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1. INTRODUCTION

In a synchrotron, the charged beam particle simultaneously car-
ries on various oscillations with their characteristic frequencies:
the revolution frequency, the betatron frequency, and, for a bunched
beam, the synchrotron frequency. Ideally these oscillations are inco-
herent; that is, the phases of the oscillations of different particles
are not correlated. However, partial correlation inevitably occurs
because of the inherent fluctuation of the beam (shot noise) or
external noise. Then the beam generates electromagnetic fields with
the characteric frequency or its harmonics, and the EM fields act back
on the beam.

When two systems oscillating with the same frequency interact,
the coupling induces a frequency shift; this is called the coherent
frequency shift in the context of these lectures. If the interaction
is such that the two oscillations reinforce each other, coherent insta-
bility occurs. The coherent frequency shift corresponding to instabil-
ity is a complex number. We use the convention whereby the coherent
frequency (characteristic frequency + coherent frequency shift) with
positive imaginary part corresponds to instability, and the negative
imaginary part to damping. The imaginary part of the coherent fre-
quency is called the growth rate; the inverse of the growth rate is
the growth time.

The number of possible modes of coherent motion equals the number
of degrees of freedom of the beam, which is three times the number of
beam particles. Luckily, most of these modes are stable. We do not
attempt to cover all the known coherent instabilities in these
lectures; some topics not covered here are discussed in other review
articles. "^

We shall work within linear approximation, i.e., to first order
in interaction between the beam and the EM field it generates. To
this order of approximation, the problem of coherent motion can be
formulated as a linear eigenvalue problem, where the eigenvalue yields
information about the coherent frequency, and the eigenvector de-
scribes the beam distortion corresponding to that eigenmode.

We divide the coherent oscillation of the beam into two classes,
longitudinal and transverse, and discuss the longitudinal modes of co-
herent instabilities in Part I and the transverse in Part II.

Let us close this introduction by defining and explaining some no-
tations and conventions which are consistently adopted throughout
these lectures.

The independent variable of the particle motion is time t. To de-
scribe the position of the particle, the Serret-Frenet coordinate
system*3'7 (x,y,s) with x * y = s is used (the carat indicating a
unit vector.)



Eo, pQ, 0)Q: nominal energy, momentum, and angular revolution fre-
quency, respectively, of the ring.

SQ: nominal particle velocity in units of c.

9 = s/R, <J> = 6 - o)Qt , (1-1)

where R is the average ring radius. 9 as well as s describes the posi-
tion of the particle relative to the storage ring. <j> describes the
particle position relative to a prescribed reference particle rotating
around the ring with nominal revolution frequency <nQ/2^.

With N denoting the total number of particles in the beam, the av-
erage current is

Iav = eW0
N/21T '

We define

<* = (p - Po)/Po> e - (E - Eo)/EQ, W = (E - E0)/u»Q , (1-3)

where S and £ are, respectively, the fractional momentum and energy de-
viation of the particle. If the dynamics of the particle are
described in terms of the standard Hamiltonian" of the Lorentz force
equation, then W is the canonical momentum conjugate to the canonical
coordinate <j>. Also

n - Y~ 2 - Y~ 2 , TT - TTUO/(02EO), d-4)

where Yt is the transition energy in units of the rest energy.
The following relations are often used:

| = -TWQ5 = -TVW , (1-6)

where a dot above a symbol indicates a time derivative. V is, from
Eq. (1-1), the angular revolution frequency deviation.

I. LONGITUDINAL INSTABILITIES

2. OUTLINE OF PART I

We start with a discussion in Section 3 of the longitudinal elec-
tric field <£? induced by the current I. g and I are related linearly by
a "transfer function" called longitudinal impedance. We then treat
various modes of longitudinal coherent instabilities.

Section 4 concerns the coasting beam coherent instability. This
instability is the easiest mode to study because the translational
invariance of the unperturbed beam causes each Fourier component of



the perturbed line density to correspond to an eigenmode, so that each
coherent mode is characterized by a harmonic number n of the revolu-
tion frequency. We call n the revolution mode number.

Boussard^ has conjectured by intuitive reasoning that, if the
perturbing EM fields have wavelength short compared with the bunch
length, and if the growth rate of the instability is much greater than
the synchrotron frequency, then the bunched beam coherent instability .
looks like that of a coasting beam. Such bunched beam instabilities
are, for a historical reason, called microwave instabilities.
Messerschmidt aad Month^ reasoned that, since the growth rate is much
greater than the synchrotron frequency, the synchrotron frequency is
irrelevant, and we can set the angular synchrotron frequency tug = 0 in
discussing the microwave instability. This is done in Section 5.

Sections 6 to 10 concern single-bunch longitudinal coherent
instabilities with Us fully taken into account.

Robinson instability, ^' treated in Section 6, is the
simplest of the longitudinal coherent modes that involve the
synchrotron frequency. In this mode, the bunch is displaced rigidly
from the synchronous point and oscillates with the synchrotron fre-
quency about this fixed point.

In Section 7, the Vlasov equation is formulated, and a method*-'""^
of solving it is developed which is followed in the rest of Part I.

Section 8 treats the synchrotron modes, u " i 1 7 which take the
possible bunch shape distortion fully into account. An eigenmode is
characterized by a harmonic number U of the synchrotron frequency; U
describes the degree of the bunch shape distortion and is called the
synchrotron mode number. The Robinson mode is a synchrontron mode
with u = 1,

When the coupling between the bunch current and the EM fields be-
comes big, the synchrotron modes cease to be eigenmodes. In Section
9, a method26>17-19,27 of treating the synchrotron mode coupling in
the case of a small bunch is discussed which takes advantage of the
fact that only a few of the synchrotron modes can contribute in
such a case.

If the bunch is longer than the wavelengths of the perturbing EM
fields, and if the interaction of the beam current and the EM fields
is large, then all the synchrotron modes couple, and this leads to mi-
crowave instability. We treat^~^° in Section 10 the microwave insta-
bility without setting tog = 0.

In Section 11, we consider how the presence of many bunches af-
fects the coherent motion of the beam, and we treat the longitudinal
symmetric coupled bunch modes. 1~23

Throughout these lectures, we ignore Landau damping due to
synchrotron frequency spread. ^

3. LONGITUDINAL IMPEDANCE

The EM fields responsible for the coherent instability are solu-
tions of Maxwell equations, where the source terms are the charge and
the current densities, and the boundary conditions are determined by
the devices surrouding the beam: beam chamber, rf cavity, bellows, etc.



The component of the EM fields responsible for the longitudinal insta-
bility is the longitudinal component <§" of the electric field. The
longitudinal impedance function Zn(0J) conveniently relates the electric
field S to the beam current.

3.1 Beam Current

We use p($,t) and f (4>,4>, t).to denote the particle distribution
functions in <t>-space and in ($,<}>)-space, respectively. They are re-
lated by

$ , t ) . (3-1)

We normalize p and If to 1:

/ % p ( $ , t ) = J % J*°°d$>¥(<l>,4>,t) = 1 . (3-2)
O O -oo

The angular velocity of a particle is u Q + §; hence the beam
current is

- 1(9,t) = eNfd}(a)o + Jm<M,t ) . (3-3a)

If we ignore the angular revolution frequency deviation $ relative to
0)o, this equation becomes

1(9, t) =« 2Trtavp(<j>,t) . (3-3b)

Recall that 9 and (j> are, in our notation, always related by Eq. (1-1).
In terms of the Fourier components of I, ¥ and p, defined by

00 00

n=-« -oo n
1(9, t) = S J dul OiOe1119"^11 (3-4a)

n

, (3-4b)

(3-5a)

and .
/ l n < | )"n t (3-5b)

Eqs. (3-3a) and (3-3b) can be written, respectively, as

In(nu>o + J2) = 2TTlavJd$(l + 4_)Yn($,n) , (3-6a)



and

(3-6b)

We always use to as the variable Fourier-conjugate to t if 9 is kept
fixed, and use ^ if (j) is fixed.

Note that the angular phase velocity of the (n,^) component in
Eqs. (3-4) and (3-5) is <DQ + Q/n, The beam can sustain this component
only if the phase velocity is close to the particle velocity; i . e . ,

to) | « 1 . (3-7)
o

We therefore assume that I n(n
w
n + ̂ ) , Pn(ft), and n̂(

(l),!3) are small un-
less Eq. (3-7) is satisfied.

3.2 Impedence

The longitudinal electric field
terms of 1(9,t) as

can in general be expressed in

2ir >»
<g>(9,t) = J d9'T dt'G(8,9',t - t'

o -00
(3-8)

The Green's function G depends on 9 and 9' separately, since the envi-
ronment is generally not invariant under azimuthal tranlation.

In terms of the Fourier component of the Green's function defined
by

the longitudinal electric field induced by the
current (3~4b) is

(3-9)

component of the

<g>(9,t) G (nm m, n o (rt
no

The angular phase velocity of the tn-th term above is

n , / . J2
— bi + — .
m o m

Therefore, this component cannot interact coherently or resonate with
the beam oscillation unless m = n. As a consequence, we discard the
terms in Eq. (3-10) with m ̂  n and write

V
8 7T R



where 5 m n is Kronecker's 5. The relevant part of Eq. (3-10) becomes*

< § > ( 9» t ) " " i k In(tlUo o

The function Zn(w) is the longitudinal impedance.
From (3-11), Eq. (3-9) becomes

G(9,9',t) = - ̂  G(9 - 9',t) (3-12)

where

J E rdU3Zn<u>)e (3-13)
4iT n=^»

and Eq. (3 -8 ) becomes

2ir „

r dO'J d t ' G ( 9 - 9 ' , t - t')UQ',t') , (3-14a)

Z J^I^)V u )? i n 9~ i a ) (3.14b)
ns-i»

+ J2)e . (3.14c)
n o . n o

Equation (3-14) represents the solution of Maxwell's equation, and it
is one of the foundations of all the following discussion in Part I of
these lectures.

We now discuss the constraints on Zn(w) which follow from the
causality condition,

G(9,t) = 0 if t < 0 . (3-15)

From Eqs. (3-13) and (3-15),

Z (o>) - r d9 r d tG(9, t )e i I l U T i U J L . (3-16)
n b b

*The approximation used here is similar to the familiar smooth approx-
imation we use in discussing the longitudinal phase focusing. Since
the rf cavity is localized, the rf voltage can be represented by a
superpositon of propagating waves of longitudinal electric field
with angular phase velocity hW0/n, n = 0, ±1, ±2, ... . The smooth
approximation consists of keeping only the wave with its phase
velocity equal to the particle velocity; namely, the wave with n = +h.



The function Zn(w) can be analytically continued to the upper half
of the complex to plane through this equation. If follows from Eq.
(3-16) that

Z*(u) = Z (-<o*) . (3-17)
n -n

Let us now separate Zn(to) into the real part and the imaginary part,

Z (oi) =m (w) + iX (u)) . (3-18)
n n n

The real part ^^(w) is usually called the resistive part and the ima-
ginary part Xn((JJ)? the reactive part. Xn(w) is said to be capacitive
(inductive) if it is positive (negative) for u > 0. The symmetry
properties for c5Pn and Xn are, from Eq. (3-17),

1 () &t ( ) , (3-19a)
n -n

X (W) = -X (-U*) . (3-19b)
n —n

and

The contribution to Z^(w) from the smooth resistive beam pipe
is independent of the subscript n. For example, a round baam pipe
of radius b and conductivity O contributes an amount

R

b

to Zn(w). One can also show that, under the smooth approximation, the
contribution from a localized source of impedance is also independent
of the subscript n.

Exercise: Prove the last statement.

We show in the following that the resistive part of the impedance
from a passive device is positive.

Let us take the current of the form

,t) = In(u)e
in9-iUt

 + i^uOe-"
9**1*' . (3-20)

We include two terms here to ensure that the current is real. The
electric field induced by this current is
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The rate of energy gain of the beam from is

R J
o

(3-22)

where Eq. (3-17) has been used. Note that the exponential factor
in Eq. (3-22) is positive.

When the beam passes through a passive device, it cannot gain
energy. Therefore,

dE.
beam < (3-23)
dt - '

or, from Eq. (3-22/,

Si (u) > 0 . (3-24)
n —

We conclude this section by remarking that the range in frequency
where Zn(cu) is effective is called the bandwidth of the impedance,
and the inverse of the bandwidth -is called the wakelength. The wake-
length is the length of time during which the electric field <§" gener-
ated by a very short pulse of the current source remains appreciable.

The wakelength can also be understood to be the coherent length;
it is the time interval during which the frequency components of the
electric field induced by a current pulse remain partially coherent
with each other.

4. COASTING BEAM LONGITUDINAL INSTABILITY

4.1 Density Modulation and Perturbed Particle Displacement

The longitudinal electric field g responsible for the longitudinal
coherent instability is induced by the perturbation of the beam cur-
rent which is in turn related to the beam density modulation [see Eqs.
(3-14) and (3-3)]. We establish here the relationship, to first order
in the particle displacement, between the line density modulation and
the displacement of the particles from their respective nominal posi-
tions in the beam.

The angular revolution frequency of a particle with fractional mo-
mentum deviation 6 = (p - po)/po is wQ(l - nfi). Therefore, the
unperturbed position of the j-th particle can be written as
<j>oj - uori5jt. In the presence of an azimuthal displacement Z, of the
particle due to perturbation, the particle position is
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where the perturbed displacement £ is taken to be a function of the
unperturbed position, the momentum deviation, and time. The
normalized particle distribution function in ($,<5) space corresponding
to Eq. (4-1) is

1 N

| 2 6 U - $ . + ojon6.t - 5(«|>o. - a)on6t,6.,t))6(6 - 6.)
1 = 1 r J J J J J

j o j - 5j) ' (4-2)

p is a periodic delta function with period 2TT. The subscript
p for a periodic delta function will often be suppressed.

Assuming the beam particles to be uncorrelated without the pertur-
bation £>- one can write the probability density of the unperturbed
particles as

N

o l V \ > 2 2 o N V . j o j

where the distribution functions g and X are normalized to 1:
CD 2TT

J" d6g(6) = f d<|>X(<|>) = 1 . (4-4)
-co o

For a coasting beam

X(4>) - 1/2TT . (4-5)

The distribution function ^($,5,0 including the perturbation
is obtained by multiplying Eqs. (4-2) and (4-3) and then by inte-
grating over 4>; and 6;, j = 1, 2, ..., N. One finds

¥(<{>,6,t) = i— g(5) + Y.(<J),5,t) (4-6)

with

The line density is obtained by integrating (4-6) and (4-7) over 5.
It is

t) = 1= + P 1 (<b,t) (4-8)

with
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n n

The Four ier components of P^1) and C defined by

pCl)($,t> - 2 J&pJSDe1^-®1 (4-10)

and
(4-11)

are related, from Eq. (4-9), by

n - i If Jd6g(6)Cn(6,n) , (4-12)
(
t

4.2 Equation of Motion and Dispersion Relation

The equation of motion of a particle is

2 enw c . I
L j C r t - - u ^ t, 5 t) — H " ! 2 - «?(9,t) . (4-lb)
dt o o

The electric field <? should be evaluated at the position of the parti
cle, 9 a aiot + §oz - uion<5jt + Z,. Within linear approximation of Eq.
(4-13) (linear in 5), we can set 9 = Ulot + <j)o; -0)on6jt.

From Eqs. (3-14) and (3-6b), Eq. (4-13) becomes

,2
2 Z

0 o a v

where the subscript j is suppressed, and H is given by Eq. (1-4).
Substitution of Eq. (4-11) into Eq, (4-14) yields

(fl + oh) n6)2? (5,fl) = -nel Z (nu + J2)p (fl) . (4-15)
o n av n o n

We now eliminate £n and pn from (4-12) and (4-15) and obtain the
dispersion relation

n^o + a) "d5 ^ r (4-16a)
n o -« ( n + A 2

or, equivalently,

Eo o



13

In summary, we have discovered that the linear eigenvalue problem
represented by Eqs. (4-9) and (4-14) can be reduced to the problem of
solving the dispersion relation (4-16). We also found that the
different eigensolutions are parameterized by the revolution mode num-
ber n, and that the eigenfunction is given by

with the coherent frequency & satisfying the dispersion relation (4-16).
From Eq. (4-17), we see that the stability of this mode is determined
by the imaginary part of J2; Im(ft) > 0, =• 0, or < 0 corresponds, respec-
tively, to the mode being unstable, stationary, or damped. We call

the growth rate of the n-th mode, and !/Im(S2) the growth time.

4.3 Solution of Dispersion Relation (without Landau Damping)

Assume that there is no momentum spread in the beam (cold beam)
and therefore no revolution frequency spread. This situation is
described by

g(S) - 5(5) . (4-18)

We obtain immediately from Eqs. (4-16a) and (4-18) an expression
for the coherent frequency:

The following conclusions can be drawn from Eq. (4-19):
(i) The cold beam is always unstable if the impedance has a

resistive (real) component.
(ii) In the case where the impedance is purely reactive (purely

imaginary), the beam is stable (unstable) above transition, H > 0, if

the impedance is inductive (capacitive).
Below transition, n < 0, conclusion (ii) above is reversed.

4.4 Solution of Dispersion Relation (with Landau Damping)

We have seen that a cold beam is quite unstable. The effect of
the frequency spread is investigated here. We shall see that the fre-
quency spread prohibits the coherent instability-^0 (Landau damping) un-
less the current is large enough. For a given impedance and a given
frequency spread, the smallest current for which che instability
occurs is called the threshold current.

To find the threshold condition, we first transform Eq. (4-16b)
into another form. Noting, for Im(ft) > 0, that

1 r°° ix(
• -i I dTe T^

o

we have

n« b



14

J> rf
Let us concentrate on the case of the beam with a Gaussian

momentum distribution:

g(«) = 1 - e '5 / 2 C J5 . (4-21)
/2

Then we have

Qy 1

~a> o rti

with

2 L nn]u a .nu rtas ' ' o o
o a

hT(x) - /°dT Te
ixte"T / 2 , (4-23)

L o
and the dispersion relation (4-16b) becomes

. Z (nM + fl)

O 0 0

Note from Eq. (1.6) that U)o|n|crg is the r.m. s. revolution frequency
spread ff^, therefore Eq. (4-24) can also be written as

i • 1 Zn(ririo + "> , fl '
1 = e I h ( ) (2 2 av n "Lv|n|at' ' ^

: O O 5

It should be emphasized that for a Guassian beam Eq. (4-25) is equiva-
lent to Eq. (4-16) for Im(^) > 0. We use Im to indicate the imaginary
part and Re to indicate the real part.

In the following, we utilize Eq. (4-25) to find a sufficient
of the beam stability.

First we observe from Eq. (4-23) that

= 1 ,

|h (x)| < 1, if Im(x) > 0, or if Im(x) = 0 and Re(x) f- 0 .
(4-26)

I t follovjs tha t

. Z (nto + ft)
1 > . . , o el 1-2 2 1 (4-27)
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is a sufficient condition that there is no solution £2 of Eq. (4-16)
with Im(Ji) > 0, or that the beam is stable.

Exercise; Show that Eq. (4-25) reduces to Eq. (4-19) in
the limit Ira(Q)/(| njjaj) » 1.

5. BUNCHED BEAM LONGITUDINAL MICROWAVE INSTABILITY

It has been conjectured that the coasting beam instability
criteria apply to a bunched beam provided that the following condi-
tions are met.

(i) The wavelenths of perturbing EM fields « bunched length.
(ii) Growth rate of the instability » synchrotron frequency.

Such an instability is known as the microwave instability.
Here we take condition (ii) above to mean that we can set the an-

gular synchrotron frequency ̂ g
 a 0.

A bunched beam with momentum spread but without synchrotron focus-
ing must filament, since particles with different momenta rotate
around the ring with different revolution frequencies. We assume that
the growth rate of the instability is » the filamentation rate, so
that the filamentation can be ignored.

In Section 10, we discuss the microwave instability keeping u g fi-
nite, and we find that the conclusions reached here remain valid.

5.1 Line Density Modulation for a Bunched Beam

We have to find tha bunched beam line density modulation due to
the particle displacement caused by the perturbation. The derivation
is similar to that in Section 4.1, the main difference being that
X(4>o) in Eq. (4-3) can no longer be set to 1/2TT. Also, the terms pro-
portional to C0Qr|<St in Eq. (4-2) are ignored; this amounts to ignoring
the filamentation.

Repeating, with the above modifications, the calculation in Section
4.1 that led to Eq. (4-9), we obtain

+ pCl)((p, t) , (5-1)

P (4>,t)= -Jd5g(5) |r- [?((|>,5ft)X(<|))] . (5-2)

From .. . . ._
PU;(*,t) = 2 /dfip

n '
and

5,t) = 2
n
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Eq. (5-2) becomes

00

p (fl) = - i n Z \ FdSgCS)? (6,0) , (5-3)
n m=-m

 n~m " m

where Xn i s defined by

X(<{>) = Z X e i n * . (5-4)
n=-oo n

Note that Eq. (5-2) reduces to the coasting beam result (4-9) if
- 1/2TT.

5.2 Secular Equation

The equation of motion for a particle in the beam is Eq. (4-14).
The eigemaodes of the present problem are provided by the self-consis-
tent solutions of Eqs. (4-14) and (5-2).

It can be seen from Eq. (5-3) that the bunched structure of the
unperturbed line density X(<J>) introduces an intrinsic coupling of the
revolution modes; the m-th Fourier component of Z, contributes to Pn

within the bandwidth of ^n-,n. This is the key to understanding
microwave instabilities.

Let us calculate £n(S,J2) from Eq. (4-14) and then substitute the
result into Eq. -(5-3). The result is the following secular equation
involving an °°-dimensional matrix:

Pm - 1.1 n. T X^t JdS - » - Pn 3-5)
n=-°° (M + nTTW 5)

o

= i e ! ^ L £ Z 2 X Z JdS o S ' ( S )
 r p , (5-6)

_ Q2 n n m-n n J I? + ntlW 6 n '
£• p O

o o
where we have used the abbreviation Z n = 2n(rW0 + 0,). These equations
are generalizations of Eq, (4-16). Note that Eqs. (5-5) and (5-6)
reduce to (4-16) if X(<j>) = 1/2TT or, equivalently, if ^ m_ n ~ &m n/

27r«
We explore tha physical contents of the secular equation above

in the next two sections by solving it for some simple impedance Zn.
Let us define for later use the r.m.s. bunch length G* by

a? » / <b2d<{)X((p) . . (5-7)

Then, from the property of the Fourier transform (5-4), we have

|Xj « 1 if Inlo^ » 1 . (5-8)
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5.3 Instability Due to a High q Impedance

Suppose the source of the ring impedance consists of a single
resonance structure with its quality factor q so high that to a good
approximation

Z = Z 6 + Z* 6* . (5-9)n n n.n n n,-no ' o o ' o
Further, suppose that the wavelength corresponding to this resonance
structure is much shorther than the bunch length:

atj) >s> 1/no * (5-10)

It follows from Eqs. (5-8) and (5-10) that, for a given m, at least
one of \n_n and \i+n is negligible. Thus, Eq. (5-5) implies the
existence or two classes of solutions: One consists of eigenvectors
p m with |m - no| $ 1/a^ and the other with |m + no| $ 1/0$. For the
first class of solutions, Eq. (5-5) becomes

p = i e l ?i mX Z fd6 S - ^ _ p . (5 -11)
m av m-n n J

 fr, x \2 n o i x ;
oo (n + nr i too) o

o o
For m = nQ, th i s equation becomes

1 - | = Ti e l n Z US S ( 6 ) (5-12)
21T a V ° n o (fl + n TV 5 ) 2

o o

where XQ = 1/2TT, which follows from Eqs. (3-4) and (4-4), has been
used. Comparing this with (4-16a), we conclude that for a very high
q and high frequency impedance, the frequency shift of a bunched beam
instability is identical to that of a coasting beam with the same
average current.

Now let us look at the corresponding eigenvector. From Eqs.
(5-11) and (5-12),

» r V n n
0 O O

In coordinate space, upon using Eqs. (5-13), (4-10), and (5-4), one
obtains

P(°(*,t) - -i i- L fX(*) e
ino*-iQt)pn . (5-14)

o o

Comparing Eqs. (5-2) and (5-14), we see
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The meaning of Eq. (5-15) is that the particles, being excited by the
high q impedance, are executing harmonic motions just like the parti-
cles in a coasting beam. Note that (5-15) does not vanish outside
the bunch. However, in the expression (5-14) for the line density
this harmonic motion is modulatd by X(<J>) so that the beam stays
bunched.

Equation (5-14) is a complex expression despite the fact that
the line density has to be real; where is the complex conjugate of
(5-14)?

Exercise; Prove that the other class of solutions with
|m + no| f I/a* contribute a part to p' '(<J),t) which
is the complex conjugate of (5-14). Hint:
Z*(nWo + fl) » Zn(-nW0 - a*).

Exercise; Suppose

Z = z < 5 + z * 6 + z 5 + z * 5
n n n,n n n , -n m n.m JU n —m

o o oo o o o ' o

with
( i ) ZB - Z ,n in

o o
(ii) n a, » 1, m a. » 1, and |n - m |o. « 1 .

09 0* o 09

Show that one obtains approximately a dispersion re-
lation identical to (5-12) except that the I a v in
(5-12) is replaced by 2lav.

5.4 High Frequency Instability Due to a Broad Band Impedance

We now consider the high frequency instability due to a wakefield
whose range is short compared to the bunch length a^. To be more spe-
cific, we assume that there is an integer nQ such that

(i) Z n = Zfl if |n - n J <_ A
o

where A is u£ the order of the inverse range of the wakefield;

(ii) nQ » A » I/a .

Let us find the approximate solutions of Eq. (5-6) for which Pm is
negligibly small when |n - nQ| > A, Then, from the conditions (i) and
(ii) above, the secular equation (5-6) can be approximated by
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el w ,,*x no+A

E p o o o n=n -A
o o o

Denote by K the eigenvalue of the matrix ^ m _ n !

no+A

<p = 2TT S X p . (5-17)
m . m—n n

n=n -A
o

Then the coherent frequency s h i f t £2 i s determined by

el (0

21TE 0 2

o o

fdfi . » ( g > , . (5-18)

It remains for us to find < by solving Eq. (5-17). Since Xm_n

is sharply peaked about m a n, the peak width being of order i/o^ «
A, we expect that the eigenvalues do not depend strongly on the cut-
off value A. Therefore they should be closely approximated by

00

Kp - 2iT E X p . (5-19)
m In""n nm n=—°°

The eigenfunctions of Eq. (5-19) are

Pn(4) - e"
i$n (5-20)

and the corresponding eigenvalues are

= in Z X e 1 $ n = 2TTX($) (5-21)

where 5, 0 £ * < 2T, is a parameter which labels the different eigen-
solutions.

Note that Eq. (5-18) is the same as the coasting beam dispersion
relation (4-16b) except that I a v in (4-16b) is replaced by <I a v in
(5-18). The effective current for the mode * is

o
X(*) . (5-22)

This is the local current at position <t> = $ in the bean. The most
severe instability happens when Ieff is maximal, i.e., at $ = 0,
Ieff(* = 0) = Ipeak.
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To gain some insight into the nature of the perturbed line density,
let us make the following approximation to the eigenvectors of (5-17):

p (*) - e~1$n for |n - n | < A
n o —

= 0 for |n - n j > A . (5-23)

The perturbation to the charge density is
n.,+A _ . „ .rt_

For large A, P^'(4>ft) is sharply peaked about <j) = $, and the peak
width is of order I/A </* range of wakefield. The detailed structure
within the peak depends on the detailed short distance behavior
of the wakefield, which has been ignored in making the approximation
of (i) and hence is outside our discussion.

A computer calculation*' to check the approximation of Eq.
(5-17) by (5-19) showed the error to be <IO7. when OxL =» 3 and <5%
when o*xA = 4. The error •*• 0 as a^A -*• ».

We have demonstrated here that, under the assumptions (i), (ii),
and vanishing synchrotron frequency, the perturbation to the line
density of an eigenmode is localized azimuthally around a point on
the bunch, and the corresponding coherent frequency shift ft is deter-
mined by the coasting beam dispersion relation with the I a v replaced
by the local current at the position of the perturbation.

It is not surprising that the width of the eigenfunction of tha
microwave instability is of the order of the wakelength. As stated
at the end oi Section 3.2, the wakelength is the coherent length of the
pulse of the electric field induced by the current. When the electric
field reinforces the beam oscillation, the phase of the beam oscillation
cannot maintain the coherence (correlation) outside this range.

Messerschmid and Month ^ first studied within the Vlasov formal-
ism the microwave instability with a philosophy similar to ours. How-
ever, they based their analysis on the following ansatz for the
eigenfunction: P̂ '(<}>) - eino' X(<|>), which for high frequency is basi-
cally the same as our Eq. (5-14); therefore, their work is appropriate
only for the case of a very narrow band impedance.

6. ROBINSON INSTABILITY

We have thus far ignored the effect that synchrotron motion of the
particle in a bunched beam may have on coherent instability. This
effect will be included in the rest of Part I. Let us start with the
Robinson instability, since it is the simplest and also is the proto-
type of all the synchrotron modes.



21

We consider here the case of a rigid point-like bunch of total
charge Ne executing synchrotron motion in the rf bucket as well as
rotating around the ring; the average current I a v = etWo/2TT. The
bunch may not have the synchronous phase because of the beam-induced
longitudinal electric field. We also assume that the rf cavity is
the only source of the beam impedance.

We shall generalize later the discussion of this section to more
complicated situations. In Section 7.1.1, we treat the longitudinal
force induced by a bunch with a finite area, and the result of that
section will be used in Section 8 to discuss the generalized Robinson
instability, or synchrotron modes.

Denote by <j>(t) the bunch position relative to the synchronous
position; then the azimuthal position of the bunch relative to the
ring can be written as

8(t) = w C + 4>(t) . (6-1)
o

We assume that the rf cavity is located at 9 = 0 . Also, let pTo + tp

be the time the bunch passes the cavity on its p-th revolution around
the ring, and $_ be the value of $ at that instant, $ o = $(pTo + t_).
Then, P P P

21TP = U3o(pTo + t p ) + <>p ,

or

*P - -Vp •
 (6~2)

We can now write the equations of motion of the particle in the»
bunch as follows:

- K -I- dk E
o . . .

where £fc is the value of £ just before the bunch crosses tha cavity
on its k-th turn, and

Vg(t) = rf voltage produced by the source current (generator
current) of the rf system,

Vc(t) = voltage across the rf cavity induced by the beam
current,

eVg = energy gain per turn of the synchronous particle due to
acceleration,

eVy - energy loss of the particle per -"H due to synchroton
radiation.
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Note that eVY is taken to be independent of e, this amounts to ignor-
ing the radiation damping of the longitudinal beam emittance.

We take the generator voltage to be sinusoidal:

V (t) = V 3inChoj t + $ ) , (6-5)
g g o g

where $ g is the synchronous phase of Vg. Using this aquation and Eq.
(6-2)f we have

V (kT + t, ) = V sin(-h(t>. + <j) ) . (6-6)
g o k g ^k Yg

Next, we discuss Vc(t). Denote by Ic(t) the beam current at the
position of the rf cavity, and define its Fourier component Ic(a))
by

I (t) = J°° du i tco) e - i o ) t .
C ia> C

The voltage across the cavity is related to the beam current by

V (t) - - /" du f (u) Z(a>) e"^' , (6-7)
C too C

where Z(w) is the longitudinal impedance of the cavity, and the minus
sign in this equation reflects the fact that Vc is generated by the
image current of the beam, which equals in magnitude but is opposite
in direction to the beam current. The impedance Z(a)) here is a
special case of Zn(oi) discussed in Section 3.2. We have just seen
that the impedance from a localized source is independent of the rev-
olution mode number n.

Exercise: The equation (6-7) introduces the cavity
impedance in a way different from that of
Section 3.2. Treat the cavity impedance using
the method of Section 3.2, and calculate the
corresponding energy change of the particle per
turn due to the beam-induced electric field.
Show that the energy change so calculated agrees
with Eq. (6-10) up to the first order in

For the model at hand, the current

I (t) - eN Z 6(t - pT - t ) , (6-8)
c p=-« o p

and its Fourier component
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?fc(cu) - g J^ e^ p i ° + V . (6-9)

Substitution of Eq. (6-8) into (6-7) gives

Vc(kTQ+tk) = - g ^ J j a Z(co) e * ^

We are now ready to solve Eqs. (6-3) and (6-4). Firs t , note that
if tha bunch moves along the synchronous orbit , then <J>p = 0, £„ = 0
for al l p. Therefore, from Eqs, (6-4), (6-6), (6-10) and (6-2),

vr OO OO "

V-sini})., "» Vv + V + § r Z Jdco Z(co) e1'
S S " Y ' i f p=—oo '-oo

CD

= V^ + V + I Z ^f(na) ) , (6-11)
E y a v n=-« o

where (a)) is the resistive part of Z(o)). In obtaining Eq. (6-11),
the Poisson sum rule

Z e p x = 2TT Z 5(X - 2im)
p=—« n——«

and the causality condition (3-17) have been used. Equation (6-11)
is a restatement of the energy conservation law. It states that
the rf system provides energy for acceleration of the particles and
for compensating the radiation and parasitic energy losses.

Let us combine Eqs. (6-3) and (6-4) to obtain

l f ( V g 3 i k V c V k

O O

We shall solve this equation to the first order in
To this order, the equation is

x (h<{,kVgcos(},g-i ^ - Z (<Dp-<|.k)/aidu)Z(u)) e
i a ) ( p " k ) T ° ) , (6-13)

where Eq. (6-11) has been used.
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To find the coherent frequency ft of the Robinson mode, we look
for the solution of Eq. (6-13) of the form

* $ e + ** e
ifiPT° , (6-14)

where $ is a constant. Substituting Eq. (6-14) into (6-13), we
finally obtain

nJL
+ il E (n + S-)ZCmo + Si)) , (6-15)

av „=!„, w o J

and

(-h?gco.4,g

+ il Z (n - r7-)ZCna)rt - Q*)) , (6-16)

n -°°
where X(ai) is the reactive (imaginary) part of ZCui). These two
equations determine the coherent frequencies fl and -J2 . We note from
*?q. (3-17) that these equations are just the complex conjugate of eaoh
other, and from Eq. (6-14) that if Q, corresponds to stability or in-
stability, so does -Q .

The angular synchrotron frequencies ti)go and a)g are defined by

and

)2+:L-TieI 2 n X( n 0 J ) . (6-18)
so ZTT av n=3_<n o

oiso is the angular synchrotron frequency at zero current, and u)g, which
includes the effect of beam loading in the absence of coherent effect,
(Eq. (6-18) is independent of J2), is the actual incoherent angular
synchrotron frequency for longitudinal phase focusing.

The equation (6-15) is quite complicated. However, if the first
term on the right-hand side of the equation is much greater than the
terms involving the impedance, the equation can be solved pertur-
batively. To the first order in the impedance, the solution is
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J + §J I £
so 2TT av n-_oo

LI

nX(na) ) - (n + - ~ ) X (nu +w )
1 ° \ a) / o so I

+ i ~ I S (n + - ^ ) ^?(nw +0) ) . (6-19)
2TT av _-« \ W / o son~ o

The stability of the Robinson mode is determined by the sign of the
last term of this equation.

A way of avoiding the Robinson instability, Robinson damping,
will be discussed in Section 8.

7. VLASOV EQUATION FOR SINGLE BUNCH LONGITUDINAL COHERENT
INSTABILITY

In Section 7 we studied the coherent instability of a rigid
point-like beam. We extend the method here so that we can handle the
case of a finite sized beam with possible beam shape distortions. The
method best suited to this purpose is that of Vlasov.

The phase space density function of a canonical system satisfies
the Liouville equation,33 which involves the force field on the parti-
cle as a coefficient. The force field is related to the electromag-
netic fields, which satisfy the Maxwell equations with source terms
dependent on phase space density. Vlasov1s method consists of find-
ing self-consistent solutions of the Liouville equation (called the
Vlasov equation in this context) and the Maxwell equations.

In our treatment of the longitudinal coherent instability, the
Maxwell equations are represented by (3-14).

This section is devoted to formulation of the Vlasov equation
for longitudinal coherent instabilities and development of a method^~
for solving the equation in the linear approximation. Landau damping
due to the synchrotron frequency spread will be ignored.

The Vlasov equation for some specific cases will be solved in the
remainder of Part I.

7.1 Equations of Motion

The equations of motion are

*---—£ , (7-1)

ecu „
f (vgsin(h<{> - <|>g) + Vy + VE) + | £ ( u o + o , ,

° (7-2)
where the quantities within the brackets have been defined in the
preceding section.
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7.1.1 Beam-induced force

Tbe ^term in Eq. (7-2) describes the effect of the electric field
on the beam particle, and the electric field itself is in turn induced
by the beam. Here we express this term in terms of the particle line
density; we include the small effect caused by the synchrotron motion
of the particles (the $ term).

The contribution of the j-th particle to the beam current is

(7-3)
° v J J

where 6_ is the periodic delta function with period 21T; hence the
total beam current is

1(9,t) • e #Z JdJ(uo + |)6 (4> - 4>.)6($ - $.) . (7_4)

| is small compared to taQ. However, instead of dropping the term
proportional to $, we average Eq. (7-4) over a revolution period
TQ = 2iT/(i)o under the assumption that d>:(t) is constant in this period;
the variation of 4>j from one revolution period to another will be
taken into account. The reason for this maneuver is that, while <{>:
changes very little within a revolution period (4>j/wo

 <<: 1), the
change in $ accumulated over an interval comparable to a synchrotron
period may affect the coherent instability. Th^s is indeed the
case if there is a component of impedance that changes appreciably
within the range of frequency of the order of the synchrotron fre-
quency. The rf cavity itself is generally a source of such an im-
pedance.

The Fourier component of the current is, from Eq. (7-4),

N oo „ 2TT
Q) = -Zj Z l_ I d<t> J d9 I d t ( u + I .

4TTZ j - l P=T2 j-1 P=-°° "-* o

x 5 ( 9 - 0 ) ^ - ^

L e t us d e f i n e a f u n c t i o n f . ( 9 ) i m p l i c i t l y by

e - 0^(9) - (tJ^T^e)} = o , -» < e < • . (7-6)

The function T?(9 + 2Tp) with integer p and 0 <_ Q < 2TT gives us the
arrival time of particle j at azimuth 9 during the p-th revolution.

Note that

(u>o + *.(t))6[e - ajQt - (|>.(t) + 2-p] = 5ft - T.(6 +
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Substituting this expression,into Eq. (7-5), and then performing
the integrations over t and $, gives

" - 4TT2 J=1 P0"* °

which, with use of Eq. (7-6), can be written as

1 (ou + 8) = - ^ ? Z J d9
fc ° 4TT j P o

-i(n-^-)(|).{T (9+2TTP)}+mPT +i^-9 . (7-7)
x e o J J o

We now ignore the va r i a t i on of <|>j(t) within a revolut ion per iod; i . e . ,
we set

d».{x.(9 + 2irp)} = <b.{T.(2irp)} .
J J J J

The i n t eg ra t i on in Eq. (7-7) can then be performed. We obta in

I (nco + fl) = f- T(^-) Z Z eno . 2TT U)Q J p

with

T(x) = - i ^ e ^ " " - 1) . (7-8)

We are interested only in the region of £2 where J2T « 1. Therefore,
we set pTQ •*• t, 4

)j(Tj(2iTp) ) * $j(t), and change the summation over
p by an integral,

The result is

ea) N a, -i(n4S-)«|>.(t)+ii2t
I (no) + a) 7 r(-M Z J dte ^o J . (7-9)
n ° 4 2 U j-l -

Equation (7-9) can be expressed in terms of the line density.
The line density corresponding to (7-3) is

, N
p(*,t) . i . ^

Define
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4ir o - w

Then, the above two equations giva

P n ,

We f ina l ly obta in from Eqs. (7-9) and (7-10)

I (nu) + 9.) = 2TT T(—)i p . (7-11)
no w a v n+J?./W-o °

This is the form of the current source we shall use.
We now perform a similar averaging procedure for the term

(0)o + |) <?(o)Q + (|>,t) in Eq. (7-2). First define

Consider a particle with its position $(t) moving in the electric field
above. The rate of the energy gain of the particle from £ is

E(t) = eR(wQ + |(t))<£[u>ot + <Kt),t]

= eR(ojQ + Ut)) I Jdfi <§
>
n(na)o + n)e

i n* ( t )" R t . • (7.13)

Denote by T(2iTp + 9), 0 <_ 6 < 2TT, the time of arrival of the
particle at the azimuth 9 during its p-th revolution., It is deter-
mined implicitly by

9 - uoT(G) - <fc{~(9)} = 0 , _= < e < « . (7-14)

Equation (7-13) can be written as

E(t) = eR(u) + $(t)J T. Z Jdfi g (nu + 0) r d9
° n p=-DO n o

5(9 - a ) t -<0( t ) + 27TP)e i n < 1 ) ( t )- i f 2 t

. r2iT
= e R S S J d f i ^ 1 ( n w + J 2 ) J d 6 6 [ t - T ( 2 T T P + 9 ) J

n p n o Q

(7-15)
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The p-tenn in the summation contributes only during the p-th revolution.
Hence, if we integrate this term over t and then divide the result
by To, we obtain the average rate of the energy gain in the same revo-
lution. It is

,i <g> (nm + Q) J
-•• n no o

*»* . -2TT
- 5 s - Z J dQ <? (no) + J2) J d9

ZTT n no o

x e o u o (7-16)

Again we se t

<|>{T(2TTP + 9)} + <(){T(2TTP)} ,

and Eq. (7-16) becomes

1 em R S

We now set pT o -»• t, (}){T(2iTp)} •*• (j)(t), and drop the average sign <> from
<E>. We obtain

E - eo)QR E JdS2 ^ n ( n ^ o + J2)r*(g-)e o . (7-18)

Or ,

(O)Q + | ) <?(u>ot + i j ( t ) , t ) = u Q I JdQ <

(7-19)
x e "o ,

where T i s given by Eq. ( 7 - 8 ) .
From Eqs. (7-12) and (3-14c) ,

S (no) + fl) = - — I (nu) + fl)Z (nu + fl) . (7-20)
no ZTf n o no

The function (OJQ + t̂ ) <f can now be expressed in terms of the l ine
density by combining Eqs. (7 -19) , (7-20) , and (7-11) . Noting that
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and ignoring terms of 0(&2/wo
2), we obtain

(w + |) £(u> t + *,t) - - i u I S Jdfi
O O Iv O av —

n-K2/U0 n o (7-21)

We have thus succeeded in finding the expression for the beam-
induced force (up to first order in &/wQ) in terms of the line
density.

7.1.2 Linear approximation of equation of motion

First we combine Eqs. (7-1) and (7-2) into a single equation of
motion,

({Vgsin(h,j, -

-2ITR(1 + |-) *(u t + *,t)l . (7-22)
o

Recall that n - nuo
2/(Bo

2Eo).
Before using Eq. (7-21) in (7-22), we split the line density:

P(4>,C) - X(<|>) + P(1)(<i>,t) t (7-23)

where X(<()) is the line density in the absence of coherent motion in-
duced by the self-force g, and P'^C^t) describes the coherent
motion. Define, for any complex number ct,

Xa " Tff J"2d*e"ia<{) X((b) , (7-24a)
o

p (fi.) = J _ j 2 \ /"d tp(i>e-i«*+int ( 7_2 4 b )

f (M - 1 rZlJ
d4> rC°dtp(*,t)e- ia(l'+^ t . (7-24c)

4ir ° " "

These Fourier components are related, from Eq. (7-23), by
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a a a (7-25)

We assume X(-4>) = X(<J>), so tha t for Ci = n, n being an in t ege r ,

X = X (7-26)
—n n

Let us introduce the following notation:

«£•(<)>,t) = -2TTR(1 +^-)<f(w
Qt + <t>,t) . (7-27)

o

This is the energy loss of the particle per turn of revolution due to
the beam-induced electric field. This quantity can also be split into
two parts corresponding to Eq. (7-23). We call the contribution from
X(<{>) to &? the incoherent beam loading part; it is

£•..(•) - 2TTI \ X Z (nw )ein<() . (7-28)
BL av n=_co n n o

The coherent contribution from P̂  '($,t) is

n o

If ̂ L ( $ ) is kept only to first order in <j>, Eq. (7-28) becomes

tL j L ^J ' (7"3O)

where Eqs. (7-26), (3-18), and (3-19) have been used.
Similarly, we linearly approximate the rf voltage:

V sin(h(j) - <j> ) = -V s in* + hV 4cos<}> . (7-31)
g g g g g g

The equation of motion (7-22) now becomes

S ^ ^ + V
Y

 + VE + 27fIav ^ ^
n=-°°

^ . (7_32)

The synchronous phase $~ of the rf voltage is determined by the
following condition: For a synchronous particle (4> = 0), the energy
gain of the particle due to acceleration and the energy loss due to
synchrotron radiation and beam loading should be exactly balanced by
the energy provided by the rf generating voltage. That is,
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«
V sin* ' • V + V_ + 2-rrI S X 3t (nw ) . (7-33)
g g Y E av n=-00 n n o

Therefore, the terms within the first {...] in Eq. (7-32) cancel.
With the definitions

(j2 =. - |Dll v cos$ , (7-34)
so 2iT g ^g

and

2 2 — °°
oj = a) + riel E nZ (nu )X , (7-35)

3 SO c t V <n—^JOO tt Otl

Eq. (7 -32) becomes

<J> + to <j) = —~ 9? (<J>, t ) . (7—36)

The quantity u s o is the synchrotron frequency in the absence of beam
loading, and tu3, which includes the effect of beam loading, is the
actual synchrotron frequency of incoherent phase focusing. The right-
hand side of Eq. (7-36), which is generated^ by the coherent oscillation
of the beam, is in turn the driving force of the coherent motion.

7.1.3 Hamiltonian formalism

We now write the equation of motion (7-36) in a Hamiltonian form.
We choose <j> and W = (E - EO)/EQ as the canonical coordinate and
momentum, respectively; ($,W) emerges naturally as a canonical pair
in the standard Hamiltonian treatment" of Lorentz force. (See
Appendix B.)

Equation (7-36) can be derived from the following Hamiltonian:

H = H + US(<J>,t) , (7-37)
with °

H - - -5- (nW2 + 0)2<J)2/fi) , (7-38)
0 2 Sand

It is convenient to use the action-angle variables (J,iJO asso-
ciated with the harmonic motion of H . They are related to 4> and W
by °

<j> = (J>cosi|), W = -to ^sinty/Ti , (7 -40a)
3
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where the synchrotron amplitude is

(7-40b)

s

In terms of the action-angle variables,

and

H ' -u J (7-41)
o s

H = -w J + US . (7-42)
s

7.2 Vlasov Equation

The Liouville theorem for a canonical system is

| ^ + f¥,H] = 0 , (7-43)

where the Poisson bracket ( , ) is defined by

f A RI - M !i _ !A 3B

and Y is the phase space density function.
We refer to (7-43) as the Vlasov equation.
From Eq. (7-42), Eq. (7-43) becomes

The following decomposition is useful:

Y(J,i|»ft) = ? 0(J) +1?1(J,4' , t) , (7-45)

where VQ is the equilibrium bunch distribution, and Ti is the modifica-
tion due to the coherent oscillation. These ̂ 's are related to the line
densities in Eq. (7-23) by

P(<t>,t) = /«n/?(J,*,t) , (7-46a)

, • (7-46b)

t) . (7-46c)

The Vlasov equation now becomes

3?
u + [^o' u S ] + ^ i ' u S } = ° • (7"47)
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Note that Us is first order in ̂ \; therefore, the last term in Eq.
(7-47) is second order. Ignoring the last term, we obtain the
linearized Vlasov equation

wr - "s u r + [ V u S ) • ° • (7"48)

The driving force term of Eq. (7-48) is

= ^siml) ^l(J) -zz & ( $ , t ) , (7-49)
U ZTT S

where we have defined

0 dj 0

So the linearized Vlasov equation is

31 Us 3IJJ
 = ~ ^fs iaW O(J) «3^($,t) . (7-50)

Introducing the Fourier component of ^ ( . 1 , ^ , 0 by

VJ,i |», t) a f"d^1(J,ilJ,n)e"i'Qt: , (7-51)

and using Eq. (7-29), we change Eq. (7-50) to

flE p_Z e
1 5 ^ 0 3 ^ , (7-52)

where we use the short-hand notation,

Zn " Zn(rti)o + Q ) ( 7 ' 5 3 )

and

n = n + fi/WQ . (7-54)

The right-hand side of Eq. (7-52) is periodic in ̂ . Hence, the
equation is equivalent I see (A-l) in Appendix A.] to
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h; - » * J T T ^ S Q 5 p«2n J2V«1 <*'"»<* * ••)

W) _ ( 7 .5 5 )

where
Q - £2/u . (7-56)

s

Exercise: Prove by direct substitution that Eq. (7-55) is equi-
valent to Eq. (7-52).

From Eqs. (7-51), (7-46c), and (7-24b),

O a —
n 2iT

1 J°°dJ J2 V , (J,1;,n)e-i^co^ , (7-57)
o o

where we use d<|)dW = dJdijJ, which follows from the canonical invariance
of the phase space volume. Using Eqs. (7-57) and (7-55), we obtain the
secular equation

P-CB) - Z TCSDp-CQ) , (7-58)
m =oo mn n

where

n=—oo mn n

(7-59)

Let us analytically continue (7-58) into the complex J2~plane.
The value of £2 which satisfies this equation is the coherent frequency
of a coherent oscillation, and the corresponding eigenvector p_ gives
the perturbed line density. n
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Exercise: Define

and prove that, for 0 < 4> < 2IT,

The matrix element can be written (for a useful table of inte
grals see Appendix A) as

/n + m - 255

+ a 2 - 2flacos\|)' <j>). (7 -60 )

The rest of Part I will be based on the assumption that the
equilibrium distribution has a Gaussian form,

(7-61)

where <7y = tOgO /̂ru The coefficient above is chosen so that

JdJdip ?Q(J) = 1 . (7-62)

Upon substitution of Eq. (7-61) into (7-60), the integral in J in the
resulting equation can be performed, and the matrix element becomes

2 M 2 a v 1 - e
l 2 l l Q

s

x ̂ W^sin* e51"^* . (7-63)
o

This expression can be transformed into a modified Bessel series
representation. From Eq. (A-10),
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± ! -Jii
»?; n »-! q* - U' " ( 7 .6 4 )

To summarize Section 7: The collective motion of the beam is
governed by the Vlasov equation (7-43). For a Gaussian bunch, the
linearized Vlasov equation is equivalent to the secular equation
(7-58) with the matrix element given by (7-62) or (7-64). A solution
& - Qti)g of Eq. (7-58) gives the coherent frequency of a collective
mode, and the eigenvector describes the corresponding perturbation of
the line density.

8. SYNCHROTRON MODES

We discussed in Section 6 the Robinson instability of a rigid
point-like bunch oscillating around the synchronous point. We shall
generalize this discussion to include the effects of possible bunch
shape distortion. Landau damping will be ignored.™

Our starting point is Eqs. (7-58) and (7-64).
The condition for a coherent mode is that the matrix (Tmn) has

1 as one of its eigenvalues. This condition cannot be satisfied if
lTmnl <<: 1 for a11 m and n.

We consider here a situation in which the beam current and/or
the impedance is so small that

for all n. Then, from Eq. (7-64) and the above reasoning, there
cannot be coherent instability unless Q = U for some y, or fl - yws.
The coherent mode satisfying this condition is called the u-th synchro-
tron mode. U = 1, 2, 3, ... modes are, respectively, called dipole,
quadrupole, sextupole,... modes. It will be seen below that the
Robinson instability corresponds to the dipole synchrotron mode.

We adopt the following approximation of Eq. (7-64) for the y-th
mode:

T = i - 4 T el (Z 75) -V^-T InOwJ) e ^ " * * ^ 2 . (8-2)
mn UwV 3V n Q2 - u2 y *

Let us consider the case in which the bunch length is shorter than the
wavelengths of the perturbing EM fields, Then the argument of the
modified Bessel function is a small quantity. Using

we can approximate Eq. (8-2) as
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•mo CT.

3 (J)
The matr ix represented by Eq. (8-3) i s of rank 1 ( fac tor ized in

tn and n ) ; hence Eq. (7-58) can ea s i l y be diagonal ized. The r e s u l t i s

Q • i 5 el H a f "2Z<1J> , (8-4)
11 aV (W - 1)!2W * Sff

with

O

where Eq. (7-54) has been used.
Note that Eqs. (8-4) and (8-5) reduce to Eq. (6-15) of Robinson

instability if U » 1 and 0* » 0.
We observe that if Q is a solution of Eq. (8-4), then so is -ft*.

This follows from the symmetry property (3-17) of the impedance. The
two solutions have equal imaginary parts, and their real parts are
equal in magnitude but opposite in sign. Therefore, we lose no gener
ality in assuming J2 to have a non-negative real part.

Let us approximate Eq. (8-4) by

7 T ? jL
Cu " 1}-2 (8-6)

Then, the stability condition is

CD O 1

= TI E n V~ f^Q(nuo + ywg) - ^ ( n a ^ - Hwg)] < 0 . (8-7)

The conventional way of ensuring stability against the single
bunch synchrotron modes is by detuning the rf cavity. As can be seen
from Eq. (8-7), the contribution to Im(&) comes predominantly from
the part of the impedance that varies appreciably in a frequency range
of the order of synchrotron frequency. The rf system is generally
the most important source of such an impedance.

Let us consider the case r) > 0 (above transition). The resistive
part <5?(w) of the impedance peaks at the rf frequency a)r£/2iT. There-
fore, if we tune the rf cavity so that u)r£ < hwQ, then, from Eq. (8-7),
the impedance from the rf-cavity fundamental contributes a damping
term to the coherent frequency. Such a procedure is called Robinson
damping.

Below transition, the rf-cavity should be detuned in the opposite
way, wrf > ha)o.
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If there are many identical bunches symmetrically arranged around
the ring, then, as will be seen in Section 11, there will be coherent
modes to which the rf fundamental impedance does not contribute. Hence,
Robinson detuning is not effective against these modes.

9. LONGITUDINAL STRONG COUPLING - SHORT BUNCH CASE

nWe saw in Section 8 that under the condition Xn
 <<c *•

[see (8-1)J, the coherent modes can be classified according to the har-
monic number U of the synchrotron frequency. The coherent freqency Q
corresponding to the synchrotron mode U satisfies ft - ywg. This is no
longer true if xn £ 1

 f o r 3°™e ^'s« *n suc1:1 a case, the matrix (Tmn)
may have 1 as one of its eigenvalues without Q being close to an inte-
ger; thus many terms in the summation of Eq. (7-64) may contribute
with comparable strength to a coherent mode. When this occurs, U
ceases to be the mode number for an eigenmode.

We also saw that, when the bunch length is small compared with the
perturbing EM wavelength, we can diagonalize the matrix (8-2) for the
y-th synchrotron mode by approximating it with a matrix of rank 1.
Here we generalize this method to the Xn J* * case when the bunch is
short. Our method consists of expanding Eq. (7-64) in an asymptotic
series of small parameters mCT* and nOx, and thereby approximating the
"-dimensional matrix (Tmn) by a matrix of finite rank. A matrix of
finite rank can be diagonalized with an elementary algebraic procedure.
The long bunch case will be treated in the next section.

We recall that the coherent modes are determined by the secular
equation

m J
with

Tmn
__ 2 -(m2+n2)ai:/2

(9-2)

n + q - ft/u>g , (9-3)

Let us expand the modified Bessel function in tq. (9-2) in Taylor
series. Then, after recombining the terms, the matrix element becomes

(9-5)

where
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1 1 _ 1 1 _ l_ , 1 . 3 .

^ ^ T ^ l ' a2 = 2 Q 2 - 4 ' 3 " 1 6 Q 2 - l Q 2 - 9

a 4 = k (^L-+ ~ T ± — ) 'etc- (9"6)
Q - 4 Q - 16

Each term in (9-5) is factored into the product of a function of m
and a function of n. Let us perform the following change of base:

—2 2

X /2(S)ilpn ' (9"7)

Then (9-1) becomes

h = £ \v hl ' (9~8)
with

(9-9)

_2 2

4r =i ? Y e"n aHna,)1 . (9-10)

We observe that Eq. (9-10) is, up to a constant, the same as the
last term of Eq. (8-4).

Equation (9-8) provides a convenient starting point for treating
the coherent motion of a small bunch. We assume that there, exists
a number" VL^^, n^^cr^ < 1, such that Xn

 i s negligible if |n| > ty.^.
Then T^i decreases with increasing Z and £', and hence Eq. (9-8)
can be truncated at 5., 2,' = 2«max, where S.max is determined by
Now Eq. (9-8) becomes

I
— max — —
p a " * * i Tjir Pa ' (9"n)

This is a secular equation in a finite-dimensional vector space, and
the coherent frequency J2 can now be determined algebraically,

det(Tu, - 6U.) = 0 . (9-12)

We illustrate the above method by the case where fi^ax = 2.
Equation (9-12) becomes

4Q2 = 10 + ^ + ^ ± "VDiscr (9-13)

where the discriminant is
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Discr = 36 - 12 &2 + 12 ̂  + ( &2 - ^ ) 2 + 4#"2 . (9-14)

First, let us discuss the limit of Eq. (9-13) when X n
 <K 1* Then,

to the first order in &, the equation becomes

Q2 = 1 + \ &2 or 4 + \ ffi^ . (9-15)

This is the synchrotron mode result (8-4) with p a 1 or 2. As we
recall, these instabilities can be Robinson damped.

When X's are not small, computer studies indicate that unstable
solutions may emerge from Eq. (9-13) even if the individual ^"'s are
Robinson damped.

10. LONGITUDINAL STRONG COUPLING - LONG BUNCH CASE

We have analyzed the coupling of the synchrotron modes for the
case in which the wavelengths of the perturbing EM fields are longer than
the bunch length. Here we study the opposite, short EM wavelength,
case. In particular, it will be demonstrated that, in the limit where
the growth rate of the instability is much greater than the synchrotron
frequency, the bunched beam instability is very much like that of a
coasting beam. In other words, the equations that govern the coherent
behavior will reduce to those discussed in Section 5.

From the point of view of the synchrotron modes, what distinguishes
the long bunch (or short perturbing EM wavelengths) from the short
bunch is that, when Xn »r ̂ » m a nY more synchrotron modes contribute
to an eigenmode for the long bunch case. Let n^x be the revolution
mode number beyond which Zn/n is negligible. We can readily see from
Eq. (7-64) that, if xn s *»

 t h e number of synchrotron modes that couple
to form a coherent state is Ji^msx^^i which is large for a long bunch.
A coherent state is a fast blowup state if its coherent frequency
ft satisfies

Im(Q) = Im(ft)/ai » 1 . (10-1)
s

We shall find the condition under which Eq. (10-1) is satisfied.
Our starting point is the secular equations (7-58) and (7-63).

We shall ignore the distinction between n = n + ft/Wo and n.

(10-2)f

-

2inoi

s

cs
3 - Z
m n=-<=

e l av
L -

mZ

e

n m n

n

i27TQ

>

-21T

o

-(n2+m2-2nmcos(|;)a2/2 . (10-3)
" 6 CD



Let us take the asymptotic limit (10-1) of the matrix element
(10-3). We first note that

> 1 . (10-4)

Recall that this factor was the origin of the synchrotron poles at
Q * y, y • ±1, ±2, ..., in Eq. (7-64). Thus the synchrotron modes
lose their significance completely in the fast blowup limit (10-1).

Next we investigate the long bunch limit (high frequency limit),

together with the limit (10-1) of the integral in Eq. (10-3). Under
(10-1), the integral is dominated by the contribution from the
integration region in the neighborhood of 4> = 0. Therefore

If n and m are of opposite signs, the exponential factor
exp[-(n - m)2tj|/2J becomes vanishingly small because of (10-5).
Thus, revolution modes with positive and negative n decouple in the
high frequency fast blowup limit. Let us consider the positive case
where both n and m are positive; the "negative case" is trivially re-
lated to the "positive case."

Because of (10-5), the upper limit of integration of Eq. (10-6)
can now be replaced by ". We obtain

9TT . —i. .i.2_2

with

iL(x) = fdx e
ixTe"T /2 . (10-8)

We recall that this function has already beer discussed in connection
with the coasting beam instability in Section 4.

Combining Eqs. (10-3) to (10-7), we obtain

T "n _ Zn -(n-m)20^/2 , , fl

Recalling



43

n - TI

u,2

-~-
B 2E
O 0

(10-10)

and

Eq. (10-9) can also be written as

; el favn
E
O O

It may be worthwhile to remind ourselves that, for the Gaussian
bunch (7-61) under consideration, the line density is

(10-13)

and its Fourier component is

(10-14)

Since the fractional momentum deviation 5 is proportional to W, and
(7-61) implies a Gaussian distribution in W, the distribution function
in 6 should also be Gaussian,

g ( 5 )

We now show that the above matrix (10-12) is the same matrix that
appeared in the secular equation (5-5).

From Eq. (10-14) and the identity

L _ hT (wl L
) do-16)

0 0

which was proven in Section 4 (see (4-22)}, Eq. (10-12) becomes

0 0

Note that because of the bunch factor
m n

is vanishingly small
m n m n

unless |n - m\o§ is of the order of 1 or smaller. Thus,
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Therefore the secular equation here is equivalent to that of Section
5 in the high frequency limit under consideration.

Let us conclude this section by comparing the treatments here and
in Section 5. In Section 5, we demonstrated the Boussard conjecture
on microwave instability by establishing the dispersion relation (5-5)
for general line density X(<f>) and momentum distribution g(5) under
the assumption of a vanishing synchrotron frequency. Here we proved
the 3ame conjecture keeping 0)3 finite; however, the proof applies only
to the case of Guassian distribution (7-61). Also, recall that the
treatment here is based on the assumption of a harmonic rf potential
(7-38). For a more general rf-potential, the proof of this section
can be carried over** to the case of the corresponding Maxwell-
Baltzmann distribution.

11. LONGITUDINAL SYMMETRIC COUPLED BUNCH MODES

We treated the single bunch synchrotron mode in Section 8. Here
we consider how the presence of many bunches in the ring affects that
treatment. We assume h identical bunches symmetrically distributed
around the ring. The conclusion will be that corresponding to,each
synchrotron mode number U, there are h independent coherent modes,
each characterized by the way the coherent phases of various bunches
are related.

We shall rely heavily on the discussion of Sections 7 and 8, which
need only minor modification for adaptation to the present multibunch
case. We sketch the needed modification below.

Denote by <fj the location of the center of the j-th bunch,

*. = jjp j , j = 0, 1, ..., h - 1 . (11-1)

If Y'J) is the distribution function of the j-th bunch, the total
distribution function is

h-1 m
f((J),W,t) = £ Y^'C* -ct>.,W,t) . (11-2)

j=0 J

Since different bunches do not overlap in the phase space, the
Vlasov equation can be written as

—g£ - + (r-".^-") = 0 , j = 0, ..., h - 1 (11-3)

where

H J = -\ (nw2 + to2c<t> - <}).)2/n) + us(<|>,t) ( n - 4 )
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Cs)

0r($,t> » -2TTR(1 + 2_)£((U t + *,t) . (11-6)
s m o

0

The right-hand side of Eq, (11-6) is averaged in the sense of Section
7.1.1; hence it is actually independent of 4>.

For particles in the bunch j,

W = -0) (j)sin4)/Ti (11-7)
j a s

with

(11-8)
3

We adopt the following normalization:

Jd^dWP^' = fdjdiff^5 » 1 , (11-9)

and, instead of inventing a new notation, write

Let us decompose

( j ) ( J ) " i Q t . (11-10)

The independence of VQ from j follows from the assumption that the
bunches are identical. The perturbed line density of the beam is

x = X JdJdMj6((p - 4 K - *cosTi))'yi
(j)(J,i|;)e"i^t . (11-11)

Introduce the notation

n = n + G/w , (11-12)
and define

Pn = I? /2ird*P
o

with

. • n - (11-14)
J n
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(l) 1
p- » — JdJd̂ pS((p - <fr. - (j>cosiJj)Y;j'(J,̂ )e ~"XT YJ' . (11-15)

The energy loss of the particle per revolution can now be
written as

2 P-Z(no) +
B n n o

= 2TTI- V 2 pij)Z(na> + i ) ) e w ^ ' - " 1 1 (11-16)B k=0 n n °-

where Ig is the average current per bunch, Ig = Iav/h.
Using the technique introduced in Section 7, we obtain — from

Eqs. (11-3) to (11-5), (11-10), (11-15), and (11-16) —

1 h-1 «

where for Gaussian bunches,

T

x / ^ e ^ s i n ^ e 5 5 0 0 3 ^ . (11-18)
o

Note that (11-18) is the same as (7-63).

We approximate the phase factor in (11-17) by

ein«i>r4>k) + e in(*

This amounts to approximating the phase shift between two particles
in different bunches by the phase shift between the corresponding
synchronous particles.

The h x h matrix with i t s element given by (11-9) can be
diagonali?.ed easily. The result as applied to Eq. (11-17) is

p i j ) = pi°}e h , j - 0, ; h - 1 , (11-20)
m m

where the symmetric coupled bunch mode number S, S = 0 , 1, . . . , h - l ,
c h a r a c t e r i z e s d i f f e r e n t e i g e n s o l u t i o n s .

We obse rve t h a t
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h_i i r- (HO(n-S)
Y e h = h 2 5 . (11-21)

where <5m n is Kronecker's delta. From Eqs. (11-20), (11-21), and
(11-19).' Eq. (11-17) reduces to

p(°) - j T p^°' (11-22)
mh+S n=-» mh+S,nh+S nh+S

Except for the modification of the subscripts, this secular equation
is the same as that of the single bunch case (7-58).

Let us apply Eq. (11-22) to the synchrotron mode; then, for the
mode S, the coherent frequency Q in the small bunch approximation is
given by

• i 1 n%iav » »»-» z cm, • s ) ^ 1

2 2
Z((nh + S)(0o + n]e"

( 5 h + S ) ff* . (11-23)

II. TRANSVERSE INSTABILITIES

12. OUTLINE OF PART II

The discussion of transverse instabilities in Part II will
parallel the discussion of the longitudinal version in Part I. We
assume that the instabilities in the x and y directions are decoupled
and discuss only the y-instabilities; the discussion of the x-instabil-
ities would be totally similar. We use many of the notations defined
in Part I; these are listed under "Principal Symbols" at the end of
this paper.

In Section 13, we introduce the transverse impedance function
Z (w) which relates the y-component of the Lorentz force field to
tne dipole density of the beam.

In Section 14, we discuss the transverse coasting beam instabil-
ity; the approach adopted is that of Courant. ^ The rest of Part II
is devoted to bunched beam instabilities. Single bunch instabilities
are treated in Sections 15 to 19 and coupled bunch instabilities^'^3
in Section 20.

We consider the high frequency bunched beam transverse instabil-
ity in Chapter 15 under the assumption that the beam is not
longitudinally focused; that is, ug = 0. The results are quite similar
to those of the coasting beam case.

The finiteness of the synchrotron frequency of a bunched beam is
fully taken into account in the rest of Part II. To this end we intro-
duce in Section 16 the Vlasov equation, which describes the transverse
as well as the longitudinal motion of the particles. We also introduce
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a method*7'^ of solving Che Vlasov equation within a linear
approximation, which is followed in the rest of Part II.

When the coupling between the beam and the EM fields it induces
through the impedance is weak, the possible bunched beam transverse co-
herent instabilities are the head-tail modes.36'37 For these modes,
the coherent frequencies lie very close to the synchrotron sidebands
ym , y » 0, ±1, ... . Section 17 is devoted to head-tail modes.

When the beam couples strongly to the EM fields it generates,
head-tail modes no longer suffice to classify the transverse bunched
beam instabilities.^ The coherent frequencies in this case may not
lie close to a synchrotron sideband, and therefore many head-tail
modes couple to form coherent modes. If the bunch length is shorter
than the wavelength of the perturbing EM fields, the number of head-
tail modes which may couple is small. We introduce in Section 18 a
method*°>*° of treating such short bunch instabilities. In Section
19, we treat the strong coupling instabilities in the long bunch
case.17>18 We find that in the further limit of growth rate >:>

synchrotron frequency, the results reduce to those of Section 15.
We provide a mathematical table .i Appendix A. In Appendix B, we

demonstrate how the Hamiltonian used in Section 16 can be obtained
from a series of canonical transformations of the fundamental
Hamiltonian of the Lorentz force. The discussion is restricted for
simplicity to a weak focussing storage ring.

The transverse coherent instability derives the energy it needs
from the longitudinal orbit motion of the particles. The Panofsky-
Wentzel theorem,3^ which is a neat way of expressing this fact, is
proven in Appendix C. When the Panofsky-Wentzel theorem is applied to
the coherent instabilities, one obtains the Nassibian-Sacherer
relation,3" which relates the tranverse impedance to a generalized lon-
gitudinal impedance. The relation is discussed in Appendix D.

13. TBANSVERSE IMPEDANCE

We are interested in the transverse components of the Lorentz
force

F - e(<| + $cxB) . (13-1)

We concentrate our discussion on Fy, the y-component of F; the discus-
sion of Fx is analogous.

The force field Fy(8,t) is induced by various multipole compo-
nents of the beam current through their interaction with the environ-
ment. The field Fy so generated may in turn excite the multipole com-
ponents of the current. This "feedback loop" provides the mechanism
for the transverse coherent instability of the beam.

If the transverse dimension of the beam is small, the dominant
source of Fy is the y-component of the beam dipole density; we
therefore ignore all other sources. The dipole density at a given
moment t and at an angular position (j? = 9 - U)Qt relative to the posi-
tion of the reference particle is defined as



D(<fr,t) = <y(*,t)> P(*,t) , (13-2)

where <y(4>,t)> is the average y-displacement from the nominal orbit of
the particles located at position <j>, and P(<l>,t) is ihe line density
normalized to 1, J d4> p(4>,t) = 1. The dipole density at time t and
at position 9 relative to the ring is, of course, D(A - (i)Qt,t).

The force field Fy(^,t) generated by D can in general be written
as

2TT °°
F (9,t) = I J d9' / dt'G(9,9',t - t')D(9- - to t',t') . (13-3)
y av Q _ao o

The t - t1 dependence of the Green's function G follows from the
invariance of the dynamics under the translation in time. Since the
source of the impedance may be localized objects around the ring —
pickup's, cavities etc. — the Green's function depends on 9 and
9' separately. However, we use a smooth approximation (cf. footnote
following Eq. 3-11) to write

G(9,9',t - f ) = G(9 - 9',t - t') . (13-4)

Eq. (13-3) thus becomes

-2ir «

V 9 ' 0 = Tav.£ d9' L d t ' G ( 9 " 9'jt ' tI)D(9' " V I f t f ) ' (13~5)

y i
The transverse impedance Z (^) is conventionally defined-5 by

S(jJ OO m • •

G(9,t) = i — 5 - Z J du)Zy(ci))e U O t . (13-6)
4ir c n — " ^° n

In terms of the Fourier components of D given by

as ao

D(4.,t) = Z /

Eq.(13-5) becomes

• A -o
F (9, t ) = i — ^ I S rdJ2zy(r*J + Q)D (n)e in<P"1 C . (13-8)
y c av n n o n

We discuss now the constraint imposed by the causality condition
( ) Th l i d i i i

o the c n s t r a i n t im
on Z (a)). The causality condition isZ

G(9,t) = 0 if t < 0 . (13-9)

From Eqs. (13-6) and (13-9),
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2ir
6 f- -i c J2ir
d6 f dCG(9,t)e-

ine+ilJ)t . (13-10)
n ^ o o o

The function Zy(w) can be analytically continued to the upper half
of the complex oi-plane through this equation. It follows, then, from
Eq (1310) that

p
Eq. (13-10) that

Zy(o))* - -Zy (-u*) . (13-11)
n —n

In terms of the real (resistive) and the imaginary (reactive) part
of Zv defined by

(w) # ( ) iX() (13-12)

Eq. (13-11) can be written as

#?y(-w*) = -5ey(a>) , (13-13a)
n n

and v v
Xy(-u*) = Xy(cu) . (13-13b)
n • n

The positivity of 5?n(0J) is discussed in Appendix D.

14. COASTING BEAM TRANSVEUSE INSTABILITY

14.1 Equation of Motion and Dispersion Relation

The angular revolution frequency of a particle with fractional mo-
mentum deviation 6 is 9 = ̂ 0(l - T\S). Therefore, the longitudinal po-
sition of the j-th particle relative to the reference particle can
be written as

<t>. * $ . - 0)Qn6.t . (14-1)

We ignore the effects that the longitudinal perturbation on the beam may
have on the transverse motion of the particle, and take the y-displace-
raent of the particle to be a function of its longitudinal position,
5 and time t; that is,

yj(t) - y<4>jf6\,t) = y(<j>oj - £0^6^,5 j > t) . (14-2)

The equation of motion is

where the force F should be evaluated at the position of the particle
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9 » 9 . ( t ) » w t + < J > . = « w t + < t > . - to T i f i . t , ( 1 4 - 4 )
J o j o oj o j

and the angular betatron frequency ody is given by

u2 = Q2 (1 + ?5>2S2 - as2 (l - r\6)2(l + m2 (14-5)
y yo yo

where Qyo i s the nominal y-tune of the ring, Wyo = Qyowo, and £ is
the y-chromaticity.

Let us drop the subscript j from now on.
From Eqs. (13-8) and (14-4)

F (0, t) = i — - I £ rdJ2Zy(nw + ft)D (ft)e " . (14-6)
y c av n • n o n

Using the Fourier component of y defined by

S,t) = S rdfiy (6,ft)e i IW ^ L , (14-7)
n n

Eq. (14-3) can be written as

-(& + nw n6) y (5SJ2) + u y = i -—-2. i D (J2)Zy (rt*) + ft) . (14-8)
o n y n E av n n o

We now use Eq. (13-2) to eliminate y and D from this expression.
For a coasting beam,

P(*,t) =- 1/2* ; (14-9)
therefore,

D(<$>,t) = <y(*,t)>/2TT . (14-10)

Noting that

<y(4>,t)> = Jd<Sy(<1>,5,t)g(5) » (14-11)

where g(5) is the distribution function in 5 normalized to 1,
Jd<5g(S) = 1, we have

D (ft) = -r̂T j d6y (<S,ft)g(5) . (14-12)
n Z-' loe n

This equation together with (14-8) yields

)
o ^

^ . H S7T2—2
o (S2 + nOJ n o ) - OJ

o y

This is the dispersion relation for the coasting beam transverse
instability. The solution ft of Eq. (14-13) is the coherent frequency
of the n-th mode, and the dipole density corresponding to this coher-
ent mode is D(4>,t) = e

i n * i n t
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Suppose ft is the solution of Eq. (14-13) with positive n; then
from the symmetry property (13-11) of Zv, -^ is the solution of the
same equation with n replaced by -n. In other words, it is sufficient
for us to solve Eq. (14-13) for positive n. Note that -& and ^ have
the same imaginary part; therefore, if mode n with coherent frequency
& is stable or unstable, the same will be true for mode -n with co-
herent frequency -& .

We shall assume in the rest of this section that n > 0.

14.2 Solution of Dispersion Relation (Without Landau Damping)

In this section we solve the dispersion relation (14-13) for the
case of a cold beam; namely, the case where

g(5) = <$(<$) . (14-14)

From Eqs. (14-5) and (14-14), the dispersion relation (14-13)
becomes

ecu)

i y > + Q) •
To first order in Zv, the two solutions of the dispersion relation
(14-15) are

ft - Q 0) - i 7-r Q E l Zyf(n + Q )u ) , (14-16)+ yo o 4TT yo o av n yo oJ '
and

ft » -Q (i) + i || Q E l Z7f(n - Q )u ) . (14-17)
- yo o 4TT yo o av n yo o

To zero-th order in Z^, the dipole density corresponding to these

two coherent modes is

D±(«,t) =

This equation describes waves of coherent betatron oscillation with
angular phase velocities with respect to the ring given by

n

We see that the phase velocity of the coherent wave corresponding to
Eq. (14-16) is greater than the beam velocity, while the phase velocity
corresponding to (14-17) is smaller. They are therefore called fast
and slow waves respectively.

It is shown in Appendix D chat the real part of Zn
v(k>) is posi-

tive for n > 0 and negative for n < 0. Therefore we conclude that for
a cold beam the fast wave is always stable and the slow wave is always
unstable.40
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14.3 Solution of Dispersion Relation (With Landau Damping)

We investigate here the effect of the momentum spread on the
transverse coasting beam instability. Equation (14-5) shows that a mo-
mentum spread induces spread in w from the revolution frequency
spread and the tune spread; therefore, the threshold condition will in-
volve ri as well as £„.

Let us discuss Landau damping of the slow waves since the fast
wave is always stable.

Mathmatically, Landau damping comes about from the vanishing of
the denominator of the .integrand of Eq. (14-13):

2 2 r ,t , n(ft + nu) no) - o) = (ft + Q (0 + w ofnri + Q (£ - rmj
o y yo o o yo

x (ft - Qyou>o + Uo«S{nn - QyQ(S - n)}) . (14-19)

For the slow wave, ft - -QyO
w
oi hence we approximate Eq. (14-19) as

O V VO O "VO O O VO

The dispersion relation (14-13) becomes

00

L 6 M M •« t}(n - Q )Tl + Q €
yo o o yo yo

Let us now specialize to the case of a Gaussian momentum
distribution

g(6) 3 — L _ exp(-<52/2a2) . (14-22)

From the following identity valid for Im(ft) > 0,

fi-L-^ = -i J dTe L T ( f H x ) , (14-23)

we have
CO

L
with

hT(y) - ^ J dxe1Ty"T / 2 , Im(y) > 0 . (14-25)T( ^

Therefore, an equivalent expression of (14-21) is
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- el Zy((n - Q )u
IE Q uo.|(n - Q )tl + Q 5| aV y° C

o yo o o' Hyo yo '

J "
Note that the denominator of the argument of h<p above is the r.m.s.
value of the total frequency spread.

Observe from Eq. (14-25) that

hT(0) = 1 ,

|hT(y)l < 1, if Im(y) > 0, or if Im(y) = 0 and Re(y) # 0 . (14-27)

We deduce from Eqs. (14-26) and (14-27) that a sufficient condition for
the stability of the beam or, equivalently, for the absence of a
solution J2 of (14-26) with Im(fl) > 0 is

eel
1 > |zyf(n - 0 )U) )| . (14-28)

| y° °4/HEu) O,(n-Q )n + Q
o yo o ' ^yO

 xyo

Exercise; Show that (14-26) reduces to (14-17) in the limit of

Im(Q)

\ )n + Q £|w a-
» l .

15. BONCHED BEAM TKANSVERSE MICROWAVE INSTABILITY

We study here the transverse coherent instability under the follow-
ing conditions:

(i) Wavelength of perturbation « bunch length,
(ii) Growth rate of instability >> synchrotron frequency Wg and

the revolution frequency spread. I
We take the condition (ii) to imply that we can set w = Q, ajnd

that we can ignore the bunch shape distortion due to filamenta.tion'.
However, Landau damping due to revolution frequency spread will be
fully taken into account. In Section 19, we study the same limits
with finite w g and find there that the conclusions reached here
remain unchanged.

15.1 Equation of Motion and Dispersion Relation

If UJg = 0, the discussion of the equation of motion for a bunched
beam is similar to that for a coasting beam. Equations (14-1) to
(14-8) remain valid, but Eqs. (14-9) to (14-13) need to be modified so
that the bunched beam structure can be properly taken into account.
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The bunched beam structure introduces coupling among the revolution
modes.

Ignoring filamentation, we write the line density X as a function
of <}> and 5. We further assume X(<J>,5) to be factorized,

(15-1)

with X(<J>) and g(6) both normalized to 1.

We can now write the dipole density as

D(4>ft) - X((j>)/d5y(4),5,t)g(5) . (15-2)

This equation relates the Fourier components of D and y as follows:

D (fl) = Z X J"d6g(6)y (6,JJ) (15-3)
n m = - « n-m •'m

where • x

X(<|») - Z X e i n < P , (15-4)
n n

and Dn and yn are given by Eqs. (13-7) and (14-7) respectively.
From Eqs. (15-3) and (14-8), we obtain the dispersion relation

D - -i !!!!!SL i S X Zy(no) • fl)D r tWl . (i5-5a)
E av n = J S m-nn o n- (fl + ^ 2 2

The major difference between Eqs. (14-13) and (15-5a) is the coupling
among the different revolution modes for the bunched beam case.

If we keep only the slow wave component, Eq. (15-5a) becomes

COJ
D = +i -r=r4— el E X zy(nu + Q)H
m 2E Q av n m-n o n

o yo

r d5g(5
J Q + 0) + u) o'|(n -

yo o l) u) |(n Q )n + Q «• *yo o l xyo ^yo^'

Exercise: Show that (15-5a) reduces to (14-13) if X(<|>) = 1/2TT.

In the following two sections, we explore the physical contents
of Eq. (15-5a) by solving it for some impedance function Zn^.

15.2 Instability Due to a High q Impedance

Suppose that the source of the ring impedance consists of a single
resonance with its q-factor so high that to a good approximation
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(nWno Z
n n,n n n,-no o o o

-6)

Substituting this into Eq. (15-5), we obtain

D
i T (D x

E Q av no

- D x z*
y

From Eq. (15-4),

z ^

oo y

o o

_7)
7)

« 1 if

1/2TT

» 1

(15-8)

where Ox is the r.m.s. bunch length in units of radians,
assumption (i) above can be restated as

Also

(15-9)

Therefore, for a given m, at least one of X m_ n and X m + n is
negligible. Thus, the modes with positive and negative n decouple.

Take m =» n o in Eq. (15-7); the result is

2 2
(S2 + n u Ti6) - oi

o o y

Comparing this with Eq. (14-13), we conclude that for a very high q
and high frequency impedance, the coherent frequency of a bunched beam
is identical to that of a coasting beam with the same average current.
The corresponding eigenvector in $-space is, from Eqs. (15-7) and
(15-10),

D(4»ft) = Z Dmm Z X
m m~n

up to a factor of constant. The meaning of this equation is that the
cavity excites a coastin^-beam-like transverse wave, and this wave
is modulated by the bunchr shape function X($) so that the dipole
density does.not extend outside the region of the bunch.
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15.3 High Frequency Instability Due to a Broad Band Impedance

This case is, for a historical reason, known as the transverse
microwave instability.

We assume that

zJJ - Z7n for |n - n Q| < A (15-12)
o

where A is of the order of the inverse range of the transverse wake-
field, and no » A » l/Cfy.

Let us find the approximate solution of the dispersion relation
(15-5a) for which Dn is negligibly small outside the range given
in Eq. (15-12). Then, (15-5a) can be approximated as

CU) ,ov °

o _„. »y r^ gio)

no+A

Denote by K the eigenvalue of the matrix Xm_n:

n o + A

KD =211 E X D . (15-14)
m « m—n n

n=no-A

The coherent frequency ft will then be determined by

(Si + nW T|o) - u)
c y

It remains for us to find < by solving Eq. (15-14). Since \n-n is
sharply peaked at m = n with peak width ^*1/C7A « A, we expect that
the eigenvalue < does not depend strongly on the cutoff value of
A. Therefore, it should be closely approximatd by

KD =• 2TT S X D . (15-16)
m m~n a
D
m n

The eigenvector of Eq. (15-16) is

D = e"1$n (15-17)
n

with the corresponding eigenvalue

K(*) = 2TT S X e 1 $ n = 27(X($) , (15-18)
n=_» n
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where $, 0 £$< 2ir, is a parameter which labels different
eigensolutions.

Note that Eq. (15-15) is the same as the coasting beam dispersion
relation (14-13) with Iav replaced by

- 2TTX(*)I = efto X($) . (15-19)
aV 3" O

This is the local current at position <J> = $ in the beam.
To gain some insight into the nature of the dipole density, let

us take as an approximation to the eigenvector of Eq. (15-14),

D ($)n

The dipole density is

for | n - n I <_ A ,

for |n - nQ| > A . (15-20)

T •in(H)-iflt
n»no-A

° ( ) e

For large A, D(<{i,t) is sharply peaked about <p s $> and the peak width
is of order I/A J* wakelength.

16. VLASOV EQUATION FOR SINGLE BUNCH TRANSVERSE COHERENT INSTABILITY

In the discussion of the bunched beam transverse instability in
the preceding section, we ignored the possible effect of the longitu-
dinal phase focusing. To take such an effect into account, the most
convenient method is that of Vlasov. We formulate here the Vlasov
equation for the single bunch transverse instability, taking into
account the finiteness of the angular synchrotron frequency wg. We
ignore the effect of synchrotron frequency spread.

16.i Equation of Motion

If we approximate the betatron motion of a particle in a strong
focusing machine by a harmonic motion, the equation of y-betatron mo-
tion is

y + a»yO(l - rv5)
2U + £S)2y - 0 , (16-1)

where £ is the chromaticity. We shall not include the force induced
by the coherent motion until Section 16.4.

In the following discussion, we ignore the term 0(^2) in Eq.
(16-1). To this order of approximation, (16-1) can be generated by
the Hamiltonian
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(16-2)

where

W (E - E
o

= (02E /CO )5 ,
o o o o

(16-3)

(16-4)

and <t>0 is the location of the center of the bunch. This Harailtonian
describes the synchrotron motion as well as the betatron motion; the
canonical pairs are (4> - I'o'W) and (y,P ).

It is demonstrated in Appendix B, with a weak focusing machine
used as example, how one obtains Eq. (16-2) from the basic Harailtonian
for the Lorentz force.

16.2 Action-Angle Variables

The action-angle variables (Jy,i|O .and (Ja,il>a) can be introduced
by a canonical transformation generated̂ "-*- by

1 o 2 1 1 '
- •? (-r)oj y tan^ - •=- — (0 C<t> - <t> ) '

2 2 yo y 2 - s o
c n

The transformation is

y - ycos4»y

w - — ti) (bsind)
- s T T

n

(16-5)

(16-6)

where the be ta t ron and the synchrotron amplutudes y and <j) a r e ,
r e spec t ive ly , functions of J y and J g ,

Also,

and (16-7)

Jy = 2 l 7 Wyo3 E 0) P y J

o yo

(16-8)



60

In terms of the action-angle variables, the Hamiltonian is

Ho " V J y " V s
where the head-tai l Hsniltonian Hg-j i s given by

H^CJ.ilO - -aQyoO)gJy MJg)sini|Jg , (16-10)

with a - C/n - 1 . (16-11)

The head-tail Hamiltonian is usually small. It describes the
modulation of the betatron oscillation by the synchrotron motion, and
this modulation is the source of the head-tail mode^°»^' of the
transverse coherent instability.

16.3 Kolmogorov Transformation

It is useful, before writing the Vlasov equation, to simplify
the Hamiltonian H o by performing a canonical perturbation known as the
Kolmogorov transformation.^2,43

Let us introduce a canonical transformation (Jy,iJ;y;Jg,i|jg) •*•
(Ky,ay;K3,o3) generated by

F2(K,IJJ) = \|>yKy + \|>gKg + S2(K,ij>) , (16-12)

with S2 to be specified later. The transformation is

Jy " Ky + 8V 3*y ' ay = *y + 3S2/3Ky '

J - K + 3S /3i|; , a - $ + 3S,/3K . (16-13)
3 3 2 . 3 S 3 Z 3

Substituting (16-13) into (16-9), we write

Ho 3 V ' wK +

We now specify S2 by setting

HHT(K,4)
 + »yo 4 ~ S2(K'1|J) " Us W

A solution of this equation is

S2(K,i|O = aQ R i ( K 8 ) c o 8 ^ , (16-16)

and (16-13) becomes
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J - K ,
Y 7

" a Q
yo

I aQ J

(16-17a)

(16-17b)

(16-17c)

(16-17d)

Note that HHT(J,<10 i, and that, from (16-17),
HHT(J,40 - HHT(K~,~40 » OUSATg"). Therefore we ignore the terms in
(...) in Eq. (16-14) on the ground that the ratio of the emittances,
Jv/Jg, is generally very small. We thus obtain

H - to K - U K
o yo y s s (16-18)

The head-tail Hamiltonian has been transformed away in (16-18); the
mechanism of head-tail instability is contained now in the transforma-
tion (16-17).

The last terms of (16-17c) and (16-17d) can also be ignored be-
cause Ky/Kg Jy/Jg. Hence,

r J. a. = ib J . a (16-19)

(16-20)

From (16-18) and the Hamiltonian equation, Ot = u)yot» therefore,
(16-20) describes the precise way the betatron phase ^ y is modulated
by the synchrotron oscillation.

16.4 Inclusion of Coherent Force

So far in this section, the transverse force Fy induced by the
coherent motion of the beam is not included in the discussion. We
now write the total Hamiltonian including the coherent effect as

(16-21)
where

H = H + Uy(4>, t)

3U
(16-22)

with Fy(9,t) given by Eq. (13-8). Since Fv is independent of y, we
have

-yF t,t) . (16-23)
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16.5 Vlasov Equation

The Vlasov equation for the phase space density ^(Kg,ag;Ky,cty;t)
is

| | + (Y,H) = 0 , (16-24)

where [ , ) is the Poisson bracket defined by

r. - i _ 3A 3B 3A 3B . 3A 3B 3A 3B . _ ( l 6 _ M )

3 3 s s y y y y

We adopt the normalization

2TT J » 2TT «

8 b 3 o y b y (16-26)

For the Hamiltonian given by Eq. (16-21) with (16-18), we can write
Eq. (16-24) as

3¥ _ 3f__ 3f__ r^ yx
3t s 3o yo 3a * '

s y

We solve this equation perturbatively to first order in impedance zy.
Recalling that U^ is of 0(zy), we see that the zero-th order solution
YQ of Eq. (16-27) is a function of Kg and K only. Hence, we write

= ' \.J ,J ,; + M J ,T ;j ,ot ft) , vlo 4.0)

where (16-19) has been used, and ¥. is taken to be of first order in
zy. ¥i satisfies

It VJs'VJy'V^ " W ^ +
3¥

^ *T O

Recalling that a Poisson bracket is invariant under a canonical trans-
formation, the Poisson bracket of Eq. (16-29) can be evaluated as

l Y o ' u J "

3¥
O _ O

y '

The last term above reflects the fact that the energy for the trans
verse coherent motion 13 provided by the longitudinal energy of the
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beam motion (cf. Appendix C); nevertheless, we shall drop this term.
From Eqs. (16-6) to (16-8),

Wo CJ-.JJ

therefore, Eq. (16-29) becomes

l 3VJs'V
3t x l s 3l> yo 3a *V tV vy 3j l

y ^ T V ' L / "
3 y y (16-30)

Since the only i|Jy dependence of the right-hand side is through
3iniJJy, and cty and i|jy are related linearly by Eq. (16-20), the trans-
verse part or (16-30) is relatively easy to solve. We set

simp » | r (e^y - e"1^) - | e " 1 ^ . (16-30a)

This amounts to assuming the decoupling of the coherent modes with
coherent frequencies ft - -<0y and ft - o)y and choosing to discuss the
former. Eq. (16-30) now becomes

It Ti -». sr * v a:' T '"^? "'u''^ ?y • (16"31)
s y y

The cty part of this equation can easily be integrated, and the
equation becomes

where

^ ( J 3 ^ s ; J y J « y ; t ) - e" iay $ ( J s , j y ^ g ) e - i n t , (16-33)

and, from Eqs. (13-8) and (16-6), |

V J 3 ' * 3 ) = £ " T Xav ^ DnCJ2)Zn(nUo + ^exp(in$(Js)cos^g] , |l6-34)

where we have set the bunch-center location §0 = 0, and Dn will be
related to $ later.

We close this subsection by a few comments on fQ. Recalling that
the phase space volume is invariant under a canonical transformation,
we have from Eq. (16-26)

K d J / o ( J s ' V = 7T • (16-35)

Now, defining
¥ (J ) - 2TrfdJ 7 (J ,J ) (16-36)

os y o s y
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so that

JdJg¥Q(J3) = ̂  , (16-37)

we obtain from Eq. (16-7) and an integration by parts

I dJ/ V y " " WZ~ W ' (16"38>° J y o yo

16.6 Secular Equation

Here we transform the Vlasov equation (16-32) into a secular
equation with Dn, n = ±1, ±2, ..., as the eigenvector.

First, note from (A-l) of Appendix A that (16-32) is equivalent
to

i. j.,ii»> d Y ^ J > J >

s 1 - e y

x ^ ( J « , * a + >l»') , (16-39)
j 9 S

where
Q » (n + u y o ) /u a • (16-40)

Next, let us derive the relationship between D and $. The
dipole density D($,t) is, from Eqso (13-2) and (16-b), related to T
by

D(<J>,t) - JdK d a dK d a 5 ( $ - ^ c o s * ) y f ( K , a ;K , a ; t )s s y y s s s y y

= J d J 3 d i J ; g d J dtp 5(d> - 4>cos<|>g)y1F(Jg ,iJ>3;J , o ; t ) . ( 1 6 - 4 1 )

We observe that the unperturbed part, ^0(jg,Jy), of V does not con-
tribute to the above integral since ^ 0 is an even function of y. Hence
we obtain the following expression for the Fourier component of the
dipole density by using Eqs. (13-7), (16-33), and (16-41):

JdJ d^ dJ e-i(«+aQyo)*(J s)cos^ s_{ J ) $ ( J j 4, ) . (16-42)
S s y y s y s

j 4
s y s

Now, substituting Eq. (16-39) into (16-42) and noting that the
Jy integration in the resulting equation can be performed with the
help of Eq. (16-38), we obtain

Dm * n = L
 TmnDn

with
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el c Zy(no) + Q) „ 21T
av n ° J dJ J d^d\|) Y (J )e

o 3 o s o s

. , . . (16-44)
x e

where

aQ = * ( n - Q ) + ^ - Q . /• i e / c \^yo yo T| yo (16-45)

We note that all the variables related to the transverse dimension
have been integrated out. The \|Jg integration above can also be done
(see Eq. (A-2)J. The result is

e l c Zy(noi + fi) QO 2ir -
T 22 ^ 9L f d J / dip e l

mn 2E 0) Q . i2iTQ J
Q s o

 v

o 3 7 0 1 - e x ° °

(16-46)

For the rest of Part II, we restrict our discussion to the
case where the longitudinal distribution of the bunch in Gaussian.
Taking into account the normalization condition (16-37), we set

(16-47)

where (jj, in the r.m.s. bunch length in units of radians. The Jg
integration in Eq. (16-46) can now be performed. Using Eq. (A-4),
we obtain

eel
av

mn 4irQ U E , i2ilQ
yo s o 1 - e

• ( 1 6 > 4 8 )

We calculate for later use the line density X((J>) and the momentum
distribution function g(<5) corresponding to Eq. (16-47), From the
canonical invariance of the phase space volume,

(J )dJ diJJ = ¥ d<j>dW
OS S3 O

. (16-49a)
j W

with
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a.. » u a./TT . . (l6-49b)
W 3 <P

Equations (16-7) and (16-8) have been used in obtaining (16-49). Using
Eq. (16-4), we obtain

with u

a§ - ~Y~ ow . (16-50b)

o o

Therefore,,

(16-51)

and

g(5) » _ 4 _ e — / ^ 6 . (16-52)

•oth X(<J>) and g(5) are normalized to 1, and the Fourier component of
X(«t») is

X n - ̂  e-
n2CT4»/2 . (16_53)

We remark that, from Eqs. (15-49b) and (15-5Ob) and the definition
(16-3) for n, we have

CT5 * V ^ ^ o 1 ' (16-54)

We close this section with a short summary. If one ignores the
force induced by the collective motion of the beam, the motion of a
particle in the beam is described within a smooth approximation by
the Ramiltonian (16-2$. Tais Hamiltonian couples the transverse and
the longitudinal raoti/ons. The dynamics of this Hamiltonian is solved
to the lowest order or. s-y coupling by a Kolmogorov transformation
which leads to an uncoupled Hamiltonian (16-18), and the solution is
described by Eqs. Q6-19) and (16-20). We then establish the Vlasov
equation (16-24) including the collective force. In the later part of
this section, it is demonstrated that the linearized Vlasov equation
(16-31) is equivalent to the secular equation (16-43) with the Fourier
components o£ the dipole density as the eigenvector. By specializing
to a Gaussian bunch, we finally obtained a relatively simple expres-
sion (16-48) for the matrix of the secular equation.

All the following discussion in Part II is based on Eqs. (16-43)
and (16-48).
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Exercise. In deriving the secular equation (16-43, 44), we did
the replacement (16-30a). Derive the secular equation
corresponding to the alternative replacement sin^v -*•
-i/Ze^-^y. Show that if fi is a coherent frequency of
the new secular equation, then -^* is a solution of
(16-43, 44). Note that Im(ft) - Im(-ft*); there-
fore, the stability condition is not changed by
the choice of the replacement.

17. HEAD-TAIL MODE 3 6' 3 7

The integral representation (16-48) f the matrix element T ^
can be transformed into a modified Bessel series. From Eq. (A-9), the
matrix element becomes

_ . c _ _y, ,, _,. m -<.n +m )UA /2 -
T • i 7 — r — — r — el ZJ (ndJ + Ss)e H* Z
mn 4TIQ 0) E av n o u=»-a

yo so *

We assume in this section that

4 T T Q 0 l E a v n
70 s o

The condition for a coherent mode i s , from Eq. (16-43), that Tmn
has 1 as one of i t s eigenvalues. Under (17-2), the matrix (Tmn) cannot
possibly satisfy th is condition unless for some integer ]i

Q - U or JJ = -to + y w . (17-3)
yo s

The transverse coherent mode which satisfies (17-3) is called
the U-th head-tail mode. U * 0 mode is called the rigid mode; U =
±1 mode, the dipole mode; ]i = ±2 mode, the quadrupole mode; etc.

For the U~th head-tail mode, we approximate Eq. (17-1) by

e l Zy(nUJ - (0
a v o

i , - o , . - e l Z(nUJ - (0
mn 4TTQ 0) E a v n o yo

Suppose the wavelength of the perturbation is longer than the
bunch length; then we can approximate the modified Bessel function
by

I,,(n¥!a.) - r—r
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and Eq. (17-4) becomes

)' U 1 . (17-5)

This is a matrix of rank 1; hence it can easily be diagonalized. We
obtain from Eqs. (16-43) and (17-5)

2 2
x e ^ a* Zy(nu - u + pu) ) . (17-6)

o yo s
This is the expression for the coherent frequency shift of the U-th
head-tail mode. If the imaginary part of the right-hand side is
positive, this mode is unstable.

We ignored above the Landau damping of the head-tail modes. The
effects of the synchrotron frequency spread on these modes are dis-
cussed in Ref. 23.

18. TRANSVERSE STRONG COUPLING - SHORT BUNCH CASE

We saw in Section 17 that, if the interaction between the beam
and the EM fields that it induces is weak, the possible bunched beam
coherent instabilities are the head-tail modes. The u~th head-tail
mode, u 3 0, ±1, ±2, ..., has the coherent frequency £2 = 0) o + u^s,
or Q = 11. This is no longer the case if the interaction is strong.
Then, the matrix [T^tft)) may have 1 as one of its eigenvalues without
Q being close to an integer; thus, many terms in the summation in Eq.
(17-1) may contribute with comparable strength to a coherent mode.
When Q is not close to an integer, U ceases to be a good mode number
to characterize an eigenmode.

We also saw that when the bunch length is short compared to the
perturbing EM wavelengths, we can diagonalize the matrix (17-4) for
the U-th head-tail mode by approximating it with a matrix of rank 1.
Here we generalize this method to the strong coupling case when the
bunch is short. Our method consists of expanding Eq. (17-1) in a se-
ries of small parameters ma* and \?a* and thereby approximating the
°°-dimensional secular equation (16-43) by a new secular equation in a
finite-dimensional vector space.

We recall that the transverse coherent modes are determined by
the following secular equations:

D = Z T (J2)D , (18-1)
m n=-<x> IQn n



69

with

.Zea 0 ~ U li <P (18-2)
U=

4uQ w E av n o
^yo s o

+ fl) , (18-3)

y o g , n = n - Qy(j + SQyo/n . (18-4)

Let us expand the modified Bessel functions in (18-2) in Taylor
series. Then, after recombining the terms, the matrix element becomes

where «

0 Q L Q - 1 2 2 Q(Q2 - 4)

a3 = 2 f~T + I -T ^ , etc. - (18-6)
3 4 Q2 - 1 6 Q2 - 9

Each term in Eq. (18-5) is factored into the product of a function
of m and a function of n. We use this fact to perform the following
change of base:

> • (18-7)

Then, in terms of the new basis, Eq. (18-1) becomes

_ 00 __ _

5. = Z Tnn,Dn (18-8)

7IV = \' ^l+V ' (18-9)

(18-10)

Equation (18-8) provides a convenient starting point for treating
the coherent motion of a small bunch. We assume that there exists
an "max s u c h that Xn

 is negligible if |n| > n,,,̂ . Then,
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decreases with increasing I and £' and hence (18-8) can be truncated
at I, I* • £ m a x, where lmax is determined by n ^ ^ . Now (18-8)
becomes

T...D., . (18-11)

This secular equation in a finite-dimensional space can be treated
in an elementary way. The coherent frequency is determined by

det(f u, - 5 U.) - 0 . (18-12)

We illustrate the above method by the case ^max * *• Then Eq.
(18-12) involves a 2 x 2 determinant; the equation can be writtan
out as

Q3 - (0-o +#"2)Q
2 + <0"o*2 " 1 - ^ i 2 ) Q +^o " ° * (18"13)

In the weak coupling limit, #"Q> &"\I a n d &~1 a r e small quanti-
ties; hence Eq. (18-13) can be solved perturbatively to first order
i n ^ s . The three solutions are

Q « ̂ c , 1 + \ g"x , -1 + \ 9-^ . (18-14)

These solutions are identical to Eq. (17-6) for V • 0. 1, and -1,
respectively.

For the strong coupling case, it is best to leave the solution
of Eq. (18-12) to the computers.

19. TRANSVERSE STRONG COUPLING - LONG BUNCH CASE

We discussed in the last two sections the small bunch approxima-
tion to the secular equations (16-43); Here we discuss the opposite
asymptotic limit,

no, » 1 , (19-1)

in the case of fast blowup,

Im(Q)/0) » 1 . (19-2)
s

Recall that these limits have already been treated in Section 15
by setting d)g = 0. Here <i)g will be kept finite, and it will be shown
that the secular equation (16-43) with matrix element (16-48) reduces
to the secular equation of Section 15 in the above limits. Our pres-
ent proof is valid only for the case of a Gaussian bunch.

Before going on, we also recall that, for a Gaussian bunch
defined by Eq. (16-47), the normalized line density and momentum dis-
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tribution function are given, respectively, by Eqs. (16-51) and
(16-52), and that the Fourier components of the line density are given
by (16-53).

We now find an approximate expression for the matrix element T m n

in the limit of (19-2). In this limit, the integral in (16-48) is
dominated by the contribution from the integration region ty - 0.
Therefore,

*

- e V / 2 J V .
<*> o (19_3)

We now take the high frequency limit,

|n|a , |m|a » 1 . (19-4)

Then, if n and m are of opposite sign, (19-3) becomes vanishingly
small because of the exponential factor in front of the integral.
In other words, the fast and the slow waves decouple in the high
frequency fast blowup limit. Let us consider the slow waves, i.e.
n and m > 0. The upper limit of integration on the right-hand side
of (19-3) can now be replaced by °° because of (19-4). Thus,

a ' - 5 )

with

hT(y) =

We have already encountered the function hT in Section 14.
From 1/(1 - e

l2lTQ) + 1 in the limit of (19-2), the matrix element
(16-48) can now be approximated by

(19-7)
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From the factor exp(-(n - m)2a^/2j in this equation, we see that T m n

is vanishingly small unless |n - m\o$ £ 1. As a result, we can approx-
imate (19-7) by

eel _
"'" ' " " ' " ' (19-8)4 - _ _ ^ • • • \ * • * • * - yarn/ -mm -» i n / \

The error incurred in this approximation is about a factor of
smaller than (19-8).

To proceed, we recall (see (16-40)] that

fl + to
• n

 7° • (19-9)

Also, from (16-54) and the definition (16-45),

Now, we can use the identity (14-24) to obtain

a

hence

eel 2

T » i _ _ s - zy(BU + n ) e - ( M ) ( J * / 2

mn 41TQ E
x y o o00 (5)

-a

This is the same matrix that appears in (15-5b) with ^m«.n given by
(16-53). We have thus reduced the finite 0Js bunched beam transverse
instability problem in the high frequency fast blowup limit (19-1) and
(19-2) to the uis » 0 problem already discussed in Section 15.

20. TRANSVERSE SYMMETRIC COUPLED BUNCH MODES

In Section 17, we treated the single bunch head-tail mode. Hera
we consider how the presence of many bunches in the ring affects the
conclusion of that treatment. We assume that there are h identical
bunches symmetrically distributed around the ring. The conclusion
will be that, corresponding to each head-tail mode number U, there are
h independent coherent modes, each mode being characterized by how the
phases of the coherent motion of the neighboring bunches differ.
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We rely heavily on the discussion in Sections 16 and 17; only
minor modification is needed to make it applicable to the present multi-
bunch case. We sketch the needed modification below.

Denote by <t>: the location of the center of the j-th bunch,

<t>- " £~ j , j °* 0, 1 ,..., h - 1 . (20-1)

If ¥^J' is the distribution function of the j-th bunch, the total dis-
tribution function is

h-1 rn
l? =• Z Y^' . (20-2)

j=0
Since different bunches do not overlap, the Vlasov equation can be
written as

a»(j) m

2 i ^ - + (wVJ ' ,HJ = 0 , j = 0, 1, . . . , h - 1 . (20-3)

Define

then the dipole density of the j-th bunch is

yf1
(j)(J3,ii>g;Jy,ay)e"

int , (20-5)

and i ts Fourier component is

with

5n
j)<n) - ̂  Jdj3d^gdjyd^1

(j)
e-

in*co8l|;3 . ( 2 0_ 6 b )

Note thatj from the assumption of identical bunches, we take vg in
Eq. (20-4) to be independent of j.

Let us adopt the normalization

/dj3d^gdjydY ( j )u3 JvvV = l - (20'7)

Then the force field induced by the collective motion of the bunches
is

F (9 , t ) = i ^ I \ Z D^k)(n)Zy(iuo + 9 . ) ^ - ^ , (20-8)
y c a fc-Q n n o
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where Ig • lav/11 " t n e average current per bunch. For the force on
the particle in the j-th bunch, Eq. (20-8) should be evaluated at

9 • u)ot + <|>j + $costy3 or <j> = (J)j ^

Define

X S y 3

then the linearized Vlasov equation becomes

s

E D
n n

x Z C n W o

For a Gaussian bunch, we arrive at the following secular equation
for the U-th head-tail mode:

. - « *. ~ (20-12)
m h n k mn n

where

Tmn' k ) " ein(*J"(|>k)Tmn = e i n h 3" k Tmn ' ( 2 0" 1 3 )

with

T = i -, =— el Ẑ (no) - 0) - uu )
11111 *1TQV

 u ^ a v ° y° 3

Equation (20-12) with (20-13) can easily be diagonalized in
the h dimensional (j)-space. The eigenvector in (j)-space is

. 2TT ..

5«i) - B4".1 r : , C20-15)
mm

where the parameter S, S = 0, 1, ..., h - 1, labels different
eigensolutiona.
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From the identity

. h-1 i Q (n-S)(j-k)
S e = h 2 5n_s lh (20-16)

Eqs. (20-12) and (20-13) reduce to

Dmh+S J mh^S,nh+SDnh+S * (20 17)

Note that Eq. (20-14) is identical to (17-4). Also, (20-17) is
the same as (16-43) except for the modification of the subscripts.
Thus, we obtain for the S-th coupled bunch mode the following ex-
pression for the coherent frequency shift in the small bunch approx-
imation:

x Zy((nh + S - 0 )u + l*o ) . (20-18)
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APPENDIX A MATHMETICAL FORMULAE

If

iQ*(9) + 2 | ^ = F(9) with F(9 + 2TT) - F(9) ,

then the periodic solution of this equation is

i|)(9) i-rj-r/^de'e^'FCg + 91) . (A-l)

1 - e °
r2iT, f l

l i x c o s C g + g ^ - i y c o s g 1 ., . f / 2 2*J do e =» 21TJ-1/X + y -
o

; 2 i r d 9 ' 3 i n ( 9 + 9 1 )
o

-i2ir - ^ i n 9 ^ ( A 2 + y2 - 2xycos9) . (A-3)

/x •»• y - 2xycos9

(or) » o 2.^^ 2 . (A-4)

l

( 0 , 9 < w ) _

(A-7)

(A-8)

Z ^ - T(x) . (A-9)

(1 - ei2^) Z - A - T (x) . ( A- 1 0)y=-a> Q - U y
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APPENDIX B WEAK FOCUSING SYNCHROTRON

This appendix deals with the Hamiltonian formalism of the motion
of a particle in a weak focusing machine, including the effect of the
3extupole magnet and the rf accelerating cavity. Specifically, it shows
how the well-known Hamiltonian for the Lorentz force transforms into
the form used in Section 16.

B.I Expansion of Hamiltonian

The Hamiltonian of the particle trajectory in the Serret-Frenet
coordinate system is5'^

( p a - e A ) . 9 9 9
H - e J —2 3— + p2 + p2 + m2c2 (B_1}

Cl + Kx) Z X 7

where *c • 1/R is the constant curvature of the reference circular
orbit, s measures the length along the same orbit, and (px,py,ps) are
the canonical momenta conjugate to (x,y,s). We choose the convention
that x x y » s, where x, y, and s are unit vectors. We are
using time t as the independent variable.

The vector potential Ag can be split into three parts:

= AL(x,y) + Agexc(x,y) + Ar£Cs,t) . (B-2)

Following Ref. 7, we define the linear part of the accelerator by

c + ny ) - •=• K x + ^ - i C x y } , (B-3)

where p 0 =* /E5 - m
ze*/c » BQE O/C is the nominal momentum, and the n's

are related to-the focusing magnetic field B by

£ & V n •
 (B-4)

nx - 1 - n . (B-5)

The rf voltages can be described in the smooth approximation* by

eArf = f~2 WJ(s " 3 o c t ) 2 (B'6)rf 2z s °

*Since the rf cavity is localized, Ajf can be represented as a
superposition of propagating waves around the ring with angular
phase velocity hcuo/n, n = 0, ±1, ±2, ... . The smooth approximation
consists of keeping only the wave with its phase velocity equal to
the particle" velocity; namely, the wave with n = h.
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with the angular synchrotron frequency 0)g given by

2

s
f - v

rf
c°s<t>g (B-7)

where h is the harmonic number, Vrf is the peak rf voltage, and
<j>3 is its phase. The sextupole field is given by

b3 3 3 2
sext 3 o

with b3 describing the sextupole strength.
I t i s convenient to introduce the momentum deviation

p = p - p and

Let us now take p0 » me and expand Eq. (B-l) in the res t of the
variables. To third order in x, y, and p, and f i r s t order in A, we
obtain

2 - 2
H - E + L ° {(n +

s

3 J 3

s

with

From

e*rf , (B-10)

and

Es " Eo

f- ~ | ~ (l "(I ~ ^j)5} » (B-llb)
S O Y

s Y ,
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with Yo * E0/mc^, Eq. (B-10) becomes

H = E Q + Bocpo(C5 + S_) + (i + £_) I{nx + 25)tc
2x2 + nic2y2}

^o 'o

+ i Bocpo{^-=-^ tcV "- b3ic
3(x3 - 3xy2)} - BoceArf ,.

where we have ignored the terms of orders $2<x/Yo, ^Arf/Y
2, and

5 3 3 / 2

B.2 Closed Orbit

The quantity x consists of two parts:

x » x + xQ (B-13)
c p

where xc is the closed orbit, and Xg describes the horizontal betatron
oscillation around xc. . xc is determined by the requirement that.it
be proportional to 6 (we consider only the linear closed orbit) and
that upon substitution of (B-13) into (B-12), terms proportional to
xg<5 in the resulting Hamiltonian cancel out. From inspection, we see

The above decomposition of x can be achieved by the canonical
transformation (x,px,s,ps) •*• (xg.pxgjS^pgj) generated by

41

F 3 " " ( xs + ̂ K - V s (B

or

3F, 3F
- = pa , (B-16a)

— , (B16-b)

Sl + n ^ T ' (B'16C)
x *o
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We see that Eq. (B-16b) gives the desired decomposition and that, from
(B-16a), px and ps are not changed under this transformation. Equa-
tion (B-16c) introduces, on the other hand, a coupling between the hor-
izontal and longitudinal directions. Note that the Hamiltonian H de-
pends on s only through Arf; this x-s coupling may indeed excite the
synchro-betatron resonance through the rf cavity. We assume, however,
that we are far away from these resonances and ignore the last term in
(B-16e).

We thus obtain an expression for H which is explicit in Xg:

n + 1 + 2b, n

2N „ 1

o

p o ov 2 n 2J

o x Y'o

where the terms of orders 5^, 5^Xg, Xg, Xgy^, 5xg/y§, and
6y2/Y2 a r e ignored.

 P

Let us now find the nominal tune Qo, the momentum compaction
factor a, and the chromaticity E, corresponding to Eq. (B-17). From
Hamilton's equation,

x Y
o

or, in terms of 9 = <s = s/R,

§ - u (l - (i- - ~)6) . (B-18b)
x Y

Therefore,

c / n n n i.

x x x Y

Hamilton's equation also gives the following equations of motion valid
to first order in 5:



81

, 2 n + n2 + 2b
Xg +t»T(l - n5) nx(l j ^ ) x 3 * ° » (B-20a)

nx

y + 0)2(l - Ti«)2 n{l + C 2—-^ t ̂ )<S}y - 0 , (B-20b)
X X

Therefore, the nominal tunes are

n »/n" , 0 - /n , (B-21)

and the linear chromaticities are

' 7 and

The terms in Eq. (B-22) that are proportional to b3 are the chroma-
ticities induced by the sextupole magnet, and the remainders are
called the natural chromaticities.

The Hamiltonian (B-17) can now be written as

2

H » EQ + 6ocpQ i C(nxic
2x2 + ! | ) { l + CCx - n)5} + (x * y))

P

2

B « ( « - \ {nS2 + -f-r (s - Bet)2}) + H(1) , CB-23)

o

,2

_s_

° ° z nS2 z °
with

2 •» K
Cli « 5' 2 2 "y n - *?n '

o o 2 x 3 3' 2n 't
p x n

P2 'i \
" Cj+ ^ ) ) . (B-24)

x

Exercise; Show that H^' does not contribute to (B-20)
to first order in 6.

We shall ignore.
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B.3 A Transformation of the Synchrotron Variable

It is convenient to use the variable <J> instead of s to describe
the synchrotron motion. Let us carry out the canonical transformation
(s,p ,H) + (<t>,W,H) generated by

ss

We have

(s - 6Qct)(lCW + PQ) • (B-25)

po ' ( B" 2 6 a )

2
<t> = g ~ - <(s - B c t ) . (B-26b)

The new Hamiltonian is

CO

(E - n) - ~ - W} + (x - y)) - \ (?iw2 + (d2 <j)2/n) , ( B - 2 7 )

o o
with

Eo) . (B-28)

It is useful to write Eq. (B-26a) in another form. If the last
term in (B-lla) is ignored, the resulting equation together with
(B-26a) gives

W = AE/tOQ , (B-29)

where AE = Eg - EQ.
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APPENDIX C PANOFSKY-WENTZEL THEOREM

Panofsky and Wentzel" established a relationship between the
transverse kick a stiff particle (a fast particle) receives and the
energy it loses when it passes through a cavity. We rewrite their
theorem in this appendix in a form more suitable for our discussion;
we relate the transverse component of the Lorentz force to the elec-
tric fields around the ring.

It is convenient to work with the Hamiltonian formalism where
s instead of t is the independent variable. In Serret-Frenel coor-
dinate system, the Hamiltonian is"*?

-eAg - (1 - <x) ̂/
(E Y V ) - m2c2 - (^ - e ^ ) 2 (C-l)

where&•£ and Aij are two-dimensional transverse vectors (^x» ^ v )
and (Ax,Ay), respectively, and < is the curvature of the reference
orbit.

We ignore the effects of the curvature and work in the gauge where
the scalar potential V = 0. Thus Eq. (C-l) becomes "~

/ E 2 2 r~* •* "\2
-eAs(x,y,s,t) - - J - ^ - m c - [f̂ , - eA^x^, s, t) j . (C-2)

c

The canonical variables of this Hamiltonian system are (x,£?x), .
(y»^y) and (t,-E). The transverse kinetic momentum p is related
to the canonical momentum ̂ . by

PT - J»T - eXT(x,y,s,t) . (C-3)

From Hamilton's equation

&

where pg = \E
2/c 2 - m2c2 - pT

2. We ignore the last term of Eq.
(C-4) on the ground that p^/pg is small. We thus have

dT * e 37 As • ( c" 5 )

Similarly,

dE "bae s
ds • a t ~ " e at * ( c " 6 )

From Eqs. (C-5) and (C-6),

Jt ds = ~ 3y ds ' ^C"7^
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Let us write this relation in a more transparent form, d/ds in
Eq. (C-7) is the total derivative following the particle. Therefore,
dE/ds is the energy gain of the particle per unit length. Or,

(C-8)

with <? (x,y,s,t) the longitudinal electric field. Similarly,
3

s Fy is the transverse Lorentz force field in the y-direction,
and Soc is the particle speed. In the present gauge, the y-component
of the electric field is

<£ (*»y>3,t) » - £7 A (x,y,s,t) . (C-10)

Substituting the y-component of (C-3) into (C-7), and then
applying (C-8), (C-9) and (C-1Q) in the resulting equation, we obtain

3 d 3
y^y.s.t) - e j£ 3 (x,y,s,t) - e8Qc 3- <?3(x,y,s,t) . (oil)

This is the Panofsky-Wentzel theorem. Note that

d 3 3
J£ <?y(x>y,3,t) =» 6QC j^ ^y(x,y,s,t) + j£ ^y(x,y,s,t) .
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APPENDIX D NASSIBIAN-SACHERER RELATION

In this appendix, we apply the Panofsky-Wentzel theorem (C-12) to
prove the Nassibian-Sacherer relation, ° which relates the transverse
impedance discussed in Section 13 to a generalized longitudinal
impedance. Later we use the Nasaibian-Sacherer relation to orove that
the resistive part (real part) of the transverse impedance Z (to)
is positive for n > 0 and negative for n < 0.

Let J3(x,y,9,t) be the current density related to the current
1(6, t) by

I(9,t) - JdxdyJ (x,y,9,t) . (D-l)
s

Consider a filament of the beam current at the transverse position
by

(D-2)J (x,y,9,t) = <5(x - x )5(y - y ) Z Jdwl (o))ein9"i(Ot .

Denote by<?3(x,y,9,t) the longitudinal electric field produced by
the current (D-2), and define a generalized longitudinal impedance
Z^<ix,y;xo,yo;w) by

S ' tailK yiŝ aQO QO » O O l i

One can use Lorentz's reciprocity theorem^1^ to prove that the gener-
alized impedance is symmetric:

(D-4)

Exercise: Prove (D-4).

The longitudinal impedance Zn(o)) defined in Section 3 is obviously
related to the generalized impedance by

Zn(ai) ' Zn(xo'yo;xo'yo
;al) ' (IK5)

For a general current density J3(x,y,9,t) which is distributed
in the (x,y) space, we have, from the superposition principle
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(D-6)
where

J (x,y,9,t) » 2 Jduj (x,y,a))ein9"ia)t . (D-7)
. , —# rf 7 * * — ^ - • '

Now consider the par t i c le density

p(X,y,(D,t) - ^ f «(* - xo)6(y - 7 Q - De i n < M f l C ) , (D-8a)

• i*5(x - xo
)5(y - V - h

which is normalized to 1:

/dxdy J d<t>p(x,y,$,t) - 1 . (D-9)
o

As always in these notes, <i> is related to 8 by 8 3 coQt + 4>. Equation
(D-8) describes a beam filament located at (xo,yo) and oscillating
in the y-direction with displacement Dexp(in<t> - i$t). Suppose the
beam consists of N particles; then ";he longitudinal current density
and the dipole density corresponding to (D-8) are, respectively,

V*,y,9,t) - - ̂  (0»o * $ « < * - xo)«'(y - yo)e
in9-ia)t , (D-10)

and

^ " * - ^ f ( D_ n )

with U) = ntu0 +U) ntu0 J2.
The longitudinal electric field generated by Eq. (D-10) can be

calculated by using (D-6). It is

j» f a *\ eND a) 9 JL. . in6-ioit
^3(x,y,9,t) * - - 3 — - ̂ - 2n(x,y;xo,yo;a))e . (D

We now use the Panofsky-Wentzel theorem to find the transverse
force field Fy(x,y,9,t). Following Nassibian aad Sacherer, we ignore
the electric deflection; that is, we set gy = 0 in Eq. (C-ll). This
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means that the following discussion does not apply, for example, to
the space charge impedance. Equation (C-ll) now becomes

2
3 , , , , e g

o
c N D CD 32

^ Fy(x,y,6,t) - — j - - ^

Fy is clearly proportional to exp(in9 - itot). Thus the solution of
Eq. (D-13) is

Now we are ready to find the relationship between the transverse
impedance Z (oi) and the generalized longitudinal impedance. From
Eqs. (13-8)nand (D-ll),

fi(0

y W9-
Comparing Eqs. (D-14) and (D-15), we obtain

X = XO

This is the Nassibian-Sacherer relation.
When a beam passes through a passive device, it can lose but

cannot gain energy. We saw in Section 3 that this condition implies
that the resistive part of the longitudinal impedance must be positive
for all n and CO. In the following, we investigate what this condition
implies for the resistive part of the transverse impedance.

From the above condition,

Realf/dxdy <(x,y,e, t) J*(x,y,9, t)) < 0 . (D-17)

Substituting (D-10) and (D-12) into this inequality, we obtain

Real £ ! )

e

From (D-18) and (D-16), we obtain

^ 0 , if n > 0

< 0 , if n < 0 (D-19)

where ^ is the real part of Zy,



PRINCIPAL SYMBOLS

A dimensionless parameter that sets the scale of the
betatron phase modulation due to synchrotron oscill-
ation, a - C/n - 1 (16-11).

a_, cty Kolmogorov transformed angle-variables (16-19, 2 0 ) .

B Velocity of a particle in units of c.

(30 Nominal value of 8.

c Speed of light.

DC$,t) Dipole density (13-2).

D n(Q) Fourier component of D(<t>,t) (13-7).

5 Fractional momentum deviation, 5 =» (p - p o ) / p o (1-3).

E Energy of a particle.

E Q Nominal value of E.

<?or <?3 Longitudinal electric field (3-8) and ( C - 8 ) ,

<?y ' y-component of electric field (C-10).

e Fractional energy deviation, £ =» (E - E o ) / E o (1-3).

Yn n -
n n » nu)2/(6^Eo) (1-4).

Azimuthal angular position relative to the reference
particle, $ » 9 - ajot (1-1).

Synchrotron amplitude (6-8), (7-40b), and (16-7).

y-component of Lorentz force (13-8) and (C-ll).

Energy loss of particle per turn of revolution (7-27),
(7-28), and (7-29).

Momentum distribution function normalized to 1,
Jd5g(5) = 1 (4-3).

Y Energy in units of me2.

Yt Transition y (1-4).

h Harmonic number of rf (6-3).
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I a v Average current (1-2).

IB Average current per bunch, Ig =» Iav/h (11-16).

1(9,t) Current at position 9 and time t (3-3).

Fourier component of l (9, t ) (3-4).

^ Modified Bessel function (7-64).

Im(x) Imaginary part of x.

J Action variable of synchrotron motion (7-40b).

J3 Same as J (16-7).

J_ Action variable of y-betatron motion (16-8).

Kg, Ky Kolmogorov-transformed action variables, conjugate

to a 3 and Oy (16-17,19).

£ Chromaticity, same as ? y (14-5).

X(<J>) Normalized unperturbed line density, f d()>X((j>) • 1

(4-3) and (7-23). J°

X^ Fourier component of X(<J>) (5-4).

U Harmonic number of synchrotron frequency (7-64) and

(17-1).

N Total number of particles in the ring.

n Harmonic number of revolution frequency (3-4).

n, TL^ Focusing field index of a weak focusing machine (B-4)
and (B-5).

n n » n + ft/a)Q (7-54) .
n n - n + aQyo (16-45).

p Momentum of par t ic le .

Po Nominal value of p .

$ Azimuthal position relat ive to nominal par t ic le (1-1)

^ Angle-variable of synchrotron motion (7-40a).

^l>g Same as \|i (16-6).
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\J» Angle-variable of betatron motion (16-6).

Q Normalized coherent frequency.
For longidutinal instability, Q = ft/w3 (7-56).
For transverse instability, Q = (ft + U)yo)/a)g (16-40)

Q o Nominal value of y-tune (14-5).

R Average ring radius.

Re(x) Real part of x.

or^Koi) Real (resistive) part of Zn(w) (3-18).

Real (resistive) part of Zy(oi) (13-12).
'n n

p(4»,t) Total line density (3-1).

t) Perturbed part of line density (5-1).

or Pn Fourier component of p($,t) (3-5b).

s Length along the refrence orbit in Serret-Frenet
coordinate system.

S An integer which parameterizes eigenmodes of

symmetric coupled bunch modes (11-20) and (20-15).

Oh r.m.s. bunch length in units of radians (5-7).

aX r.m.s. revolution frequency spread.

a$ r.m.s. value of 5-spread.

To Revolution p e r i o d , To = 2TT/U)O.

TJJJJJ Matrix element of the secular equation that deter-

mines the eigenmodes (7-58) and (16-43).

9 Azimuthal position relative to the ring.

W Canonical momentum conjugate to <j), W = (E - Eo)/u)o

(7-38), (16-2), and (B-7.9).
w Fourier variable conjugate to t when 8 is fixed

(3-14b).
ft (i) Fourier variable conjugate to t when <J> is fixed

(3-14c). (ii) Coherent frequency.
w
0 Angular revolution frequency.
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0) Angular synchrotron frequency.

a) a o Angular synchrotron frequency in the absence of beam
loading.

ai_ Betatron frequency (14-5).

0jyO Nominal betatron frequency, aiv0 = Qy Ow o.

or X(oo) Imaginary part of Zn(co) (3-18).

X y Imaginary part of Z^(u)) (13-12).
n n

y Betatron amplitude (16-6).

Z n(w), Z(u) or Z
L Longitudinal impedance (3-14) and (D-6).

) or ZV((J)) Transverse impedance (13-8).
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