
IS-4990
UC-37

IDBORQTORV

The Ames Waveform Digitizer Module 

USER GUIDE

Version 1.1

H. B. Crawley, M. S. Gorbics, J. F. Homer, Jr., R. McKay, 
W. T. Meyer, E. I. Rosenberg, and W. D. Thomas

Ames Laboratory 
Iowa State University 
Ames, Iowa 50011

Prepared For
The U. S. Department of Energy 
Under Contract W-7405-eng -82



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



.DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any 
agency thereof, nor any of their employees, makes any warranty, express or 
implied, or assumes any legal liability or responsibility for the accuracy, 
completeness or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof. The views and opinions of authors expressed 
herein do not necessarily state or reflect those of the United States Government 
or any agency thereof.

Printed in the United States of America 

Available from
National Technical Information Service 
U.S. Department of Commerce 
5265 Port Royal Road 
Springfield, VA 22161



IS—4990 

dE90 011718

The Ames Waveform Digitizer Module 

USER GUIDE

H. B. Crawley, M. S. Gorbics, J. F. Homer, Jr., R. McKay, 
W. T. Meyer, E. I. Rosenberg, and W. D. Thomas

Ames Laboratory* and Department of Physics 
Iowa State University 

Ames, IA 50011

Date Transmitted: February, 1989

‘Operated by Iowa State University for 
the U.S. Department of Energy under Contract 

No. W-7405-ENG-82.

MASTER
c:s! R!5'JT!QM OF THiS DOGUNii :NT IS UNLIMITED



February 14, 1989 Page ii

TABLE OF CONTENTS

Table of Contents ........................................................................................................ii
Abstract ...................................................................................................................... iv

1. Introduction ............................................................................................................... 1
2. Functional Description ............................................................................................. 2

2.1 Overview ................................................................................................................ 2
2.2 Input Signals and Analog Buffer ........................................................................4
2.3 Flash ADC and Cache Memory ..........................................................................5
2.4 Zero Suppression and Front-end Buffer............................................................. 7
2.5 FASTBUS Coupler and GSR’s ........................................................................... 9
2.6 Microprocessor .................................................................................................... 14
2.7 Clock and Trigger Inputs ...................................................................................16
2.8 Other Features .................................................................................................... 18

3. Board Sequences ..................................................................................................... 21
3.1 Data Acquisition Sequences.............................................................................. 21

3.1.1 Standard DELPHI Sequence......................................................................21
3.1.2 Fast Readout Method 1 ..............................................................................21
3.1.3 Fast Readout Method 2 ..............................................................................22

3.2 Data Readout Sequences ...................................................................................24
3.2.1 FEB Readout ...............................................................................................24
3.2.2 BEB Readout ...............................................................................................25

4. Programming the Microprocessor..........................................................................27
4.1 Programming Environment ............................................;............................... 27

4.1.1 Hardware ...................................................................................................... 27
4.1.2 Software ........................................................................................................30

4.2 Program Development ........................................................................................31
4.3 Program Examples .............................................................................................32

Appendix A: Technical parameters.............................................................................39
Appendix B: Input Connections ..................................................................  40



Appendix C: Sample Readout Routines ......................................................................41
Appendix D: Subroutine to Load S-code Files............................................................ 47
Bibliography .................................................................................................................. 49
Distribution List ........................................................................................................... 50

February 14, 1989 Page iii



February 14, 1989 Page iv

ABSTRACT

This document describes a waveform digitizer module developed for the DEL­
PHI experiment at the CERN Laboratory in Geneva, Switzerland. The Ames 
Waveform Digitizer is a single electronics board conforming to the FASTBUS stan­
dard (IEEE-960) which digitizes 32 channels of analog waveforms, removes data 
values below a settable threshold, and can reformat the data and perform fast anal­
ysis using an on-board microprocessor. This guide is intended to help the user 
install and use the modules in a data acquisition system. The technical details 
necessary for repair or modification will be available in a separate Technical Man­
ual.



February 14, 1989 Page 1

1. INTRODUCTION

The Ames Waveform Digitizer is a single-width FASTBUS slave module which 
digitizes input waveforms at rates up to 15 megasamples per second (mps). Each 
board has 32 input channels, zero suppression circuitry for data compaction, and 
an on-board Motorola 68000 microprocessor operating at 16 MHz. A summary of 
the technical parameters is given in Appendix A.

This document is intended to aid the user who wants to interface the board 
to a particular data acquisition system. Technical information needed to repair or 
modify the board is contained in a separate Technical Manual.

We use a few notational conventions which need to be defined. In general, we 
try to adhere to standard usage where possible. Hexadecimal numbers are denoted 
by appending a lower-case h at the end, e.g., lOOh. An exception to this is the case 
of addresses for the 68000 microprocessor. In order to conform to standard usage 
we use a dollar sign before the number, e.g., $4000. Although the number is still 
hexadecimal, this form carries the additional information that it is a 68000 address 
that is being discussed. In referring to FASTBUS CSR registers and their bits we 
follow the notation of the FASTBUS specification (see bibliography). Thus, for 
example, bit 11 of CSR 10 is called CSR#10h(ll) and the range of bits 5 through 
7 in CSR lOh is CSR#10h(05:07).

This module was developed by the High Energy Physics group of the Ames Lab­
oratory, Iowa State University, for use with the High-density Projection Chamber 
(HPC) in the DELPHI experiment at the CERN Laboratory, Geneva, Switzerland. 
In this experiment, the digitization clock runs at 14.675 MHz and the zero sup­
pression clock at 4.5 MHz. Both of these clocks are supplied to the module from 
an external source. When we give a value for timings in this guide we implicitly 
assume these clock frequencies. It is possible to vary these values somewhat for 
other experiments and timings will change accordingly.

Patents related to this module are pending.



February 14, 1989 Page 2

2. FUNCTIONAL DESCRIPTION

2.1 Overview

The operation of the module is divided into three states, LOAD, DUMP, and 
READOUT, with control of these states determined by external signals on the 
FASTBUS TR lines as described in section 2.7. During the LOAD state flash 
analog-to-digital converters (FADCs) digitize the input waveforms and store the 
results in the cache memories. During the DUMP state the data are transferred 
from the cache memory through a zero suppression circuit and into a front-end 
buffer (FEB). The module is in the READOUT state whenever it is not in the 
LOAD or DUMP state and it is only in this state that FASTBUS access is permitted 
and that the microprocessor can operate.

The LOAD state begins when the module receives a WARNING/CLEAR signal 
on the TR lines and ends when 255 data samples have been taken. Provision has 
been made for taking eight values of presample data between the WARNING/- 
CLEAR and an event trigger (usually called the beam cross-over, or BCO, in the 
technical documentation). This allows the user to record samples of the baseline 
just before an event occurs, if prior knowledge of the event time exists (for example, 
in a colliding beam storage ring where the beam cross-over time is precisely known). 
In other applications, it is possible to use the WARNING/CLEAR for the event 
trigger and the eight presample values simply become the first eight data values. 
See section 3.1 for more details.

At the end of the LOAD state, the board automatically enters the DUMP state, 
which lasts about 450 fis when using a 4.5 MHz DUMP clock. At the end of the 
DUMP state, the board automatically goes to the READOUT state. Asserting 
the external QRST signal at any time during the LOAD or DUMP also puts the 
module in the READOUT state.

As figure 2.1 shows, the input section of each channel first has an analog buffer 
circuit whose primary function is to provide a low-impedance input to the FADC. 
The FADC samples the voltage of the waveform 255 times on the downward tran­
sitions of the externally supplied clock and stores the results in its local cache 
memory.

Figure 2.2 shows a block diagram of the entire board. The cache memories are 
grouped together in four blocks of eight, each block having its own zero suppression



February 14, 1989 Page 3

circuit. At the completion of the LOAD state (i.e., 255 samples for each channel 
are in the cache memory) the board enters the DUMP state. The eight channels 
in a block are read out sequentially through a zero suppression circuit that applies 
programmable threshold and width criteria to the digitized waveform. The zero 
suppressed data are stored in the FEB, which is divided into four areas reserved 
for data from separate events. Selection of one of the four FEB areas is made via 
external signals applied to two of the FASTBUS TR lines. Note that these lines 
affect writing to the FEB only during the DUMP state (see section 2.7). Once the 
data are in the FEB, the DUMP state ends and the board is ready to accept a new 
event, writing it into a different area of the FEB. If at any time during the LOAD 
or DUMP state external logic decides the event is not interesting, a signal applied 
to the external QRST line will abort the data taking and place the board in the 
READOUT state, ready to take a new event.

DIGITIZER STRGE

Figure 2.1. The digitizer input stage.

The FEB memory is connected to a common bus which goes both to the FAST­
BUS coupler and to a 68000 microprocessor with 128 Kbytes of random access 
memory (RAM). Thus the contents of the FEB are directly available to the user 
via FASTBUS and to the microprocessor for further analysis.

The readout of the event, either directly from the FEB or from a microproc-



February 14, 1989 Page 4

CH
24-31

MEMORY

FASTBUS
COUPLER

HPC DIGITIZER BORRD

Figure 2.2. A block diagram of the digitizer module.

essor-created buffer in the RAM, is asynchronous with data acquisition. By that 
we mean that during the time when FASTBUS or the processor is reading an event 
out of the FEB an event trigger may cause the board to enter the LOAD state. At 
this point all FASTBUS and 68000 activity is suspended until the event is written 
into the FEB or is aborted via the QRST signal. When the event is disposed of, 
the board returns to the activity in progress before the event trigger arrived.

The remainder of this chapter describes each section of the board in more 
detail.

2.2 Input signals and Analog buffer

The analog waveforms to be digitized are input via two 34-pin connectors (see 
appendix B). Each signal consist of a differential input from a twisted pair cable. 
Termination of each line is 50 Ohms to ground. The signals are routed directly to



February 14, 1989 Page 5

two interior signal planes of the board. Pairs of traces for each signal are positioned 
one above the other and where traces are adjacent to each other they alternate in 
polarity to minimize crosstalk. These two signal planes are sandwiched between 
the two ground planes to provide isolation from digital noise. The thickness of the 
board has been chosen to achieve a characteristic impedance close to that of the 
incoming cables.

The analog buffer converts this differential signal to a unipolar signal with an 
approximate gain of two. It is capable of slew rates in excess of 200 V//tis and has 
an input range of zero to two volts to match the zero to four volt range of the FADC 
(see section 2.3). The pedestal of the analog buffer is adjusted to a small positive 
value (approximately 35 mV).

The analog buffer is realized in a quad 30-pin hybrid package based on a 
LM6361 operational amplifier. Linearity measurements of the system indicate that 
linearity characteristics are dominated by the FADC, rather than the analog buffer.

2.3 Flash ADC and Cache Memory

The heart of the digitizer is a Thomson TS8328 flash ADC. This device 
samples an input signal up to 20 million times per second and converts it to an 
8 bit digital value. The manufacturer provides inputs (tap points) for reference 
voltages at 1/4, 1/2, and 3/4 of full scale to permit the user to adjust the response 
curve to fit a particular application. The nominal input range is from zero to 3.5 
volts with a minimum step size of 5 mV per count.

We have chosen to operate it in a bi-linear fashion in order to maximize the 
effective dynamic range available. In this mode, the first 64 ADC counts correspond 
to 5 mV steps and counts 64 through 255 correspond to about 19 mV each, placing 
full scale at 4.0 V. Consultations with the manufacturer assured us that the device 
could perform satisfactorily in this mode. If we define an effective dynamic range 
as the full scale value divided by the minimum step size we get a value of 800 
to 1. Figure 2.3 shows the resulting response curve as measured on one channel. 
Measurements of linearity show that the absolute maximum conversion error is ±1 
count and that in an average sense the error is typically ±0.25 counts.

Adjustments to the reference voltages are made on the front panel with the 
four trim pots. These set the nominal voltage for the entire board. Individual



February 14, 1989 Page 6

Volts

Figure 2.3. A measured bi-linear FADC response.

FADCs may be tuned by the selection of trim resistors. Each FADC has a small 
resistor (typically 5 Ohms and one third watt) on both its quarter and full scale 
reference voltages. Because of these trim resistors, one should note, the reference 
voltages displayed at the test points on the front panel are not exactly, the same as 
that received by the FADCs.

If the user wishes to operate with the FADC in a linear mode over its entire 
range, only a minor modification to the reference voltage circuit is required. Note 
that without the sharp bend in the response curve only a small amount of current is 
drawn by the FADC at the corresponding tap point. This will make the adjustments 
with the trim resistors ineffective.

The digital output values from the FADC are placed in a fast (35 ns access 
time) memory chip for later readout by the zero suppression circuit. The data bus 
between the FADC and the cache memory is isolated from the zero suppression 
circuit by means of a digital gate. This allows the input channels to be isolated 
during digitization and yet be read out by a common zero suppression circuit.



February 14, 1989 Page 7

The performance of the “flash and cache” system is sensitive to both the sym­
metry of the FADC clock and the phase of this clock with respect to the timing of 
the cache memory. Adjustments are provided for both of these parameters and will 
be required if the load clock frequency is changed. Consult the technical reference 
manual for more information.

2.4 Zero Suppression and Front-end Buffer

The zero suppression system provides for quick removal of data near the pedest­
al level and of certain types of noise pulses. This is done during the transfer of data 
from the cache memory to the FEB (DUMP state). Parameters for each channel 
are loaded into a threshold memory to control the zero suppression behavior. The 
FEB provides temporary storage for four complete events and is accessible by both 
the embedded microprocessor and the FASTBUS coupler.

Zero suppression begins after the digitization is completed. Data from each 
of the 32 channels are clocked from the cache memory to the front-end buffer via 
one of the four zero suppression circuits. The zero suppression circuit controls the 
address to which the data are transferred and suppression of a particular datum is 
accomplished by overwriting it in the buffer. After the zero suppression of a single 
channel is complete, a count of the number of surviving data words (including the 
count itself) is inserted in the low order byte of the first word in the buffer.

The decision to suppress a data value is based on an eight bit value stored in 
the threshold memory for each channel. This memory is accessible for reading and 
writing from FASTBUS. The threshold memory begins at lOOOOh in the FASTBUS 
data space and consists of 32 4-byte words of which only the lowest order byte 
is defined. The lower five bits form a threshold value, below which any data is 
suppressed. The upper three bits form a width. Any consecutive group of data 
words above threshold, called a cluster, which is shorter than this width is also 
suppressed. This feature allows high frequency noise to be removed at an early 
stage. One exception to the criteria described above is presample data. The first 
eight data values are assumed to be presamples taken before the event time and 
are always passed to the FEB. These are used to measure accurately the pedestal 
value just before the data of interest were collected.



February 14, 1989 Page 8

The zero suppression system can be disabled by setting CSR#0{11). This has 
the same effect on the behavior of the zero suppression system as setting all width 
and threshold values to zero, except that the threshold memory is not modified. 
This is useful for performing a pedestal check during data collection, as the user can 
quickly change and restore the system without detailed knowledge of the threshold 
data.

31 0
dump cntr word count

time slot adc value

time slot adc value

time slot adc value

j 1 ; •

Figure 2.4. Format of data in the FEB

The FEB begins at 8000h in the FASTBUS data space. Figure 2.4 shows the 
format of the data for one channel for a single event. This buffer is 256 32-bit 
words long of which only the lower two bytes of each word are defined. The lowest 
order byte is the output of the ADC. The next higher order byte is the number 
of the time slot in which the ADC value was collected. This time information is 
necessary since the zero suppression may have removed some of the data samples. 
Further, the number of data words is stored at the beginning of the buffer along 
with a “good dump counter” (see below). Space for four separate events is provided 
to allow event buffering.

Thus a single event is stored in 32 separate locations in the FEB beginning at 
the addresses 8000h, 8400h, 8800h, ..., or 8100h, 8500h, 8900h, ..., etc., depending 
on which of the four event buffers is being used. The event buffer is selected at the 
time the data enters the FEB by obtaining the address bits 8 and 9 (300h) from 
the FASTBUS backplane (see section 2.7 regarding TR lines).

The good dump counter is a feature for crosschecking the data. At the end 
of each complete zero suppression cycle (i.e., not terminated early by QRST) the



February 14, 1989 Page 9

counter is incremented. When the power is turned on or the FASTBUS is reset, 
this counter is set to zero. Thus when the data from a single event is collected by 
several boards, each channel of every board should display the same value for the 
good dump counter. If this is not the case, an error has occurred in the readout 
and data from different events have been incorrectly combined.

2.5 FASTBUS Coupler and CSRs

The FASTBUS Coupler is the interface between devices on the board and the 
FASTBUS backplane. FASTBUS is defined by the IEEE standard 960-1986, and 
all of the functions described here conform to this standard. Familiarity with this 
standard is assumed throughout the text. This module uses a modified version of 
a CERN-designed coupler (see Bibliography). The coupler assumes the FASTBUS 
segment uses negative-logic ECL signals.

If a board loses either its -5.2 V or 4-5.0 V power the ECL-TTL converter 
chips in the coupler could lock up the backplane for the entire segment. We have 
partially addressed this problem by placing these power signals to the converter 
chips on “islands” isolated from the power signals on the rest of the board by fuses. 
If the -5.2 V is missing on the entire board the +5.0 V fuse to the island will blow, 
preventing the lock up on the backplane. Unfortunately, it is not possible to have 
this work the other way; a missing +5.0 V will not cause the -5.2 V fuse to blow. 
If the +5.0 V power is missing to the entire board, the green “Power OK” front 
panel LED will go out. If the -5.2 V power is missing anywhere on the board, or 
the +5.0 V is missing on the island, the red “Power Fail” front panel LED will be 
lit. Therefore, if the segment backplane seems to be locked up, the user should 
check the status of the front panel LEDs.

This implementation responds to all forms of addressing (i.e., Geographic, Log­
ical, and Broadcast). Both single word and block transfer modes are supported.

Control and Status Registers (CSRs) are used both to monitor the state of the 
FASTBUS device and to modify its operation. The FASTBUS standard requires 
only a small number of CSRs and describes many optional CSRs. Table 2.5 lists the 
control and status registers implemented in the Ames Waveform Digitizer. Access 
to most of the CSRs is provided through dataspace to allow the microprocessor to 
read and write to them.



February 14, 1989 Page 10

Table 2.5. Control and Status Registers

CSR# Data address Description

0 18040H Status and Control, Manufacturer’s ID
1 18080h Serial Number
3 (no access) Logical Address
7 (no access) Broadcast Class N selection
lOh 18200 68000 Control
llh 18400 Trigger Accounting Number
(no access) 18800H Word count
(no access) 1A000H Special Functions

Table 2.0. CSR#0 Bit Definitions

Bit Read Significance Write Significance

00 Error Flag Set Error Flag
01 Enabled (logical addressing) Enable logical addressing
06 Front Panel LED Set Front Panel LED
07 FEB 0 Has Data (not used)
08 FEB 1 Has Data (not used)
09 FEB 2 Has Data (not used)
10 FEB 3 Has Data (not used)
11 Zero-suppress override on Set Zero-suppress override
16 LSB of Device Type Clear Error Flag
17 Device Type Disable Logical Addressing
18 Device Type (not used)
19 MSB of Device Type (not used)
20 LSB of Manufacturer’s ID (not used)
21 Manufacturer’s ID (not used)
22 Manufacturer’s ID Reset Front Panel LED
23 Manufacturer’s ID Reset FEB 0 Bit
24 Manufacturer’s ID Reset FEB 1 Bit
25 Manufacturer’s ID Reset FEB 2 Bit
26 Manufacturer’s ID Reset FEB 3 Bit
27 Manufacturer’s ID Clear Zero-suppress override
28 Manufacturer’s ID (not used)
29 Manufacturer’s ID (not used)
30 Manufacturer’s ID Reset (Same as Front Panel Button)
31 MSB of Manufacturer’s ID (not used)(Clear Data)



February 14, 1989 Page 11

Table 2.6 defines the significance of the bits in CSR#0. Bits in this register 
follow a special convention, defined in the FASTBUS standard. If during a write 
operation a ‘1’ is written to a particular bit this bit will be set to ‘1’, but if a 
‘O’ is written to this bit, its state will not change. In order to clear a bit in this 
register the user must write a ‘1’ to the bit location 16 positions to the left, in 
the upper half of a 32-bit word. With this system the user can, with a single 
32-bit write operation, set, clear, or leave unchanged any bit in the 16-bit register. 
Moreover, a broadcast operation can set or clear a bit without affecting other bits in 
the register which may vary from module to module. The FASTBUS specification 
leaves undefined what happens if both the set and reset bits for the same register 
bit are set. On this module, this will result in the register bit being reset.

CSR#0(00) indicates if an error has been detected on the board. If this bit 
is set then at least one of the following conditions must have occurred: One of the 
supply voltages has failed (fuse blown, or power supply failure); the ‘watch dog’ 
circuit has fired indicating the load or dump cycle has lasted too long; or the bit 
was set by the FASTBUS or the 68K with a write operation to this bit. This last 
possibility would be either for debugging purposes or to signal detection of a serious 
error by the microprocessor. The error bit is cleared by a reset operation or the 
appropriate write operation to CSR#0(16).

CSR#0(06) is connected to a front panel light. When this bit is set the light 
is lit. This is useful for the 68K to signal the operator or indicate the progress 
of a program. The host system might use it to indicate a particular board to the 
operator, perhaps for adjustment or replacement or visual feedback during system 
checkout. This bit is cleared by writing a “1” to CSR#0(22).

CSR#0(07:10) are called the ‘Valid Data’ bits and indicate when the zero 
suppression subsystem has found good data somewhere on the board for the cor­
responding event. Thus if the bit corresponding to the FEB event is clear after a 
trigger, there is no data to be read from this board. Clearly this is advantageous to 
a FASTBUS readout, but the most gain can be achieved when the microprocessor 
uses this information in responding to broadcast operations. These bits are either 
set or cleared during the DUMP cycle. Write operations can clear but not set these 
bits. They are cleared using the bits in CSR#0(23:26).

CSR#0(11) is the zero suppression override. When this bit is set, the zero 
suppression system behaves as if all thresholds and width were set zero. This allows



the user to do pedestal measurements without modifying the threshold memory. 
This bit is cleared by writing a “1” to CSR#0(27).

CSR#0(30) is used to cause a reset to the board. This function has the same 
effect on the module as pressing the front panel reset button, issuing a FASTBUS 
reset bus command, or executing the initial power up sequence. CAUTION: Since 
the microprocessor can access this register it can cause a reset, one effect of which 
is to stop the microprocessor itself.

CSR#0(16:31) forms the device identifier. Each type of FASTBUS device is 
assigned a unique identifier. This allows the host computer system to identify the 
devices inserted in a FASTBUS crate. The device identifier for the Ames Waveform 
Digitizer is OlCOh.

CSR#1 serves only to display the serial number of the board. CSR#1 (16:25) 
forms the serial number. CSR#1 (26:31) return zero for convenience. The boards 
used in the DELPHI experiment use the range 0 through 700.

CSR#3 and CSR#7 store the device’s logical address and the Broadcast Class 
N selections. These CSRs conform exactly to the IEEE standard.

CSR#10h is used to control the activities of the microprocessor. Table 2.7 
shows the function of the bits in this register. Bits in this register are manipulated 
in the same fashion as in CSR#0.

February 14, 1989 Page 12

Table 2.7. CSR#10h Bit Definitions

Bit Read Significance Write Significance

00 Microprocessor status Enable microprocessor
05 Interrupt 5 pending Queue interrupt 5
06 Interrupt 6 pending Queue interrupt 6
07 Interrupt 7 pending Queue interrupt 7
16 (not used) Disable microprocessor
21 (not used) Clear bit 5
22 (not used) Clear bit 6
23 (not used) Clear bit 7

CSR#10h(05:07) are used to initiate interrupts to the microprocessor. These 
bits will remain set until the corresponding interrupt is acknowledged by the mi­
croprocessor or they are cleared by a write to CSR#10h(21:23). CSR#10h(00) is 
used to start the microprocessor. When this bit is set to ‘1’ the microprocessor is



February 14, 1989 Page 13

released from the reset state and will begin execution at the location in the reset 
vector. Any pending interrupts will be executed immediately in order of priority 
(7 is highest). When CSR#10h{00) is cleared the microprocessor is forced into the 
reset state. For proper operation, the microprocessor must be held in reset for not 
less that 100 ms.

The location 18800h in data space is the word count register for block transfers. 
This register is 12 bits wide and counts down during a block transfer. When zero 
is reached the board will return a slave status of SS=2, indicating the end of the 
block transfer. The width of this register limits the length of block transfers to 
4096 words.

The location lAOOOh in data space (DS#lA000h) is the Special Functions 
Register. Table 2.8 lists the bits defined in this register and a description of their 
effects. The bits in this register are modified only by read and write operations on 
the data bus.

Table 2.8. DS#lA000h Special Functions

Bit Read Significance Write Significance

00 Data present Data present
01 Device available Device available
02 68K Busy (not used)

DS#lA000h(00:01) are used to control the response of the coupler to various 
T-pin scans. The T-pin scan is a type of broadcast operation where all boards in 
the crate respond with one bit determined by its physical location on the segment 
and these bits form a single 32-bit word on the FASTBUS backplane. If and only 
if DS#lA000h(00) is set the coupler will respond to a Sparse Data Scan (Broadcast 
Case 3) by asserting its T-pin. In a similar fashion DS#lA000h(01) will control 
the response to a Device Available Scan (Broadcast Case 3a).

During normal operation, the FASTBUS has priority over the microprocessor. 
That is, microprocessor activity is suspended whenever the board is addressed. 
Setting DS#lA000h(02) will prevent the coupler from answering any FASTBUS 
requests for access, replying with a busy slave status (SS=1). Only the micropro­
cessor or a reset (FASTBUS Bus Reset, Front panel reset, or power up) can clear 
this bit. This feature allows time critical calculations to proceed without delay, 
provided the FASTBUS master can accept the busy response.



February 14, 1989 Page 14

FASTBUS
BACKPLANE

V

FASTBUS

COUPLER

CONTROL
INTERFACE CONTROL

---------- 7 \-------------------------7 < >

ADDRESS

-V>

AkL.
ARBI­

TRATION 
LOGIC

CSR10
e INTER­

RUPT
CONTROL

6-)
68000

MICRO­

PROCESSOR

\I/ M/ \i/

DATA 0:15

“Trr

MEMORY
CONTROL

Nk Nk
MEMORY

^k.

CROSS

CONNECT

-7fr
4/

>

DATA 16:31
■W.,

Figure 2.9. A block diagram of the microprocessor circuit.

Triggers have priority over both the FASTBUS and the microprocessor. If a 
trigger occurs during microprocessor activity the microprocessor is simply halted 
until the trigger is finished. If a trigger occurs during FASTBUS activity the coupler 
will reject any primary address cycles and delay any data cycles if they have already 
begun. Thus the FASTBUS master must be able to accept delays up to 500 fis or 
avoid access when triggers might occur.

2.6 Microprocessor

The board is equipped with a 16 MHz 68000 microprocessor and 128 Kbytes of 
RAM. Data and programs are downloaded into the RAM and results are retrieved 
from RAM via FASTBUS. In addition to RAM access, the processor has access 
to the threshold memories, FEBs, CSR numbers 0, 1, lOh and llh and Data Space 
registers 18800h and lAOOOh. Program execution is driven by interrupts set in 
CSR#10h. A block diagram is provided in figure 2.9.



February 14, 1989 Page 15

A typical use of the processor would be to read data values from the FEBs, 
reformat them, and store them in a RAM buffer where they may be more compact 
and where data from all 32 channels can be placed in continuous RAM, permitting 
a single block transfer to read out all the data at once. A more sophisticated 
system might use the microprocessor to decide if the data in the FEB is consistent 
with a desired type of event. This result would then be collected with broadcast 
operations like the Sparse Data Scan (Case 3) from all boards at once.

Three interrupt levels are provided: 5, 6, and 7 (non-maskable), corresponding 
to bits CSR#10h(05:07). By redirecting the interrupt vector before sending the 
interrupt, the user can use a given interrupt level for many purposes. At the end 
of the DUMP state, the board logic sends a priority 7 interrupt to the processor 
automatically. This is to allow the processor to begin event processing immediately. 
If the user does not want to do anything, an immediate return from the exception 
takes only a few microseconds (compared to 450 /rs for the DUMP stage). If the 
processor is disabled, this interrupt is queued and has no effect until the processor 
is started. If the processor is enabled the interrupt at priority 7 will always occur, 
even if the processor is already at priority level seven.

If this interrupt at the end of DUMP is to be used, the triggering system will be 
required to hold off additional triggers, not only until the end of DUMP, but until at 
least some of the interrupt code is executed. This is to prevent the software from 
confusing data from different events. See chapter 4 regarding the programming 
environment.

Clearing bit CSR#10h(00) disables the processor completely and causes a 
68000 reset. Note that this bit must remain in the reset state for at least 100 
milliseconds for the microprocessor to reset properly. When the module is first 
powered up, the processor is disabled because the RAM does not yet contain a pro­
gram or interrupt vectors. The user must first download the RAM contents and 
then explicitly set the enable bit in CSR# 1 Oh before the processor will respond to 
interrupts. When the processor is first enabled, it reads an initial stack pointer 
and program counter from addresses $0 and $4 in the RAM and immediately begins 
executing the instruction pointed to by this program counter.

Note that FASTBUS access and microprocessor program execution are mutu­
ally exclusive since they share a common bus. In case of conflict, FASTBUS wins. 
(But the Special Functions Register provides a way for the processor to lock FAST-



February 14, 1989 Page 16

BUS out during critical operations, see section 2.5). For a program to execute in 
the processor, the interrupt bit must be set and then the AS/AK lock broken. The 
processor will reset the interrupt bit as part of the interrupt acknowledge. If the 
processor is executing a program and FASTBUS wants access, the microprocessor 
support logic performs an arbitration cycle for the local board bus (not the FAST­
BUS segment) which takes about 500 ns in the worst case, and less than 250 ns in 
a typical case.

2.7 Clock and Trigger Inputs

In any experiment with more than one digitizer board there must be some 
method of synchronizing the activities of each board with its partners. The FAST­
BUS specification provides eight lines on the backplane for the user. These are 
called the TR lines (Terminated Restricted). Table 2.10 shows the allocation of 
the TR lines to various time critical functions. As for all signals on the FASTBUS 
backplane, these lines use negative-logic ECL signals (“1” = —1.4V, “0” = —0.7V). 
They are converted to TTL signals on the digitizer board.

Table 2.10. TR line Usage

TR0 WARNING/CLEAR Prepare for data collection
TR1 BCO or TRIGGER Begin data collection
TR2 EVTLS LSB of event buffer
TR3 EVTMS MSB of event buffer
TR4 QRST Quick Reset
TR5 PSW Pre-Sample Window
TR6 LOAD CLOCK Digitization Frequency
TR7 DUMP CLOCK Zero suppression Frequency

LOAD CLOCK provides the frequency for taking data samples. While the 
Ames Waveform Digitizer board has been optimized for 15 MHz, frequencies as 
high as 20 MHz should be feasible. Any significant deviation from 15 MHz may 
require changing some components and retuning of others.

DUMP CLOCK provides the frequency for the zero suppression (DUMP) stage 
of processing. 4.5 MHz is recommended.



February 14, 1989 Page 17

The WARNING/CLEAR signal serves as the first indication to the board that 
a trigger will occur. When asserted, it forces the board into the load state. The 
microprocessor is halted and FASTBUS activity is ignored. WARNING/CLEAR 
is used in an asynchronous manner and can be as short as 20 ns. Typically 200 ns 
is used. The leading edge of this signal carries the significant information. There 
is no protection on the module against a new WARNING/CLEAR signal arriving 
while a previous event is being processed. It is presumed that the external logic 
will issue a QRST before sending a new WARNING/CLEAR.

PSW is typically the next signal asserted. If used, it must be asserted only 
between WARNING/CLEAR and BCO. This signal is used as a gate and provides 
a time period in which to take data before the actual trigger. Typically PSW 
is asserted for exactly eight clock cycles as these are the samples which receive 
special treatment by the zero suppression circuit. There is no requirement that 
any presample data be taken or that the samples taken must be from consecutive 
clock pulses. This signal must be synchronized to avoid transitions in the LOAD 
CLOCK to achieve consistent operation.

BCO also causes the system to begin collecting data except that collection 
will continue until all 255 samples are taken or the data collection is terminated 
with QRST. The leading edge of this signal must be synchronized with the LOAD 
CLOCK. The width is not critical, we use 100 ns.

The signal QRST will abort the data collection at any stage. All pointers 
will be reset and microprocessor execution and FASTBUS access will be allowed 
to resume. The assertion of this signal may overlap with WARNING/CLEAR 
and the last one asserted will define the state of the system. Typically the board 
is forced into a known state at the start of a data acquisition cycle by asserting 
both QRST and WARNING/CLEAR simultaneously and releasing QRST before 
WARNING/CLEAR.

TR lines 2 and 3 form the event pointer. When the zero suppression begins, 
these two lines are used to select the event buffer in the FEB. Proper control of 
these lines allows the host system to affect a four event deep buffer in the FEB. 
Note that these lines affect only the choice of FEB event during DUMP. The event 
selection in reading from the FEB is done by selecting the correct address.



February 14, 1989 Page 18

2.8 Other features

In this section we describe a few additional features not covered in other sec­
tions. The user should be aware of these points when planning to use the Ames 
Waveform Digitizer.

Because the FASTBUS is locked out during the Load and Dump phases of data 
collection, it is possible that a failure of the hardware or one of the various triggering 
signals (see section 2.7) could prevent the coupler from answering a FASTBUS 
request. An example of this would be if the DUMP CLOCK (TR7) were to fail; 
the DUMP state would never end and the board could never be interrogated by the 
FASTBUS. To prevent this a ‘watch dog’ circuit is included which monitors the 
Load and Dump cycles. A QRST and error will occur if either cycle lasts too long. 
If the user chooses to change the clock frequencies, the timing in this circuit must 
be modified. Consult the technical reference manual for specific details.

A device for monitoring the supply voltages has been incorporated. If for 
any reason a supply voltage falls significantly (typically 20-50%) below its nominal 
value, this circuit will turn on its front panel LED and set the error flag in CSR#0. 
Monitoring this flag is important because the effect of some power failures is to 
corrupt the data without affecting the coupler.

There are two ways to adjust the reference voltages of the FADCs. Adjust­
ments to the output of the reference voltages circuits are made on the front panel 
with four trim pots. This sets the nominal voltage for the entire board. The sec­
ond method is by the selection of ‘trim’ resistors. Each FADC has a small resistor 
(typically 5 Ohms) on both its quarter and full scale reference voltage. This allows 
adjustments to individual FADCs. Typically FADCs from the same production 
batch are similar enough not to reqxiire individual adjustments, but this feature can 
be used if identical replacements are not available.

It must be noted that the voltage which appears on the front panel test points 
is not exactly that provided to the input to the FADCs. The trim resistors provide 
a small change in the reference voltage to the FADC (+6 mV/Ohm at quarter 
reference and -10 mV/Ohm at full scale). The front panel test points measure the 
output of the four voltage regulations circuits. A current limiting resistor is in 
series with each test point.

The range of adjustment of the reference voltages is limited to producing a 
bilinear response in the FADC. Changing a single passive component (specifically,



February 14, 1989 Page 19

replacing a 0 ohm resistor by a 50 ohm resistor) will allow adjustment to a fully 
linear system. Other multi-linear adjustments are possible with changes in a small 
number of passive components.

The performance of the flash and cache system is sensitive to the symmetry 
of the clock used by the FADC, and also to its phase relative to the cache address 
strobe. Adjustments for both are provided and will require tuning if any change 
in the clock frequency is made.

The Ames Waveform Digitizer requires a non-standard 6.2 supply voltage to 
extend the dynamic range of the FADC. This supply is received on the FASTBUS 
pins B40 and B41. These pins are unassigned in the FASTBUS standard and thus 
the additional voltage will not conflict with standard FASTBUS modules. This 
voltage is used in two places. It goes through a diode drop to provide the analog 
supply voltage (ASUP) to the FADC. This is typically 5.4 V, the extra range above
5.0 V being needed to achieve a full scale input of 4.0 Volts. The other place the 
6.2 V power is used is to provide well regulated reference voltages for the FADC 
tap points. In order to have a well regulated 4.0 V full scale reference, we need to 
provide the regulator with a voltage greater than 5.9 V.

Table 2.11. Front Panel LEDs

LED Name Color
Slave Connect yellow
Load red
Dump red
68K Busy red
Programmable red
Power OK green
Board Error red
Power Fail red
ZS Override red
Reset red

Meaning
FASTBUS Access in progress 
Load Active 
Dump Active 
FASTBUS Locked out 
CSR#0(06) set 
5 Volt Power present 
Error Flag set 
Power failure detected 
Zero Suppress disabled 
Reset in progress



February 14, 1989 Page 20

Table 2.12. Front Panel Testpoints

Signal Name Significance

15V
ASUP (5.4 V nom)
5.0V
-5.2V
AGND
R/4
R/2
3R/4
Vref

Supply Voltage from Backplane
Supply Voltage from Backplane
Supply Voltage from Backplane
Supply Voltage from Backplane
Analog Ground
FADC 1/4 Tap Point Reference Voltage 
FADC 1/2 Tap Point Reference Voltage 
FADC 3/4 Tap Point Reference Voltage 
FADC Full Scale Reference Voltage



February 14, 1989 Page 21

3. Control Sequences

In this chapter we discuss the various ways of controlling the processes on the 
board. These fall into two categories: data acquisition procedures (i.e., control of 
the TR lines) and readout procedures (i.e., reading the data from the module via
FASTBUS).

3.1 Data Acquisition Sequences

In this section we present examples of how this module can be controlled via 
the TR lines. Examples are drawn from specific experiments. The trigger and data 
acquisition needs of the DELPHI experiment imposed a number of constraints on 
the design of the module, but we have kept as much flexibility as possible. There are 
several ways in which the control signals on the TR lines can be modified according 
to the needs of a particular user. Note that the figures show the TR lines as they 
appear on the segment backplane, i.e., they are negative-logic signals.

3.1.1 Standard DELPHI Sequence

At a colliding beam storage ring, such as LEP, the fact that events can only 
occur when the beams cross, about every 22 /is, gives the user advanced knowledge 
of when an event can occur. Accordingly, we send the WARNING/CLEAR signal 
a few microseconds before the beam crossover and take eight presamples of data in 
the window between WARNING/CLEAR and BCO. At the beam crossover time, 
digitization begins and, if the trigger electronics do not detect anything of interest, a 
QRST (quick reset) aborts the digitizing. Figure 3.1 shows timing diagrams for this 
sequence. The position of the presample window (PSW) in the interval between 
WARNING/CLEAR and BCO is variable to allow us to choose a time when there 
is the least noise from external sources, such as other detectors.

3.1.2 Fast Readout Method 1

Often the user does not know in advance when an event will occur. This is the 
case, for example, in external particle beams and cosmic ray experiments. In this 
case it is necessary to begin digitization as soon as possible after the event. One 
way to do that is by using the WARNING/CLEAR signal for the event trigger and



a. Successful Event
February 14, 1989 Page 22

W/C ____

PSU _

BCO

QRST L

b. fiborted Event

W/C ____

PSW _

BCO

QRST

Figure 3.1. Timing signals for the standard sequence.

not using the presample window at all. The first eight samples will then contain 
valid data rather than a baseline measurement, but the zero suppression circuit 
will continue to pass the values to the FEB whether they are above threshold or 
not. The user will have to give these eight samples special treatment, either in the 
on-board microprocessor or elsewhere, to identify valid data. In this scheme, BCO 
follows immediately after the W/C signal. The timing diagram is shown in figure 
3.2. This scheme preserves the multi-event buffering capability of the module but 
loses the presample capability. Digitization can begin within about 100 ns of the 
event.

3.1.3 Fast Readout Method 2

An alternative fast sequence preserves the presample, but at the cost of losing 
the multi-event buffering. In this scheme the control hardware asserts WARNING/- 
CLEAR and takes the presample data as soon as it is ready to accept an event. It



February 14, 1989 Page 23

FRST SEQUENCE 1

W/C ____

PSW

BCO L

QRST

Figure 3.2. The first fast trigger sequence.

waits with the board held in the LOAD state until an event occurs and then triggers 
data acquisition via the BCO signal. Since the board spends most of its time in the 
LOAD state, the user must be sure the microprocessor has finished with an event 
and the data have been read out via FASTBUS before enabling WARNING/CLEAR 
for the next event. Note that there is no fixed timing between the presample and 
the data in this scheme. The timing diagram for this method is shown in figure 
3.3.

FRST SEQUENCE 2

W/C ____

PSW _

BCO

QRST

Figure 3.3. The second fast trigger sequence.



February 14, 1989 Page 24

3.2 Data Readout Sequences

This section presents two ways of reading the data from the module. The first 
is to read the FEB directly, and the second is to read a board event buffer (BEB) 
which has been built in RAM by the microprocessor. BEB readout is the preferred 
method because it results in a smaller data volume and can be read with a single 
block transfer instead of the separate block transfers needed for each channel in the 
FEB readout.

3.2.1 FEB Readout

Normally, only the BEB will be read out, but there may be circumstances 
under which the user wants to read out the FEB directly.

The FEB has room for four events and the FASTBUS master must specify 
which of the four it wants. It does this by selecting the proper address in the 
FASTBUS data space for the board. As described in section 2.4, the FEBs begin 
at address 8000h with 400h words allocated per channel. The format for the data 
was also presented in section 2.4. Each channel has four events of up to lOOh words 
each. For FEB event number EVENTNO (= 0, 1, 2, or 3) the sequence is:

For CHANNEL = 0 to 31 do
FASTBUS data read at address IFEB(CHANNEL,EVENTNO)
Mask to get an 8 bit WORD-COUNT 
If (WORD-COUNT > 9) then

For POINTER = 0 to WORD-COUNT-1 do
FASTBUS data read at IFEB(CHANNEL,EVENTNO)+P0INTER 
Mask to get low order 16 bits 
Store as next entry in a 16 bit wide buffer 

Enddo 
Endif 

Enddo
Here IFEB (CHANNEL, EVENTNO) is the starting address for event EVENTNO jin 

channel CHANNEL and can be calculated as:

IFEB(CHANNEL,EVENTNO) = 8000h + 400h*CHANNEL + 100h*EVENTN0
The test for more than nine data words (eight presamples plus the wordcount) 

assumes that the presample data is of interest only if there is additional data in



that channel. If valid data can occur in the first eight time slots, this test should 
be removed.

When all of the data for an event have been read out, the appropriate bit in 
the range CSR#0(07:10) should be reset.

3.2.2 BEB Readout

In the usual mode of operation, the microprocessor will build an event buffer 
in RAM containing data from all 32 channels. This is the board event buffer, or 
BEB. The advantages of this are that it allows the user to put the data in a more 
compact format, to utilize the full 32 bit width of the FASTBUS data bus (versus 
only 16 bits for direct readout of the FEB), to read all the data from the board with 
a single block transfer, and to put the data in a format more convenient for later 
processing. By having a processor on each digitizer module, this reformatting task 
proceeds in parallel on many boards, freeing later processors, which see the data 
serially, from having to spend a lot of time on routine matters. In the same pass 
through the data, the user can also perform simple calculations (e.g., an energy 
sum) which may be useful for triggering.

This readout mode is initiated by the FASTBUS master which is in control of 
the data acquisition telling the digitizer module to format one of the events in the 
FEB and leave it in the BEB. The master then waits for the reformatting program 
to finish and then reads out the BEB. In the DELPHI experiment we do this as 
follows.

1. Write a trigger accounting number to CSR#llh. This is an eight bit “event 
number”, the low order two bits of which specify which of the four event regions 
in the FEB to read out.

2. Set CSR#10h(06) to start the format program (we use interrupt 6 for this).
3. Break the AS/AK lock and wait until the format program is done (about 7 ms 

in our case). Test to see if it is done by either
a. performing a T-pin scan (broadcast class 3a) to see if the “free for use” 

flag is set, or
b. reading a word reserved in memory (a “communications flag” register) 

and testing if bit 0 is set. If it is, formatting has been completed. This 
communications flag register is simply a location in RAM which has been 
reserved for this purpose. It is not a special hardware register.

February 14, 1989 Page 25



Note that the microprocessor program must explicitly set these two flags as it 
finishes the formatting.

4. See if data are present. This is done by either
a. performing a T-pin scan (broadcast class 3) to see if the “data present” 

flag is set, or
b. reading the communications flag register in memory and testing if bit 1 is 

set. If it is set, there are data present. If the word has already been read 
in step 3, it is unnecessary to read it again.

Again, the processor must set these two flags as it finishes the processing if it 
has found valid data on the board.

5. Do a block transfer from the BEB. Good programming practice makes the 
first word of the BEB a word count. The module supports block transfers 
of at most 4095 words, so if the BEB contains more than 4095 words, two or 
more block transfers will be necessary. Users must test for this and handle it 
explicitly, the module will not do it for them.

6. When the transfer is complete, users should clear all bits in the communications 
flag register and clear the appropriate bit in CSR#0(07:10).

A sample program to do this sequence using the standard FORTRAN FASTBUS 
routines is given in Appendix C. A description and sample programs showing how 
the microprocessor sets up the BEB are given in chapter 4.

February 14, 1989 Page 26



February 14, 1989 Page 27

4. Programming the Microprocessor

In this chapter we discuss the hardware and suggested software environment 
for programming the microprocessor. We assume the readers are already familiar 
with the module description presented in the preceeding chapters and that they are 
familiar with assembly language programming on the Motorola 68000. The Bib­
liography contains several books on 68000 assembly language programming. The 
chapter ends with the presentation and discussion of sample programs which demon­
strate the approach we have used.

4.1 Programming Environment

This section presents the hardware and software environments in which the user 
must program the 68000. We describe the memory map and the allowed addressing 
modes for each of its areas. We then describe the software architecture we have 
adopted for the DELPHI experiment.

4.1.1 Hardware

From the programmer’s perspective, the microprocessor is quite straightfor­
ward. The only peripherals it can access are memory and memory-mapped regis­
ters. All user communication is by direct memory access (DMA) using FASTBUS. 
In effect, the microprocessor can only leave messages in memory which FASTBUS 
can pick up. Program execution is controlled by three autovectored interrupt lev­
els (5, 6, and 7) in CSR#10h(05:07) and an enable bit at CSR#10h(00). The full 
68000 instruction set is supported but none of the extensions to 68010, 68020, or 
68030 processors are available. The complete memory map is shown in table 4.1.

Because FASTBUS uses word addressing and the 68000 uses byte addressing 
there must be two different addresses for each memory location. FASTBUS accesses 
data in 32 bit words only, while the 68000 can access data in byte, word, or longword 
units. The FASTBUS address is simply the longword aligned 68000 address shifted 
two bits to the right. Throughout this document we use the convention “$000” 
to indicate a microprocessor address and “OOOh” to indicate a FASTBUS address, 
where “000” represents a hexadecimal value. Note that in the addressing convention 
used by the 68000 the high order bytes come at the low address end of the word.



February 14, 1989 Page 28

Table 4.1 Memory Map

68000 Address FASTBUS Address Usage

$00000-$1FFFF 0000h-07FFFh RAM
$20000-$3FFFF 8000h-0FFFFh Front-end Buffers
$40000-$4007F lOOOOh-lOOlFh Threshold Memories

$60100 18040h CSR#0
$60200 18080h CSR#1
$60800 18200h CSR#10h
$61000 18400h CSR#llh
$62000 I88OOI1 Block Transfer Count
$68000 lAOOOh Special Functions Register

For example, in the 32 bit word at byte addresses $800 to $803, the high order 
(most significant) byte is at address $800 and the low order (least significant) is 
at $803. FASTBUS would access the entire word by going to address 200h. The 
data from 68000 byte $800 would be in bits 24-31 and from byte $803 would be in 
bits 0-7. This differs from the byte ordering used on some other machines, most 
notably VAXs. Table 4.2 illustrates this difference for 32 bit words, there is a 
corresponding effect with 16 bit words.

Table 4.2 Byte Ordering for 32 Bit Words

H.O.
Byte

L.O.
Byte

H.O.
Byte

L.O.
Byte

68000: 00 01 02 03 04 05 06 07
VAX: 03 02 01 00 07 06 05 04

When the board is powered up or reset, the microprocessor is held in the 
RESET state to allow the user to load the contents of RAM. Since, there is no 
ROM or bootstrap program on the module, the user must explicitly load everything, 
including exception vectors, program code, and data. Of particular importance are 
the vectors listed in table 4.3, but many of the other exception vectors (e.g., zero 
divide and illegal instruction) work also. Users not familiar with these should 
consult one of the manuals on 68000 programming listed in the bibliography.

Because event triggers cause the microprocessor to suspend its activity for as 
much as 500 /is, the actual elapsed time for program execution depends on the



February 14, 1989 Page 29

trigger rate and the ratio of triggers which are not aborted with a QRST. Each 
trigger which makes it to the end of the dump cycle (500 /xs) causes an automatic 
level seven interrupt which will be processed immediately, even if the processor is 
currently handling a previous level seven interrupt.

Table 4.3 Exception Vectors

Address (Hex) Vector

$000 Initial System Stack Pointer (SSP)
$004 Initial Program Counter (PC)
$074 Level 5 Interrupt Autovector
$078 Level 6 Interrupt Autovector
$07C Level 7 Interrupt Autovector

Microprocessor access to the areas listed in table 4.1 is allowed as follows:
• RAM: Byte, word, or longword access is permitted using any valid 68000 ad­

dressing mode.
• Front-end Buffers: Since only the low order (i.e., higher address) 16 bits are 

valid, word operations are the most natural. Under normal operation, the 
microprocessor does not write into the FEB, but if it becomes necessary to 
write to the FEB, word operations should be used. Longword reads and writes 
will work but are inefficient.

• Threshold Memories: The low order (higher address) byte is all that is signifi­
cant. It can be accessed via byte, word, or longword operations, but longword 
access is inefficient.

• CSRs: Access to GSRs 0, 1, lOh, and llh is via memory mapped addresses as 
shown in table 4.1. Byte write operations to these addresses should be avoided 
because of possible corruption to bytes not being written to. Write operations 
must be word or longword, read operations can be byte, word, or longword.

• Block Transfer Count: The low order twelve bits are all that are significant. 
Word operations should be used for both reading and writing.

• Special Functions Register: The special functions register is only three bits 
wide and can be read or written to by byte, word, or longword operations.



February 14, 1989 Page 30

4.1.2 Software

Because the microprocessor is in a minimal configuration, the simplest way to 
program it is in assembly language. We use the Motorola Cross Macro Assembler 
running on a VAX computer to produce S-code which is downloaded into RAM via 
FASTBUS. S-code is a method used by Motorola to represent binary data as an 
ASCII text file for easier handling. A FORTRAN subroutine for loading the RAM 
with the contents of an S-code file is presented in Appendix D.

The use of absolute addresses gives the programmer the required control over 
the entire address space, including, for example, downloading event data via FAST­
BUS into the FEB to be treated like real data. The use of higher level languages is 
not excluded, but we have no experience to report on using them with this module.

Our use of RAM can be divided into four regions. Addresses $00 to $FF are 
reserved by the 68000 for exception vectors. These need to be initialized properly 
as in our program examples. We do not have “user interrupt vectors”, so the 
corresponding address space ($100 to $3FF) can be used for other purposes. We 
use the space starting at $100 for a “communications vector”, which is an area of 
RAM reserved for passing information between the microprocessor and the host 
computer. The length and usage of this vector is entirely a matter of programming 
convention, there is no special hardware involved. Table 4.4 shows how we have 
defined the communications vector for the DELPHI experiment.

Table 4.4 DELPHI Communications Vector

68000 Address FASTBUS Address Contents

$100 40h BEB Start
$104 41h First Hardware Channel
$108 42h Program Version
$10C 43h Load Time
$110 44h Load Date

. $114 45h Program Selector
$118 46h Bit Flags
$11C 47h Board Serial Number

Just above the communications vector we have the system stack. This is 
an area reserved for the system to save information during subroutine calls and



February 14, 1989 Page 31

exception processing. It grows downward (i.e., toward lower numbered addresses) 
from an address specified at startup by the Initial Stack Pointer at address $00. We 
use $800 for the top of the system stack. Because program execution is controlled 
by interrupts, the processor is always in the Supervisor State. Thus there is no 
need for a User Stack Pointer.

The RAM from the top of the system stack ($800 for DELPHI) to $1FFFF is 
available for program code and data.

Throughout this discussion we have assumed the existence of a program running 
on the FASTBUS host computer which can send the FASTBUS data necessary to 
control the module. The program we have developed to do this is called ARTEMIS 
and it has been constructed around the needs of this specific module. This program 
and documentation are available to interested users.

4.2 Program Development

Because there is no terminal access to the processor, the best way to develop 
and debug code is by simulating the module’s environment on a 68000-based com­
puter with an interactive debugger. One such system that we have used is the 
debugger, which is commercially available. The program changes needed to run on 
the GPM are quite straightforward and the ability to set breakpoints, single step, 
and set and examine registers and memory gives a powerful debugging tool.

If the program bug appears only when the program is running on the digitizer 
module (usually because it is sensitive to timing), the most effective tool we have 
found is to reserve an area in RAM as a scratch pad and then to insert MOVE or 
MOVEM instructions to copy the contents of registers or memory into the scratch 
pad at key points. Preceeding the MOVE with a MOVE of an easily identified 
value, such as ‘ABCl’, ‘ABC2’, etc., makes it easier to associate data with MOVE 
statements. This is analogous to the days before symbolic debuggers where the 
hapless programmer had to pepper the program with print statements to debug. 
In this case the programmer “prints” to an area of RAM. After the program has 
terminated, the user can examine the RAM contents via FASTBUS. The user can 
also insert STOP statements to force execution to end at a certain point. We have 
also found that a careful examination of the stack contents is often helpful in tracing 
down bugs.



February 14, 1989 Page 32

4.3 Program Examples

In this section we present and discuss some sample programs to illustrate the 
software environment we have developed.

Listing 4.1 shows the first of these programs, which we call T0Y1. This pro­
gram uses interrupts 5 and 6 to control flashing of the front panel LED. Interrupt 
5 starts the flashing and interrupt 6 ends it. The communication vector is a single 
word, called SELP, which can be either 0 or 1. A value of 0 causes fast (0.5 second) 
flashes and a value of 1 causes slow (1.0 second) flashes. Even though the task of 
this program is trivial, it illustrates all the major concepts needed to program the 
processor. This example should be clearly understood.

The listing begins with a series of EQUates which provide mnemonics to in­
crease program readability and flexibility. Beginning at the line ‘VECTOR TA­
BLES’, we load the values of the first 64 interrupt vectors. All but five of these 
point to a general (and primitive) error handler called BN. After these interrupt 
vectors comes the single word communication vector at address SELP.

When the processor is first enabled, it jumps via the Initial Program Counter 
to the routine at PROGO. This routine merely stops the processor until an inter­
rupt is received. PROG5 and PROG6 are the autovector interrupt handlers and 
illustrate an efficient way to use the program selector to switch between alterna­
tive programs using the same interrupt. For this example, PROG7 is a trivial ‘do 
nothing’ interrupt handler.

When an interrupt 5 is received, program control proceeds via PGMTBL5 to 
either FSTBLNK or SLOBLNK depending on the value in SELP at the time the 
interrupt is processed. The light continues to flash until an interrupt 6 clears 
register DO, which causes a termination of the interrupt 5 by an RTS to PROG5 
followed by an RTE.

Finally, listing 4.2 presents an abridged listing of the microprocessor program 
that we use both for testing the modules and for data acquisition in DELPHI. We 
have deleted many of the tests which are similar in structure and have kept only 
the simplest of the tests and our event reformatting routine.

As in TOY1, the program begins with a list of EQUates followed by the table 
of interrupt vectors. We use the same error trap routine (BN) as TOY1, but the 
communication vector is now twelve words long. PROGO jumps to an initialization 
routine before executing a STOP instruction. PROG5 and PROG6 are identical to



S CREATE T0Y1.NAR 
* TOY1
* Table of Constants and Addresses
* Note that some Addresses are shown as the Fastbus address
* with an explicit shift to convert to microprocessor address
ISP EQU $800 Initial Stack Pointer
AUTOVECTOR EQU $64 Start of AutoVector table
LED ON EQU $40 Bit pattern to turn LED on
LED_OFF* EQU $400000 Bit pattern to turn LED off
CSR0* EQU $18040<<2 CSRI0 via data space

* Program

*

It

*
*

*

VECTOR TABLES 
ORG 0
DC.L ISP Initial Stack Pointer
DC.L PROGO Initial Program Counter

MISC BAD EVENT VECTORS
DC.L BN,BN,BN,BN,BN,BN,BN,BN BN - ’Bad News’
DC.L BNr BNr BN,BN, BN,BN, BN,BN
DC.L BN, BN, BN, BN .BN, BN, BN

AUTO VECTOR INTERRUPTS
ORG AUTOVECTOR
DC.L BN,BN,BN,B1
DC.L PROGS
DC.L PROG6
DC.L PROG7

Fill in autovector table

TRAPS
DC.L BN, BN, BN, BN, BN, BN, BN, BN 
DC.L BN,BN,BN,BN,BN,BN,BN,BN

OTHER BAD STUFF
DC.L BN,BN,BN,BN,BN,BN,BN,BN 
DC.L BN,BN,BN,BN,BN,BN,BN,BN

* COMMUNICATIONS VECTOR
* PROGRAM OUTPUT; DATA TO FASTBUS 

ORG $40<<2
SELP DS.L 1 Program Selector for interrupts

* Program
ORG ISP

PROGO STOP #$2000
* JMP PROGO
* AutoVector programs
PROGS MOVE.L SELP,DO

ASL.L #2,DO
MOVE.L #PGMTBL5,A0
ADD. L DO,A0
MOVE.L (A0),A0
JSR (A0)
RTE

PROG 6 MOVE.L SELP,DO
ASL.L #2,DO
MOVE.L #PGMTBL6,A0
ADD. L DO , A0
MOVE.L (A0),A0
JSR (A0)

Set interrupt mask to 0
Tight loop (STOP continues after interrupt)

Get program selector
Shift to form address offset
Put address of start of jump table in AO
Add offset from program selector
Put the value in the jump table in AO
Jump to address pointed to by jump table

See comments for PROG5

PROG7 RTE Do nothing

* SOMETHING BAD HAPPENED (BadNews)
BN STOP #$2700

DS.W 1 Force longword alignment
*

* GENERAL DATA
*

* program table for interrupt #5
ORG $900

PGMTBL5 DC.L FSTBLNK,SLOBLNK*
* Program table for interrupt #6 
PGMTBL6 DC.L NOBLNK,NOBLNK

FSTBLNK MOVE.L 
JMP

*500,DO
BLINK

SLOBLNK MOVE.L 
JMP

#1000,DO
BLINK

BLINK MOVE.L # LED_ON,CSR0

ZZON
LOOP1

TST.W
BEQ
MOVE.L 
MOVE.L 
DBRA 
DBRA

DO
BYEBYE
DO, Dl 
#1600,D7
D7,LOOP1
Dl,ZZON

MOVE.L #LED_OFF,CSR0

ZZOFF
LOOP2

TST.W
BEQ
MOVE.L 
MOVE.L 
DBRA 
DBRA

DO
BYEBYE
DO, Dl 
#1600,D7
D7,LOOP2
Dl,ZZOFF

BYEBYE
JMP
MOVE.L 
RTS

BLINK
#LED_OFF,CSR0

NOBLNK MOVE.L 
RTS

#0 ,D0

END
$ EOD 
$ R MAIN 
N
TOY1.MAR 
TOY1.LST 
TOY1.SEX 
$ PUR TOY1.*
$ DEL TOY1.MAR;0

Use 500 ms cycles

Use 1000 ms cycles

Turn on LED, then take a nap

If DO is 0, exit loop
Dl counts the number of 1 ms loops 
Set count for inner (1 ms) loop 
This loop takes 1 ms at 16 MHz

Naptime is over, turn off LED

If DO is 0, exit loop
Reload Dl, then take another nap

Turn out the lights,...

February 14, 1989 
Page 33



February 14, 1989 Page 34

T0Y1, but PROG7 now increments a counter and tests a bit to see if it should return 
immediately or execute PROG6. The program jump tables are called PGMTBLI 
and PGMTBL and function just like PGMTBL5 and PGMTBL6 in TOY1. We 
have adopted the convention that interrupt 5 is used for initialization routines and 
interrupt 6 is for event processing. Starting at address BCN we have a lookup 
table to rearrange the hardware connections coming from the detector module in 
DELPHI. This is for the convenience of the offline software and is an artifact of 
our particular application. We include it as an example of the flexibility possible 
because of the on-board microprocessor. Following the table there are a few utility 
routines and the startup code that is part of PROGO.

The program starting at SCANO is the first and simplest of many test routines 
which can be chosen as part of our checkout and calibration procedure. These 
routines take multiple events and add the FEB contents to existing values in the 
BEB. The host processor reads the BEB when it has finished sending triggers. 
There are many other such tests, but we have deleted them from the listing for 
brevity.

The final program begins at FM-BEB. It is the data reformatter we will use 
for physics events in DELPHI. It scans the FEBs for data, ignoring those with 
only presample values, and builds a BEB in a standard DELPHI format. If valid 
data is found on this module the routine sets the bits in the flags word of the 
communication vector and the bit in the Special Functions Register that will cause 
the module to respond to a Sparse Data Scan.

These two examples illustrate the use of the microprocessor in the DELPHI 
experiment. The general nature of this module and the flexibility given by the 
microprocessor make it adaptable for a wide range of uses.



ARTEMIS
Table of Constants and Addresses

Note that some Addresses are shown as the Fastbus address 
with an explicit shift to convert to microprocessor address

ISP EQU $800 Initial Stack Pointer
AUTOVECTOR EQU $64 Start of AutoVector table
CSR0 EQU $18040<<2 CSRtO via data space
ERRFLG CO EQU $0001 Error Flag W/R
LOGADR CO EQU $0002 Logical addressing W/R
LED CO EQU $0040 Front Panel LED W/R
FEBO CO EQU $0080 Valid data in FEB 0 R/w
FEB1 CO EQU $0100 Valid data in FEB 1 R/w
FEB2 CO EQU $0200 valid data in FEB 2 R/w
FEB3_C0 EQU $0400 Valid data in FEB 3 R/W
CSR1 EQU $18080<<2 CSRtl via data space
CSR10 EQU $18200<<2 CSR#10 via data space
CSR11 EQU $18400<<2 CSRtll via data space
EOB REG EQU $18800<<2 Word count for Block Transfer
F REG EQU $1A000<<2 Flags reg
FEB EQU $08000<<2 Start of FEB Space
EVENT EQU $00100<<2 Advance one event in FEB
CHANNEL EQU $00400<<2 Advance one channel
THRES EQU $10000<<2 Start of Treshold Data
BEB EQU $04000<<2 Start of Board Event Buffer
* Data types
PULSE DT EQU $0920 Pulse test data(S)
OPULSE DT EQU $0921 Q Pulse test data(6)
DTEST BT EQU $0922 Delta code test(7)
SAW DT EQU $0923 Sawtest data(4)
SCAN DT EQU $0924 Multi-event scan data(l)
PED_DT EQU $0925 Pedestal data(3)
* Program
* VECTOR TABLES

ORG 0
DC.L ISP Initial Stack Pointer
DC.L PROGO Initial Program Counter

* MISC BAD EVENT VECTORS
DC.L BN,BN,BN,BN,BN,BN,BN,BN 
DC.L BN,BN,BN,BN,BN,BN,BN,BN 
DC.L BN,BN,BN,BN,BN,BN,BN

AUTO VECTOR INTERRUPTS
ORG AUTOVECTOR
DC.L BN, BN, BN, Bl
DC.L PROGS
DC.L PROG6
DC.L PROG7

Fill in autovector table

* TRAPS
DC.L BN,BN,BN,BN,BN,BN,BN,BN
DC.L BN,BN,BN,BN,BN,BN,BN, BN

OTHER BAD STUFF
DC.L BN,BN,BN,BN,BN,BN,BN,BN
DC.L BN,BN,BN,BN,BN,BN,BN,BN

COMMUNICATIONS REGISTERS
PROGRAM OUTPUT; DATA TO FASTBUS 

ORG $40< <2

DC. L BEB>>2 Location of the BEB in the FASTBUS address space
MODU DS.L 1 Module number
PAD1 DS.L 1 Starting Pad number

DS.B 4 Program/BEB Version numbers
DS.L 1 Load Time (hhmm-decimal)
DS.L 1 Load Date (yymmdd-decimal)

SELP DS.L 1 Program Selector for int 5 program
FLAGS DC.L 0 Free/Data present Flag
BDSER DS.L 1 Board Serial Number
I MASK DC.L 0 Mask indicating interrupts received
COUNT DC. W 0,0 Count of primes from sieve program
DCOUNT DC.L 0
* Program

ORG ISP
PROGO JSR START
PROG0X STOP *$2000 Set interrupt mask to 0
* JMP PROGOX Tight loop (STOP continues after interrupt
* AutoVector prograns
PROGS MOVE.L SELP,DO

ASL.L *2. DO
MOVE.L .PGMTBLI ,A0
ADD. L DO, A0
MOVE.L (A0),A0
JSR (A0)
RTE

PROG6 MOVE.W •LED CO, CSRO+2
MOVE.L SELP,DO
ASL.L • 2,DO
MOVE.L •PGMTBL, AO
ADD. L DO, A0
MOVE.L (A0),A0
JSR (A0)
MOVE.W •LED CO, CSR0
RTE

PROG7 ADD.W #1,DCOUNT
BTST.B *0,IMASK*3
BNE PROG6

A RTE
* SOMETHING BAD HAPPENED (BadNews)
BN STOP •$2700
* DS.W 1 Force longword alignment
* GENERAL DATA
* Program table for interrupt *5

ORG $900
PGMTBLI DC.L LINTEST0 ,SCANO.NULL,PED0,SAW0,PTEST0,QTESTO,DTEST0
* Program table for interrupt *6
PGMTBL DC.L LINTEST, SCAN,FM_BEB,PED,SAW1,PTEST,QTEST,DTEST
* Table to remap channels because of scrambled connections
BCN DC.B 17,19,21 ,23,16,18,20,22

DC.B 01.03,05,07,00,02,04,06
DC.B 09,11,13,15,00,10,12,14
DC.B 24,26,28,30,25,27,29,31

*

* Offsets to each event. These offsets are added to the values in
* the BCA table.
EVOFF DC.L 0,EVENT,2‘EVENT,3 * EVENT
* Table of channel addresses. These address are computed from the

Listing 4.2

Page 35



table above in the startup routines. These addresses 
indicate the location and order of data in the FEB according to 
the pre-amp channels 

CA DS.L 32
BUCK DC.W 0,0 
FFSET DC.L 0

Utility routines
Compute number of buckets to search 

ROCNT MOVE.L D0,-(SP)
COUNT 
PROO

MOVE.L •$00FA000A.COUNT 
MOVE.W COUNT,DO

COUNT+2,DO

TST.W 
BNE

PROO
SUB.W

SSI

BGE
MOVE.L 
MOVE.W 
MOVE.B 
DBRA

sso
IBCN+32,AO 
131,Dl 
Dl,-(AO)
Dl,SS1

* Compute table of addresses to channels 
SSO MOVE.L 9BCN,AO Board channel numbers

MOVE.W 131,DO Number of channels
MOVE.L tBCA,Al Board channel addresses

X PTR CLR.L Dl Our accumulator
MOVE.B (AO) +,Dl Board channel number
MULU tCHANNEL,Dl Compute offset from start of FEB
ADD.L tFEB,Dl Compute actual address
MOVE.L Dl,(Al)+ Save in table
DBRA d0,X PTR Repeat 31 more times.
RTS

SCANO
SCAN

— prepare for taking data for mulitple scans
— add FEB data to BEB for another scan

BEB: (-------- Blocklet wc----------- I
( Err Figs )(—Data Type 1
l---Bd Ser I—U—• Calls----- )
(--------Blocklet WC— —

CANO MOVE.L #8EB,A0
MOVE. L *128*32*4,{A0) +

Pointer to BEB 
Word count

MOVE.L
MOVE.W
MOVE.W
MOVE.W
CLR.L
DBRA
MOVE.L
RTS

•SCANDT,(AO)♦ 
BDSER+2,(A0)+ 
10,(A0)+
1126*32-1,DO (AO) ♦
DO,SO
1256*32 + 4 , (AO)-*

Data type for SCAN 
Board Serial Number 
No calls yet
Total number of data words

Trailing Word Count

Al Pointer to table of channel addresses
A2 Pointer to BEB destination
A3 Pointer into FEB
D2
D3

Count channels 
Count Buckets

MOVE.W DO,NBUCK SCAN MOVE.L IBEB,A2 Start of BEB
* ADD.W 11,10{A2) INC number of Calls
* Compute offset to first bucket ADD. L 13*4,A2 Compute start of data

CLR.L DO *
MOVE.W COUNT+2»DO * Loop over channels
ASL.L *2, DO MOVE.L tBCA,Al Pointer to channel addresses
ADD.W 13, DO Offset to data byte MOVE.W 131,01 Counter of channels
MOVE.L DO,OFFSET *
MOVE.L (SP)+,DO * Loop over buckets
RTS SI CLR.L DO

MOVE.L *255,02 Bucket counter* MOVE.L (Al) + , A3 Start location in FEB for this channel* Start Up ADD. L *3,A3 Point to start location
START MOVE.W CSRl.DO Get board serial number S2 MOVE.B (A3),D0 Get byte from FEB

AND. L ISO 3FF,DO Only 10 bits are valid ADD.W DO,(A2)+ Add to output (no linea<rzation)
MOVE.L DO,BDSER Save it in communications area ADD. L *4,A3 Advance pointer in FEB* DBRA D2,S2- if serial number less than 695 then the channels are DBRA Dl, SI

• rearranged from the table shown RTS
CMP.W 1695,DO

******************************************************************* 
The following routines are similar in structure to SCAN and have 
been deleted from the listing for brevity:
LINTESTO —
LINTEST --
PTESTO
PTEST
QTESTO
QTEST
PEDO
PED
SAWO
SAWl
DELTA TEST
DTESTO
DTEST

prepare for takeing data for lintest.
take data for lintest.
prepare for taking data for pulsetest
take data for pulsetest
prepare for taking data for pulsetest
take data for pulsetest
prepare for taking data for pedestal check
take data for pedestal check
prepare for taking data for sawtooth test

Data Reformat
Data Format in the BEB
BEB: [------------- Blocklet WC(32)-------------- )

(----Err Flgs( 12 )----](---- Data Type(20)---)
l-Mod* < 8)-H-Padl< 8)-)(-Dsize(8)-)[-Acc(8)- 1
j-----pad *(16)------ ) ( -WdCn t (8)-|(NClst(8) )
|-----xst TS (16 )-----)(----- * Amps( 16 )----- )

Listing 4.2 (continued)

Page 36



-- AO----I1---A1----
-- A4---- ) (---A$----
-----1st TS(16)-----
---B2----H---B3----

___A2--- ] I A3---- |
--- M---A7---- |

-----• Amps ( 16 )----- )
— B4--- ) ...

---En---- j(----- o----
-----Pad i(16 )------
-----1st TS(16)-----
-- AO----)(--- Al---
-- A4----) (--- AS---
-----1st TS{16)-----
---B2----)(--- B3---

----0----- )( 0----)
-WdCnt(0)-){NClst(8)J
-..--I Amps(16 )---- j
-- A2-----||—A3----|
-- A6-----M—A7--- )
-----« Amps( 16 )----- )
—-B4----] ...

En-------- )|--------- 0---------)[--------- 0---------H--------- 0---------|

Blocklet WC{32) ]
Channels with only presample data are dropped. Longword alignment 
is forced at the end of each cluster.
Register Usage

A0 Pointer
Al Pointer
A2 Pointer
A3 Pointer
A4 Pointer

to Address of Current Channel in FEB 
to Current Data word in FEB 
to Output position in BEB 
to Start of Current Cluster in BEB 
to End of Current Channel

DO
Dl
D2
D3
D4
DS

Scratch Register 
Scratch Register 
Channel Counter
Word Count for Current Channel 
Last channel for this board 
Number of clusters in this channel

NULL RTS
FM_BEB MOVEM.L A0-A5/D0-DS,-(SP) Save Some Registers for local use

Locate start of indicated event/channel (FEB)
Clear flags register 
Clear FLAGS communication register 
Address of IFEB array 
Load 1st pad number 
Copy into D4
Two byte offset per channel 
Add offset for 1st pad 
Shift D2 back again 
Calculate last channel *

MOVE.W «0,F REG
MOVE.L «0,FLAGS
LEA I FEB,A0
MOVE.L PAOl, 02
MOVE.L D2,D4
LSL. L *1,D2
ADD. L D2,A0
LSR.L 11,02
ADD. L #31,04

* Setup Destination (BEB)
• MOVE.L # BEB,A2 Start of BEB

Generate Header for Blocklet
MOVE.L I0,(A2)+ Future site of Blocklet Word Count
MOVE.W 10,(A2)+ No Errors so far
MOVE.W •$910,(A2)+ HPC pad data
MOVE.B MODU+3,(A2)♦ Module number
MOVE . B PAD1+3,(A2)+ First Pad Number
MOVE. B 11,(A2)+ Signifies 1 byte per time slot
MOVE. B CSR11,(A2)♦

» Begin a inew channel
A CHAN SUBA.L Al,Al Clear contents of Al

CLR.L DO Be sure upper bits are zero
MOVE.W (AO),DO Load start of FEB for this channel* Note: in the future, we will need to pick which of the four e’

List

* 
X

in the FEB we want to read out. Do it here by masking LS two bits 
of trig acc no., shifting left 8 bits, and adding to DO.

Convert FB address into 68K address 
Store it in Al 
Upper word empty

LSL. L 
MOVE.L 
ADD. L 
CLR.L 
MOVE.B

»2 , DO 
DO, Al 
t 3, Al 
D3
(Al)+,03 FEB word count for this channel

Check for more than presample 
CMP.W #9,D3 
BLE MT CHAN

Compute End of Data
MOVE.L 
MOVE.L 
ASL.L 
ADD. L

DO, A4 
D3, DO 
*2,DO 
DO, A4

in FEB for this channel
Copy start of FEB to A4 
Temp
Times 4 for bytes 
End of data

First Cluster is the presample

LO

MOVE.L 
MOVE.L 
MOVE.W 
ADD. L 
MOVE.W 
MOVE.W 
MOVE.W 
ADD. L 

MOVE.B 
DBRA

A2 , A5
# 1, D5 
D2,(A2)+ 
«2,A2 
#0,(A2)+
*8,(A2)+
• 7 , Dl 
13,Al

(Al)+,(A2)+ 
Dl, LO

Begin a new cluster 
CLU MOVEA.L A2,A3

Save start of channel in BEB 
Initialize cluster counter 
Channel Number
Save space to store word count and no of clust 
1st time slice 
Number of amplitudes

Transfer Presample data

Save start of cluster in BEB
Cluster data
CLR.L 
ADD. L 
MOVE.B 
MOVE.W 
ADD. L 
ADD. L

X AMP CMP 
BLE 
MOVE.B 
ADD. L 
ADD. B 
CMP.B 
BEQ

DO
4 2, Al 
(Al)+,DO 
DO,(A2)♦ 
12,A2 
#1,D$

L A1,A4 
BACK UP 
(Al)+,(A2)♦ 
#2, Al 
II,DO 
(Al)>,DO 

X AMP
BACK UP SUB.L 13,Al

First TS
Save TS in Cluster Header 
No. of amplitudes (fill later)
Increment number of clusters in this channel 
End of FEB? (Old data could fake it)

Transfer one amplitude to BEB
Next TS

Back Up
Compute Number of Amplitudes in this cluster in BEB
MOVE.L 
SUB.L 
SUB.L 
ADD. L 
MOVE.W 

WORDALIGN: 
AND. W 
BEQ 
CLR.B 
JMP

ALIGNDONE

A2, DO 
A3,DO 
14, DO 
12,A3 
DO,(A3) 

MOVE.W 
10003,00 
ALIGNDONE 
(A2 ) ♦ 
WORDALIGN 
CMP.L

A2, DO

Al ,A4

End of current channel 
Start of this Cluster 
Number of bytes in header

Save it
Pad with 0s to next longword boundary

End of 
BGT

channel 
X CLU No, Do more clusters

Advance to next channel

4.2 (continued)

Page 37



ECHAN MOVE. L AS, A3
MOVE.L A2.D0
SUB.L A3,DO
LSR.L *2,DO
ADD.L *2,A3
MOVE.B DO,(A3)+
MOVE.B DS,(A3)+

MT_CHAN ADD.L »2,A0
ADD.W *1,D2

*

* Last Channel?
CMP D4,D2
BLE X CHAN

Restore start of channel in A3 
Copy current pointer in BEB 
Subtract start of channel address 
Convert to longwords 
Point to no. of Iwords for this pad 
Put no. of longwords in channel header 
Save nunber of clusters in this channel 

Advance channel pointer 
Advance channel number

Finish Blocklet
MOVE.L A2, DO Current end of BEB
SUB.L IBEB.DO Compute length in bytes
ASR.L *2, DO Now longwords
ADD.L *1 ,D0 Extra WC at end of Blocklet
MOVE.L DO,<A2)+ Trailing WC
MOVE.L DO,BEB Leading WC

Finished
MOVE.W «1,F REG Set ’done' bit
MOVE.L «1,FLAGS Ditto
CMP *5,DO Is there data on this board?
BLE DONE FMT
MOVE.W #3,F REG Set 'data present' bit also
MOVE. L *3,FLAGS Ditto

DONEFMT
RTS

MOVEM.L ( SP) + ,AO-A5/D0-D5
IFEB: DC.W

DC.W 
DC .W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
DC.W 
END

$A80O,$BCOO,$D4OO,$EC00,$98OO,$AO0O,$B8O0,$C4OO 
SD800,$9000,59400,$B400,$COOO,$DOOO,$E800,$ACOO 
$C800,$E400,$9COO,$BOOO,$DCOO,$FOOO,$8COO,$A400 
$CC00,$F400,$8800,$E000,$8400,SF800,$8000,SFC00 
$BCOO,$D800,$E800,$9000,$9800,$AC00,$C000,$CC00 
$EOOO,$8COO,$A800,$B800,$C800,$DC00,$8400,$A400 
$D000,$EC0Q,$9400,$C400,$E400,$F000,$8800,$B000 
$D400,$F400,$6000,$B400,$A000,$F800,$9C00,$FC00 
$C400,$D8OO,$E8O0,$9O00,$9CO0,$BC00,$C800,$DC00 
$8C00,$9400.$A000,$C000,$O400,$E000,$8800,$A400 
$CC00,$EC00,$9800,$B400,$E400,$F400,$8400,$B000 
$DOOO,$FOOO,$8000,$B800,$ACOO,$F800,$A800,$FC00 
$AC00,$COOO,$D80O,$DCOO,$8COO,$9800,$B0OO,$C4O0 
$C80O,$EOOO,$88O0,$9COO,$B8OO,$CCO0,$ECOO,$F4OO 
$9000,$BCO0,$E400,$9400,$DOO0,$E800,$8400, $A000 
$D400,$F000,$8000,$B400,$A8O0,$F800,$A400,$FCO0 
$8000,$8400,$8800,$8C00,$9000,$9400,$9800,$9C00 
$AOOO,$A400,$A800,$AC00,$BO0O,$B400,$B8O0,$BCOO 
$COOO,$C400,$C800,$CCOO,$DOOO,$D4 00,$D8QO, SDC00 
$EOO0,$E400,$E800,$ECOO,SFOOO,$F400,$F800,$FCOO

Listing 4.2 (continued)

Page 38



February 14, 1989 Page 39

Appendix A - Technical Parameters

Power Needs
+15.0 V ............................................................................... 1...............0.8 A
+6.2 V ................................................................................................3.6 A
+5.0 V................................................................................................7.2 A
-5.2 V................................................................................................2.3 A

Analog Inputs
Number of Channels ............................................................................... 32
Cables .......................................2 Twisted Pair (32 or more conductors)
Connectors...................................................... 2 34-pin 3M (H34-202-TL)

Digitizer Stage
Digitization Frequency...................................................................15 MHz
Input Range

at input* (at FADC)...................................................0-2.0 V (0-4.0 V)
Step Size (lower quadrant)

at input* (at FADC)...................................................2.5 mV (5.0 mV)
Step Size (upper three quadrants)

at input* (at FADC)................................................. 9.5 mV (19.0 mV)
Effective Dynamic Range....................................................................800:1
Number of Samples per Channel ..........................................................255

Zero Suppression Stage
Clock Frequency ........................................................................... 4.5 MHz
Maximum time to suppress..............................................................500 /xs

Front End Buffer
Number of Events....................................................................................... 4

Microprocessor
Processor ............................................................................Motorola 68000
Clock Frequency ............................................................................16 MHz
Memory (SRAM) ........................................ 128 KBytes (no wait states)
Interrupt Levels ..........................................................................5,6, and 7

FASTBUS
Addressing Modes ..............................Geographical, Logical, Broadcast

* assumes an analog input buffer with a nominal gain of 2.0



February 14, 1989 Page 40

Appendix B - Input Connectors

Upper Connector
Channel 0— Pin 1 Channel 8— Pin 17
Channel 0+ Pin 2 Channel 84- Pin 18
Channel 1 — Pin 3 Channel 9— Pin 19
Channel 1 + Pin 4 Channel 94- Pin 20
Channel 2— Pin 5 Channel 10— Pin 21
Channel 2+ Pin 6 Channel 104- Pin 22
Channel 3— Pin 7 Channel 11 — Pin 23
Channel 3+ Pin 8 Channel 114- Pin 24
Channel 4— Pin 9 Channel 12— Pin 25
Channel 4-(- Pin 10 Channel 124- Pin 26
Channel 5— Pin 11 Channel 13— Pin 27
Channel 5+ Pin 12 Channel 134- Pin 28
Channel 6— Pin 13 Channel 14- Pin 29
Channel 64- Pin 14 Channel 144- Pin 30
Channel 7— Pin 15 Channel 15— Pin 31
Channel 74- Pin 16 Channel 154- Pin 32

Lower Connector
Channel 16- Pin 1 Channel 24— Pin 17
Channel 164- Pin 2 Channel 244- Pin 18
Channel 17— Pin 3 Channel 25— Pin 19
Channel 174- Pin 4 Channel 254- Pin 20
Channel 18- Pin 5 Channel 26— Pin 21
Channel 184- Pin 6 Channel 264- Pin 22
Channel 19— Pin 7 Channel 27- Pin 23
Channel 194- Pin 8 Channel 274- Pin 24
Channel 20— Pin 9 Channel 28— Pin 25
Channel 204- Pin 10 Channel 284- Pin 26
Channel 21 — Pin 11 Channel 29— Pin 27
Channel 214- Pin 12 Channel 294- Pin 28
Channel 22- Pin 13 Channel 30— Pin 29
Channel 224- Pin 14 Channel 304- Pin 30
Channel 23— Pin 15 Channel 31 — Pin 31
Channel 234- Pin 16 Channel 314- Pin 32

Note: Pins 33 and 34 of each connector are unused.



February 14, Page 411989

Appendix C - Sample Readout Routines

§i***********
5 ; * * * * *
§;***** Copy
^ t * * * * *

$;***** nigh
$;***** 12 Physics ********
$;***** Iowa State University ********$i.***** Ames IA 50011 ********

t * * * * * ■k’k’kltifitltit

^ I ★★****A***AA*A***AA**********A****Of*A*A*AAA**A*AA**

$ !$|C**********************************************A***********************  
c*********************************************************************** 

SUBROUTINE READ_ONE_BEB(ACCNO, PRIADD, IBEB) **********************************************************************72 *
* A sample routine to be called after the event trigger.
* It assumes the user has already done the following:* 1. Loaded the microprocessor program.
* 2. Set the interrupt vector for interrupt 6.* 3. Enabled the microprocessor.
* It reads the BEB from a single waveform digitizer located at FASTBUS
* address PRIADD, using reads to the flag bits in memory to determine
* if the microprocessor has finished and if it has found data.* ACCNO is a trigger accounting number, the least two significant* bits of which specify which of the four events to read from the FEB.* IBEB is an array to receive the data.
*

* Note that this FORTRAN version is only a sample routine to demonstrate* the algorithm. It executes slowly, has no error checking, and contains
* a potentially infinite loop.
*

**********************************************************************72

****************************************
********

right 1988 by Ames Laboratory ********
********

Energy Physics ********

INCLUDE 'COMMON:FBADRCOM. FOR 9

INTEGER* 4 ACCNO, PRIADD, IBEB(*), WDCOUNT
INTEGER*4 I FLAG, KOUNT, KOUNTl, POINTER, FEB_EVENT
INTEGER*4 COMM$BEB, COMM$FLAG REG, EOB REG, CSRO, CSR10, CSRllINTEGER*4 CSR0$M_FEB_CLR, CSRT0$M_INT6
PARAMETER (COMM$BEB ' 40'X) ! Start of the BEB
PARAMETER (COMM$PROG SELECT - '46'X) 1 Program selector
PARAMETER (COMM$FLAG REG '47'X) ! Flag register location
PARAMETER (EOB REG '18800'X) 1 Block Xfer word count
PARAMETER (CSRtf$M FEB CLR m ' 00800000'X) l Clears CSR#0<7>
PARAMETER (CSRl0$M ENABLE - '00000001'X) ! Enables 68K
PARAMETER (CSRl0$M INT6 - '00000040'X) ! Sets interrupt level 6
PARAMETER ( CSRO - '00'X)
PARAMETER (CSRl0 - '10'X)
PARAMETER (CSRll ai 'll'X)

Initialize variables
IBEB(1) - 0
POINTER = 0

* Write trigger accounting number to CSR#llh
*

CALL FWC(STATUS, CNTRL, PRIADD, CSRll, ACCNO)
*

* Send interrupt 6 by setting CSR#10h<06>. We assume the interrupt vector 
has already been set correctly and that the program has been loaded into 
RAM.

*

*

*

CALL FWC(STATUS, CNTRL, PRIADD, CSR10, CSR10$M INT6)



February 14, 1989 Page 42

*
* Now wait .007 seconds while program executes on microprocessor.* WAIT is assumed to be a system- or user-supplied wait routine.
*

10 CALL WAIT(.007)
A
* Read the flag register and test to see if the reformatting is done.* If it is not done go back to the wait instruction. If it is done
* see if there is data to be read out. (Note that there is no* protection against an infinite loop here, a real routine should* set a maximum number of iterations).
*

CALL FRD(STATUS, CNTRL, PRIADD, COMM$FLAG_REG, I FLAG)IF (IAND(I FLAG,'1'X) .EQ. 0) GOTO 10
IF (IAND(I FLAG,'2'X) .EQ. 0) GOTO 999
CALL FETCH_BEB( PRIADD, COMM$BEB, IBEB, WDCOUNT)

A
* Readout done
A

999 CONTINUE
FEBEVENT - ISHFT(CSR0$M_FEB_CLR,IAND(ACCNO,'3'X))

A
* FREE_FEB is a routine that can be used to tell the trigger system that
* we are done with this event. It can also be used to reset the event bit in
* CSRO0, if desired. Depending on the application, this routine may not* be necessary.
A

CALL FREE_FEB(PRIADD, FEB_EVENT)
END

SUBROUTINE FETCH_BEB( PRIADD, BEB_POINT, IBEB,> WDCOUNT)
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA72
A

* Read the entire contents of one module's BEB into the array IBEB.* BEB_START is the data space address of the start of the BEB. PRIADD* is the module's primary address. WDCOUNT returns the number of words* read into IBEB.
A

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA72 
INCLUDE 'COMMON:FBADRCOM.FOR'
INTEGER*4 PRIADD, BEB_START, BEB_POINT, IBEB(*), WDCOUNT INTEGER*4 KOUNT, KOUNTl, POINTER 
INTEGER*4 EOB REG
PARAMETER (EOB_REG *= '18800'X) (Block Xfer word count register

Get address of start of BEB from communications vector area
CALL FRD(STATUS, CNTRL, PRIADD, BEB_POINT, BEB_START)

Get the word count from the first word in the BEB.
CALL FRD(STATUS, CNTRL, PRIADD, BEB_START, KOUNT)
WDCOUNT - KOUNT

Now do a block transfer of the data. We must check if there is more than 
4095 words (32 bit). If so, we must use several block transfers to read them all
10 KOUNTl - KOUNT 

POINTER - 0
IF (KOUNT .GT. 4095) KOUNTl - 4095 
KOUNT - KOUNT - KOUNTl



February 14, 1989 Page 43

*

* Write word count to EOB register so slave will send SS-2 to end transfer.
* If a master terminated block transfer is used, the EOB register must still
* be set to a value equal to or larger than the number of words to be
* transferred to avoid a premature SS-2.*

CALL FWD(STATUS, CNTRL, PRIADD, EOB_REG, KOUNTl)CALL FRDB(STATUS, CNTRL, PRIADD, BEB_START + POINTER,> IBEB, 4*KOUNTl)
IF (KOUNT .LE. 0) GOTO 20 
POINTER - POINTER + KOUNTl 
GOTO 10 20 CONTINUE 
END

SUBROUTINE FREE_FEB(PRIADD, FEB_EVENT) **********************************************************************72 *
* A sample routine. All this version does is to reset the event bit
* in CSR#0.
*

**********************************************************************72
INCLUDE 'COMMON:FBADRCOM.FOR'INTEGERM PRIADD, FEB_EVENTCALL FWC(STATUS, CNTRL, PRIADD, 0, FEB_EVENT)
END

SUBROUTINE READ_MULTI_BEB(ACCNO, BR_CLASS, TPATTERN, IBEB) **********************************************************************72
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

A sample routine to be called after the event trigger.
It assumes the user has already done the following:1. Loaded the microprocessor program.

2. Set the interrupt vector for interrupt 6.3. Enabled the microprocessor.4. initialized all waveform digitizers to broadcast class 
BR_CLASS.

5. TPATTERN has been correctly initialized.It reads the BEB from all waveform digitizers located in the root 
segment that have been set to respond to broadcast class BR_CLASS.
It uses T-pin scans to determine if the microprocessors have finished 
and if they have found data.
ACCNO is a 
bits of wh IBEB is an correspond 
respond. correspond

tri ich ar r 
ing 
(I.e ing

gger accounting number, the least two specify which of the four events to re ay to receive the data. TPATTERN is a 
to the expected T-pin scan if all wave . it is a 32 bit word with a 1 in each 
to a digitizer module.

significant ad from the FEB.bit pattern 
form digitizers bit position

Note that this FORTRAN version is only a sample routine to demonstrate the algorithm. It executes slowly, has no error checking, and contains 
a potentially infinite loop.

**********************************************************************72
INCLUDE 'COMMON:FBADRCOM.FOR' 
INTEGERM ACCNO, BR CLASS, IBEB( *)
INTEGERM I FLAG, KOUNT, KOUNTl, POINTER, FEB_EVENT, TSCAN 

> TPATTERN, I, PRIADD, NOW, WDCOUNT



February 14, 1989 Page 44

INTEGER*4 COMM$BEB, COMM$FLAG REG, EOB_REG, CSRO, CSR10, CSRll, > CSRO$M FEB CLR, CSRT0$M INT6, TPIN 3, TPIN 3A
PARAMETERPARAMETERPARAMETER
PARAMETERPARAMETER
PARAMETERPARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETERPARAMETER

(COMM$BEB - ' (COMM$PROG_SELECT - (COMM$FLAG_REG - ' (EOB REG - ' (CSRtf$M_FEB_CLR - ' (CSC10$M_ENABLE - ' 
(CSR10$M_INT6 - ' 
(CSRO - ' 
(CSR10 - ' 
(CSRll - ' 
(TPIN_3 - ' (TPIN 3A - '

40'X)'46' )47'X) 
18800'X) 
00800000'X) 00000001'X) 00000040'X) 00'X)
10'X)
ll'X)
00000009'X)00000019'X)

1 Start of the BEB I Program selector 
! Flag register location l Block Xfer word count reg l Clears CSR#0<7>
1 Enable 68K
! Sets interrupt level 6

! T-Pin class 3 (data scan) l T-Pin class 3a (dev avail)
Initialize variables

NOW - 1 
IBEB(NOW) - 0

Write trigger accounting number to CSR#llh
CALL FWCM(STATUS, CNTRL, BR_CLASS, CSRll, ACCNO)

Send interrupt 6 by setting CSR#10h<06>. We assume the interrupt vector has already been set correctly and that the program has been loaded into RAM.
CALL FWCM(STATUS, CNTRL, BR_CLASS, CSR10, CSR10$M_INT6)

Now wait .007 seconds while programs execute on microprocessors.WAIT is assumed to be a system- or user-supplied wait routine.
10 CALL WAIT(.007)
Do a class 3a T-pin scan to see if all the boards have finished executing the reformatting routine. If they have not, wait some more and try again. (Note that there is no protection against an infinte 
loop here, a real routine should set a maximum number of iterations).

CALL TPIN(TPIN_3A, TSCAN)
IF (TSCAN .NE. TPATTERN) GOTO 10

Do a class 3 T-pin scan to see if any of the modules contain data.
CALL TPIN(TPIN_3, TSCAN)TSCAN - IAND(TSCAN,TPATTERN)
IF (TSCAN .EQ. 0) GOTO 999

Loop over all boards with data
DO I - 0, 31 

PRIADD - I
IF (BTEST(TSCAN,I)) THENCALL FETCH_BEB(PRIADD, COMM$BEB, IBEB(NOW),

> WDCOUNT)
NOW - NOW + WDCOUNT 
IBEB(NOW) - 0 
ENDIF 

ENDDO
Readout done

999 CONTINUE



February 14, 1989 Page 45

FEB_EVENT - ISHFT(CSRO$M_FEB_CLR,IAND(ACCNO,'3'X))*
* FREE_FEBM is a routine that can be used to tell the trigger system that
* we are done with this event. It cal also be used to reset the event bit in* CSR#0, if desired. Depending on the application, this routine may not
* even be necessary.
*

CALL FREE_FEBM(BR_CLASS, FEB_EVENT)
END

SUBROUTINE FREE_FEBM(BR_CLASS, FEB_EVENT)
*

* A sample routine. All this version does is to reset the event bit
* in CSR#0.*
**********************************************************************72

INCLUDE 'COMMON:FBADRCOM.FOR'
INTEGER*4 BR_CLASS, FEB_EVENTCALL FWCM(STATUS, CNTRL, BR_CLASS, 0, FEB_EVENT)
END

SUBROUTINE TPIN(PRIADD, TSCAN)**********************************************************************72
*

* Do a T-pin scan using PRIADD as the primary address, return the
* result as TPIN.
*

**********************************************************************72
INCLUDE 'COMMON:FOPARA.FOR'INCLUDE 'COMMON:FBADRCOM.FOR'
INTEGERM PRIADD, TSCAN
CNTRL(2) - FONOSACALL FRDM(STATUS, CNTRL, PRIADD, 0, TSCAN)
CNTRL(2) - FOEG
END

a***********************************************************************
*
* COMMON block FOPARA inserted by INCLUDE statements.
*
************************************************************************

INTEGER FOGERR, FONOAR, FONOPA, FOEG, FOGKUP,
1 FONOSA, FONODC, FOASUP, FOBLKE, FOBUFE
PARAMETER 
1 FOGERR ( '0001'X, FONOAR « '0002'X, FONOPA - '0004'X,
2 FOEG '0008'X, FOGKUP - '0010'X, FONOSA - '0020'X,
3 FONODC '0040'X, FOASUP - '0080'X, FOBLKE - '0100'X,
4 FOBUFE '0200'X)

************************************************************************
*

* COMMON block FBADRCOM inserted by INCLUDE statements.
*

A***********************************************************************
COMMON /FBADR/



February 14, 1989 Page 46

1 PRIMAD, GEOAD, BRODAD, SECAD, IDATA,
2 IBN, IBSN, CNTRL(2), STATUS(4), ICSR10, ICSRll,
3 IANODE, ISPACE, NBSN(25), TIMESTRING 
CHARACTER TIMESTRING*25
INTEGER PRIMAD, GEOAD, BRODAD, SECAD, IDATA 
INTEGER CNTRL, STATUS



on
on

 
no

nn
n 

no
oo

February 14, 1989 Page 47

Appendix D - Subroutine to Load S-Code Files

C LOAD THE SPECIFIED 68K PROGRAM IN S-CODE 
SUBROUTINE LD68K(FILENAME)

WARNING ** THE S-CODE DATA MUST BEGIN- ON LONGWORD BOUNDARYS 
FOR PROPER OPERATION

INCLUDEINCLUDE
'COMMON:FBADRCOM.FOR' 
'COMMON:M6 8 KCOM.FOR'
COMM REG s '00000040' X
COMMijBEB = 0 + COMM REGCOMM$MODULE = 1 + COMM REGCOMM$FIRST PAD = 2 + COMM REGCOMM$PROGRAM VERSION = 3 + COMM REGCOMM$LOAD TIME 4 + COMM REGCOMM$LOAD DATE = 5 + COMM REGCOMM$PROGRAM SELECT as 6 + COMM REG
COMM$FLAG REGISTER = 7 + COMM REGCOMM$SERIAL NUMBER = 8 + COMM REG
COMM$BIT MASK = 9 + COMM REG
COMM$COUNTER = 10 + COMM REG
FILENAME*20, LINE*60, SX*2 , 1NUMB*8INTEGER IRLEN, IADDR, IIDATA(4) INTEGER INA, INW, IBDATA(256)

COMMON/STAGKC/ INW, INA, IBDATA, IADDR, IIDATA, N
INITIALIZATIONCALL RUN68K(0) IHalt 68k, CSR#0<0>-0IS - SMG$PUT CHARS(ID 68S,FILENAME(1:10),2,18)
GET S-CODEOPEN( UNIT-11, FILE-FILENAME, DEFAULTFILE-'M68K:.SEX', 

1 STATUS-'OLD', ERR-98)
INW - 0DO WHILE( .TRUE.)READ(11,'(A,A)') SX,LINE

HEADER RECORDSIF(SX .EQ. 'SO' ) THEN
DATA RECORDSELSE IF (SX .EQ. 'Si') THENREAD(LINE, '(Z2,Z4,4Z8)') IRLEN, IADDR, IIDATA

N - (IRLEN-1-2+3)/4 
CALL STACKELSE IF (SX .EQ. 'S2') THENREAD(LINE, '(Z2,Z6,4Z8)') IRLEN, IADDR, IIDATA
N - (IRLEN-1-3+3)/4 
CALL STACKELSE IF (SX .EQ. 'S9') THEN 
IADDR—1 
CALL STACK 
CLOSE(UNIT-11)
GOTO 98

ENDIF
ENDDO

LOAD COMPLETE 
98 CONTINUE 
C END



February 14, 1989 Page 48

c************************************************************
C COMBINE DATA INTO LARGEST BLOCKS POSSIBLE FOR LOADING

SUBROUTINE STACK
INCLUDE 'COMMON:FBADRCOM.FOR'INTEGER IBDATA(256),IIDATA(4)
COMMON/STACKC/ INW, INA, IBDATA, IADDR, IIDATA, N IADDR - IADDR/4 

C IF( INW .EQ. 0 ) INA = IADDR 
C

IF(IADDR-INA .NE. INW .OR. INW .GE. 253) THEN CALL FWD(STATUS,CNTRL,PRIMAD,'00018000'X,INW)CALL FWDB(STATUS,CNTRL,PRIMAD,INA,IBDATA,INW*4)INW - 0 INA - IADDR ENDIF
DO I « 1,NINW - INW + 1 

IBDATA(INW) - IIDATA(I)
ENDDOEND

COMMON /FBADR/
1 PRIMAD, GEOAD, BRODAD, SECAD, IDATA,
2 IBN, IBSN, CNTRL(2), STATUS(4), ICSR10, ICSRll,3 IAMODE, ISPACE, NBSN(25), TIMESTRING, IGEOGPM CHARACTER TIMESTRING*25
INTEGER PRIMAD, GEOAD, BRODAD, SECAD, IDATA 
INTEGER CNTRL, STATUS
COMMON/M68KCOM/ ID68M, ID_68S, ID_68P, ID_68C,1 ID 68SD



February 14, 1989 Page 49

Bibliography

FASTBUS

1. Louis Costrell and W. K. Dawson, FASTBUS for Data Acquisition and 

Control, IEEE Trans. Nucl. Sci., NS-30, 2147 (1983).

2. Institute of Electrical and Electronic Engineers, IEEE Standard FASTBUS 

Modular High-Speed Data Acquisition and Control System, ANSI/IEEE 

Std 960-1986, Distributed by Wiley-Interscience, New York, NY (1985).

3. G. Fremont, A FASTBUS Prototyping Card Incorporating a Comprehen­

sive TTL Slave Coupler, CERN-EP F685E, 1985.

M68000 Processor

4. Motorola Semiconductor Products Inc., MC68000 16-/32-Bit Microproces­

sor, 3501 Ed Bluestein Blvd., Austin, TX 78721, October 1985.

5. William Cramer and Gerry Kane, 68000 Microprocessor Handbook, Sec­

ond Edition, Osborne McGraw-Hill, 1986.

6. Leo J. Scanlon, The 68000: Principles and Programming, Howard W. 

Sams and Co., Inc, Indianapolis, IN 46268, 1983.

7. H. Muller, The GPM General Purpose FASTBUS Master/Slave - User 

Manual, CERN-EP F6808, 1985.

8. Horst von Eicken, Software Support for Motorola 68000 Microprocessor at 

CERN - MoniCa Symbolic Debugger, CERN-DD, 1986.

Ames Waveform Digitizer

9. H. B. Crawley et al., IEEE Trans. Nucl. Sci. NS—34, 261 (1987).

10. W. T. Meyer and M. S. Gorbics, A Simple Microprocessor for FASTBUS 

Slave Modules, to be published in Computers in Physics.


