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Nonlinear tearing stability is evaluated for current profiles which are lin­
early stabilized by flattening the current in the neighborhood of the rational 
surface. When marginally stable to the linear instability, these profiles re­
main unstable in the presence of a small but finite island. The growth of 
the island saturates only when the island reaches the width it would have 
attained in the absence of flattening. Implications are discused for proposed 
methods of tearing mode stabilization and for theories of the tokamak saw­
tooth oscillation. 
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Investigations of linear tearing mode siabiliiy have often been led to con­
sider current density profiles with reduced gradients, or entirely flattened 
currents, in .some neighborhood of the low order rational surfaces. This sort 
of profile emerges naturally when one attempts to construrl tearing stable 
current profiles'•* because of the sensitivity of linear tearing modes to the 
current gradient near the rational surface. Analysis of experimental data 
also leads to a consideration of currenl density profiles of this sort. 3 In this 
paper we determine the nonlinear stability of tearing modes for current pro­
files which have been linearly stabilized by flattening in the vicinity of the 
rational surface. We find that profiles which are marginally stable to linear 
tearing modes are nonlinearly unstable in the presence of small but finite 
islands. The growth of the islands saturates only when they reach the width 
they would have attained in the absence of flattening. 

One conclusion that emerges from this work is that the use of a linear 
stability analysis as a guide to construct tearing stable current profiles is in­
adequate and can be misleading. Current profile modifications suggested by 
a linearized stability analysis often lead to a linearly stable but nonlinearly 
fragile equilibrium, formed by the bifurcation of the initially unstable ax-
isymmetric equilibrium into a stable axisymmetric equilibrium and a nearby 
unstable nonaxisymmetric equilibrium. 

For experimentally determined current profiles which are flat near the 
rational surface, we conclude that a linear stability analysis tells only part 
of the story. A linearly stable profile can be unstable to small but finite 
perturbations. The growth rate can increase rapidly as the island grows, 
giving a growth time much shorter than would otherwise be expected from 
a tearing mode going through marginal stability. As we will discuss, this 
suggests a possible resolution of one mystery that has arisen in connection 
with tokamak sawtooth oscillations.4 

For our nonlinear analysis of tearing modes, we use Rutherford's theory 
of nonlinear tearing mode growth" and the quasilinear theory of tearing mode 
saturation of White et aL6 Valid for small (but finite) islands, the quasilinear 
theory of tearing mode saturation was shown to agree well with numerical 
calculations. As we will discuss, our conclusions rely on the quasilinear sat­
uration mechanism, but are not sensitive to the detailed assumptions made 
in Ref. 6 in calculating saturated island widths. Our analysis does not in­
clude finite 8. We neglect toroidal effects in the island, but do not preclude 
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toroidal effects on A'. 
Because our analysis does n»l preclude toroidal effects on A', wr will be 

able ti> discuss the n — I. m - I mode. The growth rate tif small n •_ J, 
m - 1 islands near marginal stability is small, so inertia can be neglected. 
and Rutherford's analysis, can be applied. 

To establish the basic ideas, we first consider a slab model. The analysis is 
then redone in cylindrical geometry, where there are some additional wrinkles 
that enhance the effect. Finally, we discuss the implications of our results. 

We first consider slab geometry. Equilibrium quantities are functions only 
of x, and are symmetric about x = 0. The poloidal flux is expressed as the 
sum of an equilibrium part and a perturbation, 

i>(x) = ri!a{x)-t}>i{x)cos(ky). (I) 

There is no z dependence. 
Stability of the tearing mode is expressed in terms of the solution of the 

equation for the exterior region, 

< - ArV, = -W0)il>u (2) 

where jo(x) is the equilibrium current density and the prime denotes d/dx. 
Following Ref. 6 we define 

X(w) = [#(»••) - A ' ( - w ) ] M ( * = 0). (3) 

For u' = 0. this corresponds to the conventional A' used in linear stability 
analysis.' 8 The tearing mode is linearly unstable when A'(0) > 0, and lin­
early stable when A'(0) < 0. Stability of the linearized equations does not, 
however, preclude the possibility that a small but finite island will grow. 

The analysis of Ref. 6 shows that the growth of thin islands is governed 
by the equation 

dwjdt = 1.667[A'(w)- aw], (4) 

where w is the width of the island (assumed to be greater than the width of 
the resistive layer), 17 is the local resistivity, and a is a complicated expression 
depending on V<o and jo- It follows that the island growth saturates when 

A'(tr) - aw = 0. (5) 
1 
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For current profiles of practical interest the contribution of a is small . 9 1 0 and 
the saturation condition is well approximated by 

-V(u-) (I. (0) 

The nonlinear stability of small but finite islands is determined by the quan­
tity A'(irJ. We will see that it is possible to have A'(0) < 0 while A'(ir) > 0 
for some small value of u\ When this is the case, any small islands which are 
present will grow, regardless of the linear stability. 

The analysis of this paper relies on the saturation condition of Eq. (6), 
and on the observation that an island of width w grows when A'(w) > 0 
(more precisely, when A'(u>) - aw > 0). We neglect a. We make no use of 
the value of the coefficient in front of the right-hand side of Eq. (4). Nor do 
we use the value of o calculated in Ref. 6, except insofar as it demonstrates 
that the a term may be neglected. Our conclusions are, therefore, insensitive 
to the assumptions concerning the current profile in the island, etc. made in 
Ref. 6 to calculate these quantities. 

Now suppose that our equilibrium current profile, j 0 ( i ) , has been flat­
tened in the region —Xj < x < i , . For \x- < xt, the solution to Eq. (2) can 
be expressed as, 

Vt = .-tcoshfta) _r Bsinh(fci). 

where the plus (minus) signs correspond to x > 0 (x < 0). Substituting this 
into Eq. (3), we get 

A'(u-) = 2fc(Ccosh(/!iii) -f- sinh(fcui) , 

for 0 < w < ?,, where C = AjB. Solving for C in terms of A'(0) gives 

A'(u>) = [A'(0) + 2*tanh(&«.): cosh(Aw) (7) 

for 0 < w < »,. In this equation, the quantity in square brackets is a 
monotonically increasing function of w. 

Figure 1 is a sketch of A'(u;). (The case shown corresponds to A'(0) < 0.) 
For w > Z], A'(u?) has the same value as it does in the absence of the 
flattening (assuming that the equilibrium current profile is unchanged for 
ix; > tfi). For w < a:], A'(u>) is governed by Eq. (7). The value of A'(0) 
is determined by demanding continuity at «.• = Xj. As x^ is increased (i.e. 
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the region over which the current is flattened is increased in size), -V(0) is 
decreased. The discontinuity in the derivative of -Y(u') at «• = i , is caused 
by the discontinuity of j at .;• u-, in our analytically soluble model. We 
could clearly smooth the current profile in the neighborhood (>r j ' = xj, and 
thereby remove the discontinuity in the derivative of A', without changing 
the value of _V very much. 

When the linearized tearing mode is marginally stable, -V(IZJ) is positive 
for 0 < w < x\. An island whose width is greater than that of the resis­
tive layer is nonlinearly unstable, and it continues to grow until its width 
is greater than the width over which the current profile has been flattened. 
When the island width is greater than xi, A'(tn) has the same value as it 
does in the absence of the flattening. The island growth saturates when the 
island reaches the width it would have attained in the absence of flattening. 
Although flattening the current profile in the neighborhood of the rational 
surface has stabilized the linear tearing mode, it has had no effect at all on 
the saturated island width. 

A slight further increase in x, {the width of the region over which the cur­
rent profile is flattened) makes A'(0) negative but small. (This corresponds 
to the case shown in Fig. 1.) There is now a small but finite critical island 
width, wc. An island whose width is less than wc shrinks. An island whose 
width is just above wc grows, and saturates only when it reaches the width it 
would have attained in the absence of flattening, w,. An island whose width 
is exactly equal to wc represents an unstable nonaxisymmetric equilibrium. 

Equation (7) gives 

wz = tamV 1 ;-.V(0)/2fc]/fe »= -A'(0)/(2fc 2). 

When wc = xj. -V(u>) < 0 throughout the region w <-xl, and the tearing 
mode is completely stable. This corresponds to flattening the current profile 
over a region whose width is equal to that of the saturated island in the 
absence of flattening. In practice we may be satisfied with a smaller value of 
wc, depending on the magnitude of the resonant perturbation. 

To suppress the tearing mode, it is desirable to modify the current pro­
file in such a way that the saturated island width is reduced. When the 
tearing mode is completely stabilized, the stable equilibrium corresponding 
to the saturated island merges with the unstable axisymmetric equilibrium 
to produce a robustly stable axisymmetric equilibrium. If we flatten the 
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current profile in a small region about the rational surface, in contrast, we 
decrease -Y(0) without afferting the saturated island width. As we increase 
the width m-er which the current profile is flattened, we further decrease 
A'(0) until we reach marginal stability for the tearing mode, still without 
affecting the saturated island width. At marginal stability, the unstable ax-
isymmetric equilibrium bifurcates to a stable axisymmetric equilibrium and 
a nearby unstable nonaxisymmetric equilibrium. The unstable equilibrium 
has an island of width uy. Although the axisymmctric equilibrium is now 
stable, it remains sensitive to small but finite perturbations until the profile 
is flattened further. The linear stability analysis provides a poor guide to the 
suppression of tearing. We will see that the linear stability analysis leads us 
even further astray in the cylinder. 

For our analysis, we have adopted an analytically soluble model with 
jo(x) - 0 for \x\ < X]. It is clear from Eq. (2) that nothing singular happens 
in the limit as j'0(x) approaches zero. If we had instead imposed a current 
profile with a small but nonvanishing gradient in the region \x: < i , , the 
results would not be very different. 

The slab model has been useful for establishing some of the basic ideas we 
wish to present, but it cannot be used to get a feeling for the magnitude of the 
effect in cases of practical interest. We will see next that the effect is greatly 
enhanced when the initial (unflattened) current profile has a nonvanishing j ' 0 

at the rational surface. 
We now extend our analysis to cylindrical geometry, with the ordering 

B, ;» Be assumed. Equilibrium quantities are functions only of T. Perturbed 
quantities are functions of r and md -*• kz. The helical symmetry allows the 
introduction of a helical flux function, 

ii>(r) = TJj0(r) - ^i(r)cos(m#-r kz). (8) 

Stability of the tearing mode is determined by the solution to 

* i ' * - t f - ^ , =-$*•!, (9) 
where the prime now denotes d/dr. For the cylinder we define 

A » = , ;<(r 0 - w) - t£|(r 0 - w)JM(ro) , (10) 

where r0 denotes the location of the rational surface. 
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In the cylinder there is no symmetry about the rational surface, so that 
i ' ( j ( , - ir) =? i'(fr„ - w) in general, We define the quantity 

JS(U-) = (1/2) i - > 0 - u) - v\(r„ u-| v , ( r u ) . (11) 

(Our definitions of s[ui) and A'(tr) differ slightly from those of Ref. 6. The 
definitions are equivalent to the order of w we retain, and our form of the 
definitions will be more convenient for our purposes.) We can express ip\ jv\ 
in terms of A'(u;) and s(w). 

V'U>-o =: u.)/«,(ro) = »(w) ± ^A'(iu). (12) 

When jo is nonvanishing at the rational surface, Eq. (9) has a singularity 
there. The singularity dominates in the evaluation of s(w), and allows us to 
obtain an analytical expression for this quantity, 6 

S{w)^-{j'J^)Hw), (13) 

where the radial derivatives in this expression are evaluated at the rational 
surface, and we have used the approximation ipo{r) % (l /2)(r - r 0) 2^i 0 ' for 
r — r0 small. If ja(r) is a decreasing function of r, j^/iffi is a negative quantity. 

Suppose that the current profile is flattened in the region r0 — 6_ < r < 
r0 + 6_, with b- > 0. The solution to Eq. (9) gives 

^ ( r ) M ( r o ) = m(C±r"'-1 - r - " I " 1 ) / ( C ± r ^ + r 0 " m ) , (14) 

where the plus and minus signs correspond, respectively, to the regions To < 
r < rQ + <L and r0 - 6_ < r < rQ. The coefficients C_ and C+ can be 
determined in terms of the A' and s functions of the original (unflattened) 
current profile by matching at ra ± &± using Eq. (12), 

m(r0 ± ff±)-"-' -f ispfe) = Aj(f a ) /2]r 0 -" 

where the "0" subscripts on 5 and A' refer to the original current profile. 
We can use Eqs. (14) and (15) to determine the effect of the flattening 

on A'(0). For £-. small we find that 

A'(0) * ( l / 2 ) [ A i ( M -r X(S-)\ - (iiAtfJlnt**/*-) 



We have discarded here terms of order 6- and £~ ln(<̂ _ /S_). The easiest way 
to make Eq. (16) negative is to take 6_/e_ small (subject to the constraint 
thai <5_ is greater than the width of the resistive layer). The In(^„/£_ ) term 
then dominates. Flattening the current profile also reduces A'(0) due to 
the 61n(6) terms, and due to the fact that A'(ti') is in general a decreasing 
function of w for the unflattened current profile. The linear tearing mode can 
be stabilized by flattening the current profile over a narrow region if 5+/6_ 
is sufficiently small. 

.Now we again consider what happens near marginal stability. Using Eqs. 
(13-15), assuming S-. small, and expanding to first order in w. we find 

±'(v) = A'(0) + (2m 2/r„ + ( j £ / < ) ln(6+S_ ))w/r0, (17) 

for ir < min(S-,S+). We have retained the 2m2w/r^ term in this expression 
to make contact with the corresponding expression for the slab, Eq. (7), 
when Jo ~~* 0. For nonvanishing j ' 0 , the term proportional to j ' 0 dominates 
at small S. As in the slab, A'(w) is an increasing function of w for small w. 
At marginal stability, the tearing mode is again nonlinearly unstable for an 
island of small but finite width. For A'(0) negative, hut small, there is again 
a critical island width above which islands grow and below which they shrink. 
The rate of increase of A'(u>) with w is larger than in the slab, leading to 
smaller values of the critical island width wc. Equation (17) breaks down 
when A'(0) becomes sufficiently negative that wc > min(£_,5+). If 6 +/£_ 
is small and (5. is smaller than the width of the saturated island, there 
is still a critical island width wc < <5_ above which the mode is nonlmeariy 
unstable. A'(ui) is then unchanged from the initial unflattened current profile 
for w > i5_. The island continues to grow until it attains the width it would 
have reached in the absence of flattening. 

As a guide to construct tearing stable current profiles, the results of the 
linear stability analysis are now even more troubling than in the case of the 
slab. For the slab the linear stability analysis was at least leading us in the 
right direction. It suggested that the tearing mode would be stabilized if 
we flattened the current profile over a sufficiently broad region in the neigh­
borhood of the rational surface, although it did not correctly determine how 
broad that region needs to be. For the cylinder, Eq. (16) suggests a strategy 
of nonsymmetric flattening over a very narrow region. By decreasing fi+, 
we make A'(0) increasingly negative for a fixed value of S- (subject to the 
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constraint that 8+ remain larger than the width of the resistive layer). This 
leads to no improvement in the nonlinear stability. 

We now consider the implications of our results. A linearized stability 
analysis assumes that modes are initially excited by infinitesimal perturba­
tions. In practice we expect islands of finite width to exist in tokamaks, 
arising from field errors or originating in the tokamak start-up scenario. We 
must ask whether these finite perturbations grow or shrink. In addition, if 
we propose to use external means, such as rf, to modify the current profile 
and thereby control tearing modes, we must also consider the islands that 
begin growing before the profile is modified. 

In general, in applying any linearized stability analysis we implicitly as­
sume that the stability properties are not sensitive to the amplitude of the 
initial perturbation. However, linear tearing stability is sensitive to small 
changes in the current in the neighborhood of the rational surface- This cur­
rent does not enter into the stabilitv for a finite width island. There is cause 
for concern that a linearized analysis does not adequately represent the true 
stability of tearing modes. Our results show that such concern is justified 
for current profiles which are flat, or nearly flat, in the neighborhood of the 
rational surface. Linear stability can sometimes be a poor guide to the true 
stability properties of tearing modes. 

Our conclusions bear particularly on attempts to use a linearized anal­
ysis to determine the nonlinear evolution of the plasma, One approach to 
studying the effects of plasma instabilities is to assume that the presence 
of instability causes the plasma to evolve to a marginally stable state. If 
the assumption is valid, it allows us to say a good deal about the nonlinear 
evolution of the instability in terms of its linearized stability properties. Our 
results indicate that this assumption is not valid for tearing modes. We might 
try to represent roughly a magnetic island of width 2w in an axisymmetric 
equilibrium by flattening the current profile from r 0 — w to r 0 + w, where r0 

is the radius of the rational surface.1 1 As we have seen, the further growth 
of the island is not well represented by the linear stability properties of the 
resulting axisymmetric equilibrium. Moreover, in flattening symmetrically 
from ro — w to r 0 + w, we already make use of the results of a nonlinear anal­
ysis. The linearized analysis alone suggests a nonsymmetric flattening about 
the rational surface. When the flattening of the current profile is caused 
by stochastic regions due to island overlap, there are similar objections to 
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applying a linearized stability analysis. 
\ o r is a linear analysis a useful guide if we \van1 to modify the equilibrium 

current profile of a tokamak by external means. We now have some capability 
to control the current profile using auxiliary heating and nonohmic current 
drive. There have been a number of theoretical studies of tearing mode stabi­
lization via current profile control, both in the context of particular schemes 
for modifying the current profile, 1^ 1 6 and in the context of a more general 
characterization of stable profiles.1 , 2 Some of these studies have calculated the 
nonlinearly saturated island width, while other studies have relied on a linear 
analysis. Generally speaking, the nonlinear saturation has been calculated 
in studies where a computationally expensive mode) was used to determine 
the current profile modification, so that the nonlinear calculation represented 
a small additional effort. (Some of the studies, however, focused on effects 
due to current profile modification in the island, 1 3 , 1 4 and were therefore in­
trinsically nonlinear.) Studies which have attempted to map the stability 
boundaries for a range of parameters, or have looked at stability for a large 
range of different mode numbers, have generally relied on a linear stability 
analysis. It has been recognized that a nonlinear stability analysis is prefer­
able to a linear analysis when the incremental computational effort required 
is small. There has not been a recognition of the dangers inherent in relying 
on a linear analysis as a guide to current profile modification. The linear 
analysis suggests a nonsymmetric flattening of the current profile in a small 
region about the rational surface as an efficient method of controlling the 
tearing mode. A nonlinear analysis shows that, as a result of this strategy, 
the unstable axisyrrmetric equilibrium bifurcates into a stable axisymmetric 
equilibrium and a nearby unstable nonaxisymmetric equilibrium. The ax­
isymmetric equilibrium is stable but fragile. Perturbations large enough to 
push the system over the small potential hill to the nearby nonaxisymmetric 
equilibrium are unstable. A small but finite island grows, and saturates only 
when it attains the width it would have reached in the absence of flatten­
ing. We remark that to determine properly the nonlinear evolution of an 
island in the presence of nonohmic current drive, it is necessary to modify 
the quasilinear analysis to take into account the nonohmic current. 1 3 

For experimentally determined current profiles which are flat near the 
rational surface, our results suggest that a linear stability analysis tells only 
part of the story. In Ref. 3, current profiles are inferred from experimental 
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measurements and adjusted slightly, within the experimental error bars, to 
give linear tearing stability. Near the q - ] surface the current is nearly flat. 
(Because of toroidicity. j is nut a constant <>n the flux surfaces, nor is the 
gradient of j . ) The flattening is primarily on the inner side of the rational 
surface. In the notation of this paper, t. <K 6 . Although an island at the 
q ~ 1 surface could, in principle, cause a flat spot to appear in the measured 
curre"t profile there, the experimental measurements indicate that there is 
no suable island at 'he q = i surface, and that the flattening of the current 
is (at least approximately) axisymmetric.' 7 

For the n = 1, m - 1 tearing mode, toroidal effects must be retained 
in A', which is otherwise infinite. The toroidal effects may be neglected in 
a narrow island if the aspect ratio at the q = 1 surface is sufficiently lirge. 
Similarly, toroidal effects may be neglected in a narrow region of flattened 
current about the 9 = 1 surface. The approximations we have made in this 
paper do not preclude treatment of the n = 1, m = 1 mode. 

The profile of Ref. 3 is marginally stable to an n = 1, m. = 1 tearing mode. 
Our results suggest that the stability in this case is a fragile one. A small 
island will grow, (This is consistent with a nonlinear numerical calculation, 
in which a small island was observed to grow, accelerate, and reconnect 
through the magnetic axis. 1 8) As long as the island is sufficiently narrow. 
the growth rate remains small and inertia may be neglected. The nonlinear 
Rutherford analysis employed in this paper remains valid. When the growth 
rate becomes sufficiently large that inertial effects become important, the 
mode is no longer in the domain of validity of our analysis. 

These conclusions suggest a possible resolution of one mystery that has 
arisen in connection with the sawtooth oscillation in tokamaks.4 A new gen­
eration of experiments on large tokamaks has found sawthooth crash times 
too fast to be accounted for by the Kadomtsev 1 9 model. Models to account 
for this behavior are fundamentally limited by the Alfven time scale. This 
is not in itself inconsistent with the experiments. The problem is that any 
such model must account for how the system goes through marginal stabil­
ity. At any given time, the growth rate in such a model is 7 = a(t)r,i, where 
a(t) <g 1 measures how far the system has gone through marginal stability, 
and r^ is the Alfven time scale. For example, if we think of q as being the 
trigger for the instability, then a(t) — bqjq measures how far the q profile 
has evolved past its critical value. A quantity such as q which is tied to the 
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global current profile evolves on a resistive time scale, a ~ t /TR. We there­
fore obtain an e-folding time intermediate between the resistive and Alfven 
time scales, even if the instability itself can grow on an Alfven time scale. 
An instability model of this sort does not in itself resolve the difficulties in 
interpreting the experimental data. 

The scenario we have described in this paper suggests one way out of this 
dilemma. It shows that the plasma can maintain a metastable state while a 
potential hill is being built up. Starting from a profile of the sort described 
in Ref. 3, the passage through marginal stability is now associated with a 
rapid increase in A'(u/) as the island width increases. 

The subsequent evolution of the fast crash is beyond the scope of this 
paper. A flat current profile is not itself sufficient to give a fast crash. It is 
still necessary to explain why the subsequent evolution occurs on a fast time 
scale. Various models have been invoked to explain this, involving a large 
localized anomalous resistivity, the onset of large scale stochasticity, or a 
transition to an ideal instability. The point is that none of these mechanisms 
is in itself capable of giving a fast crash. It is still necessary to explain 
the rapid passage through marginal stability. Our scenario does provide a 
possible explanation of this. 

In conclusion, the results of this paper suggest that studies of tearing 
mode stabilization via profile control, and studies attempting to characterize 
tearing stable profiles, should not rely on a linear stability analysis alone. We 
have also found that a flattening of the current profile at the rational surface 
allows a metastable state to be maintained while a large potential hill builds 
up for the tearing mode. This can allow the tearing mode to pass quickly 
through marginal stability, giving rapid growth. 

This paper has benefited from discussions with Don Monticello and Wolf­
gang Stodiek. The work was supported by the United States Department of 
Energy under Contract DE-AC02-76-CHO-3073. 
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Figures 

FIG. 1. Sketch of _V(u) for the slab model. The case shown corresponds to 
A'(0) > 0. There is a critical island width. u-c. above which the island 
grows. The growth of the island does not saturate until it reaches the 
width it would have attained in the absence of flattening. w3. 
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