectures) is not lo give the most general 
fornmUtion but rather to explain the ideas using formulae that arc as simple as possi­
ble. Hnnce we will emphasize ihe linearized equation (3.19b) rather than the general, 
nonlinear equation (3. Ifla). For the same reason we will use non-relalivistic mechanics 
even '.hough the full relativistic treatment is straightforward (see the article by II. G. 
Hereward in L.A.). A* it happens, for the critical early stages of a proton accelerator 
where these ideas are most important, the non-relativistic approximation is very good. 

liquation (3.19b) shows that there is an energy correction proportional to the phase 
discrepancy <j> but this is only half the story. There is also a phase correction due lo 
(he energy offset e since a more energetic particle has a greater velocity which allows 
it to gain in phase. T and Tf are given in terms of the velocities V and Ve by 

From these and (3.17) we get 

It was the simplicity of this relation and the natural occurrence of z in (3 1ft) which 
motivated the choice of ; as an independent varifble. 

Velocities and energies are related by 

and as a result 

e=l

t}m{V'-V;) (32,1a) 

- m V , ( V - V „ ) . (3.236) 

In practice, the energy spreads tend to be very small and the linearized form (5.23b) is 
a satisfactory approximation (more so, for exaknple, than the linearized form (3.10b) 
which won't quite do in some cases). Combining (3.21) and (3.23b) we obtain 

6=--'J

rie . (3.24) 
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**• VviHA Vi i i t . ' i nUn ' ' \>\ ililli-ri'iil ml in ft (.'4.2-1) and substituting from (3.21) 

*• - - r •• 

- ^ % i] /•";[, [cns(<t>, + 0 ) - cos « , ] (3.25a) 

^ ^ f l ^ o t f s i n* , . (3.25b) 
m l . j 1 

t'n-h Hie non-linear form (3.2-5a) has the simple feature that the "force", "F~, depends 
>>nh mi tin- displacement 0: this motivates one to introduce an "effective potential 
I'm-rRV function" 

" l " = - / " f " -/<? 
(3.26) 

7 . S ^ ^ ' . - n l s i " ! * * + <!>)- * c r » * , ] . ml 

The effective force is plotted in Fig. Oa and (he effective potential is plotted in Fig. 6h. 
Clearly Eq. (3.25b) represents an oscillatory system provided that s i n * , is negative. 
The "frequency" of small oscillations is giv™ by 

2:r 
X r '- \j mV; " 9 A ' " ! t * ' ! . (3.27) 

Mere, since the independent variable is ; , it is the wave number 2*/X, which ap­
pears rather than u/. X_. is the distance along the accelerator for one cycle of longitu­
dinal oscillation to occur. Note that X ; becomes large as l-„ increases. Helativislically 
this effect is even more pronounced. The correct relativistic expression differs from 
(3.27) by the replacement Vf —> ~j3Ve where f,, is the usual relativists factor ( 1 - 0 2 P 7 -

As usual with oscillators, it is "nlightening to write the equations of motion in 
Hamiltonian form and to discuss the motion in phase space tor which the axes are 0 
and e as in Fig. 6c. The Hamiltonian is given by 

J J = = - 7 £ o [ s i n ( * , + 0 ) - t f c r a * , ] - - ^ L j e 2 |3.28fl) 
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d E I ACCELERATING 

Fig 6 Phase stability graphs 

and the equations of motion (3.10) and (3.24) are 

9H 
' = -!>> 

(3.20) 

dli (3.30) 
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For small oscillations, and dropping a constant term, / / reduces to 

/ / = - \ q £rf I*'«••I*8 - ~ „ 3 < ? • [3.2 b) 

When a Hamiitonian docs not depend on the indopenden* variable, it is a constant of 
the motion. In that ease a phase space trajectory is an ellipse with the equation 

ff(^,e) = //t (amit*tant| , (3.31) 

Just as with a pendulum for which the maximum velocity ran be calculated if the 
maximum height is known, or vice versa, we can obtain 

In other words, the aspect ratio of the phase space ellipse is determined by the Hamil­
ton ian 

* • max 

But /i' is Dot independent of z. The v<.iy fact that we arc discussing an accelerator 
implies that V, varies with z and the ideas presented here cannot be applied without 
further discussion. If the rate of variation is alow enough, the motion in phase space 
will stilt follow an almost elliptical path close to one of those shown in Fig. Gc -Slow 
(or adiabalic) in this context means that the fractional variation in V, should be small 
ns the particle travels a distance X; It is useful to evaluate X. for the data describing 
the FNAL linae and given in Tabic 1, Yon should find that the adiabatic condition is 
quite we!' satisfied. 

But in such au ndiabatically varying situation, the value of //(fj.e) does not remain 
even approximately constant. On the other hand, it is not hard to show (e.g., Landau 
and Lifshitz, Mtthanu*) tbal the area of the phase ipa.ee ellipse is nn "adiabatic 
invariant.1' In other words, 

<moi*mai — constant . (3.34) 
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Taken tiigrthi-r p<icali»ni (3.33) and (33-1), by fixing both Ihe product and rnlio of 
r,„az and <Pmat. fi* them individually It follows that their variation » given by 

emarA^zO !S ÎH*»| V,3j (3..%) 

4 m . „ ' r [ E . 0 |»in*,1 V*j (3.TO) 

The latter relation shous that the bunch naturally shrink!) down and becomes short 
compared to the phase arn-ptanc* jf the linac sections. Even the energy spectrum 
is. in a manner of speaking, damped since one is normally interested in the fractional 
energy spread tnar/Ekt-

We have not said min-h about the motion for large amplitudes where (.'t 2Sa) must 
be used Nor will we. as it is x^sumed that the reader has already encountered phase 
space [dots like Fig tic elsewhere On injection, particles inside the scparatrix are 
captured, i hose outside are largely lost although even some of them *ati t>e captured 
because of adiabatic damping 

.1(1 TitANhVKRSE DEForrsiNr; 

There is one undesirable consequence of the phase stability considerations of the 
last section We saw. following Eq. (3,J5b), that longitudinal stability retinites that 
s i n * , be negative. Referring back to Ros. (3.2) and (3.3), the time rate of change of 
the elertric field is 

dE* I-
.-- = - r,-O-'COSUN 

at 

which, for the synchronous pedicle becomes 
d%*. = - £ . „ w sin * , . (3,37) 
at 

This expression is positive if there is longitudinal stability. Looking at Fig. 7 it ean 
be seen that fringe fields in the gap region lead to transverse forces. As the proton 
enters the gap it feels a focusing force and, as .t leaves, a defocusing force. There is 
a net defocusin£ effect sip*e from (3.37) the magnitude of the field is increasing with 
time ** 
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A quick way of swing the inevitability of this ,'fTnct is to (-(insider the motion in a 
moving frame of reference in which the synchronous particle is at re.«t. In this frame 
there is only a lime-independent electric field since the phase velocity of the field is 
equal to the particle velocity. In this frame, Earnshaw's theorem which applies to DC 
fields and potentials excludes the possibility of a potential minimum, and motion in at 
least one of the three dimensions mast be unstable. Since the longitudinal motion has 
been adjusted to be stable, the transverse motion will not he. 

ELECTRIC FIELD 

Fig. 7. 'IYansvorse focusing fields in accelerating gups. 

It is possible to show this effect mathematically. So far we have not explicitly 
given the -̂dependence of the accelerating field other than to say that the protons arc 
inside drift tubes where there is no field except at times when th? field is in the right 
direction. As mentioned above, we can represent this by a traveling wave given by 

0*(*. 0 = &z0 coswf ( - j^%\ (3.38) 

Ths argument has been arranged so that a particle of speed Vg stays at a fixed phase 
of the traveling wave. In Sec. 4 we will see how, by Fourier transformation, such a 
traveling wave can bo obtained for a general accelerating struc'ure, but for now let us 
accept (3,38) as the dependence on s and t separately, for example near the center of 
one of the accelerating gaps. 

We will now use this expression of the field to find the form of the radial Lorentz 
force equation. Taking r a s a transverse radial displacement and 0 as an azimnthal 
angle, we can show that, for small r, the form of (3.38) and Maxwell's equations fix the 
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other field conipi.runls. Wi- also assume thtt / /- vanishes and, assuming .otntitiriul 
symmetry, that K$ = UT — 0. In the Absence of free charge, Gauss's taw makes V -li 
vanish, i.e., 

for small r, Er will be proportional to r, and ' >'e get 

By Ampere's law 

; B "*>-•!? <ui) 
and from this we obtain 

"fl = - y ^ 0 <C siow(* - y ^ - ^ j . (3.42) 

We can now write the radial Lorentz force equ?tion for the synchronous particle 

(3.43) 
= ^ ( l - t f ) r s i n + , 

where it has beec recognized tLat the phase factors in (3.38), (3,40) and (3,12) are 
the same as in (3.25b), i.e., <*•,. But since the sign in (3.43) is opposite to that in 
(3.25b), one or the other must lead to unstable motion which is what We set out to 
demonstrate. Tt should be noticed though, by the presence of the factor 1 — $, that 
the defocusing vanishes in the relativislic limit. 

Space charge forces also tend to enlarge the transverse beam size but the effect 
just described limits operation even .it tow beam current. Early corrective schemes 
using electrostatic grids were not very satisfactory. It was the discovery of alternatins-
gradient focusing by Btewett, Conrant, Livingston and Snyder and the introduction 
of quadrupole magnets inside the drift tubes which solved the problem. 

24 



3.7 A P P L I C A T I O N S ANI> S O M E P R A C T I C A L A S P E C T S 

For high energy physics, the main application of prolon and ion linacs is as injectors 
into circular machines, but by themselves I hey also have numerous applications in 
nuclear research and medicine. Included are meson factories (LAMPF), heavy ion 
research (SUPER IIILAC, UNILAC, RILAO) and intense neutron sources. 

A typical layout of a proton linac is shown in Fig. 8. The source is generally a 
metal envelope containing a gas (hydrogen or other) which is ionized into a plasma. 
The protons {or ions) are formed into a jet through a cylindrical nozzle, 

200MHz 200 MHz 

D P - C W —[g}-{Bg—IALVARE Z 

800 MH2 

-{S1D1:COU~P"LED~S.J 

7 5 0 kV 
SJAL ^ - i A « i n ( - / FNAL 
BNL LAMPF 

Fig. 8. Typical proton or ion linac layout. 

This system, called a duoplasmalron (DP), floats at a large negative voltage supplied 
by a Cockcroft-Walton supply and emits the protons (or ions) into a high-gradient 
accelerator column (CW). This results in particles with an energy of as much as 1 
MeV (typically 750 kcV) but near ground potential. Photographs of the BNL versions 
or these components are shown in Figs. 9 and 10. 

This putse of protons forms a DC current of perhaps 100 or 200 mA for 100-200 
microseconds. The protons then become bunched in the drift space following the 
low power, velocity-modulating, 200 MHz buncher labelled B\. The second buncher, 
/?;>, used for longitudinal phase space matching, injects the protons into the Alvarez 
linac where the capture efficiency at a synchronous phase 4** = —30° is as much as 
S0%. Figures 11, 12 and M show successively more magnified views of the BNL linac. 
After 150 or 200 m the protons have been accelerated to about 200 MeV with a pulse 
repetition rate of 10 or 15 pps. The parameters of other injectors, such as that at 
FNAL, are similar. At LAMPF this stage is less than half as long and achieves 100 
MeV with a greater repetition rate (120 pps) and a 500 ^sec putse length. 
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Fig. 9. Cc^kcroft-Walton pre-injcctor (750 kV) 
(BNl^HAEFELE) 
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Fig. 10. High-gradient accelerating column (750 kV). 
(BNL) 
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Fig. 11. BNL Alvarez linac from low-energy en<l 
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Fig. 12. BNL Alvarez linac showing drift tubes, multi-stem 
arrangement, tuning ban, and slugs for ftekl stabilization. 
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Pig. 13. First Alvarez drift tubes (notice sparking). 

In all these Alvarez linacs, typical average axial fields are in the range of 1 to 2.5 
MV/m, with gap fields at 6 to 10 MV/m. There are many tanks, each containing 
many drift tubes (refer again to, e.g.. Table 1). Each tank is supplied with a peak 
power of several MW, typically ~ 5 MW. 

To obtain htĝ  y, the remainder of the LAMPF accelerator which goes 
up to 800 MeV u* jcture at higher frequency, 800 MHz. This structure uses 
side-coupled r&v will defer explanation of this important development until a 
mort systematic fori... >m for periodic structure* has been developed in Sec. 4. 

3.8 RECENT DEVELOPMENTS 

One recent invention, first proposed in 1070 by I. M. Kapcbinskii and V. A. 
Teplyakov at 1TEP in the Soviet Union, b to replace the front end of the linac struc­
ture by a device in which the RF fields that are used for bunching and acceleration 
can also serve for transverse focusing. In the USA, the structure which can perform 
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three combined functions is caMnt tin* \il\} (Q for quadTUpolp). As mentioned in Sec. 
2, RFQ's have now operated successfully at several laboratories. Table 2 gives param­
eters for the designs of three such devices. 

T»bte 2. D*aign Par&nietera for Three Different KFQ'i 
Los Alamos CERN BNL2 

Polarized 
(on tr 17+ H~ 
Frequency (MHz) 425 202.S8 »1.25 
Input energy (MeV) 0.10 0.C5 0.02 
Output energy (MeV) 2.00 0.52 0.75 
Nominal current (mA) 100 100 0.1 

Transmission efficiency {% ) 91.4 93.6 100 
Output ernittance t 0.021 0.05 0.011 
Length (cm) 288.6 138.2 123.4 
Peak rf power (k\V)* 1020 304 66 

11 RMS normalized arca/n- in cm mrad units. 
''Includes power required for the t' manifold and for th« beam. 

To understand how the RFQ works, refer to the »>ar!y model built at ITEP (Fig. 14) 

and the simplified sketch of the vanes which make up the four opposing arrays of poles 

(Fig. 15). 

The fields and currents are said to resonate in a modified T ^ i o mode At any 
particular distance along the resonant structure, the poles are shaped and powered to 
give an electric quadrupole field. As the fields vary sinusoidaily in time, an alternating 
gradient with net transverse focusing results. However, since the poles are also given 
a sinusoid'il-likp radial variation, this configuration leads to longitudinal acceleration 
and adiabatic b»:nching as well. 

One reason for which this device is of such great interest is that in 3 small space, 
it can replace the very large Cockroft-Wallou section of an ordinary injector, as can 
be inferred by noting the typical input and output energies in Table 2. Although the" 
peak RF powers are relatively high, the RFQ's hold the promise of far better capture 
efficiency and reduced emiltance growth at reduced cost. 

31 



Fig. 14. RFQ structure built at ITEP, Moscow. 

V 
3 C 

Fig. 15. Transverse and longitudinal views of the poles of an RFQ. 
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ScnMittt tfrJvhlf o' UFO r«Mn«<r. 

FNIT Pretotyp* RFQ 

Ion: ntuteron 

Fi -qu'.ncy; 80 tfflj 

Noalnil £ur r ia t : 100 U 

Currint L i s l e : !OJ «A 
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^7 
73 
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I § (KV/B) 3.01 17.6 17.6 17.6 17.6 
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L(a) 0 6.7 13C 271. 3«e 

CELL NUMBER 
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0 • 

r * s *^^ A ^^-^^^AA/\ / v u^\/ \y\ / \ / , i vy\ 

-6 100 200 
VANE LENGTH <CH> 

300 JBfl 

FMIT pmetjrpt ftFq pole-tip sb*w. 

Fig. 16. Characteristics of RPQ {or FMIT linac (LANL). 
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Figure 10 gives detailed design information for the RP<J for the LANL FM1T 
project to accelerate dei'ieroca. The cavity containing the 3.88 nt long vane shows the 
pole profile in the four successive sections of the device: the radial matching section 
(RM), the bunch shaper (S), the gentle buncber (GB) and the accelerator (A). 

Another interesting modern development is the linear induction accelerator men­
tioned in Sec. 2. The principle of this accelerator is illustrated by the module shown 
in Fig. 17. 

LINEAR INDUCTION ACCELERATOR 

Insulator Induction Core 

-V^Spork Gap Switch 
Atieieraimg 

Transmission Line 
end Pulse Forming 
Network 

•••H.v, Generator 

Fig. 17. Linear induction accelerator module, 

As stated earlier, the idea of the induction linac is based on Faraday's law. The 
accelerating action can be described as analogous to a transformer. The primary of the 
transformer is excited by a high voltage source connected to a pulse forming network, 
switch and transmission line. The increasing current flowing through the primary 
when the switch is fired creates a rapidly changing magnetic flux in the toroidal core 
(thin-laminated iron or ferrite) which in turn induces a voltage across the accelerating 
gap. The beam then ran be seen as the secondary winding. The accelerator itself 
consists of an array of sucb modules whirh can be trigge/ed in succession at a rate 
commensurate with the velocity of the particles, their particular qjm and the mean 
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.in.•EcratiiiR hVlil. A'THeraliiig capability, expressed ;« the product i»f gap vultage 
times pulse Ji-netli. is limilid by thr Mturaiiou of tin- ferromagnetic material, which 
in turn is determined by the amount and type »f material present. Typical average 
gradient* of 5.5 MV/m can be reached. The technology of the induction linac seems 
to be well suited for very high beam currents {100 to 10,000 A) with short pulses (10 
to 2000 nscc) at repetition rates up to 100 Hz. 

The first version of the induction linac was the Astron injector designed and com­
pleted by N. Christofilos at LLNL iti 1953. More advanced versions were built in 1071 
at LBL and Dubna for their respective electron-ring accelerator (ERA) projects. The 
idea »f the ERA was to form and accelerate, rings of electrons and to embed protons 
or ions in the potential well of the electrons circulating in the rings. By accelerating 
the Tings to relativistic velocities without "spilling* the protons, it was hoped that 
extremely high-gradient proton machines could be built. Unfortunately, it was discov­
ered after some time that instabilities would prevent this scheme from being realizable 
at high energy. As a result, the ERA projects lost their momei.tum although al Dubna 
this type of accelerator is still used at low energy Tor ions. In the process, however, the 
feasibility of practical induction linats for very high currents was es,ab)>shed. Table 3 
gives the riaramcters of some induction linacs in existence. At! of (hem happen to be 
for electrons. 

In recent years, the induction linac has been proposed for a new application: heavy 
ion fusion. In this application, the linac which is called the driver is to produce pulses 
of ions such as, for example, Krypton or Thallium (see Fig. 1) on the order of three 
megajoules. This pulsed beam energy, to he achieved by accelerating the ions up to a 
maximum of 20 GeV and currents of 15,000 A, is to be focused simultaneously from 
several directions onto a deuterium-tritium pellet to produce what is called inertia] 
couGnement fusion. The pulse longth of the induction linac modules can be reduced 
along the machine as the energy of the ions increases and the time of passage through 
them decreases. Typically, the pulse length might he 2000 nsec at the front end and 
20 usee at the output. Progressive beam bunching is obtained by shaping the current 
pulses from the puls»s forming networks so as to produce a positive voltage ramp 
within each module. Thus, later particles with higher energies catch up with earlier 
ones at lower energies. Even at an output energy of 20 GeV, the particles are still 

35 



non-rclativistic and final power amplinca'ion up to several (era*watts can he obtained 
by longitudinal bunch compression in the transport lines leading to impact on the 
pellet. 

Table 3. Parameter! for Typical Induction Accelerators 
Astron Injector ERA Injector NEF 2 Injector ATA 

Accelerator Liverroore Berkeley Dtibn* Livermore 
H»3 1971 1OT1 1983 

Kinetic energy, 
MeV 

3.7 4.0 30 50 

Beam current on 
target, A 

350 900 250 10,000 

Pulse duration, 300 2-45 500 50 
ns 

Pulse energy, 
kJ 

0.4 0.1 3.8 25 

Rep rate, pps 0-60 0-5 50 5 
Number of 
switch modules 

300 17 750 200 

36 



4. Particle Acceleration by Guided V/avea 

We will now present a somewhat more general discussion of particle acceleration 
by guided waves. As we have seen in the previous section, a series of appropriately 
phased accelerating gaps, separated by drift spaces, can be analyzed simply to give, 
a satisfactory description or a proton linac. The present discussion will include such 
structures as a special ca.se but will focus on the guided wave itself rather than on 
the details of the structure, in the interest of simplicity we will concentrate mainly 
on particles with speeds near the velocity of light (i.e , electrons) although the same 
formalism applies also to slower particles. Kather than building on our previous dis­
cussion of proton accelerators, we will begin again and consider the genera) problem 
of particle acceleration by au electromagnetic wave. 

l.l M O T I V A T I O N 

As m 'nlioned before, we are concentrating on particles with velocity near c and this 
makes it n itural to attempt to use an electromagnetic wave in free space since it travels 
at the sam- speed and might have a cumulative effect on the particles. Unfortunately, 
such a wj.i'i' has the properly that its E and //-field are orthogonal in space and have 
components only in the transverse plane perpendicular to the direction of propagation. 
Since, in addition, the wave is bound to be of limited transverse extent, only one of 
two outcomes is possible. Either the particles start along a direction exactly collinear 
with the wave, in which case they see no force at alt (i.e., the transverse electric and 
magnetic forces cancel exactly); or they start at a slight angle, in which case the 
transverse component of the /i-field produces some acceleration along the direction of 
motion of the particles but the effect is not cumulative because the particles soon find 
themselves outside of the field of the wave. 

There are two ways around this difficulty: either one keeps bending the beam back 
into the wave or one reflects the wave back into the beam. The first is the principle of 
the Inverse free-Electron Laser which is discussed elsewhere in these Proceedings. The 
second one i.s the principle of all linaes using rf waveguides. An appropriate waveguide 
can redirect the electromagnetic wave to keep it superimposed on the particle trajec­
tory. At the same time, it can also be such that it has a longitudinal electric field in 
the direction needed to impart energy to the particles. To have a cumulative effect, 
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however, the particles and the wave must be synchronous. As we will now see, it is 
the need for the simultaneity of these conditions which presents the main challenge to 
the accelerator structure designer 

We will now go through a short evicw of guided waves to clarify these points. 

4.2 W A V E C O N F I N E D BY P A R A L L E L P L A N E S 

Figure 1S(;IJ shows two plan? wavra propagating in free spare at angle 0 on either 
side of the r-axis, and with their E-fields lying in the x: plane (the plane of the paper). 
The lines represent a snapshot of wavcfronls of maximum \li\ at a fixed time. They 
are labelled +, —, +, etc., to indicate whether E points left or right. The free space 
wavelength Xn is shown. It is given by 

2JT 
H = c (4.1) 

At a few of the inteisections of the wavefronts the vi-rtor sums of the fields dtie to 
the two waves are shown. On the dashed lines the iT-field is transverse to the z-axis. 
Along these lines it is permissible to place a mirror (i.e., a conducting plane) without 
affecting the fields. 

Now the two waves can be thought of as bouncing back and forth between the two 
conducting planes. Changing our perception somewhat, we can see in Fig. 18(b) that 
there is a single wave having a longitudinal component of K and propagating in the 
direction of the 3-axis. The guide wavelength Xj is shown. It is the distance along the 
j-ajcis after which the pattern repeats and it is given by 

*0 
cos 6 \ = „ . „ ("I 

as can be deduced from the geometry of the figure 

We are now confronted by one of the obstacles which tenda to Toil our efforts. If we 
wait for a time 2)T/JJ which is one period of oscillation, the pattern will have advanced 
a distance Xfl. That is, the phase velocity is 

v„ = \g £ = X, f = C (4.3) 
2JT * X u cos 8 
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Fig. IS. (a) The origin of longitudinal electric fields in guided waves, and (b) their 
configuration between two parallel conducting planes. 
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Since cos 0 is less than 1, the phase velocity is greater than c. Since the particle 
to he accelerated is necessarily traveling at a velocity lower than e, our wave cannot 
yet be used for cumulative acceleration. 

Before addressing this problem, we should discuss some other preliminary questions 
regarding waveguides. The conducting wall could be moved out to any cf tbe other 
planes on which Ez vanishes and this introduces the possibility of different waveguide 
modes. Also, it is natural to "close" our waveguide, for example by making it rectan­
gular through the addition of conducting walls parallel to the plane of the paper: this 
makes even more modes possible. In this case it is still possible, although harder, to 
visualize our wave as made up of plane waves reflecting off the walls - four waves must 
be used. Rather than attempting this, we shall withdraw to a more abstract treatment 
based on Maxwell's equations. The wave we are considering has a transverse Ex and 
a longitudinal Ez component but only a transverse Hy magnetic component, which 
makes it a so-called TM w?.ve. All field components can be derived from Eg which 
satisfies the wave equation 

9ZE\ , _ 2 l , J 
' • J t' a- y +rft--^F, (4.4) 

where we have already built in some assumptions which we will now spell out. We 
have assumed a time dependence of the form fr""" and a -̂dependence e"1* where i is 
complex: 

7 - < * + # . (4.5) 

Also, for simplicity, we are limiting ourselves to the case of Fig. 18 with no in­
dependence. By inspection, we guess a soiutioo satisfying (4.1) and the boundary 
conditions at r = 0 and x = a, with amplitude C, 

E:=Cm{i:")e-'<!S . (4.6) 

For now, a is the guide width. Substituting (1.6) into (4.4) we obtain, for this simplest 
possible case, the relation between guide wavelength and frequency 

-©* + -,*- - £ • (47) 
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For other modes the first term is changed, but for simplicity we will not generalize 
the notation to cover all cases. The reader should be aware of the fact that some of 
the following formulae, though correct in form, may need appropriate modification for 
other modes. 

If there is no attenuation, a vanishes and (4.7) yields 

where 0 is the wave number corresponding to the guide wavelength Xfl: 

P = £ • (4-9) 

This 0 (which should really be called 8g or kg) must not be confused with the usual 
0 = v/e used for relativistic particles. Expression (4.8) is called a dispersion relation. 
It can be rewritten in terms of the "cut-off frequency," a term to be justified shortly, 
given by 

- c (4.10) 
a 

whereby it becomes 

The graph or u versus 0 in this Geld is called aBrillouin diagram. It is easily recognized 
to be a hyperbola (see Fig. 19). When w drops below wc, 0 becomes imaginary and 
there is no more propagation. That is why u/c is called the cut-off frequency. 

Following the usual analysis of a dispersion relation, the phase velocity is given by 

«p = 7i = - p = J — ^ (4.12) 

which, as expected, i. greater than c, as can also be note' from the slopes shown in 
Fig. 1©. 
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Fig 19. Brillouin diagram Tor guided waves in an unloaded guide. 

It is useful to think about the situation at the extremes or this graph. At high w, 
(4.11) becomes the free space linear relation between frequency and wave number. In 
Fig. 18 this corresponds to wavefronts that are very close together (Aj -• >n, 0 — u/t) 
and the wave travels freely down tbe guide, like a flashlight beam in a hollow tube. 
We have already seen that, although the speed vP is close to desired, the "wave is not 
suitable for acceleration because its £"-field is transverse, 

At the low frequency extreme, the lines in Fig. 18(a) are as wide apart as they can 
be white stil! allowing the picture to be completed; that is, the spacing from + to — 
should be a, 

2 
which agrees with (4.10). The wave number 3 is very small, corresponding to large 
guide wavelength and large phase velocity. In this case the wave bounces back and 
forth at right angles to tbe guide; it is noi useful for acceleration because of the high 
value of vp. 

Since accelerator guides are generally circular, perhaps more time than is justified 
has already been devoted to rectangular guides and parallel places ID particular. But 
there are a few more points which can illustrate our ideas in this simple case, free from 

£N!)2= 
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tilt* tntrtisinn or complicated geometry and mathenvitics. These have to do with power 
flow and dissipation in the walls. 

The non-vanishing transverse field components between infinite parallel planes ci r-
responding to Es in (4.6) are given, using Maxwell's equations, by 

,, ifa2 dEz ia /nxx _-, : 

r > i = - •,-, •;— = C cos 1—1 e ' 
x- ox x ^ a' 

(113) 
, , . ujina" DE- . ulna /irz\ _ „ , 

it- ax ff v a ' 
The power flow PtT is obtained by integrating the average Poynting vector over a 
transverse plane 

/'„ = ! Rcj EtHldtdy . (4.14) 

Since we are assuming that there is noy-dep^ndence, i.e.. the parallel planes are infinite 
in y, we don't have to satisfy the boundary conditions on any bottom or top plane. 
For a height i , with -j = jfi taken as pure imagii'ary, we get 

l'tr=C- " t fQua2ff . (4.15) 
4ff-

The standard method for calculating power loss in the walls (an issue of dominant 
importance in linear accelerators) is to take the Belds obtained above for the lossless 
case tf> Cfileulatfr the wall currents. In our case, the loss is in the side walls where, by 
Ampere's law, the longitudinal cur - .1 /.- per height 6 is given by 

Although the model is not conceptually quite correct, one obtains the correct answer 
if one assumes that this current flows uniformly in a sltin depth b given by 

/ 2 W 2 

* = (4.16) 
\[1Q(TUJ 

where no = in X 1 0 - 7 henry/m and <r is the conductivity in mhos/m. The average 
power lost in a short length ds of height 6 of the two siJe walls is of the form 2 x i \I\2R, 
i.e., given by 

iiz abb <r6w~ 
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whfro {<rb\ ; is I he skin ^ s t a n c e #,.. To account for this loss, the propagation 
constant must have a small real part given by 

- ^ 4 * J L . ,4.18) 
2 P t r 0 a *° y/po/iO 

Essentially the same information can be quantified by defining a Q factor for the 
guide 

dn0lt/dz 

where wst is the stored energy per UDit length. ThU quantity can be calculated from 
the maximum electric field, averaged over a wavelength: 

-VKSM*-
which yields 

Q _ _ ^ . 2 1 , 

Finally, there in one more relation between these quantities. If the energy travels 
with the group velocity Vg, then 

Plr = vg wH (4.22) 

where 

dvJ Ptr 
V3 = T» = — • (-1-23) 

Note thi t in Fig. 19, the group velocity i3 the slope of the w — p dia>;.am. It is 
equal to zero at cutoff [u> = wr) and v-qual to e when u - n » . The reader can verify 
that both definitions of vg are equivalent and that Q and a are related by the equatioD 
n = ui/'2vgQ. 
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For a practical accelerator structure, all of the above quantities would have to be 
calculated. In what follows we will not attempt this as it cr.n become qui'e complicated. 
Conceptually, however, these calculations are not different from those which have just 
been done. The exact formulae, if they can be obtained in closed form, resemble the 
ones we have just derived as far as dimensional factors are concerned. The numerical 
factors, of course, depend on the exact geometry. 

4.3 C I R C U L A R W A V E O U I D E 

Most linear accelerator structures have configurations with circular cross sections. 
To simplify matters, let us take the case where there is just one boundary, r = b. If 
we limit ourselves to TM modes with no 0-dependence, the wave equation of (4.4} can 
be replaced by 

d2E- 1 dE- o w 2 

The other non-vanishing fields are given in terms of E: by 

(4.25) 

(4.20) 

where 

(4.27) 

The simplest solution of (4.24) is the so-called TA/QJ m°de where the first subscript 
(0) denotes zero-0 variation and the second (1) denotes one radial variation. For this 
mode the field3 become 

Ez = C J0[kcr)e~'": 

ff^^C/^-1' (4.28) 

ET=lcJl(kcT)t-T 

HB = Mo dEz 

dr 

Er: 1 8EZ 

dr 

k2-
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If one compares expressions (4.28) with those of (4.6) and (4.13), one sees that the 
main changes arc that Bessel functions have replaced sine and cosine functions. The 
waveguide radius becomes involved because of the requirement that £ . vanish at r = 
b, which means that kcb must be the first zero of Jo(kci): 

^ 6 = 2.105 . (4.20) 

The guide dispersion relation lakes tbe form of (I .II) if the cutoff frequency is defined 

uc = kcc = 2.405 £ . (4.30) 

Note thai, as claimed earlier, this expression differs from (4.10) only by a dimensionless 
numerical factor, in this case 2.405 instead of jr. AJ1 the other waveguide properties 
such as Pir, Piolt, ft, Q CAji be calculated as for the case described in Sec. 4.3. 
We will not make the effort to do this because the TA/QJ mode still suffers from the 
shortcoming that the phase velocity, as given by (4.12), is greater than c, making it 
useless for cumulative acceleration. However, having obtained the field expressions for 
the circular waveguide, we can profitably return to our cylindrical resonator originally 
discussed in Sees. 3.2, 3.3 and 3.-1. 

4.4 CYLINDRICAL RESONATOR 

hi the circular waveguide, the dispersion relation (1.11) determines the longitudinal 

propagation constant as a function of w: 

/ 2 W 2 

If however the guide is capped off at both ends by conducting planes as shown in Fig. 
20, a constraint is placed on 0, and w can only assume discrete values corresponding 
to resonances. As in Fit;. 18, the boundary conditions at the plane surfaces can be 
satisfied by superimposing two waves of appropriate wavelength, one going left, one 
right. The result is a standing wave. A simple possibility is to take the mode where 
Er = 0 at the plane surfaces and 
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Fig. 10. Cylindrical resonator. 
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Using (4.11) and (4.30) this yields for the resonant frequency 

Ul r : fro )+(rf) (4.32) 

This is the go-called TM$\i mode which has one variation in the s-coordinnte, It 
turns out, however, that in a cylindrical waveguide, there u nn even lower mode (the 
one used in Alvarez linacsj in which Er vanishes not just at the ends, as required by 
the conducting planes, but everywhere. For this mode kg is infinite, which rnak«3 /3 
zero. The resonant frequency is 

uf = 3.405, (4.33? 

whieb is independent or d. This mode is called the TAfolO mode. The expressions for 
the field given by (4.28) are reduced to 

9 

R34> 

where q = (jio/<op~ = 377 ohms. From thes«, using the definitions of ;he shunt 
impedance R (3.7) and Q (3.12) or (4.10), it & possible to ihow that 

n*d* 
tf,Jro(rf + 6) J3(jfce6) 

(4.35) 

At 



rilifl 

V &" 
2 045 

(4.3G) # , 2 U + */<!) 

where ft = l/»6 B as defined previously, tt woold be bstrnctive for the reader to 
verify these expressions and to get a feeling for the magnitudes involved by working 
out sort* numerical examples for R, Q, R/Q and Tp at 2M> MHz [A = 8m) and 2856 
MHz (d = 3.5cm). 

Note that for this calculation we have neglected the effect of the holes at the ends 
of the resonator, needed to let the particles pass. As we discussed earlier, a linear 
accelerator can be built by stringing many such cavities together and adjusting their 
phases to the beam to give cumulative energy gain. However, rather than assuming 
that these cavities are independently driven, we will now try to analyze the model 
where they are connected together into a periodic chain of coupled resonators. 

•i..s WAVE PROPAGATION IN COUPLED RESONATOR CHAINS 

For simplicity we will stp't with the simplest possible resonator, namely an LC 
circuit. The pillbox resonator in the TA/oiO mode is indeed little more than an LC 
circuit where C, is the capacity between the end plates and L is the inductance of 
the toroidal outer region where the magnetic field is predominant. Representing the 
coupling between resonators by a parallel capacitance 2C?, the circuit diagram for the 
chain is shown in Pig. 21. 

M iF 
2Cp 

iF 
y~\ _L 2Cp 2 C p _ _ ' l n - l —r— ' In —r— " T l+ l —-p 

-•—nmr—'—TTP—'—nrrr—*-
L L L 

Fig. 21. Chain of lightly coupled resonators. 
Note that in the limit of large Cp, the resonators are uncoupled. For the pillbox 
resonators this wov'd correspond to having no beam hole. To insure that we are 'lose 



to that situation, we will assume (hat 

C}>Ct . (4.37) 

We do not intend to imply that representing the coupling by a capacitance is an obvious 
model for the actual coupling, but it is simple and leads to the same qualitative results 
as more complicated models. 

It was L. Brillouin who lirst systematized the analysis of such periodic chains, bjt 
the essential results we require can be derived in a few lines. Applying Kirchoff's 
current law to the nth loop in Pig. 21 yields 

or 

i n + 1 - 2cos(/3rf)i„ + t„-i = 0 (4.38) 

where 

COH(#O - i + ^ - < A y , . M.30) 

From the point of view of the present discussion we have simply introdrred a new 
symbol [13d) which is a certain combination i>r w and the circuit parameters. But, 
naturally, our choice of xymboi anticipates identifying this quantity with the previously 
deflnud quantities /? nnd d. 

Two solutions of the diffcrcni-c equation (4.38) arc 
sin i n - f"rfM + *B) (n = 0 , i ,2 , . . . ) (4.40) 
cos 

as can be checked with standard trigonometric identities. If tf as defined by (4.30) is 
real, then (4 40) will represent standing wave solutions which the structure can support. 
Romcmbcr that it is implicit h an impedance equation such as (4.3?* .hat th" time 
dependence e^' is assunxnl and the real part is to be ttken. By superimposing tin; 
two solutions (4.40) W h propt-r phafl?, unattenuated traveling waves goug in ^'Ahvi 
direction can be formed. Th<* condition for 0 to be real is that 

- 1 < cos/M < 1 (4.41) 
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which can be re-expressrd 39 a band of propagating frequencies 

The frequencies ug *nd • 
(4.30) And (4.41) to give 

w & < w < w , . (4.42) 

tbe fititits of tbe band are obtained by combining 

w p •• 7ff> 

W» -3w('*S) 

(4.43) 

(4.44) 

Approximation (4.37) w. ; used in obtaining w*. Note that tbe subscripts on wp and 
ufji arc the corresponding values of the angle 0d at the band edges. 

The Brillouin diagram for this structure is shown in Fig. 22 which is a graph of 
(4.30). Thf hand of pro] -gating frequencies includes the resonant frequency 1/ \JW\ 
of the uncoupled rtsonai >rs. For weak coupling \Cp much larger than Ct) the band is 
narrow, and for strong coupling {Cp closer to Ct) it is broad. In fact, we have 

Au _ ui* - up Ci 
Op u)0 

UQ 
(4.45) 

f CL) 

1 

o J . 
0 v/2 IT fit 

Fig. 22. BriHooin digram for a chain of coupled LC circuits. 
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Certain features of this Brillouin diagram are important properties of periodic 
structures in gencrAl. It b even in j3d and periodic in pd wirb period 2sr since these 
are both properties of the function cvspd. The dashed extensions >D Pig. 23 convey 
this effect. But this extension is superfluous for tbe system we are discussing since, 
in (4.40), shifting /M by 2T docs not alter the solution. This is due to the fact that 
our single cells are fully described by one variable (the loop current) and continuous 
variation of the argument is not defined. On the other band, our single cell could be 
mere complicated. For example, suppose it had a mode of oscillation at some higher 
frequency as well. This would lead to arothcr propagating band as shown in Fig. 23. 
For linear circuits, these modes do not influence each other. For reasons to which we 
will return, vra have chosen to emphasize th«; band -IT < fid < 0 as the principal 
band for the higher mode. 

r Ol/C ' i 
/ 

• - • x 
v 

v°—^ 

I , / i - > 
.JL TL 

d 2d 2d d 
2x & 

d 
Fig. 23. Briltouin diagram far a chain of cells, each having two modes. 

As usual with dispersion relations, the JJrillouin diagram can be used to extract 
phase and group velocities. Taking d as the physical length of one cell and with u/c as 
the vertical axis, the slope of a 45° line, as shown, corresponds to a phase velocity equal 
to t, which is required for an electron accelerator. This condition fixes the operating 
frequency at the intersection point. Another general feature is that the group velocity 
(gives by the slope dwfdfi) is always less than c and vanishes at UQ and at un. 
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4.6 PERIODICALLY LOADED STRUCTURES 

We now have to face up to the fact that a linear accelerator is more complicated 
then a chain of one-dimensional resonators. The individual cells support not just one, 
but many modes and it may not he justified to treat the coupling as weak. While the 
latter fear is somewhat unrounded, it still makes sense to attack the problem from yet 
another point of view - analyzing the structure as a periodically-loaded waveguide. 

This brings us back to the question which was left open in section 4.2: how do 
we slow down the phase velocity of a waveguide? For the chain or pillbox resonators 
the trick was easy since in the lowest mode the frequency is independent of the length 
d and in the weak coupling limit the resonators can be phased independently. Then 
are many other ways of slowing down the phase velocity, somi of which arc shown in 
Fig. 24. 

Of these structures, the simplest is the iris-loaded c; uisk-loadcd waveguide. This 
is just another name for the pillbox resonator chain which we have been discussing, 
except that now the iri3 hole radius, a, has become larger. Treating the irises as 
perturbations, we can ask what effect they have on the waveguide modes, If there is a 
wave propagating along the guide in the +z direction, there will be a reflection at each 
iris. For a band of frequencies, these reflections will interfere destructively because 
of the phase shifts resulting from the spatial separation of the irises, As a result, at 
these frequencies the irises will hare only a minor effect on the propagation and the 
dispersion relation will resemble Fig. 10. 

But there are certain frequencies, <Jm,, for which the reflected waves from successive 
irises are exactly in phase. At such frequencies, unattenuated propagation is impossible 
since reflections necessarily result in comparable amplitudes for forward and backward 
going waves. Standicg waves are possible, however. The condition for this "Bragg" 
reflection is 

/? = % ,1=0,1 ,2 , . . . (4.4S) 
a 

since this makes the phase advance in going ahead to the next iris and then back an 
integral multiple v f 9.x. This situation is again characterized by a vanishing group 
velocity, 
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5 JUNGLE GYM 6 SLOTTED DISK STRUCTURE 

^1 

RING 6 BAR STRUCTURE 6 LOAOEO EASlTRON 

Fig. 24. Some slow-wave structures. 
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We can also anticipate that for frequencies near <*/„* there will be a strong cfTcet 
of the irises on the dispersion relation between u and fl. To investigate this, consider 
Fig. 25 in which we have gu<^sed two standing-wave field configurations of opposite 
symmetry rc.tative to the irises. ID the figures, lines and arrows indicate electric fields, 
and circlr-s indicate magnetic fields. It can be seen that in eitfe (h), since Br vanishes 
at the locations of the irises the presence or absence of the irists docs not have much 
effect. For Ibis case then, the relation between w and ft will be very similar to that 
for a waveguide without irises. But in case (a) the fields ennnot be as drawn since the 
presence of the irises must force Er to vanish there, at least at the rad ,1 positions 
occupied by the metal irises. In other words, currents flowing in the irises cause the 
standing wave of wavelength 2rf to have a different (actually lower) frequency than if 
the irises were not there. 

ZTJZ 
I® QI lo ®l 

¥ 
1 

% , H e 

(ol fs) 

Fig. 25. "Guessed" standing-wave field configurations of opposite symmetrj with 
respect to'the irises at the stop band. Lines and arrows indicate electric fields, circles 
indicate magnetic fields. 

We now have in hand all the elements required to complete qualitatively the Bril-
louin diagram for the disk-loaded waveguide (Fig. 20) We can start with Fig. 19 for 
the unloaded guide. As 3 increases away from zero, w will initially follow the hyperbole 
but will then flatten out and become horizontal at 3 = nfd where the group velocity 
must vanish. We have just seen that there is another frequency giving this same wave 
number and that, furthermore, it lies on the hyperbola for the unloaded guide. This 
allows us to complete the branch between 3 = xjd and 1 = 2tr/d. 
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Fig. 26 Brillouin diagram for a disk-loaded waveguide. 
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Similar considerations lead to successively higher branches. Again, for an electron 
accelerator, possible operating points lie on the 45* line. Clearly, the loading disks are 
capable of lowering the branches to intersect this line as shown. For normal operation, 
the intersection with the lowest branch is chosen. It is indicated by u»op, Aip-

4.7 S P A C E H A R M O N I C S 

A more quantitative understanding and completion of Pig. 26 requires that one 
find a method to calculate the exact dispersion relation and the corresponding electric 
and magnetic field expressions for a given slow-wave structure. To match the periodic 
boundary conditions shown in Fig. 27, it is customary to invoke a theorem ascribed 
to the French mathematician, Floquet. This theorem states that for a given mode 
of propagation at a given steady-state frequency, the fields at one cross section differ 
from those one period away only by a complex constant. 

z, z, + d 

I 2b 2o I I 

"JLJlUinjCDlL 
" I — I • ' 

Fig. 27. Definition of periodic planes \z\) and (sj + d) for the application of Floquet's 
Theorem, and regions 1 and II for the formulation of the boundary value problem. 

The proof of the theorem lies in the fact that when a structure of infinite length is 
displaced along its axis by one period, it cannot be distinguished from its original self. 
(For a mure formal ,->r«>of, see, e.g., Landau and Lifshitz, Mtchaniet). 

Suppose we write 

E<r, s, I) = F[T, Z) e " ^ ° z e*"1 (4.47) 

where F(r, z) is a periodic function of z with period d, 0&d < T, 0-dependence is 
excluded, and propagation is assumed in the positive z-direction. Referring to planes 
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(4.48) 

(,?]) and [zi + d) in Fig. 27, expression (4.47) becomes: 

At z = z\ E{r,zut) = F(rlzl)e-^^e>wt , 

at z = Si+d E{r,zl+d,t) = F(r,zi+d)e-is»('i+<t) e^t . 

But by definition 

F{r,zl+d) = F[r,zi) . (4.40) 

Thus 

FAr,zi + d,t) = E(r,zht)e-iW , ( 4 . 5 0 ) 

quite independently of where z\ is taken, which indicates that the form of (4.47) indeed 
obeys Floquet's Theorem. Since F(r, z) is periodic, w« can expand it in a spatial Fourier 
series of the form: 

F ( r , z ) = £ C n „ ( r ) ^ T J (4.51) 
It = — 0 0 

where n is an integer which can take all \ sitive and negative values. It can be shown 
that under rotational symmetry, the solution given in (4.47) becomes 

£{r, z,t) = " " I : " C an JQ{krnr) ^'~^) ( . , , S 2 ) 

n=—oo 

where 

2)rn 
8n=Po + -j- . (-1-53) 

k?„=k*-fi , (4.54) 

C is the usual amplitude factor, and a„ is the amplitude of the nth so-called space 
harmonic. 

There are several methods of determining the an amplitudes of these space har­
monics lor a given structure. Before we mention them, we must make a number of 
observations regarding Eqs. (4.51) through (4.54). 
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The fact that the expansion contains all positive as well as negative integers 
arises from the fact that we have assumed nn even structure (with reflection 
symmetry with respect to the origin, z = 0). 

The wave E:{rt ; , () which meets the boundary conditions of the periodically 
loaded struc'ure is made up of space harmonic compoTents which each have a 
different propagation <v>nst;>nt (4.53). However, once PQ{(J) is known, all / V s 
are known. 

Each space harmonic has a different phase velocity given by 

V-fl-tW • H-55) 
For any n < 0, the phase velocity of the space harmonic is negative, i.e., 
a particle would haw to travel in the negative direction to remain in phase 
with it. The continuou.-, lines in Fig. 26 all belong to a wave whose enere^ (or 
"group") travels in the positive direction, and conversely for the dotted lines. At 
the iJop intercepts, since the u — 0 curves are simply translations of themselves 
by 2nir/ri, all have the same slope corresponding to the same group velocity. 

In the definition of shunt impedance (3.8) and rjQ (3.14), the values of V0/d 
that should be used are those or the s p a c harmonic which is synchronized with 
the particle. In most cases, that is the fundamental, i.e., an-

From (4.52) and (4.54) it is seen that the terms anJa[krnr] are not constant as 
a function of radius. If /t™, is negative, krn becomes imaginary and JQ changes 
into /Q, which instead or falling off with r, increases. There is one notable 
exception which turns out to be extremely fortunate for the operation of linear 
accelerators. Indeed, when n = 0 and Vp = e, fift = k~ and J:ro = 0, which 
makes / 0 = 1 a t»d the accelerating Deld independent of radius. As a result, 
acceleration and energy acquired are independent of the radial position of the 
synchronous particle. 

The actual variation of m versus 30 depends on (he relative diameters (2a and 
26) of regions J and U in Fig. 27. When 2a < 2b, the passbands are very 
narrow until, when 2a = 0, there is no more passband at all. Conversely, when 
2a -* 26, the passband becomes very wide until finally, we get back to the pure 
rVfoi circular waveguide mode. 
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\'t. . U.'i,, ,•( Uir |t|i:iv,->hi!t (HT |<i7i"d for the fundamental is generally made on 
*'A, (•tiia ,i| Mli(t(d (|n< lnglirtil shunt impedance per unit length r a he obtained. 
*.«*!«(,..(! ,>( cli,(ru- field configurations for the cases where /Jgd = 0, JT/2, 
4* .-s *n.l 1 nr«- shown in Fig, 28. Somewhat loosely, these 0, T / 2 , 2JT/3 and * 
• <>ii(lf),urii(t(>iis iire also called modes, not to hr confused with 77V/. TE mode3 
<n NUpctposttkins thereof. Note that these field configurations have been chosen 
rtt such MI instant in time that they can interchangeably represent a traveling 
wave or the maximum of a standing wa\e. As will bi seen later, for traveling-
wave accelerators of the disk-loaded type, the optimum choice is 0od = 2JT/3 
(1120"). For standing-wave accelerators, it is #jrf = ;r or !r/2. as shown in Sec. 
•1.0). 

LLQDnmoaaij 
[Tonogoooq 

M 

Pig. 28. Snapshots of elertric field configurations for dfak-loaded slucturcs with 
various phase shifts per period (also loosely called "modes") 

The u> - 0 diagram can bo determined exactly, point-bj-point, by obtaining the 
resonant frequencie* of stacks or n cavities, which ha\c (« + 1) resonances, one Tor 
each value of fad. For example, a stack of three cavities can resonate for ,?(><f = 0, 
0od = tf/3, fad s= 2*/3 and find = w. The frequencies can h« obtained either 
expfirimftntally or by means of computer programs such as SUl'ERFISH or LALA 
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which find the resonances and calculate the fields for standing waves. A conversion 
formula CAD then b?'. used to obtain the fields for the traveling waves. The fields 
can also be found experimentally by means of bead perturbation techniques ID cavity 
structures. An example of a field pr -file for the fyd = #/2 "mode" is shown in Fig, 
20. 

HI-
<LJ> £ hA-J>L 
1i IP 11 fr'll fPi 

v.——i 

Fig. 29. Example or approximate axial £.-ficld amplitude for fad = ir/il " mode." 
This is a snapshot of a traveling wave at a given lime, 

Vet another theoretical approach to obtain tbe fields is to set up general solutions 
in the (wo regions (1) and (II) shown in Fig, 27 (sometimes called "tube" and "slot" 
fields) and then to match these solutions along the common boundary. This approach 
was first used successfully in the early days (1048) by W. Walkinshaw. in England, 
long before the advent of the modern field-mapping computer codes. 

Once the fields are obtained, a simple Fourier-type analysis ran he used to get the 
space harmonic amplitudes. The other structure parameters such n# (r, Qt vpi vt, r 
and r/Q can then also be calculated from tbe definitions and by thft techniques intro­
duced in Sec. 4.2. This entire subject is discussed in detail ic a later chapter by B, 
KeiL 

Before we leave the subject of space harmonics and Rrillouin diagrams, we should 
return briefly to the second passband shown in Figs. 23 and 2ft, As we hinted earlier, 
this passband has its origin in the second "normal mode* of i»ei1)fttio» of tbe cells mak* 
ing up the chain. From what we have learned about »be lowest pwsband, tbe n » 0 
space harmonic of this higher band propagates in the negative direction (rfw/J/? < 0). 
To call attention to this fact in Fig. 2«. we have drawn this branch as ft dashed line. 
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Because of this property, this passband is often referred to belonging to a backward 
wave, i.e., Ihe fund.imcnt.il has its phase velocity and group velocity going in opposite 
direction. 

The existence of this and higher passbands can be responsible for serious insta­
bilities in the operation of linear accelerators, even though the RF sources driving 
them do not. ir: principle supply power at these frequencies. What happens is that the 
short bunches of reLtivistic electrons can excite the structure at frequencies at which 
these higher mode* are synchronous or quasi-synchronous with the bunches, whereby 
their amplitude can grow, cither through feedback or cumulative interaction. This 
interaction can lead to deleterious effects such as beam deflection sod ultimate beam 
breakup. Such effects can limit the achievable beam current in multi-bunch beams 
and cause omittance growth in single-bunch beams. These problems are treated ID ? 
later lecture on instabilities by A. Chao. 

4.8 T R A V E L I N G W AVES OR STANDINC, WAVES? 

Until now, not much has beca "aid about how the fields are established in the linac 
and where the rf poiver is fed into the structure. There are basically three ways in 
which this can be done. 

In the first, the structure is, of the traveling-wave type, in which case the power 
is fed in at one end, propagates through the structure with some attenuation and the 
balance is absorbed in a load (Fig. 30a). Steady-state is reached when the structure 
is filled with energy after one pass. For a length t, the filling time is tp = i/Vg-

In the second, the structure is of tbe alandmg-WTivc type, in which case there is only 
one coupler, either a! one end or in the middle of the structure (Fig. 30b). The fields 
build up through multiple reflections, the number of reflections of any consequence 
being determined by the wall losses. If the structure is long and the wall losses are 
high, the number of reflections that add any significant field is small, and vice versa. 
If the structure is matched to the power source, there is a so-called Qi or loaded Q 
associated with it which is equal to half the QQ associated with the wall losses. The 
maximum field build-up is attained with an exponential time constant tp = 2Q^/u 
or Qo/w, as defined in expression (3.IB). In three filling times, the fields attain 05% of 
their ultimate value. One of the c|ucstions that must inevitably be asked is: aren't the 
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reflected waves useless since they have their phase velocity in the wrong direction and 
hence do not deliver any net energy to the beam? The answer is that this is indeed true 
for si! values of fad j£ x. However, when fad = x, the n = 0 space harmonic of the 
forward wave coalesces with the n = — 1 space harmonic of the backward wave and 
both contribute energy to the beam if it is is synchronism. As a result, all standing-
wave linacs are built in the so-called T-mode, or in a variation thereof, as wc will see 
in the next section. 

(a) 
Load 

innnnnnnru 
fUUliUTJUULfLfl-JI 

(b) Ps fc innnnnnnJ 
[UUlJULnJUULfUl 

(c) p. 

Lood _J 1' 1 Q P , — 
5 = Bridge 

, (i+glP, 
In nnnnnnnl 

[UULnJUUlAJlJUl 

Fig, 30. Linacs with (a) traveling-wave, (b) standing-wave and (c) traveling-wave with 
feedback structures and source power P,. 

The third method, shown in Fig. 30c, which was proposed in England in 1949 by 
R.-Shersby-Harvie and L. MulJett, is to feed the power left over at the output end of 
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the traveling-wave structure bark to the input via a low-loss waveguide. At this point 
this power can be rocombinrd at the correct phase with the source power by means 
of a bridge* In this scheme, the backward-wave problem is circumvented at the cost 
of considerable complexity. This scheme has few advantages over the standing-wave 
scheme and has been used rarely. 

The question of how one chooses between a traveling-wave structure and a standing' 
wave structure depends on the desired application and a number of other constraints 
such as the available rf priwer, energy and length, and the required pulse length and 
duty cycle. 

The following general comments and comparisons can be made: 

1. Since the standing-wave structure Ls generally built with a fixed coupling, it 
cannot be matched under all conditions. One can show that if the power source 
has a relatively short rf pulse length (measured in a few ty's), at best 80% of 
the rf energy can be delivered to the structure during the pulse. The remaining 
20% is reflected to the source. This mismatch can under certain conditions 
be destabilizing to the source, causing frequency pulling, phase oscillations and 
fluctuations in output power, furthermore, since the fields take several filling 
times (2Qi/^\ to build, up to their final value, the beam will vary in energy 
throughout the rf pulse if it is injected after, say one filling time, and the total 
pulse is only a few filling times long. If the application calls Tor a precisely 
defined particle energy, this is then an unacceptable disadvanfage. Therefore, 
in ail such cases, the traveling-wavn linac, which reaches steady-state in one 
filling time, is favored over its standing-wave counterpart. 

2. On the other hand, standing-wave structures such as the side-coupled or the 
disfc-and-washcr structure can be designed to have shunt impedances as much 
as 50% higher than traveling-wave structures at the same frequency. This ad­
vantage also prevails for phase velocities in the range 0.3 < v/e < 0.8 where 
disk-loaded structures are relatively inefficient. If the puke length is long or in­
finite, ),«., the machine » CW, whaUver energy is wasted during the filling time 
is negligible. Conversely, the traveling-wave structure, for a long pulse, always 
wastes in a toad that power which is left at the output end. Thus, long-pulse 
proton linacs like the LAMPF accelerator, and all CW linacs use standing-wave 
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structures. Two examples of CW machines are tbe room temperature structures 
proposed Tor microtrons, and tbe superconducting structures which reach shunt 
impedances 101 to 10 s higher than at room temperature. A tLird example is the 
structure used in all e± storage rings. In this case, the standing-wave structure 
meets the extra requirement that it can accelerate particles of opposite charges 
in opposite directions. 

3. There is one case which falls between those described nbov*'. That is the ease 
where one wants to obtain a high gradient in a short length with a source of 
relatively low power (e.g., a magnetron) and a pulse length of a Tew filling times. 
Typical applications of this case are the short medical accelerators and special 
sections for injectors and positron sources. The standing-wave structure here is 
at an advantage because lb* one-way wall losses ore low and the large number of 
reflected waves can build up the Gelds to a high level. Were the reflected energy 
to be dissipated in an externa] load after A single pass, most nt' the power would 
be wasted. The only way to make the traveling-wave structure competitive in 
this sit tation would be to greatly increase the tilling time of the short section 
by lowering its group velocity accordingly. This >r. turn would increase the 
ep.igy density and the fields. However, to achieve thin very low group velocity, 
one would have to reduce tbe iris diameter considerably. This would lead to 
beam transmission problems and also to difficulty with dimensional tolerances. 
Consequently, in these cases, designers arc willing to live with the disadvantages 
of the standing-wave structure discussed earlier in order to achieve the required 
high energy within a very short length, 

4.9 RESONANT COUPUNG 

There is one problem in the above discussion of standing-wave structures that still 
needs to be elaborated because it bis led to important innovations. We have seen 
that using the ir-mcltr is indeed tbe way to make use of both forward and backward 
waves. The problem, however, is that if we resonate a structure of reasonable length, 
say 50 cavities, at v0p where ff^d = *, it will contain 50 half-wavel -ngtbs at this 
frequency. Adjacent to it, however, there will be a frequency at wbicb it will contain 
40 half-wavelengths 07 for wbicb fid = 40/50 T. Since the u - 0 curve has zero 
slope at /Ŝ pff = d, the neighboring resonance at &d = 49/50 * will be extremely 
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close to Wop, to the point where any small cavity mistvQing, frequency modulation or 
beam fading will excite <he neighboring mode (or modes). In the jargon, the x-mode 
is said to be very unstable. If, on the other hand, ŵ p were in the middle of the 
pass-band, i.e., at ti<.pd = Jr/2, the slope of the w — & carve would be greatest, and 
maximum frequency separation (or mode stability) would be achieved. This line of 
reasoning led E. Knnpp at LANL to invent the side»coupled cavity structure hi the 
early ISflO's. Figure 31 makes the invention understandable. Figure 31a shows the 
standing-wave structure* resonating in the jr/2-mode. Clearly, this configuration is 
inefficient compared to the jr-modo since under steady-state conditions, every second 
cavity is unoxciled and produces no acceleration. Figure 31b shows a modification 
where the excited cavities have been stretched and the unexcited cavities have been 
shrunk. Every cavity however, short or long, is vtill tuned to the same frequency. Thus 
the ir/2 mode and its inherent stability nro preserved. Finally, Fig. 3Jc illustrates the 
discontinuous step in the invention: the empty "useless" cavity has been placed on 
the side, off the beam line. From the rf point of view, the mode remains TT/2 but for 
tht. beam, it has become ir-liko, The side-cavities which do the coupling are empty 
but resonant, the feature which is responsible for the name of "resonant coupling." 
Figure 31d shows the physical embodiment of the idea. The accelerating cavities are 
shaped and provided with nose cones for maximum shunt impedance, and the coupling 
cavities are staggered to reduce asymmetries introduced by the slots. 

Another way of looking at what has been done is to consider the w - £ plots which 
nceompany Fig, 31B, b and c. The double periodicity (in 31b) would normally lead to 
a break and a stop-band in the u — fl curve at the jr/2 point: two branches are formed 
m in Fig. 28, However, through the process of resonant coupling, what is called "con­
fluence" between the two branches is achieved, as shown to Fig. 31c, re-establishing 
the stability of the TT/2 mode. Thus in conclusion, at the enst or some extra complex­
ity, the side-coupled cavity chain and a number of other structures based on the same 
principle have yielded the best of two worlds over a wide range of particle velocities: 
good efficiency of the ff-mode, and insensitivity to fabrication errors and beam loading 
of the s/2-mode. The resonant posts or slug? used in the Alvarez structure shown 
earlier in Fig. 12 are another example of the same idea at lower frequency. 
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5. Electron Linear Accelerators 

[n this last section we wilt cover in very broad terms a few of the major design 
and operating features) specific to electron linacs. A number of references will be made 
to the SLAC linear accelerator as an example, for mare, details, th« reader should 
consult the book on the Stanford TWA/ife AeeeUrator, R. n. Ncal, General Editor, 
W. A. Benjamin Inc., 1008, hereafter abbreviated S/T.M.A-, as well as L.A. referred 
to earlier. 

s.i TUB MAIN ELEMENTS 

The main elements or an electron linac arc shown in Fig. 32. The electron gun is 
a triode consisting of a thermionic cathode, a wire-mesh control grid and an anode. 
The potential difference between the cathode and the anode is typically 80 fcV which 
gives the electrons a velocity of c/'2. The grid is normally held at a voltage somewhat 
negative ("- SO V) with respect lo the calliede so that the gun is biased off except 
when a beam pulse is needed. To trigger the gun, a positive pulse, typically of a 
few hundred volts, is applied for the desired length of time. F.-LSI transistor pulse 
circuitry has improved in the last few years to the point whore beam pulses as short as 
one or two nanoseconds are now achievable. Most electron linacs operate with beam 
pulses In the 1-10 /wee range at repetition rates up to MO and even tooo pps. The 
continuous stream of electron* nut, of the gun first passes through a prcbuncher. This 
is a single low-(J re-entrant cavity supplied with typically ~ 2 kW of rf power at the 
fundamental frequency. The function of this prebuueher is to velocity-modulate the 
electrons with peak gap voltages up to 10-15 kV so that early particles are slowed down 
and late particles are speeded up, As a result of this process, longitudinal compression 
or bunching results. 

At a distance of 30 cm downstream, one ran get on the order of 70% of the electrons 
into a phase interval of 70 electrical degrees. At this point, a refinement which is not 
shown in the figure is sometimes used to discard a large fraction of the bunches. This 
is a transverse electric Geld rf beam chopper which can act as an additional gate (say 
for single bunches every 12.5 nsec if the chopper frequency is 10 MHz) by deflecting all 
bunches except tho otws that go through at zero-crossing. Yet another variation is to 
combine the prebuncher and the chopper into one if cavity at a suhharmonie frequency 
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of the accelerator. This scheme then produces a train of more widely spaced and longer 
hunches with a potential of packing more charge into each of them. Combined with 
a fast grid pulser, it can generate a single buneli. This scheme ifl being used for the 
SLAC Linear Collider (SLC) injector. 
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MODULATOR HIGH POWER 
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GUN I 
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A£=~70Q -30* - 5 s 

Fig. 32. An electron lioac (or the beginning of one!) 

The next element in Fig. 32 is the buncber. At SLAC this is a 4-oell-long, 2JT/3-

mode, traveling-wave section with a constant phase velocity of 0.7S c and a maximum 
power inpat of 2 M\V . The bunches emerge from it with il kinetic energy of about 250 
keV in a. phase interval of 30°. Bunching takes phase here because on the average the 
entering bunches are made to ride ahead of the crest and early electrons at first get 
slowed down while later ones get accelerated. Being slower than the wave when they 
enter the section, they then all rise towards the crest and gain cniTgy. In addition 
to this a, erage motion, they perform approximately one quarter-wave oscillation with 
respect to the central electron: the buncher acts like a quarter-wave impedance match­
ing transformer in the e — $ space ">l Fig. 6, between the prebunrher on the one side 
and the accelerator section on the other. Tbi- nrr,clej»^it section M a traveling-wave 
structure with phase velocity c. ID the SLAC case, as will be described later, it is an 
5-Band, constant-gradient, 2^/3-modc, 3-roctcr long structure. The 30° long bunches 
are caused to enter it around the field nuB ahead of crest, and they asymptotically 
approach the crest of the wave a» they are accelerated. Unlike th« protons st tower 
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velocities, they do this monotonirally without oscillations- A simple expression for this 
asymptotic motion will be given in sub-suction r>.3. At the output of the first accelera­
tor section, the electron bunches aru ft0 long and their energy w typically on the order 
of 30 MeV for an rf power input / ' of 16 MW. This power is typically supplied by a 
high power klystron which in turn is pulsed by a high voltage modulator, RF power 
is also supplied to the buncher and to the prebuncher. 

In addition to these accelerating and bunching fields, the electrons are acted upon 
by their own space charge forces, radial rT fields from the structures, stray magnetic 
fields, and in case of very high currents, wafcefields which they themselves induce and 
leave behind. For all these reasons, steering, degaussing and focusing devices, not 
shown in Fig. 32, are also incorporated into the design of the linear accelerator. As 
an example, in the SLAC injector, there are two thin magnetic lenses to focus the 
beam. The first lens is located downstream of the giJn, and the prebuncher gap is 
placed at the beam waist formed by this first lens. The second lens is located after the 
prcbuncher and produces a second waist at the entrance of the buncher. These waists, 
i.e., points of minimum beam diameter, arc created at those points where one wants 
to minimize the effects of radial fields which generally grow linearly with radius. 

Along the btincher and the accelerator section there is almost always a solcnoidat 
DC magnet field of a few kilogaitss. The required focusing action of the axial magnetic 
field is obtained because there are radial DC fields where the beam enters the solenoid. 
This produces an azimuthal force causing the beam to begin to spiral. The azimuthal 
velocity and the axial field produce the desired inward force. 

The linear accelerator which has been described so far either ends at this point, in 
which case the beam is extracted for whatever use it is destined; or it just constitutes 
the injector or beginning of a longer, multisection machine such as the Orsay, Saclay, 
Kharkov, KEK, MIT, NIKIIEF, SLAG" and many other linacs in the world. The design 
that has been described is fairly standard. The only major variance is in the buncher 
which in a number of short accelerators is designed with a tapered phase vplocity which 
gently forms and "escorts" the bunches up to the velocity of light. The buueber and 
the accelerator in this case are constructed in one section powered at (he upstream 
end. In the low energy (4-6 MeV) medical linaes, the rf source is a 2MW magnetron 
and the structure, as discussed in Sec. 4.H, is generally of the standinj-wave type, 
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under one meter of length. Solcnoidal focusing can sometimes bo avoided by using the 
alternating-gradient focusing effect of the jr-mode radial fields in each cavity. 

Referring back to Fig. I, it should be noted that ID all these machines, when 
the electrons have acquired a kinetic energy of 3 MeV, they have already reached a 
velocity of 0.09 c, i.e., they are totally relativists. Hence, the beam dynamics "drama" 
described earlier for protons in Sees. 3.5 and 3.6, which takes place over hundreds of 
meters in a machine such as LAMTF, is played in an electron linac in the first meter! 

The longer, higher energy electron linacs simply use many separately powered 
sections. The trade-off between -rf power and length is generally resolved on the basis 
of economics, technological factors, the availability of land and the cost of AC power 
to operate the machine over a number of years. In addition to the rf structures, 
klystrons and modulators, these longer machines use periodic focusing systems in the 
form of FODO arrays, quadrupole doublets or triplets. Of course they also have their 
associated vacuum, mechanical support, cooling, instrumentation and control, and 
other support systems. For positron operation, they generally have a tungsten target 
which is inserted at a point where the electrons have achieved a few hundred MeV, 
or at SLAC 5-10 GeV. The positrons are generated in a wide forward cone which 
must be focused by a high Geld solenoid so that the beam can be contained within the 
transverse admittance of the subsequent accelerator sections. 

All these subjects are described in mtirh greater detail in LA., and S.T.M.A. 

5.2 S T R U C T I ' R K D E S I G N . C H O I C E O F P A R A M E T E R S ANr> R N F R O Y G A I N 

ilaving described the main elements of a "generic" electron linac, we will now re­
turn once more to the structure and to some of the practical choices involved in its 
design. The Grst choice is to select the general type of structure. In what follows we 
will concentrate on the simple traveling-wave disk-loaded s'ructure. Only a few com­
ments will be made on standing-wave structures for the sake of comparison. The most 
critical parameters to be chosen are the frequency, the phase-shift per cell, and the 
attenuation per section. On the attenuation, there is in addition a sub-choice betwccD 
two possibilities. Either the attenuation is kept constant as a function of length ic the 
section and the structure is uniform, in which case the power decays exponentially: the 
structure is called "constant impedance." Or the attenuation is increased as a func-
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'! '. i( •-̂ "<*> K« ••̂ •.-littfl MID •iMiiriinitim of the atnirluri* so that the power decays 
<K,S'I« 1-1 ̂  *!"• , 1 , 1 ' 1 " ^*i'i fniwl-iiit: the structure Li called "constant gradient." To 
irn.J'*t"*Jii*'* •'", •»*>»•• I «•( i l iw parameters, it ia heat to calculate th* electron energy 
a-V* «n *«t»»t» ••! itt«> iltimi impedance per unit length, redefined once more as 

«hi>to /•' m UIIW the electric field amplitude of the fundamental, synchronous space 
harmonic 

Thi* other quantities of interest defined earlier are: 

' ** (5.2) 

(5.3) 

(5.4) 

(56) 

Por a section of length t, the kinetic energy gain per section for a synchronous electron 
riding on the wave crest is then 

A f f j r - . / ^ B W r f * • (3-7) 

For the constant-impedancp case, a is not a function of : and from (5.1) we get 

E2[t) = SOT P(s) (5.8) 

whereby the integration of (5.7) leads to 

&EK = « ( L = ^ - ) t*)"* ( * W * (5-9) 
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from which one can get the relation 

" = 2v9Q 
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where PQ is the input power to the section and 

r = at . (5,10) 

For the constant-gradient case, the form of 0(2) that leads to a constant £(z) must 
be determined. To do this in closed form, we will assume that we can neglect the 
variations of r and Q that occur if the structure dimensions are modified to adjust 
a[z), and that, in fact, the only quantity that changes rapidly is the group velocity in 
(5.6). Since from (5.1) 

* " U > — r ^ T • - (5.11) 

if one wants to make E[z) constant, dP{z)/dz must be kept constant. Then redefining 
(5.10) as 

T=fon{z)dz , (5.12) 

the linear decaying profile of P[z) must be given by 

P{z) = Pa[l-\il -«-- ' )] (5,13) 

whereby 

1 - e " 2 ' 
rt(i, = 2 £ ( l - j ( T - F ^ ] ( 5 ' " » 

and 

w , [ l - | ( l _ f i - ^ ) l ,_ ._. 
V ^ = Q ( l - e - S T " ' ( 5 - 1 5 ) 

We can see that to get a constant-gradient profile, we most let the group velocity 
decrease linearly with the same slope as the power. This is obvious if we refer to (5.5) 
since then wtt is also constant. We can now obtain the kinetic energy gajo for the 
constant-gradient section. Expression (».7) is simply AE^- = tEt and since, from 
(5.13) 

£ = - ^ ( l - < - 2 r ) . (5.18) 
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usiog (5.11) we obtain 

&EK=cil-e~~')lt'2(Pnr()1/2 . (5.17) 

Using expressions (5.0) and (5.17), we can now draw some very general conclusions. 

Both expressions depend on the factor (/*o r /I) 1/ 2 , "'he trade-off between PQ and ( 
mentioned earlier is immediately apparent. For maxin m energy gain, one wants to 
maximize r and the factors of T. From Fig. 33, wc see the behavior of r as a function 
of the number n of disks per wavelength. The solid curved are calculated for an array 

n 
Fig. 33. Shunt impedance per un.t length versus number n of disks per wavelength 
for various thicknesses t. 

of pillboxes of diameter 26 with zero-iris diameter (2a = 0). For this reason, they are 
somewhat higher than the experimental values shown by the dashed curves. Both sets 
are taken for three values of disk-thickoess t, vp/c = 1 and / = 2858 MHz. It is 
seen that a broad maximum is obtained for n = 3 disks/Xrj, i.e., for the 2?r/3-mode 
discussed earlier. For this reason, this mode was selected for the SLAC linac. The 
thicker value of J (0.230") was selected Tor greater mechanical strength and because 
it permits a greater radius of curvature on the disk edge, which decreases the risk of 
electrical breakdown. 
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The factors of r in Eqs. (5.9) and (5.17) are compared in Fig. 3 1 It is seen that for 
small r, they are about equal and that for T ~ 1, they are close to 0.9. The value of 
- = 0.57 was selected for the SLAC linac as a broad compromise between maximizing 
energy and minimizing the effect of beam loading (see next sub-section) and the filling 
time [tp = 2QT/U). The constant-gradient design was selected because of a number or 
advantages such as lower ratio of peak-to-average field and uniform power dissipation 
per unit length. It also turned out ex-pott-faeto that the constant-gradient structure, 
due to its non-modular construction, is less susceptible to cumulative beam breakup 
because the effective interaction length with the synchronous transverse deflecting 
mode is foreshortened. 
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Fig. 34. Normalized energy gain versus T. 

The choice of rf frequency is also made oa the basis of a broad set of criteria, Table 
4, which is taken from S.T.M.jV. shows the frequency dependence of some of the key 
parameters. The single most important quantity is the shunt impedance r which varies 
as / ' / 2 . Since Q falls as / _ l / 2 , rw/Q which is a measure of E^/w^ varies as J2. This 
is obviously correct since the volume per unit length of structure varies as / _ 2 , all 
transverse dimensions varying as f~l. Thus, any linac design for which one wants 
to maximize the beam energy and in which the stored energy is discarded after each 
oulse, will be favored by high frequency. On the other nand, the frequency cannot be 
increased indefinitely because the decreased iris diameter (2a) eventually becomes a 
limitation, both from the point of view of beam interception and transverse wakeficlds 
which scale roughly as (2o)~ 3 . Also, at lower frequency, the larger energy stored makes 
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tin -a.uitui ' -<UHitr )'>W^m l>̂ <lmf, Kintvlly, there are facton which, Although 
pot as fundamental, ran be just MI important nirb as the availability of high power 
rf sources as a function of frequency, and the absolute machining tolerances. For all 
these reasons the SI/AC frequency was set at S8SB MHz or 10.5 cm wavelength. Most 
other linara in the world are built at the wine frequency or nearby, in the vicinity of 
3000 MHz. The final dimensions of the PLAC sections are shown in Fig. 35, together 
with the linear profile of the normal): •>& group velocity (tf«/c) and the resulting shunt 
impedance. As we see, t(z) has as average value of 97 Mfl/m and it varies slowly with 
z, which makes our original assumptions acceptable. Figure 36 is a photograph of the 
final aos meter-tong SLAC cc- 'ant-gradient section with its input and output 

L 0.006 
10 20 30 « n 90 60 TO 60 

CAVITY NUMBER FROM INPUT FMD 
90 

Fig. 35. Variations of iht 2a, vt/c and the shoot ii»pedance r (corrected for the 
fundamental space harmonic) as a function of cavity number along SLAC 3.05 meter 
constant-gradient section for f m 0.230 in. 
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1 * 1 * 4 , 
Frequency Dependence of Principal Linear Accelerator Parameters 

fr*au*ney 
Afaweoce 

Psnmcttr wPpCflOllrlC# «fcA tow Nates 

Storm impedance per unit length (r) pn X a 
RF loss factor (f l ) p-tn X a 
Filling time ( M f-ut X 4.D 
Tom RF peak power / - , « X » , D , C 
RF feed interval <f) f-*n X »,b 
No. of RF feeds pn X a,b,d 
RF peak power ?.er feed /"• X a, b, e 
RF energy stored In accelerator / " » X a, b, c 
Beam loading <—rfV/rfi) pn X a, b, d 
Peak beam currant at maximum 

conversion affieiancy / - " » X a, b, c, f 
Diameter of beam aperture / " ' X a 
Maximum RF ^ower available from 

tingle sOUf i / - • X e 
Maximum permissible electric field 

strength / " » X r-

Re' live frequency and dimen­
sional tolerance: / " • X a. b 

Absolute wavelength and dimen­
sional tolerances , - . « X a.b 

. ?wer dissipation capabffity of 
accelerator Structure / - X a.b.d 

. or direct scaling of modular dimensions of accelerator structure, 
b. For some RF attenuation in accelerator section between feeds. 
c For fixed electron energy and total length. 
d. For fixed total length. 
e. When limited by cathode emission. 
f. When limited by beam loading. 
g. Approximate; er .pineal. 
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Fig. 36. SLAC 3.0*> meter-long constant-gradient accelerator section. 

couplers. Using Rq. (&.17), the reader should verify that the energy obtained per 
section, taking into Account ~ 10% feed losses, is approximately 

AER- •= 10 e \[PMW MeV . (5.18) 

If the power of a 36 MW klystron is split four ways, as it is '̂ SLAC, tb^n 

AEtf = 30 McV/section 

* 
or 120 MeV/klystron. 

In comparison, a matched standing-wave structure yields a steady-state energy of 

AE* - «[Patr)1*2 (S.lfl) 

with values of r thai CUD be 50% higher. Thus, in principle, energies that are 25% 
higher eould be obtained for the same values of P$ and t. In actual fact, because of all 
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the difficulties luted under Sees. 4.8 and 4.0, such standing wave structures are only 
built for the special applications discussed earlier. 

5.3 BEAM CURRENT. EMITTANCE, BUNCH LENGTH AND BEAM LOADING 
'n the preceding sub-section, not much has been said about the beam itself, its 

characteristics, its ochavior and its effect on the structure. The subject or beam 
dynamics in an electron linac is again so vast that we cannot hope to d > it justice in 
the space allotted here. Thus only a few aspects of the problem will be touched upon. 

A bunch of electrons can generally be characterized by the total number or particles 
contained in it, the transverse emittance, the bunch length and l J energy spectrum, 
In addition, the beam, which is generally made of a train of bunchti, has t* pulse 
length and a repetition rate (unless it a CW), and the notion of 1 earn power can be 
associated with it. Wc will now discuss thev: various properties, illustrating tnem with 
some practical examples. 

Total number of particles per bunch. Typically, in an electron linae. the total num-
bei of electrons per bunch is in the range 107 - 10 n . For example, the SLAC linac, 
when it icoelerates a beam of 50 mA peak currant within a 1.6 psec pulse, produces a 
train of ~ oOOO bunches and a total of 5 X 1*'" -lectrons per pulse. Thus, the number 
of elections per bunch in this case is 10 s and the beam energy per pube at 25 GeV is 
2000 joules, or 72C kilowatts at 3GO pulses/sec, i.e., close to one megawatt! The goal 
of the SLC project at SLAC is to obtain single buncnes of electrons and positrons of 
5 X 10 : o particles, i.e., of 500 times greater intensity. Such single bunches with ~ 8 
nnnocoulombs of charge at 50 GeV will carry an energy of 400 joules, or 72 kilowatts 
at 180 pulses/sec. 

By contrast, a medical linac at 5 MeV, 200 mA ptak current and a duty cycle of 
1 0 - 3 can deliver to its x-ray target a power of one kilowatt. 

Transverse emittance. Assuming a bunch of Gaussian or other not too unreasonable 
shape, one can define transverse emittaLces aT<^x and ffyoj, where cx and ay are 
the rms transverse dimensions of the bunch and o'g and fy are the corresponding 
rim angular dimensions; for a single particle J = px/pz = Px/"lPm0e &Bd j / = 
Py/Pt = Pi/l 0moc- The p r and p?*s refer to transverse moments and i is the usual 
\\ — ji")~lt*. Often, the above quantities are defined as &'px^s and fiTOyOy, or simply 
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l"z^x and 1<fy^ when ft ~* 1. These quantities havt the advantage of being invariant 
with energy. They arc measured in many different unit3 of which some typical ones 
are mQc • cm or (McV/c) cm. Since the second unit is twice as big as the first, the 
entittance measured in (McV/c) cm is half that in m0c • cm. In the x, pz and y, pu 

phase-space planes, Gaussian beam envelopes are represented by ellipses and one often 
quotes Ibu above quantities multiplied by ir to denote omittance areas (see Fig. 37J. 
According Lo Liouvjlle's Theorem, these areas are invariant provided that only non-
di»sipativc forces act on the particles. 

Fig. 37, (a) Logarithmic orbit due to 
initial deflection 0n at ?o showing 
contracted length Is, (b) Rotation of 
transverse phase-space ellipse from 
injector to accelerator output. 

Final Ellipse 
01 Enfi bl 
Linoe ItOCeVJ 

As an example, a recent transverse emittance measurement for a single f •:;.<-. of 
fi X IO 1 0 electrons out of the proposed 40 MeV SLC injector gave ~ 7.5 X *~~3 sr 
(MeV/«) cm. This means that if this beam is focused to a waist of 0.75 cm radius, its 
angular divergence is 0.25 mrad. If there were no transverse emittance growth along 
the accelerator, at say 40 GeV, the angular divergence would shrink to 0.25 prad for 
the same 0.75 cm waist (see proof below). Even though the above emittance from 
the injector is quite small, the SLC requires that the emittance at the final focus be 
no greater than 1.5 X IO" 3 ff (MeV/c) cm or five times smaller. This explains why 
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damping rings to "cool" the beams downstream of the injector had to be added in the 
SLC design. 

The transverse heam dynamics in the injector of a linear accelerator are compli­
cated by the presence of space charge forces and radial defocusing forces due to waves 
and particles which are not yet moving at the velocity of light. We have seen earlier 
from Eq. (3.43) that as fiB -* 1, the magnetic and electric forces from a synchronous 
wave cancel each other. Thus, leaving out alt other spurious forces, the- transverse 
equation of motion of an electron in the x- (or y)-plane past the injector is given by 

dpi 
-jf = ° (5-20) 

but since dz = c dt, we can rewrite thfa equation as 

d { dx\ 
TzVdl)=0- f5"21* 

Integrating, we obtain 

dz 
t j - — const (5.22) 

which confirms the correctness ol the assumption we made above. 

Since under these conditions the quantity f dxfdz is conserved along the length of 
the linac, we can make it equal to Tro ^0 at ZQ, say at the output of the injector. Then 
a second integration leads to 

/
* c z dz 

dz = 7O0O / — (5.23) 
ID * :» 1 

and if we assume that the energy grows linearly as f = Yz where V is constant, then 

Irn z 
z~xo = ^00tn — (5.24) 

T ZQ 

or 

x - 2-u = ffo za tn — . (5.25) 

Looting at Fig. 37a, we see that an electron starting at zg with energy to (where 
actually ZQ is defined as TO/TOI X=^XQ and angle 0Q, will end up at z with transverse 

80 



displacement x0 + 00zatuzfza. It is as if the length * — ZQ has been contracted to 
L = zoln z/z0. Thus if z0 = 3 m, z = 3000 m, -/ = 2B.6G/m, the 2G97 m length 
looks like it has been contracted to 20.7 >n. The orbits instead of being linear are 
logarithmic. 

It is instructive to follow the evolution of the phase-space ellipse from its waist 
at the output of the injector (10 MeV) to its final configuration at the output of the 
accelerator (40 GeV). Since pz cannot grow beyond (po)moz and the two (xa)mat points 
represent rays which are parallel to the i-axis and therefore cannot he deflected by 
an increase in energy, the ellipse has no choice but to get elongated between the two 
(Po)mnz horizontal lines while remaining fixed at the two (xolmaz points. It can be 
shown that as the ellipse gets elongated, the [x)mat coordinate is given by 

x'L: = <*o)Lr + (e0z0 In --)" (5.26) 

where 0o = (pn)mar/pjo- •» t n e example we chose, XQ = 0.75 cm, 0o = 0.25 mrad, 
;n (n Z/ZQ = 20.7 m, we find that xmaz = 0.01 cm. We see that the radius of the beam, 
in the absence of any transverse emitlance growth, would barely need any focusing to 
stay within the aperture of the accelerator irises. In actual fact, however, emittance 
growth does take place because of the effects discussed earlisr, and a FODO array or 
other quadrupole focusing system is indeed required. The description of these systems 
is beyond the scope of these lectures. 

Bunch length. In sub-section 5.1, we have described qualitatively how the bunches 
are formed in the injector of a linear accelerator. Following the electrons from the gun 
through a prcbuncher and >i boncher is a complicated problem which is best done by 
a computer. However, when the particles finally enter the vp = c. constant-gradient 
accelerator section, there is a fairly simple expression for the asymptotic phase #oo of 
an electron of velocity VQ = /i 0c entering with phase <po relative to the wave: 

co» *«, = cos 4>0 - ~ (f i jr ir) < 5- 2 7) 

81 



Unlike for protons, the phase origin is taken at the field null, 00° ahead of crest 
(Fife. 38) and a = e £ X 0 / m 0 c z . ' When the factor 2v/a [(I - £ 0 }/(l + £ 0)] ' /2 is 
made equal to 1 through the proper choi:e of a {a = 3.63 if /?o — 1/2, or a = 2.37 
if /? 0 = 3/4), then an electron, entering the accelerator at fo = °i asymptotically 
approaches the crest, $oa = —ir/2. For small phase extents ±XQ around 0n = 0, it 
fan be shown that 

<?°°~ 2 T ' 
i.e., all other electrons end up behind the crest. For example, ir —1/4 < 0Q < 1/4 
radian, then -[ff/2 + 1/32] < ( * „ < -rr/2 radian, i.e., a 30° bunch ends up in less 
than a 2° bunch. Typically, at SLAC, bunches over a wide range of charge have 
been measured to contain most or their charge within 5°. The asymptotic charge 
distribution is not quite Gaussian, even ir that of the entering bunch is (which is 
generally not the case either). For the SLC. it is planned to have most of the 5 X 10 1 0 

electrons within 20°. 

Fig. 38. Asymptotic bunching process in 
vp = c constant-gradient accelerator 
section with value of a optimized 
for entrance conditions. 

Energy spectrum due to bunch length and beam loading. The last beam proper'/ of 
great Interest to linac builders and users which we will consider is the energy spectrum, 
namely, how monochromatic is the beam' Typically, one wants to have all the electrons 
within an energy spectrum width of J^o ^r Itsn. There are two effects inherent to how 
an electron linac works which bear on the spectrum. The first one is the bunch length 
which by its very nature implies that all electrons within it do not receive the same 
energy, either because they are not on the same part of the wave or because of their 

" Not to be confused with the attenuation/unit length o defined earlier! 

AsymptDNc Bunch 

Entering Bunch 

Direction of Wave---
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own wakefields. The sec-mid one i.t beam loading from bunch to bunch due to energy 
removal from the structure by each bunch: this effect can reach steady-state after a 
certain number of bunches. In addition to these two inherent effects, there are a Dumber 
of other (echn logical effects which can be detrimental to the spectrum width such as 
poor injection conditions, phase and frequency modulation in the master oscillator, 
poor amplitude and phase stability of the rf sources, poor accelerator temperature 
control and many others. We will not examine these. 

In a multi-section linac with individually phase controllable klystrons, it is possible 
to phase each tube so that a bunch of j ' •<• length A^ is centered on the crest. Then 
it is easy to show that 

or ~ 0.12% for A^ = 1/10 radian. The reader can convince himself that this is the 
best that can be done for a low current bunch in which v<:ikofic]ds do not play a role. 
Indeed, this effect resulls from the shape of the cosine wave and nothing can be done 
about it, not even rocking the bunch from one side of the crest to the other, which 
is sometimes suggested! This would only work if the top of the wave were a triangle 
instead of a curve. On the other hand, if the bunch is highly charged as in the 5LC, the 
energy decrease due to the wakcficld effect of the head on the t a : | can be compensated 
for by locating the bunch ahead of crest at the proper phase, which to first order can 
cancel the decrease if tho slopes can be matched. 

Corning back to the low current case, it is often asked what the effect of misphasing 
individual klystrons is on the beam. The answer is that to first order, misphasing 
individual klystrons only decreases the maximum reachable energy but does not affect 
the spectrum. Indeed, it can easily be shown that the (A^) 2 / 8 rule still applies as long 
as on average, the bunch travels centered on crest. 

The beam loading effect, which has been referred to several times earlier, comes 
about because the rf energy stored >n the linac structure is reduced as successive 
bunches get accelerated and extract energy from it. The effect goes through a tran­
sient phase until a new lower equilibrium energy level is attained. ID a traveling-wave 
structure, it can be seen intuitively that each bunch that traverses it sets up instanta­
neous rf field "packets" in each cavity at the velocity of light (except in the bunchcr). 
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These packets then travel down the structure in phase at the group velocity. If Ihe 
train of bunches continues, there b a buildup of fields versus z, even though the pack­
ets get attenuated with distance. Steady-state is reached when the packet generated 
in the first cavity reaches the last. As it happens, this is exactly the definition of the 
fllling time tp. Thus if we inject a train of bunches after one filling time, i.e.. when 
the section if filled, it takes an additional filling time before steady-state is reached. 

We will give a short derivation of the steady-state case and let the transient case 
be understood intuitively. If a peak current of intensity i is assumed, our power loss 
equation (5.4) must be written as 

dP 
d 
ip . fdp\ 

assuming that the electrons are synchronous awl ride on the crest. Then, differentiat­
ing the expression 

E2 = 2arP (5.30) 

with respect to z, we get 

dE da dp 
E £f =rP f 4 r l . (5.31) 

dz iz dz 

Substituting (-5.20) for dPjdz in (5.31). - £ - / r for (dPfdz)wott and &-/2ar Tor P. we 
obtain the general differential equation 

dz \ 2 o 2 dz) 

It follows that for the constant impedance ease 

dZ. = -aE - rtri (5.33) 
dz 

and for the constant-gTadient case, replacing da/dz by its value given by (&.14), 

dE 
-r- = - a n . (5.34) 
az 

The solutions are: 
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Constant-Impedance 

K = / ibe"° ' - n'{ I - r a ' \ (5.35) 

wherc£ ,o = ( 2 a r P f l ) 1 / 2 , 

Constant-Gradient 

/ . r* "* A l-^il-e-2') (5.36) 

where 

J?0 = (2rv0r r 0 ) , / 2 = [ r ~° (1 - e~2' Ij' " . (5.37) 

The energy equations are then obtained by simple integration, as in (5.7): 

Constant-Impedance 

AfcV = e{l>ofr)lf" (27-)1/2 i ^ rirt (1 - . — ' - J (5.38) 

Cons t an t-Ciiadipnt 

We can see that when i = 0, expressions (5.38) and (5.39) collapse back to j5.9) and 
(5.17) respectively. The reader can verify that for the SJ.AC conditions i'jed for (5.18) 
and i = 50 niA, T = 0.57, the energy reduction per section due to beam loading 
under steady-state conditions is 2 MeV out of 30 MeV or Q.7%. The steady-state field 
profiles along a section given by (5.35) and (5.36) are sketched in Fig. 3fla. The shaded 
areas show the reduction due to heam loading. The energies are the integrals under 
the respective curves. Figure 39b gives the evolution of energy as a function of time. 
The interval between 0 and tp shows the energy increase as the section is filling, the 
second interval between tp and 2tp shows the transient decrease due to injection of 
the beam at ( = tp, and the third interval (t > tp) shows the steady-state energy. 

The beam loading effect, as can be seen, is inherent to the operation of the linac. 
Once steady-state is reached, it has no effect on the spectrum width, unless the current 
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itself fluctuates. If the beam pulse length irsi-If is only on the order of 2(y, which is 

the ca.se at SLAG", half the beam pulse Ls in the transient state. The remedy which 

is often used to reduce this overall spectrum broadening effec' is to inject the beam 

somewhat earlier than at time tf so that the first bunches see their energy reduced 

as well. Wi th a large enough number of klystrons, i t is possible to stagger the onsut 

of the rf in successive section* so that the two effects cancel each other down to less 

than \% (Fig. 3Qc). Thus, the steady-state reduction cannot be avoided but ot least 

its effect on the spectrum can be minimized. 

E, 

E 0 • = 3 3 ^ ^ ^ ? 
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Fig. 30. Effect of beam loading: (a) on /T-field profiles in sections, |b) on energy &Ef{ 

delivered versus time, (c) on energy A C / f if beam is injected before t = If. 
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In standing-wave accelerators, beam loading is of course also present, However, 
since the beam-induced waves are caused to bounce back and forth just like the ex­
ternally supplied waves, the reduced field profile takis several filling times to reach 
steady-state. 

5.4 RECENT DEVELOPMENTS AND FUTURE CHALLENGES 
During the past few years, progress in the design of linear electron accelerators 

has been made on a broad front. Industrial manufacturers have specialized in the 
production of a large number of medical and radiographic linacs. Their contribution 
has been strong in the areas high rf-to-beam energy conversion efficiency, high shunt 
impedance standing-wave structures, minimum external focusing, good packaging, and 
in some specialized machines excellent emittance characteristics through the design of 
very high voltage electron guns (up to ~ 400 kV). In some cases, linaes have been 
built to produce beam pulses in the 10-20 nscc range with currents up to 20 A. In 
the universities, the accent at laboratories such as MIT, ALS (Saclay) and NIKHEF 
(Amsterdam) has been on linacs with duty cycles up to 10?5>. The challenge there 
has been to obtain reasonable currents (~ 20 mA) for long pulses (10-40 psec) with 
excellent omittances and without (he onset of beam breakup. 

At laboratories in the U.S. such as HEt'L and SLAC (Stanford), University of 
Illinois and Cornell, in Germany at Karlsruhe and Wupportal, in Switzerland at CERN, 
and in Japan at KEK, considerable effort has gone into investigating superconducting 
structures for linacs, microtrons and storage rings. The hope to build CW linacs 
with accelerating gradients up to the theoretical limit of 30 MV/m in niobium has 
not been realized so far. On the other hand, much progress has been made towards 
understanding and overcoming some of the major obstacles in the field such as the onset 
of multipactoring and thcrmo-magnetic breakdown due to impurities in the niobium. 
Thus, with a few tens of watts of power, several laboratories have been able to obtain 
gradients of 2-1 MV/m fairly routinely under CW conditions. The entire subject of rf 
superconductivity in its application to accelerators is dealt by M. Tigner, elsewhere in 
this book. 

Other institutions have built or used a variety of dedicated low duty-cycle linacs 
for injection of electrons (and positrons) into storage rings. This category includes 
several laboratories such as Cornell, Frascati, Orsay, DESY, Novosibirsk, the Photon 
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Factory at KEK. and in the future the LEP injector at CERN and two injector linacs 
being planned in the P.R.C. (Beijing and Hefei). A large 4 GcV linac, with 200 mA 
peak current and high repetition rate {1000 pps) is presently being designed as an 
injector to a stretcher ring for the National Electron Accelerator Laboratory (NEAL) 
at Newport News (Virginia). 

Another area where innovation has taken place is in the field of rf energy compres­
sion. The attempt here has been to gain electron energy without increasing average 
or even klystron peak power. The basic scheme, invented at SLAC by P. Wilson, D. 
Farkas and H. Hogg, has been called SLED, an acronym for SLAC Energy Develop­
ment. (For a general reference, see for example, Z. D. Farkas, II. A. Hogg, G. A. Loew 
and P. E. Wilson, Proceedings of the IX' f t International Conference on High Energy 
Accelerators, SLAC (1974), page 576). The principle is illustrated in Figs. 40 and 41. 

L I M l t WITHDUT SLED 

KLYSTRON t> 
c*s. 

LINiC WITH SLED 

M S dB 
COUPL 

1 - h 
on 

Fig. 40. The SLED principle. 

Referring to the top of Fig. 40, we sec that under normal non-SLED operation, the rf 
drive pulse which ia amplified by the klystron is directly transmitted to the linac. The 
SLED system, which is shown at the bottom of Fig. 40, has two major components: 
a 180° fast phase shifter on the drive side of the klystron and two high-Q (t?n = 
100,000) cavities on the output side of the tube with a 3 db coupler connected as 
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shown. During the first part of the pulse, the phase of the rf drive signal is reversed 
and the rf cavities fill up with energy with that phase. Because of th ' 1 3 db coupler, no 
energy is reflected to the klystron. The fields emitted by the cavities add algebraically 
with the fields reflected by the cavity coupling irises, and the power flows toward the 
accelerator. Exactly one linac filling time ( ~ 0.8 /isec) before the end of the pulse, the 
phase of the drive signal is flipped back by 180°: as a result both cavities discharge 
their energy into the accelerator. The discharging pulse amplitude is increased by the 
fact that the klystron pulse adds to it. The output pulse length is tailored exactly to 
fill the accelerator sections at one instant of time. 

SLED OPTIONS 

I D 
PULSE LENGTH Z.bfj.* 5/is 

EFFECTIVE POWER 2 3,15 
GAIN 
ENERGY GAIN 1.4 1.78 

REPETITION RATE 360 pps IBO ppj 

SLEDH 

Fig. 41. Comparison of two rf pulse length options for SLED showing bow a longer 
charging time increases the output pulse amplitude. 

It can be seen intuitively that the longer the time to charge the cavities, the more 
energy there is available at the time of the discharge. On the other hand, there ia a 
limit to this process because of the copper losses in the cavities. Figure 41 shows two 
rf pulse length options in what is obviously a continuum. Much beyond 5 ftsec, one 
reaches a point of diminishing returns. The two cases of 2.5 and 5 /isec with their 
respective energy gains and pulse shapes are given because the first one equals the 
pulse length that was initially available on the SLAC accelerator and the second, in 
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conjunction with a SO MW klystron, would satisfy the SO GeV energy requirement* of 
the SLC. The two repetition rat':s in combination with the corresponding pulse length") 
require the same AC power. 

Note that white the SLED system is indeed a form of energy compression, it is 
not perfect because the cavities start out by rejecting the energy, then absorb some 
of it themselves, and finally do not emit nice rectangular pulses. Thus, for example-, 
the power gain in the !i pscc case, instead of being 5 /isec/0.8 /iscc, i.e., 6.2.1, is only 
3.15. The idea in itself, however, has been applied with considerable success and other 
laboratories stich as CERN and the High Energy Institute at Beijing a... adopting it 
Tor their linac designs. 

In the preceding pages, we have referred a number of times to the SLC or Linear 
Collider project at SLAG. Of all the known applications of electron and positron 
linacs, this is probably the most challenging because it puts to a test and stretches to a 
maximum the capabilities of these accelerators. For the SLC to become operational, we 
must improve our understanding and control of beam generation, injection, omittance, 
beam centering sad focusing to keep the omittance from growing, energy spectrum, 
phase and amplitude stability of the klystrons, positron generation and many others. 
These problems are discussed elsewhere in this book by R. Stiening. 

The SLC will be the first test-bed for these ideas. Beyond this first 50 GcV-on-SO 
GeV c* linear collider, it is now being asked whether machines of this type could be 
built in the 1-2 TeV range. This question will of course be much easier to answer after 
some experience has been obtained with the SLC. However, one problem ran already 
be focused on now. This is lbe problem of energy consumption. We will end these 
lectures with a simple example which might stimulate the reader to think further. 

It is not clear at this point where the ultimate limits of aece'ernling gradient will 
he nor what factors will determine the length of the accelerator. Suppose we want to 
build a 1 TeV-on-1 TeV e* collider -•'->¥ we have two choices oT gradient: 20 NfV/m 
(conservative, attainable now) or 100 MV/m (less conservative, yet to be tested). The 
respective lengths would be 50 km and 10 km/linac. Returning once more to Kq (5.2) 
and rewriting it as 
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we see that even if we are able to bring the energy onto the axis of the accelerator 
at 100% efficiency, it will take a large number of joule* to establish the fields. Table 
5 summarizes the results, assuming that r/*J = SOOOO/m at 2856 MHz. The power 
requirements are worked out for an example where the two linacs are pubed 200 times 
per second to reach the overall desired luminosity. Each puke is used to accelerate n 
bunches (4 ^ n < 10) which will at most remove 20% of the stored energy. Unless 
something very ingenious is done, the remaining S03S energy will be wasted. Note 
further that the real power consumption will be at least twice the rf pow«r consumption 
because of all the inefficiencies involved in converting AC to rr. In a Tew years, at 
80.10/kW-h, 1/2 GW of power will cost $50,000/hr. It is quickly seen that there will 
he a strong incentive to improve upon the numbers in this tabic, Two avenues suggest 
themselves. One is to increase the frequency since wr/Q scales as w2. The other is to 
invent a method of recovering the energy Tor some useful purpose. The challenge is 
yours! 

Table 6. 
rf Energy and Power Needs for a 1 TYV-on-l TeV e± Linear 

Collider Assuming No Losses in Establishing Fields 

Gradient (MV/m) 20 100 
Length/linac (km) CO 10 
rf Frequency (MHz) a«r>e 2R5B 
Wti (Joutes/m) 4.47 111.73 
Total energy stored/linac/pube (MJ) 0,223 1.117 
rf Power/2 linacs/200 pps (MW) 80,36 440.3 

Acknowledgementa 

The authors wish to thank G. R. Lambertson, R. H. Miller, ft. B. Neal and Wang 
Juwen for useful discussions. 

01 


