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ABSTRACT

This document describes a waveform digitizer module developed for the DEL-
PHI experiment at the CERN Laboratory in Geneva, Switzerland. The Ames
Waveform Digitizer is a single electronics board conforming to the FASTBUS stan-
dard (IEEE-960) which digitizes 32 channels of analog waveforms, removes data
values below a settable threshold, and can reformat the data and perforin fast anal-
ysis using an on-board microprocessor. This guide is intended to help the user
install and use the modules in a data acquisition system. The technical details
necessary for repair or modification will be available in a separate Technical Man-

ual.
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1. INTRODUCTION
The Ames Waveform Digitizer is a single-width FASTBUS slave module which

digitizes input waveforms at rates up to 15 megasamples per second (mps). Each
board has 32 input channels, zero suppression circuitry for data compaction, and
an on-board Motorola 68000 microprocessor operating at 16 MHz. A summary of
the technical parameters is given in Appendix A.

This document is intended to aid the user who wants to interface the board
to a particular data acquisition system. Technical information needed to repair or
modify the board is contained in a separate Technical Manual.

We use a few notational conventions which need to be defined. In general, we
try to adhere to standard usage where possible. Hexadecimal numbers are denoted
by appending a lower-case h at the end, e.g., 100h. An exception to this is the case
of addresses for the 68000 microprocessor. In order to conform to standard usage
we use a dollar sign before the number, e.g., $4000. Although the number is still
hexadecimal, this form carries the additional information that it is a 68000 address
that is being discussed. In referring to FASTBUS CSR registers and their bits we
follow the notation of the FASTBUS specification (see bibliography). Thus, for
example, bit 11 of CSR 10 is called CSR#10h(11) and the range of bits 5 through
7 in CSR 10h is CSR#10h({05:07).

This module was developed by the High Energy Physics group of the Ames Lab-
oratory, Jowa State University, for use with the High-density Projection Chamber
(HPC) in the DELPHI experiment at the CERN Laboratory, Geneva, Switzerland.
In this experiment, the digitization clock runs at 14.675 MHz and the zero sup-
pression clock at 4.5 MHz. Both of these clocks are supplied to the module from
an external source. When we give a value for timings in this guide we implicitly
assume these clock frequencies. It is possible to vary these values somewhat for
other experiments and timings will change accordingly.

Patents related to this module are pending.
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2. FUNCTIONAL DESCRIPTION

2.1 Overview

The operation of the module is divided into three states, LOAD, DUMP, and
READOUT, with control of these states determined by external signals on the
FASTBUS TR lines as described in section 2.7. During the LOAD state flash
analog-to-digital converters (FADCs) digitize the input waveforms and store the
results in the cache memories. During the DUMP state the data are transferred
from the cache memory through a zero suppression circuit and into a front-end
buffer (FEB). The module is in the READOUT state whenever it is not in the
LOAD or DUMP state and it is only in this state that FASTBUS access is permitted
and that the microprocessor can operate.

The LOAD state begins when the module receives a WARNING/CLEAR signal
on the TR lines and ends when 255 data samples have been taken. Provision has
been made for taking eight values of presample data between the WARNING/-
CLEAR and an event trigger (usually called the beam cross-over, or BCO, in the
technical documentation). This allows the user to record samples of the baseline
just before an event occurs, if prior knowledge of the event time exists (for example,
in a colliding beam storage ring where the beam cross-over time is precisely known).
In other applications, it is possible to use the WARNING/CLEAR for the event
trigger and the eight presample values simply become the first eight data values.
See section 3.1 for more details.

At the end of the LOAD state, the board automatically enters the DUMP state,
which lasts about 450 pus when using a 4.5 MHz DUMP clock. At the end of the
DUMP state, the board automatically goes to the READOUT state. Asserting
the external QRST signal at any time during the LOAD or DUMP also puts the
module in the READOUT state.

As figure 2.1 shows, the input section of each channel first has an analog buffer
circuit whose primary function is to provide a low-impedance input to the FADC.
The FADC samples the voltage of the waveform 255 times on the downward tran-
sitions of the externally supplied clock and stores the results in its local cache
memory.

Figure 2.2 shows a block diagram of the entire board. The cache memories are

grouped together in four blocks of eight, each block having its own zero suppression
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circuit. At the completion of the LOAD state (i.e., 255 samples for each channel
are in the cache memory) the board enters the DUMP state. The eight channels
in a block are read out sequentially through a zero suppression circuit that applies
programmable threshold and width criteria to the digitized waveform. The zero
suppressed data are stored in the FEB, which is divided into four areas reserved
for data from separate events. Selection of one of the four FEB areas is made via
external signals applied to two of the FASTBUS TR lines. Note that these lines
affect writing to the FEB only during the DUMP state (see section 2.7). Once the
data are in the FEB, the DUMP state ends and the board is ready to accept a new
event, writing it into a different area of the FEB. If at any time during the LOAD
or DUMP state external logic decides the event is not interesting, a signal applied
to the external QRST line will abort the data taking and place the board in the
READOUT state, ready to take a new event.

FLASH
q: GATE
INPUT ADC ) H
B:ﬁgER CACHE
MEMORY

DIGITIZER STAGE

Figure 2.1. The digitizer input stage.

The FEB memory is connected to a common bus which goes both to the FAST-
BUS coupler and to a 68000 microprocessor with 128 Kbytes of random access
memory (RAM). Thus the contents of the FEB are directly available to the user
via FASTBUS and to the microprocessor for further analysis.

The readout of the event, either directly from the FEB or from a microproc-
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Figure 2.2. A block diagram of the digitizer module.

essor-created buffer in the RAM, is asynchronous with data acquisition. By that
we mean that during the time when FASTBUS or the processor is reading an event
out of the FEB an event trigger may cause the board to enter the LOAD state. At
this point all FASTBUS and 68000 activity is suspended until the event is written
into the FEB or is aborted via the QRST signal. When the event is disposed of,
the board returns to the activity in progress before the event trigger arrived.

The remainder of this chapter describes each section of the board in more
detail.

2.2 Input signals and Analog buffer

The analog waveforms to be digitized are input via two 34-pin connectors (see
appendix B). Each signal consist of a differential input from a twisted pair cable.

Termination of eack line is 50 Ohms to ground. The signals are routed directly to
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two interior signal planes of the board. Pairs of traces for each signal are positioned
one above the other and where traces are adjacent to each other they alternate in
polarity to minimize crosstalk. These two signal planes are sandwiched between
the two ground planes to provide isolation from digital noise. The thickness of the
board has been chosen to achieve a characteristic impedance close to that of the
incoming cables.

The analog buffer converts this differential signal to a unipolar signal with an
approximate gain of two. It is capable of slew rates in excess of 200 V/us and has
an input range of zero to two volts to match the zero to four volt range of the FADC
(see section 2.3). The pedestal of the analog buffer is adjusted to a small positive
value (approximately 35 mV).

The analog buffer is realized in a quad 30-pin hybrid package based on a
LM#6361 operational amplifier. Linearity measurements of the system indicate that

linearity characteristics are dominated by the FADC, rather than the analog buffer.

2.3 Flash ADC and Cache Memory
The heart of the digitizer is a Thomson TS8328 flash ADC. This device

samples an input signal up to 20 million times per second and converts it to an
8 bit digital value. The manufacturer provides inputs (tap points) for reference
voltages at 1/4, 1/2, and 3/4 of full scale to permit the user to adjust the response
curve to fit a particular application. The nominal input range is from zero to 3.5
volts with a minimum step size of 5 mV per count.

We have chosen to operate it in a bi-linear fashion in order to maximize the
effective dynamic range available. In this mode, the first 64 ADC counts correspond
to 5 mV steps and counts 64 through 255 correspond to about 19 mV each, placing
full scale at 4.0 V. Consultations with the manufacturer assured us that the device
could perform satisfactorily in this mode. If we define an effective dynamic range
as the full scale value divided by the minimum step size we get a value of 800
to 1. Figure 2.3 shows the resulting response curve as measured on one channel.
Measurements of linearity show that the absolute maximum conversion error is +1
count and that in an average sense the error is typically £0.25 counts.

Adjustments to the reference voltages are made on the front panel with the

four trim pots. These set the nominal voltage for the entire board. Individual
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Figure 2.3. A measured bi-linear FADC response.

FADCs may be tuned by the selection of trim resistors. Each FADC has a small
resistor (typically 5 Ohms and one third watt) on both its quarter and full scale
reference voltages. Because of these trim resistors, one should note, the reference
voltages displayed at the test points on the front panel are not exactly. the same as
that received by the FADCs.

If the user wishes to operate with the FADC in a linear mode over its entire
range, only a minor modification to the reference voltage circuit is required. Note
that without the sharp bend in the response curve only a small amount of current is
drawn by the FADC at the corresponding tap point. This will make the adjustments
with the trim resistors ineffective.

The digital output values from the FADC are placed in a fast (35 ns access
time) memory chip for later readout by the zero suppression circuit. The data bus
between the FADC and the cache memory is isolated from the zero suppression
circuit by means of a digital gate. This allows the input channels to be isolated

during digitization and yet be read out by a common zero suppression circuit.
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The performance of the “flash and cache” system is sensitive to hoth the sym-
metry of the FADC clock and the phase of this clock with respect to the timing of
the cache memory. Adjustments are provided for both of these parameters and will
be required if the load clock frequency is changed. Consult the technical reference

manual for more information.

2.4 Zero Suppression and Front-end Buffer

The zero suppression system provides for quick removal of data near the pedest-
al level and of certain types of noise pulses. This is done during the transfer of data
from the cache memory to the FEB (DUMP state). Parameters for each channel
are loaded into a threshold memory to control the zero suppression behavior. The
FEB provides temporary storage for four complete events and is accessible by both
the embedded microprocessor and the FASTBUS coupler.

Zero suppression begins after the digitization is completed. Data from each
of the 32 channels are clocked from the cache memory to the front-end buffer via
one of the four zero suppression circuits. The zero suppression circuit controls the
address to which the data are transferred and suppression of a particular datum is
accomplished by overwriting it in the buffer. After the zero suppression of a single
channel is complete, a count of the number of surviving data words (including the
count itself) is inserted in the low order byte of the first word in the buffer.

The decision to suppress a data value is based on an eight bit value stored in
the threshold memory for each channel. This memory is accessible for reading and
writing from FASTBUS. The threshold memory begins at 10000h in the FASTBUS
data space and consists of 32 4-byte words of which only the lowest order byte
is defined. The lower five bits form a threshold value, below which any data is
suppressed. The upper three bits form a width. Any consecutive group of data
words above threshold, called a cluster, which is shorter than this width is also
suppressed. This feature allows high frequency noise to be removed at an early
stage. One exception to the criteria described above is presample data. The first
eight data values are assumed to be presamples taken before the event time and
are always passed to the FEB. These are used to measure accurately the pedestal

value just before the data of interest were collected.
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The zero suppression system can be disabled by setting CSR#0(11). This has
the same effect on the behavior of the zero suppression system as setting all width
and threshold values to zero, except that the threshold memory is not modified.
This is useful for performing a pedestal check during data collection, as the user can
quickly change and restore the system without detailed knowledge of the threshold
data.

31 0
8000: dump cntr word count
time slot adc value
time slot adc value
time slot adc value

Figure 2.4. Format of data in the FEB

The FEB begins at 8000h in the FASTBUS data space. Figure 2.4 shows the
format of the data for one channel for a single event. This buffer is 256 32-bit
words long of which only the lower two bytes of each word are defined. The lowest
order byte is the output of the ADC. The next higher order byte is the number
of the time slot in which the ADC value was collected. This time information is
necessary since the zero suppression may have removed some of the data samples.
Further, the number of data words is stored at the beginning of the buffer along
with a “good dump counter” (see below). Space for four separate events is provided
to allow event buffering.

Thus a single event is stored in 32 separate locations in the FEB beginning at
the addresses 8000h, 8400h, 8800h, ..., or 8100h, 8500h, 8900h, ..., etc., depending
on which of the four event buffers is being used. The event buffer is selected at the
time the data enters the FEB by obtaining the address bits 8 and 9 (300h) from
the FASTBUS backplane (see section 2.7 regarding TR lines).

The good dump counter is a feature for crosschecking the data. At the end

of each complete zero suppression cycle (i.e., not terminated early by QRST) the
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counter is incremented. When the power is turned on or the FASTBUS is reset,
this counter is set to zero. Thus when the data from a single event is collected by
several boards, each channel of every board should display the same value for the
good dump counter. If this is not the case, an error has occurred in the readout

and data from different events have been incorrectly combined.

2.5 FASTBUS Coupler and CSRs

The FASTBUS Coupler is the interface between devices on the board and the
FASTBUS backplane. FASTBUS is defined by the IEEE standard 960-1986, and
all of the functions described here conform to this standard. Familiarity with this
standard is assumed throughout the text. This module uses a modified version of
a CERN-designed coupler (see Bibliography). The coupler assumes the FASTBUS
segment uses negative-logic ECL signals.

If a board loses either its -5.2 V or +5.0 V power the ECL-TTL converter
chips in the coupler could lock up the backplane for the entire segment. We have
partially addressed this problem by placing these power signals to the converter
chips on “islands” isolated from the power signals on the rest of the board by fuses.
If the -5.2 V is missing on the entire board the +5.0 V fuse to the island will blow,
preventing the lock up on the backplane. Unfortunately, it is not possible to have
this work the other way; a missing +5.0 V will not cause the -5.2 V fuse to blow.
If the +5.0 V power is missing to the entire board, the green “Power OK” front
panel LED will go out. If the -5.2 V power is missing anywhere on the board, or
the +5.0 V is missing on the island, the red “Power Fail” front panel LED will be
lit. Therefore, if the segment backplane seems to be locked up, the user should
check the status of the front panel LEDs.

This implementation responds to all forms of addressing (i.e., Geographic, Log-
ical, and Broadcast). Both single word and block transfer modes are supported.

Control and Status Registers (CSRs) are used both to monitor the state of the
FASTBUS device and to modify its operation. The FASTBUS standard requires
only a small number of CSRs and describes many optional CSRs. Table 2.5 lists the
control and status registers implemented in the Ames Waveform Digitizer. Access
to most of the CSRs is provided through dataspace to allow the microprocessor to

read and write to them.
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Table 2.5. Control and Status Registers
CSR# Data address Description
0 18040h Status and Control, Manufacturer’s ID
1 18080h Serial Number
3 (no access) Logical Address
7 (no access) Broadcast Class N selection
10h 18200 68000 Control
11h 18400 Trigger Accounting Number
(no access) 18800h Word count
(no access) 1A000h Special Functions

Table 2.6. CSR+#0 Bit Definitions
Bit Read Significance

00 Error F lag
01 Enabled (logical addressing)

Write Significance

Set Error Flag
Enable logical addressing

06 Front Panel LED Set Front Panel LED
07 FEB 0 Has Data (not used)
08 FEB 1 Has Data (not used)

09
10

FEB 2 Has Data
FEB 3 Has Data

11  Zero-suppress override on

16  LSB of Device Type

17
18

Device Type
Device Type

19  MSB of Device Type
20 LSB of Manufacturer’s ID

(not used)

(not used)

Set Zero-suppress override
Clear Error Flag

Disable Logical Addressing
(not used)

(not used)

(not used)

21 Manufacturer’s ID (not used)

22 Manufacturer’s ID Reset Front Panel LED

23 Manufacturer’s ID Reset FEB 0 Bit

24 Manufacturer’s ID Reset FEB 1 Bit

25 Manufacturer’s ID Reset FEB 2 Bit

26 Manufacturer’s ID Reset FEB 3 Bit

27 Manufacturer’s ID Clear Zero-suppress override

28 Manufacturer’s ID (not used)

29 Manufacturer’s ID (not used)

30 Manufacturer’s ID Reset (Same as Front Panel Button)

3t  MSB of Manufacturer’s ID

(not used)(Clear Data)
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Table 2.6 defines the significance of the bits in CSR#0. Bits in this register
follow a special convention, defined in the FASTBUS standard. If during a write
operation a ‘1’ is written to a particular bit this bit will be set to ‘1’, but if a
‘0’ is written to this bit, its state will not change. In order to clear a bit in this
register the user must write a ‘1’ to the bit location 16 positions to the left, in
the upper half of a 32-bit word. With this system the user can, with a single
32-bit write operation, set, clear, or leave unchanged any bit in the 16-bit register.
Moreover, a broadcast operation can set or clear a bit without affecting other bits in
the register which may vary from module to module. The FASTBUS specification
leaves undefined what happens if both the set and reset bits for the same register
bit are set. On this module, this will result in the register bit being reset.

CSR#0(00) indicates if an error has been detected on the board. If this bit
is set then at least one of the following conditions must have occurred: One of the
supply voltages has failed (fuse blown, or power supply failure); the ‘watch dog’
circuit has fired indicating the load or dump cycle has lasted too long; or the bit
was set by the FASTBUS or the 68K with a write operation to this bit. This last
possibility would be either for debugging purposes or to signal detection of a serious
error by the microprocessor. The error bit is cleared by a reset operation or the
appropriate write operation to CSR#0(16). '

CSR#0(06) is connected to a front panel light. When this bit is set the light
is lit. This is useful for the 68K to signal the operator or indicate the progress
of a program. The host system might use it to indicate a particular board to the
operator, perhaps for adjustment or replacement or visual feedback during system
checkout. This bit is cleared by writing a “1” to CSR#0(22).

CSR#0(07:10) are called the ‘Valid Data’ bits and indicate when the zero
suppression subsystem has found good data somewhere on the board for the cor-
responding event. Thus if the bit corresponding to the FEB event is clear after a
trigger, there is no data to be read from this board. Clearly this is advantageous to
a FASTBUS readout, but the most gain can be achieved when the microprocessor
uses this information in responding to broadcast operations. These bits are either

set or cleared during the DUMP cycle. Write operations can clear but not set these

bits. They are cleared using the bits in CSR#0(23:26).
CSR#0(11) is the zero suppression override. When this bit is set, the zero

suppression system behaves as if all thresholds and width were set zero. This allows
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the user to do pedestal measurements without modifying the threshold memory.
This bit is cleared by writing a “1” to CSR#0(27).

CSR#0(30) is used to cause a reset to the board. This function has the same
effect on the module as pressing the front panel reset button, issuing a FASTBUS
reset bus command, or executing the initial power up sequence. CAUTION: Since
the microprocessor can access this register it can cause a reset, one effect of which
is to stop the microprocessor itself.

CSR#0(16:31) forms the device identifier. Each type of FASTBUS device is
assigned a unique identifier. This allows the host computer system to identify the
devices inserted in a FASTBUS crate. The device identifier for the Ames Waveform
Digitizer is 01COh.

CSR#1 serves only to display the serial number of the board. CSR#1(16:25)
forms the serial number. CSR#1(26:31) return zero for convenience. The boards
used in the DELPHI experiment use the range 0 through 700.

CSR#3 and CSR#7 store the device’s logical address and the Broadcast Class
N selections. These CSRs conform exactly to the IEEE standard.

CSR#10h is used to control the activities of the microprocessor. Table 2.7
shows the function of the bits in this register. Bits in this register are manipulated
in the same fashion as in CSR#0.

Table 2.7. CSR#10h Bit Definitions

Bit Read Significance Write Significance

00 Microprocessor status Enable microprocessor
05 Interrupt 5 pending Queue interrupt 5

06 Interrupt 6 pending Queue interrupt 6

07 Interrupt 7 pending Queue interrupt 7

16  (not used) Disable microprocessor
21  (not used) Clear bit 5

22  (not used) Clear bit 6

23  (not used) Clear bit 7

CSR#10h(05:07) are used to initiate interrupts to the microprocessor. These
bits will remain set until the corresponding interrupt is acknowledged by the mi-
croprocessor or they are cleared by a write to CSR#10h(21:23). CSR#10h(00) is

used to start the microprocessor. When this bit is set to ‘1’ the microprocessor is
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released from the reset state and will begin execution at the location in the reset
vector. Any pending interrupts will be executed immediately in order of priority
(7 is highest). When CSR#10h(00) is cleared the microprocessor is forced into the
reset state. For proper operation, the microprocessor must be held in reset for not
less that 100 ms.

The location 18800h in data space is the word count register for block transfers.
This register is 12 bits wide and counts down during a block transfer. When zero
is reached the board will return a slave status of SS=2, indicating the end of the
block transfer. The width of this register limits the length of block transfers to
4096 words.

The location 1A000h in data space (DS#1A000h) is the Special Functions
Register. Table 2.8 lists the bits defined in this register and a description of their

effects. The bits in this register are modified only by read and write operations on
the data bus.

Table 2.8. DS#1A000h Special Functions

Bit Read Significance Write Significance
00 Data present Data present

01 Device available Device available
02 68K Busy (not used)

DS#1A000h(00:01) are used to control the response of the coupler to various
T-pin scans. The T-pin scan is a type of broadcast operation where all boards in
the crate respond with one bit determined by its physical location on the segment
and these bits form a single 32-bit word on the FASTBUS backplane. If and only
if DS#1A000h(00) is set the coupler will respond to a Sparse Data Scan (Broadcast
Case 3) by asserting its T-pin. In a similar fashion DS#1A000h(01) will control
the response to a Device Available Scan (Broadcast Case 3a).

During normal operation, the FASTBUS has priority over the microprocessor.
That is, microprocessor activity is suspended whenever the board is addressed.
Setting DS#1A000h(02) will prevent the coupler from answering any FASTBUS
requests for access, replying with a busy slave status (§S=1). Only the micropro-
cessor or a reset (FASTBUS Bus Reset, Front panel reset, or power up) can clear
this bit. This feature allows time critical calculations to proceed without delay,

provided the FASTBUS master can accept the busy response.
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Figure 2.9. A block diagram of the microprocessor circuit.

Triggers have priority over both the FASTBUS and the microprocessor. If a
trigger occurs during microprocessor activity the microprocessor is simply halted
until the triggeris finished. If a trigger occurs during FASTBUS activity the coupler
will reject any primary address cycles and delay any data cycles if they have already
begun. Thus the FASTBUS master must be able to accept delays up to 500 us or

avoid access when triggers might occur.

2.6 Microprocessor

The board is equipped with a 16 MHz 68000 microprocessor and 128 Kbytes of
RAM. Data and programs are downloaded into the RAM and results are retrieved
from RAM via FASTBUS. In addition to RAM access, the processor has access
to the threshold memories, FEBs, CSR numbers 0, 1, 10h and 11h and Data Space
registers 18800h and 1A000h. Program execution is driven by interrupts set in
CSR#10h. A block diagram is provided in figure 2.9.
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A typical use of the processor would be to read data values from the FEBs,
reformat them, and store them in a RAM buffer where they may be more compact
and where data from all 32 channels can be placed in continuous RAM, permitting
a single block transfer to read out all the data at once. A more sophisticated
system might use the microprocessor to decide if the data in the FEB is consistent
with a desired type of event. This result would then be collected with broadcast
operations like the Sparse Data Scan (Case 3) from all boards at once.

Three interrupt levels are provided: 5, 6, and 7 (non-maskable), corresponding
to bits CSR#10h(05:07). By redirecting the interrupt vector before sending the
interrupt, the user can use a given interrupt level for many purposes. At the end
of the DUMP state, the board logic sends a priority 7 interrupt to the processor
automatically. Thisis to allow the processor to begin event processing immediately.
If the user does not want to do anything, an immediate return from the exception
takes only a few microseconds (compared to 450 us for the DUMP stage). If the
processor is disabled, this interrupt is queued and has no effect until the processor
is started. If the processor is enabled the interrupt at priority 7 will always occur,
even if the processor is already at priority level seven.

If this interrupt at the end of DUMP is to be used, the triggering system will be
required to hold off additional triggers, not only until the end of DUMP, but until at
least some of the interrupt code is executed. This is to prevent the software from
confusing data from different events. See chapter 4 regarding the programming
environment.

Clearing bit CSR#10h{00) disables the processor completely and causes a
68000 reset. Note that this bit must remain in the reset state for at least 100
milliseconds for the microprocessor to reset properly. When the module is first
powered up, the processor is disabled because the RAM does not yet contain a pro-
gram or interrupt vectors. The user must first download the RAM contents and
then explicitly set the enable bit in CSR#10h before the processor will respond to
interrupts. When the processor is first enabled, it reads an initial stack pointer
and program counter from addresses $0 and $4 in the RAM and immediately begins

executing the instruction pointed to by this program counter.
Note that FASTBUS access and microprocessor program execution are mutu-

ally exclusive since they share a common bus. In case of conflict, FASTBUS wins.

(But the Special Functions Register provides a way for the processor to lock FAST-
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BUS out during critical operations, see section 2.5). For a program to execute in
the processor, the interrupt bit must be set and then the AS/AK lock broken. The
processor will reset the interrupt bit as part of the interrupt acknowledge. If the
processor is executing a program and FASTBUS wants access, the microprocessor
support logic performs an arbitration cycle for the local board bus (not the FAST-
BUS segment) which takes about 500 ns in the worst case, and less than 250 ns in

a typical case.

2.7 Clock and Trigger Inputs

In any experiment with more than one digitizer board there must be some
method of synchronizing the activities of each board with its partners. The FAST-
BUS specification provides eight lines on the backplane for the user. These are
called the TR lines (Terminated Restricted). Table 2.10 shows the allocation of
the TR lines to various time critical functions. As for all signals on the FASTBUS
backplane, these lines use negative-logic ECL signals (“1” = —1.4V, “0” = —0.7V).
They are converted to TTL signals on the digitizer board.

Table 2.10. TR line Usage

TRO WARNING/ CLEAR. Prepare for data collection
TR1 BCO or TRIGGER Begin data collection

TR2 EVTLS LSB of event buffer

TR3 EVTMS MSB of event buffer

TR4 QRST Quick Reset

TR5 PSW Pre-Sample Window

TRG6 LOAD CLOCK Digitization Frequency
TR7 DUMP CLOCK Zero suppression Frequency

LOAD CLOCK provides the frequency for taking data samples. While the
Ames Waveform Digitizer board has been optimized for 15 MHz, frequencies as
high as 20 MHz should be feasible. Any significant deviation from 15 MHz may
require changing some components and retuning of others.

DUMP CLOCK provides the frequency for the zero suppression (DUMP) stage

of processing. 4.5 MHz is recommended.
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The WARNING/CLEAR signal serves as the first indication to the board that
a trigger will occur. When asserted, it forces the board into the load state. The
microprocessor is halted and FASTBUS activity is ignored. WARNING/CLEAR
is used in an asynchronous manner and can be as short as 20 ns. Typically 200 ns
is used. The leading edge of this signal carries the significant information. There
is no protection on the module against a new WARNING/CLEAR signal arriving
while a previous event is being processed. It is presumed that the external logic
will issue a QRST before sending a new WARNING/CLEAR.

PSW is typically the next signal asserted. If used, it must be asserted only
between WARNING/CLEAR and BCO. This signal is used as a gate and provides
a time period in which to take data before the actual trigger. Typically PSW
is asserted for exactly eight clock cycles as these are the samples which receive
special treatment by the zero suppression circuit. There is no requirement that
any presample data be taken or that the samples taken must be from consecutive
clock pulses. This signal must be synchronized to avoid transitions in the LOAD

CLOCK to achieve consistent operation.

BCO also causes the system to begin collecting data except that collection
will continue until all 255 samples are taken or the data collection is terminated
with QRST. The leading edge of this signal must be synchronized with the LOAD
CLOCK. The width is not critical, we use 100 ns.

The signal QRST will abort the data collection at any stage. All pointers
will be reset and microprocessor execution and FASTBUS access will be allowed
to resume. The assertion of this signal may overlap with WARNING/CLEAR
and the last one asserted will define the state of the system. Typically the board
is forced into a known state at the start of a data acquisition cycle by asserting
both QRST and WARNING/CLEAR simultaneously and releasing QRST before
WARNING/CLEAR.

TR lines 2 and 3 form the event pointer. When the zero suppression begins,
these two lines are used to select the event buffer in the FEB. Proper control of
these lines allows the host system to affect a four event deep buffer in the FEB.

Note that these lines affect only the choice of FEB event during DUMP. The event

selection in reading from the FEB is done by selecting the correct address.
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2.8 Other features

In this section we describe a few additional features not covered in other sec-
tions. The user should be aware of these points when planning to use the Ames
Waveform Digitizer.

Because the FASTBUS is locked out during the Load and Dump phases of data
collection, it is possible that a failure of the hardware or one of the various triggering
signals (see section 2.7) could prevent the coupler from answering a FASTBUS
request. An example of this would be if the DUMP CLOCK (TR7) were to fail;
the DUMP state would never end and the board could never be interrogated by the
FASTBUS. To prevent this a ‘watch dog’ circuit is included which monitors the
Load and Dump cycles. A QRST and error will occur if either cycle lasts too long.
If the user chooses to change the clock frequencies, the timing in this circuit must
be modified. Consult the technical reference manual for specific details.

A device for monitoring the supply voltages has been incorporated. If for
any reason a supply voltage falls significantly (typically 20-50%) below its nominal
value, this circuit will turn on its front panel LED and set the error flag in CSR#0.
Monitoring this flag is important because the effect of some power failures is to
corrupt the data without affecting the coupler.

There are two ways to adjust the reference voltages of the FADCs. Adjust-
ments to the output of the reference voltages circuits are made on the front panel
with four trim pots. This sets the nominal voltage for the entire board. The sec-
ond method is by the selection of ‘trim’ resistors. Each FADC has a small resistor
(typically 5 Ohms) on both its quarter and full scale reference voltage. This allows
adjustments to individual FADCs. Typically FADCs from the same production
batch are similar enough not to require individual adjustments, but this feature can
be used if identical replacements are not available. .

It must be noted that the voltage which appears on the front panel test points
is not exactly that provided to the input to the FADCs. The trim resistors provide
a small change in the reference voltage to the FADC (+6 mV/Ohm at quarter
reference and -10 mV/Ohm at full scale). The front panel test points measure the
output of the four voltage regulations circuits. A current limiting resistor is in
series with each test point.

The range of adjustment of the reference voltages is limited to producing a

bilinear response in the FADC. Changing a single passive component (specifically,
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replacing a 0 ohm resistor by a 50 ohmn resistor) will allow adjustment to a fully
linear system. Other multi-linear adjustments are possible with changes in a small
number of passive components.

The performance of the flash and cache system is sensitive to the symmetry
of the clock used by the FADC, and also to its phase relative to the cache address
strobe. Adjustments for both are provided and will require tuning if any change
in the clock frequency is made.

The Ames Waveform Digitizer requires a non-standard 6.2 supply voltage to
extend the dynamic range of the FADC. This supply is received on the FASTBUS
pins B40 and B41. These pins are unassigned in the FASTBUS standard and thus
the additional voltage will not conflict with standard FASTBUS modules. This
voltage is used in two places. It goes through a diode drop to provide the analog
supply voltage (ASUP) to the FADC. This is typically 5.4 V, the extra range above
5.0 V being needed to achieve a full scale input of 4.0 Volts. The other place the
6.2 V power is used is to provide well regulated reference voltages for the FADC
tap points. In order to have a well regulated 4.0 V full scale reference, we need to

provide the regulator with a voltage greater than 5.9 V.

Table 2.11. Front Panel LEDs

LED Name Color Meaning

Slave Connect yellow FASTBUS Access in progress
Load red Load Active

Dump red Dump Active

68K Busy red FASTBUS Locked out
Programmable red CSR#0(06) set

Power OK green 5 Volt Power present

Board Error red Error Flag set

Power Fail red Power failure detected

ZS Override red Zero Suppress disabled

Reset red Reset in progress
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Table 2.12. Front Panel Testpoints

Signal Name

15V

ASUP (5.4 V nom)
5.0V

-5.2V

AGND

R/4

R/2

3R/4

Vref

Significance

Supply Voltage from Backplane

Supply Voltage from Backplane

Supply Voltage from Backplane

Supply Voltage from Backplane

Analog Ground

FADC 1/4 Tap Point Reference Voltage
FADC 1/2 Tap Point Reference Voltage
FADC 3/4 Tap Point Reference Voltage
FADC Full Scale Reference Voltage

Page 20
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3. Control Sequences

In this chapter we discuss the various ways of controlling the processes on the
board. These fall into two categories: data acquisition procedures (i.e., control of

the TR lines) and readout procedures (i.e., reading the data from the module via

FASTBUS).

3.1 Data Acquisition Sequences

In this section we present examples of how this module can be controlled via
the TR lines. Examples are drawn from specific experiments. The trigger and data
acquisition needs of the DELPHI experiment imposed a number of constraints on
the design of the module, but we have kept as much flexibility as possible. There are
several ways in which the control signals on the TR lines can be modified according
to the needs of a particular user. Note that the figures show the TR lines as they

appear on the segment backplane, i.e., they are negative-logic signals.

3.1.1 Standard DELPHI Sequence

At a colliding beam storage ring, such as LEP, the fact that events can only
occur when the beams cross, about every 22 us, gives the user advanced knowledge
of when an event can occur. Accordingly, we send the WARNING/CLEAR signal
a few microseconds before the beam crossover and take eight presamples of data in
the window between WARNING/CLEAR and BCO. At the beam crossover time,
digitization begins and, if the trigger electronics do not detect anything of interest, a
QRST (quick reset) aborts the digitizing. Figure 3.1 shows timing diagrams for this
sequence. The position of the presample window (PSW) in the interval between

WARNING/CLEAR and BCO is variable to allow us to choose a time when there

is the least noise from external sources, such as other detectors.

3.1.2 Fast Readout Method 1

Often the user does not know in advance when an event will occur. This is the
case, for example, in external particle beams and cosmic ray experiments. In this
case it is necessary to begin digitization as soon as possible after the event. One
way to do that is by using the WARNING/CLEAR signal for the event trigger and
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a. Successful Event

W/C

PSW

BCO U
GRST U

b. Aborted Event

W/C

PSW

BCO M
GRST |__| U-

Figure 3.1. Timing signals for the standard sequence.

not using the presample window at all. The first eight samples will then contain
valid data rather than a baseline measurement, but the zero suppression circuit
will continue to pass the values to the FEB whether they are above threshold or
not. The user will have to give these eight samples special treatment, either in the
on-board microprocessor or elsewhere, to identify valid data. In this scheme, BCO
follows immediately after the W/C signal. The timing diagram is shown in figure
3.2. This scheme preserves the multi-event buffering capability of the module but
loses the presample capability. Digitization can begin within about 100 ns of the

event.

3.1.3 Fast Readout Method 2

An alternative fast sequence preserves the presample, but at the cost of losing
the multi-event buffering. In this scheme the control hardware asserts WARNING /-

CLEAR and takes the presample data as soon as it is ready to accept an event. It
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FAST SEQUENCE 1

W/C

PSW

BCO U
QRST U

Figure 3.2. The first fast trigger sequence.

waits with the board held in the LOAD state until an event occurs and then triggers
data acquisition via the BCO signal. Since the board spends most of its time in the
LOAD state, the user must be sure the microprocessor has finished with an event
and the data have been read out via FASTBUS before enabling WARNING/CLEAR
for the next event. Note that there is no fixed timing between the presample and
the data in this scheme. The timing diagramn for this method is shown in figure
3.3.

FAST SEQUENCE 2

\N

AN\N
W/C

AN

AN
PSW

B\
BCO LJ

ANN

QRST U o

Figure 3.3. The second fast trigger sequence.
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3.2 Data Readout Sequences

This section presents two ways of reading the data from the module. The first
is to read the FEB directly, and the second is to read a board event buffer (BEB)
which has been built in RAM by the microprocessor. BEB readout is the preferred
method because it results in a smaller data volume and can be read with a single

block transfer instead of the separate block transfers needed for each channel in the
FEB readout.

3.2.1 FEB Readout

Normally, only the BEB will be read out, but there may be circumstances
under which the user wants to read out the FEB directly.

The FEB has room for four events and the FASTBUS master must specify
which of the four it wants. It does this by selecting the proper address in the
FASTBUS data space for the board. As described in section 2.4, the FEBs begin
at address 8000h with 400h words allocated per channel. The format for the data
was also presented in section 2.4. Each channel has four events of up to 100h words
each. For FEB event number EVENTNO (= 0, 1, 2, or 3) the sequence is:

For CHANNEL = 0 to 31 do
FASTBUS data read at address IFEB(CHANNEL,EVENTNO)
Mask to get an 8 bit WORD_COUNT
If (WORD_COUNT > 9) then
For POINTER = O to WORD_COUNT-1 do
FASTBUS data read at IFEB(CHANNEL,EVENTNO)+POINTER
Mask to get low order 16 bits
Store as nexf entry in a 16 bit wide buffer
Enddo
Endif
Enddo

Here IFEB(CHANNEL,EVENTNO) is the starting address for event EVENTNO !in
channel CHANNEL and can be calculated as:

IFEB(CHANNEL,EVENTNO) = 8000h + 400h*CHANNEL + 100h*EVENTNO

The test for more than nine data words (eight presamples plus the wordcount)

assumes that the presample data is of interest only if there is additional data in
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that channel. If valid data can occur in the first eight time slots, this test should
be removed.

When all of the data for an event have been read out, the appropriate bit in
the range CSR#0(07:10) should be reset.

3.2.2 BEB Readout

In the usual mode of operation, the microprocessor will build an event buffer
in RAM containing data from all 32 channels. This is the board event buffer, or
BEB. The advantages of this are that it allows the user to put the data in a more
compact format, to utilize the full 32 bit width of the FASTBUS data bus (versus
only 16 bits for direct readout of the FEB), to read all the data from the board with
a single block transfer, and to put the data in a format more convenient for later
processing. By having a processor on each digitizer module, this reformatting task
proceeds in parallel on many boards, freeing later processors, which see the data
serially, from having to spend a lot of time on routine matters. In the same pass
through the data, the user can also perform simple calculations (e.g., an energy
sum) which may be useful for triggering.

This readout mode is initiated by the FASTBUS master which is in control of
the data acquisition telling the digitizer module to format one of the events in the
FEB and leave it in the BEB. The master then waits for the reformatting program
to finish and then reads out the BEB. In the DELPHI experiment we do this as
follows.

1. Write a trigger accounting number to CSR#11h. This is an eight bit “event
number”, the low order two bits of which specify which of the four event regions
in the FEB to read out.

2. Set CSR#10h(06) to start the format program (we use interrupt 6 for this).

3. Break the AS/AK lock and wait until the format program is done (about 7 ms
in our case). Test to see if it is done by either

a. performing a T-pin scan (broadcast class 3a) to see if the “free for use”
flag is set, or

b. reading a word reserved in memory (a “communications flag” register)
and testing if bit 0 is set. If it is, formatting has been completed. This
communications flag register is simply a location in RAM which has been

reserved for this purpose. It is not a special hardware register.



February 14, 1989 Page 26

Note that the microprocessor program must explicitly set these two flags as it
finishes the formatting.

4. See if data are present. This is done by either

a. performing a T-pin scan (broadcast class 3) to see if the “data present”
flag is set, or
b. reading the communications flag register in memory and testing if bit 1 is
set. Ifit is set, there are data present. If the word has already been read
in step 3, it is unnecessary to read it again.
Again, the processor must set these two flags as it finishes the processing if it
has found valid data on the board.

5. Do a block transfer from the BEB. Good programming practice makes the
first word of the BEB a word count. The module supports block transfers
of at most 4095 words, so if the BEB contains more than 4095 words, two or
more block transfers will be necessary. Users must test for this and handle it
explicitly, the module will not do it for them.

6. When the transfer is complete, users should clear all bits in the communications
flag register and clear the appropriate bit in CSR#0(07:10).

A sample program to do this sequence using the standard FORTRAN FASTBUS
routines is given in Appendix C. A description and sample programs showing how

the microprocessor sets up the BEB are given in chapter 4.
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4. Programming the Microprocessor

In this chapter we discuss the hardware and suggested software environment
for programming the microprocessor. We assume the readers are already familiar
with the module description presented in the preceeding chapters and that they are
familiar with assembly language programming on the Motorola 68000. The Bib-
liography contains several books on 68000 assembly language programming. The
chapter ends with the presentation and discussion of sample programs which demon-

strate the approach we have used.

4.1 Programming Environment

This section presents the hardware and software environments in which the user
must program the 68000. We describe the memory map and the allowed addressing
modes for each of its areas. We then describe the software architecture we have
adopted for the DELPHI experiment.

4.1.1 Hardware

From the programmer’s perspective, the microprocessor is quite straightfor-
ward. The only peripherals it can access are memory and memory-mapped regis-
ters. All user communication is by direct memory access (DMA) using FASTBUS.
In effect, the microprocessor can only leave messages in memory which FASTBUS
can pick up. Program execution is controlled by three autovectored interrupt lev-
els (5, 6, and 7) in CSR#10h(05:07) and an enable bit at CSR#10h(00). The full
68000 instruction set is supported but none of the extensions to 68010, 68020, or
68030 processors are available. The complete memory map is shown in table 4.1.

Because FASTBUS uses word addressing and the 68000 uses byte addressing
there must be two different addresses for each memory location. FASTBUS accesses
data in 32 bit words only, while the 68000 can access data in byte, word, or longword
units. The FASTBUS address is simply the longword aligned 68000 address shifted
two bits to the right. Throughout this document we use the convention “$000”
to indicate a microprocessor address and “000h” to indicate a FASTBUS address,
where “000” represents a hexadecimal value. Note that in the addressing convention
used by the 68000 the high order bytes come at the low address end of the word.
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Table 4.1 Memory Map

68000 Address FASTBUS Address Usage
$00000-$1FFFF 0000h-07FFFh RAM
$20000-$3FFFF 8000h-OFFFFh Front-end Buffers
$40000-$4007F 10000h-1001Fh Threshold Memories
$60100 18040k CSR#0
$60200 18080h CSR#1
$60800 18200h CSR#10h
$61000 18400h CSR#11h
$62000 18800h Block Transfer Count
$68000 1A000h Special Functions Register

For example, in the 32 bit word at byte addresses $800 to $803, the high order
(most significant) byte is at address $800 and the low order (least significant) is
at $803. FASTBUS would access the entire word by going to address 200h. The
data from 68000 byte. $800 would be in bits 24-31 and from byte $803 would be in
bits 0-7. This differs from the byte ordering used on some other machines, most
notably VAXs. Table 4.2 illustrates this difference for 32 bit words, there is a

corresponding effect with 16 bit words.

Table 4.2 Byte Ordering for 32 Bit Words

H.O. L.O. H.O. L.O.

Byte Byte Byte Byte
68000: 00 01 02 03 04 05 06 07
VAX: 03 02 01 00 07 06 05 04

When the board is powered up or reset, the microprocessor is held in the
RESET state to allow the user to load the contents of RAM. Since, there is no
ROM or bootstrap program on the module, the user must explicitly load everything,
including exception vectors, program code, and data. Of particular importance are
the vectors listed in table 4.3, but many of the other exception vectors (e.g., zero
divide and illegal instruction) work also. Users not familiar with these should
consult one of the manuals on 68000 programming listed in the bibliography.

Because event triggers cause the microprocessor to suspend its activity for as

much as 500 us, the actual elapsed time for program execution depends on the
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trigger rate and the ratio of triggers which are not aborted with a QRST. Each
trigger which makes it to the end of the dump cycle (500 us) causes an automatic
level seven interrupt which will be processed immediately, even if the processor is

currently handling a previous level seven interrupt.

Table 4.3 Exception Vectors

Address (Hex) Vector
$000 Initial System Stack Pointer (SSP)
$004 Initial Program Counter (PC)
$074 Level 5 Interrupt Autovector
$078 Level 6 Interrupt Autovector
$07C Level 7 Interrupt Autovector

Microprocessor access to the areas listed in table 4.1 is allowed as follows:

e RAM: Byte, word, or longword access is permitted using any valid 68000 ad-
dressing mode.

e Front-end Buffers: Since only the low order (i.e., higher address) 16 bits are
valid, word operations are the most natural. Under normal operation, the
microprocessor does not write into the FEB, but if it becomes necessary to
write to the FEB, word operations should be used. Longword reads and writes
will work but are inefficient.

e Threshold Memories: The low order (higher address) byte is all that is signifi-
cant. It can be accessed via byte, word, or longword operations, but longword

access 1s Inefficient.

e CSRs: Access to CSRs 0, 1, 10h, and 11h is via memory mapped addresses as
shown in table 4.1. Byte write operations to these addresses should be avoided
because of possible corruption to bytes not being written to. Write operations

must be word or longword, read operations can be byte, word, or longword.

e Block Transfer Count: The low order twelve bits are all that are significant.
Word operations should be used for both reading and writing.

e Special Functions Register: The special functions register is only three bits

wide and can be read or written to by byte, word, or longword operations.
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4.1.2 Software

Because the microprocessor is in a minimal configuration, the simplest way to
program it is in assembly language. We use the Motorola Cross Macro Assembler
running on a VAX computer to produce S-code which is downloaded into RAM via
FASTBUS. S-code is a method used by Motorola to represent binary data as an
ASCII text file for easier handling. A FORTRAN subroutine for loading the RAM
with the contents of an S-code file is presented in Appendix D.

The use of absolute addresses gives the programmer the required control over
the entire address space, including, for example, downloading event data via FAST-
BUS into the FEB to be treated like real data. The use of higher level languages is
not excluded, but we have no experience to report on using them with this module.

Our use of RAM can be divided into four regions. Addresses $00 to $FF are
reserved by the 68000 for exception vectors. These need to be initialized properly
as in our program examples. We do not have “user interrupt vectors”, so the
corresponding address space ($100 to $3FF) can be used for other purposes. We
use the space starting at $100 for a “communications vector”, which is an area of
RAM reserved for passing information between the microprocessor and the host
computer. The length and usage of this vector is entirely a matter of programming
convention, there is no special hardware involved. Table 4.4 shows how we have

defined the communications vector for the DELPHI experiment.

Table 4.4 DELPHI Communications Vector

68000 Address FASTBUS Address Contents
$100 40h BEB Start
$104 41h First Hardware Channel
$108 42h Program Version
$10C 43h Load Time
$110 44h Load Date
. $114 45h Program Selector
$118 46h Bit Flags
$11C 47h Board Serial Number

Just above the communications vector we have the system stack. This is

an area reserved for the system to save information during subroutine calls and
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exception processing. It grows downward (i.e., toward lower numbered addresses)
from an address specified at startup by the Initial Stack Pointer at address $00. We
use $800 for the top of the system stack. Because program execution is controlled
by interrupts, the processor is always in the Supervisor State. Thus there is no
need for a User Stack Pointer.

The RAM from the top of the system stack ($800 for DELPHI) to $1FFFF is
available for program code and data.

Throughout this discussion we have assumed the existence of a program running
on the FASTBUS host computer which can send the FASTBUS data necessary to
control the module. The program we have developed to do this is called ARTEMIS
and it has been constructed around the needs of this specific module. This program

and documentation are available to interested users.

4.2 Program Development

Because there is no terminal access to the processor, the best way to develop
and debug code is by simulating the module’s environment on a 68000-based com-
puter with an interactive debugger. One such system that we have used is the
debugger, which is commercially available. The program changes needed to run on
the GPM are quite straightforward and the ability to set breakpoints, single step,
and set and examine registers and memory gives a powerful debugging tool.

If the program bug appears only when the program is running on the digitizer
module (usually because it is sensitive to timing), the most effective tool we have
found is to reserve an area in RAM as a scratch pad and then to insert MOVE or
MOVEM instructions to copy the contents of registers or memory into the scratch
pad at key points. Preceeding the MOVE with a MOVE of an easily identified
value, such as ‘ABC1’, ‘ABC2’, etc., makes it easier to associate data with MOVE
statements. This is analogous to the days before symbolic debuggers where the
hapless programmer had to pepper the program with print statements to debug.
In this case the programmer “prints” to an area of RAM. After the program has
terminated, the user can examine the RAM contents via FASTBUS. The user can
also insert STOP statements to force execution to end at a certain point. We have
also found that a careful examination of the stack contents is often helpful in tracing

down bugs.
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4.3 Program Examples

In this section we present and discuss some sample programs to illustrate the
software environment we have developed.

Listing 4.1 shows the first of these programs, which we call TOY1. This pro-
gram uses interrupts 5 and 6 to control flashing of the front panel LED. Interrupt
5 starts the flashing and interrupt 6 ends it. The communication vector is a single
word, called SELP, which can be either 0 or 1. A value of 0 causes fast (0.5 second)
flashes and a value of 1 causes slow (1.0 second) flashes. Even though the task of
this program is trivial, it illustrates all the major concepts needed to program the
processor. This example should be clearly understood.

The listing begins with a series of EQUates which provide mnemonics to in-
crease program readability and flexibility. Beginning at the line ‘VECTOR TA-
BLES’, we load the values of the first 64 interrupt vectors. All but five of these
point to a general (and primitive) error handler called BN. After these interrupt
vectors comes the single word communication vector at address SELP.

When the processor is first enabled, it jumps via the Initial Program Counter
to the routine at PROGO0. This routine merely stops the processor until an inter-

rupt is received. PROG5 and PROG6 are the autovector interrupt handlers and
illustrate an efficient way to use the program selector to switch between alterna-
tive programs using the same interrupt. For this example, PROG?7 is a trivial ‘do
nothing’ interrupt handler.

When an interrupt 5 is received, program control proceeds via PGMTBLS5 to
either FSTBLNK or SLOBLNK depending on the value in SELP at the time the
interrupt is processed. The light continues to flash until an interrupt 6 clears
register D0, which causes a termination of the interrupt 5 by an RTS to PROG5
followed by an RTE.

Finally, listing 4.2 presents an abridged listing of the microprocessor program
that we use both for testing the modules and for data acquisition in DELPHI. We
have deleted many of the tests which are similar in structure and have kept only
the simplest of the tests and our event reformatting routine.

As in TOY1, the program begins with a list of EQUates followed by the table
of interrupt vectors. We use the same error trap routine (BN) as TOY1, but the
communication vector is now twelve words long. PROGO jumps to an initialization
routine before executing a STOP instruction. PROGS5 and PROGS6 are identical to



$ CREATE TOY1l.MAR
* TOY1
»*
* Table of Constants and Addres
* Note that some Addresses ar
* with an explicit shift to ¢
ISP EQU $800
AUTOVECTOR EQU $64
LED_ON EQU $40
LED_OFF EQU $400000
*
CSRO EQU $18040¢<
*
* Program
w*
* VECTOR TABLES
ORG 0
DC.L ISP
DC.L PROGO
*
* MISC BAD EVENT VECTORS
DC.L BN,BN,BN,BN,BN,
DC.L BN, BN, BN, BN, BN,
DC.L BN, BN, BN, BN, BN,
-
* AUTO VECTOR INTERRUPTS
ORG AUTOVECTOR
DC.L BN, BN,BN,BN
DC.L PROGS
DC.L PROG6
DC.L PROG7
*
* TRAPS
DC.L BN, BN,BN, BN, BN,
DC.L BN,BN,BN,BN,BN,
*
* OTHER BAD STUFF
DC.L BN, BN,BN,BN, BN,
DC.L BN, BN, BN,BN,BN,
*
* COMMUNICATIONS VECTOR
* PROGRAM OUTPUT; DATA TO FA
ORG $40¢<2
SELP DS.L 1 Progr
*
* Program
ORG ISP
PROGO STOP $$2000
JMP PROGO
*
* AutoVector programs
PROGS MOVE.L SELP,DO
ASL.L $2,D0
MOVE.L #PGMTBLS,A0
ADD.L DO ,A0
MOVE.L (A0),A0
JSR (A0)
RTE
PROG6 MOVE.L SELP,DO
ASL.L #2,D0
MOVE.L #PGMTBL6,A0
ADD.L DO ,AD
MOVE.L (A0),AQ
JSR (AQ)
RTE

ses

e shown as the Fastbus address

onvert to microprocessor address
Initial Stack Pointer
Start of AutoVector table
Bit pattern to turn LED on
Bit pattern to turn LED off

<2 CSR#0 via data space

Initial Stack Pointer
Initial Program Counter

BN,BN,BN BN = "Bad News"
BN, BN,BN
BN, BN

Fill in autovector table

BN, BN, BN
BN, BN, BN

BN, BN, BN
BN, BN, BN

STBUS

am Selector for interrupts

Set interrupt mask to 0
Tight loop (STOP continues after interrupt)

Get program selector

shift to form address offset

Put address of start of jump table in A0
Add offset from program selector

Put the value in the jump table in A0
Jump to address pointed to by jump table

See comments for PROGS

PROG? RTE
*

Do nothing

* SOMETHING BAD HAPPENED (BadNews)

BN sTOP
DS.W

*

* GENERAL DATA

w

*

ORG

PGMTBLS DC.L
*

* Program table

PGMTBL6 DC.L

FSTBLNK MOVE.L

Jme
SLOBLNK MOVE.L
JMP
BLINK  MOVE.L
TST.W
BEQ
MOVE.L
Z2ZON MOVE.L
LOOP1 DBRA
DBRA
MOVE.L
TST.W
BEQ
MOVE.L
ZZOFF  MOVE.L
LOOP2  DBRA
DBRA
JMP
BYEBYE MOVE.L
RTS
NOBLNK MOVE.L
RTS
END
$ EOD
$ R MAIN
N
TOY1.MAR
TOY1.LST
TOY1.SEX

$ PUR TOYl.*

452700
1

Program table for interrupt #5

$900

FSTBLNK, SLOBLNK

for interrupt #6

NOBLNK,NOBLNK

#500,D0
BLINK

#1000,00
BLINK

$LED_ON, CSRO

Do
BYEBYE
Do0,D1
$1600,D7
D7,LO0P1
D1,ZZON

$LED_OFF,CSRO

Do
BYEBYE
Do0,Dl
#1600,D7
D7,LO0P2
Dl1,ZZOFF

BLINK
$LED_OFF,CSRO

$#0,D0

$ DEL TOY1.MAR;O

Force longword alignment

Use 500 ms cycles
Use 1000 ms cycles

Turn on LED, then take a nap

If DO is 0, exit loop

D1 counts the number of 1 ms loops
Set count for inner (1 ms) loop
This loop takes 1 ms at 16 MHz
Naptime is over, turn off LED

If DO is 0, exit loop

Reload D1, then take another nap

Turn out the lights,...

6861 ‘71 Areniqag

gg 98eg
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TOY1, but PROGT7 now increments a counter and tests a bit to see if it should return
immediately or execute PROG6. The program jump tables are called PGMTBLI
and PGMTBL and function just like PGMTBL5 and PGMTBL6 in TOY1. We
have adopted the convention that interrupt 5 is used for initialization routines and
interrupt 6 is for event processing. Starting at address BCN we have a lookup
table to rearrange the hardware connections coming from the detector module in
DELPHI. This is for the convenience of the offline software and is an artifact of
our particular application. We include it as an example of the flexibility possible
because of the on-board microprocessor. Following the table there are a few utility
routines and the startup code that is part of PROGO.

The program starting at SCANO is the first and simplest of many test routines
which can be chosen as part of our checkout and calibration procedure. These
routines take multiple events and add the FEB contents to existing values in the
BEB. The host processor reads the BEB when it has finished sending triggers.
There are many other such tests, but we have deleted them from the listing for
brevity.

The final program begins at FM_BEB. It is the data reformatter we will use
for physics events in DELPHI. It scans the FEBs for data, ignoring those with
only presample values, and builds a BEB in a standard DELPHI format. If valid
data is found on this module the routine sets the bits in the flags word of the
communication vector and the bit in the Special Functions Register that will cause
the module to respond to a Sparse Data Scan.

These two examples illustrate the use of the microprocessor in the DELPHI
experiment. The general nature of this module and the flexibility given by the

microprocessor make it adaptable for a wide range of uses.
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Table of Constants and Addresses
Note that some Addresses are shown as the Fastbus address
with an explicit shift to convert to microprocessor address

ISP EQU $800 Initial Stack Pointer
AUTOVECTOR EQU S$64 Start of AutoVector table
CSRO EQU $18040<<2 CSR#0 via data space
ZRRFLG_CO EQU $0001 Error Flag W/R

LOGADR_CO EQU $0002 Logical addressing W/R
LED CO EQU $0040 Front Panel LED W/R
FEBﬁ_CO EQU $S0080 valid data in FEB 0 R/W
FEBI_CO EQU $0100 valid data in FEB 1 R/W
FEB2_CO EQU $0200 valid data in FEB 2 R/W
FEBB_CO EQU $0400 valid data in FEB 3 R/W
-

CSR1 EQU $18080<¢<2 CSR#1 via data space
CSR10 EQU $18200<<2 CSR#10 via data space
CSR11 EQU $18400¢<¢2 CSR#11 via data space
EOB REG EQU $18800¢<¢2 Word count for Block Transfer
F_REG EQU S1A000<<2 Flags reg

FEB EQU $08000<<2 Start of FEB Space

EVENT EQU $00100<<2 Advance one event in FEB
CHANNEL EQU $00400<¢<2 Advance one channel

THRES EQU $10000<<2 Start of Treshold Data
BEB EQU $04000¢<2 Start of Board Event Buffer

*
-

Data types

PULSE_ DT EQU $0920 Pulse test data(5)
QPULSE_DT EQU $0921 Q Pulse test data(6)
DTEST_DT EQU $0922 Delta code test(7)
SAW_DT EQU $0923 Sawtest data(4)
SCAN_DT EQU $0924 Multi-event scan data{(l)
PED_DT EQU $0925 Pedestal data(3)
* Program
* VECTOR TABLES

ORG 0

DC.L ISP Initial Stack Pointer

DC.L PROGO Initial Program Counter

MISC BAD EVENT VECTORS

bC.L
DC.L
DC.L

AUTO VECTOR 1
ORG
DC.L
DC.L
DC.L
DC.L

TRAPS
bC.L
DC.L

OTHER BAD STU
bC.L
DC.L

BN, BN, BN, BN,BN, BN,BN, BN
BN, BN, BN, BN, BN, BN,BN,BN
BN, BN, BN, BN, BN,BN, BN

NTERRUPTS
AUTOVECTOR
BN, BN, BN,BN
PROGS

PROG6

PROG7

Fill in

BN, BN, BN, BN, BN, BN,BN,BN
BN, BN, BN, BN, BN, BN, BN, BN

FF
BN, BN, BN, BN, BN, BN, BN, BN
BN,BN, BN, BN, BN,BN,BN, BN

autovector table

DC.L BEB>>2 tocation of the BEB in the FASTBUS address space
MODU DS.L 1 Module number .
PADI DS.L 1 Starting Pad number

DS.B 4 Program/BEB Version numbers
DS.L 1 Load Time (hhmm-decimal)
DS.L 1 Load Date (yymmdd-decimal)
SELP DS.L 1 Program Selector for int 5 program
FLAGS bC.L 0 Free/Data present Flag
BDSER DS.L 1 Board Serial Number
IMASK pC.L 0 Mask indicating interrupts received
COUNT DC.W 0,0 Count of primes from sieve program
DCOUNT DC.L 0
L
* Program
ORG ISP
PROGO JSR START
PROGOX STOP #52000 Set interrupt mask to 0
JMP PROGOX Tight loop (STOP continues after interrupt)
*
* AutoVector programs
PROGS MOVE.L SELP,DO
ASL.L #2,00
MOVE.L #PGMTBLI,AQ
ADD.L DO ,AD
MOVE.L (A0),AQ
JSR (A0)
RTE
PROG6 MOVE.W ILED_CO,CSRO#Z
MOVE.L SELP,DO
ASL.L 42,00
MOVE.L #PGMTBL,AQ N
ADD.L DO,AD
MOVE.L (AQ),A0
JSR (AO)
MOVE.W CLED_CO,CSRO
RTE
PROG7 ADD.W #1,DCOUNT
BTST.B #0,IMASK+3
BNE PROG6
RTE
*
* SOMETHING BAD HAPPENED (BadNews)
BN STOP #52700
DS.W 1 Force longword alignment
L
* GENERAL DATA
»
* for interrupt #S

Program table
ORG

PGMTBLI DC.L

L]

* Program table

PGMTBL DC.L

*

$900
LINTESTO0, SCANO,NULL,PEDO, SAWO,PTESTO,QTESTO, DTESTO

for interrupt #6
LINTEST, SCAN, FM_BEB, PED, SAWl,PTEST,QTEST,DTEST

* Table to remap channels because of scrambled connections
*

BCN DC.B
DC.B
DC.B

oc.e
3

* Offsets to each event.

17,19,21,23,16,18,20,22
01,03,05,07,00,02,04,06
09,11,13,15,08,10,12,14
24,26,28,30,25,27,29,31

These offsets are added to the values in

TOMMUNICATIONS REGISTERS
PROGRAM OUTPUT; DATA TO FASTBUS
ORG $40¢<2

* the BCA table.

gg 38ey

EVOFF DC.L

«

* Table of channel addresses.

Listing 4.2

0,EVENT, 2*EVENT, 3*EVENT

These address are computed from the



- table above in the startup routines. These addresses MOVE.L #SCAN_DT,(AO}+ Data type for SCAN

- indicate the location and order of data in the FEB according to MOVE.W BDSER+2,(A0)+ Board Serial Number
« the pre-amp channels MOVE.W #0,(A0)+ No calls yet

BCA DS.L 32 . MOVE.W #128+32-1,D0 Total number of data words
WBUCK DC.W 0,0 s0 CLR.L (AD)+

JFFSET DC.L [ DBRA Dpo0,S0
'.-ﬁ-.'..t.ﬂ.Qt......t....‘.."..‘.Qt.'ﬁ..Q.tt.’.l....-.......‘ﬁl.. HOVE.L .256.3204'(A0)0 T!alling word count

b RTS

AR AR R R AN AN RN E RN AN R A AR AR NN C R N R A R AR AR A AARR RN E RIS AR R R A E AR AN AR N E RS

utility routines

L] -
- Compute number of buckets to search * Al Pointer to table of channel addresses
PROCNT MOVE.L DO,-(SP) * A2 Pointer to BEB destination
TST.W COUNT * A3 Pointer into FEB
BNE PROO *
MOVE.L #$00FAOOOA, COUNT * p2 Count channels
PROO MOVE.W COUNT,DO *~ D3 Count Buckets
SUB.W COUNT+2,D0 *
MOVE.W DO,NBUCK SCAN MOVE.L #BEB,A2 Start of BEB
- ADD.W #1,10(A2) INC number of Calls
- Compute offset to first bucket ADD.L $3*4,A2 Compute start of data
CLR.L Do *
MOVE.W COUNT+2,0D0 * Loop over channels
ASL.L #2,D0 MOVE.L #BCA,Al Pointer to channel addresses
ADD.W $3,D0 Offset to data byte MOVE.W #31,D1 Counter of channels
MOVE.L DO,OFFSET *
MOVE.L (SP)+,D0 * Loop over buckets
RTS sl CLR.L Do
AR AR R RN R R A RN AR AN AR NN R R R R AR A RAN AN R AR RN AN R AR AN A AN R AR AR AR A AR A RS HOVE.L .255,D2 Bucket Co\lnter
. ) MOVE.L (Al)+,A3 Start location in FEB for this channel
~ Start Up ADD.L #3,A3 Point to start location
START MOVE.W CSR1,DO0 Get board serial number s2 MOVE.B (A3),D0 Get byte from FEB
AND.L #$03FF,DO only 10 bits are valid ADD.W  DO,(A2}+ Add to output (no lineaczation)
MOVE.L DO,BDSER Save it in communications area ADD.L $4,A3 Advance pointer in FEB
- DBRA D2,82
~ 1f serial number less than 695 then the channels are DBRA pl,s1
* rearranged from the table shown RTS
CMP.“ '695'D0 LA AR AR SRR RS ARl s e e R R R R R R R YT Y R )
BGE sS0
HOVE‘L 'BCN+32,A° AARRAR R AR AR IR AR A AN R R AR NN AN N AN AR AR R A AR AN RN ANAR A AR ANAR R AN AR
MOVE.W #31,D1 * The following routines are similar in structure to SCAN and have
sS1 MOVE.B Dl,-(A0) * been deleted from the listing for brevity:
DBRA D1, ssl *
- * LINTESTO -- prepare for takeing data for lintest.
+ Compute table of addresses to channels * LINTEST -- take data for lintest.
$S0 MOVE.L #BCN,AD poard channel numbers * PTESTO -- prepare for taking data for pulsetest
MOVE.W #31,D0 Number of channels * PTEST -~ take data for pulsetest
MOVE.L #BCA,Al Board channel addresses * QTEST0 -- prepare for taking data for pulsetest
X_PTR CLR.L Dl Our accumulator * QTEST ~~ take data for pulsetest
- MOVE.B (A0)+,Dl Board channel number * PEDO -- prepare for taking data for pedestal check
MULU $CHANNEL, D1 Compute offset from start of FEB *  PED -- take data for pedestal check
ADD.L  #FEB,D1 Compute actual address *  SAWO -- prepare for taking data for sawtooth test
MOVE.L D1,(Al)+ Save in table *  SAWL
DBRA Dp0,X_PTR Repeat 31 more times. * DELTA TEST
RTS - * DTESTO
-.-..ﬁ..ﬁit'ﬁﬁ"l'i"t.'.Qt.t.‘tt.Cﬁﬁ'ﬁ.t!ittt..'.'...'ﬁ‘..'...tﬁ.t. » DTEST
* SCANO ~- prepare for taking data for mulitple scans L Y R R R R R R
* SCAN ~- add FEB data to BEB for another scan
- IR R R R R A R R R R R R R N R R RN
* BEB: [---==a—- Blocklet WC--—mw-—--—- ] * Dpata Reformat : g~
. {---Err Flgs---}(--Data Type---} *» Data Format in the BEB 23
. [---Bd Ser #---){~-# Calls----- ) . o
- + BEB: [~mmmmmmmmeee Blocklet WC(32)=rm—m—=mmo—aex ] ®
. [mmmmmee- Blocklet WC---cwwm—m-- } . {-~--Err Flgs(12)----)(--~~Data Type{20)---]) w
. . {-Mod#(8)-]{-Padl(8)-]){-Dsize(8)-][-Acc(8)-] (=]
SCAND MOVE.L #BEB,AD Pointer to BEB - {oem- Pad #(16)-v---- JI-WwdCnt (B)-]{NClst(8)]
MOVE.L #128+32+4,(A0)+ Word count . [--=--- Ist TS(16)----- J{=----- ¢ Amps(16)----- ]

Listing 4.2 (continued)



LRI AR A I 2R A B AR N NN I A N A I I TR T T TS S S Y

-

(—==AO--—=){=--Alom=c)[-=-A2====]{===A3=-~=]

[---Ad----}[-=-AS5-cuu | [---Ab---= ][ ~=~AT----]
[-==== lst TS(16)----- ===~ ¢ Amps(16)----- ]
[-+-B2--==][~==Bl-mmu][===Bd=m-=] ...

{---En----]{--=wl--oc]{-===0-cc][~~==0----)
[-==e- Pad #(16)-mm=mm J{-WdCnt(8)-]{NClst(8)]
[=~=—= lst TS(16)----- J{==ew= ¥ Amps(16)~----- 1
[-=-A0--e-][=-=Almecn][~m=A2-==][-==A3~---]
[---Rd---c ]l =-cASeer [ -==Ab-=-~ ) {---AT--=-]
[==-=== 1st TS(16)--~=~ e  Amps(16)~---- )
[~--B2--~~][~--B3-=wm]{-==Bd-=—=] ...

[-—-En--=~][===0-nec][wee-O0-uac}[=m==0--—-}

* in the FEB we want to read out.
*« of trig acc no.,

Do it here by masking LS two bits

shifting left 8 bits, and adding to DO.

Convert FB address into 68K address

FEB word count for this channel

LSL.L *2,D00
MOVE.L DO,Al Store it in Al
ADD.L $3,A1 Upper word empty
CLR.L 03
MOVE.B (Al})+,D3
-
* Check for more than presample
CMP.W #9,D3
BLE MT_CHAN

* Compute End of Data in FEB for this channel

Channels with only presample data are dropped.

Longword alignment

is forced at the end of each cluster.

Register Usa
A0

Al
A2
A3
A4

o1]
Dl
D2
D3
D4
DS

NULL RTS

FM_BEB

-
*

*
*

*
»

MOVEM.L

ge
Pointer to
Pointer to
Pointer to
Pointer to
Pointer to

Address of Current Channel in FEB
Current Data wWord in FEB

Output position in BEB

Start of Current Cluster in BEB
End of Current Channel

Scratch Register
Scratch Register
Channel Counter

Word Count

for Current Channel

Last channel for this board
Number of clusters in this channel

A0-AS5/D0-D5,-~(SP)

Locate start of indicated event/channel (FEB)

MOVE . W #0,F_REG Clear flags register

MOVE.L $0,FLAGS Clear FLAGS communication register
LEA IFEB,AD Address of IFEB array

MOVE.L PAD1,D2 Load 1lst pad number

MOVE.L D2,D4 Copy into D4

LSL.L 41,02 Two byte offset per channel

ADD.L D2,A0 Add offset for 1lst pad

LSR.L #1,D2 shift D2 back again

ADD.L #31,D4 Calculate last channel &

Setup Destin
MOVE.L ¢

ation (BEB)
BEB,A2

Start of BEB

Generate Header for Blocklet

MOVE.L $0,(A2)+ Future site of Blocklet Word Count
MOVE . W 80, (A2)+ No Errors so far
MOVE.W #5910, (A2)+ HPC pad data
MOVE.B MODU+3, (A2)+ Module number
MOVE.B PAD1+3,(A2)+ First Pad Number
MOVE.B #1,(A2)+ Signifies 1 byte per time slot
MOVE.B CSR11,(A2)+
* Begin a new channel
X_CHAN SUBA.L  Al,Al Clear contents of Al
CLR.L Do Be sure upper bits are zero

-

MOVE . W (A
Note: i1n the

0},D00
future, we

Load start of FEB for this channel
will need to pick which of the four events

Save Some Registors for local use

MOVE.L DO, A4 Copy start of FEB to A4
MOVE.L D3,D00 Temp

ASL.L #2,D00 Times 4 for bytes
ADD.L DO, A4 End of data

« First Cluster is the presample

Save space to store word count and no of clust

MOVE.L A2,AS5 Save start of channel in BEB
MOVE.L #1,D5 Initialize cluster counter
MOVE.W D2,(A2)+ Channel Number
ADD.L $2,A2
MOVE.W ‘80, (A2)+ 1st time slice
MOVE.W #8,(A2)+ Number of amplitudes
MOVE.W 47,01
LO ADD.L #3,Al1
MOVE.B (Al)+,(A2)+ Transfer Presample data

DBRA D1,LO

*
* Begin a new cluster
X_CLu MOVEA.L A2,A3 Save start of cluster in BEB
- <
* (Cluster data
CLR.L Do .
ADD.L #2,A1
MOVE.B (Al)+,D0 First TS
MOVE.W DO, (A2)+ Save TS in Cluster Header
ADD.L $2,A2 No. of amplitudes (fill later)
ADD.L #1,D5 Increment number of clusters in this channel
X_AMP CMP.L Al,A4 End of FEB? {0ld data could fake it)
~ BLE BACK_UP
MOVE.B (AL)+, (A2)+ Transfer one amplitude to BEB
ADD.L #2,A1
ADD.B #1,00 Next TS
CMP.B (Al}+,DO
BEQ X_AMP
BACK_UP SUB.L #3,A Back Up

*

* Compute Number of Amplitudes in this cluster in BEB

MOVE.L A2,D0 End of current channel
SUB.L A3,D0 Start of this Cluster
SUB.L #4,00 Number of bytes in header
ADD.L #2,A3
MOVE.W D0, (A3) Save it
WORDALIGN: MOVE.W A2,D00 Pad with 0s to next longword boundary
AND.W #0003,D00
BEQ ALIGNDONE
CLR.B (A2)+
JMP WORDALIGN *U
ALIGNDONE CMP.L Al A4 o
-
* End of channel ? og
BGT X _CLu No, Do more clusters
: B 3

Advance to next channel

Listing 4.2 (continued)



E_CHAN MO

MOVE.L
SuB.L
LSR.L
ADD.L
MOVE.B
MOVE.B

MT_CHAN  AD

-
"

-
»

ADD.W

Last Chan
cMP D
BLE X

Finish Bl
MOVE.L
SUB.L
ASR.L
ADD.L
MOVE.L
MOVE.L

Finished
MOVE.W
MOVE.L
CMP
BLE
MOVE.W
MOVE.L

DONE_FMT

RTS

IFEB: DC.W

DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.
DC.
DC.
DC.
DC.
DC.
DC.
DC.
END

b o S i S S S i >

VE.L AS,A3 Restore start of channel in A3
A2,D0 Copy current pointer in BEB

Al3,DO Subtract start of channel address
#2,D0 Convert to longwords

#2,A3 Point to no. of lwords for this pad
DO, (A3)+ Put no. of longwords in channel header
D5, (A3)+ Save number of clusters in this channel
D.L #2,A0 Advance channel pointer

#1,D2 Advance channel number

nel?

4,D2
_CHAN

ocklet

A2,D0 Current end of BEB

#BEB, DO Compute length in bytes

42,00 Now longwords

#1,D0 Extra WC at end of Blocklet

DO, (A2)+ Trailing WC

Dp0,BEB Leading WC

#1,F_REG Set ‘done’ bit

#1,FLAGS Ditto

45,00 Is there data on this board?

DONE FMT

#3,F_REG Set ‘data present’ bit also
#3,FLAGS Ditto
MOVEM.L (SP)+,A0-A5/D0-DS

$A800,$BC00,$D400,$EC00,$9800,$A000,$B800,$C400
$D800,$9000,$9400,$B400,$C000,$D000,$EBQ0,SACO0
$C800,$E400,%$9C00,$B000,$DC00,$F000,$8C00,$A400
$CC00,5F400,58800,SE000,58400,$F800,$8000,SFCO0
$BC0O0,$D800,$EB00,59000,59800, SAC00,5C000,$CCO0
$E000,$8C00,5A800,58800,5C800,$DC00,$8400,$A400
$D000,$EC00,$9400,5C400,$E400,$F000,58800,$B000
$D400,$F400,$8000,5B400,5A000,$F800,$9C00,$FCO0
$C400,$D800,5£E800,$9000,$9C00,$BC00,$C800,$DCO0
$8C00,$9400,$A000,5C000,$D400,$E000,58800,S5A400
$CC00,S$EC00,59800,$B400,SE400,$F400,$8400,$B000
$D000,$F000,58000,5B800, SAC00,$F800,$A800,$FC00
$AC00,$C000,$D800,$DC00,$8C00,$9800,$8000,$C400
$C800,$E000,58800,$9C00,$8800,$CC00,SECO0,S$F400
$9000,$BC00,$E400,5$9400,$0000,5E800,$8400,$A000
$D400,$F000,$8000,$B400,5A800,$F800,SA400,$FCO0
$8000,$8400,58800,$8C00,$9000,$9400,$9800,%9C00
$A000,5A400,5A800,5AC00,5B8000,$B400,58800,$BC00
$C000,$C400,5C800,5CC00,$D000,$D400,3D800,5$DCO0
$E000,$E400,5E800,SEC00,SF000,$F400,5F800,$FCO0

Listing 4.2 (continued)

8¢ 98eg
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Appendix A — Technical Parameters

Power Needs

150V L e e e 08 A
8.2 Ve e e e 36 A
5.0 Vo e i e 72 A
=82 Ve e e 23A
Analog Inputs
Number of Channels ............c. ittt 32
Cables .............cooviiit 2 Twisted Pair (32 or more conductors)
Connectors ......oovvvvveiiiiiniiiiieinennns 2 34-pin 3M (H34-202-TL)
Digitizer Stage
Digitization Frequency .............cciviiiiiiiiiiiiinnnnn.. 15 MHz
Input Range
at input* (at FADC)............cooiiiiiiiiininen, 0-2.0 V (0-4.0 V)
Step Size (lower quadrant)
at input* (at FADC)..........ooooiiiiiiiiii, 2.5 mV (5.0 mV)
Step Size (upper three quadrants)
at input® (at FADC) ..., 9.5 mV (19.0 mV)
Effective Dynamic Range ..., 800:1
Number of Samples per Channel ............. oo, 255
Zero Suppression Stage
Clock Frequency .........cooivrvvirinniinueinrennreneenannns 4.5 MHz
Maximum time to SUPPIess .........vviiiiriiiiiniinreeiiinnnnss 500 us
Front End Buffer
Numberof Events .........coiiiiiiiiiiii e 4
Microprocessor
PrOCESSOT ittt ite et itrneaieneeneraeanrnaeneens Motorola 68000
Clock Frequency .......co.iveineinninniiiiinrnnnenaerennnnns 16 MHz
Memory (SRAM) .......ooiiiiiiiiinen, 128 KBytes (no wait states)
Interrupt Levels ... 5,6, and 7
FASTBUS
Addressing Modes .................. Geographical, Logical, Broadcast

*assumes an analog input buffer with a nominal gain of 2.0



Channel 0-
Channel 0+
Channel 1-—
Channel 1+
Channel 2-—
Channel 2+
Channel 3-
Channel 3+
Channel 4-—
Channel 4+
Channel 5—
Channel 5+
Channel 6-—
Channel 6+
Channel 7-
Channel 7+

Channel 16—
Channel 16+
Channel 17—
Channel 17+
Channel 18—
Channel 18+
Channel 19—
Channel 19+
Channel 20—
Channel 20+
Channel 21—
Channel 21+
Channel 22—
Channel 22+
Channel 23—
Channel 23+
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Appendix B - Input Connectors

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin 10
Pin 11
Pin 12
Pin 13
Pin 14
Pin 15
Pin 16

© 00 -3 O O b W DO =

Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin
Pin 10
Pin 11
Pin 12
Pin 13
Pin 14
Pin 15
Pin 16

W 00 =3 O O i W N =

Upper Connector

Channel 8-
Channel 8+
Channel 9—
Channel 9+
Channel 10—
Channel 10+
Channel 11—
Channel 114
Channel 12—
Channel 124
Channel 13-
Channel 13+
Channel 14—
Channel 14+
Channel 15—
Channel 15+

Lower Connector

Channel 24—
Channel 24+
Channel 25—
Channel 25+
Channel 26—
Channel 26+
Channel 27—
Channel 27+
Channel 28—
Channel 28+
Channel 29—
Channel 29+
Channel 30—
Channel 30+
Channel 31—
Channel 31+

Note: Pins 33 and 34 of each connector are unused.

Pin 17
Pin 18
Pin 19
Pin 20
Pin 21
Pin 22
Pin 23
Pin 24
Pin 25
Pin 26
Pin 27
Pin 28
Pin 29
Pin 30
Pin 31
Pin 32

Pin 17
Pin 18
Pin 19
Pin 20
Pin 21
Pin 22
Pin 23
Pin 24
Pin 25
Pin 26
Pin 27
Pin 28
Pin 29
Pin 30
Pin 31
Pin 32
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Appendix C - Sample Readout Routines

S!******i********************************************

$!***** khkhhkhhkk
$!*xxxx  Copyright 1988 by Ames Laboratory *ok ko okok ok ok
S!****t % Kk k k& k Kk k
$1*+*xx*x High Energy Physics *hkhkhhkk
$txxxx%x 12 Physics Ak hkhkkk
$1*x%x*x Jowa State University *okok ok ok hokok
Sixkxxx Ames IA 50011 khkkhkkhkhk
$!***** *kokkhkkkk
S!*t***t*******************t*ﬁ****t***t***********tt*
$!

$!C***********i******t******t*t****************************ﬁ*************
ChARAA IR AAR AN RR AR ANRA AR RRARKRA R AR AR AAR RN AN AR AR AR ARAN AR AR AR AR AR Rk ok ok hok bk

SUBROUTINE READ ONE BEB(ACCNO, PRIADD, IBEB)
Ak AR A KRR KRR KA AR RN AR R RN R AR AR R IR R AR R RN KRR AR RN RRRRRRRRAA AR Ak kA kA ANT D

*
* A sample routine to be called after the event trigger.

* It assumes the user has already done the following:

* 1. Loaded the microprocessor program.

* 2. Set the interrupt vector for interrupt 6.

* 3. Enabled the microprocessor.

* It reads the BEB from a single waveform digitizer located at FASTBUS
* address PRIADD, using reads to the flag bits in memory to determine
* if the microprocessor has finished and if it has found data.

* ACCNO is a trigger accounting number, the least two significant

* bits of which specify which of the four events to read from the FEB.
* IBEB is an array to receive the data.

*
*
*
*
*
*

Note that this FORTRAN version is only a sample routine to demonstrate
the algorithm. It executes slowly, has no error checking, and contains
a potentially infinite loop.

KARRR RN ANR KRR AR R AR R IR A AR AR AR R RRRAR R AR AR AR AN A AR R RRRAKR R AR KRR RAR A AR AA R AR RT] D)

INCLUDE ‘COMMON:FBADRCOM.FOR’
INTEGER*4 ACCNO, PRIADD, IBEB(*), WDCOUNT
INTEGER*4 IFLAG, KOUNT, KOUNTl1, POINTER, FEB_EVENT

INTEGER*4 COMMSBEB, COMM$FLAG_REG, EOB_REG, CSR0, CSR10, CSRI1
INTEGER*4 CSROSM_FEB CLR, CSRIO$M_INT6

PARAMETER {COMMS$BEB = "40'X)
PARAMETER {COMM$PROG_ SELECT = '46'X)

Start of the BEB
Program selector

]

!
PARAMETER (COMMSFLAG:RBG = "47'X) ! Flag register location
PARAMETER (EOB REG = "18800’'X) ! Block Xfer word count reg
PARAMETER (CSRUSM FEB_CLR = *00800000'Xx) ! Clears CSR#0<7>
PARAMETER (CSR10$M_ENABLE = ’00000001'X) ! Enables 68K
PARAMETER (CSR10$M_INT6 = '00000040’'X) ! Sets interrupt level 6
PARAMETER (CSRO = '00'X)
PARAMETER (CSR10 = '10’X)
PARAMETER (CSR11 = 711'X)

»

Initialize variables

IBEB(1l) = 0
POINTER = 0

»

Write trigger accounting number to CSR#llh

»*

CALL FWC(STATUS, CNTRL, PRIADD, CSR11l, ACCNO)

Send interrupt 6 by setting CSR#10h<06>. We assume the interrupt vector
has already been set correctly and that the program has been loaded into
RAM.

* ¥ * ¥ *®

CALL FWC(STATUS, CNTRL, PRIADD, CSR10, CSR10$M_INT6)



* % % »

* % % % * ¥ »

*
*
*

* % % ¥ ¥ ¥

Now wait

February 14, 1989 Page 42

.007 seconds while program executes on microprocessor.

WAIT is assumed to be a system- or user-supplied wait routine.

10 CALL WAIT(.007)

Read the flag register and test to see if the reformatting is done.
If it is not done go back to the wait instruction. If it is done
see if there is data to be read out. (Note that there is no
protection against an infinite loop here, a real routine should
set a maximum number of iterations).

CALL FRD(STATUS, CNTRL, PRIADD, COMMSFLAG REG, IFLAG)
IF (IAND(IFLAG,’'l1’X) .EQ. 0) GOTO 10 -

IF (IAND(IFLAG,’2'X) .EQ. 0) GOTO 999

CALL FETCH_BEB{ PRIADD, COMM$BEB, IBEB, WDCOUNT)

Readout done

999 CONTINUE
FEB_EVENT = ISHFT(CSRO$M_FEB_CLR, IAND(ACCNO,’'3'X))

FREE_FEB is a routine that can be used to tell the trigger system that

we are done with this event. It can also be used to reset the event bit in
CSR#0, if desired. Depending on the application, this routine may not

be necessary.

CALL FREE_FEB(PRIADD, FEB_EVENT)

END

SUBROUTINE FETCH_BEB( PRIADD, BEB_POINT, IBEB,

>

WDCOUNT)

*ﬁ*i*i*k*tﬁﬁ*iﬁ****tt***ﬁ*t***********t**t*ﬁ***tt**ﬁ***t**t*ﬁ*t*tt***i"z

*
*
*
*
*
*
*

»

»> »

* % * ¥ *

Read the entire contents of one module’s BEB into the array IBEB.

BEB START is the data space address of the start of the BEB. PRIADD
is the module’s primary address. WDCOUNT returns the number of words
read into IBEB.

AR R AR R R R R AR R R R R R AR R R AR AR R R AR R RN AR AR AR AR KRR AR AR R R R AR AR R AR R ek k kT2
INCLUDE

* COMMON : FBADRCOM. FOR’

INTEGER*4 PRIADD, BEB_START, BEB_POINT, IBEB(*), WDCOUNT
INTEGER*4 KOUNT, KOUNT1, POINTER
INTEGER*4 EOB_REG

PARAMETER (EOB_REG = '18800'X) !Block Xfer word count register

Get address of start of BEB from communications vector area

CALL FRD(STATUS, CNTRL, PRIADD, BEB_POINT, BEB_START)

Get the word count from the first word in the BEB.

CALL FRD(STATUS, CNTRL, PRIADD, BEB_START, KOUNT)
WDCOUNT = KOUNT

Now do a block transfer of the data. We must check if there is more than
4095 words (32 bit). If so, we must use several block transfers to read

them all

10 KOUNT1 = KOUNT
POINTER = 0
IF (KOUNT .GT. 4095) KOUNT1 = 4095

KOUNT

= KOUNT -~ KOUNTI1
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Write word count to EOB register so slave will send SS=2 to end transfer.
If a master terminated block transfer is used, the EOB register must still
be set to a value equal to or larger than the number of words to be
transferred to avoid a premature SS=2.

* * % % * »

CALL FWD(STATUS, CNTRL, PRIADD, EOB_REG, KOUNT1)

CALL FRDB({STATUS, CNTRL, PRIADD, BEB START + POINTER,
> IBEB, 4*KOUNT1) -

IF (KOUNT .LE. 0) GOTO 20

POINTER = POINTER + KOUNT1

GOTO 10

20 CONTINUE
END

SUBROUTINE FREE FEB(PRIADD, FEB EVENT)
Ak kAR KRR R AR AR AR R R R AR RN AR AR AR AR R R R AR AR AR AR R AR AR AR R AR AR AR R AR R AR AR RT D

*

* A sample routine. All this version does is to reset the event bit
* in CSR#0.

*
KRR AR KRR AR R R R KA AR AR AR RAR AR R AR R A AR Rk A AR R AR AR AR ARk ARk hkhkhk kA k k] D

INCLUDE ’‘COMMON:FBADRCOM.FOR'

INTEGER*4 PRIADD, FEB_EVENT .
CALL FWC(STATUS, CNTRL, PRIADD, 0, FEB_EVENT)
END

SUBROUTINE READ_MULTI_BEB(ACCNO, BR_CLASS, TPATTERN, IBEB)
KRR R AR RR AR R R R AR R R A AT RRR AR RN AR R AR AR AR AR R AR AR R AR R R AR R R R AR RN AR AR AN R RT D

*

* A sample routine to be called after the event trigger.

* It assumes the user has already done the following:

* 1. Loaded the microprocessor program.

* 2. Set the interrupt vector for interrupt 6.

* 3. Enabled the microprocessor.

* 4, Initialized all waveform digitizers to broadcast class
* BR_CLASS.

* 5. TPATTERN has been correctly initialized.

* It reads the BEB from all waveform digitizers located in the root

* segment that have been set to respond to broadcast class BR_CLASS.

* It uses T-pin scans to determine if the microprocessors have finished
* and if they have found data.

*

* ACCNO is a trigger accounting number, the least two significant

* bits of which specify which of the four events to read from the FEB.
* IBEB is an array to receive the data. TPATTERN is a bit pattern

* corresponding to the expected T-pin scan if all waveform digitizers
* respond. (I.e. it is a 32 bit word with a 1 in each bit position

* corresponding to a digitizer module.

*
*
*
*
*
*

Note that this FORTRAN version is only a sample routine to demonstrate
the algorithm. It executes slowly, has no error checking, and contains
a potentially infinite loop.

KRR R R R R AR AR R AR AR AR AR AR AR R AR AR R R AR AR AR AR AR A AR KRR R RAR R AR R AR AR AR KT D

INCLUDE ’'COMMON:FBADRCOM.FOR’
INTEGER*4 ACCNO, BR_CLASS, IBEB(*)

INTEGER*4 IFLAG, KOUNT, KOUNTl, POINTER, FEB_EVENT, TSCAN,
> TPATTERN, I, PRIADD, NOW, WDCOUNT



* *

* *

* * * * ¥ % * * * % ¥ * % * » %

»*

E 3

» *
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INTEGER*4 COMM$BEB, COMM$FLAG_REG, EOB_REG, CSR0O, CSR10, CSR11,
> CSRO$M_FEB_CLR, CSRIO$M_INT6, TPIN 3, TPIN 3A

PARAMETER (COMMSBEB = 740'X)
PARAMETER (COMM$PROG_SELECT = ‘46')
PARAMETER (COMMSFLAG_REG = '47'X)

Start of the BEB
Program selector
Flag register location

- PARAMETER (EOB REG = ’18800'X) Block Xfer word count reg
PARAMETER (CSRU$M_FEB_CLR = ’00800000'X) Clears CSR#0<7>
PARAMETER (CSC10$M_ENABLE = '00000001'X) Enable 68K
PARAMETER (CSR10$M_INT6 = '00000040’'X) Sets interrupt level 6
PARAMETER (CSRO = '00'X)
PARAMETER (CSR10 = '10'X)
PARAMETER (CSR11 = '11’X)
PARAMETER (TPIN_3 = '00000009’X) ! T-Pin class 3 (data scan)
PARAMETER (TPIN_3A = ’00000019'X) ! T-Pin class 3a (dev avail)

Initialize variables

NOW = 1
IBEB(NOW) = 0

Write trigger accounting number to CSR#1llh
CALL FWCM(STATUS, CNTRL, BR_CLASS, CSR1ll, ACCNO)

Send interrupt 6 by setting CSR#10h<06>. We assume the interrupt vector
has already been set correctly and that the program has been loaded into
RAM.

CALL FWCM(STATUS, CNTRL, BR CLASS, CSR10, CSR10$M_INT6)

Now wait .007 seconds while programs execute on microprocessors.
WAIT is assumed to be a system- or user-supplied wait routine.

10 CALL WAIT(.007)

Do a class 3a T-pin scan to see if all the boards have finished
executing the reformatting routine. If they have not, wait some more
and try again. (Note that there is no protection against an infinte
loop here, a real routine should set a maximum number of iterations).

CALL TPIN(TPIN_3A, TSCAN)
IF (TSCAN .NE. TPATTERN) GOTO 10

Do a class 3 T-pin scan to see if any of the modules contain data.

CALL TPIN(TPIN_3, TSCAN)
TSCAN = IAND(TSCAN, TPATTERN)
IF (TSCAN .EQ. 0) GOTO 999

Loop over all boards with data

DO I = 0, 31

PRIADD = I

IF (BTEST(TSCAN,1)) THEN

CALL FETCH _BEB(PRIADD, COMM$BEB, IBEB(NOW),
> WDCOUNT)

NOW = NOW + WDCOUNT

IBEB(NOW) = 0

ENDIF
ENDDO

Readout done

999 CONTINUE
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FEB_EVENT = ISHFT(CSRO$M_FEB_CLR,IAND(ACCNO,’'3'X))

FREE_FEBM is a routine that can be used to tell the trigger system that

we are done with this event. 1It cal also be used to reset the event bit in
CSR#0, if desired. Depending on the application, this routine may not

even be necessary. '

* % % ¥ * %

CALL FREE_FEBM(BR_CLASS, FEB_EVENT)
END

SUBROUTINE FREE FEBM(BR_CLASS, FEB_EVENT)
Ak AR kAR R AR AR R AR R R KRR RN AR AR AR R AR R AR AR AR A AR AR AR AR RN AR AR RN AR AR AR RN AR NT D

*
* A sample routine. All this version does is to reset the event bit

* in CSR#0.
*
AR AR AR AR R R AR R R A AR R R AR AR R R R R AR AR A AR AR A AR AR AR R RARAARR R AR AR AR AR ARk kT2

INCLUDE 'COMMON:FBADRCOM.FOR’

INTEGER*4 BR_CLASS, FEB_EVENT

CALL FWCM(STATUS, CNTRL, BR_CLASS, 0, FEB_EVENT)
END

SUBROUTINE TPIN(PRIADD, TSCAN)
AR AR AR AARRARARARRRRA R R AR AR AR ARAA R AR A RARRARA AR A RRR AR R R AR RARRARR AR AR RAAT D

*
* Do a T-pin scan using PRIADD as the primary address, return the

* result as TPIN.
*
*************i****************************************i***********i***72

INCLUDE ’'COMMON:FOPARA.FOR’
INCLUDE ‘COMMON:FBADRCOM.FOR'
INTEGER*4 PRIADD, TSCAN

CNTRL(2) = FONOSA

CALL FRDM(STATUS, CNTRL, PRIADD, 0, TSCAN)
CNTRL(2) = FOEG

END

AR KRR R IR AR AR AR AR AR AN AR AR R AN R AR AR AR ARR AR AR RAR AR KA R R ARA AR A A A ARk A Ak khh k&
*

* COMMON block FOPARA inserted by INCLUDE statements.
*
X 2223222222 22222 2R R RS R EZS RS R RSS2 2R R R RRERRRRRRREE RN

INTEGER FOGERR, FONOAR, FONOPA, FOEG, FOGKUP,

1 FONOSA, FONODC, FOASUP, FOBLKE, FOBUFE
PARAMETER (

1 FOGERR = '0001’X, FONOAR = '0002’'X, FONOPA = 0004'X,
2 FOEG = '0008’X, FOGKUP = '0010'X, FONOSA = ‘0020'X,
3 FONODC = '0040'X, FOASUP = '0080’X, FOBLKE = ‘0100'X,
4 FOBUFE = '0200'X)

ARKARRRKA AR AR KR ARRRARRAR R AR R ARRRRRRRKRRAR AR AR AR KRR AR AR A AR AR AR AR AR RN R AR AR
*

* COMMON block FBADRCOM inserted by INCLUDE statements.
*
ARRAARRRRKRKRRRARRARRARKR AR R AR RN A ARRRRRRARAANKRARARRARAARR AR RN R AR AR A AR Ak hhkhh Xk

COMMON /FBADR/
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1 PRIMAD, GEOAD, BRODAD, SECAD, IDATA,

2 IBN, IBSN, CNTRL(2), STATUS(4), ICSR10, ICSR1l1,
3 IAMODE, ISPACE, NBSN(25), TIMESTRING

CHARACTER TIMESTRING*25

INTEGER PRIMAD, GEOAD, BRODAD, SECAD, IDATA
INTEGER CNTRL, STATUS
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Appendix D - Subroutine to Load S-Code Files

Chrhhkhhhk ko hkAA AR RRARRAAARR KRR KRR AR AR AR AR AA R AR R AR RN AR A AR A AR R A&

C LOAD THE SPECIFIED 68K PROGRAM IN S-CODE
CAARAK AR ARKRK KRR AR KRR AR KA NR AR R KRR A AR RAARRARKR AR RAAKAAAR KRR ARk &k &

SUBROUTINE LD68K(FILENAME)

FOR PROPER OPERATION

C
C WARNING ** THE S-CODE DATA MUST BEGIN- ON LONGWORD BOUNDARYS
C
C

INCLUDE
INCLUDE
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
CHARACTER

INTEGER IRLEN,
INTEGER INA,

COMM REG
COMMSBEB

COMM$MODULE

* COMMON : FBADRCOM. FOR’
*COMMON:M68KCOM. FOR

COMMSFIRST_PAD
COMM$PROGRAM_VERSION
COMMSLOAD_TIME
COMMSLOAD DATE
COMM$PROGRAM_SELECT
COMM$FLAG_REGISTER
COMM$SERIAL_NUMBER

COMMSBIT MASK
COMM$COUNTER
FILENAME*20,
IADDR,

INW,

LINE*60,

IIDATA(4)
IBDATA(256)

00
+

"0
0
1
2
3
4
5
6
7
8

\0
T A I

10
X*2,

(720 T I TN AN N N A |

00040'X
COMM REG
COMM_REG
COMM REG
COMM REG
COMM REG
COMM REG
COMM_REG
COMM_REG
COMM_REG
COMM_REG
COMM REG

NUMB*8

COMMON/STACKC/ INW, INA, IBDATA, IADDR, IIDATA, N

C INITIALIZATION
CALL RUN6BK(0)
IS = SMGS$PUT CHARS(ID_68S,FILENAME(1:10),2,18)

C GET S-CODE

1

DATA

C LOAD

Cc
C HEADER RECORDS
C
c

OPEN( UNIT=11,

!Halt 68k,

STATUS='0OLD’, ERR=98)

INW = 0
DO WHILE(

.TRUE.)

READ(11,'(A,A)') SX,LINE

IF(SX .EQ. ’S0’) THEN

RECORDS

ELSE IF (SX .EQ. ’Si‘) THEN
READ(LINE, '(22,24,428)') IRLEN,
N = (IRLEN-1-2+3)/4
CALL STACK

ELSE IF (SX .EQ. 'S2’) THEN
READ(LINE, ’'(22,26,4%8)’) IRLEN,
N = (IRLEN-1-3+3)/4
CALL STACK

ELSE IF (SX .EQ. 'S9') THEN
IADDR=-1
CALL STACK
CLOSE(UNIT=11)
GOTO 98

ENDIF

ENDDO

COMPLETE

CONTINUE

END

IADDR,

IADDR,

IIDATA

IIDATA

CSR#0<0>=0

FILE=FILENAME, DEFAULTFILE='M68K:.SEX',

Page 47
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Chhkhhhkhhhkhh Ak kA kA AR AR AR A AR AR KA ARANRN R ARk A AR AR R AR R Ak kk ok k&

C COMBINE DATA INTO LARGEST BLOCKS POSSIBLE FOR LOADING
C***t**i*****************************************************
SUBROUTINE STACK
INCLUDE ’COMMON : FBADRCOM. FOR'
INTEGER IBDATA(256),IIDATA(4)
COMMON/STACKC/ INW, INA, IBDATA, IADDR, IIDATA, N
IADDR = IADDR/4

IF( INW .EQ. 0 ) INA = IADDR

IF(IADDR-INA .NE. INW .OR. INW .GE. 253) THEN
CALL FWD(STATUS,CNTRL,PRIMAD,’'00018800’X,INW)
CALL FWDB(STATUS,CNTRL,PRIMAD,INA,IBDATA,INW*{)
INW = 0
INA = IADDR

ENDIF
DO I = 1,N

INW = INW + 1
IBDATA(INW) = IIDATA(I)
ENDDO
END

COMMON /FBADR/

1  PRIMAD, GEOAD, BRODAD, SECAD, IDATA,

2 IBN, IBSN, CNTRL(2), STATUS(4), ICSR10, ICSR1l1,
3 1AMODE, ISPACE, NBSN{25), TIMESTRING, IGEOGPM
CHARACTER TIMESTRING*25

INTEGER PRIMAD, GEOAD, BRODAD, SECAD, IDATA
INTEGER CNTRL, STATUS

COMMON/M68KCOM/ ID_68M, ID 68S, ID_68P, ID_68C,
1 ID_68SD



10.
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