

Wendy R. Cieslak and Henry K. Street
 Sandia National Laboratories
 Exploratory Batteries Division 2523
 Albuquerque, New Mexico 87185

DE90 011909

Abstract

We have designed a lithium/thionyl chloride "D" cell for efficient performance at the moderate rate of ~ 500 mA (6.25 Ω load). The SNL-MR-D cell has 345 cm² of active electrode area, 1.0 M LiAlCl₄ electrolyte that may have SO₂ additive, and a cathode blended of Shawinigan Acetylene Black, Cabot Black Pearls 2000, and Teflon binder. The average performance of cells built in-house and discharged at 25°C and 6.25 Ω has been 14.9 Ah (50 Wh). We have aged the cells at 30°C and 50°C, and measured complex impedance and microcalorimetry during the aging period. The cells have been discharged after the aging period at 25°C and 0°C. This preliminary study has allowed us to establish an initial cell design and estimate the rate of capacity loss on storage or long-term usage.

Introduction

We design cells for specific applications that generally require high reliability and long shelf lives. For a Li/SOCl₂ "D" cell, one need is for a cell that can efficiently perform at very low rates for up to 10 years and also perform well under a 6.25 Ω load (500 - 550 mA). In this instance, the temperature range is relatively benign: 0 to 30°C. In order to make the cell an attractive alternative to Li/SO₂, it must possess substantially higher energy density in a safe package. We designed our cell based on some of the available literature that was applicable to our needs.

Dey and Bro looked at electrode geometry as a function of rate¹. They showed that a 0.030" thick cathode would efficiently accommodate discharge products at moderate rates (<2 mA/cm²). Data in this and another work² show that 1.0 M LiAlCl₄/SOCl₂ electrolyte gives the best energy density at these rates. In addition, it has been indicated that higher concentrations of LiAlCl₄ cause increased corrosion and passivation of the Li³. Based on these data, we chose a 0.030" thick cathode and 345 cm² of active surface area in our spiral-wound D cell. The cell is not wound tightly, so that space is available for cathode expansion on discharge⁴⁻⁶. We use a 1.0 M electrolyte, with the addition of SO₂ as a voltage delay additive⁷ in some of our tests.

This design, at the 500 mA rate, is capacity-limited by blockage of the carbon cathode matrix. Klinedinst's work has indicated that the high surface area carbons (particularly Ketjenblack EC and Cabot Black Pearls 2000) discharge more efficiently than Shawinigan Acetylene Black, at least at high rates⁸. Therefore, we looked at cathodes, all with 8% TFE binder, made of only Shawinigan (SAB), and made of equal by weight blends of Ketjenblack KJ/SAB or Black Pearls BP/SAB. We also had a requirement for low self-discharge which, of course, was greatly affected by the choice of carbon. Early on in our study we discarded the Ketjenblack blended cathode because it aged very poorly, as Klinedinst and Harris later showed⁹. Their work, consistent with ours, showed that the BP/SAB blend gave the best capacity retention and least voltage delay after accelerated aging studies.

The need for a mechanical vent to release pressure to prevent explosion of Li/SOCl₂ cells is widely acknowledged¹⁰⁻¹³. Dey first explored the idea of vent pressures less than 200 psi¹⁰, and his work was supported by Staniewicz et al¹¹. While higher pressures may be safe for cells of a particular design^{12,13}, we selected the lower pressure as the conservative choice for our design.

Experimental

All tests were conducted in our "D" cell hardware. The cans are 304L stainless steel into which a 316L stainless steel burst disc (BS&B Safety Systems) has been laser-welded. All metal hardware, including the Ni electrode screens, is degreased and oven dried. We laminate Li foil to the anode screens by hand. The cathodes are formed from a dough which is rolled and pressed onto the screens. Both electrodes are 1.78" wide. They are weighed and measured prior to final assembly, both for quality control and for later performance analysis. We use an unbonded glass separator product, Whatman DBS30. The separator is 2" wide.

We purchase Lithco electrolyte, and then reflux it in the presence of Li. The SO₂ is added to complex with the LiAlCl₄ after the reflux operation. Cells are evacuated, filled and ball-sealed in an argon-atmosphere glove box, using a back pressure of 9 psi argon to deliver the electrolyte.

The cell has excess SOCl₂ capacity equalling 1.2X that of the Li. The balance is as follows: 19.3 Ah theoretical of electrolyte, 16.1 Ah theoretical of Li, and 14 Ah empirical of carbon at a 500 mA design rate. As noted above, the cell has 345 cm² of active electrode surface area.

ResultsSafety and Abuse Tests

Short circuit tests at ambient temperature (3 replicates) produced maximum currents of close to 30 amps and cell skin temperatures of ~100°C. The vents opened fully after 3-5 minutes and allowed some expulsion of cell materials, but no noticeable flame. Short circuit tests at 70°C (4 replicates) caused similar ventings in less than 4 minutes, maximum currents of about 25 amps, and peak temperatures of 90-103°C.

High rate 3.0A constant current discharge and reversal tests at 70°C (6 replicates) produced venting at skin temperatures of 85-125°C, within 100 minutes of entering reversal. Cell materials were partially expelled, but there was very little liquid and no smoke or flame in any of the tests.

High rate 3.0A charge tests at 70°C (6 replicates) produced benign, flameless ventings at 100 - 120 °C. When a test was continued beyond venting, it would eventually cause a higher temperature excursion and flame.

Our standard 6.25 Ω resistive discharge has never caused any bulging, leaking or venting in more than 80 tests.

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Discharge Performance

Three variations in cell design were studied: 1) BP/SAB blended cathode with 1.0 M LiAlCl₄/SOCl₂ electrolyte (BP on Figures), 2) BP/SAB blended cathode with 1.0 M LiAlCl₄/SOCl₂·SO₂ electrolyte (BP & SO₂) and 3) SAB cathode with 1.0 M LiAlCl₄/SOCl₂ electrolyte (SAB).

Cells have been stored at 30°C and 50°C for times of 5 to 30 weeks, and tests to 120 weeks are still running. We have stored cells at open circuit and under low drain (150 μA). A cell is discharged following the aging period under a 6.25 Ω load at 25°C or 0°C. There were 2 or 3 replicates scheduled per condition.

Figures 1 through 3 show typical discharge performance for cells at 25°C. The fresh cells, Figure 1, run longer and at higher voltage with BP in the cathode. After aging at 30°C, Figure 2, the SAB cathode shows substantial voltage delay. BP in the cathode greatly improves the voltage response, and SO₂ makes a smaller positive improvement. These effects are more pronounced after aging at 50°C, Figure 3. In general, the BP cathodes greatly improve capacity, decrease self-discharge, and reduce voltage delay over the standard SAB cathodes. The effect of the SO₂ additive, while minor for this discharge condition, does reproducibly increase the average discharge voltage of the aged BP cathode cells.

Similar data for 0°C discharges are shown in Figures 4-6. Note the change of scale for the capacity axis on Figures 5 and 6. Although elevated temperature storage causes more degradation in the 0°C performance, the same general conclusions can be reached as for the 25°C discharges.

The discussion to this point has considered only the effects of elevated temperature storage at open circuit. Storage under 150 μA drain mitigated the voltage delay of the SAB cells, although the average discharge voltage was still well below that of the BP cells. The average capacities, including the amounts consumed during storage, were in all cases equal to or somewhat greater than comparable data taken on cells stored at open circuit, where available. In particular, the apparent 0°C capacities were higher by virtue of the additional amount consumed during the 30°C or 50°C storage period.

The performance of the 6 cells (BP with or without SO₂) that were tested fresh averages 14.9 Ah with a standard deviation of 0.45 Ah. The average discharge voltage was 3.41 V with a standard deviation of 0.02 V. We can normalize capacity by the volume of the cathode to eliminate cell-to-cell size variations in the data analysis. Using the normalized capacities, for cells stored both at open circuit and under load, a rate of self discharge is calculated for the 30 week storage period. Cells stored at 50°C and discharged at 25°C had approximately 5% less capacity than fresh cells. Storage at 30°C prior to 25°C discharge caused a loss of less than 1% of the capacity.

Complex Impedance and Microcalorimetry

We measure the complex impedance of the cells at intervals throughout the aging periods. We use the diameter of the high frequency semicircular component

of the impedance spectrum to monitor the relative resistance of the passive film on the Li anode. While the film resistance does grow more quickly at higher temperature, its growth rate is not greatly affected by the carbon type or addition of SO₂ to the electrolyte. The influence of the initial Li surface condition when the cell is filled may be masking these other effects.

We also use microcalorimetry as a nondestructive means of sampling the cells. The SAB cells, which exhibit the poorest discharge performance, also exhibit the highest heat output. Table I presents sample data for measurements at 30°C and 50°C.

Table I

<u>Identity</u>	<u>Temp.</u> °C	<u>Age</u> Weeks	<u>Avg. Heat</u> Microwatts
BP	30	36	170
BP & SO ₂	30	30	80
SAB	30	37	270
BP	50	30	100-200
BP & SO ₂	50	30	200-300
SAB	50	30	500-600

Summary

The SNL-MR-D cells with a cathode blended of BP and SAB carbons perform superior to cells without BP in the cathode, both fresh and after accelerated aging studies. Cells using the BP/SAB cathode and a 1.0M LiAlCl₄/SOCl₂ electrolyte with or without SO₂ additive, when built as in-house prototypes, have an average fresh cell capacity of 14.9 Ah at 3.41 V at 25°C and a 6.25Ω load (~550 mA). The cells lost ~5% of capacity during 30 weeks storage at 50°C, and ~1% loss when stored at 30°C.

Acknowledgements

Our Li/TC "D" cell development team at Sandia all contributed to this effort: Chris Crafts, Frank Delnick, Sam Levy, Patricia Neiswander, Mike Russell, Lenny Storz and David Weigand. This work, performed at Sandia National Laboratories, was supported by the U.S. Department of Energy under contract no. DE-AC04-76DP000789.

References

[1] A. N. Dey and P. Bro, "Primary Li/SOCl₂ Cells III. The Effect of the Electrolyte and Electrode Variables on the Energy Density," Proceedings Intl. Power Sources Symposium, Brighton, 1976, paper #32, pp 493-510.

[2] A. N. Dey, "Experimental Optimization of Li/SOCl₂ Primary Cells with Respect to the Electrolyte and the Cathode Compositions," J. Electrochem. Soc., Vol. 123, No. 9, pp. 1262-1264, 1976.

[3] J. J. Auborn and H. V. Venkatasetty, Lithium Battery Technology. J. Wiley & Sons, 1984, Ch. 5, pp. 127-137.

[4] A. N. Dey and P. Bro, "Primary Li/SOCl₂ Cells IV. Cathode Reaction Profiles," J. Electrochem. Soc., Vol. 125, No. 10, pp. 1574-1578, 1978.

[5] S. Szpak and J. R. Driscoll, "Investigation of Positive Electrode Characteristics in High Rate Li/SOCl₂ Cells," Journal of Power Sources, Vol. 10, pp. 343-354, 1983.

[6] N. Marincic, "Materials Balance in Primary Batteries. II. Lithium Inorganic Batteries at High Discharge Rates," J. Applied Electrochem., Vol. 6, pp. 51-58, 1976.

[7] D. L. Chua and W. C. Merz, "Long Life Thionyl Chloride Cell," US Patent 4,309,490, Jan. 5, 1982.

[8] K. A. Klinedinst, "Relationships Between Carbon Black Cathode Material and Lithium/Oxyhalide Cell Performance," J. Electrochem. Soc., Vol. 132, No. 9, pp. 2044-2050, 1985.

[9] P. Harris and K. Klinedinst, "High Rate Lithium Battery Development," Report AFWAL-TR-88-2056, AFWAL/POOS, WPAFB, OH 45433-6563, August 1988.

[10] A. N. Dey, "Primary Li/SOCl₂ Cells II. Thermal Runaways and Their Prevention in Hermetic D Cells," Proceedings of the 32nd International Power Sources Symposium, The Electrochem. Soc., Inc., 1976, pp 42-44.

[11] R. J. Staniewicz, R.A. Dixon and J.A. Wilson, "The Safety and Performance of Spiral Wound Li/SOCl₂ Cells for Military Applications," Proceedings of the 32nd International Power Sources Symposium, The Electrochem. Soc., Inc., 1986, pp. 559-565.

[12] D. H. Johnson et al, "Design of a Safe Cylindrical Lithium/Thionyl Chloride Cell," J. of Power Sources, Vol. 12, pp. 61-70, 1984.

[13] D. Vallin and M. Brousseau, "Safety Test Results of Lithium-Thionyl Chloride Wound-Type Cells," J. of Power Sources, Vol. 26, pp. 201-209, 1989.

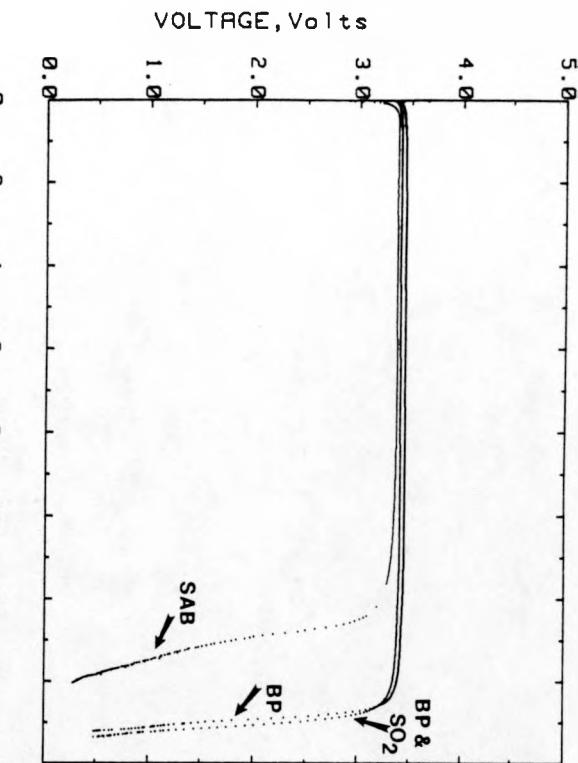


Figure 1. Fresh cells discharged at 25°C and 6.25 ohms.

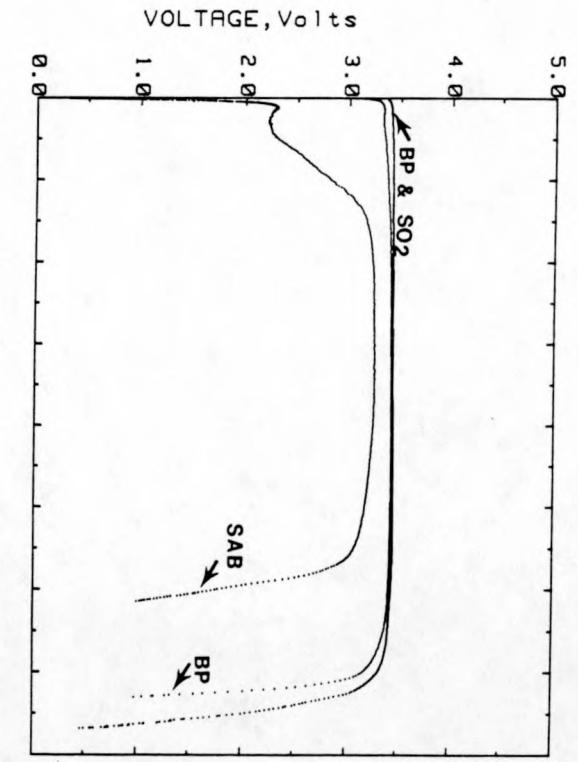
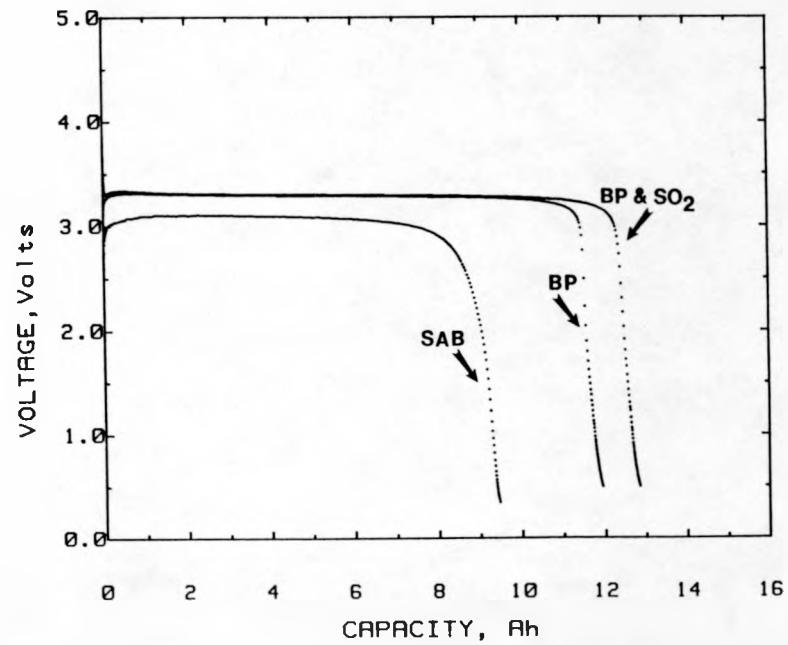
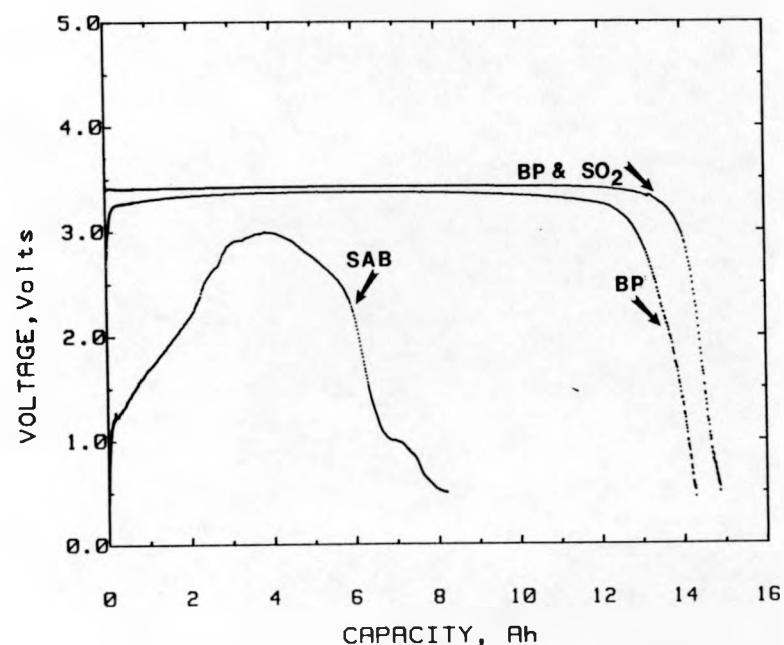
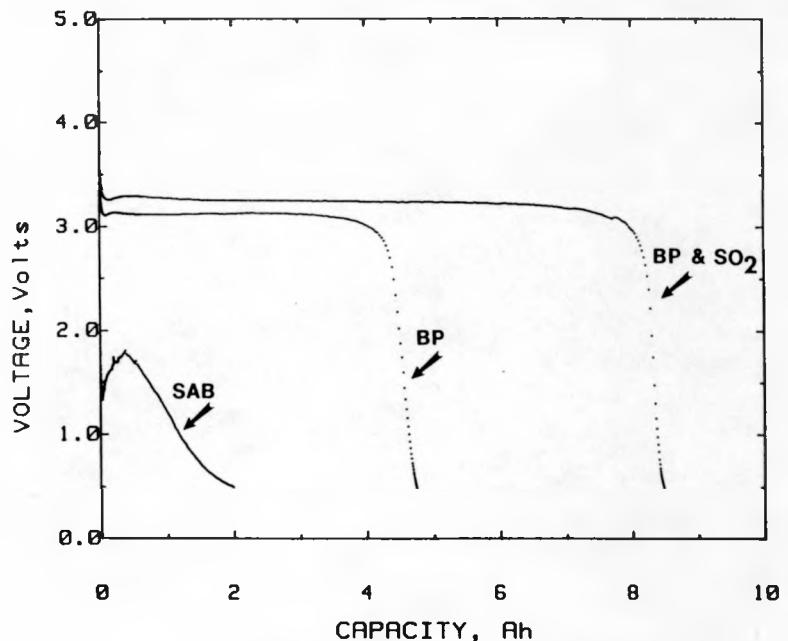
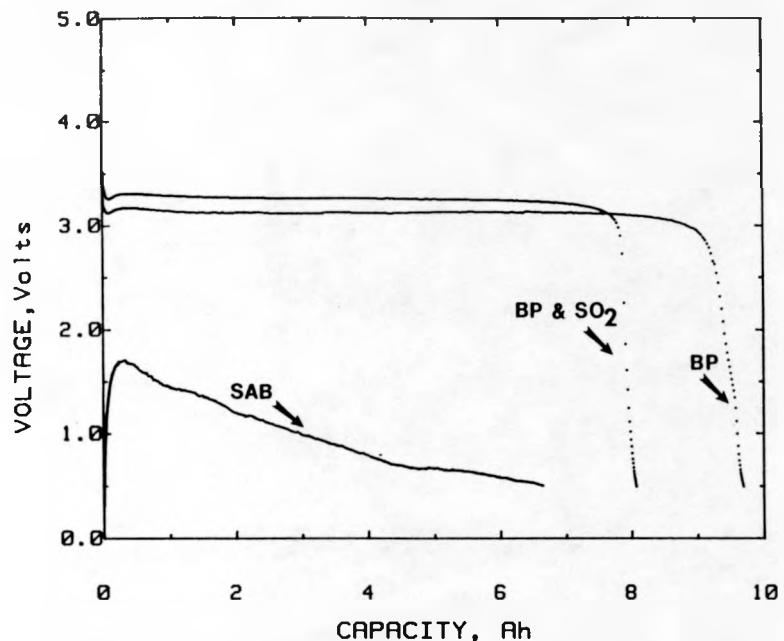






Figure 2. Cells aged at 30°C for 30 weeks, open circuit, and discharged at 25°C and 6.25 ohms.

