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Charged-particle transport calculations are most often car-
ried out using the Mome Carlo technique. For example, the
TIGER (Ref. I) and ECS (Ref. 2) codes are used for electron
transport calculations, while HETC (Ref. 3) models the trans-
port of protons and heavy ions.

In recent years there has been considerable progress in
deterministic models of electron transport.4'* Many of these
models are also applicable to protons. In this paper we pre-
sent discrete ordinates solutions to the Spencer-Lewis'0"12

equation for protons. In its present form, our code calculates
the energy deposition profile and primary proton flux in x-y
geometry due to proton beam irradiation. Proton energies up
to 0.4 GeV are permissible.

The Spencer-Lewis equation for the proton angular flux
x.y.s.Q) is

• / .
Q{x,y,s,(l) . (1)

where

flx.O, = x and y components of the velocity direc-
tion, respectively

o(s) * total interaction cross section, including
nuclear and coulomb collisions

o(s,{)' — tl) = differential scattering cross section for
nuclear and coulomb collisions

s * path length, which is used as our energy
variable in the continuous slowing down
approximation (CSDA).

Once * of (x.y.s.tl) is found, the energy deposition profile
(EDP) can be given by

EDP(x.y)= \ | ^ *U,y,s)ds , (2)

where \dE/ds\ is the proton stopping power, and

*{x,y,s) = f 4,(x,y,s,{l)d& (3)

is the scalar flux.
For energies below 0.4 GeV, protons lose energy primar-

ily ihrough coulomb collisions with electrons. This is modeled
using the CSDA. The required slopping powers are obtained
from the computer code SPAR (Ref. 13), which has been
included in the main program *s a subroutine.
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Nuclear coulomb collisions do not produce significant
energy losses; however, they can cause (normally very small)
angular deflections. These collisions are modeled using
Rutherford scattering with the screening parameter given by
MoUere.14 As with electron transport calculations, the scatter-
ing integral in Eq. (I) is carried out numerically using discrete
directions. Due to the extreme anisotropy (even more so than
for electrons) of proton coulomb scattering, however, good
accuracy would require a huge number of discrete directions
rendering numerical solutions unfeasible on present-day com-
puters. To overcome this problem, the SMART scattering
matrix technique* developed for electron transport is used.
This scattering matrix enables us to model a very large num-
ber of minute deflections by relatively few larger deflections.

At the present lime, our code treats only primary protons.
Primary protons are removed through (p.n) and (p,p)
nuclear collisions. The cross sections for these reactions are
obtained from the NCDATA code11 that interpolates values
from analytic fas to the nonclastic cross-section data gener-
ated by Benini"-17 using an internuclear-cascade model.

Because of the statistical nature of charged-particle inter-
actions, all protons of a given energy will not have identical
ranges. This phenomenon is referred to as range straggling.
Coulomb collisions with nuclei contribute to straggling by
imposing a variety of angular deflections to the proton trajec-
tories. A somewhat larger contribution comes from fluctua-
tions in the rate of energy loss due to electron collisions. The
former cause of straggling is modeled through our treatment
of multiple scattering from nuclei; however, the CSDA implies
the same stopping power for all protons of a given energy so
that the latter type of straggling is not modeled by the
Spencer-Lewis equation. In most cases, straggling can be
neglected; however, it can be significant for problems involv-
ing monocnergetic sources. For these problems an analytic
first collision source" (made feasible by the relatively large
effective mean-free-path obtained from SMART scattering
theory") is used. To simulate straggling from energy loss
fluctuations, source particles of the same energy are given
slightly different stopping powers. Typically, ten different val-
ues are used. These values are chosen such that the average
slopping power and the percentage of range straggling (avail-
able from Ref. 19) are preserved.

Dose profiles have been calculated for several source and
target geometries. Figure I shows SN and Monte Carlo results
for the dose profile integrated over the y direction in a two-
dimensional target due to a normally incident beam of
200-MeV protons. The target consists of an aluminum region
(1.5 cm < x < 5 cm, 0 < y < 1.87 cm) sandwiched between two
lead regions (0 < x < 1.5 cm, 5.0 cm < x < 7.0 cm, 0 < y <
1.87 cm) with the source located at (0.936 cm).

The SN and Monte Carlo results are in excellent agree-
ment, except near the peak. The discrepancy there is proba-
bly due to the fact that the HETC calculations do not include
multiple nuclear scattering, to diamond-differencing errors,
and to differences in the treatment of straggling.

The results for Fig. 1 do not include attenuation from in-
elastic nuclear collisions. When these collisions are included
there is an -151% reduction in the peak height, which is con-
sistent with the probabilities of nuclear collision given in
Ref. 19.

The next phase of code development will be to include sec-
ondary protons. Since the CSDA does not apply to inelastic
nuclear collisions, it will be assumed that each inelastic colli-
sion kills the primary proton and produces a new proton that
shows up in Q(x,y,s,(l) at the appropriate s value. The nec-
essary differential cross sections {p,p), {p.n), and (n,p) will
be interpolated using NCDATA.

Since protons tend to travel in straight lines, it may appear
that ray effects could be significant. No ray effects have been
observed thus far, however, and nuclear collision, first colli-
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Fig. I. Energy deposition profile calculated using the Monte
Carlo (HETC) and S* methods.

sion sources, and the effects coupled neutron-proton transport
should help prevent this problem.
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