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Abstract 
Linear tearing instability is studied in the banana collisionality regime 

in tokamak geometry. Neoclassical effects produce significant modifications 
of Ohm's law and the vorticity equation so that the growth rate of te ring 
modes driven by i' is dramatically reduced compared to the usual resistive -1HD 
value. Consequences of this result, regarding the presence of pressure-
gradient-driven neoclassical resistive interchange instabilities and the 
evolution of magnetic islands in the Rutherford regime, are discussed. 
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Resistive MHD instabilities are closely related to the confinement of 
tokamak plasmas. Present-day tokamaks operate at such high temperatures that 
it is desirable to extend the validity regime of the resistive MHD description 
to the lower collisionality (banana) regime where trapped particle dynamics 
play an important role. Equations describing these neoclassical resistive MHD 
instabilities were first derived by Callen and Shaing. Later, Connor and 
Chen placed the ideas of Callen and Shaing on a firmer basis by 
systematically deriving similar equations starting from the gyrokinetic 
equations. They found''" a new trapped-particle-driven resistive interchange 
mode with a growth rate similar to that of the usual resistive ballooning 
mode^ in the Pfirsch-Schluter regime. This new instability occurs in the 
typical tokamak equilibrium where the average curvature is favorable. The 
destabilizing mechanism comes from the bootstrap current in the Ohm's law 
coupled to the flow damping term in the vorticity equation. 

Rutherford theory for the nonlinear evolution of a single magnetic 
island also has been extended to include bootstrap current effects.^'° 
References 5 and 6 indicate that the bootstrap current is destabilizing. The 
analysis of Refs. 5 and 6 is valid when the magnetic island size is large 
enough that the inertial layer physics described by the vorticity equation is 
irrelevant. On the other hand, the analysis of the linear neoclassical 
tearing instability driven by A' has not been carried out. Reference 6 
discusses a related, but different topic regarding the "tearing parity" 
resistive interchange mode, which is driven by the pressure gradient rather 
than the current density gradient (a'). 

The main purpose of this letter is to investigate the linear stability of 
neoclassical tearing modes. Since our final dispersion relation describes 
both the neoclassical tearing mode and resistive interchange mode, we can 
discuss the various limiting cases and elucidate the relations between them. 
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We begin the analysis from the equations derived in Ref. 2, which 
describe the dynamics of neoclassical resistive MHD instabilities. We write 
Ohm's law and the vorticity equation in ballooning space separately. 

h S - - jj-<H*LT> * + (1 - T ) gj ( * - * > • CD 
e e 

h *2 £ * <L + H > * ax u - ? ) 

Q Q . X 2 <(> - D<t> . ( 2 ) 

In deriving Eqs. (1) and (2), a two spatial scale-length analysis 
(similar to that used by Glasser, Greer.-, and Johnson'), in which the 
equations defined on the long resistive scale along the magnetic field line 
are derived through averaging over the shorter connection length scale, has 
been used. « is the average perturbed electrostatic potential. f is the 
average (DC) part of ? which is related to the perturbed vector potential by 

fl„ = T - n • 7 ? II iu 

X is the normalized coordinate in the ballooning space z; X = Z z, Q is the 
normalized growth rate; Q = -i Q 0u, <a is the mode frequency, Q., are the scaled 
versions of u - u»., where to*, is the diamagnetic drift frequency. The 
normalization factors are: 

n,oV<B 2> 1 / 3 Wn<R 2XB 2/R 2B 2> 1 / 6 

° 4ir<BVlTB *> 4TT (dq/dvr 
n Bc 2l 2<B 2> ~ 1 / 3 4TTm i n<R 2><B 2/R 2B x

2> 1 / 3 

n ~ ̂  P 5 5 J I 5 5 J 
° 4ir<BVFTB S 4ir (dq/dvr 
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where n,. is the classical Spitzer resistivity. Other notations are standard, 
as defined in Refs. 2 and 7. 

Since we are considering the banana regime (rather than Pfirsch-Schluter 
regime), new flux-surface-averaged quantities appear in Eqs. (1) and (2). 
They are: 

B x -1 
T = 1 - | <B2> J [\dA/0-AB) U 2>] , 

o 

which characterizes the fraction of trapped part ic les , and 

? ? 2 
T , ^ / I T B > 

u - ir(dq/dv> < B 2 > 

which characterizes the rotation damping originating from the off-diagonal 
components of the pressure tensor. Equation (1) is Ohm's law where the left- • 
hand side is the parallel current written in terms of f via Ampere's law. The 
first term on the right-hand side of Eq, (1) is a sum of the bootstrap current 
(-LT) and the averaged Pfirsch-Schluter current (-H). The last term describes 
the parallel electric field multiplied by the effective conductivity (-1-T) 
which is reduced by the presence of trapped particles since they do not carry 
charge along the magnetic field lines. 

Equation (2) is the vorticity equation where the first term on the left-
hand side represents the influence of field line bending which comes from the 
divergence of the parallel current. The second term characterizes the « 
neoclassical flow damping originating from the off-diagonal components of the 
pressure tensor. On the right-hand side, the first term represents finite 
inertial effects associated with the divergence of the polarization current. 
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The second term arises from the interaction of the pressure gradient with the 
curvature and is the measure of flux-surface-averaged curvature, which 
determines the Mercier stability. 

Combining Eqs. (1) and (2), we obtain the following second order 
differential equation in terms of *, 

* { X 2QQ. - D_ + (H/D (H + 1 - 2/r) 1 K 

- L (1-1/r) (H + T (L - 1 + H - 2/r))} , (3) 

where r = 1 + X 2/Q e(l-T). He note that in Ref. 2, r has been approximated by 
1 + X'/Q The solution of Eq. (3) should converge as |x| •* • and match onto 
the ideal MHD- solution as X + 0. The ideal MHD equation which can be 
recovered from Eq. (3) by taking X * 0, is 

5 z z 2 5 z * + D * s 0 " w 

The large 2 asymptotic behavior of Eq. (U) is 

' • f i . <>> 

when D = D R + H(1-H) << 1, and A' is the usual tearing mode stability 
parameter which should be obtained through a numerical solution of the ideal 
MHD equation. 
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For typical large aspect ratio (A = R/r 0) tokamaks with nearly circular 
o ? 1 /? 

surfaces, we have Dp ~ a/As , L - aA/s, H- a/As, and T - A , where 

dtlRfl! £> „ !e SiDE { 6 5 8l,p/B 2 ) , o 2 dr A dinr p X 

and 
dine 

" dinr 

are the pressure gradient and shear parameters with which we are familiar from 
ideal ballooning mode stability theory. We can see that even for moderate 
values of a - 1, L is so large (- 1) that the inert ial term (- Q Q ^ 2 ) in Eq. 
(3) is dominated by the neoclassical term (- L) in Eq. (3). Hence, a major 
departure from the usual resistive MHD result is expected. In keeping with 
our objective of discussing neoclassical modification of the tearing mode, it 
is desirable to keep the conventional resistive MHD terms alongside the 
neoclassical terms. It also helps us to maintain the mathematical structure 
of the usual resistive MHD equations" and to refer to previous results. Thus, 
we can formally order 

L - Q 3 / 2 << 1 

We keep D R in order to discuss the role of favorable average curvature, 
meanwhile neglecting the H term whiuh is not the main subject of this 
letter. Reference 7 discusses the effect of finite H. 

Taking advantage of the smallness of L, Q, and D R, we can further 
identify different asymptotic regions in addition to the ideal MHD region. 
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Inertial layer 
p In this region, X >> Q so that the electrostatic approximation is 

appropriate. Equation (3) simplifies to 

H 2 A (1-T)C) 3-= * f L(1-T) X 3- * e d X 2 dX 

= * { X2QQL - D R + LT} . (6) 

The solution of Eq. (6) which decays as X » =>, can be written in terms of the 
parabolic cylinder function U, i.e., 

-LX2/4Q L2(1-T)+4QQ.Q 1 / 4 

* = e e U (-a, /2 ( = ^-S) X) , 
4Q e (1-T) 

whsrs 
, 2D R - L(UT) ^d-TJ+ilQQ^ " 1 / 2 

3 = 5 V1-" [ 4Q/M-T) ] •" C ? ) 

Within the ordering scheme of this work, the neoclassical modification is 
confined in this region. The bootstrap current contribution to Ohm's law 
enters into Eq. (6) through the divergence of the parallel current 
representing the field line bending. One part (- LTij>) introduces the 'new' 
interchange-like driving force on the right-hand side. This destabilizing 
effect has been emphasized in the previous publications. ' 2 The remaining 
part (- -LTX d*/dX) combined with the flow damping term (- LX d*/dX) on the 
left-hand side, significantly affects the usual asymptotic balance" of the 
inertia and the field line bending force due to Ohmic current. This results 
in the enhancement of the effective inertia (4QQiQ + L2(1-T) + 4QQ.Q ) as 
shown in Eq. (7). This stabilizing effect, although not emphasized 
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previously, reduces the growth rates of the fi'-driven tearing modes and 
introduces a stringent instability threshold condition for the neoclassical 
resistive interchange modes. The small-X asymptotic behavior is given by 

L 2 ( 1 . T ) , W t Q "" r(3/4 - a/2) ;[ ,.. 
" ( 4 Q 2 ( 1 - T ) ' rCl/H - a/2$ X • ( 8 ) 

e 
Intermediate region 

In this region, X 2 ~ Q so that the mode character is electromagnetic. 
Simplification of Eq. (3) is possible since the inertial and interchange 
effects are negligible. 

d sf M. = o (9) 
d* 1 • x2/Q (1-T) d x 

e 

Direct integration of Eq. (9) yields 

c o + c i fgTtfT-f i • ( , 0 ) 

The asymptotic analysis is completed by matching the small-x behavior of Eq. 
(10) to Eq. (5) and the large-x behavior of Eq. (10) to Eq. (8). The desired 
dispersion relation for the neoclassical tearing-interchange instabilities is: 

h . (?2_) . ( 1. T )3/« Q &1/2 ( L 2 ( 1 . T ) + W A , l / » r(3/j} - a/2) _ ( 1 1 ) 

/2TT 

The following limiting cases are discussed: 
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Tearing instability 
The tearing instability is driven by the current density gradient, 

characterized by A'. In this case, the "a" term in the argument of the gamma 
functions plays an insignificant role. For the sake of discussion, we first 
consider the case where the neoclassical effects can be treated 
perturbatively, i.e., L2(1-T) « 400^. In this case, |a| << 1 and Eq. (11) 
becomes 

% \ Q - U+ IKJQ^ I ^"r' A W r(3/4) • U 2 ) 

From Eq. (12), we can see that the combined effects of bootstrap current and 
neoclassical flow damping (- L2(1-T)) increase the effective inertia, and tend 
to suppress the tearing mode. We note that the (1-T) factor is the effective 
enhancement of the resistivity due to the presence of trapped particles. The 
previous resistive MHD results with diamagnetic effects' are easily recovered 
in the L, T + 0 limit. 

Now we examine the case where neoclassical effects dominate the dynamics 
(L2(1-T) >> 4QQjQe)i and check whether the same trend, in which the tearing 
mode is suppressed by the neoclassical effects, prevails. In this case, Eq. 
(11) becomes 

A'Z o//2, = ( 1 - T ) r < ^ ) ^ f f l ) | L | ^ Q e
1 ^ . (,3> 

Equation (13) shows that the linear tearing mode growth occurs on the 
classical transport time scale (~ So)! Indeed, the combined effects of the 
perturbed bootstrap current and the rotation damping make the linear tearing 
instability feeble. 
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Resistive interchange instability 
The resistive interchange mode is localized near a rational surface and 

is excited independently of the dynamics in the ideal MHD region. The 
dispersion relation is obtained by talcing both sides of Eq. (20) to be 
small. From the pole of gamma function, we have a = 1/2 + 2m, or 

4QQ.CL + L2(1-T) = (1-T)" 1 (L(1+T) - 2D D) 2/< Uilm) 2 (14) 

where m is the radial eigenmode number. The left-hand side is the afore-
mentioned effective inertia (note that L^O-T) is stabilizing). The right-
hand side is the effective driving force. For m = 0, we have 

Q Q ^ = (1-T)" 1 (LT-DR) (L-DR) . (15) 

Equation (15) is essentially the same result as that of Refs. 1 and 2, apart 
from some minor details. He note that for most of the region in a tokamak, 
L < 0, D R < 0 since q' > 0, p" < 0, and q > 1. Hence, the instability occurs 
when the bootstrap current contribution overcomes the stabilizing influence of 
favorable average curvature, i.e., |L|T > |D R|. This threshold condition is 
easily satisfied in present-day tokamak3 such as TFTR. Taking only dominant 
terms, we obtain OO^Og - L 2T so that the linear growth rate (in the absence 
of diamagnetic effects) scales very similarly to the usual resistive 
ballooning mode-* in the Pfirsch-Sehluter regime. For m * 0, the threshold 
condition for instability becomes m < (|L|T - |DR|)/2|L|(1-T) s T/2(1-T). 
Since T - (2 / A ) 1 / 2 , it is difficult to excite the instability with m 2 2. The 
lowest order (m=U tearing parity interchange mode can be excited rather 
easily. In summary, even in the banana regime, there exists a rather robust 
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resistive interchange instability with a growth rate similar to that of the 
usual resistive ballooning mode.^ 

Another important fact which is apparent from Eq. (1U) is that the 
physical growth rate y (= QQ 0 - ft •*) is maximum at an intermediate toroidal 
mode number ft {rather than at low ft). For high ft modes, the diamagnetic 
effects (~ u») reduce the growth rates, this conclusion does not apply to the 
tearing mode case since A' is positive only for low i modes. 

In this letter, we have shown that the linear tearing mode driven by a' 
tends to be strongly suppressed by the combined effects of rotation damping in 
the vorticity equation and the bootstrap current in Ohm's law. The 
neoclassical resistive interchange modes, however, remain relatively robust 
with the fastest linear growth occurring at intermediate values of the mode 
number ft. We also note that the radial mode widths of the neoclassical 
resistive interchange nodes are broader than those of Ref. 3, as shown in Eq. 
(7). These results are in qualitative agreement with the numerical solutions 
obtained from the initial value neoclassical MHD code. 1 0 This leads us to 
speculate that, in banana regime plasmas, the neoclassical resistive 
interchange modes grow faster and dominate the nonlinear dynamics near 
rational surfaces. There is evidence from mixing length estimates" that the 
nonlinear interactions of these neoclassical resistive intercnange i, odes 
produce a large turbulent diffusion which may lead to a significant 
modification of the local pressure profile and of the perturbed bootstrap 
current. 

Of course, if a finite size magnetic island is initialized by some reason 
such as toroidal field errors, Rutherford-type analysis^ may apply with the 
bootstrap current playing a destabilizing role.''" As mentioned earlier, this 
is because the vorticity equation becomes irrelevant for finite-size, single-
island evolution. 
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