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1.0 INTRODUCTION AND OVERVIEW

The objective of the Eagle-Picher Nickel-Iron battery program is to
develop a Nickel-Iron battery system suitable for use in the propulsion of
electric and electric/hybrid vehicles. The Near-Term Electric Vehicle
Battery Development goals as set forth by the defined Statement of Work
are as follows:

PROGRAM GOALS

Battery Capacity 25-30 KWH
Specific Energy (C/3 Rate) 60 WH/Kg
Specific Power - Peak 100 W/Kg
- Sustained 20 W/Kg

Duty Cycle - Discharge 2-4 Hours

- Charge 4-8 Hours
Energy Efficiency >60%
Cost $70/KWH (1977)
Cycle Life (80% DOD) 2,000 Cycles

The program as conducted in FY-1981 continued to show marked progress
in reaching the above referenced goals. The FY-1981 program concentrated
upon the fabrication, characterization and testing of the required electrodes
together with the assembly and testing of full-scale cells and 6 volt
(270 AH) modules. The FY-1981 program was structured to advance the
technical aspects of the Nickel-Iron program while simultaneously reducing
its potential future cost in both the materials and process arecas. Initial
full-size electrodes reached 2,300 cycles, full-scale, 270 AH cells exceeded
800 cycles, and five-cell, 6 volt modules reached 725 cycles during the
reporting period. All tests are presently on-going. Based on the fade rate
experienced to date, lifetime of the initial electrodes is expected to be
2,500 cycles.

During the period efforts focused on the development of suitable 2.4mm
single-pass plaque. At the end of the reporting period, satisfactory 2.0mm
plaque had been achieved and demonstrated. A 6 volt module has been fabri-
cated and placed under test at the National Battery Test Laboratory. This
module has accumulated fifty (50) cycles operating in the range of 45 WH/Kg
like the other modules on test.

Development efforts were initiated in the areas of single-point
watering systems and flame arrestor systems from a total full-scale battery
standpoint. Currently, a single-point watering system has been demonstrated
successfully at the 6 volt module level. Work was in progress toward the
development of a fault-free flame arrestor system at the end of FY-1981.

Temperature tests were completed during the period ranging from +60°C
to -15°C. The only effect seen was a maximum of 10% capacity loss at the
-15°C temperature.

Overall, marked progress was demonstrated both in the area of technical
achievement and potential cost reduction of the system. A solid base has
been firmly established from which to evolve the required battery system.
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2.0 INVESTIGATIONS

Several investigations were conducted during the report period
pursuant to further refinement of the Nickel-Iron battery technology and
improvement in the cost effectiveness of battery manufacturing operations.
Some equipment was refurbished and modified (Section 2.2) to implement
technological advances stemming from these investigations. New equipment
and fixturing were also developed and/or acquired as necessary to foster
continued technological progress. Positive nickel electrode research
studies (Section 2.3) were conducted contributing to the overall develop-
ment effort. Similarly, dry sinter development (Section 2.4), cell
experimentation (Section 2.5), battery development (Section 2.6), and
performance testing of cells and modules (Section 2.7) continued in
FY-1981. Some improvement in production capability (Section 2.1) was
realized as a result of technological advance during the reporting period.

2.1 Production Capacity Development

The experiments, tests and other battery development effort
discussed herein are presented for report purposes as an integral part of
the Nickel-Iron battery development program underway at the Eagle-Picher
plant in Joplin. Specifically, this prototype program coordinates the
development efforts of three facilities under the direction of management
at Joplin. The Swedish National Development Company (SU) has contracted
to select a suitable separator, fabricate iron negative electrodes and
conduct cell and battery characterization experimentation. Eagle-Picher-
Colorado Springs supplies nickel sinter plaques which are impregnated with
nickel hydroxide at the Joplin facility completing fabrication of positive
nickel electrodes to be incorporated (also at the Joplin plant) into cells
and batteries. [Eagle-Picher now has an increased overall manufacturing
capacity stemming from technological progress made during FY-1981. The
existing facilities have a demonstrated capacity for sintering of over
four thousand (4.,000) nickel plaques per month; significantly up from the
monthly production rate of some two thousand (2,000) plaques reported last
year. Monthly capability for iron electrode fabrication remains at four
thousand (4,000) negative plates. Nickel plate impregnation and testing
facilities are now able to sustain the manufacture of twenty-four (24)
eighty-cell batteries a year; up from the twelve (12) battery capacity
reported last year. These facilities can be readily modified and augmented
to meet the demands of any forthcoming pre-pilot program.

2.2 Equipment Modification

Extensive refurbishing and repair of the sintering furnace
(Figure 1) was accomplished during the report period. Major repair of the
reducing gas generator, the sintering furnace muffle and the heating
elements was completed. Standard maintenance and repair of the thick plaque
pulling tower (Figure 2) the drying cabinets (Figure 3) and the electronic
controls of the sintering furnace was also accomplished. The performance
of this electrode manufacturing equipment during post-repair operations
matched or exceeded its pre-repair capability. Heat profile characteristics,
exhibited by the sintering furnace were equivalent to pre-repair parameters.
Tests further indicated tighter temperature control, including a significant
reduction of response time required to effect intrafurnace temperature
change response to temperature controls. Improvement was also observed in
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FIGURE |
Slurry Sintering Furnace



FIGURE 2
Experimental Pulling Tower



FIGURE 3
Drying Cabinet



the reducing atmosphere flow. Repair of the furnace muffle reduced atmos-
phere controls restored intrafurnace atmosphere conditions to normal.
There was no discernable differences in sintered plaque produced before
and after renovation of the sintering furnace.

In preparation for resumption of electrode production, clamping
fixtures and additional drying equipment were assembled. Additional heat-
ing banks were added to the continuous production drying tower. The
geometric configuration of this equipment was altered to produce higher
temperatures. A proportional band zone temperature control system was
developed to be utilized in maintaining control of plaque drying conditions.
A new coining die (Figure 4) was installed and test equipment was adjusted
to trim plaque in preparation for production. A die was fabricated to cut
to length and punch holes in the nickel 200 coil for use as tabs in forth-
coming runs of experimental nickel-iron electrodes. A new tab welding
configuration was developed seecking to achieve the largest cross-sectional
weld area commensurate with the power rating of an in-house 50 KW spot
welder. Finally, the new slurry box (Figure 5) was fitted with a geometrical
centering device to facilitate more rapid changeover of substrate type.

This new slurry box configuration was successfully employed to fabricate
several lots of experimental plaque demonstrating its effectiveness in the
correction of centering problems.

2.3 Positive Nickel Electrode Research

Work proceeded to advance the technology for the manufacture of
thick (2.0 mm) single-pass plaques. Refinements were made in slurry
formulation technique (Paragraph 2.3.1). Plaque pulling and slurry drying
experimentation was conducted (Paragraph 2.3.2). The substrate develop-
ment effort continued (Paragraph 2.3.3). Progress was made in the
minimization of scrap loss associated with the fabrication of nickel plaque
(Paragraph 2.3.4). A preliminary study of reducing atmosphere within the
sintering furnace was completed (Paragraph 2.3.5). Impregnation of
experimental plaque continued (Paragraph 2.3.6). Finally, electrodes impreg-
nated in a solution containing didymium were cycle tested to determine the
impact of didymium upon capacity (Paragraph 2.3.7).

2.3.1 Slurry Preparation Improvement

Roll blending with barrels (Figure 6) adopted during the
latter part of the previous fiscal year in place of the "V" blending
technique continued to provide an adequate amount of slurry to support
the current demand for sintered nickel plaque. Doubling of the present
slurry capacity of one hundred (100) gallons per day, by the addition of
identical modular units to the roll blending configuration, remains a
viable option. The roll blending equipment, featuring direct drive and
variable speed drive systems, enhanced control, optimized the blending
speed and allowed flexibility of slurry production during FY 1981. The
roll blending procedure and equipment were modified to accommodate the
manufacture of single pass slurry plaque.

2.3.2 Plaque Pulling and Slurry Drying Investigation

Plaque pulling experimentation utilizing the experimental
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FIGURE 5
New Slurry Box with Doctor Blades






pulling tower (Figure 2) was conducted as a part of the continuing develop-
ment effort to refine further the procedure for the fabrication of single-
pass plaque. Pulling speed, "doctor" blade spacing and centering adjustment
were the principal variables included in this inquiry. The results of this
study were still being evaluated at the end of the reporting period. Effort
was also directed toward more rapid slurry drying. The slurry which is

used with the double pass process requires controlled drying over a 24 to

48 hour period. The water base experimental slurry for single-pass plaque
can be dried in 6 hours with forced warm air ventilation. The plaque
maintains the required smooth surface appearance without mud cracking.
Sintering these strips is routine with porosity being increased slightly
and the bend strength maintained in the 1,500 psi range.

2.3.3 Substrate Inquiry

Current-carrying, substrate development concentrated upon
the optimization of variables. These factors included the weight, strength,
conductivity and cost of the substrate. Other important properties con-
sidered were sinter-substrate adhesion, quality of the final plates and
ratios of "inert" nickel to theoretical capacity. Preliminary assessment
of the three main types of available metal substrates was made. Woven
wires remained a viable substrate option provided the costs of cleaning and
calendering could be kept within bounds. The handling ease, thinner
configurations, lighter weight and cost parity of perforated sheet combine
to make it an acceptable alternative substrate material. A configuration
of expanded metal substrate (3 nickel 10-4/0) was shown to offer the
greatest degree of flexibility among expanded metal options along with
high material quality and reasonable price. The goal of this effort remained
the development of the best electrode possible for each substrate type and
ultimate selection of a single substrate based on overall performance and
cost considerations.

2.3.4 Scrap Minimization Project

Effort continued to reduce the fifty percent (50%) scrap
loss commonly experienced in the manufacture of sintered nickel plaque.
Plaque scrap recycling procedure was instituted during the previous report
period with a projected eighty percent (80%) reduction of scrap loss.
Reconstituted slurry, produced in the recycling of unsintered plaque scrap,
was employed to fabricate experimental thin plaque during FY-1981. These
plates were then impregnated and subjected to life cycle testing to
document the merits of the utilization of reconstituted slurry in the
manufacture of positive nickel electrodes. The tests showed no significant
difference in electrode quality and performance between these standard
electrodes. Thick electrodes were also fabricated and were undergoing
extensive mechanical testing at the end of the reporting period.

2.3.5 Reducing Atmosphere Study

Preliminary investigation of total reducing atmosphere
turnover rates was initiated seecking to develop more data on the mechanisms
of plaque strength augmentation and sinter densification. Inquiry was also
made into the types and levels of oxide buildup within the sintering furnace
and on the belt in the sintering operation. This initial investigation
indicated the need for a more thorough study of the thermodynamics of the
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oxidation reduction processes. It was also apparent that such a study will
require more accurate gas analysis equipment and better facilities for
analyzing wvarious nickel, chromium and iron oxides.

2.3.6 Experimental Plaque Impregnation

Impregnation of experimental plates continued throughout
FY-1981 utilizing the new experimental impregnation tank (Figure 8) having
a per run capacity of eight-plates vs. the previous four plate capability.
This reduced the processing time lag from about three (3) days to two (2)
days. Refinement of plaque fabrication technology and the upgrading of
equipment described herein were complemented by improvements made during
the year in impregnation and formation technology as set forth in Figure 7.
Experimental plaques, fabricated in connection with the overall nickel
electrode development effort were impregnated with nickel hydroxide
achieving the results displayed in Figure 9.

Figure 7

FY-1979 FY-1980 Present Status
Impregnation Time Standard Standard Standard
Impregnation Tank Capacity 30 Plates 40 Plates 75 Plates
AH Deposit Before Rejuvenation 3,468 AH 6,069 AH 6,242 AH
Formation Time 54 Hours 46 Hours 46 Hours

2.3.7 Didymium Additive Study

Technical literature suggested a capacity increase of
approximately 100% could result from the use of didymium in the impregna-
tion solution. Three plates were impregnated in a nickel nitrate solution
containing 5 mole % rare earths nitrates (didymium) seeking to achieve a
significant increase in capacity. Two of these plates were then cycled
against nickel counters and the other plate was cycled against iron
electrodes. None of these plates registered the approximate 100% capacity
gain reported in technical literature. Instead the exhibited capacities
of these experimental plates were similar to capacities recorded for plates
impregnated in a nickel nitrate solution containing 5 mole % cobalt nitrate.

2.4 Dry Sinter Development

A limited dry sinter electrode development program was also
continued during the report period. This effort employed the dry sinter
forming jig and its associated apparatus (Figure 10) to gain a better
understanding of the wvariables involved in this dry powder technology.

Pore former additives were studied in an effort to modify pore size and
porosity values in the resulting sintered nickel plaque. Dry sinter plates
continued to achieve on the average greater loadings when impregnated with
the nickel hydroxide, than plates fabricated by the slurry application
procedure.
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FIGURE 8
New Experimental Impregnation Tank
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Figure 9

Experimental Plaque Impregnation Results
Single Pass Slurry Plates 165 mm X 190 mm H

Results
Plate Description Loading Average Theoretical Capacity
Ident. No. Quan. Grid Porosity  Thickness 9, ave g/cc AH/gm AH/cc AH/plate
% Ave. mm.
X-200 8 Screen 79.3 2.27 106.7 1.50 0.127 434 30.8
X-207A 8 Ex 79.3 1.75 92.7 1.69 0.136 488 26.8
X-207C, D 4 Screen 78.4 2.00 111.0 1.77 0.137 S12 32.1
X-208* 4 Screen 80.6 2.33 115.6 1.58 0.135 457 334
X-209A 8 Screen 81.5 2.11 111.3 1.68 0.143 486 32.2
X-209B 4 Ex (Flat) 81.7 2.52 128.9 1.63 0.141 471 37.3
X-210A 4 Screen 81.7 2.17 115.7 1.70 0.144 491 334
X-210B 4 Ex 81.2 2.5 104.2 1.33 0.127 .384 30.1
X-219 20 Screen 81.0 2.51 129.0 1.64 0.139 474 37.3
X-221* 8 Screen 79.7 2.69 142.5 1.69 0.138 488 41.2
X-91005A 10 Ex 80.8 1.88 96.7 1.64 0.138 474 27.9
X-91005B** 8 Ex 80.9 1.96 103.2 1.68 0.140 486 29.8
X-91005C 10 Ex 80.9 1.86 95.0 1.63 0.138 471 27.5
X-91005D 12 Foil 81.9 1.96 105.2 1.74 0.145 .503 30.4
X-91005E 12 Foi | 81.6 1.86 99.5 1.71 0.144 494 28.8
X-91007 80 Ex 79.9 2.08 97.8 1.50 0.132 434 28.3

* These plates grew during formation, indicating soft sinter.
9
"Screen" - Denotes 0.007" x 20 x 20 woven nickel wire 0.034 gm/cm .

% Porosity is apparent porosity with grid excluded.
"Ex" Grid is expanded nickel 0.003" base 0.036 gm/cm™.

"Foil" is 0.0028" thick perforated nickel foil.
Note that average 2.0 mm plaque loads to 1.52 gm/cm3 or .429 AH/cm3 and 0.115 AH/gm.

** Two of these plates blistered.



FIGURE 10
Dry Sinter Forming Jig



More study was needed at the end of the reporting period to account for the
observed differential loading capabilities of dry sinter plaque and plaque
fabricated using slurry-sinter technology. Dry sinter fabrication remained
a labor intensive process involving painstaking centering of substrate
(grid) between two meticulously formed nickel powder layers, with thickness
up to 1.2 mm, to produce an electrode 2.4 mm in thickness. Continued
development effort was planned for the next reporting period but it was
apparent that significant advanced in this technology would require
extensive design work.

2.5 Cell Experimentation

Several experiments involving cells were conducted in FY-1981.
Short-term cell experiments, discussed below, included the pressure testing
(Paragraph 2.5.1) of cell case and cover (Figure 11), an electrolyte
maintenance inquiry (Paragraph 2.5.2), and thermal tests involving Cells
034, 528-30, and 1397-99 (Paragraphs 2.5.3 and 2.5.4). Long term experi-
mental cell testing progressed to study the effects of sulfide electrolyte
additive (Paragraph 2.5.5) and the performance of Jungfer separators
(Paragraph 2.5.6). Some experimental cells were fabricated to examine
aspects of cell construction. Cell CX 219, having a theoretical capacity
of 413.1 AH, was assembled using 2.4 mm double-pass positive electrodes.
Cells SX-81A and SX-81B were constructed exhibiting initial respective
capacities of 270 AH and 267 AH. Cell X91005A was fabricated using three
(3) X91005A experimental plates and four (4) iron electrodes, and
demonstrated an average capacity of 75.6 when charged to 120% of its
theoretical capacity, 86.0 AH. The increased understanding of Nickel Iron
technology, derived from the investigations outlined above, was used to
advance the state-of-the-art in construction of Nickel-Iron Cells.

2.5.1 Cell Case Pressure Test

Cell case stress testing was initiated to determine
whether electrolyte leaks, observed in several cells around the P.S.-18
glue joints between cell cases and covers, were attributable to excessive
pressure. Prior to application of P.S.-18 glue, subassemblies of two com-
plete cell cases were cleaned with detergent cleaner while the parts for
two other cell containers were cleaned with methanol. After cell covers
were securely sealed with P.S.-18, the entire cell case assemblies were
subjected to pressurization-pressure release cycling. The cell case
assemblies were thus pressure cycled in incremental steps up to 25 psi.
After completion of four hundred seventy-five (475) pressure cycles at 15
psi, stress marks had developed on the cell wall immediately below the
P.S.-18 glue joints. All test cell case assemblies ruptured at these
visible stress points within eight (8) cycles at the 25 psi level of
pressure cycling. Since no cracks or leaking developed at the P.S.-18
glue joint of the pressure cycled cell cases, it was concluded that the
electrolyte leaks were due to inadequate cleaning of parts before the
application of P.S.-18. The procedure was modified to include thorough
cleaning of cell case subassemblies with detergent prior to the gluing
operations.
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2.5.2 Electrolyte Maintenance Study

A study was completed of the effects of electrolyte
replacement by water, a probable common error in maintenance, upon the
performance of nickel-iron cells. Cell 007, with a theoretical capacity
of 348.3 AH, was routinely overfilled with deionized water until the
measured specific gravity of the "electrolyte" approximated that of water.
While the electrolyte dilution was in progress, the average capacity of
Cell 007 declined from 308 AH to 262 AH. The diluted "electrolyte" was
then replaced with fresh electrolyte: 1.24 specific gravity LiOH/KOH.
After the electrolyte change, the capacity of Cell 007 rose to a stable
313 AH, 54 WH/Kg at the four hour rate. Cell 007 reached the six hundred
fifty-nine (659) cycle mark at the end of this study. A regimen of
charging at 76.6 amps for 5 hours and discharging at 80.3 amps to (+)

1.0 volts was maintained in this period.

2.5.3 Thermal Testing: Cell 528-30

A study to assess the influence of positive plate cobalt
additive upon the performance of nickel-iron cells at various temperatures
from -20°C to +60°C was completed. Cell 528-30 (constructed of three
double-pass nickel positive electrodes plus four iron negative electrodes
and having a theoretical capacity of 83.8 AH) was selected for this test
procedure. The nickel electrodes incorporated into this cell were impreg-
nated in a nickel nitrate bath that did not contain cobalt, the standard
positive electrode additive. Cell 528-30 accumulated five hundred fifty
(550) cycles prior to undergoing thermal testing. An average utilization
of eighty-seven percent (87%) was recorded for Cell 528-30 at the beginning
of this investigation. Each test temperature was maintained within + 3°C
throughout charge and discharge. The ambient test temperatures and testing
order were tabulated for inclusion in Figure 12. The charge and discharge
rates for each cycle were 18.4 amps for five hours and 27.9 amps to (+)

1.0 volts, respectively.

The effect of these ambient temperatures upon the perfor-
mance of Cell 528-30 is manifested in the data tabulated in Figure 12 and
profiled in Figure 13. Interestingly, Cell 528-30 performed better at
30°C and 40°C than it did at 20°C; possibly a result of the absence of
cobalt. A comparison was made of test data for Cell 528-30 with data
obtained from temperature testing of Cell 034 with cobalt additive in its
twelve (12) positive plates. Figure 14 compares Cell 528-30 test data with
Cell 034 test data in terms of amp-hour charge per plate for the listed
temperature changes. Results of the comparison suggested the cobalt additive
to be effective in improving cold temperature performance. But the possibil-
ity remained that the superior performance of Cell 034 at lower temperatures
stemmed largely from heat generated and retained in this larger cell with
its greater mass during the end of charge and throughout discharge.

2.5.4 Thermal Testing: Cell 1397-99

The thermal testing of Cell 1397-99 was undertaken to
determine the effects of continued cycling at 60°C. Cell 1397-99 (contain-
ing three standard nickel positive electrodes with cobalt additive plus
four iron negative electrodes and having a theoretical capacity of 81.3 AH)
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Figure 12

TEMPERATURE TESTING OF CELL 528-30
(Theoretical Capacity: 83.8 AH)

Ambient Temp., Number of Avg. Coulombic Avg. Utilization,
0C+3°C Cycles Efficiency % of Theo. Capacity
20 3 79.3 87.2
-10 3 60.4 66.5
20 2 78.8 86.7
0 2 68.1 74.9
20 3 77.8 85.5
-20 3 8.1 8.7
20 2 83.3 91.7
10 2 74.5 82.0
20 | 78.5 86.3
30 3 82.4 90.6
20 1 78.3 86.1
40 3 82.5 90.7
20 2 79.9 87.9
60 3 64.7 71.2
20 5 78.1 85.9
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was cycled in lithiated electrolyte. This cell had accumulated three
hundred seventy (370) cycles before the initiation of this thermal testing.
The charge and discharge regime was 17.89 amps for five hours and 27.11

amps to (+) 1.0 volts, respectively. First, Cell 1397-99 was cycled

four (4) times in an ambient temperature of 23°C + 3°C establishing a
baseline of utilization of eighty-five percent (85%). Ambient temperature
was then increased to 60°C + 3°C for twenty-two (22) cycles. During this
cycling, cell utilization declined about fifty percent (50%) as set forth

in Figure 15. Ambient cell temperature was returned to 23°C and the
previous level of cell utilization was regained after completion of four-
teen (14) cycles. It was clear that continual cycling at 60°C for a limited
number of cycles does not permanently damage a nickel-iron cell of this
size. Larger cells, however, could be more adversely affected by cycling
at this temperature, since they may well retain heat generated at the end
of charge and during discharge for a longer time. Another study is required
to determine the effects of continual cycling at 60°C upon the performance
of full-scale cells or modules.

Figure 14

COMPARISON OF NICKEL IRON CELLS

Cell #528-30 (3 Positive Plates No Cobalt Addition)
And

Cell #034 (12 Positive Plates With Cobalt 5%)

Temperature Cell 034 Cell 528-30
Change, °C AH/plate AH/plate
-20 -10 1.0 16.1
-10 0 1.8 2.3
0 10 0.3 2.0
10 20 0.5 1.4
20 40 -0.2 1.0

2.5.5 Sul fide Additive Inquiry

A study to continue investigation of the positive effects
of sulfide electrolyte additive upon cell performance was conducted involving
a test group of six (6) iron half cells. These cells were each assembled
with an iron electrode sandwiched in between two (2) counter electrodes.

They were then subjected to successive charge-discharge cycles at the C/3
rate exceeding one thousand four hundred (1,400) cycles (Figure 16) during
FY-1981. Sulfide was initially added to the electrolyte of individual
cells for a cell-by-cell observation of its impact upon capacity. Next,
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the electrolyte of all six {6) cells was replaced with electrolyte containing
the sulfide additive. Average capacity promptly improved from 0.7 to 1.01
AH/cc after addition of this fresh electrolyte. One cell was removed from
test at the end of the report period for examination to remedy its low
capacity. Further testing to increase understanding of the observed
beneficial effect of sulfide additive upon cell performance was planned.

2.5.6 Mechanical Separator Study

The mechanical separator investigation continued through-
out FY-1981 as life cycle tests of cells with Jungfer separators. The
sintered PVC sheet separators (featuring fine 0.2 mm ribs against the
nickel plate, coarse 0.4 mm ribs against the iron electrode, and a 0.25 mm
web-sheet thickness) continued to perform well. Two sets of test cells
were included in this study. Electrolyte was changed periodically to
prevent accumulation of excess carbonate. The first set of six (6) cells
underwent successive charge-discharge cycling (Figure 17), at respective
C/5 and C/3 rates, exceeding one thousand nine hundred (1,900) cycles.

A second set of six (6) test cells (Figure 18), charged at the C/5 rate and
discharged at the C/3 rate, was cycled in different ambient temperatures
recording over one thousand nine hundred and fifty (1,950) cycles. Three
(3) cells were tested at room temperature and three (3) cells were tested
while sitting in a 400C water bath to accelerate aging. Two cells of this
latter group began to exhibit declining capacity after passing one thousand
eight hundred (1,800) cycles and were removed from test for examination.
One of these cells resumed test cycling after a 15% improvement in capacity
was effected by the addition of sulfide to its electrolyte. Post operative
examination of the other cell was still in progress at the end of the
reporting period.

2.6 Battery Development

Module and full-scale battery development continued during the
reporting period. The development of battery ancillary systems continued;
the watering system development (Paragraph 2.6.1) continued; and design of
the flame arrestor system (Paragraph 2.6.2) progressed. Two (2) five-cell
modules completed conditioning cycles early in the year and were shipped
to the Laboratory for life test. Module SP1-5, a 6 volt unit rated at
270 AH, was assembled incorporating single-pass positive electrodes
utilizing expanded metal substrate. After completion of conditioning
cycles, it also was delivered to the Laboratory. Preparations were under-
way at the end of the reporting period to construct another deliverable,
five-cell module utilizing SP-101 experimental plates having expanded metal
grid with a porosity of 79.5% and strength ranging from 1,500 to 1,700 psi.
Finally, an eighty-cell, 96 volt battery (Figure 19) was assembled and had
finished conditioning cycles by the end of FY-1981.

2.6.1 Watering System Investigation

The watering system study reported in Section 4.0 of the
report for FY-1980 was completed during this reporting period. The attach-
ment of the watering system apparatus rendered the cell case covers of
Module 003 unsuitable for normal cycling. It was decided to transfer the
pi ate/separator cell stacks of Module 003 into new molded cell cases
instead of replacing the cell cover assemblies of the older handcrafted
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plexiglass containers such as those employed by Module 005, pictured in
Figure 20. Module 003 was later equipped with the present updated water-
ing system and flame arrestor equipment as shown in Figure 21.

2.6.2 Flame Arrestor Development

All flame arrestors previously considered failed to
prevent flame propagation back into the system. Then a number of flame
arrestor systems employing modifications of the Davy Lamp principle were
examined. The most critical set of conditions were determined to occur when,
with a pressurized system of stoichiometric amounts of hydrogen and oxygen,
pressure of the system approaches atmospheric pressure. Initially, this
type of flame arrestor performed its function successfully when used in
conjunction with an air dilution system, through which exiting gas was
mixed with a directed flow of air. In further testing, however, fan
augmented Davy Lamp systems failed, in a significant number of trials, to
prevent flame propagation back into the system. The flame arrestor system
currently in use on single and dual modules (Figure 21) consists of a water/
gas chamber, a one-way valve and an Oldham, flame retardant battery cap.
The water/gas chamber is used to add electrolyte or distilled water. It
also serves as a gas-collect reservoir. The one-way valve maintains a
pressure of from 1/2 to 1 psi in the modules. This prevents outside air
intrusion into the cells, which could form carbonates. The Oldham cap
consists of small polypropylene pellets and a sintered PVC disk. Repeated
tests show the cap functions effectively to exinguish flame from a single
ignition preventing flame propagation back into the system. Further flame
arrestor development work was scheduled for the next reporting period.

2.7 Life Cycle Testing

Extensive testing of cells and modules took place during the
year to determine the performance capabilities of wvaried cell configurations.
Among the numerous cells undergoing performance tests. Cell 007 (Figure 22),
Cell 273 (Figure 23), and Cell 1400 (Figure 24) registered respective out-
put capacities of 315 AH, 310 AH and about 25 AH. Cell 007 approached
eight hundred (800) cycles achieving 55 WH/Kg specific energy toward the
end of the report period while Cells 273 and 1400 exceeded two hundred
fifty (250) cycles and seven hundred fifty (750) cycles respectively.
A performance test group of eight (8) 85 AH cells finished one thousand
five hundred and thirty (1,530) cycles with an average capacity as profiled
in Figure 25. Another test group of twelve (12) 300 AH cells passed five
hundred eight (580) cycles with average capacities of its six-cell subgroups
as set forth in Figure 26. Two and five-cell modules, composed of cells
incorporating twelve nickel plates and thirteen iron electrodes continued
life cycling during FY-1981. Module 003, with a theoretical capacity of
329.0 AH, completed eight hundred (800) cycles (Figure 27) maintaining a
stable output capacity of 265 AH. Finally, Module 005, with a theoretical
capacity of 337.7 AH finished six hundred (600) cycles (Figure 28) registering
a capacity of 240 AH. All modules demonstrated specific energy about
45 WH/Kg.
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FIGURE 20
Module 005
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FIGURE 21
Module 003
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3.0 QUALITY ASSURANCE

The Quality Assurance group continued to make significant contribution
to the Eagle-Picher Nickel-Iron battery development program. An acceptance
weight criterion was developed and refined during the report period for use
in the fabrication of positive nickel electrodes. This screening method
was demonstrated to be effective within a one-percent (1%) margin of error
in selecting plates that, when sintered, exhibited acceptable thickness,
porosity and bend strength. The Document Resources Center was instituted,
implementing provisions of EPQC-1397 and upgrading the documentation
required to assure the retrievability and replication essential in a
research and development program. Other important tasks accomplished by
Quality Assurance personnel included performance of receiving inspection,
maintenance of inventory control and the keeping of materials archives.
Quality Assurance activities were in keeping with the Quality Assurance
Program Plan set forth in EPQC-100-Ni/Fe. Quality Control functions in
the Nickel-Iron development program were the responsibility of the Quality
Assurance engineer and a Quality Control technician. The Quality personnel
were assigned to the project by the Product Assurance manager to whom they
directly reported.

4.0 CONCLUSIONS

The FY-1981 program continued to show significant progress in the drive
to meet the established program goals as set forth below.

1. Initial full-scale electrode testing, which reached two
thousand three hundred (2,300) cycles in FY-1981, established
the capability of the chosen technology to yield the desired
cycle life.

2. Plaque processing has now demonstrated significant improve-
ments in the area of higher specific energy with life cycle
tests continuing.

3. The separator test cells have demonstrated the sintered
PVC separator to be adequate for over 1,900 cycles.

4. Tests on full-scale (270 AH) Cells continued throughout
the period. Cells incorporating the latest in electrode
technology were placed on test during the year. Initial
full-scale cells in the program have now exceeded eight
hundred (800) cycles in the continuing life test regimen.
Cell #7 output peaked at about 315 AH and 55 WH/Kg specific
energy.

5. Five-cell, 6 volt modules, a significant step toward the
full-scale battery stage, continued cycling at both the
Eagle-Picher test center and the NBTL with some units exceeding
seven hundred (700) cycles. All these modules have demonstrated
about 45 WH/Kg specific energy. The most recent module to be
placed on test at the NBIL incorporated the latest electrode

technology.
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Significant progress was achieved in the development of
single-point watering systems. Initially, a prototype
watering system is slated for incorporation into a 6 volt
module during the proposed FY-1982 program.
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