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ABSTRACT

We discuss the quantization of chiral gauge theories by lattice regularization, carefully
treating the effects of the chiral anomaly. We derive a chiral gauge invariant lattice fermion
action from a chiral gauge variant Wilson fermion action without changing its partition
function. By lattice power counting for this formula we show that anomalous gauge theories
as well as anomaly-free gauge theories are renormalizable even in 4-dimensions. Some

applications and implications of this result and problems therein are discussed.
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1.PROBLEM OF CHIRAL GAUGE THEORY

1.1 Motivation

Lattice regularization?! provides us with a powerful tool to investigate Quantum Fields
Theories, such as QCD or Gauge-Higgs system. However successes of lattice regularization
have been limited to purely bosonic systems or to systems with fermion-gauge field vector-
like interactions. The reason for this is that we can not define the lattice fermion coupled
to gauge field in a chirally invariant way?l. This fact is closely related to the local gauge
anomaly?]. Because the lattice regularization is well-defined, an anomalous symmetry
cannot be maintained on a lattice. In the continuum case, the anomalous symmetry
is broken by the regularization, for example, Pauli-Villars regularization or dimensional
regularization.

From this observation, it seems possible to construct a chirally gauge invariant action
for the anomaly free case. However it is not so easy. There are two ways of breaking chiral
gauge symetry: one is by the anomaly, the other is the breaking which can be written as
gauge variant local terms. Anomaly free means that a pure anomaly is canceled out among
all fermions contributions; however it does not mean the cancellation of the gauge variant
local terms. We should add by hand the gauge variant local counterterms order by order
to recover the gauge invariance of the final results. Furtheremore the cancellation of a pure
anomaly is only true for the infinite cut-off limit. Because of the above two reasons, we
cannot generally have chiral gauge invariant action with finite cut-off even for the anomaly
free case.

In this talk we will discuss the quantization of anomalous chiral gauge theories as
well as anomaly free theories by using lattice regularization. One important physical
motivation for this work is to put the full Weinberg-Salam model( with fe;rqiong Jona
lattice in order to investigate it by non-perturbative methods such as Strong Coupling
Expansion or Monte-Carlo simulation. The other theoretical motivation is to investigate

the consistencey; for example, renormalizability or unitarity, of anomalous gauge theories.
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In this talk we concentrate on this point and show that anomalous gauge theories are

renormalizable in the sense of lattice power counting?l.

1.2 Quantization of anomalous gauge theories in the continuum approach
First we briefly sketch how difficut is the quantization of anomalous gauge theories in

the continuum approach by following a paper by Gross and Jackiw®],

We denote action by S(g) where g represents any field involved in the theory. In this
short-hand notation a gauge transformatior is written as

¢(2) = g(2)®),  w(z) = explif(=)]

where w(z) € U(N),SU(N) or other Lie groups, is a gauge function. For example, ¢'(z)
is explicitly given by

¥'(2) = [w(2)Py + Pr¥(z)

¥() = $(2)lw ()Pa + Pi]

Au(z) = w()Au(2o (@) + 20 (2)00s(2).

In order to make a perturbative expansion ( more precisely, tc get a propagator for a
gauge field ) we have to fix the gauge. That is achieved by inserting I'I'TTT

I1 _/ dw(z)exp[Ser(g” )] =1

into the partition function. Here the Faddeev-Popov determinant®i is included in the gauge
fixing function Sgr. Then the partition function becomes
Z = / Dg exp[5(q)] / Duw exp[Scr(g””"))
= [ De* Do explS(a*) + Sarla)
= /Dq Dw exp;[s,ff(q,W) + Scr(q)]
where we define

Dq exp(Sess(q,w)] = Dg” exp[S(q™)],  Sess(9,1) = S(q)-
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Since the theory is anomalous,
Sestla,0) = Sers(1) + [ do 0z)A(z) + O(6)

for infinitesimally small 8 , where A(z) is the so-called non-Abelian anomaly®). For finite
8,

5%%(q,w) = Sess(g,w) — Sers(g:1)

is nothing but the Wess-Zumino term?l. The field w is called the Wess-Zumino scalar.
Finally we get

Z= / DgDw exp[S(q) + S¥Z(q,w) + Ser(q)]-

This form was first obtained by Harada-Tsutsui® and it is equivalent to the proposal by
Fadeev-Shatashivili®! who add the Wess-Zumino term to the original action by hand to
quantize the anomalous gauge theory. We have to integrate both g and w interacting

through the Wess-Zumino term to quantize anomalous gauge theory correctly.

It is easy to see that S(gq) + S¥Z(q,w) has gauge invariance such that
¢(z)=g"z), W'(z)=h""w(z).

From this property there arises a hope that the theory defined by 5(g) + 5" ?(g,w) may
be renormalizable. However, since $"Z(g,w) is highly non-linear in 4-dimensions, it is

difficult to work with it.

2. LATTICE QUANTIZATION
Next let us apply the above procedure to the lattice action. From the observation
in the continuum case, we should take a gauge I'I'I'I'I'RFPtion at the begining in order to

quantize an anomalous gauge theory. Therefore we take the Wilson fermion action!? for
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the fermionic part of the action, which is given by
Se= [Sru(DPL+ OuPRY + arf’
1. .
=a* Z zﬁ;i’n[(UnmPI: + PR)Ynsp — (U:—“,uPL + PR)’/’n—u]
n,u

=0} = a (bt + o — 20)
n

Srriv) + Sw(v).

Here ¢ represents U, ,, ¥ and ¥ , Sprris a gauge invariant part of Sr and Sw is a gauge
variant part of Sr, that is, the Wilson term. The total action is Sg + Sg where S is the
pure gauge action. We call a field ¢ of this original action the physical field and denote it
by ¢?, if necessary. An gauge transformation is given by ¢!, = ¢4 and explicitly written

as
¢1’| = (g‘nPL +PR)¢1|

¥ = Pnl(ghPr + Pr)
U:l,p = g,.U,.,,.g,t,_*,”.

As in the continuum case, we can insert unity :

H/d"'exl’ Ser(¢* ) =1

into the partition function to fix the gauge in the perturbative expansion. However , for
non-pereturbative calculations it is not necessary to fix the gauge on the lattice. In that
case we can take Sgr = 0 since f dgn =1 . This is possible only on a lattice. By inserting
the gauge fixing condition into the partition function and making a change of integration

variables such as @I, = go,'.':x where we call this new field a renormalizable field and attach

the suffix r, we get
Z= _/ Dg Dy exp[Srrke?) + Sw(e?) + Sar(p)]
= [ DeDeo expiserte) + Swieh) + Sas(e)
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where the suffix » is omitted and

SW(‘P) =a‘ Z g;[ﬁnglpﬂ(i’ﬂi'n + Yp—p — 2¢n) + (ib-n-l-n + &n-—p - zizn)gnPL‘\bn]-
"

This term represents the violation of gauge invariance and includes all information con-

cerning anomaly. For example the non-Abelian anomaly can be obtained by this term in

lattice perturbation theory!?.

It is noted that Srrfw) + Sw(w?) also is gauge invariant under
vh=pk, g =hlgn

Because the above action is bilinear for fermions, it is possible to do Monte-Carlo simulation

with this action. This form*1? is also suitable for a perturbative calculation of the 2-

dimensional chiral Schwinger model?l.
Since there are no coupling among g, in the action, we can integrate the g, field¥)

explicitly. We define
explK(e)) = ] [ donm explSwion]

then we get , for example, for g, € U(1) ,

exp{K ()] = [] #o(2v'4a4n)

- a: -
An = —a‘?r Z"pnpﬂazlbn
M

An = —G‘a—;' Z(Q’.Ju)&#’u
“

/
Furthermore, because of the Grassmann property of fermions , K(y) is finite polynomial
of 1 and ¢ . For example, g, € U(1) in 2 dimensions, it is given by
24 8212 - -
K(p)=a=—3_3 9aPadibn x (8¥%n)Pr¥n
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and g, € U(1) in 4 dimensions, it is given by

2,2
K(v) = az‘de_ Z Z $nPR8:¢n x (8311.’11)1',511711

n uv

2,2
- 3 T T daPadivn x (B3Pl

v

It is noted that K(yp) for general gn is also local and gauge invariant but non-linear.

3. RENORMALIZABILITY AND PHYSICAL INTERPRETATION

From lattice power counting’4] , which means that we count the order of lattice spacing
a of the given diagram, for the non-linear action Srrfy) + K(y), we have shown*! that the
superficial degree of divergence D of a given Fenyman diagram in four dimensions is

D=4~(EG+E,)-§E,

where Eg, E, and E; are the numbers of external lines for gauge field, ghost field, and
fermion, respectively. This shows that anomalous gauge theories as well as anomaly free
theories are renormalizable even in four dimensions. The effect of the anomaly induced
by g integral is renormalizable. If we add the kinetic term for the g field to the action
before the g integration, we can identify g as a polar part of the Higgs field!Sl. However
this makes the g integration impossible and the theory un-renormalizable.
There are some remarks. :

1) Though the physical field ¢” does not have species doubling modes, the gauge invariant,
non-linear action for the renormalizable field ™ may have doubling problems. However it
is stressed that we do not attempt to propose the chiral gauge invariant lattice action for
the physical fields though Nielsen-Ninomiya’s theorem? does not apply to the non-linear
action. We introduce " to show the renormalizability of the theory and the physical

interpretation should be made for ¢?. This relation between ™ and ¢? reminds us of
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the relation between the renormalizable gauge and the unitary gauge in the gauge-Higgs

system.

2) Since the action for p? is gauge variant, there exist a non-trivial relation between ¢? and
¢". For example, to see the relation between fermion fields with g, € U(1) , we introduce

a generating function for fermion field such as
Z(n,m) = [ DEDYDY explSrrrt Sw + 147 + 1]

= [ D8P DU explSerrt nPav” + #"Pun [ fu(2v/DaDy)

where

Dn = ju + 'J’.;Pﬂﬂny Dn = An + ﬁnPL"b;'

From the above identity it is easy to get equations such that

< (Pr¥R)*($aPL)’ > =< (Pryy)*(9nPL)’ >

< (PeBR)@RPLY > =< (PL¥h) (FnPe) 4n >

< (PL¥R)* (¥ Pr)’ > =< (PLy;)*($mPr)’ Andm > +énm < (PLY7)*($7.Fr)" >
in 2-dimensions. Similar but more complicated equations can be also obtained in 4-
dimensions. By using these equation we can calculate all vacuum expectation values of
physical field p® if we know all vacuum expectation values of renormalized field .
3) If weinterpret ¥?, ¥* and AZ as real physical fields, we can observe interesting properties
as follows:
The physical fermion field is not confined because gauge invariance does not hold for the
physical fields.
Mass generation for gauge field by quantum effect is allowed because of the same reason.

The above two properties may correspond to the fact that the weak gauge bosoﬁs

have mass and the leptons are not confined.
4) It is noted that from the renormalizable theory , which has finite number of counterterms,
by some non-linear transformation we may construct the theory which seems to be un-

renormalizable because the number of counter terms is infinite. However in this case the
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number of independent counter terms is finite. The non-linear sigma model in 4-dimensions
may be one example of this type of theory?®!. It is interesting to see whether the anomalous
theory is of this type or not. .

Now we are at the starting point to investigate an (anomalous) chiral gauge theory
on a lattice; we should carefully study both perturbative and non-perturbative properties
of this theory. As the first the perturbative expansion for a non-linear action is now under
investigation. After getting some information from that calculation we would like to do

Monte-Carlo simulation in the near future.
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useful comment. I also thank Prof. M. Creutz, Prof. R. Shrock and Dr. I-Hsiu Lee
for useful discussion. This work was supported by the U.S. Department of Energy under
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