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ABSTRACT 

Plasma results f rom the ELMO Bumpy Torus ( E B M ) and Nagoya Bumpy Torus 
(NBT-1 M) experiments are compared. Both devices have 24 mirror f ield coils 
arranged to f o r m a torus, and both use 18-GHz electron cyclotron resonance 
heating power. The main difference is that NBT-1 M is somewhat ( - 3 0 % ) smaller 
than EBT-1. However, w h e n plasma results are scaled to el iminate this s i2e 

discrepancy, plasma results are found to be nearly equivalent in both bumpy tori . 
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1. INTRODUCTION 

PLMO Bumpy Torus (EBT-1) and Nagoya Bumpy Torus (NBT-1M) are unique 
plasma devices that share a similar magnetic geometry, plasma heat ing source, and 
many similar diagnostics. They are somewhat di f ferent in size, but more impor-
tantly, they were built and are operated half a world apart. 

EBT-1 is the older of the t w o devices, being first operated in 1973; NBT-1M 
began operat ion almost a decade later. Because the data base for EBT-1 was wel l 
established by the t ime NBT-1M was initiated, it was felt tha t NBT-1M experimental 
t ime could be more profitably used for new experiments, rather than systematically 
repeating the EBT-1 results. Also, the results have been continually refined on both 
devices as new diagnostics have been brought into use. There n o w exists a l imited 
body of data common t o both devices, and a detai led comparison of results (where 
possible) would appear to be in order. That is the purpose of this report. 

2. SIZE COMPARISON 

EBT-1 is described in refs. 1 and 2, and details of NBT-1 M are given in ref. 3. 
Both devices have 24 magnetic mirror field coils, canted so as to form a torus. Both 
are heated by 18-GHz microwave power injected into mul t imode cavities. Both 
devices use hydrogen as the work ing gas. 

One clear difference be tween NBT-1 M and EBT-1 is tha t of size. A detai led 
comparison is given in Table 1, and the relative size o f the cavities is shown in Fig. 1. 
Generally speaking, EBT-1 i s a b o u t a t h i r d bigger than NBT-1 M . This size di f ference 
comes about because the NBT-1 M cavities were specifically designed so as t o mini-
mize surface plasma and, thus, funnel more ^f the microwave power into ring and 
core heating. Because NBT-1 M additionally nas a slightly smaller major radius, its 
mirror ratio is higher (i.e., 2.4 as contrasted with a mirror ratio of 1.9 for EBT-1). T h e 
size difference affects t h e microwave heating power density3,4 (for equal input 
power into both devices). 

3. PLASMA COMPARISON 

Ideally, data comparisons should be made a t identical microwave powers a n d 

identical pressures in each plasma device. It is sometimes possible t o f ind cases in 
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which the applied microwave powers were s'milar. However, pressures are 

recorded somewhat differently on the two devices, so a machine-to-machine 

calibration must be made. 

Pressure calibration in NBT-1 M relies on that of the manufacturer of the 

ionization gauge tubes. The EBT-1 ionization tubes have recently been absolutely 

calibrated by means of a spinning-rotor-type gauge, whereupon it was found that 

the pressure readings were about 50% lower for nitrogen gas. To convert EBT-1 

pressures to hydrogen equivalents, as in NBT-1 M , it is necessary to multiply by 2.5 

Figure 2 shows microwave interferometer < n e £ > data f rom EBT-1 and NBT-1 M. 

The shapes of both curves are remarkably similar. A' would be expected, the EBT-1 

data have larger absolute values than those of NBT-1 M because of the longer 

plasma path length e t h r o u g h t h e EBT-1 cavity. If the effective path length through 

the cavity is assumed to be that of a ring diameter (Table 1), then absolute densities 

can be obtained, as plotted in Fig. 3. In this f igure it can be seen tha t density in 

NBT-1 M is about 20% higher than that of EBT-1 at a fixed pressure. This difference 

might be expected, as the plasma density is found to scale as the square root of the 

applied microwave power. 5 if it is assumed that this scaling holds for the power 

density as wel l , then the densities of Fig. 3 can be normalized by multiplying by the 

square root of the plasma volume (Table 1). The results of this normalizat ion are 

plotted in Fig. 4. The results again agree to wi th in about 2 0 % , which is wi th in the 

uncertainty of the path length e. 

Since the densities are in reasonable agreement , one might expect that the 

density profiles wou ld be similarly matched. Profiles were measured on EBT-1 by 

using a 9-channel microwave interferometer and by Abel inverting the results. 

Cylindrical symmetry was assumed. A more accurate point-by-point determinat ion 

was carried out on NBT-1 by detecting excitation radiation f rom a 4 -keV neutral 

l ithium beam. This diagnostic is absolutely calibrated by measuring the signal f rom 

neutral gas scattering. Profiles are compared in Figs. 5-7. in Fig. 5 the pressures are 

somewhat di f ferent , whi le in Figs. 6 and 7 the pressures are the same for both 

devices. Because of dif fer ing machine size, radial dimensions have been normal ized 

by the inside and outside ring radii (Table 2). Densities have been normal ized to 

unity at the plasma center. 

Despite the coarseness of the EBT-1 data, Figs. 5 -7 show tha t the density 

profiles are very similar. Note that the central EBT-1 interferometer channel was 

anomalously high, which biases the EBT-1 data t o lower values t h a n those of 

NBT-1 M. 
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The presence of a potential wel l is an important feature of bumpy tori, and 

data f rom heavy ion beam probes can be compared both on the basis of wel l depth 

and well size. The comparison of wel l depths is subject to def ini t ion (i.e., uncer-

tainties as to the spatial locations f rom which the data are taken) and exact 

a l ignment of the heavy ion beam systems. Nonetheless, Fig. 8 shows excellent 

agreement be tween EBT-1 and NBT-1M for like ring locations. 

Another measure of comparison is that of potent ia l wel l size. Because of the 

difficulty of obtaining the large amount of data necessary for a two-dimensional 

plot, only one such plot was constructed for EBT-1 (Fig. 9). T w o such plots exist for 

NBT-1 M (Figs. 10 and 11). The EBT-1 plot was made at somewhat higher pressure 

than those of NBT-1 M, and additional microwave heat ing power was employed 

(10.6 GHz for EBT-1 and 8.5 GHz, in Fig. 11, forNBT-1M) . The fractions of the ring 

radius occupied by the last closed potent ial contour are 0 .52 ,0 .71 , and 0.74 for 

Figs. 9 through 11. Thus, it appears that potential wel l scale size may be somewhat 

di f ferent in these devices. 

Electron temperatures in NBT-1 M are determined by six separate measure-

ments. Three involve spectroscopic line ratios, plasma conductivity is used in a 

fourth, and Thomson scattering is used in the fifth. Of these methods, Thomson 

scattering is the most trusted. A s s h o w n i n F i g 12, all five methods give 

temperatures less than 100 eV, and temperatures decrease w i t h increasing neutral 

pressure. The sixth method of determining electron temperature is by means of soft 

Xrays. Tail temperatures of 1 and 20 keV are observed. 

Also plotted in Fig. 12 are Thomson scattering temperatures for the EBT-1 

device wi th 40 k W o f 18-GHz power and 6-10 k W o f 10.6-GHz power. These temp-

eratures fall in the same range as those of NBT-1 M . Soft X-ray tail temperatures are 

measured to be 200 to 600 eV. 

The relative values of the particle confinement t ime can be compared by 

calibrated measurements of the H a radiation. These data are plotted in Fig. 13. 

Note that the microwave heating power levels were not equal forxhc two experi-

ments. Also, there is the possibility of diminished sensitivity in the NBT-1 M 

measurements due to a w i n d o w coating, making an absolute i p comparison 

questionable. Still, the trends of both curves are qualitatively the same. 

Impurities are low in both devices, primarily due t o impurity l ifetimes of less 

than 1 ms. Aluminum, oxygen, and carbon are the principal impurities in EBT-S, 

w i th a luminum being the most abundant (nAi/ne < 10-3). There is somewhat less 

data on impurities in NBT-1 M , but it is believed tha t oxygen is the main impurity. 



6 

The ul t imate vacuum pressure (which is a measure of residual gas impurities) is p Q < 

10-7 torr in NBT-1 M and p 0 < 5 x 10-7torr in EBT-1. In both machines, impurity 

radiation represents a negligible power loss. 

Plasma fluctuations are qualitatively similar in EBT-1 and NBT-1 M , a l though 

they differ somewhat in detai led behavior. Both have regimes in which low-

frequency f lute modes exist outside the rings. Drift modes also are found that can 

penetrate into the core plasma. At frequencies o f f s 1-2 fCi, the hot electron 

interchange mode is observed near the T - M t r a n s i t i o n . 6 At still higher frequencies, 

an as yet unidentif ied mode appears in the range of 30 to 100 MHz . At about 

3 GHz, plasma fluctuations have been noted in EBT-1 that are tentatively identi f ied 

with the whistler instability, 

Finally, a comparison of hot electron ring properties can be made. Table 2 

gives a comparison of ring parameters in which there is very little difference 

between EBT-1 and NBT-1 M. The ring densities and temperatures quoted in Table ? 

are derived f rom hard X-ray data. A direct measurement of |i was at tempted on 

NBT-1 M by measuring the Zeeman splitting of line emission from lithium atoms. 

This measurement gave an upper limiter of [} < 10%, which is lower than that 

obtained from the hard X-ray measurements. 

Detailed studies of the ring position have been conducted in NBT-1 M by a 

movable hard X-ray cannon, H n emission, and skimmer probes. It is concluded that 

the rings exist at a>M = 2wCe» a conclusion shared by analysis of EBT-1 data. 

4. CONCLUSIONS 

This report has compared detai led plasma properties in EBT-1 and NBT-1 M . 

These .omparisons include ne€, ne(r ) , $(r), T e , ip, impurity levels, plasma fluctuations, 

and hot electron rings. Because NBT-1 M is about one-third smaller in physical t ize 

than EBT-1, w e have a t tempted to scale the results for comparison. The principal 

scaling parameter used was the size of the hot electron rings. 

W h e r e direct comparisons were possible, w e generally found the results on 

both devices to coincide to within the error limits of the measurements. An 

apparent exception is the relative size of the potential wel l , w i th the closed 

potential surfaces of NBT-1 M occupying a larger fraction of the ring radius than 

those of EBT-1. All in all, it is very gratifying to f ind that devices constructed and 

operated in d i f ferent parts of the world can exhibit nearly identical results. 
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TABLE 1. EBT-1 and NBT-1 M size comparison 

EBT-1 NBT-1 M 

Cavity diameter , cm 50.8 30.6 

Ring diameter , cm 29.2 15.5 

Throat diameter, cm 22.2 13.9 

Major radius, cm 152 140 

Average plasma 
diameter , cm 11 7 

Plasma volume, L 360 135 

Mirror ratio 1.9 2.4 

B(center), gauss 5000 4986 

Pp (18 GHz), k W s 60 £ 4 5 (pulsed) 

TABLE 2. Comparison of ring parameters 

EBT-1 NBT-1 M 

T e , keV 100-200 230 

n e , x 1 0 H cm-3 1 - 4 1 -3 

p,% < 3 5 < 3 0 

A (ring thickness), cm —3 - 3 . 5 

r (ring radius), cm 12 (outside) 
15 (inside) 

7 (outside) 
8 (inside) 

Bres (up = 2 <»ce)> gauss 3216 3216 
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Fig. 1. Relative size comparison of NBT-1 M and EBT-1 cavities. Field lines and 
coils are also shown. 
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Fig. 10. Plasma potential contours in NBT-1 M; p 0 = 1.4 x 10-5 torr, and 
Pp(18GHz) = 30 kW. 
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