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ABSTRACT 
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The Salton Sea S c i e n t i f i c  D r i l l i n q  Pro jec t  (SSSDP) has been 

organized f o r  the  purpose o f  inves t iga t ing  a hydrothermal system 

a t  depths and temperatures g r e a t e r  than has been done before.  

Plans are t o  deepen an e x i s t i n g  w e l l  or  t o  d r i l l  a new we l l  for  

research purposes f o r  which temperatures o f  30OoC w i l l  be reached 

a t  a depth o f  l e s s  than 3.7 km and then deepen tha t  w e l l  a fu r ther  

1.8 km. 

This repor t  recounts the  Congressional h i s t o r y  o f  the  appro- 

p r i a t i o n  t o  d r i l l  the  hole and other h i s t o r y  through March 1984, 

gives a review o f  the  l i t e r a t u r e  on the  Salton Sea Geothermal F i e l d  

and i t s  re la t i onsh ip  t o  other geothermal systems o f  the  Salton 

Trouqh, and describes a comprehensive ser ies  o f  invest igat ions 

t h a t  have been proposed e i t h e r  i n  the  w e l l  or  i n  conject ion w i t h  

the  SSSDP. Inves t iga t ions  i n  geophysics, geochemistry and petro- 

logy, tec ton ics  and rock mechanics, and geohydroloqy are given. A 

tabu la t ion  i s  given o f  current commercial and state-of-the-art 

downhole t o o l s  and t h e i r  pressure, temperature, and m i n i m u m  ho le  

s i ze  1 im i ta t i ons  
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1 . INTRODUCTION 

The Salton Sea S c i e n t i f i c  D r i l l i n g  Pro ject  (SSSDP) has been organized 

for the purpose o f  i nves t i ga t i ng  a hydrothermal system a t  ,depths and tempera- 

tu res  depths greater than has ever been possible before. 

t o  deepen a 12,000 f t  (3.7 km) c q m e r c i a l  we l l  i n  the Salton Sea Geothermal 

F i e l d  (SSGF) t o  18,000 ft (5.5 1 avai lab le f o r  

s c i e n t i f i c  purposes. Other options are now under consideration. The ob jec t ive  

The i n i t i a l  p lan was 

n 1984, and make t 

o f  t h i s  repor t  i s  t o  describe the geologic background as we l l  as a comprehen- 

s i ve  ser ies  o f  inves t iga t ions  t h a t  have been proposed t o  take maximum advantage 

o f  t h i s  unique opportunity. 

This repor t  has b,een w r i t t e n  p r i m a r i l  r agency planners and po ten t i a l  

inves t iga tors  who p lan  t o  p a r t i c i p a t e  i n  the pro ject ,  A review o f  some of 

the background l i t e r a t u r e  on the-SSGF and i t s , . re la t ionsh ip  t o  other,geothermal 

systems o f  the Salton Trough .is i n c l  

comprehensive repor t  by Elders and Cohen (1983) . 
d. This has been taken from a, more 

The repor t  was prepared by xperiments Panel o f  SSSDP t h a t  was 

organized a t  the reques f 0. L.,Anderson, D i rec t0  f the I n s t i t u t e  o f  

Geophysics and Planetar , Univers i ty  o f  Cali fornia. . A. Witherspoon 

served as Chair nd T . 4 .  Lee served as Secretary o f . the  Experiments Panel. 

The Panel was organiz ne1 order $0 address the fo l lowing 

t 
f i e l d s  o f  in te res t :  geophysics,-geochemi etrology, tec ton ics  and 

b 

b 

rock mechanics, geohyd ogy, and engineering 

The membership o f  each Sub-Pane 

(1) Geophysics: 
T.-C. Lee, T. V. McEvil ly, H. F. Morrison, J. E. Rawley, P. M. 
Wright; 

T. Henyey, Chair, N. E. Goldstein, P. W. Kasameyer, 

b 
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(2) Geochemistry and Petrology: L. H. Cohen, Chair, R. 0. Fournier, 
H. Staudigel; 

(3) Tectonics and Rock Mechanics: T. Doe, Chair, 0. L. Anderson, 
T. Dey, M. S. King, L. R. Myer, R. Richardson; 

(4) Geohydrology: G. S. Bodvarsson, Chair, S. M. Benson, T. W. Doe, 
P.W. Kasameyer, T.-C. Lee, H. Murphy, H. J. Ramey, L. W. Younker; 

(5) Engineering Development Requirements: R. J. Kelsey, Chair, S. M. 
Benson, W. D. Dai ly,  B. R. Dennis, M. Hood. 

1.1, GEOTHERMAL SYSTEMS OF THE SALTON TROUGH 

1.1.1 Regional Set t ing  

The Sal ton Sea Geothermal F i e l d  (SSGF) i s  one o f  a number o f  high- 

i n t e n s i t y  geothermal f i e l d s  which occur i n  a s t r u c t u r a l  depression, known as 

the Sal ton Trough, a t  the head o f  the Gu l f  o f  C a l i f o r n i a  i n  northern Baja 

Cal i forn ia ,  Mexico, and southern Cal i forn ia ,  U.S.A. (Figure 1-1). This 

depression forms pa r t  o f  the boundary between the North American and P a c i f i c  

plates. 

tecton ics o f  the East P a c i f i c  Rise t o  the south, a t  the mouth o f  the Gulf, 

and the transform f a u l t  tecton ics o f  the San Andreas Fau l t  system, t o  the 

north. 

extensional p l a t e  boundary is a f fec t i ng  cont inenta l  c rus t  (Elders e t  al., 

1972; Elders and Biehler,  1975). 

va l ley  tha t  represents the landward extension o f  the Gu l f  o f  C a l i f o r n i a  i n t o  

North America. 

o r i g i n  o f  the  geothermal resources o f  the Salton Trough. 

and i t s  re la t i onsh ip  t o  the SSGF have been reviewed i n  considerable d e t a i l  by 

Elders and Cohen (1983). 

This reg ion marks the t r a n s i t i o n  between the pure ly  extensional 

The SSGF thus represents one o f  the few places i n  the world where an 

The Salton Trough i s  a sediment- f i l led r i f t  

The h igh heat f low o f  t h i s  tecton ic  s e t t i n g  i s  the u l t imate  

This associat ion 
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Figure 1-1 .  Geothermal Fields o f  the Salton Trough. 
Source: Elders and Cohen (1983). 
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The present apex o f  the Colorado River d e l t a  forms a low d i v ide  (11 m 

above sea l e v e l  a t  i t s  lowest po in t )  between the  Imper ia l  Val ley t o  the  nor th  

and the  Mex ica l i  Val ley t o  the  south (Figure 1-1). 

Valley l i e s  below sea leve l .  A t  i t s  northern end i s  the  Salton Sea, which 

Most o f  the Imper ia l  

2 covers about 930 km and has a surface elevat ion o f  about 70 m below sea 

level .  

The Colorado River enters the  Salton Trough from the  east a t  Yuma, 43 m above 

sea leve l .  

and southward ( a t  0.35 m/krn) t o  the  Gulf o f  Cal i fornia.  

Water enter ing the  Imper ia l  Val ley can only escape by evaporation. 

The d e l t a  slopes northward ( a t  0.8 m/km) i n t o  the  Salton Basin 

During 1905 t o  

1907, the  Colorado R iver  flooded over the d e l t a  c res t  i n t o  the  Salton Basin, 

forming the  present Salton Sea. Although the discharge o f  the  R iver  i s  now 

i n t o  the  Gulf o f  Ca l i fo rn ia ,  i n f l o w  o f  Colorado River water v i a  i r r i g a t i o n  

canals causes the  Sal ton Sea t o  pe rs i s t  today. 

The Salton Trough i s  an a c t i v e l y  growing r i f t  va l l ey  i n  which sedimenta- 

t i o n  has almost kept pace w i t h  tectonism. 

t o  the  length  o f  the  Gulf o f  Ca l i f o rn ia  r i f t  has i so la ted  the Salton Basin 

from the Gulf, forming a closed sedimentary basin 200 km long and up t o  90 k m  

wide. 

therefore formed a steeper gradient t o  the  nor th  t o  the  closed basin. 

times o f  f lood, when the r i v e r  topped i t s  levees, any d i s t r i b u t a r i e s  which 

flowed no r th  could capture the  flow. 

over the  low po in t  o f  the c res t  o f  the delta. 

Formation o f  the  d e l t a  perpendicular 

When the  r i v e r  flowed t o  the  Gulf, i t  graded i t s  bed t o  sea l e v e l  and 

I n  

Then the basin f i l l e d  u n t i l  i t  s p i l l e d  

The r i v e r  then graded i t s  bed 

t o  the e leva t ion  o f  the  lake  i t  had created, 11 m above sea leve l .  A t  t h i s  

po in t  the gradient t o  south t o  the Gulf  would be steeper than tha t  t o  the  

nor th  so that, i n  times o f  f lood  when the  r i v e r  topped i t s  levees, the  

d i s t r i b u t a r i e s  which flowed south captured the flow. Thus the d e l t a  o s c i l l a t e d  

between two metastable condi t ions with the r i v e r  f lowing a l te rna te l y  t o  the  

L 
t 

i 
I 
I 

t 

i 
L 
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i 
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m i l l i o n  years has thus been cycles o f  f i l l i n g  w-ith freshwater lakes followed 
. 

by desiccation. ALthough sediments from the wa l ls  o f  the  Basin form marginal 

a l l u v i a l  fans, t he  Colorado R iver  has dominated the sedimentary h is to ry .  

1.1.2 Hydrothermal Systems i n  the Salton Trough 

The Gulf o f  C a l i f o r n i a  and the  Salton Trough are characterized by 

h igh  regional  heat flow. The deep basins within the Gulf geothermal anomalies 

can e x h i b i t  very h igh  heat f l o  

cm s ). On l and  more than a dozen geothermal anomalies have been recognized. 

as 2.1 W/m2 (50 x c a l  

-2 -1 

These anomalies inc lude the  Salton Sea, Westmoreland, East Brawley, Brawley, 

Heber, East Mesa, Dunes, G1 and Border geot rmal f i e l d s  i n  the Imper ia l  

Valley, and the  Cerro Prieto, Tulecheck, Panga de Abajo, Mesa de Andrade, 

Mesa de San Luis, and Desierto de A l t a r  geothermal f i e l d s  o f  the  Mex ica l i  

Val ley ( Figure 1-1 ) . 

n even though they 

roundwater i n  

g r a v i t y  anomalies w i t h  closures o f  2 t o  20 mgals (Elders e t  al., 1972). 
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The c h i e f  explorat ion strategy used t o  discover and assess these 

geothermal systems was t o  measure heat f low i n  shallow boreholes 

d r i l l e d  on p o s i t i v e  g r a v i t y  anomalies. The p o s i t i v e  g r a v i t y  anomalies asso- 

c ia ted  with the  thermal anomalies r e f l e c t  (1 )  the  presence o f  shallow, 

dense igneous intrusions; and/or (2)  the  increased densi ty o f  sediments due 

t o  hydrothermal a l te ra t ion .  Both are encountered i n  boreholes. 

Based upon study o f  cu t t i ngs  and cores recovered, the  most pervasive 

source o f  excess mass, a t  l e a s t  down t o  the  l e v e l  penetrated by d r i l l i n g ,  i s  

the hydrothermal a l t e r a t i o n  o f  sediments. For example, intense metamorphism 

o f  the  sedimentary f i l l  occurs i n  the  SSGF. Act ive formation o f  greenschist 

facies rocks i s  occurring a t  depths o f  1 t o  2.5 km below the surface, where 

the  temperature ranges up t o  365 C a t  2 km depth (Muf f le r  and White, 1968; 

McDowell and Elders, 1979). Brines recovered from these depths contain up t o  

25 w t  percent o f  t o t a l  dissolved s o l i d s  (TDS) (Helgeson, 1968). 

Although s i m i l a r  geothermal gradients are encountered i n  the  Cerro 

P r i e t o  geothermal f i e l d ,  the  b r ine  i s  much l e s s  sal ine. Typ ica l l y  the  b r ine  

contains on ly  13,000-15,000 ppm o f  C1, 7,000-8,000 ppm o f  Na, 500-600 ppm o f  

Ca, and 1,500-2,000 ppm o f  K. 

s i m i l a r  t o  those seen i n  the  Salton Sea f i e l d ,  but  the degree o f  rec rys ta l l i za -  

t i o n  i s  l ess  intense. I n  both o f  these geothermal f i e l d s  hydrothermal a l t e r a t i o n  

affects the  phys ica l  p roper t ies  o f  the  sediments by reducing poros i ty  and 

increasing density. 

reservo i rs  therefore occurs - from matr ix poros i ty  i n  the upper pa r t  o f  the 

reservo i r  t o  fracture-dominated permeabil i ty a t  depth (Elders, 1979). 

The hydrothermal minerals encountered are 

A t r a n s i t i o n  i n  the nature o f  the permeabi l i ty  i n  these 

The Brawley and East Brawley geothermal f i e l d s  appear t o  have temper- 

atures and s a l i n i t i e s  intermediate t o  those o f  the  Salton Sea f i e l d  and the 
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other i d e n t i f i e d  geothermal f i e l d s  o f  the Salton Trough. 

excess o f  300 C and s a l i n i t i e s  o f  200,000 ppm TDS have been encountered 

Temperatures i n  

there. 

pub l i c  in format ion i s  avai lab le a t , t h i s  time. 

Although a dozen or so deep wel ls  penetrate these reservoirs, l i t t l e  

Such h igh  temperatures and h igh l y *sa l i ne  br ines have not.been found 

i n  the other thermal anomalies d r i l l e d  t o  date. Temperatures from 100 t o  200 

C and br ines  conta in ing from 3,000 t o  20,000 ppm t o t a l  dissolved s o l i d s  are 

much more charac ter is t i c .  .Similarly, the degree o f  metamorphism observed i s  

c h a r a c t e r i s t i c a l l y  l.ess than t h a t  .seen i n  rocks from the-Sal ton Sea and Cerro 

P r i e t o  f i e l d s  (Elders, 1979) . 
Surface expression o f  these thermal anomalies i s  retarded by i m -  

, -  

permeable caprocks. For example, the Sal ton Sea geothermal f i e l d  has an 

impermeable caprock o f  l acus t r i ne  c lays up t o  450 m t h i c k  (Helgeson, 1968; 

Randall, 1974). The Dunes hydrothermal system, on the other hand, developed 

an impermeable caprock by self-sealing. 

borehole i n  the  Dunes f i e l d l  there are seven i n t e r v a l s  o f  intense cementation 

o f  sandstone t o  quar tz i te ,  with dens i t ies  as h igh as 2.55 g/cm and po ros i t i es  

I n  the upper .300 m o f  a 612-m deep 

3 

as low as 3 percent (E lders  and Bird,  1974; Bird,  1975). 

The ho t tes t  geothermal f i e l d s  (Sal ton Sea - 365 C, Cerro P r i e t o  - 370 C, 

and Brawley - 300 C) .are a l l  s i tua ted  i n  young.pul1-apart zones, 

geothermal f i e l d s  such as.Heber and East Mesa -are associated w i t h  the 

l e s s  ac t i ve  extensions of the transform fau l ts .  These geothermal f i e l d s  are 

The other 

under ac t i ve  .development as sources. o f .  steam f o r  generation o f  e l e c t r i c i t y .  

The most developed i s  the Cerro P r i e t o  f i e l d  i n  Mexico, which already has an- 

i n s t a l l e d  capaci ty of 180 MWe*and "two p lan ts  each of'220 MWe,under construction. 

For environmental and techn ica l  reasons, development o f  geothermal power 

sources has been slower i n  the Imper ia l  Valley. A t  t h i s  po in t  only p i l o t  scale 
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plants, with net ra t i ngs  o f  about 10 MWe, e x i s t  a t  the East Mesa, Brawley and 

Salton Sea si tes.  According t o  published estimates o f  the U. S. Geological 

Survey (Muff ler, 1979), the geothermal resources avai lab le f o r  power generation 

nor th  o f  the in te rna t iona l  border are s u f f i c i e n t  t o  generate 2,000 MWe f o r  a 

century. 

regarded as a minimum value. The subsequent discovery of the East Brawley 

f i e l d  and recent developments and step-out d r i l l i n g  i n  the ex i s t i ng  f i e l d s  

suggests tha t  the source may be much la rger  (see discussion i n  sect ion 

1.2.1.1). Because much o f  these new data are propr ietary,  however, a precise 

estimate cannot be made a t  present. 

This estimate, based upon data avai lab le i n  1978, must now be 

1 .1 .3  Ground Water i n  the Salton Trough 

Water wel ls and wel ls  d r i l l e d  i n  the search f o r  o i l  and geothermal 

resources i n  the Salton Trough penetrate a va r ie t y  o f  waters that  d i f f e r  i n  

iso top ic  r a t i o s  and sa l i n i t y .  

o r i g i n  o f  t he  water and the  sa l t ,  but also t o  determine the degree o f  interac- 

t i o n  o f  a given groundwater sample with a hydrothermal system. 

These data are used not only t o  determine the 

1.1.3.1 Oxygen and Hydrogen Isotope Invest igat ions 

The primary s tab le i so top ic  species i n  water are H 0l6, H2018, and 2 

HD0l6 (where D = deuterium). 

a va r ie t y  o f  hydro log ica l  invest igat ions.  

isotope measurements are use fu l  i n  determining the o r i g i n  o f  water i n  geothermal 

systems because: 

The r a t i o  o f  these species can be employed fo r  

Craig (1963) showed tha t  s tab le 

(1) The oxygen and hydrogen iso top ic  compositions o f  meteoric 

p rec ip i t a t i on  d i f f e r  from one l o c a l i t y  t o  another due p r imar i l y  

t o  di f ferences i n  the temperature o f  p rec ip i ta t ion .  Craig 
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18 (1961) found a l i n e a r  co r re la t i on  between 6D and 6 0 f o r  

meteoric water samples from a l l  over the ear th  such that  

18 6D = 86 0 + IO. 
18 Samples from colder loca t ions  are more negative i n  6D and 6 0 

whi le p r e c i p i t a t i o n  from equator ia l  zones i s  c loser  t o  Standard 

Mean Ocean Water (SMOW). 

A geothermal system has neg l i g ib le  e f f e c t  upon the hydrogen 

i so top ic  composition o f  the water f lowing through the system 

because ' the quant i t y  of hydrogen i n  rocks i s  so low. 

hydrogen i so top ic  composition o f  p r e c i p i t a t i o n  which enters a 

(2) 

The 

groundwater system and flows through .it i s  general ly unchanged. 

Hydrogen i so top ic  compositions can thus serve t o  lrtagrl waters 

ren t  sources. 

(3 )  The oxygen i s o t o  s i t i o n  o f  ' p r e c i p i t a t i o n  which enters 

a geothermal system can be modified i f  the system i s  s u f f i c i e n t l y  

hot (> lo0 C) due t o  exchange o f  oxygen i n  water with oxygen i n  

the rock. 

the f l u i d  and decrease that  of the rock, g i v i n g  r i s e  t o  the wel l  

known sh i f t  o f  180.' 

The net e f f e c t  i s  t o  increase the I8O content o f  

Figure 1-2 p l o t s  60 versus 6I8O f o r  waters from the Imper ia l  

Val ley (Coplen e t  al., 197. 

o f  Craig (1961). Coplen e . that  waters from i r r i g a t i o n  

wel ls  i n  the cen t ra l  Imper ia l  Val ley p l o t  on a l i n e  connecting lower Colorado 

compares them with the meteoric water l i n e  

River water (Lake Mead) t o  surface water from the Salton Sea, a t  the lowest 

po in t  o f  the closed basin. 

non-geothermal waters o f  the va l ley  fo l low a t rend o f  evaporation, becoming 

heavier i n  both hydrogen and oxygen as the subsurface f low moves northward. 

This regular re la t i onsh ip  ind icates tha t  the 
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T h i s  i s o t o p i c - r e l a t i o n s h i p  is c o n s i s t e n t  w i t h  t h e  hydrologic  s t u d i e s  o f  

Loe l t z  e t  a l .  (1975) , which i n d i c a t e  t h a t :  groundwater recharge in to  t h e  

Imperial Valley occurs almost exc lus ive ly  by inf low o f  t h e  Colorado River a t  

Y una, ~ Arizona 

is there s i g n i f i c a n t  water der ived from l o c a l ' p r e c i p i t a t i o n ,  'as shown by t h e  

s o l i d  circles i n  F igure  1 4  (Coplen et a14, 1975). 

Only near  t h e  margins o f  t h e  Trough i n  a few shallow a q u i f e r s  

I s o t o p i c  r a t i o s  %of t h r e e  s e l e c t e d  gebthermal systems re a l s o  p l o t t e d  

i n  Figure 1-2. 

shows an i s o t o p i c  s h i f t  o f  .about .3 per  m i l  i n  oxygeri-.due ?to 'water-rock 

react i o n s  a t  high temperatures  . 
system (Eas t  Mesa, inlwhich temperatures  do no t  exceed 200 C a t  2 km) and a 

low temperature geothermal1 system ( t h e  Dunes, with temperatures  - o f  100 C a t  

600 m) p l o t  ' c l u s e ' t o  t h e  evapora t ion  l i n e ,  2 These i s o t o p i c  d a t a  suggest  t h a t  

t h e  waters i n  these geothermal systems are derived -from evolved and evaporated 

Colorado River water and hevepnot ' reac ted  ni thTrocks t o  exchange oxygen at 

temperatures  greater than  200 C. Because t h e r e  i s , l i t t l e  oxygen exchanged i n  

these low t o  .moderate temperature  systems j a wa te rhock  ra t io  for oxygen 

cannot be determined -(Coplen e t  e l . ,  1975). 

A ,  t y p i c a l  *h igh- in tens i ty  geothermal sample (Cerro P r i e t o )  

Samples from a moderate temperature  geothermal 

Al l -deep  waters i n  t h e  S a l t o n   trough^ are primarily NaCl b r ines .  

The o r i g i n  o f  _the sal ts  and waters i n  a .geothermal .syst.em .may be  d i f f e r e n t ;  

t h i s  p o s s i b i l i t y  is discussed  by Rex -(1952)* f o r  t h e  Cerro Prieto geothermal 

system. 

Colorado River water as t h e  source o f  f l u i d s  a t  Cerro Prikto,Lthe s a l t s  - I  i n  t h i s  

system appear t o  be marine The ra t io  of  c h l o r i d e  t o  bromide, in  water has  been 

used t o  i n v e s t i g a t e  t h e  o r i g i n  o f  s a l t  i n  these geothermal systems (White,  1970; 

Although t h e  i s o t o p i c  r a t i o s  o f  t h e  water suggest  p a r t l y  evaporated 
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Rex, 1972). 

f i e l d  are 300 and 400, respectively. 

Cerro P r i e t o  system i s  marine in. or ig in .  

suggested tha t  the very sa l ine b r i n e  i n  the SSGF (containing 280,000 ppm TDS) 

i s  derived from the so lu t i on  o f  evaporites which were formed from Colorado 

C l / B r  r a t i o s  i n  waters o f  the ocean and Cerro Prieto-geothermal 

This suggests tha t  the s a l t  i n  the 

I n  contrast, White (1968) has 

River water (containing 800 ppm TDS). Because the r a t i o  C l /B r  o f  water from 

both t h e  SSGF and the DWR Dunes No. 1 (4000 ppm TDS) i s  1600, which i s  iden- 

t i c a l  with tha t  from the Colorado River, i t  seems l i k e l y  tha t  the source o f  

the s a l t s  i n  the geotherma1,fields o f  the Imper ia l  Val ley is Colorado River 

water (Coplen e t  al., 19751, 

simple. 

h igh l y  var iab le  and the C l / B r  r a t i o  o f  s a l t  from l o c a l  p r e c i p i t a t i o n  i s  much 

lower than 1600. 

i d e n t i c a l  i n  these hydrologic systems. 

However, the s i t u a t i o n  i s  probably not so 

Rex (1972) pointed out that  C l / B r  r a t i o s  i n  evaporites are usua l ly  

Thus i t  may be only coincidental  that  the C l / B r  r a t i o  i s  

More recent studies by Rex (1983) on the o r i g i n  o f  the  br ines i n  

the  Imperial  Val ley po int  out some o f  these complexities. 

ed that  t he  geothermal br ines are derived from several sources inc lud ing  

l o c a l  p rec ip i t a t i on ,  f o s s i l  lake waters from former lakes formed when the 

f low o f  t he  r i v e r  f i l l e d  the basin with brackish water, and d i sso lu t i on  o f  

the sa l i ne  residue from dehydration o f  these lakes. According t o  Rex (1983), 

because rocks contain very l i t t l e  C 1  and Br, the Cl /Br  r a t i o  i s  unaffected by 

Rex (1983) suggest- 

geothermal processes and serves as a use fu l  genetic and mixing tracer. 

t h i s  basis Rex (1983) recognizes s i x  types o f  subsurface br ines i n  the Salton 

Trough: 

On 

Type 1 i s  a deep metamorphosed b r ine  r e s u l t i n g  from chemical 

e q u i l i b r a t i o n  o f  co ld  hypersaline NaCl b r i ne  with rocks ho t te r  
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than 300 C: 

20,000. 

they are convectively mixed and have C l /B r  

Type 2 shows increasing s a l i n i t y  with increasing temperature, 

with the ,increasing temperature o f f s e t t i n g  salinity-caused 

=densi ty increases, as described by Helgeson (1968) : Cl /B r  

range from 1,200 t o  1,300 due t o  mixing Type 1 b r ine  with 

Type 3. 

Type 3 is a hypersaline b r ine  s i g n i f i c a n t l y  modified by mixing 

with f o s s i l  * lake w 1. ,. This mixing causes 

. p r e c i p i t a t i o n  o f  metal sul f ides,  sul fates,  oxides, and 

the host rock. The resu l tan t  br ine has a lower 

Cl /Br  r a t i o  due t o  the higher Br content o f  Type 4 water. 

Type 4 i s  water from ancestral Lake Cahuil la. 

Type 5 i s  l o c a l  p r e c i p i t a t i o n  runo f f  o r i g i n a t i n g  from marine a i r .  I t  

i s  concentrated by 

bicarbonate by reac t ion  with rocks a t  .low temperatures, 

vaporation and enriched i n  sodium and 

Type 6 i s  the unreacted under f l  f brackish water entering the 

va l ley from. the  Colo 

I n  addit ion, Rex 11983) postulates a hypothet ical  Type 0 br ine which i s  

b r i ne  formed a t  20 C by sa tura t ing  water by h a l i t e .  

2, would form within the 

could descend along f rac tu re  networks 

(1983) the Heber and East Mes 

Brawley, East Brawley, and.Salton Sea geothermal f i e l d s  contain Type 2 

brines. 

which has the highest c h l o r i n i t y  o f  any.of the wells. 

Type 0 would have a 

i nas -o f  the Salton Trough, and 

o the reservo i r  

f i e l d s  >contain mainly Type 4 waters. 

According t o  Rex 

South 

Type 1 b r i n e  i s  apparently found i n  the 1.1-D. #I w e l l  i n  the SSGF 
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1.2 THE SALTON SEA GEOTHERMAL FIELD 

1.2.1 In t roduc t ion  

The Salton Sea Geothermal F i e l d  (SSGF) i s  one o f  the best known geothermal 

f i e lds  i n  the world. 

the SSGF i s  well-known because i t  was one o f  the f i r s t  f i e l d s  t o  be d r i l l e d  

i n  the U.S.A. f o r  a source o f  e l e c t r i c  power, because o f  i t s  great size, and 

because o f  i t s  h igh  temperatures. 

problems t h a t  i t s  h igh l y  sa l ine  br ines pose f o r  power production, and f o r  

the oppor tun i t ies and challenges presented by the h igh  content o f  metals and 

br ines contain. 

and Cohen (1983). 

Although not as extensively d r i l l e d  as Cerro Pr ieto,  

The SSGF i s  a lso w e l l  known f o r  the 

The fo l lowing has been taken from a review o f  SSGF by Elders 

1.2.1.1 Resource Estimates 

According t o  Muf f le r  (1979), the reservo i r  volume o f  approximately 

3 116 km explored by d r i l l i n g  t o  tha t  time, and having a mean temperature o f  

330 C, contained about 1 x I O z o  Joules. Assuming a poros i ty  o f  20 percent and 

assigning a reasonable recovery fac to r  and thermal e f f i c i ency  factor,  the 

estimated e l e c t r i c a l  energy p o t e n t i a l  f o r  the SSGF i s  3400 MWe f o r  30 years 

(Muff ler ,  1979). 

Lee and Cohen’s (1979) shallow heat f low data i nd i ca te  tha t  the area exh ib i t i ng  

conductive heat f low greater than 200 mi l l iwat ts /m (4.8 x c a l  

em 

therefore suggested tha t  a reservo i r  2 km t h i c k  under ly ing t h i s  area, with a 

mean temperature o f  265 C, should contain 5.86 x I O z o  Joules. Thus t h e i r  

estimate o f  the recoverable energy i s  19,900 MWe f o r  30 years, s i x  times tha t  

On the other hand, Meidav and Howard (1979) po in t  out t ha t  

2 

-2 2 s-’) may cover more than 560 km . Meidav and Howard (1979) 
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made by the USGS. 

associated with the  f i e l d ,  Younker and Kasameyer (1978) estimated the re- 

coverable heat t o  l i e  between 870 and 5800 MWe for 30 years. 

o f  the resource can on 

engineering analyses. Unfortunately the da from many studies are propr ie tary  

and hence these analyses have not been done on a f ield-wide basis. 

Based upon the area o f  the magnetic and grav i ty  anomaly 

The t r u e  s ize  

etermined by e 

I n  s p i t e  o f  the  evident l a r  s ize  of the resource, the f i r s t  power 

p lan t  within the f i e l d ,  a 16 MWe (gross) 

only since 1982 by the Southern C a l i f o r n i  

1-3). The slow r a t e  o f  ommercial development i s  due t o  the environmental 

and technica l  problems o f  hand1 

These problems include both corrosion and scaling. 

covery, however, the br ines have a lso presented the challenge o f  using them 

g br ines containing 28 w t  percent TDS. 

Since t h e i r  f i r s t  d is-  

as a source'of  recoverable metal 

Recently Maimoni *(1982) estimated the po ten t i a l  f o r  minerals recovery 

from a 1000 MWe kombined geothermal power and minerals recovery p lan t  i n  the 

SSGF. This author p o i  We p lant ,  s e l l i n g  e l e c t r i c  power 

a t  6 cents/kWh, c n 1982 U.S. do l lars .  This 

p lan t  would requi re a b r ine  f low r a t e  o f  45 m i l l i o n  kg/h. 

. ,  

Assuming 90 - - 

e recovered, the market value o f  the 

minerals p r  

re f l ec ts  the uncer ta in t ies about the content o f  precious metals. 

u l d  be abaut $500 t o  $1,500 mil l ion/year. The wide range 

The estimate 

excludes l i t h i  s ince the  po ten t i a l  production from the SSGF could be an 

gnitude greater than the 1980 t o t a l  world sales. The p lan t  could 

supply 14-31 percent o f  the U.S. demand f o r  manganese, a s t ra teg ic  material.  

This b r ine  f i e l d  may a lso po ten t i a l l y  cons t i tu te  the la rges t  reserve o f  

platinum i n  the U.S.A. (Maimoni, 1982). I n  s p i t e  o f  the large value o f  the 
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Magmamax No. 2 

No. 1 

Number on MaD 

i 

f 
i 
4 

i 

XBL 845-1689 

Figure 1-3. Location o f  Ex i s t i ng  and Proposed Geothermal Wells i n  the Salton 
Sea and Westmoreland Geothermal Areas (Source - Muramoto, 1982). 
P - loca t i on  o f  SCE power plant;  m -  geothermal wel ls  for which 
samples and/or logs e x i s t  a t  UCR; o - other geothermal wells; 
* - proposed w e l l  Fee No. 5 (Republic Geothermal, Inc.). 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Well Name 

Magmamax 1 
Woolsey No. 14 
S i n c l a i r  No. 4 
S i n c l a i r  No. 1 
S i n c l a i r  No. 3 
Landers No. 1 
Landers No. 2s 
Dearborn Farms 
K a l i n  Farms 
Fee No. 1 
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Lu 

metals i n  so lu t i on  which would pass through such:a,plant,.however, i t  i s  by 

no means c lea r  t h a t  the  techniques avai lab le t o  recover them would be economic 

a t  the present. 

Y 

b 

b 

h 

Lu 

1.2.1.2 His 

Geothermal f i e l d s - i n  the Salton Trough are t y p i c a l l y  c ryp t ic ,  i.e., 

they are not associated w i t h  surface manifestations o f  geothermal a c t i v i t y  

such as ho t  springs, geysers, mud pots, or fumaroles except f o r  the Cerro 

P r i e t o  and Salton Sea geothermal f i e lds .  Mu l le t  I s land (Figure 1-3) i s  one 

o f  the f i v e  smal l  r h y o l i t e  domes associated with SSGF (Robinson e t  al., 

1976). 

there by l o c a l  inhab i tan ts  before the-area was inundated by the r i s i n g  lake, 

the modern Salton Sea, i n  1906 (Lande, 1979). 

pots i s  s t i l l  v i s i b l e  about 

attempt .to e x p l o i t  the -geothermal resources 

L i ve  steam fumaroles, “mud yolcanoes and b o i l i n g  mud pots were noted 

A small  remnant area o f  mud 

outheast o f  Mul le t  Island. The f i r s t  

the  SSGF was by the Pioneer 

Company, j n i c h . d r i l l e d  three wel ls  near Mulet t  I s land i n  1927 and 

1928. The deepest reached . _  450 m and a l l  three,produced steam, b o i l i n g  water 

oxide, bu t  not  i n  s u f f i c i e n t  quant i t y  , for  commercial development 

(Lande, 1979) . 
The occurrence o f  C02 l e d  t o  fu r ther  explor 

1932 the  Imper ia l  carbon d i o  

t o  1954, was sco,vered northeast o f  Mul le t  I s land (Figure 1-3). Carbon 8 

e f i e l d ,  which produced commercially from 1933 

dioxide, 98 percent,pure, was produced from shallow sands 60 t o  220 m below 

e and was used t o  produce dry i c e  f o r  re f r i ge ra t i on .  

I d  in-1954 came about by. the development o f  modern re f r i ge ra ted  

Abandonment 

transport and was hastened by the r i s i n g  waters o f  the lake, which inundated 

many o f  the wel ls  (Lande, 1979). 
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I n  1957 the  S i n c l a i r  No. 1 well, an o i l  and gas prospect, was d r i l l e d  

t o  a depth o f  1400 m and produced hot water and steam. 

near the  surface s h o r t l y  afterwards. 

This w e l l  scaled shut 

I n  1961 the f i r s t  we l l  t o  be d r i l l e d  

expressly f o r  steam, the Sportsman No. 1, was completed t o  1500 m, about 6 km 

northeast o f  S i n c l a i r  No. 1, and was a good steam producer. I n  the  next 

three years ten  new geothermal we l ls  were d r i l l e d  i n  the  v i c i n i t y ,  e igh t  o f  

which were good producers. 

280,000 ppm TDS. 

O i l  Company erected small  p i l o t  p lan ts  t o  experiment with b r ine  handling. 

A f te r  several years o f  e f f o r t  these f a c i l i t i e s  were abandoned as uneconomical. 

These we l ls  showed b r ine  concentrations o f  up t o  

Recognizing t h e i r  po ten t ia l ,  Morton S a l t  Company and Union 

A f te r  a per iod o f  i n a c t i v i t y ,  f i v e  new explorat ion we l l s  were d r i l l e d  

i n  the  SSGF dur ing 1972 i n  a renewed search f o r  a l te rna te  energy. 

brine-handling f a c i l i t y  was j o i n t l y  operated by the  Department of Energy, San 

Diego Gas and E l e c t r i c  Company, and Magma Power Company from about 1976 t o  

1979. 

today more than 32 deep we l ls  e x i s t  i n  the  f i e l d  (Figure 1-3). 

A p i l o t  

Since t h a t  t ime more than a dozen new we l l s  have been d r i l l e d ,  so t h a t  

Apart from 

the  16 MWe power p lan t  operated by Southern C a l i f o r n i a  Edison Company, p lan ts  

of 50 MWe are being planned both by Magma Power Company and Parsons Engineering, 

Inc. f o r  the  near future. 

1.2.1.3 Previous Opportunit ies f o r  Studies o f  the SSGF 

Although pub l i ca t i on  o f  ea r th  science-related work on the  SSGF has 

been hindered by the l i m i t a t i o n s  o f  deal ing with propr ie ta ry  data, there has 

been a s i g n i f i c a n t  number o f  published studies on th is  f i e l d .  

was released i n  1961-1968 dur ing the f i r s t  rush o f  enthusiasm f o r  development 

Most informat ion 

when the  novel ty o f  the  discoveries being made, coupled with the  disappoint ing 

L 
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commercial resul ts ,  created a c l imate where release o f  p ropr ie ta ry  information 

was possible. 

during the per iod 1974-1979 i n  connection with the t e s t  f a c i l i t i e s  which 

operated using b r i n e  from we l ls  d r i l l e d  by the Magma Power Company. 

tha t  time, the major operators i n  the f i e l d  have f o r  corporate reasons kept 

p ropr ie ta ry  the in format ion on the newer wells. 

number d r i l l e d  p r i o r  t o  1979 (Figure 1-3). 

Another f a i r l y  open s i t u a t i o n  f o r  release o f  data occurred 

Since 

The l a t t e r  now exceed the 

Previous Publ icat ions on the SSGF 

Five  years a f t e r  the i n i t i a l  repor t  o f  discovery of t h i s  hot  hyper- 

sa l ine  geothermal system (Whiteset el., 19631, a pioneering repor t  on many 

aspects o f  i t s  chemistry and thermodynamic proper t ies appeared (Helgeson, 

1968). 

the ac t i ve  greenschist fac ies metamorphism going on within t h i s  system (Muf f le r  

and White, 1968). 

geology using w i re l i ne  logs  was completed (Randall, 1974) and, about the same 

time, a.usefu1 compilat ion o f  water analyses and other  data was published 

(Palmer, 1975). 

e t  a l .  i n  1976 and a more de ta i led  study 0.f metamorphic reactions i n  the f i e l d  

This work was followed sho r t l y  therea f te r  by the f i r s t  discussion o f  

I n  1974 the f i r s t  attempt a t  understanding the subsurface 

he associated o lcanic  rocks were f i r s t  described by* Robinson 

appeared i n  1980. (McDowell and 'Elders, 1980). F ina l l y ,  i n  1982, a comprehensive 

review o f  the geologica l  and geophysical cha rac te r i s t i cs  o f  the SSGF, together 

with a s i m p l i f i e d  thermal model, appeared (Younker e t  al., 1982). 

1.2.2 Geophysical Anomalies Associated with the  SSGF 

The geophysical cha rac te r i s t i cs  of the SSGF are we l l  summarized i n  

Younker e t  a l .  (1982). 

temperatures, the f i e l d  i s  associated with p o s i t i v e  g rav i ty ,  magnetic and 

As we l l  as being a locus o f  h igh  heat f low and h igh  
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seismic ve loc i t y  anomalies, low e l e c t r i c a l  r e s i s t i v i t y ,  and h igh microseismicity. 

The g r a v i t y  maxima have been a t t r i b u t e d  t o  e i t h e r  an increase i n  

densi ty o f  the sediments r e s u l t i n g  from hydrothermal a l te ra t ion ,  or the 

i n t r u s i o n  o f  d ikes and s i l l s  i n t o  the sedimentary section, or both (Elders e t  

al., 1972). 

H i l l  volcano i n  the SSGF, corresponds t o  a res idua l  Bouger anomaly o f  +23 

m i l l i g a l s  (Biehler,  1971) tha t  i s  much too la rge  t o  be due only t o  dens i f i ca t i on  

o f  sediments or presence o f  sporadic dikes or s i l l s .  

o f  a l a rge r  volume o f  mafic igneous rock seems required. 

i s  supported by the magnetic signature o f  the SSGF. 

K e l l y  and Soske (1936) and Griscom and Muf f le r  (1971) reveal  the presence o f  

rocks with h igh  magnetic s u s c e p t i b i l i t y  and remanent magnetization a t  f a i r l y  

shallow depth. 

By far the la rges t  o f  these l o c a l  maxima, centered on the  Red 

Instead, the emplacement 

The above hypothesis 

Magnetic surveys by 

The associat ion o f  a g r a v i t y  anomaly wi th  a seismic t ravel- t ime anomaly 

i n  the  SSGF has been reported by Savino e t  e l .  (1977). Observations o f  a 

seismic velocity-depth anomaly reported by F r i t h  (1978) may be due t o  

reduct ion o f  poros i ty  as a r e s u l t  o f  hydrothermal a l t e r a t i o n  and in t rus ion  o f  

basa l t i c  mater ia l .  Meidav e t  a l .  (1976) have used e l e c t r i c  techniques 

and found r e s i s t i v i t i e s  o f  less  than 0.5 ohm-meters t o  depths o f  several 

kilometers. The low r e s i s t i v i t y  coincides with h igh temperature and h igh 

s a l i n i t y .  This concept has been confirmed by t e l l u r i c  soundings made by 

Humphreys ( 1978). 

1.2.3 Temperatures and Heat Flow within the SSGF 

The most comprehensive published compi lat ion o f  temperature informa- 

t i o n  from- the SSGF i s  i n  Younker e t  a l .  (1982). 

320 C a t  2 km depth, with the highest reported t o  date being 365 C a t  3100 m i n  

Temperatures t y p i c a l l y  exceed 

t 
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i 
L 
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t 

the Elmore No. 1 borehole. Figure 1-4 shows the isotherms a t  914 m (3000 ft) I '  
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Lee EI Cohen(1979) 

XBL 845-1691 

Figure 1-4. Location o f  boreholes and isotherms a t  914 m (3000 f t )  depth i n  
the Sa l t  Sea Geothermal F i e l d  

hd 

t So l id  . l i nes  = temperature ( C )  modif ied a f t e r  Palmer (1975) 
and Randall (1974). 
wattdm2 from t e e  and Cohen (3979) .  Rhyo l i te  extrusive: 
OB = Obsidian Butte; RH = Rock H i l l ;  R I  = Red Island; M I  = 
Mu l le t  Is land. 
KGRA as o r i g i n a l l y  defined. 
extended. (Source - McDowell and Elders, 1980). 

Dashed l i nes  = r e l a t i v e  heat f l u x  i n  10-3 

L 
Hachured l i n e  //// = o u t l i n e  o f  the Salton Sea 

The boundaries have since been 

clll 
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depth and contours o f  heat f l u x  measured near the surface (McDowell and 

Elders, 1980). 

Typical ly,  gradients are very steep (0.38 C/m) i n  the upper 600 t o  700 m 

o f  n ine o f  these 13 wel ls  near the center o f  the f i e l d ,  and are an order o f  

magnitude lower a t  greater depths. Younker e t  al. (1982) a t t r i b u t e  t h i s  

change t o  d i f ferent  mechanisms o f  heat t ransfer .  

steep near-surface gradient i s  due t o  conductive heat t rans fer  associated 

with an impermeable c lay- r i ch  caprock which over l ies  the f i e l d .  

i s  a zone, i n  a moderately- t o  well-consolidated interbedded sandstone-silt- 

stone-mudstone d e l t a i c  sequence described by Randall (19741, where heat 

t ransfer  i s  p r imar i l y  by convective f low o f  pore f lu ids .  

t ranspor t  i n  the sect ion below the thermal cap i s  cont ro l led  by the thickness 

o f  the sandstone beds present. 

They i n f e r  t h a t  the 

Below t h i s  

Convective heat 

However, Younker e t  a l .  (1982) a lso i n f e r  

t ha t  f low is impeded by th in  shale beds i n  t h i s  lower aqui fer  system. 

large-scale v e r t i c a l  convection o f  f l u i d  cannot take place. 

Thus 

The thermal cap i n  the center o f  the f i e l d  does not exact ly  conform 

with the l i t h o l o g i c a l  caprock o f  Randall (1974). 

from the break i n  slope o f  temperature p ro f i l es .  

p l o t t e d  a north-south cross sect ion across the f i e l d  tha t  compared the 

reservo i r  character with the thickness o f  the thermal cap (Figure 1-5). 

base o f  the thermal cap i s  o f ten  within a zone containing greater than 20 

percent sand (Towse and Palmer, 19751, and the f i r s t  appearance o f  h igh 

This thermal cap i s  i n fe r red  

Younker e t  a l .  (1982) 

The 

reservo i r  qua l i t y  i s  also a t  the base o f  the thermal caprock. 

t i o n s  support the authors' i n te rp re ta t i on  t h a t  t he  dominant cont ro ls  on heat 

These observa- 

t ranspor t  are t h i c k  

l i t y  o f  the shales, 

1982). 

sandstone beds and intervening shales. 

however, may be l o c a l l y  s i g n i f i c a n t  (Younker e t  al., 

Fracture permeabi- 
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Morse and Thorsen (19781, on the basis o f  reservo i r  engineering tests, 

ca lcu late tha t  the reservo i r  has hor izon ta l  permeabi l i t ies  o f  100 t o  500 

md while v e r t i c a l  permeabi l i t ies  across shale layers are only 0.1 t o  1.0 md. 

Another fac to r  precluding la rge  scale v e r t i c a l  convection i s  the densi ty 

p r o f i l e  o f  the brines. 

versus-depth p r o f i l e  i n  the f i e l d  i s  almost constant a t  0.098 bars/m, consistent 

with a f l u i d  o f  constant densi ty o f  1 g/cm . 
s a l i n i t y  with depth balances the e f f e c t  o f  increasing temperature, tending t o  

keep the densi ty uniform with depth. 

Helgeson (1968) showed tha t  the hydrostat ic  pressure- 

3 The e f f e c t  o f  increasing 

Younker e t  a l .  (1982) thus s ta te  tha t  heat t rans fer  mechanisms i n  the 

These are (1) an impermeable SSGF can be modeled as a three layer  system. 

thermal cap; (2) a layer  within the thermal cap with higher thermal conducti- 

v i t y  sands producing a lower temperature gradient; and ( 3 )  a zone o f  low 

thermal gradients consistent with small-scale c e l l u l a r  convection l i m i t e d  t o  

i nd i v idua l  sand bodies. 

Younker e t  a1 (1982) div ided the f i e l d  i n t o  three d i s t i n c t  areas. 

F i r s t ,  there i s  a cen t ra l  zone with near ly constant v e r t i c a l  conductive heat 

flow having a thermal cap with gradients o f  0.4 C/m and over ly ing a near ly  

isothermal zone extending t o  2000 m depth. Next i s  an intermediate region 

with a low near-surface temperature gradient tha t  increases a t  greater 

depths. 

lower shallow gradient o f  0.1 C/m, s im i la r  t o  the normal reg ional  values. 

F ina l l y ,  t o  the southeast i s  an outer zone with near ly  uniform and 

This ove ra l l  pat tern i s  consistent with a large-scale hor izon ta l  f low i n  

layer  three which t rans fers  heat from the area o f  the volcanic domes southeast 

towards the  margins o f  the f i e ld .  
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1.2.4 Br ine Chemistry i n  the  SSGF 

The br ines i n  

ch lo r ide  so lut ions cont 

n t ra ted  sodium, calcium, potassium 

the highest concentrations of dissolved 

o f  116 km3 o f  the SSG 

mean reservo i  

.e., depth o f  3 km, 

poros i ty  10 percent) contained the 

than the  e s t i  

e t  a l .  (1963). 

then published by Helgeson (1968), Skinner e t  a l .  (19671, and White (1968). 

Later involvement o f  s t a f f  o f  Lawrence Livermore Nat ional  Laboratory i n  

studies o f  wel ls  supplying the San Diego Gas and E l e c t r i c  Geothermal Test Loop 

z 
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Experiment F a c i l i t y ,  from 1975-1978, l e d  t o  a compilat ion o f  data on these 

wel ls  (Palmer, 1975) and studies o f  various aspects o f  the br ine  chemistry 

(Harrar e t  al., 1979; Aust in e t  al., 1977; Maimoni, 1982). 

Table 1-1 summarizes the chemical compositions o f  wel ls  d r i l l e d  before 

1975 i n  the  cen t ra l  por t ion  o f  the SSGF ( w e l l  loca t ions  appear i n  Figure 

1-3). Geothermal br ines are notor ious ly  d i f f i c u l t  t o  sample. 

they consist  o f  a multiphase mixture o f  condensible and uncondensible gas, 

l i qu id ,  and suspended sol ids.  

the steam loss due t o  b o i l i n g  before a sample is taken. 

sampling e r ro rs  as w e l l  as possible ana ly t i ca l  e r ro rs  i n  reported values. 

Addi t ional  e r ro rs  are introduced due t o  react ions within the br ines on 

quenching t o  room temperature, e.g., the p rec ip i t a t i on  o f  barium su l fa te  

before sample analysis. 

A t  the well-head 

Normally the greatest problem i s  t o  evaluate 

Thus there may be 

A fu r ther  problem i s  tha t  the well-head compositions 

vary w i t h  changes i n  flow rates, possibly due t o  tapping d i f f e r e n t  aqui fers  

or  f racture systems a t  d i f f e r e n t  well-head pressures. 

S a l i n i t y  var ies both v e r t i c a l l y  i n  a given we l l  and ho r i zon ta l l y  

from we l l  t o  well. For example, an analysis reported from Fee No. 1 gave a 

t o t a l  concentrat ion o f  250,000 ppm TDS, whereas two samples from B r i t z  No. 3, 

the we l l  c losest t o  Fee No. 1, are reported as 116,000 and 133,772 ppm TDS 

from zones a t  roughly the same depths. 

from mixing d i f f e r e n t  f l u i d s  tapped from d i f f e r e n t  aquifers. 

Presumably these di f ferences came 

Cer ta in ly  wel ls  

i n  the  Westmoreland pa r t  o f  the f i e l d  (Figure 1-3) have penetrated a much 

lower s a l i n i t y  system wi th  14,600 t o  72,000 ppm TDS a t  950-1800 m depth. 

Ve r t i ca l  gradients i n  s a l i n i t y  are somewhat more d i f f i c u l t  t o  quanti fy, 

since geothermal wel ls  are normally completed with an open i n t e r v a l  which may 

be a hundred meters or more thick.  

la rge  i n te rva l ,  even though br ines i n  other par ts  o f  the sect ion are excluded 

Thus br ine  can f low i n t o  the we l l  over a 
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Table 1-1. Chemical Compositions o f  Salton Sea Brines 

Uoolaey No. 1 
I . I .D. No. 1 T.I.D. No. 1 T.I.D. No. 2 State o f  Cal i f .  Palmer (1975) kgmamax No. 1 

(1967). (1968). (1968)* Helgeson (1968). values from (1975)+ 
Skinner e t  a l .  White Helgeson No. 1 (maximum ppm Palmer 

Magma Power Co.)+ 

Zn 
Pb 
cu 
A9 
Fe 
Hn 
NS 
CS 
K 
L i  
e1 ~~ 

so4 
Sulfide S 
S i l ica  
PH 
TDS 
S.C. 
BHT 

790 
84 
8 

0.8 
2,090 
1,560 

50,400 
28,000 
17,500 

215 
155,000 

5 
16 

400 
5.2 

258,360 

316 C 
-- 

540 500 
102 80 

8 3 
1.4 2 

2,290 2,000 
1,400 1,370 

so,400 53,000 
28,000 '27,800 
17,500 16,500 

21 5 210 
155,000 155,000 

400 400 
5.2 4.64 

250,000 258,769 

340 c 332 C 

30 (Total S) 

-- -- 

500 
80 
2 

<1 
1,200 

950 
47,800 
21,100 
14,000 

180 
127,000 

30 
-- 
-- 
I- 

21 9,500 

305 c 
-- 

--- -- --- --- 
244 
488 

49,729 
12,658 
6,510 

90 
83,183 -- -- 

181 
6.25 

151,237 
1.106 
238 C 

--- --- -- 
93 
200 

52,500 
25,000 
5,000 

-- --- -- 
500 

6.65 
>100,000 

1.022 
265 C 

A l l  compositions are given i n  ppm unless otherwise noted. Not a l l  analyzed constituents are l isted.  

- Known to  be corrected for steam loss 
+ - Not know i f  corrected for ateam loss 

S.G. - Specific Gravity s t  20 t o  25 C 
BHT - Bottom Hole Temperature -- - Not reported TOS - Total Dissolved Solids i n  ppn by w t  

~~~~ ~ 

Hagrnamax No. 1 

1977 test  8 )  

Uoolsey No. 1 

snalyaea Feb. 1977) 

Zn 290+* -- -- 600 
Pb 44 --- -- 60 
cu 0.5 -- - 3 

1 A9 0.8 
Fe 280 235 4,200 ' 1,300 
Hn 635 - -- 1,700 
Na 38,300 40,ooo 70,000 78,000 

37,735 Ca 21,100 16,700 34,470 
K 10,400 9,100 24,000 20,690 
L i  150 t o  200+* 140 150 400 
c1 128,700 99,m 201,757 210,700 --- -- 54 75 

Si l ica  239 I 5 625 
a f i d e  S 

5.5 5.44 4.82 t o  6.10 5.0 
TDS >200,000 >150,000 334,987 387,500 
PH 

S.G. -- -- 1.207 -- 
BHT -- 200 c 310 c 260 C 

Needham et  61. (1980) Needham et  al. (1980) Sportsman No. 1 Sinclair No. 4 
(Average o f  Jan. (Average chemical Palmer (1975)+ Palmer (1975)+ 

-- -- 

--- - -- -- 

H Concentrations from aamplings i n  1976 
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by the w e l l  casing. 

made by examining adjacent we l ls  which are completed a t  d i f f e r e n t  depths. 

Bet te r  s t i l l  are d r i l l  stem tes ts  made during d r i l l i n g ,  but these are r a r e l y  

done and the  data are of ten he ld  proprietary. 

Helgeson (1968) estimated the change o f  s a l i n i t y  with depth by ca l cu la t i ng  a 

unit  isochore f o r  a simulated brine, as temperature and s a l i n i t y  both r i s e  

together. 

o f  freezing po in ts  o f  f l u i d  inclusions from various minerals a t  d i f f e r e n t  

A crude estimate o f  v e r t i c a l  changes i n  s a l i n i t y  may be 

For the  w e l l  S i n c l a i r  No. 4, 

This concept was v e r i f i e d  i n  th is  w e l l  by determining the  depression 

depths (Freckman, 1978). 

s a l i n i t y  a t  220-240 C, whereas there i s  15-25 percent s a l i n i t y  a t  270-300 C. 

These l a s t  data i nd i ca te  approximately 5-10 percent 

1.2.5 Subsurface Geology o f  the SSGF 

The SSGF l i e s  beneath i r r i g a t e d  f i e lds ,  the  ponds and marshes o f  a 

b i r d  sanctuary, and the  waters o f  the  Salton Sea. 

out are the  f i v e  small  r h y o l i t e  domes re fe r red  t o  above (Figure 1-41, and the 

recent deposits o f  the  former Lake Cahuil la, ancestral  to, but l a rge r  than, 

the present Salton Sea. 

The only rocks which crop 

I n  s p i t e  o f  the  l a rge  number o f  ex i s t i ng  deep boreholes, the  subsur- 

face sedimentological and paleontological  characer is t i cs  o f  the  SSGF have 

never been f u l l y  synthesized. 

emphasized water/rock react ions ra ther  than sedimentology. 

graphic and s t r u c t u r a l  studies have been done, however, using w i re l i ne  

Studies of cu t t i ngs  and cores have h i t h e r t o  

Some paras t ra t i -  

logs. 

1.2.5.1 Parastrat igraphy 

The f i r s t  and most comprehensive parastrat igraphic study, done by 

Randall (19741, was based upon downhole w i re l i ne  logs, inc lud ing  temperature 

logs, from 16 we l ls  c h i e f l y  i n  the  west-central po r t i on  o f  the  f i e ld .  This 
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study was augmented by that  o f  Tewhey (1977) who, i n  add t ion,  studied cu t t ings  

and cores from the Magmamax No. 2, Magmamax No. 3 and Woolsey No. 1 wells. 

These data revealed a l i t h o l o g i c  sequence o f  shales and sandstones consist ing 

o f  (1) a caprock; (2 )  an upper reservo i r  o f  s l i g h t l y  a l tered rocks; and (3)  

a lower reservo i r  o f  h igh l y  a l te red  rocks (Figures 1-5 and 1-6). According t o  

Randall (1974) the caprock i s  a sedimentary u n i t  p r i m a r i l y  composed o f  lacust-  

r i n e  c lays and s i l t s .  I n  the v i c i n i t y  o f  the Magmamax wel ls ,  the caprock i s  

340 t o  370 m t h i c k  and i s  composed o f  two d i s t i n c t  layers. The upper 200 m 

consists o f  unconsolidated c lay  and s i l t  which, because o f  i t s  uncemented 

nature, i s  poor ly represented i n  d r i l l  cutt ings. 

consolidated s i l k s ,  and bonate cemen nt ercalated with 

consolidated s i l t s ,  w i t h ,  

The lower layer  consists o f  

i s  presumed t o  be 

ed the modern 

Using combined spontaneous-potential and r e s i s t i v i t y  logs, Randall (1974) 

mapped the thickness o f  the sedimentary caprock (Figure 1-7). Over a distance 

o f  s i x  ki lometers the caprock var ies  from zero thickness i n  the south t o  430 rn 

t h i c k  i n  Elmore No. 1. Randall 's map (Figure 1-7) shows the  caprock as a wedge 

thickening t o  the northwes 0 west by a fau detected by the 

dipmeter l o g  o f  Magmamax No. 2. The base o f  t h i s  wedge shows considerable 

the east-west d i rect ion.  Lack o f  depth co r re la t i on  between adjacent 

wel ls and l e d  Randall t o  i n f e r  several growth f a u l t s  which o f f s e t  the caprock 

(Figure 1-7). 

The caprock l i e s  i n  apparently unconformable re la t i onsh ip  on the 
* 

er reservo i r  sequence. Younker e t  a l .  (1982), p. 22 

tha t  the sharp t r a n s i t i o n  between reservoir  rocks and the  over ly ing caprock 

represents the boundary between lacus t r i ne  sediments above and underlying 
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Figure 1-6. 

1 I Unaltered reservoir rock 

[ s i  Indication of dip of sedimentary strata 

Hydrotheml ly  altered reservoir rock 

Direction of decreasing porosity/permeability 

XBL 845-1687 

East-west cross sect ion through the Magmamax and Woolsey Wells 
i n  the  Salton Sea Geothermal Field. 

The three rock types, i.e., cap rock, s l i g h t l y  a l t e red  reservo i r  
rock, and hydrothermally a l te red  reservo i r  rock, are c l a s s i f i -  
cat ions based on petrographic analysis. The o r ien ta t i on  o f  
s t r a t a  i n  the reservo i r  rock i s  shown by dashed l ines.  
loca t ions  see Figure 1-3 (Source - Tewhey, 1977, Figure 23). 
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Figure 1-7. Depth to  the base o f  the sedimentary caprock. 
arc" o f  Randall connects a series o f  small amplitude magnetic 
anomalies through the f i v e  rhyol i te  domes (modified from Randall, 
1974, Figure 5).  

The "volcanic 
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"marine sediments", which were deposited before the  Salton Trough was i so la ted  

from the  southern po r t i on  o f  the  basin i n  %iid-Pleistocenelm times. 

they do not present evidence f o r  these rocks being 

However, 

i n  character. 

Although Woodward (1974) repor ts  i n te rm i t ten t  shallow marine rocks 

o f  mid-Pleistocene age i n  the  western p a r t  o f  the  Imper ia l  Valley, there are 

no published paleontological  data from any o f  the  we l ls  i n  the  c e n t r a l  

por t ions  o f  the  Imper ia l  Valley, inc lud ing  the  SSGF (see sec t ion  1.1 1) .  

Simi la r ly ,  as was stated above, Cl/Br r a t i o s  support the  idea t h a t  the  o r i g i n  

o f  the  s a l t  i s  freshwater evaporite (sect ion 1.1.3.2) and i so top ic  studies 

i nd i ca te  t h a t  the  water i s  evolved and p a r t i a l l y  evaporated Colorado River 

water (sec t ion  1.1.3.1). F ina l l y ,  the  presence o f  a t r u e  marine sedimentary 

fac ies  i s  no t  supported by studies o f  t he  w i re l i ne  logs and c u t t i n g s  here or 

elsewhere i n  the  cen t ra l  Imper ia l  Valley. Rapid fac ies changes, i nvo l v ing  

l e n t i c u l a r  sand bodies and in te rca la ted  laminated s i l t s  and mud rocks with 

steep deposi t ional  dips, are cha rac te r i s t i c  o f  deposi t ion i n  a prograding 

de l ta .  Correlat ion, even a t  outcrop, i s  d i f f i c u l t  even over a few hundred 

meters (Wagoner, 1977). 

t h e i r  steeply dipping progradational nature i n  the  SSGF are a lso most apparent 

i n  unpublished, propr ietary,  seismic r e f l e c t i o n  (Vibroseis) p r o f i l e s .  

The l e n t i c u l a r  nature o f  the  sedimentary u n i t s  and 

Apart from lacus t r i ne  facies, the  sedimentary facies present i n  the  

c e n t r a l  Imper ia l  Val ley are d e l t a i c  sands and s i l t s ,  dune-braided stream 

deposits, and channe l - f i l l  pebble-bearing sands (B i rd  and Elders, 1975), none 

o f  which have a t r u e  marine aspect. The upper reservoir  i n  the  SSGF consists 

o f  terr igenous d e l t a i c  sands, s i l t s  and muds, w i t h  occasional l acus t r i ne  and 

stream deposits. 

wackes containing minor d e t r i t a l  mica and ch lo r i t e ,  with varying degrees o f  

c a l c i t e  cement and 

The sands are indurated quartz feldspar areni tes and l i t h i c  

intergranular poros i ty  o f  10 t o  30 percent. The amount o f  

I 

i 
i 
t 
I 
I 
t 

t 
I 
t 
L 
t 

II 
L 

i 



L - 33 - 

c i t e  cementation i s  greatest  near the top o f  the section, beneath the -c lay  
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caprock. With increasing depth and temperature, d i sso lu t i on  o f  carbonates can 

lead t o  'appreciable secondary porosi ty.  The laceous rocks aFe indurated 

mudstones and fine-grained s i l t s tones  

feldspar, and c a l c i t e  together with kao l i n i t e ,  montmori l loni te and d e t r i t a l  

ay-sized quartz, 

i l l i t e  as the c h i e f  c lay  minerals (Muf f le r  and Doe, 1968). Although sporadic 

th in  l i g n i t e  beds are present, caut ion i s  necessay i n  est imat ing t h e i r  

thickness, as most l i g n i t e  seen i n  borehole cu t t i ngs  i s  a d r i l l i n g  mud 

addi t ive.  

I n  the west-central po r t i on  o f  the SSGF the thickness o f  the upper 

reservo i r  zone i s  500 t o  600 m; however, i n  the eastern pa r t  o f  the f i e l d  

near Niland, the upper reservo i r  zone i s  much th icker  and the sedimentary 

sect ion i s  much more argil laceous. With increasing temperature, there i s  a 

f a i r l y  rap id  t r a n s i t i o n  i n t o  the lower reservo i r  which consists o f  indurated 

hydrothermally a l t e red  reservo i r  rocks. Younker e t  a l .  (1982) def ine the top 

o f  the upper reservo i r  as being the f i r s t  appearance o f  authigenic epidote a t  

280 C. However other worke 

(McDowell and Elders, 1979, 1980). 

lower reservo i r  as being the top o f  a metamorphic zone where shales and 

carbonates react  t o  form c h l o r i t e  by decarbonation reactions. 

have observed epidote appearance a t  225 C 

Randall (1974) defined the top o f  the 

The phys ica l  

changes accompanying these react ions cause marked loss  o f  poros i ty  i n  the 

shales and cause them t o  acquire e l e c t r i c a l  l o g  charac ter is t i cs  s i m i l a r  t o  

carbonate rocks (low spontaneous p o t e n t i a l  and h igh  r e s i s t i v i t y )  . 1 .- I 

Invar iab ly ,  

sandstones and s i l t s tones  are a f fec ted  more by r e c r y s t a l l i z a t i o n  than are 

l ess  permeable shales. 

hot  b r ines  eventual ly lead t o  destru 

permeabi l i ty  (Figure 1-8) with increasing temperature. 

The changes induced by react ions o f  the rocks with 

of poros i ty  a reduct ion i n  
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Figure 1-8. Measured porosity versus depth for  cores from f i v e  geothermal 
wells i n  the Salton Sea Geothermal Field.  
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1.2.5.2 Subsurface 
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I n  the  west-central po r t i on  o f  the  f i e l d ,  i n  the  area studied by 

Randall (1974) and Tewhey (1977), the  s t r a t a  d ip  west a t  IO". 

co r re la t i on  i s  d i f f i c u l t ,  Randall (1974) attempted cor re la t ions  between 16 

wel ls  by de f i n ing  parastrat igraphic units using percentage volume o f  sand 

bodies per 160 m (500 ft) i n t e r v a l s  (Figure 1-9). 

co r re la te  c e r t a i n  d i s t i n c t i v e  marker beds between some adjacent wells. 

spontaneous p o t e n t i a l  logs, he was able t o  cor re la te  sand-shale boundaries 

and thicknesses o f  d i s t i n c t i v e  units. Such cross sections def ine a broad 

Although 

Randall a lso was able t o  

Using 

syncl ine with an east-west ax i s  plunging gent ly  west. 

for th ickening o f  i n d i v i d u a l  sedimentary units from nor th  t o  south was a lso 

found. 

A general tendency 

1.2.5.3 Inf luence o f  Structure on Heat Transfer 

One o f  the  imp r t a n t  'outcomes o f  these parastrat igraphic and struc- 

t u r a l  studies was the  f i nd ing  tha t  the isotherms are - not  cont ro l led  t o  any 

apparent extent by l o c a l  sedimentary s t ra t i g raph ic  and s t r u c t u r a l  re la t ionsh ips  

(Randall, 1974). Isothermal surfaces are seen t o  transect sedimentary 

bedding, ignor ing  the s t r i k e  and d ip  o f  the  s t ra ta.  

cross sect ions seem unaffected by the loca t ions  o f  postulated fau l ts .  

S im i la r l y  the  temperature 

Randall  (1974) therefore concluded tha t  distance from a postulated magmatic 

heat source i s  almost the  so le  determining or f o r  the  shape and'size o f  

the  thermal anomaly. 
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1.3 THE PROPOSED SALTON A SCIENTIFIC DRILLING PROJECT 

1.3.1 Cont inental  S c i e n t i f i c  D r i l l i n g  

The repor t  e n t i t l e d  , published 

i n  1979 by the U. S. Geodynamics Committee o f  the Nat ional  Research Council, 

ou t l ined  reasons 

and i d e n t i f i e d  f o  

Continent a1 Basin 

ta rge t  f o r  cont inen 

energy source f o r  

Report (1979, p. 

The f i r s t  is t o  produce three-dimensional understanding of heat 
sources and products o f  thermal ly d r iven  processes and t o  
improve the boundary condi t ions o f  p red ic t i ve  models. 
second is t o  remove barriers  to t h e  understandin 
heat- f low geothermal systems. l1 

The 

Simi lar ly ,  according t o  the  Mineral  Resources Panel (USGC Report, 1979, p. 111, 

"The essent ia l  path t o  f ind ing  mineral  deposits i s  t o  understand 
how the ore-forming processes have operated i n  the crust. Many 
important mineral  deposits are concentrations o f  valuable 
elements mobi l ized and transported with energy derived from hot 
magma (molten rock) d r i v i n g  react ions between aqueous f l u i d s  and 
rocks within the earth. Such centers o f  magma-geothermal 
a c t i v i t y  may be sampled i n  depth by  d r i l l i n g  i n  two types o f  
s i tuat ions:  (a) Current ly  ac t i ve  systems o f  i n te res t  i n  
connection with fundamentaldprinciples regarding sources o f  
geothermal energy.. (b) Ancient mineral ized hydrothermal systems 
tha t  have y ie lded s i g n i f i c a n t  ore deposits." 

. 

I n  discussing s c i e n t i f i c  d r i l l i n g  the USGC Report pointed out the advantages 

o f  d r i l l i n g  Itdedicated holes", i.e., holes d r i l l e d  so le ly  f o r  s c i e n t i f i c  
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purposes, but  a lso encouraged ?naximum use o f  holes o f  opportunity (holes 

d r i l l e d  for spec i f i c  mission purposes)1t (USGC Report, 1979, p. 9 ) .  Even 

though they are expensive, the  advantages o f  "dedicated holes" are obvious. 

On the  other hand, the  advantage o f  ltholes o f  opportunity" i s  t h a t  a la rge  

pa r t  o f  the costs i s  borne by the operator. 

Subsequent t o  the  USGC report,  the Nat ional  Academy o f  Sciences establ ished 

a Continental S c i e n t i f i c  D r i l l i n g  Committee (CSDC) t o  provide communication, 

coordinat ion and advice concerning implementation o f  a program o f  research 

d r i l l i n g  on land. Panels were se t  up t o  consider Thermal Regimes, Mineral 

Resources, Basement Structures and Deep Continental Basins, D r i l l i n g  Logging 

and Instrumentation Technology, and Sample Curation and Data Management. 

D r a f t  versions o f  the repor ts  o f  the f i r s t  two o f  these panels were 

submitted t o  the  CSDC i n  May 1983 and are cu r ren t l y  under review by the  

Nat ional  Academy o f  Sciences and the  Nat ional  Research Council. 

The d r a f t  repor t  o f  the Thermal Regimes panel, e n t i t l e d  "A Nat ional  

D r i l l i n g  Program t o  Study the  Roots o f  Act ive Hydrothermal Systems Related t o  

Young Magmatic Intrusions", stresses the importance o f  Continental S c i e n t i f i c  

D r i l l i n g  t o  soc ie ty  and l i s t s  the  benef i t s  which might accrue from such a 

program under the  fo l low ing  headings: ( 1  Volcanic and Earthquake Hazards; 

(2) Understanding the  Formation o f  Ore Deposits; (3 )  Radioactive Waste 

Disposal; and (4) Geothermal Energy. 

of ac t i ve  hydrothermal-magma systems within the  U.S.A., i.e.,: (1 )  Dominantly 

I t  fu r the r  considers f i v e  main classes 

Andesit ic Centers; ( 2 )  Spreading Ridges; ( 3 )  Basa l t i c  Fields; (4) Evolved 

Basa l t i c  Centers, and (5) S i l i c i c  Caldera Complexes (CSDC, D r a f t  o f  Thermnal 

Regimes Panel Report, May 1983). 

the  U.S.A., the  authors 

After evaluating various p o t e n t i a l  s i t e s  i n  
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"recommend t h a t  a deep d r i l l i n g  program be ca r r i ed  out i n  
a young s i l i c i c  caldera complex, bu t  t ha t  no spec i f i c  complex be 
chosen un t i l  the requ is i t e  pre l iminary studies and intermediate- 
depth d r i l l i n g  are completed." 

The repor t  continues: 

"In addit ion, we s t rongly  recommend tha t  a program also be 
developed t o  take advantage o f  a l l  ava i lab le  oppor tun i t ies f o r  
add-on inves t iga t ions  i n  the Salton Trough, and tha t  a broadly 
based program o f  geophysical, geological, geochemical, and hydro- 
l o g i c a l  studies be car r ied  out i n  th is area, poss ib ly  leading t o  
a dedicated deep ho sometime i n  the f (op. c i t .  pp. 
7-8) 

The d r a f t  repor t  o f  the Mineral Resources Panel also discusses ac t i ve  

hydrothermal systems as des i rab le ta rge ts  t o  inves t iga te  ore-forming processes. 

Among the p o t e n t i a l  s i t e s  i t  considers i s  the SSGF The authors state: 

Wy deeper d r i l l i n g  i n  the hydrothermal system i n  the Salton 
Sea, we would obta in  in format ion about the metamorphism o f  an 
i n i t i a l l y  r e l a t i v e l y  uniform p i l e  o f  sediments and the conse- 
quent changes i n  poros i ty  and permeabil ity. 
ob ta in  ir l formation about how deeply the b r ine  c i r cu la tes  and 
whether there are changes i n  s a l i n i t y ,  sulfur, and metal content 
o f  the  b r ine  with depth. The 6bove in format ion might be obtain- 
ed most economically through add-on invest igat ions,  inc lud ing 
deepening o f  e x i s t i n g  or planned indus t ry  d r i l l  holes, ra ther  
than by a program o f  d r i l l i n g  dedicated holes. The Salton Sea 
remains the best onshore ta rge t  f o r  add-on inves t iga t ions  tha t  
address the problems o f  mineral concentration re la ted  t o  
spreading centers." 
Report, May 1983, p. 

We might a lso 

(CSDC, D r a f t  o f  -Mineral Resources Panel 

1.3.2 Development o f  the SSSDP 

On September 27, 

nuclear waste reposi  tab le  samples o f  

Geothermal, Inc. 

company was sympathetic t o  the gathering o f  samples from t h i s  w e l l  a t  cost. I n  
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consul tat ion with s t a f f  o f  R G I  they conceived an ambitious but techn ica l l y  

feasible and cost e f f e c t i v e  p lan  f o r  an Itadd-on" experiment i n  t h i s  hole o f  

opportunity. The c h i e f  feature o f  t h i s  plan was the deepening o f  the w e l l  

from i t s  targeted depth o f  12,000 ft (3657 m) t o  18,000 ft (5486 m), which i s  

the  p r a c t i c a l  l i m i t  o f  the d r i l l i n g  r i g s  usual ly avai lable i n  the  Imperial  

Val ley o f  Cal i fornia.  

Accordingly, they proposed t h i s  plan t o  t h e  CSDC a t  i t s  meeting on 

October 22, 1982. The committee responded favorably t o  t h e  concept and 

appointed W. A. Elders t o  chai r  a steer ing committee t o  oversee the development 

o f  t he  proposal and i t s  implementation. A proposal e n t i t l e d  "Salton Sea 

S c i e n t i f i c  D r i l l i n g  Project, Phase 1" was submitted t o  the  Nat ional  Science 

Foundation on November 8 ,  1982. This i n i t i a l  proposal requested funds 

t o  obtain a l i m i t e d  amount o f  rock and water samples t o  augment the data t o  

be obtained by RGI i n  t h e  3.7 km deep well. 

ou t l ined  four subsequent phases o f  the project .  I t  proposed tha t  i n  Phase 2 

This proposal a lso b r i e f l y  

the w e l l  would be deepened t o  5.5 km w i t h  continuous coring. 

stage a much more extensive program o f  sampling and tes t i ng  would be ca r r i ed  

out, inc lud ing  a f racture s t imu la t ion  and propping equipment. Phase 3 would 

During t h i s  

comprise the s c i e n t i f i c  study o f  t h i s  deepened w e l l  and analysis o f  t h e  

samples and data recovered from i t. I f  the  r e s u l t s  obtained warranted, Phase 

4 would fol low, i n  which a second w e l l  deeper than 5 km would be d r i l l e d  i n  

another l oca t i on  i n  t h e  SSGF t o  fur ther  t e s t  the charac ter is t i cs  o f  the deep 

reservo i r  and reach higher temperatures. 

i t  was proposed t o  d r i l l  a 6 t o  9 km deep w e l l  designed t o  penetrate t h e  

magmatic bodies bel ieved t o  be t h e  heat sources f o r  t he  f i e l d .  

F i n a l l y  as Phase 5 o f  the pro ject  

These proposals 

Regimes Panel o f  the 

were discussed at  an open forum convened by the Thermal 

CSDC a t  t he  Annual Meeting o f  the American Geophysical 
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Union on December 8, 1982, i n  San Francisco. As a r e s u l t  o f  input received 

a t  t h a t  meeting, i t  was decided t o  proceed immediately by seeking funds f o r  

Phase 2 o f  the SSSDP by requesting an addi t ional  appropriat ion i n  the  FY84 

federal  budget. 

During January 1983, informal discussions were held by W. A. Elders 

with representatives of the NSF, USGS, and DOE. Concern was expressed i n  

c e r t a i n  quarters t h a t  launching B budget i n i t i a t i v e  t o  modify FY84 appro- 

p r i a t i o n s  might lead t o  resistance as there was the p o s s i b i l i t y  t ha t  i t  could 

lead t o  r e d i r e c t i o n  o f  funds appropriated f o r  and sorely needed by other 

programs 

For t h i s  reason, the  discussions. in February and March by W. A. Elders 

and R .  W. Rex with these agencies,and w i t h  t he  O f f i ce  o f  Science and Technology 

Po l icy  and the O f f i c e  o f  Management and Budget stressed the need for  an 

add i t i ona l  appropriation. 

with the relevant s t a f f s  on the Appropriations Committee and the Science and 

Technology Committee o f  the House o f  Representatives. The key features o f  

t h e i r  presentations were tha t  the p ro jec t  would be a high-r isk undertaking 

They.made s i m i l a r  representations i n  discussions 

with excel lent  p o s s i b i l i t i e s  for both h igh  s c i e n t i f i c  and high economic 

returns. Both pure and applied science would be involved i n  a co l labora t ion  

among industry, government, and academia. And, o f  importance t o  apprbpriations 

committees, the p ro jec t  was promised n o t  t o  be open ended but t o  be executed 

over  a short t ime  period and have l i m i t e d  goals, duration, and budget. 

Bipart isan) support was also sought and received from the C a l i f o r n i a  Congres- 

s iona l  Delegation. 

t h e  FY84 budget o f  t h e  DOE,, 

ment o f  Energy requesting.$5.9 m i l l i o n  f o r  Phases 1 and 2 o f  t h e  SSSDP. 

These e f f o r t s  were successful when a t  the end o f  A p r i l  1983 the House 

Elders submitted the  relevant testimony a t  hearings on 

I n  March RGI submitted a proposal t o  the Depart- 
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o f  Representatives added $5.9 m i l l i o n  t o  the  DOE D iv i s ion  o f  Geothermal and 

Hydropower Technology f o r  Phase 2 o f  the  SSSDP. 

I n  May, discussions were continued w i t h  s t a f f  members on the  appro- 

p r i a t e  committees o f  the  U. S. Senate and b ipa r t i san  support from the  Senators 

from Ca l i f o rn ia  was obtained f o r  the  SSSDP. 

the committee hearings. 

o f  the DOE also provided the add i t iona l  $5,900,000 f o r  the  SSSDP and concurred 

i n  the Department's use o f  ava i lab le  FY83 funds not t o  exceed $250,000 f o r  

the  pro ject .  

Testimony was then submitted t o  

The j o i n t  Senate-House reso lu t ion  on the  FY84 budget 

The reason f o r  requesting the  $250,000 was t o  cover the  increased 

mechanical costs o f  d r i l l i n g  and casing a wider diameter w e l l  t o  12,000 ft t o  

permit deepening i t  t o  18,000 ft. 

proposal t o  the  NSF f o r  Phase 1. 

o f  supporting science ra ther  than engineering, the  NSF requested t h a t  t he  

Phase 1 proposal be reduced t o  delete the cost o f  t h i s  engineering modif icat ion. 

This cost was i n i t i a l l y  included i n  the  

I n  keeping w i t h  the p o l i c y  o f  t h a t  agency 

P a r a l l e l  t o  these a c t i v i t i e s ,  there were extensive negot iat ions by 

RGI and t h e i r  partners, Parsons Engineering Co., with the Department o f  

Energy concerning t h e i r  app l i ca t ion  for a Federal Loan Guarantee o f  $99.9 

m i l l i o n .  

Geothermal Power Plant  and F i e l d  Development Project, o f  which the  Fee No. 5, 

the  we l l  i n i t i a l l y  considered f o r  use by the  SSSDP, i s  part.  

March 1984 these negot iat ions were completed and contracts t o  d r i l l  the we l l  

i n  A p r i l  were f ina l i zed .  

This i s  pa r t  o f  the  $148 m i l l i o n  f i nanc ia l  package f o r  the  Niland 

A t  the  end o f  

During 1983 extensive e f f o r t s  were made t o  pub l i c ize  the  s c i e n t i f i c  

opportuni t ies t h a t  the  SSDP would make possible and t o  i n v i t e  the  broadest 

p a r t i c i p a t i o n  from the  s c i e n t i f i c  community. 

i n  Geotimes, Transactions o f  the  American Geophysical Union (EOS), and 

A r t i c l e s  about i t  appeared 

-- -- 
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Transactions -- o f  t h e  Geothermal Resources Council. 

o f  a newsletter ( D r i l l i n g  Ear ly  Warning) * o f  t h e  CSDP. 

t a l k s  about i t  a t  the Cord i l le ran  Section meeting o f  the Geological Society 

o f  America (GSA) i n  Sa l t  Lake C i t y  i n  May, and a t  the Annual Meeting o f  t he  

GSA i n  Indianapol is i n  November. 

subject o f  a half-day symposium a t  t he  Annual Meeting o f  the American Geophys- 

It was also the subject 

Elders del ivered 

f i n a l l y  i n  December the SSSDP was the 
% *  

i c a l  Union i n  San Francisco. A d r a f t  vers ion-o f  t h i s  present report  was 

issued a t  t ha t  well-attended meeting. 

Meanwhile the D iv i s ion  o f  Geothermal 

DOE was preparing a request f o r  proposals 

and Hydropower Technologies o f  the 

(RFP) t o  accomplish the d r i l l i n g  
Y .  

a c t i v i t i e s  o f  Phases 1 and 2 o f  t he  SSSDP; the RFP was issued i n  March 1984. 

This RFP broadened the p o t e n t i a l  scope o f  the SSSDP by i n v i t i n g  competit ive 

b ids t o  d r i l l  or deepen wel ls f o r  the research purposes o f  the SSSDP within the 

"Salton Sea Geothermal Area", the l a t t e r  being defined as those KGRA's i n  the  

Salton Trough i n  which temperatures o f  300 C (575 f )  could be expected a t  

depths o f  l ess  than 12,000 ft. (3.7 km). It also allowed tha t  the-cost o f  

d r i l l i n g  a w e l l  t o  reach t h e  ' I i n i t i a l  depth", a 

could be included i n  the proposal. 

" i n i t i a l  depth" a f u  

i c h  300 C would be reached, 

The aim i s  thus t o  deepen from t h i s  target  

. f i n a l  "targe 

epth o f  t he  " i n i t i a l  

1 km f o r  a w e l l  such as 

As can be seen i 

temperaturett o f  300 C i s  reached as shallow as 

Elmore No. 1 near the center o f  the thermal anomaly. However, on the f lanks 

o f  the SSGF, e Fee No. 5 -  t o  be d r i l l e d  

A p r i l  1984, t 

Thus there are conside 

center o f  the SSGF, unless a l a rge r  pa r t  o f  the cost o f  d r i l l i n g  t o  the 

i n i t i a l  depth on t h e  margins o f  t he  f i e l d  i s  cost-shared by the operator. 

depth t o  300°C i s  l i k e l y  t o  be more than 3 km (10,500 ft). 

l e  advantages to '  the SSSDP In d r i l l i n g  'near the 
, ', 
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Figure 1-10. Equilibrium Temperature Logs for Elmore No. 1 and B r i t z  No. 3 
Wells, Together with the Boil ing Point Curves f o r  Pure Water and 
a 25% NaCl Solution. 

CP = c r i t i c a l  point o f  pure water (Source - E l l i s  and Mahon, 
1977). Figure reproduced from Elders & Cohen (1983). 
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b 
1.3.3 S c i e n t i f i c  Issues t o  be Tested i n  the SSSDP: 

1.3.3 . I  Spreading Ridges 

b 
By f a r  the most important thermal regimes on.'earth are mid-ocean 

r i f t  systems. 

ocean rift systems amounts t o  about a quarter o f  the t o t a l  i n t e r n a l  heat f l o w  

a t  the ear th 's  surface (Sclater e t  el., 1980), .The discovery o f  widespread 

Recent work suggests tha t  the t o t a l  heat f l o w  through a l l  the b 

1 

bi 

intense submarine hot springs on the East P a c i f i c  Rise i s  one manifestat ion 

of t h i s  a c t i v i t y .  

a volume o f  sea water equal t o  the  t o t a l  volume o f  the oceans through the 

mid-ocean r i f t s  i n  about 10 m i l l i o n  years (Edmond e t  a l . ,  1979). 

hydrothermal systems a t  sea-floor spreading centers are important s c i e n t i f i c a l -  

I t  i s  estimated tha t  such hydrothermal c i r c u l a t i o n  dr ives 
kl 

M 

These 
I 

l y  because they have profound e f f e c t s  on t h e  chemistry o f  the oceans. 

we now recognize t h a t  c e r t a i n  hydrothermal ore deposits, now found on land as 

the  r e s u l t  o f  p l a t e  tec ton ic  a c t i v i t y ,  were i n i t i a l l y  formed a t  such r i f t s .  

Also 

Such oceanic hydrothermal systems are new and exc i t i ng  ta rge ts  f o r  

t 
I 

& 

IJ 

I 

Y 

b 

oceanographic research. However the re  are obvious cost advantages t o  studying 

these systems on land i n  the few instances where sea f l o o r  spreading centers 

affect land masses. he only opportunity f o r  such a study i n  Nor th  America i s  

i n  the Salton Trough, t h e  landward extension o f  the Gulf  o f  Ca l i fo rn ia .  

Salton Trough appears t o  be i n  every way s i m i l a r  to' th-e-Gulf o f  C a l i f o r n i a  

except tha t  i t  has been p a r t i a l l y  f i l l e d  by sediments of the Colorado River. 

The Gulf  o f  Ca l i f o rn ia  i s ,  i n  turn, a region t r a n s i t i o n a l  between t h e  sea-floor 

. 

The 

spreading system o f  the East P a c i f i c  Rise and the southern end o f  the San Andreas 

Faul t  Transform System. The Gulf contains numerous depressions such as the Guaymas 

Basin, where sea-floor spreading i s  occurring and submarine vents discharging 

hydrothermal br ines a t  350°C have been observed (Lonsdale and Elders, 1981 ) . 
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These basins are connected by fau l t s  which continue no r th  i n t o  the  Colorado De l ta  

and merge i n t o  the  San Andreas Fau l t  System. 

The Salton Trough i s  the  s i t e  o f  numerous geothermal f i e lds ,  now being 

developed f o r  e l e c t r i c a l  power production. 

Cerro Pr ieto,  Mexico, and a t  t he  Sal ton Buttes, Ca l i fo rn ia ,  and i s  subject t o  

frequent major earthquakes and earthquake swarms. 

hypothesis these earthquake swarms may be produced by i n t rus ions  o f  magma i n t o  

the  sediments; indeed the  most l i k e l y  source o f  heat for the  l a r g e r  geothermal 

f i e l d s  i s  l a rge  gabbroic i n t rus ions  a t  depth (Elders e t  al., 1984). 

the  geothermal f i e l d s  b a s a l t i c  d i ke  rocks have been encountered i n  d r i l l h o l e s .  

The l a rges t  geothermal f i e l d s  a lso have g rav i t y  and magnetic anomalies consistent 

with the presence o f  p a r t l y  cooled gabbroic i n t rus ions  6 t o  8 km below the  

surface (Elders e t  al., 1984). 

f i e lds ,  w i t h  the  l a rges t  g rav i t y  and magnetic anomalies i n  the  Salton Trough, 

It a lso contains young volcanoes a t  

According t o  one recent 

I n  most o f  

The la rges t  and ho t tes t  o f  these geothermal 

i s  the  SSGF. 

1.3.3.2 

For 

Geothermal Energy 

more than a decade many ear th  s c i e n t i s t s  have en thus ias t ica l l y  

I 1 
t 
L 
b 
L 
t 
i 
t 
L 
L 

b 
t 

discussed the  concept o f  deep d r i l l i n g  t o  penetrate bodies o f  molten rock 

and zones o f  convecting groundwater above them. 

magmatic systems could unlock enormous sources o f  energy. 

t o  d r i l l  i n t o  an ac tua l  magma chamber a t  depth would requ i re  extensive tech- 

b Penetrat ing such hydrothermal- 

However an experiment 

no log ica l  improvements t o  d r i l l  i n t o  such a h o s t i l e  environment (temperatures 

exceeding 1000°C a t  more than 6 km depth). Some prel iminary cost  estimates 
I 
i 

L suggest t h a t  t o  successful ly d r i l l  i n t o  a deep magma chamber, even i n  a favorable 

f 
environment such as a young volcanic terrane, might cost more than $100 m i l l i o n  

t 
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and requ i re  ten  years o f  development work. The SSSDP, on the other hand, i s  a 

demonstration o f  the a r t  o f  what i s  possible with of f - the-shel f  technoloqy. 

The f i r s t  three phases o f  the SSSDP are only prel iminary steps on the way 

t o  tha t  lonq-term qoal o f  explor inq a hydrothermal-maqmatic system. 

l i k e l y  t o  be d r i l l e d  or deepened as a r e s u l t  o f  the RFP cur ren t ly  beinq 

Wells 

issued by DOE are not expected t o  reach a maqma chamber ( i f  any) a t  the depth 

l i k e l y  t o  be reached. The aims ar o explore c loser t o  the heat source and 

the roots  o f  a hydrothermal system, t o  look f o r  possible sone6 o f  discharqe 

where hot water i s  r i s i n q  or possible zones o f  recharge where colder water i s  

descendinq t o  be heated by t 

o f  rock and water which w i l l  

a t  the surface. These data w i l l  used t o  model the three dimensional 

s t ruc tu re  and hydroloqy 

b e t t e r  def ine deeper and ho t te r  futu e t s  i n  the Salton Sea 

Geothermal Resource Area. The exper p develop the necessary 

technoloqy and experience o f  d r i l l i n q  and producing hot  f l u i d s  from wel ls  

which are deeper and hopefu l ly  ho t te r  than those cur ren t ly  d r i  

qeothermal industry.  

maqma a t  qreater d 

used t o  i n t e r p r e t  

d t o  obta in  samples 

i c a l  data obtained 

the whole f i e l d .  This i n  turn w i l l  he lp  us t o  

The we l l  w i l l  y i e l d  more samples and data t o  the pub l ic  domain than 

eothermal w e l l  ye t  d r i l l e d  i n  the Imperial  

rov ide samples from a unique pressure/temp- 

never before invest iqated d i r e c t l y  anywhere i n  the world. 

It may explore f o r  pe 

geothermal systems. 

creat ing f ractures a r t i f i c a l l y  and proppinq them open t o  qenerate permeabi l i ty  

tures never before explo i ted i n  

I f  fundinq permits, i t  could t e s t  the p o s s i b i l i t y  o f  

i n  the indurated rocks bel ieved t o  e x i s t  a t  depth. 
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According t o  an estimate published by the  USGS i n  1979, the  reservo i r  volume 

o f  approximately 116 km3 explored by d r i l l i n g  t o  t h a t  time, and having a mean 

temperature o f  33OoC, had an energy content o f  about 1x1020 Joules. Assuming 

a poros i ty  o f  20% and assigning reasonable fac to rs  f o r  recovery and thermal 

e f f i c iency ,  they estimated the  e l e c t r i c a l  power p o t e n t i a l  o f  the  SSGF t o  be 3400 

MWe f o r  30 years. 

Although d r i l l i n g  the  SSSDP w e l l  w i l l  be considerably more expensive 

than d r i l l i n g  the  shallower we l ls  used i n  making the  USGS estimate, i t  could 

have a s i g n i f i c a n t  impact on the  economics o f  the  SSGF. 

i n t e r v a l s  f o r  the  we l ls  used i n  the  USGS estimate l i e  between only 1300 and 

2100 m depths. 

ered i n  d r i l l i n g  the  deeper w e l l  ant ic ipated i n  the  SSSDP proves favorable, 

then the volume o f  the  known resource would be increased by a fac to r  o f  5 or 

more. 

and economic b a r r i e r s  t o  developing th is  source o f  energy. 

The production 

I f  the  combination o f  permeabil i ty, enthalpy and cost  encount- 

This could i n  turn provide a major incent ive  t o  overcome the  techn ica l  

Recently, suggestions have been put  forward t h a t  a t  h igh  enough temperatures 

and pressures a "superconvecting regime" may ex is t .  

near the  c r i t i c a l  po in t  o f  water i t  i s  postulated t h a t  the  r a t i o  o f  buoyancy t o  

According t o  t h i s  hypothesis, 

v i scos i t y  increases by a fac to r  o f  a thousand, which would cause very h igh  

f l u i d  f low ra tes  and e f f i c i e n t  heat t ransfer .  Such lfsuperconvectionlt, i f  i t  

e x i s t s  and could be exploited, would have a revolut ionary impact on the  economics 

of geothermal power production. 

reach s u p e r c r i t i c a l  f l u i d  a t  several times the  cost  o f  a conventional w e l l  

would be economic i f  i t  produced a t  a r a t e  considerably greater than t h a t  o f  

the  conventional well. 

As an example, deepening a w e l l  i n  order t o  
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Although superconvecting regimes have not yet; been encountered i n  nature, 

the  temperatures and pressures i n  the SSGF come closer t o  the c r i t i c a l  po int  o f  

pure water than i n  any other f i e l d  known t o  US. 

course, elevated i n  temperatur 

SSGF, making i t  u n l i k e l y  tha t  s u p e r c r i t i c a l  f l u i d s  could e x i s t  except a t  very 

great depth. 

Linear ex t rapo la t ion  o f  temperature gradients such as those shown i n  f i gu re  

1-10 suggests temperatures i 

d r i l l i n g .  Although decreases or even reversals o f  the temperature gradient are 

always possible, or even p especial ly for a we l l  'on the margins o f  the 

f i e l d ,  i f  decreases i n  s a l i n i t y  are encountered with increasing depth, there i s  

The c r i t i c a l  po in t  i s ,  o f  

nd pressure by the higher s a l i n i t i e s  i n  the 

However, steep temperature gradients are observed i n  the SSGF. 

of 400 C'should be reached i n  the SSSDP 

ei the e x c i t i n g  but remote p o s s i b i l i t y  t i t i o n s  approaching s u p e r c r i t i c a l  

might be encountered f o r  the f i r s t  t i  

Id E a r l i e r  studies (Helg 

I 

t o  a depth o f  2 km (7070 ft) 

i n  the center o f  the SSGF, there 

depth. Reversals o f  t s a l i n i t y  gradient with depth d be l i k e l y ,  however, 

given the  postulated environment -- tha t  the source o f  the dissolved s a l t s  i s  

evaporites i n  the s source of 'the heat 

i s  magmatic i n t r u s i  i n  the basement.' I f  the correct, we might 

increase of s a l i n i t y  with L 

L 
I 

ow sedimentary sect ion, 

expect dense, cooler, sa l i ne  b r ine  t o  s ink  as i t  

ho t te r  and less  concentrated brine'. 

ho t te r  brine, i f  producible i n  

the  economic evelop the' resource. 

isplaced by l e  

The discovery o f  such a l ess  sal ine, 

c i a 1  quant i t ies,  could do much t o  improve bJ 

b 
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1.3.3.3 Understanding the  Formation o f  Ore Depoits 
# - .  

t a n t  aim i s  t o  explore more deeply one o f  the  most sa l ine  

geothermal f i e l d s  i n  the world, where br ines contain more than 25% of dissolved 

sa l ts .  

qradients because they inh ib i t  thermally-driven convection. 

contain very h iqh  

z inc and s i l v e r  ores. 

genesis i n  hydrothermal systems. 

Sa l in i ty -cont ro l led  densi ty gradients can permit very hiqh temperature 

These br ines  

t a l  contents and are ac t i ve l y  p r e c i p i t a t i n g  copper, lead, 

Their study should provide considerable insiqht i n t o  ore 

Recently, an estimate o f  the po ten t i a l  f minerals recovery from these 

br ines  suqqested tha t  the value o f  dissolved metals exceeds t h a t  o f  the  p o t e n t i a l  

power production (Maimoni, 1982). 

6 cents/kWh, would earn $394 m i l l i o n  a year. 

f low r a t e  o f  45 m i l l i o n  kq/h. 

recovered, the  market value o f  the metals produced would be between $500 and 

$1,500 m i l l i o n  a year. The wide range r e f l e c t s  the uncer ta in t ies  about the 

content o f  noble metals. The estimate excludes l i th ium since the po ten t i a l  

production from SSGF could be an order o f  maqnitude qreater than 1980 t o t a l  

world sales. 

s t ra teg i c  mineral. 

reserve o f  platinum i n  the U.S.A. 

solut ion,  i t  i s  by no means c lear  tha t  techniques cu r ren t l y  ava i lab le  t o  

recover them would be economic a t  present. 

the  SSSDP w e l l  helps t o  prove tha t  the volume o f  concentrated metal-r ich b r ine  

is l a rqe r  than cur ren t ly  believed, then the incent ive t o  overcome these technica l  

problems w i l l  be even greater. 

these metal-r ich and sulfur-poor hypersaline ch lo r ide  br ines may under l ie an 

A 1000 MWe plant, s e l l i n g  e l e c t r i c  power a t  

This p lan t  would requ i re  a b r ine  

Asswninq 90% o f  the mineral values would be 

The p lan t  could supply 14-31% o f  the U.S. demand f o r  manqanese, a 

The b r ine  could also p o t e n t i a l l y  cons t i t u te  the  l a rqes t  

In  s p i t e  o f  the la rqe  value o f  the metals i n  

Once more, however, i f  dee 

Some prel iminary unpublished work sugqests t h a t  
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area of  1000 km2 i n  t h e  S a l t o n  Trough (E lde r s  and Cohen, 1983). 

Within t h e  SSGF, s t u d i e s  o f  o r e  minera ls  have shown t h a t  o r e  depos i t i on  is 

Early-formed d iagene t i c  i r o n  s u l f i d e s  are overpr in ted  by 

Curren t ly ,  s a l i n e  b r i n e s  are i n  e q u i l i -  

active and pervasive.  

hydrothermal and metamorphic s u l f i d e s .  

brium with oxid ized  ve in  assemblages of  hemati te ,  s u l f i d e s ,  anhydr i t e  and 

silicates. 

o f  p y r r h o t i t e .  

A t  an earlier s t a g e  cond i t ions  were more reduced, caus ing  formation 

I t  is h igh ly  d e s i r a b l e  t h e r e f o r e  t o  o b t a i n  samples from higher  

tempera tures  and p res su res  t o  s tudy  t h e  development of t h e  metamorphic ore 

body. 

1.3.3.4 Radioact ive Waste Disposal  

The d i r e c t  measurement of how hot  water moves through rocks  and t h e  k inds  of 

water-rock i n t e r a c t i o n s  involved i n  such phenomena have immediate and d i r e c t  

a p p l i c a t i o n  t o  ou r  understanding of t h e  problems of migrat ion and d i s p e r s a l  o f  

r a d i o a c t i v e  elements.  

f o r  ho t  nuc lear  waste is s a l t ,  which occurs as beds or domes i n  va r ious  sedimentary 

bas ins  i n  t h e  U.S.A. 

those predicted t o  occur  i n  such a waste repos i tory .  

of Nuclear Waste I s o l a t i o n  has  funded Drs. Elde r s  and Cohen i n  a four-year p r o j e c t  

A l i k e l y  candida te  for t h e  hos t  rock f o r  a mined r epos i to ry  

The temperatures  a l ready  found i n  t h e  SSGF equal  or exceed 

With t h i s  in mind, t h e  Office 

a t  UCR t o  s tudy  geothermal  f i e l d s  as analogs of p o s s i b l e  behavior i n  t h e  near  f i e l d  

of a waste r e p o s i t o r y  (E lde r s  and Cohen, -1983) They are s tudying  t h e  e x t e n t  t o  

which na tura l ly-occurr ing  r a d i o a c t i v e  elements,  and o t h e r  elements which are 

geochemically similar t o . t h o s e  occurr ing  i n  nuc lear  waste, are t r anspor t ed  or 

r e t a rded  as ho t  b r i n e s  move through sedimentary rocks.  The data obtained w i l l  be 

used t o  test and v a l i d a t e  computer codes which w i l l  be  developed for modeling t h e  

nea r - f i e ld  behavior  o f  a waste repos i to ry  i n  s a l t  and of c lay- r ich  b a c k f i l l  materials 
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and seals. 

be used extensively i n  th is  pro ject .  

The samples o f  rocks and br ines obtained i n  Phase 1 o f  the  SSSDP w i l l  

1.3.3.5 Volcanic and Earthquake Hazards 

F ive  small  ex t rus ive  r h y o l i t e  domes occur a t  the  south end o f  the Salton 

Sea. 

approximately 16,000 years. 

A s ing le  K-Ar  age on the  westernmost dome, Obsidian Butte, gave an age o f  

Simi lar  rocks have been encountered i n  several 

geothermal we l ls  near the  center o f  the  f i e l d .  

i n  the  domes and as subsurface dikes, s i l l s  or f lows i n  a t  l e a s t  f i v e  o f  the 

wel ls  i n  the  f i e l d .  One such basa l t  or diabase occurs a t  a depth o f  8600 f t  

(2620 m) i n  the  Fee #I well. 

Basa l t i c  rocks occur as xenol i ths 

Volcanic hazards are not  a prime reason f o r  car ry ing  out  the  SSSDP. 

However, the  SSGF l i e s  i n  one o f  the  most seismical ly ac t i ve  regions o f  the  

conterminous U.S.A. 

o f  modif ied M e r c a l l i  i n t e n s i t y  greater than V I 1 1  i n  the  Salton Trough t h i s  

century. The SSGF l i e s  a few ki lometers west o f  the  apparent southern terminus 

o f  the  f a u l t  mapped as the  San Andreas f a u l t  i n  the  northern p a r t  o f  the  Salton 

Trough. 

occur every two or three years i n  the  c e n t r a l  Imper ia l  Val ley along the  Brawley 

Fau l t  Zone. 

a magnitude (ML) o f  5.0 (Elders and Cohen, 1983). 

(Johnson and H i l l ,  1982). There have been 12 earthquakes 

The SSGF i s  a lso p a r t  o f  the  zone o f  frequent earthquake swarms which 

I n  June 1981 one event i n  a swarm with epicenters i n  the  SSGF had 

Two d i f f e r e n t  models have been proposed t o  explain th is  swarm a c t i v i t y  

(Johnson and H i l l ,  1982). 

o f f s e t  s t r i k e - s l i p  f a u l t s  i s  taken up by emplacement o f  dikes p a r a l l e l  t o  the  

reg iona l  p r i n c i p a l  ho r i zon ta l  stress. 

The f i r s t  proposes t h a t  l o c a l  spreading between 

In  the  second model the  swarms are i n f e r r e d  

t o  be t r iggered by episodic creep events a t  depths o f  3 t o  6 km which induce 
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r e d i s t r i b u t i o n  of i n t e r s t i t i a l  f l u i d  pressure ;  t h i s  i n  t u r n  induces shear 

f a i l u r e .  

Changes i n  f l u i d  p r e s s u r e  cause f l u i d  flow while b r i t t l e  deformation gene ra t e s  

f r a c t u r e  pe rmeab i l i t y  and enhances f l u i d  flow. Recovery of c o r e  and f r a c t u r e  

mapping w i l l  a l low t h e  s tudy  o f  t h e  h i s t o r y  of f r a c t u r e  opening and s e a l i n g  i n  

t h i s  system and t h e  s ta te  o f  stress, as well as t h e  mechanism o f  emplacement of 

These p rocesses  have important imp l i ca t ions  f o r  t h e  s tudy  of geothermics. 

d i k e s  encountered. 
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2. GEOPHYSICS 

2.1 INTRODUCTION 

Geophysical experiments can be used t o  support the  p r i n c i p a l  object ives 

o f  the  SSSDP described i n  the  Introduction, through the  d i r e c t  and i n d i r e c t  

measurement o f  a var ie ty  o f  physical  contants associated with the hydrothermal 

system. Physical constants such as density and temperature cons t i t u te  d i r e c t  

model parameters for the  hydrothermal system, whi le others such as e l a s t i c i t y  

and r e s i s t i v i t y  can be used t o  constrain or estimae other parameters. 

Spec i f i c  object ives o f  a SSSDP geophysical experiments program should be 

to: 

(1) Determine the  locat ion,  extent and nature o f  the thermal source(s). 

Experiments t o  d i s t i ngu ish  between magma chambers and d i ke  swarms 

are p a r t i c u l a r l y  important. Characterizing the  extent and magnitude 

o f  the  thermal anomalies and then in te r re la t i onsh ips  w i l l  provide 

informat ion on the  source as w e l l  as the  pa t te rn  o f  hydrothermal 

c i r cu la t i on .  

(2) Characterize the  c r u s t a l  s t ra t i g raph ic  sequence and i t s  s p a t i a l  

heterogeneity i n  the  general v i c i n i t y  o f  the  hole d r i l l e d  for the  

SSSDP. The sequence i s  considered t o  contain a c r y s t a l l i n e  basement 

o f  presumed oceanic a f f i n i t y  ove r la in  by an "upper1f basement o f  

metamorphosed sediment. 

a depth of 5 kin (16,000 ft) beneath the  SSGF (F r i t h ,  1978). 

This c r y s t a l l i n e  basement appears t o  be a t  

I f  the 

depth o f  the  SSSDP hole i s  adequate t o  penetrate i n t o  th is  basement, 

a major geophysical goal  would be achieved. Above the  metamorphic 

basement are the  geothermal reservo i r  rocks which may be strat igraph- 

i c a l l y  d iv ided i n t o  more than one hydrothermal c i r c u l a t i o n  zone. 
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The r e s e r v o i r  is o v e r l a i n  by a caprock of relatively impermeable 

rock above which are recen t ,  relatively unconsolidated sediments. 

Local f a u l t i n g  and magmatic i n j e c t i o n ,  t oge the r  w i t h  ho r i zon ta l  

changes i n  thermal  regime can be expected t o  provide lateral 

he terogenei ty  t o  t h e  s t r a t i g r a p h i c  sequence. 

I n v e s t i g a t e  t h e  f r a c t u r e  characteristics and genera l  phys ica l  

p r o p e r t i e s  of  t h e  r e s e r v o i r  rocks. 

, 

(3) 

Important ques t ions  concern t h e  

l o c a t i o n ,  o r i e n t a t i o n ,  d e n s i t y ,  and interconnectedness  of f r a c t u r e s ,  

as well as t h e i r - r e l a t i o n s h i p  t o  t h e  l o c a l  t ransform faults and 

zones of  crustal ex tens ion ,  

Geophysical d a t a  which a 

(1) 

r equ i r ed  from t h e s e  experiments include: 

Three dimensional seismic wave ve loc i ty  and a t t e n u a t i o n  about t h e  

SSSDP hole.  Both P and S wave d a t a  w i l l  be use fu l .  In add i t ion  t o  

d i r e c t  arrivals, secondary phases can provide information on deep 

l a y e r i n g  or structures d i s t a n t  from t h e  well. 

Material p r o p e r t i e s  inc luding  dens i ty ,  elasticity,  e l e c t r i c a l  

resistivity, magnetic s u s c e p t i b i l i t y  and thermal conduct iv i ty /  

(2) 

i f f u s i v i t y .  . 

(3) 

(4) Microseismici ty ,  geothermally induced 

Borehole temperature  and s u r f a c e  (conduct ive)  hea t  flow. . 

emissions.  Sources may be e i t h e r  n a t u r a l  or well-induced (e.g. 

during fracture s t imu la t ion ) .  

T h i s  s e c t i o n  cons ide r s  geophysical  experiments-which-address  t h e s e . d a t a  

needs and s p e c i f i c a l l y  suppor t  t h e  s c i e n t i f i c  g o a l s  of t h e  SSSDP, and as such , 

must be considered t o  have h igher  p r i o r i t y  , than t h o s e  experiments which e i t h e r  

focus on v a l i d a t i n g  genera l ized ,  pre-ex is t ing  geophysical  concepts  of hydro- 
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thermal systems, or simply requ i re  access t o  h igh  temperature/pressure/ 

corrosive environments f o r  t e s t i n g  o f  instruments or techniques generic 

i n  nature. 

experiments within these l a t t e r  two categories, but ra ther  t o  es tab l i sh  

p r i o r i t i e s  based upon the  l i m i t e d  time o f  access t o  the  w e l l  and ava i lab le  

resources. 

However, i t  i s  not  the  i n t e n t i o n  o f  th is  document t o  r u l e  out 

Relevant geophysical experiments are o f  three types -- those which 

use surface instruments i n  the  v i c i n i t y  o f  the well, those which deploy 

instruments downhole, and those which make use o f  the core i n  the  laboratory. 

Surface measurements can be made a t  any time; they are discussed i n  the  

next sec t ion  i n  terms o f  "regional" and lllocallt geophysics, based upon the  

extent o f  the  subsurface investigated. I n  the  second section, borehole 

experiments, which must be made within the  time frame o f  the  SSSDP, are 

subdivided i n t o  geophysical logging (methods which characterize the physical  

propert ies o f  the  w e l l  bore) and f a r  f i e l d  geophysics (methods which characte- 

r i z e  the  subsurface away from the  well) .  

some measurements on the  core. 

geophysical s igni f icance, are discussed i n  the  chapters on Tectonics and Rock 

Mechanics and Geohydrology. 

F ina l l y ,  a th i rd  sec t ion  deals w i t h  

Other measurements on the  core, having 

2.2 SURFACE GEOPHYSICAL EXPERIMENTS 

Surface geophysical measurements do not  require the  use o f  the well, and 

as such are no t  t i e d  t o  the  d r i l l i n g  and u l t ima te  production schedule o f  the 

SSSDP; thus they are of lower p r i o r i t y  than mission-oriented experiments 

requ i r i ng  downhole instrument emplacement. 

i 
i 

i 
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Regional geophysical studies are p r imar i l y  use fu l  f o r  character iz ing 

the tec ton ic  framework 'o f  the Imperial  Valley and SSGF. 

be used i n  conjunction with borehole experiments t o  characterize physical  

parameters i n  the  SSGF and around the we l l ,  which w i l l  be usefu l  i n  constrain- 

i n g  the  thermal source, developing models o f  hydrothermal c i r c u l a t i o n  and 

establ ishing re la t ionsh ips  among hydrothermal systems o f  the Salton trough. 

Local studies. can 

2 . 2.1 Regional Studies 

Geophysical studies o f  the Salton trough and SSSGF are extensive. 

The Salton trough and i t s -  offshore conterpart, the Gulf o f  Cal i forn ia ,  

are dominated by "leaky" transform f a u l t s  and tensional  zones developed a t  

t he  ends o f  r i g h t - l a t e r a l ,  s t r i k e - s l i p  f a u l t s  (Elders and B ieh le r ,  1975). 

i 

The trough has steep, step-faulted margins and a r e l a t i v e l y  f l a t  basement 

f l o o r  beneath a cover o f  sedimentary rocks 6 t o  10 km t h i c k  i n  t h e  center o f  

the Imper ia l  Val ley (Biehler e t  al., 1964; Elders e t  al., 1972; Fuis  e t  

al., 1982). The transform f a u l t s  and tensional  zones are s i t e s  o f  h igh 

seismici ty.  Intermediate magnitude mainshock and associated aftershock 

sequences produce r i g h t - l a t e r a l ,  

quake swarms r e f l e c t  zones o f  tension, probable magma or f l u i d  i n jec t i on ,  and 

t r i k e - s l i p  faul t ing,  wh i l e  frequent earth- 

elevated temperatures (Johnson and H i l l  1982) .I 

Surface wave dispersion (Thatcher e t  al., 1971) and Bouguer g rav i t y  

(B ieh ler ,  1964) suggest a th in 

km beneath the Imperial  Val'ley, r e f l e c t i n g  d u c t i l e x h i n n i n g  and a probable 

ltoceanict@ a f f i n i t y  (Elders e t  al., 1972). 

and teleseismic t r a v e l  t i m e  data (Savin0 e t  al., 1977) support 

o f  a th in c rus t  beneath the Imperial  Valley, and i n  p a r t i c u l a r  beneath 

the  SSGF. 

i s o s t a t i c a l l y  compensated crust  of - 20 
' 

Simultaneous inversion of g rav i t y  
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A comprehensive seismic r e f r a c t i o n  survey o f  the  Imper ia l  Val ley has 

been ca r r i ed  out recent ly  by Fuis  e t  a l .  (1982). 

seismic wave v e l o c i t i e s  with good d e t a i l  t o  depths o f  10 t o  16 km i n  the  

sedimentary and metasedimentary sequence; the l i n e s  were no t  o f  s u f f i c i e n t  

length t o  provide depths t o  the Moho. 

been used extensively i n  the  Salton trough, perhaps due t o  the  h igh  l e v e l s  o f  

c u l t u r a l  noise and low seismic Q (h igh absorption) o f  the  surface sediments. 

Proprei tary vibroseismic data do, however, ex is t .  

The study del ineated 

Seismic r e f l e c t i o n  p r o f i l i n g  has not  

It would appear t h a t  the  c r u s t a l  s t ruc tu re  and tec ton ic  patterns o f  the  

Imper ia l  Val ley are reasonably w e l l  constrained and provide a sa t is fac to ry  

framework f o r  the  SSSDP. 

2.2.2 Local  Studies 

The geophysical cha rac te r i s t i cs  o f  the  SSGF inc lud ing  the Ni land area, 

are we l l  summarized by Younker e t  e l .  (1982) and Elders and Cohen (1983). 

2.2.2.1 Gravi ty 

Local g rav i t y  maxima are associated with the  geothermal f i e l d s  o f  the 

Imper ia l  Val ley (Elders e t  al., 1972). The la rges t  o f  these maxima i s  

centered on the  Red H i l l  volcano i n  the  SSGF, and i s  re la ted  t o  i n t r u s i o n  and 

metamorphism. 

mile. 

SSSDP w e l l  w i l l  be use fu l  f o r  improving our understanding o f  the  s t ruc tu ra l /  

pe t ro log ic  environment around the  proposed well .  

S ta t ion  desnt iy o f  the  SSGF i s  on the  order o f  1 s t a t i o d s q u a r e  

Improving the  densi ty approximately ten  f o l d  i n  the  v i c i n i t y  o f  the 

2.2.2.2 Magnetics 

Magnetic surveys o f  the  SSGF (Kel ley and Soske, 1936; Griscom and 

Muf f ler ,  1971) revea l  the presence o f  rocks with h igh  magnetic s u s c e p t i b i l i t y  
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and/or remanence a t  f a i r l y  shallow depth, presumably.due t o  shallow igneous 

intrusions. Cu l t rua l  noise may preclude more de ta i led  magnetic d e f i n i t i o n ,  

although addtional measurements would be a low cost addtion t o  more extensive 

g r a v i t y  work . 
2.2.2.3 Seismic Structure 

The seismic s t ruc tu re  o f  the SSGF and the region around the wel l  can 

be invest igated from the surface using standard r e f l e c t i o n  and , re f rac t i on  

techniques. Data might hope t o  del ineate low ve loc i t y  (high temperature) 

zones, depth to metamorphic aqd/or c r y s t a l l i n e  basement, and locat ions 

o f  magma bodies. Due t o  the  poor reso lu t ion  o f  r e f l e c t i o n  studies i n k h e  

Imperial  Val ley t o  date, f u tu re  such studies may require appreciable non-stan- 

dard f i e l d  geometries and data procesaing.methods, and thus should be 

regarded as generic i n  nature, i.e., deal ing with problems common t o  geothermal 

areas i n  the Imperial  Valley. 

Seismic r e f r a c t i o n  has been car r ied  out i n  the v i c i n i t y  o f  the SSGF 

(F r i t h ,  1978). 

those o f  Fu is  e t  a l .  (1982) 

s i t e  and provides evidence for hydrothermal a l t e r a t i o n  and possible magmatic 

These data are of higher reso lu t ion  i n  the upper 6 

e l i n e  passes through the proposed w e l l  

i n t r u s i o n  within the proposed d r i l l i n g  section. 

t o  whether more r e f r a c t i o n  data would subs tan t ia l l y  improve the models o 

F r i t h  (1978) . 

It i s  questi0nab.k as 

2.2.2.4 R e s i s t i v i t y  

R e s i s t i v i t y  surveys are used for detect ing e l e c t r i c a l l y  conductive 

zones i n  the subsurface which may be re la ted t o  increased s a l i n i t y  and/or 

temperature. Resolution o f  the surveys general ly decreases as the depth 
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o f  sounding increases. 

high as 200 A f o r  sounding t o  depths o f  several ki lometers i n  the SSGF. 

survey detected a large volune o f  h igh ly  conductive sedimentary rock between 

t h e  surface and 2 km depth. 

o f  the g rav i t y  and magnetic anomalies i n  t h e  SSGF, and with areas o f  i n fe r red  

Meidav e t  al.  (1976) used D.C. e l e c t r i c a l  currents as 

This 

The highest conductance coincides with the maxima 

high temperatures and s a l i n i t y  (Younker e t  al., 1982). 

T e l l u r i c  soundings by Humphreys (1978) i n  the v i c i n i t y  o f  t he  SSGF 

confirm the basic r e s u l t s  o f  the D.C. r e s i s t i v i t y  work. 

r e s i s t i v i t i e s  along the Brawley f a u l t  were in terpreted t o  r e f l e c t  h igh  

permeabi l i t ies along t h i s  zone, wh i l e  r e l a t i v e l y  high basement r e s i s t i v i t i e s  

(depth o f  6 km and below) i n  t h e  SSGF suggest lower  connected poros i ty  i n  

t h e  metasediments and/or sheeted dike complex which underl ies the reservoir.  

Futhermore, low 

Where surface r e s i s t i v i t y  studies can be demonstrated t o  provide 

addtional d e t a i l  on r e l a t i v e  permeabilities/porosities o f  the basement and 

reservo i r  rocks, they should be encouraged. 

2.2.2.5 Seismicity 

The SSGF i s  pa r t  o f  the Brawley seismic zone where seismic swarms 

are frequent (e.q., see Caltech seismic catalogs f o r  southern Ca l i f o rn ia ) .  

Swarms tend t o  occur a t  the ends o f  act ive en echelon r ight-stepping fau l ts ,  

consistent with the hyopthesis tha t  these zones are "pull-aparts." 

d i ke  i n j e c t i o n  or r e d i s t r i b u t i o n  o f  i n t e r s t i t i a l  f l u i d s  may account f o r  

the earthquake mechanisms. 

E i the r  

Imperial  County i s  formulating plans f o r  requi r ing seismic monitoring o f  

geothermal areas during various phases o f  development. Opportunities should 

e x i s t  f o r  cooperation between 

the SSGF and the operators o f  

s c i e n t i s t s  concerned with t h e  microseismicity o f  

the Niland p lant  (RGI/Parsons) . Microseismic 

e 
b 
L 



- 61 - 

monitoring with a samll-aperture l o c a l  n 

an understanding o f  the tectonic environment, may be B usefu l  t o o l  f o r  

fo l lowing the development o f  f ractures and i n f e r r i n g  d i rec t i ons  o f  stress 

during w e l l  s t imu la t ion  experiments (Dennis e t  al., 1983). 

2.2.2.6 Temperatures and Heat Flow 

ork, i n  add i t ion  t o  improving 

Temperature and heat f low are covered i n  Section 1.2.3 above. 

2.3 BOREHOLE EXPERIMENTS 

Downhole geophysical experiments w i l l  add an important " t h i r d  dimension" 

t o  the extensive surface geophysical data base already i n  existence. 

data can be t i e d  d i r e c t l y  t o  the r e s u l t s  o f  t he  downhole geochemical, geomech- 

an ica l  and geohydrological studies. Geophysical methods can provide physical 

propert ies of: (1) w e l l  and formation f l u ids ,  (2) borehole wall, and 

(3)  the subsurface around and below the w e l l  a t  distances o f  a few borehole 

diameters t o  several kilometers. 

The 

Geophysical experiments re la ted t o  the mission o f  the SSSDP and requ i r ing  

use o f  the w e l l  must be given highest p r i o r i t y  because o f  the l imi ted  time 

o f  access t o  the well. 

r eso lu t i on  than data from surface methods and c 

with a l l  other kinds o f  subsurface information, inc lud ing measurements made 

on the core. 

Also downhole data are expected t o  be o f  higher 

be more d i r e c t l y  correlated 

The recovery o f  core represents an appreciable investment by 

Borehole geophysical experiments invo lve  the use o f  instruments downhole. 

Thus, i t  i s  important t o  emphasize the fac t ' kha t  measurements can be constrained 

by a va r ie t y  o f  borehole condit ions such as ANSI swab gate diameter, hole diameter, 

i n t e g r i t y  o f  the sidewall, and most importantly, the presence o f  corrosive f l u i d s  
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a t  h igh temperatures and pressures. 

required t o  be 300°C a t  < 3.7 k m  and w i l l  probably be higher a t  the  bottom. 

Thus without insu la t ing ,  cooling, o r  heat-sinking the  instruments, or  cool ing 

the holes, some experiments may be impossible or r e s t r i c t e d  t o  the upper 

por t ions  o f  the  hole. 

(e.g. sheathed thermocouple wire) experiments w i l l  be constrained by the  

250-300°C upper l i m i t  o f  cu r ren t l y  ava i lab le  logging cable. 

have t o  consider the  f a c t  t h a t  t ime constraints on the  SSSDP w i l l  probably 

no t  al low f o r  the  development o f  r a d i c a l l y  new instruments. 

Temperatures i n  the SSSDP ho le  are 

Furthermore, unless new cable technologies are employed 

Experiments w i l l  

2.3.1 Geophysical Logging 

Downhole experiments which provide data on in-s i tu  proper t ies  o f  the  

w e l l  bore f l u i d s  and w a l l  are broadly re fe r red  t o  as geophysical logs. 

Geophysical well-logging has been a s tap le  o f  the petroleum and geothermal 

indus t r ies  f o r  many years (Te l fo rd  e t  al., 1976). 

geophysical logs  are rou t i ne l y  run i n  most wel ls  dur ing the various stages o f  

the  d r i l l i n g  and completion processes. 

contractors, the  wide va r ie t y  o f  t o o l s  t o  observe the same physical  parameters(s), 

and the on-going improvements i n  these too l s  lead t o  questions o f  q u a l i t y  

c o n t r o l  and c a l i b r a t i o n  o f  data which must be addresed. The h o s t i l e  thermal 

and chemical environment o f  the  SSSDP ho le  w i l l  only exacerbate these concerns. 

The value o f  standard geophysical logging i s  we l l  establ ished and must 

"Standard suites" o f  

However, the  d i v e r s i t y  o f  logging 

be p a r t  o f  the SSSDP. 

porosi ty,  permeabi l i ty  and densi ty would be o f  most value; hence the  fo l low ing  

generic logs  are important: (1 )  temperature, (2 )  gamma, (3 )  r e s i s t i v i t y ,  and 

(4) acoustic. 

in te rpre ta t ion ,  v e r i f y  the  claims o f  logging contractors, determine the  

Tools which d i r e c t l y  o r  i n d i r e c t l y  sense temperature, 

However, i n  order t o  ensure q u a l i t y  con t ro l  and meaningful 

i 
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appropr ia teness  of  var ious  t o o l s  and methods, and coord ina te  in-hole opera t ions ,  

a r e spons ib l e  logging program under s c i e n t i f i c  superv is ion  must be developed. 

A d e s c r i p t i o n  of c u r r e n t l y  a 

6.3. 

l a b l e  well logging t o  is given i n  s e c t i o n  

Temperatures i n  t h e  well are u i r ed  for a l l  f ic  components 

of  t h e  SSSDP. Geophysically,  e q u i l i b r i  requi red  f o r  

i n t e r p r e t a t i o n  of  resistivity, seismic wave velocity and a t t enua t ion  da ta ;  

t h e  temperature  g r a d i e n t  i n  t h e  upper conduct ive layers, toge the r  with 

measurements of  thermal 

well si te.  

i t y ,  w i l l  e s t a b l i s h  a hea t  flow f o r  t h e  

2.3.2 Far F i e l d  Borehole Geophysical Experiments 

Methods t o  explore  t h e  n away from t h e  11 using senso r s  emplaced 

downhole are less well developed than t 

descr ibed  i n  t previous sec t ion .  d e s i r a b i l i t y  of  ex t r apo la t ing  borehole  

11-bore c h a r a c t e r i z a t i o n  techniques 

geophysical  d a t a  downward and r a d i a l l y  outward from t h e  well bore is now 

widely recognized i n  t h e  

t o  improve such  methods. 

ient i f ic  community, and thus  provides  an incen t ive  

A variety of methods has  been-variously used by 

and government l a b o r a t o r i e  

development. It is importa 

borehole  geophys 

sof tware  and i n t e r p r e t a t i o n a l  techniques  f o r  handl ing t h e  new forms of  d a t a  

d s ,  bu t  a l s o  t h e  

and improving t h e  r e so lu t ion .  

The n e x t  s e c t i o n s  d e a l  with t h  geophysical  

experiments considered t jectives of  t h e  SSSDP. 

They are not  t o  be regarded as exclusive but  r a t h e r  a guide  as t o  what’ is 

both meaningful and f e a s i b l e .  
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2.3.2.1 V e r t i c a l  Seismic P r o f i l i n g  and Microseismicity 

Ve r t i ca l  seismic p r o f i l i n g  (VSP) i s  a generic term f o r  

which involve e i the r  source or receiver, or  both source and 

downhole. With some VSP geometries such as those involv ing 

seismic raypaths may receiver o f f s e t s  or from hole-to-hole, 

l y  from the ve r t i ca l .  

The advantages o f  VSP methods f o r  

By been discussed by Galperin (1974). 

seismic methods 

receiver, 

l a rge  source/ 

deviate appreciab- 

L ’  

i 
subsurface character izat ion have 

placing sensors i n  boreholes, seismic 

surface wave noise i s  g rea t ly  attenuated and complexities i n  wave propagation 

due t o  the weathering zone ( s t a t i c s  e f fec ts )  are l a r g e l y  eliminated. Malin 

e t  a l .  (1982) repo r t  d i s t i n c t  a r r i v a l s  a t  geophones emplaced i n  a 700 meter 

deep wel l  from s ing le  v ib ra to r  sweeps - 30 km from the wel l  head. 

Henyey (1983) suggest a VSP t ravel- t ime method f o r  f racture characteriza- 

t i o n  about a w e l l  using surface sources d i s t r i b u t e d  r a d i a l l y  and azimuthally 

about the wel l  head. 

down t o  M = -3 due t o  hydrofractur ing a t  a distance o f  - 1000 meters from a 

Leary and 

Dennis e t  a l .  (1983) have observed microearthquakes 

geothermal w e l l  a t  Fenton H i l l .  

t he  use o f  hydrophones t o  record tube waves generated i n  boreholes by seismic 

waves impinging on fractures which i n te rsec t  the we l l  bore. 

F i n a l l y  Huang and Hunter (1980) repor t  on 

I n  the SSSDH a high temperature, lockable, three-component geophone 

sonde can be posit ioned a t  a var ie ty  o f  depths i n  the w e l l  t o  record d i r e c t  

and re f l ec ted  rays from surface sources and/or sources emplaced i n  a nearby 

w e l l .  

heterogeneity, f rac tu re  cha rac te r i s t i cs  and zones o f  elevated temperature. 

Amplitude and f u l l  p a r t i c l e  motion data, i f  avai lable, can be used t o  estimate 

Q (attenuation) and inves t iga te  anisotropy. 

The t r a v e l  t ime  data w i l l  provide information on strat igraphy, l a t e r a l  

Thus VSP w i l l  be usefu l  f o r  heat 

G 

fl 

L 
L 
t 

1 
1 
L 



- 65 - 
J , 

source  c h a r a c t e r i z a t i o n .  Elevated tempera tures  a t  depth i n  t h e  well w i l l  

probably prec lude  VSP measurements a t  dep ths  g r e a t e r  than  3000 meters u n l e s s  

t h e  h o l e  can be  cooled below 300'C. 

F i n a l l y ,  t h e  same sonde, p re fe rab ly  wi th  wide band s e n s i t i v i t y ,  can 

be  used t o  d e t e c t  microearthquakes and a c o u s t i c  emissions,  either n a t u r a l  

o r  induced. If d a t a  e recorded wi th  wide dynamic range, s p e c t r a l  information 

r ed  and app l i ed  t o  source  s t u d i e s .  

2.3.2.2 Electrical Resistivity and S e l f  P o t e n t i a l  

- s i t u  electrical conduc t iv i ty  of rocks  i n  hydrothermal regime 

provides  informat ion  on t h e  temperature,  s a l i n i t y  and s ta te  o f  t h e  pore 

f l u i d s .  I n  convent iona l  su rveys  t h e  conduc t iv i ty  a t  t h  is i n f e r r e d  

from D.C. r e s i s t i v i t y  or  e lec t romagnet ic  measurements made a t  t h e  su r face .  

Measurements o f  t h e  electrical p r o p e r t i e s  downhole, employing both two-and 

fou r -e l ec t rode  conf igu ra t ions ,  w i l l  p rovide  t h e  c o n t r o l  necessary  t o  i n t e r p r e t  

s u r f a c e  e lec t romagnet ic  surveys  and downhole electrical r e s i s t i v i t y  logs .  

With a borehole ,  two t y p e s  of experiments can be carried o u t  t h a t  g r e a t l y  

i n c r e a s e  t h e  q u a l i t y  o f  t h e  conduc t iv i ty  measurements. F i r s t ,  w i t h  s t anda rd  

in-hole dev ices ,  t h e  conduc t iv i ty  ad jacen t  t o  t h e  h o l e  may be  measured, and 

second wi th  a source -on  t h e  surface and a senso r  i n  t h e  hole ,  t h e  conduct i  

e h o l e  may be  i n f e r r e d  i t h  far b e t t e r  

r e s o l u t i o n  than  can be  obta ined  from s u r f a c e  measurements. 

eyond t h e  bottom o f  

For i n v e s t i g a t i n g  t h  hermal regime i n  t h e  SS a more p r e c i s e  

knowledge o f  t h e  conduc t iv i ty  below t h e  bottom o f  t h e  h o l e  would be  very 

v a l u a b l e  for d e t e c t i n g  t h e  e x i s t e n c e  of a deeper magma body or g e n e r a l l y  

a s s i s t i n g  i n  r a p o l a t i o n  o f  t h e  bottom h o l e  tempera tures  and would 

t h u s  assist i n  l o c a t i n g  t h e  major thermal sou rce  f o r  t h e  SSGF. 
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2.3.2.3 Borehole Gravi ty 

I t  has long been recognized t h a t  measurements o f  g r a v i t y  a t  d i f fe ren t  

depths i n  a borehole can be used t o  ca lcu la te  an average value o f  in-situ 

bulk densi ty o f  the medium over a l a rge  volume surrounding the  hole (Smith, 

1950; Hammer, 1950; McCulloh, 1966). 

system such as the  SSGF, provide a basis for the downward cont inuat ion o f  

surface grav i ty ,  ass i s t  i n  the  i n t e r p r e t a t i o n  o f  seismic data and provide a 

means o f  i nves t i ga t i ng  l a t e r a l  heterogeneity around the  borehole. 

Such data, p a r t i c u l a r l y  i n  a layered 

The p o t e n t i a l  uses f o r  and f e a s i b i l i t y  o f  construct ing a h igh  temperature 

gravimeter have been addressed by Hearst e t  a l .  (1978) and Baker (1977). 

With proper regard f o r  thermal cont ro l ,  Baker (1977) estimates t h a t  a borehole 

gravimeter capable o f  deployment t o  350°C and 18,000 p s i  i n  a 7 inch diameter 

we l l  could be constructed. 

known. Current instruments have a capab i l i t y  o f  125°C and 15,000 psi.  

The p o t e n t i a l  importance o f  a borehole gravimeter f o r  work i n  the  SSSDP ho le  

and fu tu re  deep d r i l l  holes s t rong ly  argues f o r  i t s  development a t  th is 

time. 

The t ime f o r  or cost  o f  development i s  not  

2.4 GEOPHYSICAL MEASUREMENTS ON CORES 

The sections on Tectonics and Rock Mechanics and Geohydrology describe 

most o f  the important physical  property measurements t h a t  should be made 

on the  core t o  ass i s t  i n  the  i n t e r p r e t a t i o n  o f  the  geophysical data. 

include: bulk density, thermal conductivi ty, e l a s t i c  constants, e l e c t r i c a l  

r e s i s t i v i t y  and magnetic suscep t ib i l i t y .  

They 

A c a r e f u l  study o f  the  magnetic propert ies o f  the core including 

suscep t ib i l i t y ,  magnetic mineralogy and na tu ra l  remanent magnetization 

(NRM), i n  conjunction with the  geochemical resu l ts ,  can provide the  framework 

b 
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i n  which t o  in terpre t  the regional magnetics o f  t h e ‘ h p e r i a l  Valley. 

ing the magnetic mineralogy through the use o f  rock magnetic methods ( i .e.  

Quantify- 

Curie points and hysteresis parameters) may, i n  turn, provide information 
. I  

on water/rock interactions and ore-forming processes . 

‘ 1 -  . . i ’ .  
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+ I 3. GEOCHEMISTRY AND PETROLOGY 

I n  ac t ive  geothermal systems, metasomatism caused by c i r c u l a t i n g  

hot f l u i d s  'dictates a continuum of s ign i f i can t  invest igat ions ranging from 

tha t  which might be c l a s s i f i e d  as "purev1 geochemistry, t o  economic mineralogy, 

hard rock petrology and, i n  the SSGF, s o f t  rock petrology. 

between geochemistry and petrology are thus a r t i f i c i a l  and w i l l  not be made 

D is t inc t ions  

here. 

3.1 MAJOR PROBLEMS TO BE ADDRESSED 

These are covered i n  d e t a i l  i n  sect ion 1.3 o f  the Introduct ion,  but  

here an even b r i e f e r  ou t l i ne  (Luth and Hardee, 1980, p. 36-7) o f  the broad 

questions i s  repeated: 

What under l ies the 350°C hydrothermal regime (temperature, 

f l u i d  composition, metamorphic [and ore] mineral assemblages, 

density, porosi ty,  permeabi l i ty)  ; and does the subhydrothermal 

region a f f e c t  the near surface geothermal system and r e l a t e  t o  

thermal sources a t  depth? 

To what extent i s  deep-seated (>3 km) hydrothermal c i r c u l a t i o n  

important i n  recharge and chemical a l t e r a t i o n  o f  the near-surface 

geothermal system? 

Do systems near the c r i t i c a l  po in t  o f  the hydrothermal f l u i d  

have d i s t i n c t i v e  physical  and chemical propert ies tha t  are 

important i n  terms o f  mineralogic react ions and the generation 

o f  f l u i d s  ak in  t o  ore-forming f lu ids?  

Is the Sal ton Trough under la in by cont inenta l  or oceanic (or  

both) crust? 
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o Are basa l t i c  d ike swarms emplaced alonq ' leaky transforms' 

the heat source d r i v i n q  the qeothermal system(s)? 

o What i s  the re la t i onsh ip  o f  surface volcanic phenomena ( r h y o l i t i c )  

t o  the  postulated subsurface (basal t ic )  source? 

Addi t ional ly,  

What is the o r i q i n  or Source reqions o f  t race metals i n  Salton 

Sea Geothermal System hydrothermal solutions? 

What are the mob i l i za t ion  and p r e c i p i t a t i o n  mechanisms o f  

economically important t race metals? 

To these questions are added those o f  qeothermal resource assessment and 

questions posed by times and temperatures o f  radioact ive waste disposal t ha t  

cannot d e f i n i t e l y  be answered i n  the laboratory but miqht be answered by 

experiments t h a t  nature has performed i n  the SSGF. 

Geochemistry and petroloqy i s  the subject o f  most o f  the above questions 

Geochemical and i s . a  major cont r ibu tor  t o  reso lu t ion  o f  the other questions. 

and.petroloqica1 invest iqat ions,  therefore, occupy the cen t ra l  p o s i t i o n  i n  the 

s c i e n t i f i c  inves t iqa t ions  f o r  the SSSDP. 

3.2 SAMPLES AND SAMPLING COSTS 

Published qeochemical and pe t ro loq i ca l  (henceforth abbreviated t8GP't) 

i nves t i qa t i on  i n  the SSGF, l i k e  many other inves t iqa t ions  i n  p r i v a t e l y  develoDed 

qeothermal f i e l d s ,  have, apart from t he  oioneerinq work o f  Helqeson (1968), 

mostly beenpost  hoc and have o f ten  been a demonstration o f  c lever q e o l q i c a l  

detect ive work and subsequent in terpretat ion.  

samplesxeleased t o  the publ ic  domain have been d r i l l  cut t inqs and a few 

pieces o f  core. 

For the most part,  the rock 

Since these samples were usual ly released lonq a f t e r  a w e l l  

was d r i l l e d ,  or even abandoned, they were "no cost" both t o  the operator and 
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t o  the  sc ien t i s t .  

t h e  paucity o f , co re  i n  the pub l i c  domain sugqests t h a t  indus t ry  has chosen t o  

put l i t t l e  incremental money i n t o  such sampling. 

Indeed, chips are rou t i ne l y  recovered i n  d r i l l i n g  

1 

Water samples i n  the pub l ic  domain, aqain, are usual ly low-budqet items 

-- but i n  the SSGF, there have ra re l y  been any p u b l i c a l l y  avai lable. When 

col lected, t he  operator i s  usual ly f lowinq a wel l  f o r  t e s t i n q  purposes and 

as a courtesy miqht al low c o l l e c t i o n  o f  a sample. Althouqh the d e t a i l s  o f  

c o l l e c t i n g  a representative sample of f l u i d  at  the surface are complex because 

o f  f lash inq and scale deposition, the equipment t o  perform such samplinq 

i s  r e l a t i v e l y  inexpensive (provided the  operator has i n s t a l l e d  a water-steam 

separator) and personnel times are not qreat. 

should be kept from f lash inq  p r i o r  t o  the samplinq port.  

wel ls can be produced spontaneously without f lash inq i n  the bore; 

samples 

I d e a l l y  the f l u i d s  i n  the w e l l  

Unfortunately, few 

Separate 

n l y  must be taken o f  qas and l i q u i d  f rac t i ons  t h a t  werd separabed 

I 

L 
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at  one or more qiven pressures, and the  ana ly t i ca l  r e s u l t s  must be mathematically 

combined.i.n the proper porport ions t o  represent the i n i t i a l  f l u i d  before flashinq. 

This adds complexity and uncertainty t o  the qeochemical i n t e r p r e t a t i o n  process. 

Addi t ional  uncsrtainty arises from the  p o s s i b i l i t y  t h a t  f l u i d s  produced a t  the 

surface may come from more than one horizon. 

uncertainty ‘is t o  use a downhole sampler t o  obtain f l u i d s  a t  a qiven l e v e l  i n  

the  w e l l  where there i s  known i n f l u x  o f  f l u ids ,  or from a po r t i on  o f  the w e l l  

t h a t  has been i so la ted  by packers. 

The best way t o  overcome t h i s  

In s p i t e  o f  the above complexities, a qreat mount o f  qeochemical and 

petroloqical ‘  informat ion can be obtained from samples t h a t  are obtained 

inexpensively -- from no addi t ional  cost i n  the case of d r i l l  chip recovery 

t o  low costs f o r  surface f l u i d  co l lect ion.  

and petroloqy i n  the  public’domain t o  date has been done on samples invo lv ing 

A l l  o f  the SSGF geochemistry 

. 
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small incremental 

o f  new s c i e n t i f i c  

costs o f  acquis i t ion.  

informat ion has been derived from such samples. 

As discussed below, a s t a r t l i n q  mount 

O f  the rou t i ne  GP samplinq procedures tha t  a re  expensive, cor inq i s  

probably the most expensive. 

and/or the more d i f f i c u l t  the d r i l l i n q ,  the more expensive t h e  core. 

o i l f i e l d  sampling technique o f  l ess  cost  than cor ing i s  d r i l l  stem t e s t i n q  

t o  obtain formation f l u ids .  

i n  hot qeothermal wells. 

The deeper the horizon from which core i s  taken, 

A rou t i ne  

Unfortunately, few d r i l l  stem t e s t s  are successful 

Rarely used, nonconventional, or  experimental smp l inq  techniques may 

produce addtional, valuable information; but the incremental costs and r i s k s  

t o  the  hole must be balanced aqainst the improvement i n  q u a l i t y  o f  information. 

For example, dawnhole pressurized f l u i d  samplers have the  p o t e n t i a l  f o r  be t te r  

answerinq questions tha t  surface samples do not, p a r t i c u l a r l y  i f  the sampler 

ne i ther  leaks nor sucks f lu id i n t o  it, but such eamplers are only experimental 

f o r  the upper temperatures expected i n  the SSGF d r i l l  hole. 

This sect ion on GP i s  prefaced with these remarks so t h a t  the reader 

constantly keeps i n  mind a d i s t i n c t i o n  between obtaininq samples f o r  a purpose 

and obtaining samples because it, can be.done. There i s  no such th ing as a 

sample t h a t  w i l l  s a t i s f y  everyone's purposes; samples thus have t o  be taken 

with a Durpose i n  mind unless they involve no incremental costs, as i s  the case 

f o r  d r i l l  chips. 

3.3  

more 

With depth i n  the SSGF, the sediments o f  the Trouqh-become proqressively 

indurated and metamorphosed, end a t  depth are invaded by iqneous dikes. 

These pe t ro loq i ca l  charac ter is t i cs  con t ro l  the "caprock", forma t i o n  o f  secondary 

porosity, cementation and self-sealinq, f l u i d  flow, and surface and downhole 



. 
- 72 - 

geophysical responses  t o  g radua l ly  changing phys ica l  p r o p e r t i e s .  L 
The p a r a s t r a t i g r a p h i c  s e c t i o n  c o n s i s t s  o f  a sedimentary caprock, unde r l a in  

by an upper r e s e r v o i r  of s l i g h t l y  a l t e r e d  rocks,  beneath which is a lower 

r e s e r v o i r  of h igh ly  a l t e r e d  rocks  ( s e e  Fig. 1-6). 

t r a n s i t i o n  between r e s e r v o i r  rocks  and t h e  c lay- r ich  caprock is apparent- 

l y  a primary sedimentary f e a t u r e ,  bu t  t h e  geo log ica l  c o n d i t i o n s  caus ing  t h e  

change i n  t h e  n a t u r e  of t h e  sed imenta t ion  remains t o  be resolved. 

performs t h e  s e r v i c e  of being an i n i t i a l  seal for c i r c u l a t i n g  geothermal 

f l u i d s .  

The n a t u r e  of t h e  s h a r p  

The caprock 

With p rogres s ive  i n d u r a t i o n  and metamorphism o r i g i n a l l y  porous rocks  

become s e a l e d  and f l u i d  flow decreases .  

a product ive  hor izon  except  f o r  t h e  pe rvas ive  f r a c t u r i n g  t h a t  is a f e a t u r e  

of geothermal f i e l d s  of t h e  S a l t o n  Trough. 

l a r g e  scale t e c t o n i c  movements, stresses caused by igneous i n t r u s i o n s ,  expansion 

by hea t ing  o f  entrapped f l u i d s ,  o t h e r  mechanisms yet t o  be deduced, or  a 

combination of them is y e t  t o  be  determined. 

f r a c t u r i n g  and f r a c t u r e  s e a l i n g  is recorded i n  veined, i ndura t ed  rocks  brought 

t o  t h e  s u r f a c e  by t h e  d r i l l .  The i n t e r a c t i o n  o f  pe t ro logy  and pe t rophys ic s  is 

t h u s  fundamental t o  t h e  a b i l i t y  t o  produce geothermal f l u i d s .  

That would s i g n a l  t h e  demise o f  

Whether t h i s  f r a c t u r i n g  is due t o  

B u t  t h e  h i s t o r y  of repea ted  

The response o f  downhole l o g s  t o  progess ive  a l t e r a t i o n  and metamorphism 

i n  t h e  SSGF and Westmorland f i e l d s  was examined by Muramoto (1982). 

dual  i nduc t ion  l a t e r o l o q s ,  i nduc t ion  electrical s u r v e y s ,  gamma-gamma d e n s i t y  

logs ,  and neut ron  logs .  As water-rock r e a c t i o n s  transformed heterogeneous 

sediments i n t o  c h a r a c t e r i s t i c  minera l  assemblages t h a t  vary l i t t l e  between 

wells a t  equ iva len t  tempera tures ,  l o g  responses  show less v a r i a t i o n .  

primary f a c t o r  producing c h a r a c t e r i s t i c  l o g  responses,  he  found, was p rogres s ive  

dehydra t ion  o f  clays and t h e i r  f i n a l  metamorphism t o  f e l d s p a r s .  

He s t u d i e d  
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mineralogy o f  shales af fected l o g  parameters t o  a greater degree than changes 

i n  mineralogy o f  sandstones. 

are essential,  

i o n  o f  logs f o r  deeper and such in format ion w i l l  serve as a guide t o  th 

lead t o  more 

proper t ies and mineralogy o f  in t rus ives,  and the e f f e c t  o f  temperature on t h e i r  

Curie points, are a lso important comp,onents o f  the geophysical signal. 

in t imate  knowledge o f  the e f fec ts  o f  petrology, and o f  the geochemistry o f  

r p r e t  the data. 

s, they are not 

Thus 

discussed fu r the r  here. 

3.4 SPECIFIC INVESTIGATIONS 

3.4.1 

The .SSSDP w e l l  . w i l l :  be d r i l l e d  i n  an (area ,where the .sediments 'were $ .  . 

probably deposited i n  pronounced foreset bedding as .deduced from unpublished 

v ibroseis  data. . Unpublished analyses a t  UCR on d r i l l  cuttings'.from t h e  

Fee #I and B r i t z  #3 wel ls  show d i f f e r i n g  sand/shale ra t i os ,  thus mi r ro r ing  the 

inhomogenities o f  deposi t ion picked up by vibroseis. 

As noted i n  Elders and Cohen (1983, paragraph there are 'no published 

repor ts  on the micropaleontology o f  wel ls  i n  the Imper ia l -Val ley.  Par t  of the 
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problem might be traced t o  the lack o f  recovery o f  r e l a t i v e l y  unindurated 

sediments as d r i l l  chips. A t  Cerro Pireto,  however, I n g l e  (1982) reported the 

Pleistocene-Pliocene boundary occurs a t  2 km depth, based upon d r i l l  cut t ings.  

Micropaleontological study o f  d r i l l  cu t t ings  from the SSSDP w e l l  and 

adjacent wel ls i s  c e r t a i n l y  feas ib le  and has the p o s s i b i l i t y  o f  bu i l d ing  a 

t rue  strat igraphy i n  the area, determining rates o f  sedimentation, and cor re la t -  

i n g  these with the environment t o  deduce fu r the r  features of the tec ton ic  

development of the Salton Trough. 

i n  the shallower p a r t  o f  the sect ion w i l l  require special  e f f o r t s  t o  obtain 

the required samples. 

Unfortunately, examination o f  s o f t  sediments 

3.4.2 Temperature and Time-Temperature Invest igat ions 

Borehole temperature logs r e f l e c t  the current, geo log ica l l y  ephemeral 

temperatures. 

apparent long-term heating or cool ing t rend can be deduced. 

I f  a paleotemperture a t  a given depth can be ascertained, an 

The most rap id 

paleotemperature determinations are probably made v i a  f l u i d  i nc lus ion  investiga- 

t ions. I n  the  hands o f  a r e l i a b l e  and geological ly knowledgeable invest igator,  

and with su i tab le  material,  mineral formation temperatures are r e a d i l y  determined. 

Indeed, i f  su i tab le  inc lus ions  are formed i n  a vein throughout the  h i s t o r y  o f  

deposit ion and seal ing o f  the vein, not  only are mineral formation temperature 

trends but f l u i d  composition trends determinable. Such has been done i n  the  

SSGF by Freckman (1978). Deduction o f  long-range heating or cool ing on a 

horizon-by-horizon basis i s  a most v i t a l  piece o f  informat ion i n  developing a 

p i c t u r e  o f  the geologic evo lu t ion  o f  any geothermal f i e l d .  

Paleotemperatures can also be deduced f rom equi l ibr ium l i g h t  s tab le  

isotope f r a c t i o n  between coexist ing phases. K ine t i c  factors, p a r t i c u l a r l y  
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a t  the lower temperatures, may prevent attainment o f  equi l ibr ium i n  the t ime 

span o f  an ac t ive  geothermal system; hence iso top ic  temperatures are very 

in f requent ly  obtained < lOO°C,  even under the best o f  condit ions. The inverse 

problem, tha t  o f  equi l ibr ium, can be examined i f  two s o l i d  phases or one phase 

p lus  water from a spec i f i c  horizon can be co l lected and borehole temperature 

logs are avai lable. Obtaining water from a spec i f i c  ho:rizon, however, i s  

non-routine. 

Determination o f  p a r t i t i o n i n g  o f  an elerngnt or elements between coexist ing 

phases, or mineral  assemblages,,can be compared with thermodynamic data and 

models t o  ob ta in  temperatures o f  formation. 

i s  only one (but important) var iab le i n  chemical potential-based ca lcu lat ions 

(e.g. B i r d  and Norton, 1981). Kinet ic  factors, again, enter i n t o  the attainment 

o f  equi l ibr ium; and the presence o f  water usual ly  promotes the speed o f  react ions 

invo lv ing  so l ids.  

Most often, however, the temperature 

Rates o f  reac t ion  and the approach t o  equi l ibr ium enter i n t o  many, 

i f  not  most GP invest igat ions.  A time-temperature h i s to ry  a t  a g iven-point  i s  

thus as des i rab le as i t  is unobtainable. The extent t o  which a chemical 

reac t ion  has proceeded, however, r e f l e c t s  some in tegrated e f f e c t  o f  the time- 

temperature h i s t o r y  on the k i n e t i c s  o f  tha t  p a r t i c u l a r  reaction. 

time-temperature e f f e c t  w i l l  enter i n t o  many discussions below. 

This integrated 

m of Organic Mater ia ls  

Organic matter i s  p a r t i c u l a r l y  sens i t i ve  t o  elevated temperatures, so i t  

i s  na tura l  t o  inves t iga te  tt ie hanges i n  geothermal areas. 

examined the metamorphism o f  v i t r i n i t e ,  from woody p lan t  debris, i n  several 

geothermal f i e l d s  inc lud ing  the SSGF. 

Barker (1983, 1979) 

V i t r i n i t e  ref lectance i s  a funct ion o f  

the degree o f  metamorphism and i s  read i l y  determined i n  the laboratory. Barker 
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(1983) concludes t h a t  a f t e r  - IO4 yrs, " react ion durat ion has l i t t l e  or no t 
influence on metamorphism o f  organic matter i n  liquid-dominated geothermal c- 

L 
systems". This i s  a conclusion t h a t  could be b e t t e r  tested with samples from 

the SSSDP, and Barker and other inves t iga tors  have ind icated t h e i r  in te res t .  

The e f f e c t s  o f  temperatures (and time) on the maturation o f  petroleum 

hydrocarbons has recent ly  been a q u i t e  ac t ive  top i c  o f  research. 

with the temperature, time-temperature (e.g. v i t r i n i t e  studies) and the other 

I n  conjunction 

inves t iga t ions  t o  be performed on samples from this well, f u r the r  t e s t i n g  and 

r e f i n i n g  o f  theor ies should be possible, especia l ly  since the dura t ion  o f  

heating i s  very short compared t o  normal sedimentary sequences a t  the same 

temperatures. 

61% and concentrations o f  hydrocarbon gases up t o  C6 were determined by 

DesMarais e t  a l .  (1982) and Truesdell  e t  al. (1982a) f o r  geothermal f l u i d s  

being produced from the Cerro P r i e t o  f i e l d .  

f o r  dissolved gases and associated coal, they in te rpre ted  the data t o  g ive the 

s tatus o f  equi l ibr ium as w e l l  as probable sources o f  the hydrocarbons themselves. 

Along with s i m i l a r  analyses 

3.4.4 Clay Mineral S t a b i l i t i e s  

Clay mineral s t a b i l i t i e s  are c losely  t i e d  t o  diagenesis, so the progressive 

changes i n  the clays, assuming t h a t  t h e i r  pre-diagenetic character i s  ascertained 

and the reac t ion  f l u i d s  are ascertainable or unimportant, may y i e l d  add i t iona l  

s i g n i f i c a n t  in format ion f o r  students o f  diagenesis. 

found t h a t  d e t r i t a l  montmori l lonite converts t o  i l l i t e / m o n t m o r i l l o n i t e  <lOO°C, 

and the l a t t e r  converts t o  i l l i t e  <210°C i n  two SSGF wells. Further information 

Muf f le r  and White (1969) 

and references t o  other work on c lay  minerals tha t  has been performed i n  the 

SSGF is found i n  McDowell and Elders (1980) and McDowell (1983). 

L 
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Relevant t o  some plans f o r  rad ioac t ive  waste disposal i s  the  question 

o f  the  s t a b i l i t y  o f  c lays  used as b a c k f i l l  or'overpack around waste canisters. 

The heat ing times o f  i n t e r e s t  i n  waste disposal are longer than laboratory 

times but shor te r  than heat ing times deduced f o r  the  SSGF. 

metamorphism o f  clays, combined with temperature and time-temperature investiga- 

t i o n s  of the  same samples, can be compared with equ i l ib r ium o r  k i n e t i c  data 

from the  lab. 

thoroughly understood 

Hence the progressive 

Hence the  k i n e t i c s  o f  decomposition or transformation may be more 

3.4.5 Metamorphism 

Diagenesis grades i n t o  hydrothermal metamorphisrn ra ther  qu ick ly  w i t h  

depth i n  geothermal areas; the  depths a t  which react.ions occur i n  a ra ther  

homogeneous sec t ion  are more dependent upon temperature than upon other variables. 

McDowell and Elders (1980) recognized four metamorphic zones i n  the 

study o f  ma te r ia l  from the  Elmore #I w e l l  i n  the  SSGI-: 

zone, <190°C, i n  which mixed-layer i l l i t e / s m e c t i t e  a lso occurs w i t h  ca l c i t e ,  

hematite, quartz, and sphene; (2) a ca l c i t e -ch lo r i t e  zone a t  190-325°C, contain- 

(1) a dolomite/ankerite 

ing i l l i t e /  

spha le r i t e  , 
l i t e ,  t a l c ,  

and sphene; 

phengite, quartz, a lb i t e ,  adularia, epidote, py r i t e ,  sphene, 

and anhydrite; (3) a b i o t i t e  zone, a t  325-36SoC, containing vermicu- 

quartz, orthaclase/microcline, a lb i t e ,  epidote, p y r i  

and (4) a garnet zone, >360"C, containing andradite w i t h  b i o t i t e ,  

a c t i n o l i t e ,  

quartz, a lb i t e ,  epidote, a c t i n o l i t e ,  py r i t e ,  and sphene. 

This metamorphism i s  ongoing, and the metamorphic formation f l u ids  can 

be sampled ( w i t h  greater or lesser precis ion) by the f low ing  well .  

oxygen isotope analyses, combined with models, w i l l  g i ve  estimates o f  the  r a t i o  

o f  water t o  rock t h a t  has reacted. Kendall (1976) made such estimates f o r  

samples from a few we l ls  i n  the  SSGF; Olson and Matlock (1978) d i d  the same f o r  

Stable 
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the  Westmorland geothermal f ie ld ;  and Will iams and Elders (1981 ) have published 

such information f o r  the Cerro P r ie to  geothermal f i e l d .  

Analysis o f  radiogenic isotopes (Sr, Nd, Pb) i n  secondary phases w i l l  

provide clues f o r  the provenance o f  cat ions i n  the hydrothermal solut ions. 

Bulk rock analyses and comparisons o f  unaltered and metamorphic mater ia ls w i l l  

be usefu l  fo r  calculat ions o f  enrichment/depletion factors o f  economically 

important t race metals. 

ca re fu l  mineralogic observations, provide most usefu l  informat ion on the 

mob i l i za t ion  and p r e c i p i t a t i o n  processes o f  economically important t race metals 

under various physiochemical conditions. 

Such enrichment/depletion factors, combined with 

Synthesis o f  - a l l  o f  the three-dimensional mineralogic information, 

i so top i c  analyses, paleo and present temperatures, textures o f  t he  rocks, 

inferences as t o  past water compositions from f l u i d  inc lus ion  analyses, and 

analyses o f  water presently being produced, combined with a l l  other q u a l i t a t i v e  

and quant i ta t i ve  information, produce an understanding o f  the chemical/petrologic 

evo lu t ion  o f  t he  geothermal f i e l d .  

on the SSGF has not made t h i s  f i e l d  as i d e a l  f o r  an o v e r a l l  synthesis as 

the Cerro P r ie to  f i e l d  across the border i n  Mexico. 

government has f ree l y  made avai lable cut t ings,  cores, waters, logs, etc., such 

an o v e r a l l  synthesis has been attempted. Elders e t  a l .  (1984, 1981) have 

performed mass t rans fer  and heat t ransfer modelling; Schiffman e t  a l .  (1984) 

have examined metamorphic phase r e l a t i o n s  and facies; and B i r d  e t  a l .  (1984) 

have done thermodynamic modell ing o f  c a l c - s i l i c a t e  mineral reactions. 

The spars i ty  o f  areal  informat ion t o  date 

There, since the  Mexican 

Using data t o  be obtained from the SSSDP we l l ,  along with e x i s t i n g  data 

i n  the pub l i c  domain from the  SSGF and any other samples t h a t  operators may 

make avai lable i n  the  future, such an areal  and temporal p i c t u r e  can be 

constructed f o r  t he  SSGF. 
b 

Since t h e  SSGF has considerably higher s a l i n i t i e s  than 
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Cerro Prieto, comparisons and d i f f e r e n c e s  w i l l  be even more en l igh ten ing  than  

an  i n v e s t i g a t i o n  of t h e  SSGF alone. 

3.4.6 Ore Depos i t ion  

One o f  t h e  earlier and most e x c i t i n g  d i s c o v e r i e s  about t h e  SSGF was 

t h a t  t h e  h ighly  s a l i n e  f l u i d s  d e p o s i t  o r e  minera ls  both i n  s i t u  and i n  p ipe  

scales when such wells are produced. S a l i n i t i e s  01' b r i n e s  i n  t h e  SSGF are 

o f t e n  similar t o  t h o s e  found i n  - f l u i d  i n c l u s i o n s  i n  o r e  d e p o s i t s ,  and t h e  

p a r a l l e l i s m  wi th  t h e  then  recently-discovered Red Sea Br ines  was quick ly  noted . 
P y r i t e ,  hemat i te ,  s p h a l e r i t e ,  c 

i n  co res ;  and t h e  s i l i c e o u s  sc ined  b o r n i t e ,  d i g e n i t e ,  cha lcopyr i t e ,  

c h a l c o c i t e ,  stromeyerite, t e t r a h e d r i t e ,  and n a t i v e  s i l v e r  (Skinner ec al .  , 

ena,, and p y r r h o t i t e  were found 

' .  
1967) . 

Subsequent work Kibben (1979) a cKibbsn and E l d e r s  (1983) extend 

t h e  e x c i t i n g  n a t u r e  of t h e s e  d iscove  ese s t u d i e s  have shown t h a t  

t h e  l o c i  f o r  later o r e  mine ra l i za t ion  due t o  t h e  onse t  of t h e  geothermal 

syste e earlier d i a g e n e t i c  t u r e s  i n d i c a t e  t h a t  

t h e  sou rce  o f  metals was t h e  s 

r h o t i t e  v appears  t o  refle ic  o r e  formation i n  

w i g h l y  reduced, S- 300" C b r i n e s  

sampled from t h e  s 

assemblage; t h e  re ving c h l o r i t e  

and/or ep idote .  C 

ur rence  of carbonate-pyr- 

i t e - p y r i t  e-Fe' si1 icate 

i n  t h e  p resen t  i nes .  The d e p o s i t i o n  o f  s u l f i d e s  is now occur r ing  only  where 

S-poor b r i n e s  g a i n  access t o  s u l f u r  i n  earlier-formed i r o n  s u l f i d e s  (McKibben 

and E lde r s ,  1983) . 
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Even though in tens ive  study o f  a l i m i t e d  number o f  samples had l e d  

t o  the  above conclusions, t he  study o f  the ores being deposited and the 

mechanisms f o r  deposit ion have j u s t  begun. 

3.4.7 Source o f  Water, Brine, Metals, and Recharge Area 

From s tab le  isotope studies, Craig (1966) deduced tha t  the waters i n  

the SSGF were largely ,  i f  not completely meteoric. By combining addi t ional  

i so top i c  data wi th  the hydrology o f  Loe l tz  e t  a l .  (1975), Coplen (1975) extended 

Craig's work and demonstrated tha t  a l l  the subsurface waters i n  the cen t ra l  

Imperial  Val ley are p a r t l y  evaporated Colorado River water. Isotopic  study 

of waters obtained during the SSSDP w i l l  extend these studies. 

A l l  deep waters i n  the  Salton Trough are p r imar i l y  NaCl br ines 

t h a t  vary up t o  280,000 ppm t o t a l  dissolved sol ids.  Paleo s a l i n i t i e s  can 

be deduced f o r  vein mater ia l  from f l u i d  i nc lus ion  freezing temperatues, and 

such informat ion may thus g ive  a rough trend o f  s a l i n i t y  during deposit ion over 

t ime  . 
The r a t i o  o f  ch lo r ide  t o  bromide i n  water has been used t o  inves t iga te  

the o r i g i n  o f  s a l t  i n  these geothermal systems; the r a t i o s  range from tha t  

found i n  Colorado River water t o  tha t  found i n  ocean waters. 

suggests t h a t  the geothermal br ines are derived from several sources, inc lud ing 

Rex (1983) 

l o c a l  p rec ip i t a t i on ,  f o s s i l  lake waters from former lakes formed when the f low 

o f  the r i v e r  f i l l e d  the basin with brackish water, d i sso lu t i on  o f  the sa l i ne  

residue from dehydration o f  these lakes, and waters t h a t  have equ i l ib ra ted  with 

rocks >3OO0C. 

samples from SSSDP. 

Rex's (1983) ongoing study o f  t h i s  problem w i l l  be aided by 

c 
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b 

f t ions. Doe e t  a l .  (1966) obtained i so top ic  evidence t h a t  indicated tha t  
b 

The source o f  metals i n  the b r ine  has been the subject o f  several investiga- 

80-100% o f  the  Sr and 50-100% of the Pb has been leached from the surrounding 

sediments. 

and "3. 

meteorite standard (White, 1968), which suggests t h a t  i t  is e i t h e r  magmatic or 

leached from sediments t h a t  are derived from erosion o f  igneous rocks. 

White (1981) ar r i ved  a t  a s im i la r  conclusion with regard t o  L i ,  8, h i '  
The s u l f u r  i t s e l f  has an i so top ic  composition s im i la r  t o  the 

/ 

tM 

The 
L 

sources o f  the various metals and the associated s u l f u r  i s  thus a subject o f  

continuing and v i t a l  i n te res t .  Since so few documented samples o f  ores from 

the SSGF are i n  the pub l i c  domain, any samples re t r ieved during the SSSDP w i l l  

bid 

cd be o f  great i n t e r e s t  t o  a number o f  invest igators.  

u 3.4.8 Igneous Rocks 

i 

i 

b 

Surface Quaternary$volcanic rocks occur i n  two locales i n  the Salton 

Trough. 

ca lc -a lka l ine  rhyodacite; end the f i v e  small  domes a t  the south end o f  the 

Salton Sea are a l k a l i , r h y o l o t e .  

and as subsurface dikes j s i l l s ,  or f lows (Robinson e t  al.  ,- 1976), 

Cerro P r i e t o  volcano, about 30 km south o f  thle Mexican border, i s  a 

Basa l t i c  rocks occur as xenol i ths i n  the domes 

The Cerro P r i e t o  rhyodacite appears t o  be t y p i c a l  o f  Pleistocene volcanism 

i n  the area surrounding the Gulf  of Cal i forn ia ;  however, the Salton.Sea r h y o l i t e s  

are i d e n t i c a l  i n  composition and 

is lands o f  the East P a c i f i c  Rise. 

volcano i s  even more p r im i t i ve ,  suggesting a depleted mantle source .for it, 

too. Hence the hypothesis t h a t  the condi t ions o f  magma generation i n  the 

Salton Trough a re ,s im i la r  t o  those operating beneath oceanic spreading centers 

(Elders, 1979). 

The Sr i so top i c  r a t i o  o f  the Cerro P r ie to  
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A ra ther  fresh diabase d ike  occurs a t  -3.9 km depth i n  B r i t z  #3 well. 

Other subsurface in t rus ions  are seen i n  other we l ls  (Robinson e t  al., 1976). 

It i s  therefore expected tha t  dikes w i l l  be encountered before the t o t a l  

depth o f  the  SSSDP w e l l  i s  reached. 

geochemistry, and isotopic  chemistry o f  these rocks t o  t e s t  the above hypothe- 

In  add i t ion  t o  examining the petrology, 

ses, i nves t i ga t i on  o f  these in t rus i ves  w i l l  y i e l d  more information on mechanisms 

of  igneous in t rus ion  i n  t h i s  type o f  tec ton ic  environment. 

3.4.9 Hydrology o f  Geothermal F lu ids  

The knowledge o f  discharge and rechagre areas o f  hot  and co ld br ines 

i s  o f  v i t a l  i n t e r e s t  o t  the developer o f  a geothermal f i e l d ,  f o r  the f l u i d  

flow i s  a major factor  i n  heat transport.  

a mathematically straightforward computation o f  temperature d i s t r i b u t i o n  

What might otherwise have been 

may become a geologic and geochemical detect ive s to ry  t o  f i n d  out where 

surface waters enter the system, where they become heated, and where the 

heated waters go. 

t h i s  during the production stage o f  a geothermal f i e l d .  

CO2 also may ind icate b o i l i n g  i n  the  reservo i r  (Janik e t  al., 1982) and 

w i l l  thus contr ibute t o  the  reservo i r  engineering. 

Reservoir engineering measurements are used t o  monitor 

Changes i n  613C i n  

Determining the hydrology o f  a geothermal system i n  the undisturbed 

preproduction stage involves many elements ou t l ined  above: determing t h e  

L 
L 
t 
L 
1 
b 
t 
c 
t 
t 

h 
L 
1 

o r i g i n  o f  h igh -sa l i n i t y  f l u i d  and some o f  t he  i nd i v idua l  compoenents; s tab le  

i so top ic  inves t iga t ions  and inves t i ga t i on  o f  radiogenic i so top ic  and chemical 

metamorphism o f  f l u i d s  along p o t e n t i a l  pathways; tritium determinations; 

determining the o r i g i n  o f  dissolved gases; i n  s i t u  density ca lcu la t ions  fo r  the 

s p e c i f i c  br ines a t  each depth; subsurface temperature d i s t r i bu t i ons ;  surface 

I 
t 

t 
heat flow and surface discharges; whether f l u i d s  are car r ied  by interconnected 1 

L 
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poros i ty  or by fractures; change i n  temperatures during a protracted production 

test ;  etc. These methods are gaining increasing importance 

f i e l d  management stage, also. 

Some references t o  such hydrologic determinations have 

Olson and Matlock (1978) f o r  Westmorland, Coplen (1976) f o r  

today i n  the 

been made above: 

the cen t ra l  Imper ia l  

Valley; and Kendall (1976) f o r  the SSGF, bu t  l i m i t e d  i n  number o f  avai lab le 

wells. 

a geothermal f i e l d  i n  the Salton Trough have been those for Cerro P r ie to  

(Elders e t  al., 1981, 1982; Truesdell e t  al., 1982b), again because samples 

data have been made f ree l y  ava i lab le  by the Mexican government. 

The most comprehensive studies using such an in tegrated approach t o  

and 

A l l  data obtained from the SSSDP w e l l  are expected t o  contr ibute t o  the 

hydrologic understanding o f  t h i s  geothermal f i e l d .  

operators w i l l  see the value o f  determining the o v e r a l l  charac ter is t i cs  o f  the 

hydrology and w i l l  add t o  the model by al lowing sampling o f  some o f  t h e i r  

wells. 

It i s  hoped t h a t  p r i va te  
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4. TECTONICS AND ROCK MECHANICS 

4.1 INTRODUCTION 

4.1.1 Tectonics, Rock Mechanics, and the Salton Sea Hydrothermal System 

The tectonics and rock studies a c t i v i t i e s  a i d  the character izat ion 

o f  the Salton Sea hydrothermal system i n  providing informat ion on the 

tectonic set t ing,  which i s  the major reason the thermal anomaly is there, 

and i n  providing physical  propert ies data f o r  i n t e r p r e t a t i o n  o f  geophysical' 

and reservoir  engineering studies. 

The Salton Sea Trough i s  a s t r u c t u r a l  depression l y i n g  along the 

boundary o f  the North American and P a c i f i c  Plates. 

region where the mechanism o f  p l a t e  i n t e r a c t i o n  is changing from tha t  o f  

oceanic r i f t i n g  on the  East P a c i f i c  r i s e  system t o  t h a t  o f  the s t r i k e - s l i p  

motion o f  the San Andreas f a u l t  system. 

few areas o f  the world where an extensional p l a t e  boundary i s  a f f e c t i n g  

cont inental  crust  (Elders, e t  a l ,  1972). Elders (1979) has developed a 

p l a t e  tec ton ic  model o f  the region consist ing o f  transform f a u l t s  and 

pu l l -apar t  basins. 

are the locus o f  much geothermal a c t i v i t y .  

centers are o f f s e t  by transform f a u l t s  along which s t r i k e - s l i p  motion 

occurs. 

This i s  a complicated 

The Salton Trough i s  one o f  the 

The basins are associated with spreading centers and 

I n  t h i s  model, the spreading 

Johnson and H i l l  (1982) note t h a t  seismic a c t i v i t y  i n  the Salton 

Trough i s  of two types--major earthquakes on the  s t r i k e - s l i p  f a u l t s  and 

earthquakes swarms which occur i n  l lpul l-apart basins" as frequently 
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as 2 t o  3 years 

be a probable ca 

t o  magma 'emplace o episodic creep along s t r i k e  s l i p  fau l ts .  

ohnson and H i l l  (1982) consider pore pressure build-up t o  

he swarms. The pore pressure build-up may be e i t h e r  due 

s f o r  the  Salton Trough seismic a v i t y  are shallower than 15 k m  

and most o r i g ina te  a t  

proposed d 

than 6 km ( G i l p i n  and Lee, 1978), which i s  the maximum 

the SSSDP program a f fo rds  an 

opportunity t o  perform geomechanical studies a t  depths o f  seismic a c t i v i t y .  

4.1.2 Data Needs 

4.1.2.1 State o f  St'ress 
. .  

L 

The s t a t e  of s t ress  i erstanding the se ismic i ty  

and tec ton ics  o f  the  Salton Trough, 

required t o  understand 

hydrostat ic. Sa l to  eep hole a f fo rds  a rare opportunity t o  perform 

s t ress  measurements a t  depths of seismic a c t i v i t y .  

measuring s t ress  a t  depth i n  boreholes i s  hydraul ic  f ractur ing;  however, the 

method has not  been used under condit ions as h o s t i l e  i n  temperature and 

Furthermore, the s t ress  s t a t e  many be 

amorphism, p a r t i c u l a r l y  if the stresses are not  

The only d i r e c t  method o f  

pressure as those expected i n  the hole.. Stress in format ion may be i n f e r r e d  

from wellbore breakouts, which may be detected by ca l i pe r  or televiewer logs, 

from core disking, or d i f f e r e n t i a l  

s t r a i n  ana lys i  

4.1.2.2 (1 Physical Proper t ies - 

The ph 

hydrothermal system a f the geophysical measurements. 
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For the most p a r t  these are measured i n  the laboratory. Required proper t ies t 
I include the strength, deformational character is t ics ,  thermomechanical propert ies, 

density, and porosi ty.  

v i t y  o f  the rock have a 

The s ta te  o f  s t ress and 

b 
I n  par t i cu la r ,  the heat capacity and thermal conducti- 

major inf luence on the processes o f  heat t ransfer.  

the strength o f  rock determine the extent and mode o f  

i 
E 

f rac tu re  development. 

flow. 

These f ractures may be important conduits f o r  f l u i d  

4.1.2.3 Tectonic Inferences from Core Studies 

The sediments o f  the  Sal ton Trough have been derived from d e l t a i c  

sedimentation o f  the Colorado River and i t s  ancestors and from a l l u v i a l  

deposi t ion along the  margins o f  the  trough. 

i f  known, may y i e l d  valuable informat ion on the r e l a t i v e  movements o f  the 

various tec ton ic  blocks surrounding the trough, p a r t i c u l a r l y  i f  the  a l l u v i a l  

sediments are encountered. 

provide data on the  d i rec t ions  o f  the p r i n c i p a l  stresses. 

The provenance o f  the  sediments, 

Petrofabr ic  studies i n  metamorphosing rocks may 

4.2 MEASUREMENTS I N  THE BOREHOLE 

4.2.1 Hydraul ic Fractur ing Stress Measurements 

The Sal ton Sea S c i e n t i f i c  D r i l l i n g  Pro ject  and i t s  re la ted  hydraul ic  

f ractur ing s t imu la t ion  experiments provide an opportunity t o  obta in  i n  

s i t u  s t ress informat ion i n  a region o f  considerable tecton ic  i n t e r e s t  and a t  

depths greater than s t ress measurements have been previously obtainable (with 

the exception o f  the Michigan Basin Deep Hole). 

t u r i n g  method o f  determining s t ress i s  given i n  Haimson (1978a) . 
Descr ipt ion o f  the hydrofrac- 
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b The stress informat ion  w i l l  be  unique and inva luab le  f o r  t h e  reasons  

desc r ibed  below. 

t e c t o n i c  i n t e r e s t .  

F i r s t ,  t h e  stress measurements w i l l  have cons ide rab le  

The S a l t o n  Sea area is one of t r a n s i t i o n  from t h e  "pull-  & 

I apa r t "  t e c t o n i c s  a s s o c i a t e d  wi th  t h e  Gulf of Ca1ifornj.a t o  t h e  s t r i k e - s l i p  
bd 

f a u l t i n g  o f . t h e  San Andreas f a u l t  system. This t r a n s i t i o n  should be r e f l e c t e d  
I 

L 

lu 

G 

iy 

L 

L: 

b 

i n  a r e o r i e n t a t i o n  of t h e  minimum p r i n c i p a l  stress from v e r t i c a l  ( i n  t h e  pu l l -  

a p a r t  r eg ion )  t o  t h e  h o r i z o n t a l  ( i n  t h e  s t r i k e - s l i p  reg ion) .  The stress 

measurements provide  a b a s i s  f o r  t e s t i n g  t h e  use  of Byerlee's llLawtr o f  rock 

f r i c t i o n  t o  de termine  t h e  s t a b i l i t y  of a r eg ion  with r e s p e c t  to  earthquake 

a c t i v i t y  as t h e  S a l t o n  Sea  area should be  i n  a state of " f a i lu re tv .  Comparison 

of t h e  stress informat ion  with stress f i e l d  deduct ions  based on earthquake 

f o c a l  mechanisms should provide  an  important test of our a b i l i t y  t o  determine 

ear thquake  hazards  from stress information.. * 

From t h e  r e s e r v o i r  development s t andpo in t ,  t h e  t r a n s i t i o n  i n  minimum 

stress o r i e n t a t i o n  should  have a t h e  o r i e n t a t i o n s  and flow 

p r o p e r t i e s  o f  t h e  f r a c t u r e s ,  as p atest a long  t h o s e  

orizont.al  stress from a n a l y s i s  

i z o n t a l  stress from 

eismic monitoring 

ava i l ab le .  

f o r  o p e r a t i n g  tempera tures  g r e a t e r  t han  about 250°C, bu t  t h e s e  temperature 
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problems may be overcome by cool ing the we l l .  

shared w i t h  i n j e c t i o n  permeabil i ty t e s t s  which would use the sane equipment; 

nonetheless the costs may be substant ia l .  

capable o f  providing adequate seals f o r  t he  pressure required. 

(1983) noted i n  a 1600 meter w e l l  i n  g ran i te  t h a t  the pressures required f o r  

breakdown were i n  excess o f  the c a p a b i l i t i e s  o f  t he  pumps and probably near ly i n  

excess o f  the seal ing c a p a b i l i t i e s  o f  t h e  packers. On the other hand, hydraul ic 

f rac tu r i ng  tes ts  were completed a t  depths o f  5,000 meters i n  the Michigan Basin 

where the required surface pressures f o r  breakdown were as much as 62 MPa (Haimson, 

1978b). The question o f  t h e  packer seal ing pressure w i l l  depend on the stress 

condi t ions a t  t he  s i t e .  

re la t i onsh ip  (Haimson, 1978a) : 

The expense o f  the cool ing could be 

Similary, packer systems may not be 

Haimson and Doe 

The breakdown pressure can be given by the w e l l  known 

Pb = 3 S m i n  - Smax + T 

where Smin = minimum hor izon ta l  stress 
Smax = maximum hor izon ta l  stress 
T = Tensi le strength 
Pb = Breakdown pressure 

neglecting pore pressure and poroelast ic ef fects.  

hydrostat ic then the breakdown pressure should be approximately twice the 

I f  the stresses are 

l i t h o s t a t i c  stress. The pressure required a t  the surface f o r  breakdown under 

these condi t ions would be about 200 MPa, which i s  considerably i n  excess o f  

the operating l i m i t s  o f  the packer system. On the other hand, i f  the s ta te  o f  

stress i s  near a f a i l u r e  condit ion, as the earthquake a c t i v i t y  would suggest, 

then the  dev ia to r ic  stresses would be higher and the  breakdown pressures 

lower. 

about 2:l and a mean o f  t he  l i t h o s t a t i c  stress value (or  about 100 and 200 

MPa respect ively) ,  breakdown would require about 40 MPa a t  the surface. 

Inc lus ion  o f  poro-elast ic factors and pore pressure e f f e c t s  would reduce the 

breakdown even further.  

For example, i f  the maximum and minimum stresses have a r a t i o  o f  
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I f  the breakdown pressures are i n  excess o f  the-packer system capab i l i t i es ,  

then some stress informat ion may be gained by i n j e c t i o n  o f  p reex is t ing  f rac tu res  

and recording the shut- in pressure data (Cornet, 19t13). 

the p r i n c i p a l  s t  

f rac tu res  are kn 

The o r ien ta t i on  o f  

s may be known approximately i f  the or ien ta t ions  o f  the 

om televiewer logs or core. 

t program options are 

(1) I d e a l  Program: I d e a l l y  s u l d  be per formed 

a t  l e a s t  a t  2,000 foot i n t e r v a l s  t 

with depth. ’ The measurements woul 

a1 low fr act u 

i n  stages, before each s t r i n  

change i n  stress 

t,he casing was set t o  
1 .  

mapping with eviewer , hence measurement would be made 

sing i s  cemented,, 

(2) P r a c t i c a l  Program: The measurements a t  shallower depths would 

he casing; measureni s below the cased 

r i z o n t a l  stress 

This program would 

the work with the hydraul ic 

(3 )  Minimal Program: The pressure records for the hydraul ic f racture 

s t imu la t i on  experiments would be analyzed t o  determine what stress informat ion 

could be deduced. 

Laboratory studies w i l l  be required t o  ob ta in  f racture toughness and 

apparent strength values. Laboratory simulations can also ind icate i f  

f l u i d  invasion i n t o  the rock matr ix should be considered i n  the stress 

measurement analysis. 
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4.2.2 Televiewer, Ca l ipe r  Logs, and Detect ion of Wellbore Breakouts 

. Wellbore breakouts  are enlargements of boreholes  which are gene ra l ly  

thought t o  be t h e  result of rock failure i n  t h e  highly s t r e s s e d  region 

around t h e  borehole  (Zoback, 1983; Bell and Gough, 1983). 

o f t e n  r e s t r i c t e d  t o  narrow bands on oppos i te  s i d e s  of t h e  borehole.  

l o c a t i o n  of t h e  breakouts  corresponds with t h e  d i r e c t i o n  of minimum stress as 

ind ica t ed  by hydrua l ic  f r a c t u r i n g  measurements. 

The breakouts  are 

The 

Borehole televiewer logs  or four-arm dipmeter meter l o g s  may be used 

t o  d e t e c t  breakouts  and t h e i r  o r i e n t a t i o n s .  

used e f f e c t i v e l y  t o  o b t a i n  hydrau l i c  fracture o r i e n t a t i o n s .  

Televiewer l o g s  may a l s o  be 

If wellbore breakouts  are present  i n  t h e  well, one may i n f e r  t h a t  

t h e  stress concen t r a t ion  around t h e  borehole results from p l a s t i c  or v iscoe las -  

t i c  r a t h e r  than elastic behavior (Doe et al., 1984). 

stress mesurements made under t h e s e  cond i t ions  may not  be i n t e r p r e t a b l e  using 

convent ional  e las t ic -based  theory.  

whould be t h e  minimum hor i zon ta l  stress magnitude (from t h e  shut - in  p re s su re )  

Hydraulic f r a c t u r i n g  

The most information t h a t  can be gained 

and t h e  maximum hor i zon ta l  stress d i r e c t i o n  from t h e  fracture o r i e n t a t i o n .  
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4.3 MEASUREMENTS ON CORE SAMPLES 
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4.3 . 1 S t r e s s  I n d i c a t o r s  

4.3.1.1 Anelas t i c  S t r a i n  Methods t o  Determine S t r e s s  O r i e n t a t i o n s  

Most o f  t h e  deformation undergone by c o r e  after d r i l l i n g  occur s  in s t an tan -  

eous ly  as a r e s u l t  o f  elastic recovery. A p o r t i o n  ctf t h e  recovery,  however, 

occu r s  by time-dependent a n e l a s t i c  mechanisms even i n  r e l a t i v e l y  b r i t t l e  

rocks  l i k e  g r a n i t e .  Teufel (1982) h a s  summarized work which h a s  been done t o  

determine  t h e  a p p l i c a b i l i t y  o f  a n e l a s t i c  recovery methods i n  determining t h e  

o r i e n t a t i o n s  o f  i n  s i t u  p r i n c i p a l  stresses. H i s  comparisons o f  p r i n c i p a l  

o r i e n t a t i o n s  o f  a n e l a  s t r a i n  measured d r i l l  c o r e s  have c o r r e l a t e d  well 

w i t h  t h e  d i r e c t i o n s  o f  h o r i z o n t a l  stresses termined from stress measurements 

i n  s e v e r a l  l o c a t i o n s  inc lud ing  t h e  Nevada Test S i t e  ( t u f f )  and t h e  Piceance 

Basin ( sands tone) .  

If o r i e n t e d  c o r e  can be obta ined  from t h e  well, t h e  o r i e n t a t i o n  of t h e  

maximum end minimun h o r i z o n t a l  stresses may be  obta ined  from t h e  monitoring 

a t u r e  c o n d i t i o n s  t o  

avoid  spu r ious  thermally-induce i n s .  F i n a l l y ,  t h e  mic ro fab r i c  should be  

a n i s o t r o p i c  material 

p r o p e r t i  he r e s u l t s  o f  t h e  s t r a i n  recovery. The 

he stress o r i e n t a -  

Y 
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4.3.1.2 D i f f e r e n t i a l  S t r a i n  Analysis 

D i f f e r e n t i a l  s t r a i n  analysis (Simmons, e t  a l ,  1974) i s  a stress measurement 

technique based on the assumption tha t  density o f  microcracks o f  a p a r t i c u l a r  

o r i en ta t i on  i s  re la ted  t o  t h e  i n  s i t u  stress. As the microcracks a f f e c t  

the deformational propert ies o f  the rock, the s t r a i n s  measured upon reloading 

under hydrostat ic condi t ions should be re la ted t o  the stress f i e l d  o r ien ta t ions  

(Montgomery and Ren, 1983) . 
4.3.1.3 Kaiser E f f e c t  

The Kaiser e f f e c t  i s  the occurrence o f  acoustic emissions i n  rock samples 

which are loaded t o  stresses which exceed t h e i r  previous i n - s i t u  l i m i t s  

(Kanagawa e t  a l ,  1976). 

mate the stresses a t  depth and may be run i n  conjunction with other t e s t s  

such as d i f f e r e n t i a l  s t r a i n  analysis. 

Studies o f  the Kasier e f f e c t  can be used t o  approxi- 

4.3.1.4 Core Disking 

Core d isk ing  i s  a f rac tu r i ng  o f  t he  core along c lose ly  spaced f racture 

planes tha t  occurs under high stress condi t ions (Obert and Stephenson, 1965; 

Obert and Duvall, 1966). 

t he  r a t i o  o f  t he  v e r t i c a l  and ho r i zon ta l  stresses. 

Disking can be used only t o  determine approximately 

4.3.2 Laboratory Tests t o  Determine Physical Propert ies 

I t  i s  recommended t h a t  laboratory t e s t s  o f  the physical  propert ies o f  

core recovered from the Salton Sea borehole be performed under environmental 

condit ions resembling those encountered i n  s i t u .  

f o r  the fo l low ing  purposes: i n teg ra t i on  o f  the surface and borehole geophysics, 

Test should be performed 

I 
f 
L 

L 
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I 

and inves t i ga t i on  of the re la t ionsh ips  between f l u i d  permeabil ity, porosity, 

and rock/water in te rac t ions .  

i n  s i t u  thermal regime and permit e f f e c t i v e  developing o f  h igh  temperature 

The work w i l l  increase understanding o f  the 

geothermal resources. Laboratory measurements should include: 

o e l e c t r i c a l  r e s i s t i v i t y  ( inc lud ing complex r e s i s t i v i t y  and phase 
angle measurements) 

o acoustic v e l  

o bulk and pore compressibi 

o thermal conduct iv i t y  and d i f f u s i v i t y  

(both P and S waves with at tenuat ion charac ter is t i cs )  

o f racture toughness 

o f r a c t u  

The t e s t  apparatus 

capable o f  pressure and temperature condit ions o f  170 MPa and 500 degrees 

Celsius. 

i c a l  propert ies measurements should be 

A t  these pressure and temperature condit ions geochemical reactions 

may proceed quickly, p a r t i c u l a r l y  when condit ions are perturbed from in s i t u  

conditions. These react ions may a f f e c t  physical  propert ies. Pre- and post-test 

geochemical and p e t r o l o g i c a l  character izat ion o f  the samples should be 

ca r r i ed  out t o  a i d  i n  i n t e r p r e t i n g  the resul ts .  

Measurements o f  the e l  es w i l l  provide con t ro l  necessary 

i n  the i n t e r p r e t a t i o n  o f  t he  surface seismic surveys and downhole acoustic 

logs. The ve provide a meas ent o f  crack 

important f o r  t 

f l u i d  flow. The thermal propert ies are essent ia l  t erstanding heat f low 

i n  t h e  hydrothermal system. The f racture toughness measurements are essent ia l  
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t o  i n t e r p r e t i n g  t h e  h y d r a u l i c  f r a c t u r i n g  stress measurements and t o  a s s e s s i n g  

t h e  o r i g i n s  o f  n a t u r a l  f r a c t u r e s  i n  s i t u .  

t i e s  are requ i r ed  f o r  suppor t ing  well test analyses t o  determine t h e  r e l a t i v e  

c o n t r i b u t i o n s  of mat r ix  and f r a c t u r e  flow. I t  w i l l  be  important t o  e s t a b l i s h  

The f r a c t u r e  and matrix permeabili-  

what r e l a t i o n s h i p s  e x i s t  between phys ica l  p r o p e r t i e s  of t h e  rock and t h e  

rock compositions p a r t i c u l a r l y  with r e s p e c t  t o  f r a c t u r e  and pore f i l l i n g  

materials, and t h e  degree o f  a l t e r a t i o n  or metamorphism of t h e  rock. 

The r a t i o  of t h e  s t a t i c  t o  dynamic bulk moduli should be  a d i r e c t  

func t ion  of t h e  crack poros i ty ,  as should t h e  ratio of t h e  s ta t ic  and dynamic 

moduli of t h e  recovered core.  

and s ta t ic  moduli t o g e t h e r  with o p t i c a l  de te rmina t ion  of c rack  d e n s i t i e s  

should y i e l d  important in format ion  f o r  r e l a t i n g  t h e  s o n i c  l o g  d a t a  t o  t h e  

p o r o s i t i e s  i n  s i t u .  

A g e n e r a l  experiment measuring t h e  dynamic 

4.3.3 S t r u c t u r a l  and Sedimentologic Analys is  o f  Cores 

The t e c t o n i c  h i s t o r y  o f  t h e  S a l t o n  Sea area should be analyzed us ing  

s t anda rd  methods of sedimentologic and s t r u c t u r a l  ana lys i s .  

available, t h e  composition o f  clasts, p a r t i c u l a r l y  l i t h i c  fragments, should 

Where c o r e  is 

be analyzed t o  determine t h e  sediment sources .  

sou rces  may be u s e f u l  i n  deducing t h e  movements of t h e  s t r u c t u r a l  b locks  

which make up t h e  S a l t o n  Trough. 

Var i a t ions  i n  t h e  sediment 

P e t r o f a b r i c  and microcrack f a b r i c  a n a l y s i s  o f  core specimens may be  

used t o  determine t h e  evo lu t ion  o f  stress condi t ions .  Microcrack f a b r i c  

may be r e l a t e d  t o  t h e  phys ica l  p r o p e r t i e s  o f  t h e  rock as determined by 

geophys ica l  logging and l a b o r a t o r y  t e s t i n g .  
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5. GEOHYDROLOGY 

5.1 INTRODUCTION 

In a convective-hydrothermal system, va r ious  processes  take p lace  

t h a t  i n f luence  h e a t  and mass t r a n s f e r .  

coo l ing ,  convec t ive  and conductiv 

i n t e r a c t i o n s  between t h e  hos t  rock and f l u i d  a t  e leva ted  temperatures ,  

chemical e f f e c t s  on formation po ros i ty  and permeabi l i ty ,  i n t e r a  

f r a c t u r e  and porous media flow, o r i g i n  and evolu t ion  o f  t h e  primary f l u i d  

condu i t s ,  and a hos t  o f  o 

i n t o  t h e  upper crust 

These processes  i n  

eat flow near and above t h e  hea t  source,  

p rocesses  r e l a t e d  t o  t h e  i n t r u s i o n  o f  magmas 

lopment o f  a s soc ia t ed  hydrothermal systems. 

These processes  are c e n t r a l  t o  t h e  evolu t ion  of t h e  con t inen ta l  crust and its 

resources .  Developing -an ders tanding  o f  t h e  proc ses is a prime o b j e c t i v e  

o f  t h e  Thermal Regimes po r t ion  o f  t h e  Cont inenta l  S c i e n t i f i c  D r i l l i n g  Program. 

i n  t h e  Sa l ton  

is rea l i zed .  This  

t c l a s s i f i e d  i n t o  t h e  

i c  d a t a  (T,P), r o c  

flow da te .  Before d i scuss ing  t h e  

y t h e  hydrathermal 

The 

r e g i o n a l  

Sa l ton  Trough can be e s s e n t i a l l y  viewed as E m  area of  very  high 

hea t  flow produced by c r u s t a l  ex tens ion  and r i f t i n g  modified l o c a l l y  
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by shallow c rus ta l  in t rus ions  and associated hydrothermal c i r cu la t i on .  The 

l a rges t  and hot test  o f  these geothermal f i e lds ,  the Salton Sea Geothermal 

Field,  has l a rge  geophysical anomalies perhaps r e f l e c t i n g  p a r t l y  cooled 

igneous in t rus ions at-shal low depths. This geothermal system has been . 

i d e n t i f i e d  as an a t t r a c t i v e  target  for deep d r i l l i n g  by a nunber o f  s c i e n t i f i c .  

panels and workshops. 

t o  provide information about: (a) the l o c a l  hydrothermal system around the 

we l l ,  (b) t he  o v e r a l l  SSGF hydrothermal system ( t o  

re la t i onsh ip  between the  geothermal f i e l d  and the  regional  set t ing.  

. 
- I  

S c i e n t i f i c  inves t iga t ions  i n  wel ls have the p o t e n t i a l  

e extent), and (c) the 

The 

i e n t i f i c  ob jec t ive  o f  d r i l l i n g  th  SSSDP ho le  i s  based on category , 

(a). 

t h e  other two categories i s  uncertain a t  t h i s  point. 

The extent t o  which the w e l l  can provide information and i n s i g  

5.2.1 Wel l  as an Iso la ted Observation Point- i n  a Hydrothermal System 

The primary aim o f  the SSSDP , i s  to. d g i l )  the deepest and/or gest 

w e l l  i n  the world i n  order t o  explore the  roots  o f  t h i s  hydrothermal system. 

Depending on whether thermal gradients continue r i s i n g ,  d ease. o r ,  reverse, 

a host o f  s c i e n t i f i c a l l y  i n te res t i ng  p o s s i b i l i t i e s  aris.e. * *  , One d i s t i n c t  

p o s s i b l i t y  i s  t ha t  t he  deeper pa r t  o f  the w e l l  w i l l  r e  

pressure or temperature never before d i r e c t l y  sampled. 

permeabil i ty d i s t r i b u t i o n  with depth w i l l  provide important i ns igh ts  int*o the ~ 

deeper par ts  o f  t he  Salton Trough. This information i s  essent ia l  for resource 

evaluation. 

flow conduits, the nature o f  t he  v e r t i c a l  hydrologic connectivi ty, an 

a1 a region P 

Observations on the 
. I  

Other questions o f  i n t e r e s t  include the o r i g i n  and evolut ion o f  

remote p o s s i b i l i t y  o f  encountering a,region o f  sueerconvection. 
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5.2.2 Well as an Observation Po in t  Relevant t o  t h e  E n t i r e  SSGF 

Observations i n  t h i s  well could c o n t r i b u t e  information r e l e v a n t  t o  

modeling t h e  t h r e e  dimensional s t r u c t u r e  and hydrology o f  t h e  e n t i r e  S a l t o n  

Sea F ie ld .  

connec t ions  between t h e  s i te  where t h e  well w i l l  be d r i l l e d  and o t h e r  wells 

i n  t h e  geothermal f i e l d .  

thermal anomaly is l i k e l y  t o  be in t e rmed ia t e  i n  temperature between t h a t  i n  

The modeling could h e l p  determine t h e  thermal and hydro logic  

A t  shallow dep ths ,  a well on t h e  f l a n k s  o f  t h e  

t h e  c e n t r a l  p a r t  of t h e  thermal anomaly and t h e  r eg iona l  regime. One p o s s i b l e  

hypo thes i s  is t h a t  a s i n g l e  hea t  sou rce  loca ted  near  t h e  c e n t e r  of t h e  f i e l d  

affects both t h e  margin and t h e  cen te r .  

t empera ture  r e v e r s a l  a t  depth  i n  wells loca ted  a t  t h e  f l a n k s  o f  t h e  system. 

Such temperature r e v e r s a l s  occur as  co ld  f l u i d s  recharge  t h e  system a t  depth  

from o u t e r  reg ions .  An a l t e r n a t i v e  hypothes is  is t h a t  t h e  marginal reg ion  

r e p r e s e n t s  an independent thermal or  c i r c u l a t i o n  system. A s  such, it would 

provide  an a d d i t i o n a l  example of a hyd 

age  or i n t e n s i t y ,  t o  compare and c o n t r a s t  with t h e  main SSGF. 

I n  t h a t  c a s e  one would expect a 

hermal system, perhaps o f  a d i f f e r e n t  

5.2.3 Well as an Observation Po in t  Relevant t o  Thermal Regime o f  S a l t o n  Trough 

wi th in  t h i s  well ma ovide  d i r e c t  or i n d i r e c t  i n fo r -  

rce of t h e  SSGF and t h e r e f o r e ,  about t h e  n a t u r e  mation about t h e  heat 

and effects o f  c r u s t a l  r i f t i n g  i n  t h e  S a l t o n  Trough. For p l e ,  a well i n  

t h e  marginal reg ion  could poss ib ly  d e t e c t  a ' s t epou t '  o f  t 

i n t r u s i o n s .  

of t h i s  process  which c l e a r l y  must have occurred  repea ted ly  i n  t h e  reg ion ,  and 

I n  t h i s  case, one major c o n t r i b u t i o n  would be t o  g a i n  understanding 
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thereby ga in  some understanding i n t o  the  re la t i onsh ip  

geothermal anomalies and the  regional  thermal regime. 

5.3 DATA NEEDS 

between the  l oca l i zed  

1 

The geohydrological data o f  i n t e r e s t  can be c l a s s i f i e d  i n t o  the  fo l lowing 

categories: 

propert ies, f rac tu re  data, production data, and na tu ra l  f low (mass and 

subsurface thermodynamic data (T,P) , rock propert ies, f l u i d  

heat) data. 

5.3.1 Thermodynamic Data 

I n  order t o  determine the  thermodynamic condi t ions a t  depth, s t a t i c  

pressure and steady-state temperature data are required. Considerable 

temperature data from ex i s t i ng  we l ls  i n  the  SSGF have been published by 

Younker e t  a1 (1982) and Elders and Cohen (1983). These data show t h a t  a t  

a depth o f  2 km the  temperatures are t y p i c a l l y  over 320°C; the  maximum 

temperature measured a t  SSGF i s  365°C a t  3.1 km depth. I f  these temperatures 

are extrapolated t o  the  ta rge t  depth o f  5.5 km for  a deep ho le  i t  i s  conceiv- 

able t h a t  a downhole temperature o f  -500°C may be encountered. Thus there i s  

a p o s s i b i l i t y  o f  detect ing regions o f  superconvection, i f  such phenomena 

ac tua l l y  ex is t .  However, i f  a w e l l  i s  located on the  f lank o f  the  main 

hydrothermal system, i t  i s  u n l i k e l y  t h a t  such h igh  temperatures w i l l  be 

encountered and ac tua l l y  probable t h a t  a temperature reversal  with depth 

would be observed. 

The hydrostat ic pressure-versus-depth p r o f i l e  f o r  the  e x i s t i n g  we l ls  

i n  the  SSGF i s  almost constant a t  0.098 bars/m (Helgeson, 1968), consistent 

c 
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with a constant f l u i d  density of 1000 kg/m3. 

s a l i n i t y  with depth balances the e f f e c t  o f  increasing temperature so that  

The e f fec ts  o f  increasing 

the f l u i d  density remains constant with depth. Thus we may expect bottomhole 

pressures t o  be r e a d i l y  predicted f o r  the proposed deep hole. 

5.3.2 Rock Propert ies 

The primary hydrologic rock propert ies o f  i n t e r e s t  are permeabil i ty 

and porosi ty.  In  general, both o f  these parameters vary s p a t i a l l y ,  so that  

data on the v a r i a t i o n  i n  permeabil i ty and poros i ty  with depth are desirable. 

Also, where the f l u i d  f low i s  p r i m a r i l y  through fractures, data on both f racture 

and mat r ix  permeabi l i t ies and po ros i t i es  are needed. Thus, s ing le  values o f  

permeabi l i ty  end poros i ty  cannot describe t h e  hydrologic cha rac te r i s t i cs  o f  

the rock formation around the deep hole i n  s u f f i c i e n t  d e t a i l .  

and permeabi l i ty  va r ia t i ons  with depth are also extremely important f o r  cor- 

r e l a t i o n  with geophysical and geochemical data. 

Data on poros i ty  

Data from e x i s t i n g  we l ls  i n  the SSGF i nd i ca te  tha t  hor izon ta l  i n t e r -  

granular (porous mediun) po ros i t i es  and permeabi l i t ies are r e l a t i v e l y  h igh  i n  

the  shallower regions o f  the reservoir.  

t e s t  data t o  ca lcu la te  ho r i zon ta l  permeabi l i t ies o f  100 - 500 md and Schroeder 

(1976) analyzed d r i l l  stem t e s t  data fo r  the top reservo i r  and obtained 

permeabi l i ty  o f  500 md. 

a b i l i t y  decreases with depth, but  the o v e r a l l  permeabil i ty i s  enhanced by 

Morse and Thorsen (1978) used we l l  

a 

Because o f  a l t e r a t i o n  the matr ix poros i ty  and perme- 

f rac tu res  a t  depth (Younker e t  a l ,  1982). 

Also o f  considerable importance are the average well- to-well  

formation permeabi l i t ies and poros i t ies.  These data cannot be obtained i f  
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measurements are only made i F  one hole; ,simpitaneous.pressure measurements i n 5 .  

other wel ls are needed. Knowledge o f  average .permeahil i t ies.and po ros i t i es  o 

a l a rge  volume.of the reservo i r  rocks is 

na tu ra l  mass and heat flows within the reservoir  are t o  be,made, or.-reservair 

portant when ,estimates. of- the 

response t o  exp lo i t a t i on  i s  t o  be evaluated. Interference t e s t  data from the 
.' . . , r  L 

SSGF have been analyzed by Morse and Thorsen (1978). They ca lcu la te  t h a t  the 

v e r t i c a l  permeabil i ty i n  the f i e l d  i s  very low, presumably due t o . t h e  .low2 

1 permeabil i ty shale layers. 

I A physical  property o less,importance i n  qssessing the hydrologic 
, 

I 
I c ha rac te r i s t i cs  o f  t he  rocks i s  the rock compressibi l i ty .  1nformation.on t h i s  

parameter can be obtained from Jaboratary core 

data. 

sts .or hydraul ic ,fracturing 

The primary thermal property o f  importancp i s  .the thermal conduct iv j t y  . 

o f  the subsurface. rocks. I This 

p r i m a r i l y  on the rock type and 

rock thermal conduct iv i ty with 

parameter can also vary spat-ially, b u t  depends .- 

the porosi ty, .  Data on t hewar ia t i ons  i n  the 

depth are. usefu l  when. the o v e r a l l  !heat - f low 

patterns i n  the geothermal system are being considered. Other parameters such 

as the densi t ies -and heat capaci t ies o f  the rock matr ix a re  less important, 

and can read i l y  be obtained from laboratory measurements. ~ b t  . 

5.3.3 F l u i d  Propert ies 
. , - , ? ,  '. 1. > _ .  ' I .  

The f l u i d s  a t  SSGF are very sal ine; average.tota1 dissolved s o l i d s  (TDS) 

are 280,000 ppm. F l u i d  propert ies such as densit,y, v iscos i ty ,  ompress ib i l i t y  

and expansivity are g rea t l y  dependent on s a l i n i t y . a s  wellras&emperature. 

t h e  f l u i d  propert ies are very important when natural.mass and.heat flows -in 

As 



-1 01 - 

hydrothermal systems are considered, these propert ies must be determined. 

F l u i d  propert ies o f  pure sodium-chloride (NaC1) br ines are ava i lab le  i n  the 

l i t e r a t u r e  (e.g. P h i l l i p s  e t  a l ,  1981) and these can be used as f i r s t  estimates. 

I f  the chemical composition o f  the br ines encountered i n  the  SSSDP hole i s  

s u f f i c i e n t l y  d i f f e r e n t  from i d e a l  NaCl mixtures, addi t ional  laboratory t e s t s  

may be necessary. 

5.3.4 Fracture Data 

Although the subsurface rocks a t  SSGF consist  o f  porous sedimentary 

un i ts ,  there i s  subs tan t ia l  evidence tha t  f ractures contr ibute s i g n i f i c a n t l y  

t o  the reservo i r  permeabi l i t ies (Younker e t  a l ,  1982). 

t r u e  f o r  deeper formations. 

f l u i d  f low i s  cont ro l led  by the fractures. 

This i s  especial ly 

A t  depths below 3 km, one would expect t h a t  

Thus, data on the f racture 

cha rac te r i s t i cs  o f  t he  subsurface rocks are needed. Ideal ly ,  de ta i led  

s t a t i s t i c a l  data on f racture d i s t r i bu t i ons ,  apertures and lengths are required 

f o r  a f u l l  understanding o f  the f racture system. However, fo  

data on major f racture zones and t h e i r  r e l a t i v e  importance ( p  

etc.) would be useful. Also o f  i n t e  the va r ia t i on  i n  fracture frequency 

with depth’and i t s  cor 

Such data are extreme1 

hermal br ines from 

t y  d i s t r i b u t i  

nomic po ten t i  
f 

5.3.5 Well Production Data 

sustain natura l  flow, 
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be conducted. 

rates, enthalpies, chemical composition, etc.) o f  the we l l  when f lowing under 

d i f f e r e n t  wellhead pressures. 

Data should be co l lec ted  on the production cha rac te r i s t i cs  ( f l ow  

Furthermore, data on the  changes i n  the flow 

charac ter is t i cs  o f  the w e l l  with t ime  are useful. Also o f  i n t e r e s t  are the 

depths a t  which the produced f l u i d s  enter the we l l .  This w i l l  help t o  

i d e n t i f y  loca t ions  o f  major feed zones ( f rac tu re  zones) and t o  determine i f  

i n t e r n a l  f low occurs i n  t h e  well. 

i n t e r v a l s  and analyzed f o r  the geochemical composition. 

F l u i d  samples should be taken a t  regular 

Also o f  great importance i s  the  degree of damage (or enhancement) 

t o  the w e l l  due t o  the  d r i l l i n g  operation (i.e., the sk in  value o f  the wel l ) .  

Proper tes ts  should be conducted t o  determine the o v e r a l l  sk in  factor  o f  t he  

w e l l  as a funct ion o f  f low rate.  

5.3.6 Natural Flow (Mass and Heat) Data 

Rel iable estimates o f  the natura l  f l o w  o f  mass and heat through the 

subsurface rocks i n  the v i c i n i t y  o f  the proposed w e l l  are needed f o r  various 

reasons. F i r s t ,  these data can help t o  determine the  hydraul ic and thermal 

interconnection between the deep hole and the  main Salton Sea geothermal 

reservoir .  Second, these data are important t o  establ ish geochemical and 

rock - f l u id  i n te rac t i on  models o f  the deep system. Third, these data can help 

determine the economic po ten t i a l  f o r  deep geothermal resource development i n  

t h e  Imperial  Valley. 

Data on natura l  f low o f  mass and heat i n  geothermal reservo i rs  

cannot be determined by d i r e c t  measurements. 

ta ined i n d i r e c t l y  by i n teg ra t i ng  avai lable knowledge i n t o  a model t h a t  can 

However, such data can be ob- 

t 
I 
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.estimstes.of t h e  flows. Mass ,and hea t  t r a n s p o r t  i n  

t h e  SSGF has  been s t u d i e d  by va r ious  i n v e s t i g a t o r s  (Riney e t  al . ,  1978; 

Kasameyer et al., 1981; Younker et al., 1982). These au tho r s  conclude t h a t  

l a r g e  convect ion cells are not  present .  Ins tead ,  small-scale cellular con- 

vec t ion  is superimposed upon a large-scale lateral f l o w  of pore f l u i d .  

conclus ion  is supported by t h e  near cons t an t  f l u i d  d e n s i t y  with depth (Helgeson, 

1968). 

f o r  t h e  deep hole.  

This  

This  and other hypotheses should be t e s t e d  when data are a v a i l a b l e  

5.4 PROPOSED EXPE THE DEEP HOL 

I n  t h e  last  s e c t i o n  some of  t h e  hydrologic  d a t a  necessary f o r  understand- 

i n g  t h e  r e s e r v o i r  c o n d i t i o n s  i n  t h e  v i c i n i t y  of t h e  deep ho le  were i d e n t i f i e d .  

In  t h i s  s e c t i o n  someLof t h e  tests needed t o - o b t a i n - t h e s e  d a t a  w i l l  be discussed.  

I t  should be,emphasited t h a t  many o f  t h e s e  experiments cannot be c a r r i e d  out  

i n  a high temperature (>30Q°C) environment because t h e  t o o l s  ere temperature  

i 

owever, t h e s e  experiments are included a s r t h e  downhole temperatures  

which w i l l  be  encountered i n  t h e  proposed deep ho le  are unknown. 

Temperature and p res su re  p r o f i i i n g h  t h e  well w i l l  provide t h e  necessary 

temperature  and p res su re  d a t a  with depth. 

taken Under s t e a d y - s t a t e  cond i t ions  ( i . e , ,  when t h e  well has  f u l l y  heated up 

t o  ambieqt cond i t ions )  . . . As TwilJ be d iscussed  later,  a d d i t i o n a l  pressure-temp- 

e r a t u r e  surveys  should a l s o  be t aken 'du r ing  t h e  hbating-up per iod  i n  o rde r  t o  

i d e n t i f y  permeabi l i ty  zones. Note, however, Chat i f  temperatures  i n  t h e  well 

These p r o f i l e s  should i d e a l l y  be 

' 
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are very high (>3OO0C), pressure p r o f i l i n g  i n  the  deeper port ions o f  the we l l  

may not be possible. 

5.4.1.2 D r i l l  Stem Tests 

During d r i l l i n g ,  d r i l l  stem t e s t s  (DST) should be conducted a t  regular 

in terva ls .  These t e s t s  can y i e l d  a sample o f  the reservoir  f l u i d ,  ind icate 

f low rates, y i e l d  an estimate o f  s t a t i c  and f lowing bottomhole pressure and 

give short  term pressure t rans ien t  data. 

the DST should help determine reservo i r  condit ions a t  depth and provide 

estimates o f  formation propert ies and wellbore damage. 

I n  the case o f  the proposed hole 

5.4.1.3 I n j e c t i o n  Tests 

Determination o f  t h e  permeabil i ty v a r i a t i o n  with depth i n  the deep 

hole i s  a d i f f i c u l t  task. 

temperatures (>3OO0C) ant ic ipa ted  i n  the deep hole, as the cu r ren t l y  ava i lab le  

One expected problem ar ises because o f  the h igh  

instrumentation f o r  such t e s t s  i s  temperature-limited. However, one possible 

method involves a ser ies o f  i n j e c t i o n  t e s t s  using packers. 

should i n i t i a l l y  be run with a s ing le  packer set  a t  several levels,  preferably 

below or  above i n f e r r e d  conduits. 

i n  zones containing the major conduits. 

These t e s t s  

Double packer t e s t s  should then be performed 

Another advantage o f  using packers 

i s  t h a t  i n d i v i d u a l  zones can be tested, so t h a t  data can be co l lec ted  and 

analyzed t o  y i e l d  permeabil i ty var ia t ions  with depth. 

I n  order t o  conduct the  i n j e c t i o n  tests, the formation must be s u f f i c i e n t l y  

permeable t o  al low cool ing o f  the wellbore. 

transducers are temperature-limited. However, i f  the i n j e c t i o n  t e s t s  are 

Both the packers and the pressure 

successful, valuable informat ion on permeabil i ty var ia t ions  with depth and 
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f r a c t u r e  characteristics of t h e  formation (double-porosity behavior)  may be 

obtained.  These d a t a  can be compared. t o  var ious  geophysical d a t a  obtained 

f o r  t h e  well (see Geophysics s e c t i o n ) .  Pressure t r a n s i e n t .  data from wells 

completed i n  high-temperature geothermal r e s e r v o i r s  have been success fu l ly  

obta ined  from many f i e l d s ,  e s p e c i a l l y  i n  Iceland and New. Zealand (e.g, ,  

Grant,  1982; Bodvarsson et al., 1983). 
i 

5.4 1.4 I n t e r  f e  

I f  nearby wells are a v a i l a b l e  and time allows, i n t e r f e r e n c e  tests 

should be conducted 

one or more well(s) while product ion/ in jec t ion  takes p lace  i n  another .  

These tests general3y have to  be of,slong du ra t ion  sirice p res su re  responses  a t  

t h e  observa t ion  wells are o f t e n  not  felt f o r  weeks 01: months. However, i f  

these tests are success fu l ,  .average formation parameters ( p e r m e a b i l i t i e s  and 

p o r o s i t i e s )  can  be determined. 

During such tests p res su re  meaaurements.are taken i n  

These d a t a  can o f f e r  va luable  i n s i g h t  i n t o  

t h e  hydrau l i c  in te rconnec t ion  between the .deep  formations encountered i n  t h e  

borehole  and t h e  shallower.  r e s e r v o i r  regions,  

' .  

f nearby wells 

e or  more wells, and 

y i e l d  important 

information regarding t h e  f r a c t u r e  characteristics o f  flow regime sampled by 

t h e  tracer. 

between wells, and i n  t h e  case of  t h e  deep hole ,  t h e  flow connect ion between 

shal low and deep reservoir zones. 

Such d a t a  can be extremely use fu l  i n  determining flow connect ions 
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The r equ i r ed  production d a t a  can be obta ined  from a short-term p i t  
I 
I 
Li 

test. During t h e  test  t h e  wellhead p res su re  is va r i ed  i n  o rde r  t o  get d a t a  
I 

on changes i n  flow rates and e n t h a l p i e s  with changes i n  wellhead pressure .  L 
L 
t 
1 

The test should be of long  enough d u r a t i o n  t h a t  flow rate and en tha lpy  var ia -  

t i o n s  with time can be recorded. 

If well tempera tures  are no t  t o o  h igh ,  a sp inne r  survey should be  

conducted du r ing  t h e  flow test so t h a t  t h e  permeable zones feeding  t h e  well 

can  be i d e n t i f i e d 4  If well tempera tures  are too h igh  (>3OO0C) a s p i n n e r  

s u r v e y  should be  conducted du r ing  i n j e c t i o n  and t h e  pe rmeab i l i t y  zone accept ing  

t h e  i n j e c t e d  f l u i d s  i d e n t i f i e d .  
t 
I Also dur ing  t h e  flow test ,  downhole samples of t h e  r e s e r v o i r  f l u i d s  

should be c o l l e c t e d  a t  va r ious  depths.  The samples should be  analyzed for 

t h e  geochemical composition of t h e  geothermal f l u i d s  and its v a r i a t i o n  with 1 
t depth. 

Immediately fo l lowing  t h e  flow test, e build-up test should be  conducted 

us ing  a downhole p r e s s u r e  t ransducer .  The p r e s s u r e  t r a n s i e n t  d a t a  from t h e  L 
build-up test should be analyzed t o  y i e l d  an average permeabi l i ty  o f  t h e  

formation ad jacen t  t o  t h e  well and t h e  degree of damage (or  enhancement) t 
t o  t h e  well ( t h e  s k i n  f a c t o r )  . 
c o n d i t i o n s  i n  t h e  well may be u s e f u l  i n  determining t h e  l o c a t i o n s  and relative 

Radioactive tracer l o g s  run under s ta t ic  

*I hydrau l i c  p o t e n t i a l s  o f  condu i t s  i n t e r c e p t i n g  t h e  well. 

t 5.4.1.7 F r a c t u r e  Data Analys is  

Data on f r a c t u r e  zones can be i n f e r r e d  from such sources  as: 

- l o s t  c i r c u l a t i o n  zones du r ing  d r i l l i n g ;  

b 
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- temperature/pressure p r o f i l e s  during heating-up; 

- spinner surveys dur ing  production/inject ion; 

- rad ioac t ive  

Data from the sources should be compiled and correlated 

and a general fr 

mation can also be obtained from the cores and the i n j e c t i o n  t e s t  data. 

Furthermore, . i f  de ta i l ed  data on f racture locat ions are desired, a televiewer 

l o g  (which i s  temperature-limited) can be obtained during co ld water i n jec t i on .  

-frequency vs. depth graph prepared. Addi t ional  infor-  

Another possible experiment i n  the deep ho le  i s  a f racture propping 

experiment. 

a b i l i t y  through an a r t i  

propping experiments ca 

If successful, t h i s  experiment would enhance the formation perme- 

i a l  (man-made) fracture. Also the data from fracture 

e l p  determine the i n - s i t u  stress condi t ions . ,. I 

5.4.2 Laboratory Experiments 

5.4.2.1 Rock Ma t r i x  Propert ies 

Various hydrological  and thermal t e s t s  on cores should be conducted 

i n  the  

etc). 

- 
- 
- 
- 
- 

laboratory using simulated i n - s i t u  condi t ions (temperature, pressure 

The parameters o f  primary i n t e r e s t  are: 

m a t r i x  permeabi l i ty  

poros i ty  

thermal conduct iv i t y  

s p e c i f i c  heat 

rock density. I .  
I /  

oratory t e s t s  should &tempt t o  obtain data from cores a t  

various depths so t h a t  va r ia t i ons  these parameters with depth can be 
. a  
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determined. This  is e s p e c i a l l y  important for parameters  t h a t  can' vary g r e a t l y  

with depth,  such as permeabi l i ty ,  po ros i ty  and thermal  condu 

v a r i a t i o n s  i n  t h e  thermal  p r o p e r t i e s  with temperature  is als 

1 

5.4.2.2 Flu id  P r o p e r t i e s  L 
1 "~ 2 

> .  

As s t a t e d  earlier, t h e  Sa l ton  Sea b r i n e s  are very s a l i n e  (-280,000 

b 
L 
L 

ppm), so t h a t  pure  water p r o p e r t i e s  can n e i t h e r  be used i n  mass nor i n  heat 

t r a n s p o r t  c a l c u l a t i o n s .  

t h e  f l u i d s  are similar enough t o  pure NaCl mixtures  so t h a t  known c o r r e l a t i o n s  

for f l u i d  p r o p e r t i e s  of NaCl mixtures  w i l l  be s u f f i c i e n t l y  accura te .  

It is p o s s i b l e  t h a t  t h e  chemical c h a r a c t e r i s t i c s  of 

If not ,  

l abo ra to ry  tests on t h e  f l u i d s  from t h e  deep ho le  should be undertaken i n  

order t o  determine hydrau l i c  and thermal  parameters.  

p a r t i c u l a r  i n t e r e s t  are: 

The parameters  of 

d e n s i t y  

v i s c o s i t y  

s p e c i f i c  h e a t  

thermal  conduc t iv i ty  

The tests should be performed over appropr i a t e  ranges of temperature  and 

s a l  f n i  t y . 
5,4.J Modeling S t u d i e s  

3.4.3.1 Natural  Mass and Heat Transport  

The n a t u r a l  flow of mass and h e a t  i n  t h e  subsur face  rocks  mus t  be 

determined i n d i r e c t l y  from va r ious  d a t a  from t h e  deep well as well as o t h e r  

S a l t o n  Sea wells. 

p re s su re  p r o f i l e s  from t h e  wells,, and formation permeabi l i ty  values .  

The primary d a t a  requi red  are downhole temperature  and 

These 

L 
c 
f' 
L 

c 
L 
b 
t 
L 
L 
'11 
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. .  

d a t a  are used i n  a model ( a n a l y t i c a l  or numerical)  t o  o b t a i n  estimates o f  

n a t u r a l  mass and h e a t  f lows i n  t h e  system. Other a v a i l a b l e  d a t a ,  such as 

geophysical and geochemical d a t a ,  should be  used as c o n s t r a i n t s  on t h e  model 

cons t ruc ted .  

5.4.3.2 Analys is  of Temperature T r a n s i e n t s  

A series of tempera ture  surveys  is proposed dur ing  hea t ing  up of 

t h e  well as well as dur ing  coo l ing  from co ld  water i n j e c t i o n .  

can be  analyzed us ing  a n a l y t i c a l  or numerical modeling techniques  t o  i n f e r  

v a r i a t i o n s  i n  formation thermal c o n d u c t i v i t i e s  with pth.  Such modeling 

s t u d i e s  can a l s o  h e l p  i d e n t i f y  feed  zones and t h e i r  re1 ve importance. 

The c a l c u l a t e d  thermal conduc t iv i ty  va lues  should be  c o r r e l a t e d  with t h e  

These d a t a  

thermal c o n d u c t i v i t y  d a t a  from cores .  

5.5 PRIORITY CONSIDERATIONS 

The proposed geohydrologic experiments f o r  t h e  deep h o l e  are 

l i s t e d  i n  o rde r  o f  p r i o r i t y  i n  Table 5.1. The experiments are d iv ided  i n t o  

three c a t e g o r i e s ,  i n - s i t u  tests, l a b o r a t o r y  test and modeling s t u d i e s .  A 

h igh  p r i o r i t y  item is t h e  tempera ture  and p res su re  surveys  dur ing  heating-up 

and under s t eady- s t a t e  cond i t ions .  These surveys  are necessary for provid ing  

d a t a  t h a t  w i l l  de te rmine  t h e  thermodynamic c o n d i t i o n s  a t  depth.  However, i f  

tempera tures  i n  t h e  well become very h igh  (400-5OO0C) t h e s e  surveys  cannot be  

made t o  bottomhole. 

f l u i d  samples du r ing  d r i l l i n g  and a l s o  provide  d a t a  f o r  approximate permeabi l i ty  

de te rmina t ions .  

The d r i l l  stem tests are u s e f u l  as they  can provide 

If t h e  well flows ( s u f f i c i e n t  temperature and permeabi l i ty ) ,  

p roduct ion  and bui ldup  tests should be conducted. If tempera tures  aga in  are 
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Table 5-1. Geohydrological tests l i s t e d  in.order of p r i o r i t y  L 
1. In-Situ Tests . . .;:.. 

lz. 
a. Temperature and p res su re  surveys  dur ing  hea t ing  under s ta t ic  ? -  

c o n d i t i o n s  

b. Drill-stem t e s t i n g  

c. Production tests ( i f  well flows) 

d. Build-up tests 

e. 

f. F lu id  samples/spinner s u r v e y s  

9. 

In te r -wel l  tests ( i n t e r f e r e n c e ,  tracer t e s t s )  

I n j e c t i o n  tes ts  ( inc lud ing  temperature and sp inne r  surveys)  

h. F r a c t u r e  propping experiment 

2. Laboratory Tests on Cores 

- rock mat r ix  permeabi l i ty  

- p o r o s i t y  

- thermal conduc t iv i ty  

- s p e c i f i c  heat/rock d e n s i t y  ’ 

r 
L; 

I 
t 
t 
t 
tt 

c 

3. Modeling S t u d i e s  

a. 

b. 

Model s t u d i e s  o f  mass and hea t  t r a n s p o r t  i n  t h e  n a t u r a l  s ta te  

Model s t u d i e s  o f  hea t ing  of t h e  well 

\ 
f 

/ L  

i- 
b 
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not  excessive high temperature  and high p res su re  f l u i d  samples may be obtained. 

A sp inner  test would h e l p  i d e n t i f y  fracture zones. 

tests could provide d a t a  on permeabi l i ty  versus depth. 

are only f e a s i b l e  i f  permeabi l i ty  is s u f f i c i e n t  t o  allow cool ing  t h e  wellbore. 

If not ,  it may be b e n e f i c i a l  t o  a t tempt  a hydrofrac experiment close t o  

t h e  bottom of t h e  well i n  order  t o  provide t h e  necessary’ i n j e c t i v i t y  t o  

co ld  water. 

should be conducted. 

A series of i n j e c t i o n  

However, t h e s e  tests 

During t h e  i n j e c t i o n  tests, temperature  and sp inne r  su rveys  

The p o s s i b l e  geohydrologic l abora to ry  experiments on c o r e s  are not  

l i s t e d  i n  order of p r i o r i t y  as a l l  of  t h e s e  should be performed. However, 

because of  l a r g e r  v a r i a t i o n s  with dep th , . a  greater number of core tests on 

permeabi l i ty ,  p o r o s i t y  and thermal conduct iv i ty  should be c a r r i e d  out  than 

those  determining s p e c i f i c  h e a t  or rock dens i ty .  The modeling s t u d i e s  are 

necessary t o  determine n a t u r a l  mass and h e a t  flows wi th in  t h e  reservoir 

system encountered as well as to  t i e  the . in fo rma t ion  from t h e  deep h o l e  t o  

cond i t ions  encountered i n  t h e  main SSGF Modeling of t h e  hea t ing  of t h e  well 

a f t e r  d r i l l i n g  and/or inject ion should allow determina t ion  o f  $thermal  conduc- 

t i v i t y  and d i f f u s i v i t y  with depth. 
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6. ENGINEERING DEVELOPMENT REQUIREMENTS 

6.1 INTRODUCTION 

The ma jo r i ty  o f  t h e  d r i l l i n g ,  completion, and logging technology 

which e x i s t s  today was developed by t h e  o i l  and g a s  i n d u s t r y  f o r  sha l low 

( l e s s  t han  2 km) wells o f  moderate tempera tures  ( l e s s  t han  100OC). 

geothermal well which is planned as p a r t  of t h e  S a l t o n  Sea p r o j e c t  may be  as 

much as 5 km deep with bottom-hole tempera tures  i n  excess o f  40OoC. 

t h e s e  reasons ,  many o f  t h e  s c i e n t i f i c  experiments w i l l  no t  be p o s s i b l e  us ing  

convent iona l  technology, and s p e c i a l  equipment, i n s t rumen ta t ion ,  and measure- 

ment techniques  w i l l  be r equ i r ed  t o  meet t h e  s c i e n t i f i c  ob jec t ives ,  

' The 

For 

Even though p l a n s  may call  f o r  continuous co r ing  for as much as 6,000 f t  

(1.8 km), p rov i s ions  should be  made t o  run as wide a suite o f  geophys ica l  

l o g s  as poss ib le .  This  is t h e  case f o r  t h r e e  reasons.  

may be  incomplete and t h u s  t h e  l o g s  would provide t h e  only q u a n t i t a t i v e  

informat ion  i n  those  i n t e r v a l s .  Second, l o g s  provide informat ion  more 

r a p i d l y  than  t h a t  which can be obta ined  from c o r e  a n a l y s i s ;  and t h i r d ,  t h e  

combination o f  c o r e  and l o g s  can g r e a t l y  a i d  i n  t h e  c a l i b r a t i o n  o f  t h e s e  

First, core recovery 

logs .  

The two areas most l i k e l y  t o  prove o p e r a t i o n a l l y  d e f i c i e n t  i n  t h i s  

h igh  temperature environment are d r i l l i n g  ( co r ing )  technology and downhole 

ins t rumenta t ion .  The remainder o f  t h i s  d i s c u s s i o n  w i l l  d e a l  with t h e s e  two 

areas s e p a r a t e l y  even though t h e r e  is a g r e a t  d e a l  o f  over l ap  i n  t h e  problems 

and s o l u t i o n s .  

problems w i l l  be  foreseen. 

I t  is important t o  no te  t h a t  i t  is u n l i k e l y  t h a t  a l l  o f  t h e  

S ince  t h e r e  is l i t t l e  h i s t o r i c a l  p e r s p e c t i v e  f o r  

t h e  proposed ope ra t ion ,  many o f  t h e  s i t u a t i o n s  encountered w i l l  be encountered 

f o r  t h e  f irst  time and p rov i s ions  for "on-site" technology development should 

t 
L 
i cr 

i 
i 

b 
L 
t 
t 
t 
t 
t 
t 
t 
L 
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be  included i n  t h e  planning. The following s e c t i o n s  w i l l  a l s o  inc lude  an 

inventory  of equipment and t o o l s  

i a l l y  and through t h e  s c i e n t i f i c  

6.2 DRILLING TECHNOLOGY 

t h a t  are p r e s e n t l y  a v a i l a b l e  -- both commerc- 

community. 

T h i s  s e c t i o n ,  t i t l e d  " D r i l l i n g  Technology," is meant t o  addres s  a l l  

areas o f  o p e r a t i o n  n o t  inc luded  i n  t h e  in s t rumen ta t ion  d i scuss ion .  

w i l l  i n c l u d e  t o p i c s  o t h e r  than  merely c u t t i n g  t h e  core.  

Thus, it 

P lans  ca l l  f o r  ex tending  t h i s  well by co r ing  f o r  1.8 km. The tempera- 

t u r e s  i n  t h i s  p o r t i o n  of t h e  well are expected t o  vary from 3OO0C t o  400OC.  

T h i s  formation w i l l  l i k e l y  c o n s i s t  of d i k e  swarms and metamorphosed a r g i l l a c e o u s  

material, and c u t t i n g  cores e f f i c i e n t l y  from t h i s  hard' formation a t  e l eva ted  

tempera tures  may r e q u i r e  some new c u t t i n g  technology. I t  is important t o  

no te  t h a t  c o r i n g  is i n f r e q u e n t l y  done i n  o i l  and g a s  wells due t o  t h e  increased  

d r i l l i n g  time, o p e r a t i o n a l  c o s t s ,  and chances f o r  s t i c k i n g  t o o l s  downhole. 

Thus, c o r i n g  technology is n s well advance d r i l l i n g  technology (The 

Ocean D r i l l i n g  Program ex tens ive ly  c o r e s  t h e  h o l e s  which they  d r i l l ,  and 

t h e i r  e x p e r t i s e  should be inc luded  i n  any 

i n  t h i s  area.). 

s s i o n s  o f  technology development 

I .  

Cores may be  r conventional" and 

w i r e l i n e  systems. Con 

(10-30 m long) e bottom o f  t h e  d r i l l  s t r i n g .  When c o r e  b a r r e l  is 

f u l l ,  t h e  e n t i r e  s t r i n  

o rde r  t o  e x t r a c t  

d i f f i c u l t  it is t o  i n s  

t o  c o r e  f o r  2 
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t h e  core.  

t r i p  time of  4800 hours. 

t r i p p i n g  time t o  o b t a i n  c o r e  might c o s t  a t  least $1M.  

Each round t r i p  w i l l  r e q u i r e  approximately 24 hours  f o r  a t o t a l  

Rig costs may range from 200 t o  300 $/hr. Thus 

These are n o t  firm 

time or c o s t  estimates, bu t  are presented  only t o  p o i n t  o u t  t h e  advantage o f  

a w i r e l i n e  c o r i n g  system. 

I n  a w i r e l i n e  c o r i n g  system, t h e  c o r e  b a r r e l  a lso is l o c a t e d  above 

t h e  b i t ,  i n s i d e  a s p e c i a l  s e c t i o n  of d r i l l  s t r i n g .  

system is t h e  c a p a b i l i t y  t o  r e t r i e v e  t h e  c o r e  b a r r e l  with a w i r e l i n e  from t h e  

The advantage of t h i s  

surface without t r i p p i n g  t h e  d r i l l  s t r i n g .  

w i r e l i n e  systems are t h e  small core s ize  and t h e  l i m i t e d  tempera ture  cap- 

a b i l i t i e s .  Technology development i n  t h i s  area would be very b e n e f i c i a l  t o  

The primary d isadvantages  of 

t h e  e n t i r e  program. 

s i z e s  which can be  used f o r  pre l iminary  planning. 

Table 6-1 is a list of some a v a i l a b l e  co r ing  sys t em 

An a d d i t i o n a l  f a c t o r  t o  cons ide r ,  r e g a r d l e s s  o f  which c o r i n g  system 

is used, is t h e  d r i l l i n g  f lu id -co re  i n t e r a c t i o n .  Some sort of d r i l l i n g  f l u i d  

must  be used t o  c o o l  and l u b r i c a t e  t h e  b i t  and, i f  c i r c u l a t i o n  can  be maintain- 

ed,  t o  b r i n g  t h e  c u t t i n g s  t o  t h e  surface f o r  removal. If t h e  c o r e  is permeable 

a t  a l l ,  t hen  some o f  t h e  f l u i d  w i l l  p e n e t r a t e  t h e  c o r e  and could  confuse t h e  

s c i e n t i f i c  ana lyses  o f  these co res .  

f l u i d s  are used t o  minimize t h i s  damage. 

no t  been q u a l i f i e d  f o r  h igh  tempera ture  use and t h u s  some technology develop- 

ment w i l l  be r equ i r ed  t o  realize t h i s  c a p a b i l i t y .  

In  many c o r i n g  ope ra t ions ,  s p e c i a l  

These s p e c i a l  c o r i n g  f l u i d s  have 

A s  noted i n  t h e  c h a p t e r  on Tec tonics  and Rock Mechanics, va luab le  

informat ion  can be ob ta ined  by conducting hydrau l i c  fracture experiments. Such 

experiments t y p i c a l l y  invo lve  i s o l a t i n g  an open h o l e  s e c t i o n  and then  pumping 

f l u i d  i n t o  t h i s  s e c t i o n  u n t i l  f r a c t u r e s  are formed. 

equipment r equ i r ed  f o r  t h i s  o p e r a t i o n  is t h e  packer used i n  t h e  zone i s o l a t i o n .  

An impor tan t  p i ece  of 

t 
t 
L 
I 
h 
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Table 6-1. Core Sizes* 

Nomenclature 
Minimum 

_ >  Core Diameter Hole Diameter 
in/mm in/mm 

Conventional (Long year) 

RWG 
EGW, EWM, EWL 
RWG, AWM, AWL 
BWG, BWM, BWL 
NWG, NWM, NWL * 

HWG 
2-3/4 x 3-7/8 

. *  4 x 5-1/2 
6 x 7-3/4 

0.74/18 . 7 
0.85/21.5 

1 . 66/42 0 
2.16/54.7 
3.00/76 . 2 
2.69/68.3 
3 . 97/101 
5 . 97/152 

1.19/30*1 

1.18/29.8 
1.49/37.7 
1.89/48.0 
2 . 36/60 . 0 
2.98/75.7 
3 . 91 /99 . 2 
3.88/98.4 
5 . 50/140 
7 . 75/197 

Conventional (Christensen) 

4.75/121 
4.13/105 5 . 75/146 
4.50/114 6.13/156 
4.75/121 6.25/159 
5 . 75/146 7 . 87/200 
6 . 25/159 7.87/200 
6.75/171 8.63/219 
8 . 00/203 9.63/245 

Conventional Pressure Core (Heckes) 

6 . 5/165 

1 . 06/27 . 0 1 . 89/48 . 0 
1.43/36.5 2.36/60.0 
1 . 88/47.6 2 . 98/75 . 7 
2 . 50/63 5 3 . 78/96.0 

PQ 3 . 35/85 . 0 4.83/123 

Deep Hole, Wireline (Marshall) 

Program," R, K.  Traeger, Sandia National Laboratories. 
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These packers t y p i c a l l y  provide an elastomeric seal between the  metal body 

and the borehole 

packers has been done by the Los Alamos National Laboratory i n  support o f  the 

Hot Dry Rock Program, but t h i s  development.has not been t o t a l l y  successful 

and fu r the r  e f f o r t  w i l l  be required i f  hardware i s  t o  be ava i lab le  f o r  the 

Salton Sea w e l l .  

Extensive development o f  h igh temperature, open-hole 

The above discussion h igh l i gh ts  only a few o f  the s p e c i f i c  d r i l l i n g  

technology needs required f o r  the s c i e n t i f i c  experiments. 

object ives w i l l  be met only i f  the hole i s  d r i l l e d ,  - a l l  the  attendant d r i l l i n g  

technology impacts the achievement o f  these goals. 

technology needs include: 

con t ro l  techniques, corrosion res i s tan t  metals o r  corrosion con t ro l  chemicals, 

high temperature explosives f o r  back-off shots ( t o  uns t ick  d r i l l  pipe), h igh 

temperature cements, and e f f i c i e n t  d r i l l  b i t s .  

items, ana ly t i c  software t o  p red ic t  wellbore temperatures, f l u i d  propert ies, 

and casing stress w i l l  be needed t o  def ine the environment and prevent other 

problems from occurring. Some o f  these technologies are being pursued -- both 

by the geothermal d r i l l i n g  operators and service companies and by the nat ional  

labs as pa r t  o f  the DOE-sponsored Geothermal Technology Development Program. 

However, many o f  these are new, experimental technologies and should not be 

expected t o  perform with the same r e l i a b i l i t y  as proven commercial hardware. 

Since the s c i e n t i f i c  

Examples o f  p o t e n t i a l  

h igh temperature d r i l l i n g  f l u i d s ,  l o s t  c i r c u l a t i o n  

I n  add i t ion  t o  these hardware 

6 .3  DOWNHOLE INSTRUMENTATION 

As noted i n  the  previous sections o f  t h i s  report,  many o f  the proposed 

experiments involve the use o f  downhole e lec t ron ic  packages, both special ized 

experimental t o o l s  as w e l l  as standard industry devices i n  t h i s  p a r t i c u l a r  wel l  

deserves some caution. Most o f  the geophysical logs (SP, gamma, r e s i s t i v i t y )  
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were designed f o r  t h e  o i l  i ndus t ry  ( sands ,  s h a l e s ,  e t c . )  and are not c a l i b r a t e d  

f o r  igneous or metamorphic rock. 

product ion ho le s  and may be t o o  l a r g e  f o r  t h e  smaller c o r e  hole.  

are t y p i c a l y  r a t e d  for a maximum temperature  o f  175"C, well below t h e  tempera- 

b 

Secondly, these t o o l s  were designed f o r  
b 

Thirdly,  they 

6d 

tures expected i n  t h e  bottom p a r t  o f  t h i s  hole. Some of t h e s e  convent ional  

I 
1' 
i 

I 

b 

cu 

t o o l s  and t h e i r  ope ra t iona l  limits are noted i n  Table 6-2. 

Specia l ized  logging tools ,  many f o r  s c i e n t i f i c  purposes,  have been 

developed by several government agencies ,  inc luding  t h e  USGS, Sandia Nat ional  

Laboratory,  Los Alamos Nat ional  Laboratory and t h e  Lawrence Berkeley Laboratory. 

A list of  some of t h e s e  t o o l s  is contained i n  Tables 6-3 and 6-4. 

t h e s e  t o o l s  are experimental  or one-of-a-kind and thus  may not be widely 

a v a i l a b l e .  

l i k e l y  i n s i s t  t h a t  s p e c i a l  ope ra t iona l  cons ide ra t ion  be given t o  t h e  use of 

any of t h e s e  t o o l s .  

Many of  

Also, i n  most cases t h e  agency r e spons ib l e  f o r  development would 

Noting t h e s e  lists o f  t o o l s ,  it becomes apparent  t h a t  no c a p a b i l i t y  

exists above 300°C. 

an obvious gap i n  technology exists. 

Since bottom-hole temperatures  of 4OO0C are a n t i c i p a t e d ,  

Upgrading t h e s e  t o o l s  t o  ope ra t e  a t  higher  

temperatures  is mos 

pursued. 

c e r t a i n l y  a worthwhil deavor and should be vigorously 

However, t h e  time requi red  for t h i s  development may not  be c o n s i s t e n t  

with t h e ' s c h e d u l e  for  t h e  Sa l ton  Sea well, and t h u s  o the r  op t ions  must a l s o  be 

pursued. 

One op t ion  t h a t  must certainly be considered is t h e  cool ing  of t h e  

wellbore by pumping f l u i d  down t h e  d r i l l  p ipe ,  r e tu rn ing  up t h e  annulus.  

should be appl ied  when poss ib l e ,  u t  t h e r e  are a t  least two 

p o t e n t i a l  concerns.  

t h i s  method due t o  t h e  heat-exhanger e f f e c t  of t h e  f l u i d  c i r c u l a t i n g  down t h e  

p ipe  and up t h e  annulus. A temperature  decrease  o f  50°C may be p o s s i b l e  with 

t h i s  technique,  bu t  a n a l y t i c  methods (widely a v a i l a b l e )  should be appl ied  t o  

First, deep hot  wells cannot be cooled a g r e a t  d e a l  by 
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Table 6-2. Commercially Avai lable S l i m  Hole Logging Tools* 

i Max. . Max. 
Press. Temp. 
(ksi) OF/'C 

O.D. 
( in)  Tool Type Well bore 

I 

Schlumberqer (Schlumberqer 
Services Catalog, 1978) 

R e s i s t i v i t y  

Induct ion Open 
E l e c t r i c a l  Open 
Induction-Spherically Focused Open 
Dual Induct ion Laterolog Open 
Dual Laterolog Open 
U l t ra long Spaced E l e c t r i c a l  Open 

Poros i ty  

Formation densi ty Open 
Open 

Compensated Sonic Open 
Open 
Open 

Long Spaced Sonic Open 
Compensated Neutron Open 
Natural  Gamma Open 

Temperature 

Temperature Open 
Flowmeter-Temperature Open 

D r i l l  S t r i na  

E l e c t r i c a l  
Induct i o n  
Sonic 
Neutron 
Formation Density 
Gamma Hay 
Gamma-Neutron 
Thermal Decay 

Through 
D r i l l  Stem 
D r i l l  Stem 
D r i l l  Stem 
D r i l l  Stem 
D r i l l  Stem 
D r i l l  Stem 
D r i l l  Stem 

Production Logqinq 

Continuous Flowmeter Cased 
Gradiometer Cased 
High Resolution Thermometer Cased 
F l u i d  Sampler (650 & 836 cc) Cased 
Radioactive Tracer Cased 

2-3/4, 3-7/8 
3-3/8 
3-1 /2 
3-3/8 9 3/-7/8 
3-5/8 
3-5/8 

2-3/4 
3-3/8 
1-11/16 
3-3/69 3-5/8 
2-3/4 9 3-3/8 
3-5/8 
2-3/4 
3-5/8 

1-11/16 
1-11/16 

1-1 /2 
2-3/4 
1-1 1/16 
2-3/4 
2-3/4 
2-3/4 
2-5/8 
1-11/16 

1-11/16 
1-11/16 
1-11/16 
1-11/16, 2-1/2 
1-11/16 

20 
25 
20 
20 
20 
20 

25 
20 
16.5 
20 
25 
20 
25 
20 

15 
20 

350/175 
500/260 
350/175 
350/175 
350/175 
350/175 

500/260 
400/205 
300/150 
350/175 
500/260 
350/175 
500/260 
350/175 

350/175 
500/260 

L 

t 
1 
L 
t 
L 
t 
f 
L 
t 
I 
b 
I 

20 ' 350-500/175-200 

16 300/150 
25 500/260 
25 500/260 
25 500/260 
25 500/260 
16.5 300/150 

20 350-400/175-205 

15 350-600/175-3 1 5 
15 , 350/175 
15 350/175 
10 350/175 
20 275/135 I '  

b 
~ ~~~~ * 

Slimhole Instrunentat ion,  R. I(. Traeger, Sandia National Laboratories 

t 
t 
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Table 6-2. (continued) 

Max. Max . 
Press. Temp. O.D. 

( in)  ( k s i )  'F/OC 
Tool Type Wellbore 

Loqqinq i n  Casinq 

Gamma Ray Cased 1-11/16, 2,  20 350-500/175-260 

Neuron Cased 1-11/16, 2, 12-25 350-500/175-260 
2-3/8,3-3/8 

2-3/8,3-3/8 
Thermal Neutron Decay Cased 1-1 1/16 16.5 300/150 

Dresser A t las  

E l e c t r i c a l  

Induction-Electrolog 
Dual Induct ion Focused 

Dual Later log 

Radioactive 

Compensated Neutron 
Gamma-Neutron 

Compensated Densilog 
Epithermal Neuteron 
Gamma Spectra 

Acoustic 
Acousti log 

Production Loqginq 

Nuclear F lo log  
Tracer log 
F l u i d  Density 

Temperature 

flowmeter 

F l u i d  Sampler 

Open 2.0 17 
Open 3-5/8 18 

3-3/8 25 
Open 3-5/8 20 

Open 2-3/49 3-5/8 20 
Open 1-11/16, 3-3/8 17 

2-3/41 3-3/8 
Open 3 20 
Open 3 20 
Open 3-5/8 20 

open 2-3/4 20 
3-3/89 3-7/8 20 

Cased 1-1/2 12 
Cased 1-1 /2 12 

15 

Open or 1-1/2, 1-11/16 18 
Cased 1-11/16 17 

Ope" Or 1-41/16, 1-1/8 18 Cased 
Open 1-11/16 10 

350/175 
350/175 
400/204 
400/204 

300/150 

300/150 

300/15(3 
300/150 
400/204 

450/ 
350/175 

350/175 
350/175 

400/204 

325/163 
400/204 

300/150 

300/150 
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Table 6-3. USGS Logging Tools, January 1982" L 
Temperature t Range Lo9 Type Required Hole Diameter 

son ic  r a t i o  ( fa r /near )  
son ic  d e l t a - t  

100°C son ic  waveforms 
son ic  v e l o c i t y  
son ic  amplitude 

4-1 /,It hole;  
3" i f  smooth ho le  

3 IS 

neutron count rate 
neutron po ros i ty  

gamma ray count rate 
gamma ray API u n i t s  
equiva len t  U from gamma ray 

100°C neutron API u n i t s  
3 'I 

3 

t 

L 

L 
I 
t 

1 
1 
I 
t 
I 
1 

L 

t 
I 

I '  
b 
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Table 6-3. (continued) 

1 Temperature 
id Range Log Type Required Hole Diameter 

i 1  

b self p o t e n t i a l  ( s i n g l e  poin t )  

self p o t e n t i a l  (16" d i f f e r e n t i a l )  

8" d i f f e r e n t i a l  r e s i s t a n c e  311 
16" d i f f e r e n t i a l  r e s i s t a n c e  

self p o t e n t i a l  (,Ig d i f f e r e n t i a l )  311 

300°C s i n g l e  poin t  r e s i s t a n c e  

temperature ...................................................................................... 
vertical component magnetometer 3 It d i r e c t i o n a l  survey 100°C 

t 
bd Table 6-4. DOE Logging Tools 

Temper a t  ure 275°C Los Alamos National Lab. 
Temperature 275°C Sandia National Lab. 
Temperature 1ooo"c Sandia National Lab. 
Caliper 275°C Los Alamos National Lab. 

275°C Los Alamos National Lab. Fluid Velocity 
Fluid Velocity 275°C Sandia National Lab. 
Fluid Velocity 275°C Lawrence Berkeley Lab. 
Gamma 275°C Los Alamos National Lab. 

275°C Los Alamos National Lab. 
275°C Los Alamos National Lab. 

Geophone 
Accelerometer Acoustic ' 

Acoustic Detonator 275°C Los Alamos National Lab. 
Borehole f l u i d  Sampler 300°C Lawrence Berkeley Lab. 
Borehole Televiewer 275°C Sandia National Lab. 
In-Situ Per iodic  Source 300°C Sandia National Lab. 

t 
e 
I J  

Ld 
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the s p e c i f i c  w e l l  condi t ions t o  be t te r  quant i fy t h i s  condit ion. 

option, open only i f  there i s  a h igh l y  permeable zone i n  the we l l ,  i s  t o  pump 

down the  annulus (or  d r i l l  pipe) and i n t o  the f ractured zone. This technique 

can lead t o  wellbore temperature 100" t o  150°C below the formation temperature 

i f  the f low ra tes  can be maintained a t  s u f f i c i e n t l y  h igh  levels.  

A second 

Both o f  these methods assume t h a t  the borehole cool ing does not 

a f fect  the p a r t i c u l a r  measurement *being made. This may be the case, but care 

should be given t o  assess t h i s  e f f e c t  on the c a l i b r a t i o n  o f  any tools. (Some 

formation propert ies are temperature dependent and the temperature may not be 

accurately known. ) 

I f  the hole s i ze  i s  s u f f i c i e n t l y  l a rge  (cored holes are t y p i c a l l y  

qu i te  small) some increased temperature c a p a b i l i t y  may be rea l i zed  by encasing 

the  t o o l  i n  a Dewar, and/or using some phase change mater ia l  t o  absorb the 

heat. For t h i s  method t o  be ef fect ive,  t he  downhole time must be l i m i t e d  t o  a 

durat ion such t h a t  the instrument w i l l  not exceed i t s  rated operating tempera- 

ture. 

Dewar, t h i s  time period w i l l  vary from a few hours t o  a day. 

add i t i ona l l y  l i m i t e d  because many sensors must be exposed t o  the downhole 

enviornment i n  order t o  make the necessary measurement. 

conducted extensive development i n  t h i s  area. 

Depending on the  phase change material,  con f igura t ion  and s i ze  o f  the  

This technique i s  

The Los Alamos Lab has 

In  add i t ion  t o  the tools,  the cable and cablehead (connector from 

t o o l  t o  cable) have inherent temperature l im i ta t i ons .  

from the use o f  elastomeric mater ia ls used as seals and insulators.  Both 

Sandia and Los Alamos Nat ional  Labs have done extensive development i n  t h i s  

area, and there are now cableheads which can operate i n  the 250" t o  300°C 

range. However, f u r the r  development may be required since these cableheads 

must be designed t o  i n te r face  with each downhole too l .  Conducting w i re l i ne  

These l i m i t a t i o n s  der ive 
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systems may prove t o  b e  t h e  l i m i t i n g  f a c t o r  i n  t h e  deep, ho t  po r t ion  o f  t h e  

well. S i n g l e  conductor,  h igh  temperature ( 300°C) c a b l e s  are available from a 

few commercial s e r v i c e  companies. 

t empera ture  w i r e l i n e  u n i t s  with seven conductor c a b l e s  capable  o f  250"-300°C 

Los Alamos Nat iona l  Labs has  two high 

ope ra t ion ,  b u t  no commercial ve r s ion  of t h i s  t ype  is known t o  be ava i l ab le .  

6.4 CONCLUSIONS 

The oppor tun i ty  t o  collect d a t a  from a deep, ho t  borehole is an e x c i t i n g  

one, and every  effort  should be  made t o  i n s u r e  t h a t  t h e  s ta te -of - the-ar t  i n  

engineer ing  technology is brought t o  bear  t o  achieve  t h i s  goal.  

engineer ing  c a p a b i l i t i e s  may be  d iv ided  i n t o  three b a s i c  temperature ranges: 

20" t o  15OoC, 150°C t o  3OO0C, 300°C and g r e a t e r .  

These 

I n  t h e  low tempera ture  

a great deal o f  commercially a v a i l a b l e  technology and most 

s c i e n t i f i c  experiments should n o t  b e  l i m i t e d  by t h e  a v a i l a b i l i t y  o f  equipment. 

I n  t h e  range  of 150°C t o  300°C t h e r e  is l i m i t e d  commercially a v a i l a b l e  

technology and l i m i t e d  f f l abora to ry f f  available technology. 

conducted i n  t h i s  regime w i l l  undoubtedly be l i m i t e d  by t h e  tempera tures ,  b u t  

w i t h  proper technology development and innova t ive  use of e x i s t i n g  equipment 

Experiments t o  be  

o f  t h e  experiments is poss ib l e .  There is almost no c a p a b i l i t y  

e r a t u r e  range w i l l  r e q u i r e  long-range 

xperiments and instrumenta- 

t i o n  development shou l  

of efforts and t h e  expense of redundant equipment purchase. 

an  a t tempt  t o  s t a n d a r d i z e  cableheads  and seals, and t h e  purchase and shared 

use  o f  a high tempera ture  c a b l e ,  should be pursued. 

programs are planned which involve  experiments a t  temperatures above 300"C, 

t hen  engineer ing  technology programs t o  meet t h e s e  s c i e n t i f i c  needs should 

be s t a r t e d  now, i n  o r d e r  t o  be  a v a i l a b l e  i n  t h e  fu tu re .  

coord ina ted  t o  avoid unnecesary d u p l i c a t i o n  

A t  t h e  v e r y  least 

If f u t u r e  deep h o l e  
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