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ABSTRACT

Recent theoretical results have completely solved the problem of determining
the minimum length path for a vehicle with a minimum turning radius moving
from an initial configuration to a final configuration. Time optimal paths for a
constant speed vehicle are a subset of the minimum length paths. This paper uses
the Pontryagin maximum principle to find time optimal paths for a constant speed
vehicle. The time optimal paths consist of sequences of arcs of circles and straight
lines. The maximum principle introduces concepts (dual variables, bang-bang
solutions, singular solutions, and transversality conditions) that provide important
insight into the nature of the time optimal paths. We explore the properties of the
optimal paths and present some experimental results for a mobile robot following
an optimal path.



1. INTRODUCTION

We consider a mobile robot with one or more steerable drive wheels that steer
together (for example, Cybermotion (1991), Denning (1991), Nomadic (1991), and
HERMIES-IIT [Weisbin, et al. 1990]). We assume that the robot is moving at its
maximum speed when it receives orders to drive through a new goal configuration
(position and orientation). We want to determine the time optimal path from the
current configuration to the goal in an unobstructed environment.

Since the wheels of the mobile robot steer together, we can consider the vehicle
to be a unicycle. Time optimal paths for a constant speed vehicle can be minimum
length paths. However, there are minimum length paths with cusps that cannot
be followed by a constant speed vehicle. Thus, time optimal paths for a constant
speed vehicle are a subset of minimum length paths.

Recent theoretical results have completely solved the problem of determining
the minimum length path for a vehicle moving from an initial configuration to a
final configuration. In general, the optimal paths consist of sequences of arcs and
lines. In 1957, Dubins proved that the minimal length paths without cusps (with
Lipschitz continuous tangents) are either arc-line-arc (ALA) or arc-arc-arc (AAA).
In 1990, Reeds and Shepp determined the minimum length paths with cusps.

Sussmann and Tang (1991) have derived the results of Reeds and Shepp using
geometric methods based on the Lie algebraic analysis of trajectories. Boissonnat
and his colleagues (1992) have derived the results of Reeds and Shepp using the
Pontryagin Maximum Principle (Pontryagin et al. 1962). Soueres and Laumond
(1992) have synthesized paths using the results of Reeds and Shepp.

Several recent papers (Jacobs and Canny 1989; Pin and Vasseur 1990; and
Vasseur, et al. 1991) have explored minimum length paths for mobile robots that
have a minimum turning radius. These authors have developed path planning
algorithms for complex environments containing obstacles.

In this paper, we will use the Pontryagin Maximum Principle to find time
optimal paths for a constant speed vehicle that has one degree of freedom (the
steering angle). Our results were obtained independently of the work by Boissonnat
(1992). We will find that the optimal paths are either bang-bang or singular.
Furthermore, the bang-bang paths are arcs and the singular paths are lines. Thus,
the optimal paths consist of sequences of arcs and lines. Using the result of Dubins
(1957) , the optimal paths are either arc-line-arc (ALA) or arc-arc-arc (AAA).
The maximum principle introduces concepts (dual variables, bang-bang solutions,
singular solutions, and transversality conditions) that provide important insight
into the nature of the minimum time paths. We will not consider path planning
algorithms for complex environments containing obstacles.

The next section will use the maximum principle and Dubin’s results to derive
the conditions for time optimal paths. The third section will explore the features
of the optimal paths. The fourth section presents some experimental results for a
mobile robot following an optimal path, while the fifth section lists our conclusions.



2. CONDITIONS FOR TIME OPTIMAL PATHS

The basic equations of motion for a single wheel are:

T = vCoso (1)

;= vsing (2)

where the Cartesian coordinates (z, y) locate the point of contact between the wheel
and the floor, @ is the z component of the wheel velocity (v), and ¢ is the orientation
of the plane of the wheel with respect to the x axis. We assume that the velocity
of the wheel orientation is the control variable:

¢ =u (3)

where the magnitude of the orientation velocity is bounded: |u| < a. While the
control input could be the acceleration of the wheel orientation, the velocity is the
control variable that we use for the HERMIES-III vehicle (Reister 1992).

To apply the Pontryagin Maximum Principle, we introduce three state variables:
r = (z,y,¢). The three state variables define the configuration (position and
orientation) of the vehicle. In vector notation, the equations of motion for the
state vector x are:

T = f(z,u) (4)

The components of the equations of motion are:

1 = fi(z,u) =vcoszs (5)
&g = fo(z,u) = vsinzy (6)
23 = fa(z,u) =u (7)

The optimization problem is to find a path for the control variable [u] that will
move the system from the initial configuration z° to the final configuration 2! and
minimize the transition time.

Pontryagin introduces a system of dual variables [¥] that satisfy:
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The equations of motion for the dual variables are:

¥, =0 (9)
U, =0 (10)
Uy = Vivsinry — Wovcos 13 (11)
The initial conditions are:
Ui(ty) = pi 1=1,2,3 . (12)

If z3 is known, Egs. (9) to (11) are linear and homogeneous and have a unique
solution for any initial conditions.

Pontryagin combines the equations of motion and the dual variables into a single
Hamiltonian, H:

3
H(Y,z,u) =Y ¥;fi(z,u) . (13)
1=1
H(Y,z,u) =¥, fi(z) + Yo folz) + Y3u (14)

Pontryagin proves that the optimal set of control variables maximizes the
Hainiltonian. Since the Hamiltonian is linear in the control variable u, the optimal
solution is bang-bang or singular. The sign of the third dual variable (¥3)
determines the sign of the optimal control. When ¥ is positive (negative), the
optimal control is bang-bang and at its upper (lower) limit. When ¥3 is zero for
an interval, the optimal control is singular and may have intermediate values.

We will show that the optimal path consists of a sequence of arcs and line
segments by proving the following Theorem.
Theorem 1. The optimal control can only be bang-bang or singular. When the
control is bang-bang, the control is at its limit and the path is an arc of a circle.
When the control is singular, the control is zero on a finite interval and the path is
a line segment.

We consider first the case where the control is singular. Thus, ¥3 = 0 on a
finite interval. Using Egs. (5) and (6), Eq. (11) may be written:

U3 = Uiy — Ui (15)

To simplify our notation, we can perform a space-time coordinate transformation.
We will assume that the initial point on the time interval is zero and we will choose
the coordinate systern to make the initial values of the state variables equal (0,0,0).
In the new coordinate system, Eq. (15) can be integrated to yield:

U3 = p1y — pot + pg (16)
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Since ¥, and ¥, are constants, we have replaced them with their initial values (u,
and pg).

When the control is singular, ¥3 is zero and Eq. (16) defines a line. On the line,
¢ is a constant and (p = (0. Thus, u = 0 on the finite interval where & = 0.

A line can be defined by the inner product of a position vector (r) and a vector
(b) that is perpendicular to the line:

r-b=c (17)

The constant (c¢) is proportional to the distance from the line to the origin (see
Section 1.4 of Paul 1981). For Eq. (16), the vectors are: r = (2,y) and b = (—pug, y1).
Thus, W3 =7 b+ p3. The parameter (u3) is proportional to the distance from the
line where W3 is zero to the origin (when ¥3 = 0, u3 = —c) and the value of the dual
variable (¥3) is proportional to the distance from the point (z,y) to the line where
U3 is zero. In the next section, we will find that the line determines the optimum
solution. Typically, the optimal control steers the wheel to the line, follows the line,
and then steers to the goal.

We consider next the case where the control is bang-bang. We will consider a
finite interval where W3 is positive (or negative) and u is a constant. We shall show
that the path is an arc of a circle on the finite interval . As in the singular case,
we will assume that the initial point on the time interval is zero and we will choose
the coordinate system to make the initial values of the state variables equal (0,0,0).
When the control is constant initially, Eq. (3) can be integrated to yield: ¢ = ut.
Equations (1) and (2) can be integrated to find the Cartesian path:

r = (v/u)sin ¢ (18)

y = (v/u)(1 - cos ¢) (19)

Thus, the path is an arc of a circle. The radius of the circle is the ratio of the
wheel velocity and the steering velocity [R = |(v/u)|]. The curvature of the circle
is the reciprocal of the radius. The center of the circle is (0,¢): 2% + (y — ¢)* = R?,
where ¢ = v/u(R = |q|).

We have proven Theorem 1. The optimum path consists of a sequence of arcs
and line segments. Next we establish upper limits on the number of arcs and line
segments.

While the control variable (u) can be discontinuous, the orientation (¢) will be
continuous. Thus, the components of the wheel velocity (2 and y) will be continuous.
Thus, at all points, the paths will have continuous tangents. At any point on a line
segment, the control variable could become positive or negative and the path would
become an arc of a circle. At the transition point from line to circle, the line must
be tangent to the circle. Similarly, at any point on a circular path, the control
variable could change sign and the path would switch to an arc of another circle.
At the transition point from circle to circle, the two circles must be tangent. The
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dual variable U3 is continuous. At the transition point from circle to circle, ¥4 =0
and the transition point from circle to circle must lie on the line ¥3 = 0.

If a path consists of a line segment (V3 = 0) followed by a circle, the circle is
tangent to the line. Hence the path on the circle cannot cross the line and the path
cannot leave the circle and get back on the line (U5 = 0) except at the original point
of departure. Thus no minimum time path can consist of two distinct segments of
the line (¥3 = 0) joined by an arc of circle. The arc must be a full circle and the
segments can not be distinct. No minimum time path can contain a full circle.

We can imagine a long sequence of tangent circles that have all of the points
of tangency on a single line As we were attempting to bound the number of arcs
in an optimum path, the paper by Jacobs and Canny (1989) led us to the seminal
results of Dubins (1957).

Before stating Dubins’ theorem, we need to specify some notation. Dubins
considers curves with “average curvature always less than or equal to R-1,” which
means that for each curve the tangent vector exists everywhere and satisfies the
Lipschitz condition:

X" (s1) = X'(s2)]] S R7Ms1 — o2

where X is a vector with components (z,y) and s is the path length. A portion of
a path that is an arc of a circle with radius R is denoted by A. A line segment is
denoted by L. Since the tangents are continuous, the lines and circles are tangent
to each other. Dubins has proven the following theorem.

Theorem 2. Given an initial position and orientation in the plane (P) and a final
position and orientation (). The minimum length path from P to Q that has an
average curvature everywhere less than or equal to R™! is necessarily a continuously
differentiable curve that is either ALA; or AAA; or a subpath of a path of type ALA
or AAA.

Our set of candidates for optimal paths consist of sequences of arcs and line
segments. Dubins considers a more general class: curves with average curvature
always less than or equal to R™!. Since the minimum length paths for the more
general class are in our class, the minimum length paths for our class are the same
as Dubins’. Hence, we conclude that our optimal paths are either ALA; or AAA;
or subpaths.

We have assumed that all three state variables are specified at the end of the
path. We could be interested in paths with some free boundary conditions. We
might want to reach a point (z,y) at an arbitrary orientation or we might want to
reach an orientation at an arbitrary point. When an optimal path has free boundary
conditions, Pontryagin’s Maximum Principle determines the optimal solution. We
assume that the goal x! is a point in a smooth manifold S. Let T be the tangent
plane to S at the goal. The dual solution satisfies the transversality condition
if it is orthogonal to T. Pontryagin’s Maximum Principle requires that the dual
solution must satisfy the transversality condition at the goal. If the goal is to reach
a point at an arbitrary orientation, the tangent plane is defined by the vector (0,0,1)
and the transversality condition requires that ¥3 = 0 at the goal. Thus, the last
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segment of the path to the goal is a line. If the goal is to reach an orientation
at an arbitrary point, the tangent plane is defined by the vector (1,1,0) and the
transversality condition requires that ¥; = ¥y = 0 at the goal. Thus, ¥3 is a
constant and the path to the goal is an arc.



3. TIME OPTIMAL PATHS

We have defined the features of time optimal paths. In this section, we will
explore time optimal paths for several classes of problems. We begin by considering
the case where both position and orientation are specified at the goal. We will
choose the coordinate system to make the initial values of the state variables equal
(0,0,0). The time optimal paths will be ALA or AAA or subpaths. Unless the time
optimal paths are subpaths, the initial and final segments of the optimum path will
be arcs. Thus, given an initial state (0,0,0, ..ud a final state (z,y, ¢), we can draw
the two circles that lead away from the initial state and the two circles that lead
into the final state. Next we look for lines or circles that will connect an initial
circle to a final circle.

Figures 1 to 4 illustrate optimal paths to a point for eight different orientations.
In the figures, the initial and final circles are drawn with dotted lines while the
optimal paths are drawn with solid lines. The initial state is always the same and
the initial pair of circles is always the same. As the orientation of the final state
changes, the final pair of circles rotate. In Fig. 1, the paths lead from the initial
point (S) to the final point (G) and the orientation is either 0 or 180 degrees. The
path to 0 degrees (path b) starts with a positive (counterclockwise) arc and ends
with a negative (clockwise) arc. The path to 180 degrees (path a) starts and ends
with a positive arc. In Fig. 2, the orientation is either 45 or 225 degrees. The path
to 45 degrees (path b) ends in a line segment. In Fig. 3, the orientation is either 90
or 270 degrees. Compared to Fig. 1, the concluding arcs have switched circles. The
path to 90 degrees (path a) starts and ends with a positive arc. The path to 270
degrees (path b) starts with a positive arc and ends with a negative arc. In Fig. 4,
the orientation is either 135 or 315 degrees.

For the paths in Figs. 1 to 4, we could choose a consistent set of values for the
initial conditions of the dual variables and verify that the paths are optimal. The
parameters (y;, u2) define the slope of the line segment, we will define y; and p,
by: p; = cos 8 and p, = sinf, where 6 is the slope of the line segment. The distance
from (0,0) to the line and the sign of the optimal control determine u3. For example
in Fig. 4, the path to 135 degrees (path a) starts and ends with a positive control.
Thus, u3 is the positive distance from (0,0) to the line. Both the initial point and
the goal are on the left side of the line. In Fig. 4, the path to 315 degrees (path b)
starts with a positive control and ends with a negative control. The initial point is
on the left side of the line while the goal is on the right side of the line.

A constant speed vehicle cannot make tight maneuvers. Figure 5 shows the
path required to turn around [the goal is (0,0,180)]. The path consists of three arcs.
For this case, the line (¥3 = 0) is vertical; the optimal control is negative on the
left of the line and positive on the right (or vice versa the path could be traveled in
either direction).

While time optimal paths at constant velocity are similar to minimum length
paths, they have one significant difference. A minimum length path can reverse
direction at a point (have a cusp). Our minimum time paths cannot have

9



10 TIME OPTIMAL PATHS

discontinuities in tangent vectors. If a vehicle needs to perform tight maneuvers,
it should not move at constant speed. It should slow down. As the speed (v)
approaches zero, the turning radius (R) approaches zero (recall that R = |(v/u)]).

If the goal is to reach a position at an arbitrary orientation, the last segment
of the path to the goal is a line. Paths that can reach a point are explored in
Fig. 6. Figure 6 displays the paths when the steering velocity is positive. A similar
set of paths could be obtained if the steering velocity is negative [the point (z,y)
is mapped to (z,—y)]. For goals outside the two circles defined by the radius of
curvature, we have truncated the lengths of the line segments to remain within the
region where the paths are optimal [in the upper half plane (y > 0)]. The paths
displayed in Fig. 6 are optimal to reach any point in the upper half plane except the
points inside the circle. Furthermore, they are optimal to reach any point within the
circle for the lower half plane. The paths with negative steering velocity are optimal
for the complementary regions (inside the upper circle and outside the lower circle).

We have explored the optimal paths to a point for eight different orientations.
Next we will discuss an algorithm that will find the optimal path from an initial
state to a final state. The time optimal paths will be ALA or AAA. The initial and
final segments of the optimum path will be arcs. Since we have two initial circles
and two final circles, we have four combinations of an initial circle and a final circle.
Given an initial circle and a final circle for the ALA case, we define two types of
line paths that join the two circles: parallel and crossover. The parallel paths are
parallel to the line that joins the centers of the two circles while the crossover path
cuts the line that joins the two circles. In Fig. 1, path a is a parallel path and
path b is a crossover path. Although we can always find a parallel path between
two circles, we cannot find a crossover path between two intersecting circles (if the
distance between the centers of the two circles is less than 2 R). In the appendix,
we derive expressions for the lengths of parallel and crossover paths.

Given an initial circle and a final circle for the AAA case, we define two types
of circle paths that join the two circles: left and right. The center of the left circle
1s to the left of the line joining the centers of the two circles while the center of the
right circle is to the right of the line. In the appendix, we derive expressions for
the lengths of circle paths. Circle paths will not exist if the distance between the
centers of the two circles is more than 4 R.

To find the optimal path from an initial state to a final state, we have four
combinations of an initial circle and a final circle. For each combination of an
initial circle and a final circle, we can have a maximum of four paths (two line
paths and two circle paths). Thus, we can have a maximum of 16 paths from the
initial state to the final position. Half of the paths will have the correct orientation
and half of the paths will have the opposite orientation. Thus, to find the optimum
path, we calculate the lengths of the 8 paths with the proper orientation and choose
the shortest path.
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Fig. 1. Time optimal paths when the final orientation is either 0 or 180 degrees.
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Fig. 2. Time optimal paths when the final orientation is either 45 or 225 degrees.
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Fig. 3. Time optimal paths when the final orientation is either 90 or 270 degrees.
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Fig. 4. Time optimal paths when the final orientation is either 135 or 315 degrees.
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Fig. 5. Time optimal path to rotate by 180 degrees.
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Fig. 6. Time optimal paths to reach a position at an arbitrary orientation.

The lengths of the shortest line and circle paths from the initial state (0,0, 0) to
the final state (2.3, 2.0, ¢) are displayed in Fig. 7. The line paths are the optimal
paths for all final orientations except the interval from -114 degrees to -18 degrees.
The lengths of the shortest line and circle paths to the final state (—2.3, 2.0, ¢) are
displayed in Fig. 8. The line paths are the optimal paths for all final orientations
except the interval from 68 degrees to 114 degrees.



TIME OPTIMAL PATHS 17

10
K o
[
O
o
Q
— 5 -
K o
fand
(1°)
(o

Line
—0— (Circle
0 Y |
-250 -150 -50 50

¢

Fig. 7. Lengths of line and circle paths to the point (2.3, 2.0) when the final
orientation ranges from -210 to 30 degrees.

We now explore further the transition from ALA to AAA in Fig. 8. The shortest
line and circle paths to the final state (—2.3, 2.0, 68 degrees) are displayed in Fig. 9.
At 68 degrees, both paths have the same length. As the orientation increases from
68 degrees to 114 degrees, the final pair of circles rotates about the point G and the
circle path b is the optimal path. After 114 degrees, the circles are not intersecting
and the crossover path becomes the shortest path.

Dubins proves that when the optimal path is AAA, the angle subtended by the
middle arc must be greater than 180 degrees. We have examined several numerical
examples where the optimal path is AAA and we have verified that the angle
subtended by the middle arc of each path is greater than 180 degrees. In Fig. 9, the
angle subtended by the middle arc of the AAA path (b) is greater than 180 degrees.
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4. EXPERIMENTAL RESULTS

The objective of our experiment is to demonstrate that a mobile robot can follow
an ALA type path. Our mobile robot 1s HERMIES-III, a large robot designed for
human scale experiments (Reister 1992). The chassis (1.6m x 1.3mx1.9m) has two
steerable drive wheels and four corner caster wheels. The vehicle weighs 820 kg.
The maximum wheel velocity is 0.45 m/s and the maximum velocity for wheel
orientation is 60 degrees/second (1.05 radians/second). The radius of the arc is the
ratio of the wheel velocity and the steering velocity [R = |[(v/u)|] [see Egs. (18) and
(19)]. Thus, at maximum speed for the vehicle and for steering, the turning radius
1s 0.43 meters.

During the experiment, the vehicle accelerates to full speed, steers left on an
arc for 0.75 seconds to an orientation of 45 degrees, follows a 45 degree line for one
secord, steers right for 45 degrees, and decelerates to a stop. During each cycle of
the wheel control system (approximately 33 times per second), the robot saves key
data elements that are downloaded from memory to disk after the cxperiment.

Using data collected during an experiment, the target and measured values for
the wheel speed are displayed in Fig. 10. At 7.64 seconds, the target for the wheel
speed was raised from 0.0 to 0.45 m/s. By 9.86 seconds, the vehicle was at full
speed and the vehicle remained at full speed until the target was reduced to 0.0 at
12.91 seconds. By 15.04 seconds, the vehicle had stopped.

The target and measured values for the wheel orientation are displayed in
Fig. 11. At 10.15 seconds, the target for the wheel orientation was raised from
0.0 to 0.79 radians (45 degrees). By 11.02 seconds, the wheel orientation was at
45 degrees and the orientation remained at 45 degrees until the target was reduced
to 0.0 at 11.90 seconds. By 12.71 seconds, the measured orientation was 0.0. Since
the vehicle was at full speed from 9.86 seconds to 12.91 seconds, it was at full speed
during the period (10.15 to 12.71 seconds) when the wheels were being steered and
the vehicle was following the path.

The paths for the two steerable drive wheels are displayed in Fig. 12. The
midpoint between the two wheels starts at the point (4.00, 6.00) and ends at the
point (6.10, 6.61). During the experiment, the vehicle accelerates to full speed
while moving in the x direction, steers left on an arc to an orientation of 45 degrees,
follows a 45 degree line, steers right for 45 degrees, and decelerates to a stop while
moving in the z direction. The net motion i1s 2.10 meters in z and 0.61 meters in y.

At the start of the high speed maneuver (10.15 seconds), the midpoint between
the two wheels is at the point (4.62, 6.01). At the end of the maneuver
(12.71 seconds), the midpoint i1s at the point (5.54, 6.60). Thus the net motion
during the maneuver is 0.92 meters in z and 0.59 meters in y in 2.56 seconds. The
line connecting the start and end of the maneuver is 1.09 meters and the average
velocity (1.09/2.56 = 0.43 m/s) is close to the target for wheel speed (0.45 m/s).
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Fig. 10. The target and measured velocity of the right wheel during the
experiment. The units of velocity are meters/second.

This experiment marks the first time that a mobile robot has followed a
minimum time ALA type path. While the figures illustrate that the vehicle did
not follow the path exactly, the errors were small. We will conclude this section by
quantifying the errors.
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Fig. 11. The target and measured orientation of the right wheel during the
experiment. The units of orientation are radians.

To quantify the errors in Fig. 10, we fitted the best (least squares linear
regression) line to the velocity data for the period when the vehicle was at full
speed (from 9.91 seconds to 12.91 seconds). The best fit line has a small slope.
During the period (10.15 to 12.71 seconds) when the vehicle was following the path,
the linear fit to the velocity increased from 0.445 m/s to 0.448 m/s. The largest
errors were -1.2% at 10.69 seconds and 1.1% at 11.65 seconds. Thus, most of the
measured velocities are within 1.0% of the least squares line through the data.
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Fig. 12. The paths of the left and right wheels during the experiment. The units

of z and y are meters.

To quantify the errors in Fig. 11, we divided the data into three groups (Arc,
Line, and Arc). Using linear regression, we fitted the best line to the data during
the first period (when the wheel orientation increases from 0 degrees to 45 degrees).
As the well known statistical parameter R* increases from 0.0 to 1.0, the parameter
measures how well the linear model explains the variation in the data. During
the first period, the value of R? was 0.989. During the third period, the wheel
orientation decreases from 45 degrees to 0 degrees and the value of R? was 0.981.
Thus, in both cases the measured data is very close fit to a linear model.
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During the second period, the target for the wheel orientation is 45 degrees.
Initially, the measured data for the wheel orientation overshoots the target before
approaching the target. The maximum value for the overshoot is 1.4%.

Thus, we have demonstrated that the errors between the targets and the
measured values for both the velocity and the orientation were small.



5. CONCLUSIONS

We desire time optimal paths for a mobile robot (with one or more steerable
drive wheels that steer together) that is traveling at its maximum speed. Recent
theoretical results have completely determined the nature of the time optimal paths.
The optimal paths consist of sequences of arcs and lines and are either ALA or AAA.
In this paper, we have used the Pontryagin Maximum Principle to find time optimal
paths for a constant speed vehicle. The time optimal paths are produced by control
trajectories that are either bang-bang or singular. The bang-bang controls lead to
subpaths that are arcs of circles, while the singular controls produce line segments.

When the final configuration is not fully specified, the transversality condition
determines the optimal solution. To reach a point at an arbitrary orientation, the
path is AL (an initial arc followed by a line segment). To reach an orientation at
an arbitrary point, the whole path is an arc.

We have developed an algorithm that will find the optimal path from an initial
state to a final state. Since we have two initial circles and two final circles, we have
four combinations of an initial circle and a final circle. Given an initial circle and a
final circle, we define two types of line paths that join the two circles: parallel and
crossover and two types of circle paths that join the two circles: left and right. For
each combination of an initial circle and a final circle, we can have a maximum of
four paths (two line paths and two circle paths). Thus, we can have a maximum of
16 paths from the initial state to the final position. Half of the paths will have the
correct orientation and half of the paths will have the opposite orientation. Thus,
to find the optimum path, we calculate the lengths of the 8 paths with the proper
orientation and choose the shortest path.

Using HERMIES-III, we have demonstrated that a large mobile robot can follow
an ALA type path with small errors.

For practical applications, the paths are best for high speed maneuvering in
unobstructed environments and are not appropriate for maneuvering in complex
environments or for large changes in orientation. For example, the rotation path
in Fig. 5 required the vehicle to turn 420 degrees (460, -300, +60) to accomplish
a 180 degree change in orientation. This maneuver should be performed when the
vehicle is at rest.
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APPENDIX

CALCULATION OF PATH LENGTHS

The optimal path is either arc-line-arc or arc-arc-arc. To find the optimal path,
we calculate the lengths of all possible arc-line-arc or arc-arc-arc paths and pick the
shortest path. In this appendix, we will derive formulas for the path lengths. We
begin with the arc-line-arc paths.

We associate two circles with both the initial position and the final position.
Given one of the initial circles and one of the final circles, we can define two types
of connecting lines: parallel and crossover. A parallel line is parallel to the line that
joins the centers of the two circles while the crossover path cuts the line that joins
the centers of the two circles.

The calculation of the length of a parallel line path is diagrammed in Fig. 13.
The path consists of an arc of length a R, followed by a line of length d, followed
by an arc of length § R. The path length (L) is:

L=aR+d+pR (20)

where R is the radius of the circles.

To derive expressions for a, d, and 8, we introduce the following notation: r
is the distance from the center of the initial circle to the center of the final circle,
0 is the orientation of the line that joins the centers of the two circles, o is the
orientation of the line from the center of the initial circle to the starting point (),
p is the orientation of the line from the center of the final circle to the goal point
(G), and A is the orientation of the line from the center of the final circle to the end
of the line segment (or the end of the middle arc).

Using our notation, we can derive expressions for «, d, and 3.

a=0 (21)

d=r (22)
A=o+6 (23)
B=p—A\ (24)
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The calculation of the length of a crossover line path is diagramed in Fig. 14.
The path consists of an arc of length a R, followed by a line of length d, followed by
an arc of length 8 R. The path length (L) is given by Eq. (20). The angle between
the crossover path and the line that joins the centers of the two circles 1s 7:

v = arcsin(2 R/r) (25)

When r is less than 2 R, the two circles intersect and the crossover path is not
possible. Using our previous notation, we can derive expressions for a, d, and S.

a=0+~ (26)
d=rcosy (27)
A=a+m/2 (28)
B=A-p (29)

The calculation of the length of a three circle path is diagramed in Fig. 15. The
path consists of an arc of length a R, followed by an arc of length 8 R, followed by
an arc of length v R. The path length (L) is:

L=Rla+p+7) (30)
The angle between the line that joins the centers of the first two circles and the line
that joins the centers of the initial and final circles is é:

6 = arccos(r/4R) (31)

When r is greater than 4 R, the middle circle cannot bridge from the initial circle
to the final circle. Using our previous notation, we can derive expressions for a, 3,
and 7.

a=0-6—-0 (32)
B=m—26 (33)
A=0+6-7 (34)

T=p—A (35)
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Fig. 13. Calculation of the length of a parallel line path.
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Fig. 14. Calculation of the length of a crossover line path.



Appendiz 35

Fig. 15. Calculation of the length of a three circle path.
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