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1.PROBLEM OF CHIRAL G A U G E THEORY

1.1 Motivation

Lattice regularization1] provides us with a powerful tool to investigate Quantum Fields

Theories, such as QCD or Gauge-Higgs system. However successes of lattice regularization

have been limited to purely bosonic systems or to systems with fermion-gauge field vector-

like interactions. The reason for this is that we can not define the lattice fermion coupled

to gauge field in a chirally invariant way2'. This fact is closely related to the local gauge

anomaly3'. Because the lattice regularization is well-defined, an anomalous symmetry

cannot be maintained on a lattice. In the continuum case, the anomalous symmetry

is broken by the regularization, for example, Pauli-Villars regularization or dimensional

regularization.

From this observation, it seems possible to construct a chirally gauge invariant action

for the anomaly free case. However it is not so easy. There are two ways of breaking chiral

gauge symetry: one is by the anomaly, the other is the breaking which can be written as

gauge variant local terms. Anomaly free means that a pure anomaly is canceled out among

all fermions contributions; however it does not mean the cancellation of the gauge variant

local terms. We should add by hand the gauge variant local counterterms order by order

to recover the gauge invariance of the final results. Furtheremore the cancellation of a pure

anomaly is only true for the infinite cut-off limit. Because of the above two reasons, we

cannot generally have chiral gauge invariant action with finite cut-off even for the anomaly

free case.

In this talk we will discuss the quantization of anomalous chiral gauge theories as

well as anomaly free theories by using lattice regularization. One important physical

motivation for this work is to put the full Wdnberg-Salam model( with fermions ) on a

lattice in order to investigate it by non-perturbative methods such as Strong Coupling

Expansion or Monte-Carlo simulation. The other theoretical motivation is to investigate

the consistencey; for example, renormalizabiHty or unitarity, of anomalous gauge theories.
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In this talk we concentrate on this point and show that anomalous gauge theories are

renonnalizable in the sense of lattice power counting*).

1.2 Quantisation of anomalous gauge theories in the continuum approach

First we briefly sketch how diincut is the quantization of anomalous gauge theories in

the continuum approach by following a paper by Gross and Jacltiw5].

We denote action by 5(9) where q represents any field involved in the theory. In this

short-hand notation a gauge transformation is written as

where w(x) £ U(N),SU(N) or other Lie groups, is a gauge function. For example, q'(x)

is explicitly given by

A'^x) = w(x)All(x)w-1(z) + -u;-1(x)d^w(x).

In order to make a perturbative expansion ( more precisely, to get a propagator for a

gauge field ) we have to fix the gauge. That is achieved by inserting

n/
into the partition function. Here the Faddeev-Popov determinant1' is included in the gauge

fixing function SCF- Then the partition function becomes

Z = jVq exp[S(g)jy Vw

= Jvq»Vw exp[S(g") + SGF(q)}

= JVqVu exp[5e//(g,u;) + SGF{q)]

where we define

Vq exp[Se/ /(?) U)] = Vq» exp[S(g")], S.,,(q, 1) = S(q).
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Since the theory is anomalous,

*.//(«,«) = Seff(q,l) + Jdx 9{x)A(x) + O{83)

for infinitesimally small 8 , where A{x) is the so-called non-Abclian anomaly^. For finite

9,

SWZ(q,u,) = S./ffaw) - S e / / (? , 1)

is nothing but the Wesi-Zumino term7'. The field u is called the Wess-Zumino scalar.

Finally we get

Z = jVqVw exp[5(9) + Swz{q,u>) + SGF{q)\.

This form was first obtained by Harada-Tsutsui'l and it is equivalent to the proposal by

Fadeer-Shatashivili'l who add the Wess-Zumino term to the original action by hand to

quantise the anomalous gauge theory. We have to integrate both q and u> interacting

through the Wess-Zumino term to quantize anomalous gauge theory correctly.

It is easy to see that S{q) + Swz(q,u) has gauge invariance such that

q'(x)= qk(x), « ' ( » ) = fc->«(»).

From this property there arises a hope that the theory defined by S(q) + Swz(q,u) may

be renormalizable. However, since 5^^(5,0;) is highly non-linear in 4-dimensions, it is

difficult to work with it.

2. LATTICE QUANTIZATION

Next let us apply the above procedure to the lattice action. From the observation

in the continuum case, we should take a gauge TTTTTiiEtion at the begining in order to

quantize an anomalous gauge theory. Therefore we take the Wilson fermion action1 °) for
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the fermionic part of the action, which is given by

= Srrfr) + Sw(<p).

Here <p represents Un<ll, i> and V> , 5rrri» a gauge invariant part of Sp and Syy is a gauge

variant part of SF, that is, the Wilson term. The total action is SF + SQ where SG is the

pure gauge action. We call a field <p of this original action the physical field and denote it

by <pr, if necessary. An gauge transformation is given by <p'n = ^* and explicitly written

Aa in the continuum case, we can insert unity :

»
dgnexpSGF(tp' " ' ) =

into the partition function to fix the gauge in the perturbative expansion. However , for

non-pereturbative calculations it is not necessary to fix the gauge on the lattice. In that

case we can take SGF = 0 since J dgn = 1 . This is possible only on a lattice. By inserting

the gauge fixing condition into the partition function and making a change of integration

variables such as tp^ = ¥>** where we call this new field a renonnalizable field and attach

the suffix r, we get

Z = JvgVip exp[5rnte') + Sw(<Pg) + SCF{<P)}

Sw{<p') + SGF(<P)]



where the suffix r is omitted and

Sw(v) = a* £ ^

This term represents the violation of gauge invariance and includes all information con-

cerning anomaly. For example the non-Abelian anomaly can be obtained by this term in

lattice perturbation theory11'.

It is noted that Srri<p) + Sw(>p') also is gauge invariant under

Because the above action is bilinear for fermions, it is possible to do Monte-Carlo simulation

with this action. This form4'12] is also suitable for a perturbative calculation of the 2-

dimensional chiral Schwinger model11'.

Since there are no coupling among gn in the action, we can integrate the gn field4'

explicitly. We define

then we get , for example, for gn €

Furthermore, because of the Grassmann property of fermions , K(<p) is finite polynomial

of $ and Y> . For example, gn € U(l) in 2 dimensions, it is given by

= a2d-
4

n



and gn £ U(l) in 4 dimensions, it is given by

n Mi"

It is noted that K(<p) for general gn is also local and gauge invariant but non-linear.

3 . RENORMALIZABILITY A N D PHYSICAL INTERPRETATION

From lattice power counting14', which means that we count the order of lattice spacing

a of the given diagram, for the non-linear action Srrif) + K{v)i we have shown4' that the

superficial degree of divergence D of a given Fenyman diagram in four dimensions is

where EG, Et and Ef are the numbers of external lines for gauge field, ghost field, and

fermion, respectively. This shows that anomalous gauge theories as well as anomaly free

theories are renormalizable even in four dimensions. The effect of the anomaly induced

by g integral is renormalizable. If we add the kinetic term for the g field to the action

before the g integration, we can identify j u i polar part of the Higgs field15). However

this makes the g integration impossible and the theory un-renormalizable.

There are some remarks.

1) Though the physical field tp* does not have species doubling modes, the gauge invariant,

non-linear action for the renormalizable field <pr may have doubling problems. However it

is stressed that we do not attempt to propose the chiral gauge invariant lattice action for

the physical fields though Nielsen-Ninomiya's theorem3' does not apply to the non-linear

action. We introduce <pr to show the renormalizability of the theory and the physical

interpretation should be made for <pr. This relation between tpr and <p* reminds us of
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the relation between the renormalizable gauge and the unitary gauge in the gauge-Higgs

system.

2) Since the action for <p* it gauge variant, there exist a non-trivial relation between <p* and

<pr. For example, to see the relation between fermion fields with gn € £T(1) , we introduce

a generating function for fermion field such as

U exp[Srrr+= I

= jv$Thl>VV exp[SrrH-

where

fa Dn = An

From the above identity it is easy to get equations such that

> = <

> = <

in 2-dimensions. Similar but more complicated equations can be also obtained in 4-

dimensions. By using these equation we can calculate all vacuum expectation values of

physical field tpp if we know all vacuum expectation values of renormalized field tpT.

3) If we interpret i>p, i>p and .A* as real physical fields, we can observe interesting properties

as follows:

The physical fermion field is not confined because gauge invariance does not hold for the

physical fields.

Mass generation for gauge field by quantum effect is allowed because of the same reason.

The above two properties may correspond to the fact that the weak gauge bosons

have mass and the leptons are not confined.

4) It is noted that from the renormalizable theory , which has finite number of counterterms,

by some non-linear transformation we may construct the theory which seems to be un-

renormalizable because the number of counter terms is infinite. However in this case the
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number of independent counter terms is finite. The non-linear sigma model in 4-dimensions

may be one example of this type of theory1 •!. It is interesting to see whether the anomalous

theory is of this type or not.

Now we are at the starting point to investigate an (anomalous) chiral gauge theory

on a lattice; we should carefully study both perturbative and non-perturbatire properties

of this theory. As the first the perturbative expansion for a non-linear action is now under

investigation. After getting some information from that calculation we would like to do

Monte-Carlo simulation in the near future.

I would like to thank Prof. T. L. Trueman for careful reading of the manuscript and

useful comment. I also thank Prof. M. Creutz, Prof. R. Shrock and Dr. I-Hiiu Lee

for useful discussion. This work was supported by the U.S. Department of Energy under

contract DE-AC02-76CH00016.
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