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Nonlinear Tearing Instabilities in Tokamaks
with Locally Flattened Current Profiles
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Nonlinear tearing stability is evalnated for current profiles which are lin-
early stabilized by flattening the current in the neighborhood of the rational
surface. When marginally stable to the linear instability, these profiles re-
main unstable in the presence of a small but finite island. The growth of
the island saturates only when the island reaches the width it would have
attained in the absence of flattening. Implications are discused for proposed
methods of tearing mode stabilization and for theories of the tokamak saw-

tooth oscillation.
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Investigations of linear tearing mode stability have often been led to con-
sider current density profiles with reduced gradients. or entirely flattened
currents. in some neighborhood of the low order rational surfaces. This sort
of profile emerges naturally when one attempts to construct tearing stable
current profiles'? because of the sensitivity of linear tearing modes to the
current gradient near the rational surface. Analvsis of experimental data
also leads to a consideration of currem density profiles of this sort.? In this
paper we determine the nonlinear stability of tearing modes for current pro-
files which have been linearly stabilized by flattening in the vicinity of the
rational surface. We find that profiles which are marginally stable to linear
tearing modes are nonlinearly unstable in the presence of small but finite
islands. The growth of the islands saturates only when they reach the width
they would have attained in the absence of flattening.

One conclusion that emerges from this work is that the use of a linear
stability analysis as a guide to construct tearing stable current profiles is in-
adequate and can be misleading. Current profile modifications suggested by
a linearized stability analysis often lead to a linearly stable but nonlinearly
fragile equilibrium. formed by the bifurcation of the initially unstable ax-
isvmmetric equilibrium into a stable axisvmmetric equilibrium and a nearby
unstable nonaxisymmetric equilibrium.

For experimentally determined current profiles which are flat near the
rational surface, we conclude that a linear stability analysis tells only part
of the story. A linearly stable profile can be unstable to small but finite
perturbations. The growth rate can increase rapidly as the island grows,
giving a growth time much shorter than would otherwise he expected from
a tearing mode going through marginal stability. As we will discuss, this
suggests a possible resvlution of one mystery that has arisen in connection
with tokamak sawtooth oscillations.?

For our nonlinear analysis of tearing modes. we use Rutherford’s theory
of nonlinear tearing mode growth® and the quasilinear theory of tearing mode
saturation of White ef aL® Valid for small {(but finite) islands. the quasilinear
theory of tearing mode saturation was shown to agree well with numerical
calculations. As we will discuss. our conclusions rely on the quasilinear sat-
uration mechanism, but are not sensitive to the detailed assumptions made
in Refl. 6 in calculating saturated island widths. Our analysis does not in-
clude finite 8. We neglect toroidal effects in the island, but do not preclude



toroidal effects on A'.

Because our analvsis does not preclude toroidal effects on Y. we will be
able to discuss the n = 1. m = | mode. The growth rate of small i~ |,
m = | islands near marginal stability is small. so inertia can be neglected.
and Rutherford’s analvsis can be apphed.

Ta establish the basic ideas. we first consider a slab model. The analysis is
then redone in cylindrical geometry, where there are some additional wrinkles
that enhance the effect. Finaliv. we discuss the implications of our results.

We first consider slab geometry. Equilibrium quantities are functions only
of z, and are symmetric about £ = 0. The poloidal flux is expressed as the
sum of an equilibrium part and a perturbation,

¥(z) = ¢olz) - ¥u(z) coslky). (1)

There is no = dependence.
Stability of the tearing mode is expressed in terms of the solution of the
equation for the exterior region,

= KU = (ol ¥ 2

where jo(z) is the equilibrium current density and the prime denotes d/dz.
Following Ref. 6 we define

N(w) = () — {~w)l/vn(z = 0). (3)

For uw = 0. this corresponds to the conventional A’ used in linear stability
analysis.”® The tearing mode is linearly unstable when A'(D) > 0, and Lin-
early stable when A’(0) < 0. Stability of the linearized equations does not,
however. preclude the possibility that a small but finite island will grow.
The analysis of Ref. 6 shows that the growth of thin islands is governed
by the equation
dw/dt = 1.66n[A' (w) - aw), (4)

where w is the width of the island (assumed to be greater than the width of
the resistive layer), 5 is the Jocal resistivity. and a is a complicaled expression
depending on ¥ and jo. It follows that the island growth saturates when

Al'lw) — aw = 0. (5)



For current profiles of practical interest the contribution of a is small.®!% and
the saturation condition is well approximated by

Ny 0, (G)

The nonlinear stability of small but finite islands is determined by the quan-
tity A{w). We will see that it is possible to have A'(0) < 0 while A'(uw) > 0
for some small valuc of w. When this is the case, any small islands which are
present will grow. regardless of the linear stability.

The analysis of this paper relies on the saturation condition of Eq. (6),
and on the observation that an island of width w grows when A'(w) > 0
(more precisely, when A’(w) — aw > 0). We neglect o. We make no use of
the value of the coefficient in front of the right-hand side of Eq. (4). Nor do
we use the value of a calculated in Ref. 6, except insofar as it demonstrates
that the a term may be neglected. Our conclusions are, therefore, insensitive
to the assumptions concerning the current profile in the island, etc. made in
Ref. 6 to calculate these guantities.

Now suppose that our equilibrium current profile, jo(z), has been flat-
tened in the region —z; < & < ;. For |z- < z,, the solution to Eq. (2) can
be expressed as,

¥, = Acosh(kr) - Bsinh{kz).

where the plus (minus) signs correspond to z > 0 (z < 0). Substituting this
into Eq. (3), we get

A'(w) = 2k{C cosh(kw) + sinh{kw) ,
for 0 < w < z|, where C = A/B. Solving for C in terms of A'(0} gives
A'(w) = [A'(0) + 2k tanh(kw): cosh(kw) (7

for 0 < w < z;. In this equation, the quantity in square brackets is a
monotonically increasing function of w.

Figure 1 is a sketch of A’(w). (The case shown corresponds to N'(0) < 0.)
For w > z;, A'(w) has the same value as it does in the absence of the
flattening (assuming that the equilibrium current profile is unchanged for
iz > ;). For w < zy, A'(w) is governed by Eq. (7). The value of A'{0)
is determined by demanding continuity at w = x;. As z, is increased (i.e.



the region over which the current is flattened is increased in size), A(0} is
decreased. The discontinuity in the derivative of N{w) at w = @, is caused
I the discontinuity of ' at & - =r, in onr analytically soluble model. We
could clearly smooth the current profile in the neighborhood of » = zy, and
thereby remove the discontinuity in the derivative of A'. without changing
the value of A very much.

When the linearized tearing mode is marginally stable, A'(w) is positive
for 0 < w < x,. An island whose width is greater than that of the resis-
tive laver is nonlinearly unstable. and it continues to grow untii its width
is greater than the width over which the current profile has been flattened.
When the island width is greater than z;, A'(w) has the same value as it
does in the absence of the flattening. The island growth saturates when the
island reaches the width it would have attained in the absence of flattening.
Although flattening the current profile in the neighborhood of the rational
surface has stabilized the linear tearing mode, it has had no effect at all on
the saturated island width.

A slight further increase in z, {the width of the region over which the cur-
rent profile is flattened) makes A(0) negative but small. (This corresponds
to the case shown in Fig. 1.) There is now a small but finite critical island
width, w.. An island whose width is less than u:. shrinks. An island whose
width is just above w. grows, and saturates only when it reaches the width it
would have attained in the absence of flattening, w,. An island whose width
is exactly equal to w, represents an unstable nonaxisymmetric equilibrium.

Equation (7) gives
w, = tanh™' —A'(0)/2k] /k = - A'(0)/(2K?).

When w, = z;. A (w) < 0 throughout the region w <.z,, and the tearing
mode is completely stable. This corresponds to flattening the current profile
over a region whose width is equal to that of the saturated island in the
absence of flattening. In practice we may be satisfied with a smaller value of
w,., depending on the magnitude of the resonant perturbation.

To suppress the tearing mode, it is desirable 1o modify the current pro-
file in such a way that the saturated island width is reduced. When the
tearing mode is completely stabilized, the stable equilibrinm corresponding
to the saturated island merges with the unstable axisvmmetric equilibrium
to produce a robustly stable axisymmetric equilibrium. If we flatten the



current profile in a small region about the rational surface. in contrast. we
decrease N'(0) without affecting the saturated island width. As we increase
the width over which the curremt profile is flattened. we further decrease
A(0) until we reach marginal stability for the tearing mode. still without
affecting the saturated island width. At marginal stability. the unstable ax-
isymmetric equilibrium bifurcates 10 a siable axisymmetric equilibrium and
a nearby unstable nonaxisymmetric equilibrium. The unstable equilibrium
has an island of width w.. Although the axisymmetric equilibrium is now
stable. it remains sensitive to small but finite perturbations until the profile
is flattened further. The iinear stability analysis provides a poor guide to the
suppression of tearing. We will see that the linear stability analvsis leads us
even further astray in the cylinder.

For our analysis, we have adopted an analytically soluble model with
Jolz) = 0for iz| < z;. It is clear from Eq. {2) that nothing singular happens
in the limit as j{(z) approaches zero. If we had instead imposed a current
profile with a small but nonvanishing gradient in the region iz' < z,, the
results would not be very different.

The slab model has been useful for establishing some of the basic ideas we
wish to present. but it cannot be used to get a feeling for the magnitude of the
effect in cases of practical interest. We will see next that the eflect is greatly
enhanced when the initial (unflattened) current profile has a nonvanishing 3
at the rational surface.

We now extend our analysis to cvlindrical geometry, with the ordering
B, > By assumed. Equilibrium quantities are functions only of 7. Perturbed
quantities are functions of r and m# + kz. The helical symmetry allows the
introduction of a helical flux function,

¥(r) = Yo(r) — ¥ (r) cos(m@ + kz). (8)
Stability of the tearing made is determined by the solution to
14t 1 m? .

A Y - — = _.‘E). '
¥y - rul 2 ¥ = 61”1& (9)

where the prime now denotes d/dr. For the cvlinder we define
Alw) = Wi(ro ~ w) = ¢y (ro — w)}/wi{ra), (10)

where ry denoles the location of the rational surface.
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In the cvlinder there is no svmmetry about the rational surface. so that
1vi{rg - u) = U(rq - w) in general. We define the quantiiy

s(tw) = (12w (re - w) - vilre - w) wy(ro) (11)

{Our definitions of s(w) and A'{w) differ slightly from those of Ref. 6. The
definitions are equivalent to the arder of u we retain. and our form of the
definitions will be more convenient for our purposes.) We can express v, /v
in terms of A'(w) and s(w),

U4 ro = )/t (ro) = s() = 3 X'w) (12)

When jj is nonvanishing at the rational surface, Eq. (9) has a singularity
there. The singularity dominates in the evaluation of s(w), and allows us to
obtain an analytical expression for this quantity.®

s(w) = —{jo/¥o)In{w), (13)

where the radial derivatives in this expression are evaluated at the rational
surface, and we have used the approximation io(r) = (1/2)(r — ro)%§ for
r—rpsmall. If jo(r) is a decreasing function of r, j3/¥7 is a negative quantity.

Suppose that the current profile is flattened in the region ry — 6. < r <
7o + 6., with - > 0. The solution to Eq. (9) gives

¥ (r)/¥(ro) = m(Car™ " = #™™ ) (Cerg + 157), (14)

where the plus and minus signs correspond, respectively, to the regions rg <
r < rg+ & and rg — 8_ < ™ < 1g. The coefficients C_ and C, can be
determined in terms of the A’ and s functions of the original {unflattened)
current profile by matching at ry = 8, using Eq. (12),

_ mro£8.)7™ " + Ise(8x) = 3o(62)/2lrg "
T Ton(re £ 65)m — iso(82) = Np(8-)/2F
where the “0” subscripts on s and A’ refer to the original current profile.

We can use Egs. (14) and (15) to determine the effect of the flattening
on A’(0). For é. small we find that

A(0) = (1/2)[24(6-) — A6 ~ (s /) In(8. /6.)
— (/I8 In8.) + 6 In(8_ )}/ (16)

c (15)
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We have discarded here terms of order &, and 6. In(&_/4_). The easiest way
to make Eq. (16) negative is to take &_/&_ small {(subject to the constraint
that 4. is greater than the width of the resistive laver). The In(é_/4_) term
then dominates. Flattening the curremt profile also reduces A/(0) due to
the §1In(é) terms, and due to the fact that A{u') is in general a decreasing
function of » for the unflattened current profile. The linear tearing mode can
he stabilized by flattening the current profile over a narrow region if &, /6_
is sufficiently small.

Now we again consider what happens near marginal stability. Using Egs.
(13-15), assuming . small. and expanding to first order in w, we find

() = A0} + [2m* fro + (5o/ %G} In(646_)Jw/ro, am)

for w < min(é_,6.). We have retained the 2m2w/rZ term in this expression
to make contact with the corresponding expression for the slab, Eq. (7),
when j, — 0. For nonvanishing j,, the term proportional to 7, dominates
at small 8. As in the slab, A’(w) is an increasing function of w for small w.
At marginal stability, the tearing mede is again nonlinearly unstable for an
island of small but finite width. For A%(0) negative, but small, there is again
a critical island width above which islands grow and below which they shrink.
The rate of increase of A’(w) with w is larger than in the slab, leading to
smaller values of the critical island width w.. Equation (17) breaks down
when A'(0) becomes sufficiently negative that w. > min(6_,6,). If 8,/8_
is small and 6. is smaller than the width of the saturated island, there
is still a critical island width w, < 4_ above which the mode is nonlinearly
unstable. A’(w) is then unchanged from the initial unflattened current profile
for w > é_. The island continues to grow until it attains the width it would
have reached in the absence of flattening.

As a guide to construct tearing stable current profiles, the results of the
linear stability analysis are now even more troubling than in the case of the
slab. For the slab the linear stability analvsis was at least leading us in the
right direction. It suggested that the tearing mode would be stabilized if
we flattened the current profile over a sufficiently broad region in the neigh-
borhaod of the rational surface, although it did not correctly determine how
broad that region needs to be. For the cylinder, Eq. (16} suggests a strategy
of nonsymmetric flattening over a very narrow region. By decreasing &,
we make A‘(0) increasingly negative for a fixed value of §_ (subject to the



constraint thal 4, remain larger than the width of the resistive laver). This
leads to no improvement in the nonlinear stability.

We now consider the implications of our results. A linearized stability
analysis assumnes thal modes are initially excited by infinitesimal perturba-
tions. In practice we expect islands of finite width to exist in tokamaks,
arising from field errors or originating in the tokamak start-up scenario. We
must ask whether these finite perturbations grow or shrink. In addition, if
we propose Lo use external means, such as rf, to modify the current profile
and thereby control tearing modes, we must also consider the islands that
begin growing before the profile is modified.

In general, in applying any linearized stability analysis we implicitly as-
sume that the stability properties are not sensitive to the amplitude of the
initial perturbation. However, linear tearing stability is sensitive to small
changes in the current in the neighborhood of the rational surface. This cur-
rent does not enter into the stability for a finite width island. There is cause
for concern that a linearized analysis does not adequately represent the true
stability of tearing modes. Qur results show that such concern is justified
for current profiles which are flat, or nearly flat, in the neighborhood of the
rational surface. Linear stability can sometimes be 2 poor guide to the true
stability properties of tearing modes. ’

Our conclusions bear particularly on attempts to use a linearized anal-
vsis to determine the nonlinear evolution of the plasma. One approach to
studying the effects of plasma instabilities is to assume that the presence
of instability causes the plasma to evolve to a marginally stable state. If
the assumption is valid, it allows us to say a good deal about the nonlinear
evolution of the instability in terms of its linearized stability properties. Qur
results indicate that this assumption is not valid for tearing modes. We might
try to represent roughly a magnetic island of width 2w in an axisymmetric
equilibrium by flattening the current profile from ry — w to ry + w, where 7y
is the radius of the rational surface.!! As we have seen, the further growth
of the island is not well represented by the linear stability properties of the
resulting axisymmetric equilibrium. Moreover, in flattening symmetrically
rom 7o — w to rg + w, we already make use of the results of a nonlinear anal-
vsis. The linearized analysis alone suggests a nonsymmetric flattening about
the rational surface. When the flattening of the current profile is caused
by stochastic regions due to island overlap, there are similar objections to



applying a linearized stability analysis.

Nor is a linear analvsis a useful guide if we want to modify the equilibrium
current profile of a tokamak by external means. We now have some capability
to control the current profile using auxiliary heating and nonohmic current
drive. There have been a number of theoretical studies of tearing mode stabi-
lization via current profile control, both in the context of particular schemes
for modifyving the current profile,’*’® and in the context of a more general
characierization of stable profiles.'* Some of these studies have calculated the
noniinearly saturated island width, while other studies have relied on a linear
analysis. Generally speaking, the nonlinear saturation has been calculated
in studies where a computationally expensive model was used to determine
the current profile modification, so that the nonlinear calculation represented
a small additional effort. (Some of the studies, however, focused on eflects
due to current profile modification in the island,’®'? and were therefore in-
trinsically nonlinear.) Studies which have attempted to map the stability
boundaries for a range of parameters, or have looked at stability for a large
range of different mode numbers, have generally relied on a linear stability
analvsis. It has been recognized that a nonlinear stability analvsis is prefer-
able to a linear analysis when the incremental computational effort required
is small. There has not been a recognition of the dangers inherent in relying
on a linear analysis as a guide to current profile modification. The hinear
analysis suggests a nonsymmetric flattening ..{ the current profile in a small
region about the rational surface as an efficient method of controlling the
tearing mode. A nonlinear analysis shows that, as a result of this strategy,
the unstable axisyrmetric equilibrium bifurcates into a stable axisymmetric
equilibrium and a nearby unstable nonaxisvmmetric equilibrium. The ax-
isvmmetric equilibrium is stable but fragile. Perturbations large enough to
push the system over the small potential hill to the nearby nonaxisvmmetric
equilibrium are unstable. A small but finite island grows, and saturates only
when it attains the width it would have reached in the absence of flatten-
ing. We remark that to determine properly the nonlinear evolution of an
island in the presence of nonohmic current drive. it is necessary to modify
the quasilinear analysis to take into account the nonohmic current.®

For experimentally determined current profiles which are flat near the
rational surface, our results suggest that a linear stabiliiy analysis tells only
part of the story. In Ref. 3, current profiles are inferred from experimental
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measurements and adjusted slightly. within the experimental error bars. to
give linear tearing stability. Near the ¢ = 1 surface the current is nearly flat.
(Because of toroidicity. j is not a constant on the flux surfaces, nor is the
gradient of j.) The flattening is primarily on the inner side of the rational
surface. In the notation of this paper. 6. « ¢ . Although an island at the
g = 1 surface could. in principle, cause a flat spot 1o appear in the measured
curre~t profile there, the experimental measurements indicate that there is
no sizable island at *he ¢ = I surface, and that the flattening of the current
is (at Jeast approximately) axisvmmetric.'”

For the n = 1, m = | tearing mode. toroidal effects must be retained
in A’ which is otherwise infinite. The toroidal effects may be neglected in
a narrow island if the aspeci ratio at the ¢ = 1 surface is sufficiently l:rge.
Similarly, toroidal effects may be neglected in a narrow region of flattened
current about the ¢ = | surface. The approximations we have made in this
paper do not preclude treatment of the n = 1, m = 1 mode.

The profile of Re{. 3 is marginally stable to an n = 1, m = 1 tearing mode.
Our results suggest that the stability in this case is a {ragile one. A smalil
island will grow. (This is consistent with a nonlinear numerical calculation,
in which a small island was observed to grow, accelerate, and reconnect
through the magnetic axis.’®)} As long as the island is sufficiently narrow.
the growth rate remains small and inertia may be neglected. The nonlinear
Rutherford analyvsis employed in this paper remains valid. When the growth
rate becomes sufficiently large that inertial effects become important, the
mode is no longer in the domain of validity of our analysis.

These conclusions suggest a possible resolution of one mystery that has
arisen in connection with the sawtooth oscillation in tokamaks.® A new gen-
eration of experiments on large tokamaks has found sawthooth crash times
too fast to he accounted for by the Kadomtsev'® model. Models to account
for this behavior are fundamentally limited by the Alfvén time scale. This
is not in itself inconsistent with the experitnents. The problem is that any
such model must account for how the system goues through marginal stabil-
itv. At any given time, the growth rate in such a model is v = af(t)7,, where
a(t) <« 1 measures how far the system has gone through marginal stability,
and 74 is the Alfvén time scale. For example, if we think of g as being the
trigger for the instability, then a(t) ~ 8g/g measures how far the q profile
has evelved past its critical value. A quantity such as g which is tied to the
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global current profile evolves on a resistive time scale, a ~ ¢/75. We there-
fore obtain an e-folding time intermediate between the resistive and Alfvén
time scales. even if the instability itself can grow on an Alfvén time scale.
An instability model of this sort does not in iiself resolve the difficulties in
interpreting the experimental data.

The scenario we have described in this paper suggests one way out of this
dilemma. It shows that the plasma can maintain a metastable state while a
potential hill is being built up. Stariing from a profile of the sort described
in Ref. 3, the passage through marginal stahility is now associated with &
rapid increase in A’(w) as the island width increases.

The subsequent evolution of the fast crash is beyond the scope of this
paper. A flat current profile is not itself sufficient to give a fast crash. It is
still necessary to explain why the subsequent evolution occurs on a fast time
scale. Varicus models have heen invoked to explain this, involving a large
localized anomalous resistivity, the onset of large scale stochasticity, or a
transition to an ideal instability. The point is that none of these mechanisms
is in itself capable of giving a fast crash. It is still necessary to explain
the rapid passage through marginal stability. Our scenario does provide a
possible explanation of this.

In conclusion, the results of this paper suggest that studies of tearing
mode stabilization via profile control, and studies attempting to characterize
tearing stable profiles. should not rely on a linear stability analysis alone. We
have also found that a flattening of the current profile at the rational surface
allows a metastable state to be maintained while a large potential hill builds
up for the tearing mode. This can allow the tearing mode to pass quickly
through marginal stability, giving rapid growth. )

This paper has benefited from discussions with Don Monticello and Wolf-
gang Stodiek. The work was supported by the United States Department of
Energy under Contract DE-AC02-76-CHO-3073.
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Figures

FIG. 1. Sketch of A(w) for the slab model. The case shown corresponds to
A’(0) > 0. There is a critical island width. w.. above which the island
grows. The growth of the island does not saturate until it reaches the
width it would have attained in the absence of flattening. w,.
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