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I. GENERAL COMMENTS ON THE FREEZING OF CELLS ", ., 
\ 

,Mammalian spermatozoa were f i r s t  frozen. successfully t o  "dry-ice" tempera- 

tures  i n  1950 (smith and Polge, 1950), a feat .  t ha t  some consider t o  mark the 

beginning of modern cryobiology. The accomplishment quickly l ed  t o  the 

successful freezing of other mammalian ce l l s ,  and it quickly produced major , 
/ 

repercussions i n  the c a t t l e  industry by v i r tue  of the l o g i s t i c a l  advantages 

of frozen sperm in a r t i f i c i a l  insemination. The combination of AI and freezing 

has permitted the widespread d is t r ibut ion  of sperm from superior s i r e s ,  and 

has thereby been a powerrul force i n  the development of s t r a ins  of c a t t l e  with 

'superior agr icu l tura l  characteris t i c s .  

The successful freezing of bovine sperm i n  1950 l ed  immediately t o  attempts 

t o  freeze mammalian ova, but nearly a quarter of a century had t o  pass before 

the attempts were successfbl. Success was f i r s t  reported by Whittingham e t  al. 

(1972) f o r  mouse embryos, and shor t ly  thereaf ter  independently by Wilm~t  (1972). 

The successful freezing of c a t t l e  embryos was reported Pour years l a t e r  by 

Willadsen e t  al. (1976). 

The elrplanation of the 25-year 1,ag provides a n  interest ing example of 

interplay between basic  and applied research. The procedures tha t  l ed  t o  the 

i n i t i a l  success i n  freezing sperm were pa r t ly  empirical ( f o r  l i t t l e  was known 

of the mechmisms of freezing injury)  and p a r t l y  due t o  good fortune (the . . 

s t r ik ing  protective e f  f e c t  of glycerol was discovered somewhat serendipitously) . 
But empiricism and good fortune were not suff ic ient  fo r  the freezing of the 

female genome. Success f o r  the l a t t e r  followed the evolution of some under- 

standing of the fundamentals of cryobiological processes, an evolution t h a t  

began i n  the ear ly  50ts ,  accelerated i n  the 60ts ,  and i s  continuing now. 

Contrary t o  the usual impression, the challenge t o  c e l l s  during freezing 

i s  not t h e i r  a b i l i t y  t o  endure the very low temperatures required f o r  long 



storage, i t  is  the l e t h a l i t y  of an intermediate zone of temperature (- -15" t o  . , 

-50°C) tha t  a c e l l  must traverse twice -- once during cooling and once during 

warming. No ordinary, thermally driven, reactions i n  aqueous systems occur a t  

l i qu id  nitrogzn temperatures ( -1%"~). The only reactions t h a t  can occur a re  
. . 

d i rec t  ionization from background radiation. It can be calculated tha t  some 
, . 

5,000' t b  20,000 years would have t d  elapse t o  accuhulat'e enough damage t o  k i l l  - 

hal f  the stored c e l l s  ( ~ a z u r ,  1976; Ashwood-Smith apd ~riedman, 1977). '~xper imenta l  

confirmation of t h a t  prediction i s  lacking, but there i s  no confirmed case of 

c e l l  death ascribable t o  storage a t  -lsO for  some. 2 t o  15 years, even when ce l l s  

are exposed t o  leve ls  .of ionizing radiation 100 times background'  y yon e t  al., . 

1977). . . 

The problem, then, i s  t o  discover how c e l l s  can be cooled t o  - 1 9 6 " ~  and ' 
. . 

returned therefrom without G i n g  k i l led .  It i s  now c lear  tha t  they face a ' . 

sequential  s e r i e s  of challenges, any one of which can be l e tha l .  The two most 

important of these challenges occur during cooling, and are  c r i t i c a l l y  dependent 

on the r a t e  of cooling. The two are  in t r ace l lu l a r  freezing and solution-effect 

injury, '  respectively ( ~ a z u r ,  1970). Cells subjected t o  freezing are essent ial ly  

subjected t o  enormous changes in solute concentrations and osmotic pressures, 

and the c e l l s  respond in c la s s i ca l  osmometric terms. Solute perm&ition a t  

temperatures below 0°C i s  so much slower than water permeation tha t  osmotic response 

can be sa t i s f ac to r i ly  explained so le ly  t n  terms 'of the movement of water out 
, , 

of the c e l l  during cooling and in to  the c e l l  during warming. Briefly,  the sequence 

during cooling i s  the following: I c e ' i n i t i a l l y  forms i n  the external  medium. 

But, because it cannot pass through the c e l l  membrane a t  temperatures above about 
. . I 

i 
-lO°C, the c e l l  i n t e r i o r  remains unfrozen and becomes kncreasingly supercooled. 

A s  cooling below 0°C progresses, more and more of the external ~nedium becomes . . 

. converted t o  ice, and the solute  concentration i n  the residual  unfrozen puddles 



' . r i s e s  progressively and dramatically t o  multi-molar values. High solute concen- 
\. ' 

-\ 

t ra t ions  are equivalelzt t o  low chemical potent ials  of water, and consequently a 

large difference i n  chemical potent ial  tends t o  develop between the supercooled 

solution inside. tkie c e l l  q d  the progressively concentrating solution outside . .: 

the ce l l .  There are. two ways tha t  t h i s  difference i n  chemical potent ial  can 
,/ 

be eliminated: Water can flow out of the c e l l  and freeze externally, thereby 

concentratbg the in t race l lu lar  solutes.  O r  in t race l lu lar  water can freeze - i n  

s i t u  also thereby concentrating the in t r ace l lu la r  solutes. Which of these two -9 

routes prevails i s  c r i t i c a l  t o  whether or  not the c e l l  survives, and which of 

these two ' routes prevails depends c r i t i c a l l y  on the cooling rate .  If cooling 

i s  su f f i c i en t ly  slow, equilibration i s  achieved through water efflux. If cooling 

i s  not suf f ic ient ly  slow, the c e l l  i s  unable t o  lose water f a s t  enough t o  a t t a i n  

chemical potent ia l  equilibrium; it becomes increasingly supercooled; and a t  

some temperature belop7 about -10°C it freezes, in t race l lu lar ly  and i s  usually 

damaged l e t h a l l y  ( ~ i g .  1 ) .  The two most important determiners of "suf f ic ient ly  (F-1' 
- .  

slow" are the inherent permeability of the c e l l  t o  water and the temperature 

coefficient of tha t  permeability (Mazur, 1977a). With a few special  exceptions, 

. a  necessary condition for  c e l l  survival is  tha t  ce l l s  be cooled slowly enough t o  

avo.id in t race l lu lar  freezing. "Slow enough1' ranges from about & 1°c/min or  l e s s  

f o r  mammalian embryos t o  about 1,000"~/min f o r  the human red ce l l .  

Although slow cooling i s  necessary f o r  survival, it i s  not suf f ic ient  i n  

the case of mammalian ce l l s .  Cooling rates  slotr enough t o  prevent in t race l lu lar  

freezing re su l t  i n  death from solution ef fec ts .  Which aspects of solution 

effects  are responsible for  damage are complex and are ' vigorously debated. One 
: 

theory . i s  t h a t  the l e t h a l  factor i s  the concentration of solutes, especially 

e lec t ro ly tes ,  produced by the conversion of prater t o  ice (~ovelock,  1953a) A 



second theory i s  t ha t  the l e t h a l  fac tor  i s  the osmotic shrinkage of c e l l s  t o  

a c r i t i c a l  &in i~um volume ( ~ e r p - a n ,  1977) . . . 

It is  with respect t o  solution-effect i n ~ u r y  tha t  protective additives 

l i k e  glycerol exert  t h e i r  e f fec t .  - The' preponderance of evidence i s  tha t  the 

protection i s  col l igat ive -- i .e. ,  the additives reduce the .e lec t ro ly te  concen-. . . 
// . . 

t r a t i o n  a t  m y  subzero temperature i n  proportion ' to the mole r a t i o  of additive 

t o  e lec t ro ly te  present p r io r  t o  freezing (~ovelock, 1953b; Mazur, 197713). This 

physical-chemical e f f ec t  i s  dramatic (Fig. 2). Thus, t o  protect,  an additive . (F-2: 

must be present i n  high molar concentrations. The concentration dependence i s  

nicely i l l u s t r a t e d  i n  recent work on the freezing of f e t a l  r a t  pancreases 

( ~ i g .  3) .  (-3, 

For mammalian ce l l s ,  then, two requirements f o r  successful freezing are -:.- . . 

(1) a su f f i c i en t ly  low cooling r a t e  t o  prevent in t r ace l lu l a r  ice, 'and (2) a 

suf f ic ien t ly  high molar concentration of a protective additive to  suppress the 

e lec t ro ly te  concentration.' Two corol lar ies  t o  point (2) are tha t  the additive 

must be a highly soluble, r e l a t ive ly  low molecular weight compound and it must 

be nontoxic in high concentration. The two compounds tha t  t o  date bes t  meet 

these corollary conditions are glycerol and dimethyl sulfoxide ( M ~ ~ S O ) .  

But once again these two necessary requirements of slow cooling and high 

concentrations of additive may not be su f f i c i en t  f o r  survival. Success i n  the 

freezing of mouse ero'Dryos came about because of the discovery tha t  f o r  t h e s e  

c e l l s  a' t h i r d  requirement i s  t ha t  warming be re la t ive ly  slow (Whittinghaq 

e t  ai., 1972; Leibo e t  a l . ,  1974). Before 1972, it had been a near universal 

be l i e f  t h a t  the higher the warming ra t e  the be t t e r .  Since 1972, other examples 

of a de t r i aen ta l  e f f ec t  of too high a warming r a t e  have appeared ( ~ i l l e r  and ~ a & ,  

1976). The explanation of the damaging e f f e c t  of rapid warming is s t i l l  unclear, 

but the simplest working hypothesis is  t h a t  the damage i s  essent ia l ly  osmotic. 



I't possibly a r i ses  by excess glycerol being driven ' ihto the c e l l  during slow 
\, .. 

cooling, and,then being unable t o  leave the c e l l  suf f ic ien t ly  rapidly during ' 
' 

' . .rapid warming. Damage from too high a r a t e  of warming niay be jus t  one example 

of '  osmotic traumas associated with the presence of high concentration of 
. . 

addi t ives  inside ce l l s ,  additives t h a t  have rather  low permeability coefficients.  
1.' 

Another s tep  i n  the freeze-thaw sequence where osmotic trauma is l i k e l y  i s  during : 

,the return of c e l l s  'from the high molarity .freezing medium t o  physiological 

. sal ine.  There i s  increasing evidence tha t  t h i s  t ransfer  must be carr ied out 
. . 

slowly and sometimes with considerable precision t o  minimize damage ( ~ a l e r i ,  

1976; Strong e t  a l . ,  1974; Bank and Maurer, 1974; Mazur and Miller, 1976; Thorpe. 

e t  al., 1976). 

11. . POTENTIALS OF FROZEN ANIMAL CELLS AND ESPECIALLY OF FROZEN. GERM PLASM 

The potent ials  of t h e  a b i l i t y  t o  s tore  viable c e l l s  a t  -196Oc derive from . ' 

the  a b i l i t y  t o  block nearly all biological  a c t i v i t y  and change f o r  periods of 

. . 
up to. hundreds of years'. 

Genetics and Evolutionary Biology. : Induced or spontaneous mutations a r i se  

i n  the co6rse of laboratory and agr icu l tura l  experimentation. In  many instandes . ' 

only s m a l l  percentages of these mutants can be maintained because of l imitat ions 

o f .  space, personnel, and money. The maintenance of var iants  i n  the form of . . 
- .  

,reproducing colonies often puts major demands on all three. Even i n  cases where 

the heavy use of a par t icu lar  mutant o r  s t r a i n  favors i t s  being maintained in 

the form of a breeding colony, the s t r a i n  or var iant  could be l o s t  by disease . ,  

o r  catastrophe, and it almost cer ta in ly  w i l l  become slowly a l te red  by genetic 

d r i f t . .  Low-temperature storage of germ plasm would ameliorate o r  eliminate these 
I .  

problems. Equally important, it can provide a powerful research too l  f o r  studying , 

genetic d r i f t  by providing a nearly immutable standard.against which t o  assess 

the magnitude of the d r i f t .  



Reproductive Physiology, Aging, and ~mm&olog~. The a b i l i t y  t o  preserve 

germ plasm 0.r somatic c e l l s  opens approaches t o  separating time and animal . . 

age or t i n e  and generation, especially i n  allogeneic animals. One can, f o r  
. . 

example, co l l&ct  c e l l s  (e.g., lymphocytes) from an animal when' i t  is  young 

and transplant them in to  the same animal when it is  older, thereby obtaining 

/ information about such phenomena a s . t h e  weakening:of the immunological 

systems with age. O r  one ought t o  be able t o  co l lec t  two-cell embryos, 

separate the blastomeres, freeze one of them, and allow the other t o  develop 

in a fos t e r  mother; then, when it i s  a mature animal, allow it to. serve as 

the f o s t e r  mother fo r  i t s  ident ica l  twin, which had been preserved as a 

blastomere i n  l iqu id  nitrogen. 

Freezing can also provide a method fo r  reducing sainple-to-sample ,and . 
L-.. 

experiment-to-experiment va r i ab i l i t y  by the s t o r i n g o f  pooled frozen samples 

o r  by the pooling of samples a f t e r  thawing.. The poo1:ing of frozen samples 

has markedly reduced experimental va r i ab i l i t y '  i n  studies -on monocytes 

 o olden e t  al. , 1977)) and there is  no reason t o  expect it not t o  be equally 

efficacious f o r  mammalian ova and embryos. The a b i l i t y  t o  pool material  might 

be especial ly  helpful  i n  cases where the ava i l ab i l i t y  of suf f ic ien t  quant i t ies  

of a ce l lu l a r  o r  subcellular component i s  l imiting. This could be the case, 
i 

f o r  example, of the reactants i n  some enzymatic processes or  the case of 

mater ial  from exot ic  animals i n  zoos and i n  the wild. 

In addition, as I 've  already inferred, freezing would permit ova and 

embryonic ce l l s  t o  be collected a t  0r.e stage of the reproductive cycle or  one 

stage of development, and %hen be transferred back in to  the very same individual 

a t  a l a t e r  'cycle o r  a t  a l a t e r  stage i n  development. Edwards and s teptoe (1977)) .. - 
f o r  example, a re  pursuing the idea t h a t  the a b i l i t y ' t o  freeze human ova may a id  

i n  providing a method f o r  women with blocked fal lopian tubes t o  bear children. 

The approach would be t o  co l l ec t  ova from one cycle, s tore  them in the frozen 



'. s t a t e  until the next cycle, then thaw them, carry out -- i n  ' v i t ro  f e r t i l i z a t i o n  

\ '. 
with the husb,gnd ' s  sperm, and ' t ransfer  the fertilized%.embryo back in to  the 

woman's oviduct. Human ova have not yet been successfully frozen, but the 

probabi l i ty  i s  high t h a t  success w i l l  be achieved soon. 

./' 111. STATUS OF FREEZING OF OVA AND EMBRYOS OF VARIOUS TAXONOMIC GROUPS 

The success t o  date of freezing ova and embryos of various animal groups 

i s  surveyed b r i e f l y  in a recent NAS report   usse sell e t  a l . ,  1978), and i n  the 

case of mammals it i s  discussed i n  d e t a i l  - in  the proceedings of a recent Ciba 

Symposium ' ( ~ l l i o t t  and Whelan, 1977). Ehbryos of mice, r a t s ,  rabbits,  sheep, 

goats, and c a t t l e  have now been frozen successfully. "Successrul" freezing 

means both t h a t  high percentages of the frozen-thawed embryos are  able t o  

develop i n  cul ture  (where culture techniques are  available),  and tha t  they are  

able t o  develop t o  apparently normal offspring when t ransferred t o  fos te r  

mothers. But the s i tua t ion  with respect t o  ova and embryos of oviparous and 

ovoviviparous animals i s  quite the opposite. Few, whether vertebrate o r  

invertebrate, have been frozen successf i l ly .  This may i n  par t  r e f l e c t  the 

f a c t  t ha t  many attempts were made before the fundamentals of cryobiology begm 

t o  evolve. But it probably r e f l ec t s  more the basic  morphological and physio- 

log ica l  differences between these two types of ova and ova from viviparous, 

animals. Two obvious and probably pert inent  differences are  s i ze  and permea- 

b i l i t y  t o  water and solutes.  

Although there i s  precedent f o r  dramatic species differences i n  freezing 

sens i t iv i ty  (e. g., sperm of pig versus man), there i s  no inherent reason t o  

expect grea t  d i f f i c u l t i e s  i n  the freezing of ova and embryos from a wide I 

var i e ty  of mammalian species. In  c ~ n t r a s t ,  the successful freezing of ova 

and embryos from invertebrates and nonmammalian vertebrates w i l l  l i k e l y  be 

challenging. 



This br ie f  discussion has been r e s t r i c t ed  t o  ova and embryos. The 

s t a tus  of frkezing of spem fron v ~ r i o u s  taxonomic groups i s  discussed i n  

t h i s  volwne by Craho (1978): 

IV. FREEZING METHODS 
./ 

\ 
A s  shown by the chronology of attempts t o  freeze mammalian embryos, Yle 

evolution of methods for  the successful freezing of c e l l s  and c e l l  aggregates 

can be d i f f i c u l t ,  and i n  some cases it could even be impossible. But 'once 

the. correct values f o r  the several c r i t i c a l  cryobiological parameters have 
. . 

been undovered, the me thodology for  the successful freezing of tha t  par t icu lar  

. c e l l  becomes r e l a t i v e l y .  straightforward. . . 

Procedures f o r  the freezing of mouse embryos have been described i n  some .-. 

d e t a i l  j u s t  recently ( ~ e i b o  . . and Mazur, 1978). And the procedures used f o r  
C : .  . ;  

the freezing of ova and embryos of other mammalian species are quite similar. 

Accordingly, the discussion here w i l l  be r e s t r i c t ed  t o  a synopsis of the 

essent ials .  The e s sen t i a l  requirements are  t h a t  the embryos be (a )  suspended 

i n  a protective additive of su f f i c i en t ly  high concentration t o  avoid dam%= 

from solut ion ef fec ts ,  (b) frozen a t  ra tes  slow enough t o  preclude i n t r a c e l l u ~ a . r  

ice,  ( c )  frozen t o  temperatures low enough t o  permit long-term storage in an 

unchaged s t a t e ,  (d) thawed su f f i c i en t ly  slowly, and (e)  t ransferred suf f ic ien t ly  

slowly back t o  physiological media t o  minimize damage from osmotic shock. 

A. Protective Additive - .-- .-. . .. .... 

Embryos a r e  collected frox superovulated animals by standard pro- 

cedures and placed i n  a bd'anced s a l t  solution. To t h a t  solution i s  added 

suf f ic ien t  protective additive t o  make i t s  concentration 1 t o  1.5 M. The 

additive tha t  investigators have used most i s  Me2S0, but several reports ixdicate. 



t ha t  glycerol- can be equally effective,  provided it :' s., permitted t o  permeate, t 
\ 

and provided ' t h a t  considerable care i s  taken t o  minimize osmotic shock during 

d i lu t ion  (cf Section E below). 

The question of whether additives must permeate c e l l s  t o  protect  is a 

. . 
matter of basic  importance and some controversy. The survival of some c e l l s  

./ 
requires permeation, but the survival of others c l ea r ly  does not ( ~ a z u r ,  1977). 

Mouse embryos are intermediate: Permeation of additive does not appear t o  

be e s sen t i a l  but permeation does improve the percentage survival (~ackowski and 

Leibo, 1976; Jackowski, 1977). With Me SO, the question for  embryos i s  somewhat 
2 

moot i n  practice,  since the commonly used prefreezing incubation of about 30 min 

a t  0°C produces nearly complete permeation. 

. . B. Cooling Rate 
about' 

Cooling ra tes  must be below/2"c/min t o  prevent in t r ace l lu l a r  freezing 

' .  (Leibo, 1977; Leibo e t  al., 1978), and survivals are  generally highest when 

. cooling i s  0.5 t o  1°c/min. These r a t e s  of cooling can be obtained with 

apparatus ranging from large double-walled tubes placed i n  l i qu id  nitrogen 

and containing - 0.5 t o  1 l i t e r  of ethanol (cost approximately $25) t o  

sophisticated controllable l iqu id  nitrogen and mechanical re f r igera tors  
<, 

(cost  > $2,500). The former produce precise reproducible cooling! Their 

only l imi ta t ion  i s  the number of samples t h a t  can be t reated.  

Extensive supercooling of samples p r io r  t o  ice  formation w i l l  markedly 

change the cooling rates,and can cause all embryos i n  a sample t o  be k i l l ed  

by in t r ace l lu l a r  freezing (Leibo and Mazur, 1978). Extensive supercooling 

can be avoided rather  simply by "seeding" samples with s m a l l  ice crystals .  
i 

Such seeding, therefore, is  desirable i n  all cases and may be' mandatory i n  

some. 



. . 

' C. ' Final Temperature 

TO-avoid in t race l lu lar  ice,  slow cooling must continue t o  a t  l e a s t  

-50°C, and indications are tha t  it i s  desirable t o  continue it t o  about -70°C. 

cool ing ' to  s t i l l  lower temperatures, however, can be abrupt, and cooling t o  s t i l l  

lower temperatures i s  essent ia l  fo r  long-term storage (e.g., > - 7 days). There 

i .  
are many. documented cases of biological death occurring a t  dry-ice tempera- '. 

tures  (-75" to. - 7 8 " ~ ) .  But there are no. confirmed cases of biological death 
. . 

i n  l iquid  nitrogen (-196O). The temperatures produced i n  multi-stage mechanical 

refr igerators  and i n  the nitrogen vapor over l iquid  nitrogen are below -100°C 
. . 

and appear sat isfactory.  A t  -196Oc, embryos and ova should' remain' viable f o r  

decades o r  centuries. 

D. Warming and Thawing 
+.-. 

A s  mentioned, a maj'or contributor t o  success i n  freezing mouse embryos 

was the discovery tha t  rather  low rates  of warming are required. The exact 

warming rate ,  however, i s  not c r i t i c a l ,  and rates  of 2" t o  40°c/min appear 

equally sa t i s fac tory  ( ~ e i b o  e t  al., 1974). A s  with cooling, the procedures 

f o r  achieving these ra tes  can vary from the simple (hanging frozen samples i p  

room temperature a i r )  t o  the sophisticated a d  complex ( ~ e i b o  and Mazur, 1978). 

E. The Return t o  Physiological Media 

The c r i t i c a l i t y  of the procedures i n  t h i s  s tep  depends on the 

protective additive present (the requirements are more c r i t i c a l  with glycerol 

than with M ~ ~ S O )  and with the species (e.g., they appearinore c r i t i c a l  with 

rabbit  t h u l  mouse bank and Maurer, 19741). The chief problem is  t o  d i lu te  

a t  an appropriate temperature i n  such a way and a t  such a r a t e  tha t  in t ra-  

ce l lu lar  additive can flow out of the c e l l  without the c e l l  undergoing osmotic 1 

swelling t o  a de1eterl.oll.s ext.ea.t. Temperature i s  important through i t s  

influence on permeability coefficients . Two approaches t o  di lut ion are 
. . 

discussed by Leibo and Mazur (1978). 



. , 

While the requirements are not overly s t r inge t or  technically d i f f i c u l t  - Y., '. 
i n  any individual step, a l l  of the steps must be carried out appropriately 

i f  one i s  t o  obtain high percentage survivals.. When the overal l  procedure is  
. . 

car r ied  out appro$riately, embryo v i a b i l i t y  w i l l  usually exceed 9%. 
. . 

- .  
Embryo v i a b i l i t y  can be assessed in several ways. The assay most relevant 

./ 

t o  most of the eventual uses of frozen embryos i s  the a b i l i t y  of thawed.embryos 

t o  develop t o  term a f t e r  t ransfer  t o  fos t e r  mothers. A fas te r ,  cheaper, and 
. . 

more quantitative assay of function i s  cleavage of embryos in culture, 

especial ly  when cul ture  conditions e x i s t  t ha t  permit -- i n  v i t r o  development t o  

the .blastocyst stage. Other assays tha t  have been used are fluore'scence ( i .  e.., 

the a b i l i t y  of a c e l l  t o  reduce fluorescein d iace ta te ) .  (~ackowski, 1977) and 

morphological appearance (~hi t t ingham e t  al., 1972). I n  the mouse, a l l  four  

,assays correlate  exceedingly well. In  the cow, our experience has been t h a t  

morphological appearance does not correlate  well with -- i n  v i t r o  development 

( ~ e  ibo and Mazur, unpublished) . 
I n  conclusion, embryos of several mammalian species can be frozen t o  

-196"~ (or below) by procedures t h a t  r e s u l t  i n  the thawed embryos being indis-  

tinguishable from t h e i r  unfrozen cow-terparts . The survival of t en  exceeds 

9%, and i n  l i qu id  nitrogen it should remain a t  t ha t  high l e v e l  'for centuries.  

Sublethal biochemical changes are  also. preclude'd a t  -196Oc. 

Radiation-induced ionization can occur, but theore t ica l  arguments indicate 

t h a t  they w i l l  r e su l t  i n  very small and probably immeasurable numbers of 

mutations even a f t e r  decades of storage. No developmental abnormalities have 

been detected i n  mouse offspring derived from frozen-thawed embryos ( ~ a u r e r  
I ' 

e t  a l . ,  1977), and, since a l l  the manipulations are carr ied 'out  on. the 

p~'eLmplmtat1on stages, none would be expected  usti tin, l ~ ( j ) .  The a b i l i t y  t o  



maintain man~albzn ova and ezbryos i n  an'unchanged s t a t e  f o r  days t o  decades 

has potent ia l  uses LT genet&cs, reproductive physiology, biochemistry, and 

developmental b.iology. These potent ials  do not as .,yet e x i s t  f o r  non- 

mamtnalian ova a d  embryos, since very few have as yet been successf'ully . . .  

. . .  . . . . 
f r o  Zen. 

/' ' .  
'. 
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FIGUR3 LEGENDS \ '. 
\ 

Figure '1. In t race l lu l a r  f r e e z b g  of un fe r t i l i zed  mouse ova fi 1 M 

Me SO versus the cooling rate . .  Tntrscellular freezing i s  indicated by the 
2 

sudden darkening a t  - - 4 0 " ~  of the. ove cooled a t  2.4 and 32"c/min. No 

in t r ace l lu l a r  freezing i s  observed i n  ova cooled a t  1.2"~/min. Photomicro- , 
/' . . 

graphs ' f r o m  Leibo, 1977, and Leibo e t  Kl.. , 1978 (reprinted by permission). 

Figure 2. Concentration of s a l t s  produced i n  the unfrozen portions of 

aqueous solutions of glycerol i n  buff'ered sa l ine  as a fbnction of temperature. 

. The buffered sa l ine  consisted of 0.149 1 NaCl and 0.01 M phosphate buffer.  

( ~ r o m  Rall e t  al., 1978, by permission of the Biophysical Journal. ) . . 

Figure 3. Survival of frozen-thawed 16-112- t o  17-1/2-day f e t a l  r a t  

pancreases as a f'unction of the Me2S0 concentration i n  the suspending medium. 

(From Mazur e t  al., 1976, by permission of the National Academy of Sciences. ) 
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