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Abstract
Linear tearing instability is studied in the banana collisionality regime

in tokamak geometry Neoclassical effects produce significant modification
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gradient-driven neoclassical resistive interchange instabilities an

evolution of magnetic islands in the Rutherford regime, are discussed.
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Resistive MHD instabilities are closely related to the confinement of
tokamak plasmas. Present-day tokamaks operate at such high temperatures that
it is desirable to extend the validity regime of the resistive MHD description
to the lower collisionality (banana) regime where trapped particle dynamies
play an important role. Equations describing these neoclassical resistive MHD
instabilities were first derived by Callen and Shaing.1 Later, Connor and
Chen? placed the 1ideas of Callen and Shaing on a firmer basis by
systematically deriving similar equations starting from the gyrokinetic
equations., They f‘ound1'2 a new trapped-particle-driven resistive interchange
mode with a growth trate similar to that of the usval resistive ballooning
mode3 in the Pfirsch-Schluter regime. This new instability oeccurs in the
typical takamak equilibrium where the average curvature is favarable. The
destabilizing mechanism comes from the bootstrap current in the Ohm's law
coupled to the flow damping term in the vorticity equation.

Rutherford theoryu for the nonlinear evolution of a single magnetie
island also has been extended to include bootstrap current ef‘f.‘ec:t:s.5’6
References 5 and 6 indicate that the bootstrap current is destabilizing. The
analysis of Refs. 5 and 6 is valid when the magnetic island size is large
enough that the inertial layer physics described by the vorticity equation is
irrelevant. On the other hand, the analysis of the linear neoclassical
tearing instability driven by 4° has not been carried out. Reference 6
discusses a related, but different topic regarding the "tearing parity"
resistive interchange mode, which is driven by the pressure gradient rather
than the current density gradient (4-).

The main purpose of this letter is to investigate the linear stability of
neoclassical tearing modes._ Since our final dispersion relation describes
both the neoclassical tearing mode and resistive interchange mode, we can

discuss the various limiting cases and elucidate the relations between them.



We begin the analysis from the equations derived in Ref. 2, which
describe the dynamics of neoclassical resistive MHD instabilities. We write

Ohm's law and the vorticity equation in ballooning space separately.
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In deriving Egs. (1) and (2), a two spatial scale-length analysis
({similar to that used by Glasser, Greer.:, and JohnsonT), in which the
equations defined on the long resistiye scale along the magnetic field line
are derived through averaging over the shorter connection length scale, has
been used. ¢ is the average perturbea electrostatic potential. ¥ is the

average {DC) part of ¥ which is related to the perturbed vector potential hy

X is the normalized coordinate in the ballooning space z; X = i,2, Q is the
normalized growth rate; Q = -i Qu, w is the mode frequency, Qj are the scaled
versions of w -~ Wk g where W g is the diamagnetic drift freguency. The

normalization factors are:
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where " is the classical Spitzer resistivity. Other notations are standard,

as defined in Refs. 2 and 7.
Since we are considering the banana regime (rather than Pfirsch-Schlﬁtqr
regime), new flux-surface-averaged quantities appear in Eqs. (1) and {2).

They are:

B -1
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which characterizes the fraction of trapped particles, and
/8% %>
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which characterizes the rotation damping originating from the off-diagonal
compenents of the pressure tensor. Equation (1) is Ohm's law where the left-
hand side is the parallel current written in terms of ¥ via Ampere's law. The
first term on the right-hand side of Eq, (1) is a sum of the bootstrap current
(~LT) and the averaged Prirsch-Schluter current (~-H). The last term describes
the parallel electric field multiplied by the effective conductivity (-1-T)
which is reduced by the presence of trapped particles since they do not carry
charge along the magnetic field lines.

Equation (2) is the vorticity equation where the first term on the left-
hand side represents the influence of field line bending which comes from the
divergence of the parallel current. The second term characterizes the
neoclassical flow damping originating from the off-diagonal components of the
pressure tensor. On the right-hand side, the first term represents finite

inertial effects associated with the divergence of the polarization current.
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The second term arises from the interaction of the pressure gradient with the
curvature and 1s the measure of flux-surface-averaged curvature, which
determines the Mercier stability.

Combining Eqs. (1) and (2), we obtain the following second order

differential equation in terms of ¢,

g_xff_z%f4,+L(1-T) (-H x5 e
= o { %%, - Dy + (W/D) (H+ 1 - 2/D)
-L -ty (H+ T(L-1+H-2/rm))} , (3)
where I = 1 + xalQe(1-T). We note that in Ref. 2, T has been approximated by

1+ XZ/Qe. The solution of Eq. (3) should converge as |X| + = and match onto
the ideal MHD- solution as X + O. The ideal MHD equation which can be
recovered from Eq. (3) by taking X + 0, is

d—-¢+D¢=0. 4)

The large 2 asymptotie behavior of Eq. (4) is

-3

(5)

|
N —

¢~ 1 +

when D = Dp + H{(1-H) << 1, and &' is the usual tearing mode stability
parameter which should be obtained through a numerical solution of the ideal

MHD equation.
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For typical large aspect ratio (A = R/r,) tokamaks with nearly circular

surfaces, we have2 DR ~ u/AsZ, L - aA/s, H~ a/As, and T -~ A‘1/2, where

2 B
- —4=Rq" dp  “p denp (8_ = 8mp/B 2)
T2 dr TR ar p x '
(")
and
- ding
T dinr

are the pressure gradient and shear parameters with which we are familiar from
ideal ballooning mode stability theory. We can see that even for moderate
values of By - 1, L is so large (~ 1) that the inertial term {- QQiXZ) in Eq.
(3} is dominated by the necclassical term (~ L) in Eq. (3). Hence, a major
departure from the usual resistive MHD result is expected. In keeping with
our objective of discussing neoclassical modification of the tearing mode, it
is desirable to keep the conventional resistive MHD terms alongside the
neoclassical terms. It also heips us to maintain the mathematical structure

of the usual resistive MHD equationsB and to refer to previous results. Thus,

we can formally order
L~ 032 <« 1

We keep Dp in order to discuss the role of favorable average curvature,
meanwhile neglecting the H term whivh is not the main subject of this
letter. Reference 7 discusses the effect of finite H.

Taking advantage of the smallness of L, Q, and DR' we can further

identify different asymptotic regions in addition to the ideal MHD region.
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Inertial layer

In this region, XZ >>» Q so that the electrostatic approximation is

appropriate. Equation (3) simplifies to

a2 d
(1-1)Q, S5 6 + LU-D) X 7 o
2
= ¢ [ X°Q, - Dy + LT} . (6)

The solution of Eq. (6) which decays as X » =, can be written in terms of the

parabolic cylinder function U, i.e.,
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e ie
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e
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a = g (7)
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Within the ordering scheme of this work, the neoclassical modification is
confined in this region. The bootstrap current contribution to Ohm's law
enters into Eq. (6) through the divergence of the parallel current
representing the field line bending. One part (~ LT¢) introduces the 'new'’
interchange-like driving force on the right-hand side. This destabilizing
effect has been emphasized in the previous [;)ubli«:at:ic>ns.1'2 The remaining
part {~ -LTX d¢/dX) combined with the flow damping term (~ LX dé¢/dX) on the
left-hand side, significantly affeets the usual asymptotic balance8 aof the
inertia and the field line bending force due to Ohmie current. This results
in the enhancement of the effective inertia (4QQ;Q, -+ L2(1-T) + 4QQ;Q,) as

shown in Eq. (7). This stabilizing effect, although not emphasized
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previously, reduces the growth rates of the A'-driven tearing modes and
introduces a stringent instability threshold condition for the necclassical

resistive interchange modes. The small-X asymptotic behavior is given by

2 174
L701-T) + 8Q0,Q, "7 r(g/y - as2) .

(8)
4 2(1-T) r(1/4 = a’2)

o~ 1-2 (

Intermediate region

In this region, x2 ~ Q so that the mode character is electromagnetic.
Simplifieation of Eg. (3) is possible since the 1inertial and interchange

effects are negligible.

2
z de_g | (9)

dx 4, x2/Q6(1-T) dx

Direet integration of Eq. (9) yields
= —x ___1
$:2C +C, (Qe(1_T) T ) . {10)
The asymptotic analysis Is completed by matching the small-x behavior of Eq.

(10) to Eq. (5) and the large-x behavior of Eg. (10) to Eq. (8). The desired

dispersion relation for the neoclassical tearing-interchange instabilities is:

2
V(o0 Y L g3/ g 172 20 1/4 £(3/4 - a/2)
= R R G R U o7 v B (11)

The following limiting cases are discussed:



Tearing instability

The tearing instability is driven by the current density gradient,
characterizéd by 4'. In this case, the "a" term in the argument of the gamma
functions plays an insignificant role. For the sake of discussion, we first
consider the case where the neoclassical effects can be treated
perturbatively, i.e., L2(1-T) << 4QQ;Q,. In this case, [a| <¢ 1 and Eq. (11)

becomes

Eg) r(i/u)

52 T(3/%) (12)

0,3, « (1. hzé?aT))'1’“(,_T)~3/u o
From Eq. (12), we can see that the combined effects of bootstrap current and
neoclassical flow damping (-~ L2(1-T)) increase the effective inertia, and tend
to suppress the tearing mode. We note that the (1—T) factor is the effective
enhancement of the resistivity due to the presence‘of trapped particles. The
previous resistive MHD results with diamagnetic effects? are easily reccvered
in the L, T + 0 limit.

Now we examine the case where neoclassical effects dominate the dynamics
(L2(1-T) » HQQiQe), and check whether the same trend, in which the tearing
mode is suppfessed by the neoclassical effects, prevails. I= this case, Eq.

{11) becomes
R 5 . ¢q_py L((2-T}/2(1-T)) 172 o 1/2
A' 2 /42w = {1-T} TCT/301-T7) |L] Q . (13)
Equation (13) shows that the linear tearing mode growth occurs on the
classical transport time scale (~ SR)! Indeed, the combined effects of the

perturbed beotstrap current and the rotation damping make the linear tearing

instability feeble.
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Resistive interchange instability

The resistive interchange mode is localized near a rational surface and
is excited independently of the dynamies in the ideal MHD region. The
dispersion relation is obtained by taking both sides of Eq. (20) to be

small. From the pole of gamma function, we have a = 1/2 + 2m, or
40,0, + L2(1-T) = (1117 (LC1eT) - 20, )%/ (1etm)? (1)

where m is the radial eigenmode number. The left-hand side is the afore-
mentioned effective inertia {note that L2(1-T) is stabilizing). The right-

hand side is the effective driving force. For m = 0, we have

0Q,Q, = (1-1)7" (LT-D)) (L-Dp) . (15)
Equation (15) is essentially the same result as that of Refs. ! and 2, apart
from some minor details. We note that for most of the region in a tokamak,
L <0, Dg <0since q' >0, p' <0, and q > 1. Hence, the instability occurs
when the beotstrap current contribution overcomes the stabilizing influence of
favorable average curvature, i.e., [L|T > |Dg|. This threshold condition is
easily satisfied in present-day tokamaks such as TFTR. Taking only dominant
terms, we obtainf.QQIQe ~ L°T so that the linear growth rate (in the absence
of diamagnetic éffects) scales very similarly to the usual resistive

ballooning mode3 in the Pfirsch-Schluter regime. For m # 0, the threshold

condition for instability becomes m < (|L|T - |Dg[)/2|L[{1-T) = T/2(1-T).
Since T ~ (274)1/2, it is difficult to excite the instability with m 2 2. The
lowest order (m=1) tearing pari&j interchange mode can be excited rather

easily. In summary, even in the banana regime, there exists a rather robust
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resistive interchange instability with a growth rate similar to that of the
usual resistive ballooning mode. 3

dnother important fact which is apparent from Eg. (14} is that the-
physical growth rate v (= QQ, ~ £1/3) is maximum at an intermediate toroidal
mode number & {rather than at low &}. For high & modes, the diamagnetie
effects (~ wyg) reduce the growth rates. This conelusion does not apply to the
tearing mode case since A' is positive only for low & modes.

In this letter, we have shown tha{ the linear tearing mode driven by 4'
tends to be strongly suppressed by the combined effects of rotation damping in
the vorticity equation and the bootstrap current in Ohm's law. The
neoclassical resistive interchange modes, however, remain relatively robust
with the fastest linear growth occurring at intermediate values of the mode
number . We also note that the radial mode widths of the neoclassical
resistive interchange modes are broader than those of Ref. 3, as shown in Eq.
(7). These results are in qualitative agreement with the numerical solutions
obtained from the initial value neoclassical MHD code, 10 This leads us to
speculate that, in banana regime plasmas, the neoclassical resistive
interchange modes grow faster and dominate the nonlinear dynamies near
rational surfaces. There is evidence from mixing length estimates6 that the
nonlinear interactions of these neoclassical resistive intercnange 1 odes
produce a large turbulent diffusion which may lead to a significant
modification of the local pressure profile and of the perturbed bootstrap
current.

Of course, if a finite size magnetic island is initialized by some reason
such as toroidal field errors, Rutherford-type analysis“l may apply with the
bootstrap current playing a destabilizing g’ole.s’6 As mentioned earlier, this

i3 because the vorticity equation becomes irrelevant for finite-size, single-

island evolution.
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