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Summary

This paper describes two new nodal methods for solving the multigroup
neutron diffusion and transport equations in three—-dimensional Cartesian
geometry, These methods have been developed for the global analysis of
fast-reactor critical experiments once cell-averaged multigroup cross sectiouns
for each matrix position or "drawer” have been computed using appropriate
cell-homogenization procedures. Brief descriptions of the nodal diffusion and
transport schemes are presented here, alpng with results of two— and three-
dimensional calculations for a current Zero Power Plutonium Reactor (ZPFR)

configuration,

The Carteslan-geometry nodal diffusion and transport methods discussed
here are based on an interface-current formulation analogous to that developed
previously1 for the solution of the diffusion equation in hexagonal geometry.
The discretized equations for both schemes are derived by approximating the
one~dimensional equations obtained via the transverse~integration procedure
common to most recent nodal methods.? In Cartesian—-geometry diffusion
theory, the one-dimensional fluxes are approximated by a polynomial equivalent
to that used in the nodal expansion method”? (NEM) developed for light-water-
reactor calculations, although the final form of the computational equations
i1s quite different in the two formulations. As in the NEM, a weighted-residual
procedure is used to compute the higher—order expansion coefficients. Equatinns
for the face-averaged, outgoing partial currents are derived by inserting the
one—-dimensional polynomials into Fick’s Law evaiuated on the nodal surfaces.
Combining results in the three coordinate directions yields an inhomogeneous
response matrix equation for the k—~th node:

out,k k k k k., .in,k
J i = [P - L + [R J . 1
AN (pg) {gg - L} + IR 3 (1)
Here, gout,k and gin,k contain, respectively, the six outgoing and six incoming

face-averaged partial currents for the k-—th node, Qk contains the zero-moment

(node-averaged) group source plus the higher-ordur rource moments introduced

via the weighted residual approximation, and E: contains the higher—-order spatial

moments of the transverse leakages. The transverse-leakage moments are computed

using the quadratic fit used in most recent nodal schemes.? The matrices [P ]
and [R } contain nodal coupling coefficients which are computed and stored for
unique nodes characterized by mesh spacings and material zone assignment.
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As in the nodal discrete-ordinates method’ (NDOM) developed by Wagner,
the nodal transport scheme is based on the solution of one~dimensional (1D)
transport equations derived, for example, by integrating the two-dimensional
trangport equation over the y-direction and the azimuthal angle with respect
to the x—axis. The 1D equations are discretized in the NDOM using a 1D
discrete—~ordinates approximation applied on a fine mesh introduced within the
node. Our approach is based on approximation of exact integral equations for
the 1D scalar fluxes and for the outgoing angular fluxes on the surfaces of
the node. The 1D scalar fluxes are approximated by quadratic polynomials with
coefficients computed usiné a weighted-residual procedure applied to the 1D
integral equations. The surface angular fluxes are approximated by a dcuble-
Py expansion. As in the NDOM, the transverse leakage 1s assumed to be iso-
tropic, and thus is treated in the same manner as in diffusion theory.

Extension of this development to three dimensions is straightforward, and
leads eventually to the following transport-theory analog of Eq. (1):

out,k _ k _ k ~k in,k
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Here, QOUt’k contains the six outgoing face-averaged partial currents plus the
six outgoing half-angle-integrated fluxes due to the double-P} surface expan—

sions, and Q and Lk are defined as in diffusion theory. The entries in the

transport- theory matrices [P ] and [R } are evaluated analytically in terms of
exponential integral [E,] functions introduced by the exact one-dimensional

angular integrations. The source contribution due to within-group scattering

is included in the calculation of these matrices, and thus, in contrast to

nodal transport methods 7 based on multidimensional discrete-~ordinates
approximations, the present method does not require the traditional inner
iteration ou the within-group scattering source. Instead, Eq. (2) is solved
using iterative procedures identical to those used to solve the diffusion—theory
equations [Eq. (1)]. The elimination of the scattering-source iteration can
lead to very significant reductions in computational cost, particularly for
problems (such as fast-reactor criticals) characterized by high scattering

ratios.

The nodal diffusion and transport schemes discussed above have been
implemented as options in a test version of the DIF3D finite~difference code.8
These methods have been applied to a 3—group model of a ZPPR-13 mockup of a
radially-heterogeneous 700 MWe LMFBR. The quarter-core planar layout consists
of a 36 by 36 array of square (homogenized) drawers with dimensions of 5.52 cm.
Half~core axial symmetry was used in the three—-dimensional calculations. All
calculations were performed on the ANL IBM 3033 computer.

Table I-summarizes two—dimensional diffusion and transport calculatiouns
for ZPPR-13 using the DIF3D code. The nodal diffusion-theory (NDT) results
show that the nodal option with a single mesh per drawer (mpd) produces
spatially-converged solutions to the diffusion equation in CPU times nearly a
factor of 4 less than finite-difference diffusion theory (FDDT) with 2 x 2
However, tramsport effects are important in this problem as shown by the

mpd .
«527 in k-eff) in the NDT calculation relative to the

large errors (e.g. O



exact transport—theory (TT) soluticn. The nodal transport—theory (NTT) option
eliminates over 80Z of the errors due to the diffusion approximation, with a
CPU time that 1s only slightly greater than nodal diffusion theory. The NTT
solution is not quite -as accurate as the S4 solution, and this probably 1is

due to the assumption of isotropic transverse leakage. Very dramatic reductions
in CPU time are observed relative to the S, calculations, although it should

be noted that the DIF3D diamond-difference option9 typicall¥ runs slower by

a factor of ~5 than the diffusion-accelerated TWODANT code.l0

Table II summarizes three—-dimensional calculations for ZPPR-13. The nodal
and finite-difference calculations used axial mesh spacings of ~22.9 cm and
~4.5 cm, respectively, in the active core. The nodal option achieves very
acceptable accuracy using this very coarse axial mesh and a single mesh per
drawer. The nodal calculation 1is nearly an order of magnitude more accurate
than the 4 mpd FDDT calculation, with a reduction in computational cost by
a factor of 15. Standard anaiysis calculations usually employ 28 groups
(versus the three groups used here), and thus three-dimensional calculations
with 4 mpd often are considered prohibitively expensive. Instead, “mesh
corrections” are applied to coarse~mesh (i.e. 1 mpd) finite-difference calcu-
lations in order to obtain more accurate approximations to the true diffusion-
theory solution. 7T% 1s clear that the use of the DIF3D nodal option eliminates
the uncertainties (and inconvenience) associated with such corrections.

The calculations summarized in Table II further demonstrate the very high
computational efficiency of the DIF3D nodal transport scheme. The NTT calcula-
tion cost only 50% more than the NDT calculation, and is a factor of two
cheaper than coarse-mesh finite-difference diffusion theory. Although an
exact transport~theory solution is not availlable for the three-dimensional
model, the 0.57% difference In k-eff between nodal diffusion theory and
transport theory appears consistent with the two-dimensional results and other
predictions (using r—z models) of the axial transport effect. Further
benchmarking of the method is underway.

In summary, use of the nodal diffusion-theory method eliminates the need
for mesh corrections to diffusion calculations, while making possible significant
reductiors in the computational costs associated with global calculations of
critical experiments. Transport effects in these assemblies are significant,
and use of the DIF3D nodal transport option eliminates over 807 of the errors
due to the use of diffusion theory. The very high computational efficiency of
the present nodal transport method, in combination with likely improvements to
the angular approximations, promises to make accurate three-dimensioral
transport calculations for critical assemblies possible on a routine basis.
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Table I. Summary of Two-Dimensfonal Diffuslon and Transport
Calculations for ZPPR-13

Mesh
Method® Dizier k—eff £ (Z)b e (D Tiﬁzu(min)
: k CRP
NDT 1 x1 0.98411 0,003 -0.01 0.25
FDDT 1 x 1 0.98620 0.212 -1.78 0.18
FDDT 2 x 2 0.98459 0.051 - =0.48 0.97
Reference (DT) 0,98408 - ~-
NDT 1 x 1 0.98411 -0.52 +5.9 0.25
NTT 1 x1 0.98842 -0.09 +1.0 0.30
S4 2 x 2 0.98957 +0.03 +0.5 21.8
Sg 2 x 2 0.98921 -0.01 +0.2 >54.0
Reference (TT) 0.9893 - -

NDT = Nodal Diffusion Theory
FDDT = Finite-Difference Diffusion Theory

NTT = Nodal Transport Theory
= DIF3D diamond-difference transport option

X Error in k-effective relative to the respective reference
solutions, which are exact solutions to the multigroup diffusion (DT)

and transport (TT) equatioms.

m
tH

€orp = Error in group 1 flux in control rod position.




Table II., Summary of Threce-Dimensional Diffusion and Transport

Calculations for ZPPR~13

No. of Mesh
Axdial Per b Ccru Cost
Method? Mesh Planes Drawer k-eff Ek(Z) Time (min) (%)
1
NDT 5 1 x 1 0.98348 0.018 2.1 18
FDDT 25 1 x1 0.98622 0.292 6.1 50
FDDT 25 2 x 2 0.98441 0.111 28.5 269
Reference (DT) 0.98330 -
NTT 5 1 x1 0.98915 3.0 28
8NDT = Nodal Diffusion Theory
FDDT = Finite-Difference Diffusion Theory
NIT = Nodal Transport Theory
be = Error in k-effective relative to the reference solution, which

k 1s the exact solution to the multigroup diffusion equation.



