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ABSTRACT 

Conceptual des igns  a r e  p re sen t ed  u t i l i z i n g  t h e  Barnwel l  N u c l e a r  Fue l  
P l a n t  f o r  the  dry  i n t e r im  s t o r a g e  of s p e n t  l i g h t  wa te r  r e a c t o r  f u e l .  
S tud i e s  were conducted to  determine f e a s i b l e  approaches t o  s t o r i n g  spent  
f u e l  by methods  o t h e r  t h a n  w e t  pool s t o r a g e .  Fue l  t h a t  ha s  had an  
oppor tun i ty  t o  cool f o r  s eve ra l  years ,  o r  more, a f t e r  d i s c h a r g e  from a  
r e a c t o r  is  e s p e c i a l l y  adaptab le  t o  d ry  s to rage  s ince  its thermal l oad .  i s  
g r e a t 1  y  r educed  compared t o  t h e  t he rma l  l o a d  i m m e d i a t e l y  f o l l o w i n g  
d ischarge .  A thermal a n a l y s i s  .ws performed to  he lp  i n  de t e rmin ing  t h e  
f e a s i b i l i t y  of v a r i o u s  s p e n t  f u e l  d r y  s t o r a g e  c o n c e p t s .  Methods t o  
r e j e c t  the  hea t  from d ry  s to rage  a r e  b r i e f l y  d i s c u s s e d ,  which i n c l u d e  
both  a c t i v e  and pass ive  coo l ing  sys t ems .  The s t o r a g e  lnodes rev iewed 
i n c l u d e  above  and below ground c a i s s o n - t y p e  s t o r a g e  f a c i l i t i e s  and 
numerous v a r i a t i o n s  of v a u l t ,  o r  hot ce l l - type ,  s t o r age  f a c i l i t i e s .  
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1.0 INTRODUCTION 

Two po l i cy  dec i s ions  made by P re s iden t  Car te r  i n  1977 h a v e  had a  ma jo r  
impact on the  s to rage  and processing of spent  nuc lear  f u e l  assemblies:  

.On Apr i l  7 ,  t he  reprocess ing  of spent  fue l  from commercial  r e a c t o r s  
was i n d e f i n i t e l y  defer red .  

On October 18, the  Federal  Government of fe red  t o  take t i t l e  t o  s p e n t  
r e a c t o r  fue l .  

These po l i cy  changes stopped commercial  deve lopment  of r e p r o c e s s i n g ,  
, and,  a s  a  r e s u l t ,  c u r r e n t l y  a v a i l a b l e  spent  fue l  s to rage  space ( u t i l i t y  

s t o r a g e  pools) w i l l  be f i i l e d  w i th in  a  'few years ,  a s  r e a c t o r s  c o n t i n u e  
t o  d i scharge  spent  fue l .  . Addit ional  near-term s t o r a g e  c a p a c i t y  can  be 
provided by modifying = ,ommerc ia l  s p e n t  f u e l  s t o r a g e  b a s i n s ,  such  a s  
i n s t a l l i n g  c l o s e l y  spaced s t o r a g e ,  r a c k s ,  bu t  by t h e  mid-198OVs, some 
b a s i n s  w i l l  h a v e  i n a d e q u a t e  c a p a c i t y  t o  h a n d l e  t h e  f u e l  b e i n g  
d i sc .ha rged . ( l )  ' A d d i t i o n a l  s t o r a g e  c o u l d  be p rov ided  by e i t h e r  a n  
Away-From-Reactor (AFR) s t o r a g e  f a c i l i t y  or. a  d i sposa l  f a c i l i t y .  

S tud i e s  prev ious ly  conducted by Allied-General Nuclear  S e r v i c e s  (AGNS) 
have a l r eady  addressed convert ing the  Barnwell Nuclear Fuel P l a n t  (BNFP) 
t o  an AFR underwater s t o r age  f a c i l i t y . ( 2 )  This r epo r t  w i l l  a d d r e s s  t h e  
f e a s i b i l i t y  of convert ing the  BNFP t o  an  AFR - d r y  s t o r a g e  f a c i l i t y  f o r  
t h e  i n t e r im  s to rage  of spent  nuc lear  fue l .  

There a r e  p o t e n t i a l l y  a t  l e a s t  four  genera l  concepts f o r  d ry  s t o r a g e  of 
s p e n t  f u e l  from l i g h t  w a t e r  r e a c t o r s  (LWR)': ( 1 )  a  new F e d e r a l  
r e p o s i t o r y ,  ( 2 )  s t o r a g e  a t  e x i s t i n g  f a c i l i t i e s  wi th in  t he  United S t a t e s ,  
( 3 )  c o n c e p t u a l i z e d  v a u l t  s t o r a g e ,  and ( 4 )  c o n c e p t u a l i z e d  c a i s s o n  
storage.(' ,  6 ,  

Reposi tory s to rage  would e n t a i l  p l a c i n g  LWR s p e n t  f u e l  d i r e c t l y  i n t o  
g e o l o g i c  b u r i a l  f o r  permanent  d i s p o s a l  ( a l t h o u g h  a  10- t o  5 0 - y e a r  
r e t r i e v a l  d u r a t i o n  would p r o b a b l y  be e n g i n e e r e d  i n t o  t h e  r e p o s i t o r y  
des ign) .  The r epos i to ry  could be loca ted  i n  underground f o r m a t i o n s  of 
s a l t ,  b a s a l t ,  g r a n i t e ,  s h a l e ,  o r  some o the r  s t a b l e  geologic  media. This 
r e p o s i t o r y  i s  envisaged to  be owned and regulated by the  Federal Govern- 
ment and would be s i m i l a r  to  those proposed f o r  N e w  Mexico (WIPP-salt  
media),  Washing ton (BWIP-basal t media), and Nevada (NNWSI-tuf f ,  g r a n i t e ,  
and s h a l e  media). It is  est imated t h a t  the  f i r s t  government r e p o s i t o r y  
w i l l  not be on- l ine ,  u n t i l  a t  l e a s t  1990.* S i n c e  a  r e s o l u t i o n  of t h e  
d i s p o s i t i o n  of LWR f u e l  needs t o  be made p r i o r  to  1990, near-term s t o r -  
a g e  i n  a  F e d e r a l  r e p o s i t o r y  i s  n o t  a  v i a b l e  s o l u t i o n .  R e p o s i t o r y  
s t o r a g e  w i l l  not be discussed any f u r t h e r  i n  t h i s  repor t .  

* In  Feb rua ry  of 1980 ,  P r e s i d e n t  C a r t e r  e s t a b l i s h e d  a  comprehens ive  
r a d i o a c t i v e  waste management program t h a t  s e t  the  goa ls  of a r ~ p o s i t o r y  
si . te  s e l e c t i o n  by aGuuL 1985 and an opera t ing  f a c i l i t y  by about 1995. 



The second means considered f o r  s to r age  of spent  f u e l  is u t i l i z a t i o n  of 
e x i s t i n g  f a c i l i t i e s ,  i. e., f a c i l i t i e s  t h r o u g h o u t  t h e  Un i t ed  S t a t e s .  
S torage  f a c i l i t i e s  ou t s ide  t h e  U n i t e d  S t a t e s  have  been exc luded  from 
t h i s  study. Exis t ing  sites, g e n e r a l l y  nuc lear  product ion f a c i l i t i e s  and 
l a b o r a t o r i e s  ope ra t ed  by t h e  F e d e r a l  Government ,  i n c l u d e  h o t  c e l l s ,  
v a u l t s ,  product ion canyons, and decommissioned pools. E s s e n t i a l 1  y,  t h e  
s t o r a g e  mode i n  t h e s e  e x i s t i n g  f a c i l i t i e s  a r e  al l  v a r i a t i o n s  of t h e  
v a u l t  and ca i s son  s to rage  modes d i s cus sed  i n  t h i s  r e p o r t .  The use  of 
e x i s t i n g  f a c i l i t i e s  could be va luable  from a t im ing  s t a n d p o i n t ,  i . e . ,  
they  could be modified t o  accept  LWR spent  fue l  f a s t e r  than bui ld ing  new 
dedica ted  f a c i l i t i e s .  

Th i s  r e p o r t  dea l s  wi th  v a r i o u s  v a u l t  and c a i s s o n  c o n c e p t s  and a p p l i -  
c a t i o n s  of e x i s t i n g  BNFP f a c i l i t i e s  f o r  the  d ry  s t o r a g e  of s p e n t  f u e l .  
Each concept is  presented s e p a r a t e l y ;  and i n  t h e  c a s e  of t h e  c a i s s o n  
concepts ,  i t  is assumed t h a t  each ca i s son  con ta in s  t he  equiva len t  of one 
i n t a c t  f u e l  assembly o r  up to  four  assemblies  t h a t  have been compacted 
by disassembly. Some of t he  c o n c e p t s  f o r  h e a t  removal cou ld  be com- 
bined. For i n s t ance ,  cool ing f i n s  and forced c o n v e c t i o n  c o o l i n g  c o u l d  
be  combined i n  a  v a u l t ,  o r  h e a t  p i p e  c o o l i n g  and n a t u r a l  c o n v e c t i o n  
could be combined i n  ca i s son  s torage .  There a r e  many such combinations; 
but  t o  s imp l i fy  the  d i s cus s ion ,  only t h e  b a s i c  c o n c e p t s  a r e  d i s c u s s e d  
i n d i v i d u a l l y .  Likewise,  c a i s sons  could probably s t o r e  more t h a n  one t o  
f o u r  f u e l  a s s e m b l i e s  (becoming m i n i - v a u l t s )  bu t  t h i s  ha s  n o t  b e e n  
addressed.  



2.0 METHODOLOGY 

The o b j e c t i v e  of t h i s  s tudy ws t o  review m y s  t o .  s t o r e  LWR s p e n t  f u e l  
i n  a  d ry  environment, and s p e c i f i c a l l y  how BNFP c o u l d  be u t i l i z e d  t o  
meet t h i s  ob j ec t i ve .  The fol lowing s t e p s  =re performed t o  a c c o m p l i s h  
t h e  above o b j e c t i v e  : 

A l i t e r a t u r e  search  MIS performed to  procure i n f o r m a t i o n  c o n c e r n i n g  
t h e  d ry  s to rage  of spent  fue l .  

I 
I .  

C r i t e r i a  and des ign  bases were e s t ab l i shed  to  a s s i s t  i n  d e t e r m i n i n g  ~ t h e  f e a s i b i l i t y  of t he  v a r i o u s  c o n c e p t s  and a l s o  i n  comparing one 

i . . concept with i no the r .  

The BNFP was analyzed f o r  all poss ib l e  f a c i l i t i e s  o r  s i t e s  t h a t  could 
1 be  used f o r  spent  fue l  d ry  s torage .  

Design concepts  were developed i n  gene ra l ,  and f o r  s p e c i f i c  a p p l i c a -  
t i o n s  t o  the  BNFP s i t e .  

C o n c e p t u a l  d r a w i n g s  were p r e p a r e d  i l l u s t r a t i n g  t h e  v a r i o u s  d r y  
s t o r a g e  concepts.  

Comparisons were made among t h e  c o n c e p t s ,  and abou t  h a l f  of t h e  
p o t e n t i a l  sites a t  BNFP were r e j ec t ed  from f u r t h e r  cons idera t ion .  

~ h e r m a l  and sh i e ld ing  ana lyses  were performed on v a u l t  and c a i s s o n  
. . ' s t o r a g e  concepts.  

. . 
This  . r e p o r t  was w r i t t e n  documenting t h e  f i n d i n g s  of t h e  s p e n t  f u e l  
d r y  s to rage  s tud i e s .  



BLANK PAGE 



3.0 DESIGN BASES 

The LWR spent  f u e l  c h a r a c t e r i s t i c s  used f o r  d r y  s t o r a g e  a n a l y s e s  a r e  
shown i n  Table 2-1. It i s  assumed t h a t  t h e  d r y  s t o r a g e  c a p a c i t y  i s  
2000 MTU u n l e s s  p h y s i c a l  c o n s t r a i n t s  of t h e  c o n c e p t s  and e x i s t i n g  
f a c i l i t i e s  under review l i m i t  t h i s  c a p a c i t y  t o  a  lesser  amount. F u e l  
r e c e i p t  and r e t r i e v a l  r a t e  i s  a s s u m e d  t o  be  5 MTU p e r  d a y  o v e r  
300 ope ra t i ng  days per year. The remainder of t he  ca lendar  y e a r  may be 
used f o r  r e p a i r s ,  maintenance,  t e s t i n g ,  and s i m i l a r  n e c e s s a r y  ope ra -  
t i o n s .  For purposes of t h i s  r epo r t  i t  is assumed t h a t  r e p r o c e s s i n g  of 
spen t  f u e l  would never be permitted a t  BNFP and ,  t h e r e f o r e ,  any  of t h e  
e x i s t i n g  f a c i l i t i e s  could be used, o r  modified f o r  use,  f o r  i n t e r i m  d r y  
spen t  f u e l  s torage.  

The f u e l  conten t  (ki lograms uranium, nominal) i n  a  BWR and PWR a s s e m b l y  
i s  assumed t o  be 190 and 480 k i l o g r a m s ,  r e s p e c t i v e l y .  I t  i s  a l s o  
assumed t h a t  70% BWR assemblies  and 30% PWR as sembl i e s  a r e  r e c e i v e d  a t  
t h e  s to rage  f a c i l i t y .  A simple c a l c u l a t i o n ,  u t i l i z i n g  t h e  above  f u e l  
r a t i o ,  demonstrates  t h a t  7220 a s s e m b l i e s  (5054 BWR and 2166 PWR) a r e  
r equ i r ed  t o  y i e ld  2000 MTU of  s to rage  capaci ty .  An i n t a c t  BWR a s sembly  
would be placed i n  a  s to r age  con ta ine r  whose ou t s ide  dimensions m u l d  be 
6 1116-inch s q u a r e .  An i n t a c t  PWR a s s e m b l y  would be  p l a c e d  i n  a  
9 1/4-inch square conta iner .  

I n  the  case  of disassembled f u e l ,  i t  is  assumed t h a t  4  BWR a s s e m b l i e s  
and 2 PWR assemblies  w i l l  each f i l l  a  metal s to rage  con ta ine r  9 114-inch 
square.  For t he  2000 MTU c a s e ,  t h i s  would r e q u i r e  1264 c o n t a i n e r s  f o r  
BWR assemblies  and 1083 c o n t a i n e r s  f o r  PWR a s s e m b l i e s ,  o r  a  t o t a l  of 
2347 con ta ine r s .  

A l l  of t h e  s to rage  concept drawings i n  t h i s  r epo r t  show the  disassembled 
(compacted) and c o n t a i n e r i z e d  form of s p e n t  f u e l  s t o r a g e .  The f u e l  
c o n t a i n e r s  ( 4  BWR a s s e m b l i e s  o r  2  PWR a s s e m b l i e s )  a r e  assumed t o  be 
placed i n  racks t h a t  space t h e  c o n t a i n e r s  1 5  i n c h e s  a p a r t ,  c e n t e r  t o  
cen t e r .  This a l lows approximately 6 inches  between the ou t s ide  su r f aces  
of t he  con ta ine r s  f o r  ope ra t i ona l  ease ,  thermal cool ing ,  and c r i t i c a l i t y  
cons ide ra t i ons .  A p re l iminary  c r i t i c a l i t y  review shows t h a t  i n t a c t  fue l  
should be spaced 4 t o  5  inches  a p a r t  ( ou t s ide  su r f ace )  and d i s a s s e m b l e d  
f u e l  may be spaced s l i g h t l y  l e s s ,  a b o u t  3  i n c h e s  a p a r t .  An a r r a y  of 
f u e l  conta in ing  both BWR and PWR assemblies  w i l l ,  t h e r e f o r e ,  have a  f u e l  
d e n s i t y  of about 0.55 MTU per  square foot  of s t o r age  area.  A 60-foot by 
60-foot s t o r age  a r e a  would c o n t a i n  abou t  2000 MTU (a s suming  70% BWR 
assembl ies  and 30% PWR assemblies) .  



TABLE 3-1 

. . 
PWR . . . .. 

. . 5  

.. . . *  
BWR 

Enrichment . (% U-235) 
I n i t i a l  (maximum) 
F ina l  (nominal ) 

Average f u e l  burnup (MWdIMTU) 29,000 

~ v e r a g e  f u e l  s p e c i f i c .  power (MWIMTU) 3 2 

Maximum f u e l  burnup (MWdIMTU) 33,000 

Maximum f u e l  s p e c i f i c  power (MWIMTU) 35 

.Cooling time p r i o r  t o  r e c e i p t  (yea r s )  
Case 1 5 
Case 2 10 

Assembly c ross -sec t ion  ( inches ,  nominal ) 5.26 

Active l eng th  ( f e e t ,  maximum) 

Overal l  l eng th  ( f e e t ,  maximum) 

Fuel content /assembly 
( kilograms uranium, nominal ) 

Assembly weight (pounds, maximum) 700 

12. Removable nonfuel bear ing items 
included with assemblies  None None 

13. Number of assemblies  received (%) 7 0 3 0 

**14. Leaking assemblies  ( %  of  f u e l  rece ived)  
Shipped by the u t i l i t y  No No 
F a i l u r e  during shipping 0.01 0.01 

15. R a i l l t r u c k  rece iv ing  mix (%, MTU b a s i s )  60140 60 / 40 

*Average va lues  should be used f o r  eva lua t ion  of t h e  m i x t u r e  of f u e l s  
(bo th  BWR and PWR) t h a t  w i l l  be placed i n  s to rage .  Such e v a l u a t i o n s  
would include ma t t e r s  such a s  dry  s to rage  cooling requirements,  normal 
o p e r a t i o n ,  source terms, e t c .  

The maximum v a l u e s  w i l l  be used o n l y  f o r  a s s e s s m e n t s  i n v o l v i n g  a 
d i s c r e t e  amount of f u e l .  A n  example i s  deve lopment  of s o u r c e  t e rms  
from a cask drop acc ident .  

**Canned l eake r s  from the u t i l i t i e s  may be handled  on a case-by-case  
b a s i s .  



4.0 SPECIFIC USES OF THE BNFP FOR DRY STORAGE OF SPENT NUCLEAR FUEL 

There a r e  a t  l e a s t  e i g h t  ways (wi th  many variations) of u t i l i z i n g  t h e  
BNFP f o r  . the d ry  s t o r a g e  of spent  nuc l ea r  f u e l .  The s p e c i f i c  u s e s  of 
t h e  BNFP a r e  to '  s t o r e  f u e l  i n :  (1) t h e  Remote P r o c e s s  C e l l  (RPC), 
( 2 )  t h e  contac t  c e l l s ,  ( 3 )  t h e  Fuel Receiving and S torage  S t a t i o n  (FRSS) 
pool without water,  ( 4 )  t h e  high-level was te  t a n k s ,  ( 5 )  t h e  Emergency 
U t i l i t i e s  Area bu i ld ing ,  ( 6 )  new f a c i l i t i e s  b u i l t  f o r '  above o r  below 
ground ca isson  s to rage ,  .(7) new f a c i l i t i e s  b u i l t  f o r  vau l t - type  s t o r a g e  
of  spent  f u e l ,  and (8) t h e  Plutonium N i t r a t e  C e l l s  (PNC) Nos. , l  and 2.  
P o t e n t i a l  o r  a c t u a l  l o c a t i o n  of f a c i l i t i e s  employing each  of t h e s e  
concepts  is  shown on Drawing 533D-A-5001. 

4.1 Remote Process  C e l l  

The s to rage  of spent  f u e l  wi th in  the  RPC would r equ i r e  t h a t  most of t h e  
equipment now i n  the cells ( a  shear ,  d i s s o l v e r s ,  concen t r a to r s ,  e t c  .) be 
removed. New equipment a s soc i a t ed  with f u e l  s t o r a g e ,  such  a s  s t o r a g e  
r acks ,  would be added. Sketches of the  RPC and Remote Main tenance  and 
.Scrap Cel l  (RMSC) used f o r  d r y  s p e n t  f u e l  s t o r a g e  a r e  shown i n  Draw- 
i n g s  533D-A-5002 and 533D-A-5003. 

The in-ce l l  cranes,  the  viewing windows, the  v e n t i l a t i o n  system, and the 
c e l l  i t s e l f  a r e  a l r eady  e x i s t i n g  and would be used f o r  t h i s  d r y  s t o r a g e  
concept.  These e x i s t i n g  f a c i l i t i e s  o b v i o u s l y  . r e p r e s e n t  a  s u b s t a n t i a l  
s av ings  over bu i ld ing  a  new dedica ted  f a c i l i t y .  The use of t h e  RPC f o r  
spen t  f u e l  s t o r age ,  however, h inders  the p o t e n t i a l  use of t h e  BNFP f o r  
t h e  reprocessing of LWR f u e l  a t  some l a t e r  date .  It would a l s o  i n h i b i t  
t h e  use of the  RPC f o r  the disassembly of spent  nuclear  fue l .  

4.2 Contact C e l l s  

The contac t  c e l l s  a t  the BNFP c o n s i s t  of f i v e  s h i e l d e d  p r o c e s s  c e l l s  
t h a t  were t o  be employed f o r  chemical processing during the  reprocessing 
of LWR fue l .  I f  t h e s e  c e l l s  were t o  be used f o r  t h e  d r y  s t o r a g e  of 
spen t  f u e l ,  the  e x i s t i n g  tanks and piping would need to  be removed. I n  
a d d i t i o n ,  t h e  w a l l s  between t h e  c e l l s  would h a v e  t o  be  a t  l e a s t  
p a r t i a l l y  removed t o  a l low i n s t a l l a t i o n  of an overhead crane t o  t r a n s f e r  
s t o r e d  fue l  con ta ine r s  t o  any of the  contac t  c e l l s  ( s e e  Drawings 533D-A- 
5004 and 533D-A-5005). 

Another modi f ica t ion  to  the c e l l s  would r equ i r e  t h a t  an a c c e s s  opening  
f o r  i n t roduc t ion  of spent  fue l  be made i n  a t  l e a s t  one l o c a t i o n .  T h i s  
opening would l o g i c a l l y  be i n t o  the  RPC. The RPC c o u l d  be u t i l i z e d  t o  
package spent  fue l  assemblies  i n t o  s to rage  conta iners .  These assemblies  
c o u l d  e i t h e r  be p l aced  w i t h i n  a  c o n t a i n e r  i n t a c t  o r  t hey  c o u l d  be  
disassembled ( t he  nonfuel bearing components removed) and placed w i t h i n  
a  conta iner .  The disassembled process w i l l  compact t h e  f u e l  r o d s  by a  
volume reduc t ion  f a c t o r  of two, i .e. ,  two disassembled f u e l  a s s e m b l i e s  
w i l l  occupy . . the  space of one i n t a r t  assembly. 
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placed upon a  s p e c i a l  f i x t u r e  above the  tanks. Fuel con ta ine r s  would be 
l owered  i n t o  t h e  was t e  t a n k  and r e m o t e l y  set i n  p l a c e  ( s e e  Draw- 
i n g s  533D-A-5008 and 533D-A-5009). 

4.5 PNC No. 1  and No. 2 

Spent f u e l  s t o r age  i n  the p lu ton ium n i t r a t e  c e l l s  (PNC) Nos. 1 and  2 
would r equ i r e  s u b s t a n t i a l  m o d i f i c a t i o n s .  A l l  of t h e  s l a b  t a n k s  and 
s h i e l d i n g  wal l s  i n s i d e  the  c e l l s  would need t o  be removed and s t o r a g e  
racks  i n s t a l l e d .  The ou t s ide  wal l s  of the  PNC's .were d e s i g n e d  f o r  t h e  
s t o r a g e  of plutonium s l i g h t l y  contaminated with f i s s i o n  p r o d u c t s .  For  
t h i s  reason,  some of the  c e l l  wal l s  a r e  only 18 i n c h e s  t h i c k  and would 
need to  be increased to  about f i v e  f e e t  t h i c k  f o r  s p e n t  f u e l  s t o r a g e .  
Load-in and load-out f a c i l i t i e s  would a l s o  need t o  be added ,  a s  would 
acces s  roads and poss ib ly  a  r a i l r o a d  spur ( s ee  Drawings 533D-A-5010 and 
533D-A-5011). 

, . 
4.. 6 Emergency U t i l i t y  Area Bui ld ing  

To u t i l i z e  the emergency u t i l i t y  a r e a  (EUA) bui ld ing  f o r  the  dry  s to rage  
of  spent  LWR f u e l ,  one would have t o  remove most of the  e x i s t i n g  equ ip -  

" . ment w i t h i n  t.he b u i l d i n g .  S i n c e  t h e  r ema in ing  f a c i l i t y  ( a f t e r  t h e  
u t i l i t y  equipment i s  removed) i s  only a ,  bu i ld ing  s h e l l ,  a  g r e a t  d e a l  of 
mod i f i ca t i ons  would be required.  A remote loading/unloading a r e a  would 

, . have t o  be added, a s  would c ranes ,  viewing windows, s t o r a g e  r ack . s ,  and 
o t h e r  s u p p o r t  equipment .  The b u i l d i n g .  ha s  a l r e a d y  b e e n  b u i l t  t o  
w i t h s t a n d  t o r n a d o s  and s e i s m i c  e v e n t s ,  bu t  may r e q u i r e  a d d i t i o n a l  
m a t e r i a l s  f o r  sh i e ld ing  ( s ee  Drawings 533D-A-5012 and 533D-A-5013). 
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5.0 VAULT STORAGE CONCEPTS 

The v a u l t  concepts  considered f o r  s p e n t  f u e l  s t o r a g e  c o n s i s t  of f o u r  
p o s s i b l e  designs.  These f o u r  v a u l t ,  o r  d e d i c a t e d  b u i l d i n g ,  c o n c e p t s  
i nc lude :  ( 1 )  v a u l t  with forced a i r  cool ing ;  (2 ) .  v a u l t  using h e a t  p i p e s  
f o r  cool ing ,  ( 3 )  v a u l t  cooled by a  n a t u r a l  d r a f t ,  open t o  t h e  o u t s i d e  
e n v i r o n m e n t ,  and ( 4 )  v a u l t  w i t h  no c o o l i n g ,  s e a l e d  t o  t h e  o u t s i d e  
environment. There a r e  numerous poss ib le  v a r i a t i o n s  o r  combina t ions  of 
t h e s e  four  concepts.  For s i m p l i c i t y ,  on ly  the  fou r  b a s i c  c o n c e p t s  a r e  
d i scussed .  

A l l  the  v a u l t  concepts  have many f e a t u r e s  i n  common, e.g., t h e y  s t o r e  
many u n i t  q u a n t i t i e s  of packaged r e a c t o r  f u e l  and p ro t ec t  these  packages 
from a c c i d e n t s .  They d i f f e r  m a i n l y  i n  t h e  method u s e d  t o  r emove  
r a d i o l y t i c  decay heat .  

The v a u l t  concept with forced a i r  cool ing is  shown i n  Figure 5-1. T h i s  
i s  t y p i c a l  of the  d e s i g n  of most e x i s t i n g  v a u l t s  and h o t  c e l l s .  It 
u t i l i z e s  wel l -understood e x i s t i n g  t e c h n o l o g y  and dozens  of e x i s t i n g  
f a c i l i t i e s ,  p a r t i c u l a r l y  l a r g e  h o t  c e l l s ,  c o u l d  be ' m o d i f i e d  t o  s t o r e  
spen t  f u e l  i n  t h i s  manner. Nearly a l l  nuc lear  f a c i l i t i e s  employ f o r c e d  
a i r  v e n t i l a t i o n  u t i l i z i n g  High  E f f i c i e n c y  P a r t i c u l a t e  A i r  (HEPA) 
f i l t r a t i o n  t o  remove r a d i o a c t i v e  p a r t i c l e s  from t h e  a i r  p r i o r  t o  i t s  
exhaust  t o  t he  environment. Therefore ,  i f  e x i s t i n g  f a c i l i t i e s  were t o  
be used f o r  f u e l  s t o r age ,  they would probably employ some v a r i a t i o n  of 
t h e  forced a i r  cooled v a u l t  concept.* 

The obvious d i s a d v a n t a g e  of t h e  f o r c e d  a i r  c o n c e p t  i s  t h a t  i t  i s  an 
"ac t ive"  system (versus  "passive" systems) and r e q u i r e s  t h e  c o n t i n u o u s  
e f f e c t i v e  ope ra t i on  of t he  v e n t i l a t i o n  and f i l t r a t i o n  sys tems .  T h i s  
d i sadvantage  i s  r e f l e c t e d  i n  y e a r l y  opera t ing  c o s t s  and s a f e t y  cons  i d -  
e r ' a t i o n s  ( a n  a c t i v e  v e n t i l a t i o n  s y s t e m  w i t h  HEPA f i l t e r s  may be  

. . considered a  b a r r i e r  i n  the '  containment system). The forced a i r  sys tem 
r e q u i r e s  an acc iden t  ana lyses  t o  determine what happens' h e n  components  

. o f  t h e  sys t em f a i l ,  which o f t e n  r e q u i r e s  c o s t l y  s e c o n d a r y  b a c k u p  
. ( " f a i l - s a f e " )  sy s t ems  o r  mechanisms. 

a . . . 

*Idaho  N a t i o n a l  E n g i n e e r i n g  L a b o r a t o r y  ( I d a h o  F a l l s ,  I d a h o )  h a s  
., des igned ,  b u i l t ,  and is  opera t ing  two types of d r y  s p e n t  f u e l  s t o r a g e  

f a ~ i l i t i e s . ( ~ )  The two i n s t a l l a t i o n s ,  t h e  peach Bottom S t o r a g e  V a u l t s  
. and the I r r a d i a t e d  Fuels  Storage F a c i l i t y ,  a r e .  bo th  f o r c e d  c o n v e c t i o n  

cooled s to rage  v a u l t s .  Below ground d ry  s to rage  i s  a l s o  p rov ided  f o r  
HTGR spent  f u e l  a t  INEL.(23) 



The v a u l t  concept shown i n  Figure 5-2 r e l i e s  upon the na tu ra l  convect ion 
o f  a i r  t o  cool  the f u e l  assemblies  and is  open to  t h e  o u t s i d e  e n v i r o n -  
ment.* One obvious advantage over the f o r c e d  a i r  c o n c e p t  is  t h a t  t h e  
" n a t u r a l  d r a f t "  concept is  passive.  Loss of cool ing due to  t h e  f a i l u r e  
o f  mechanical equipment is impossible .  The major disadvantage is i n  the  
a r e a  of s a f e ty .  . Since the  a i r  c u r r e n t s  do not deve lop  enough f o r c e  t o  
overcome the  r e s i s t a n c e  of HEPA f i l t e r s  (due t o  the  pressure  drop ac ros s  
t h e  f i l t e r s ) ,  i t  i s  u n l i k e l y  t h a t  a b s o l u t e  f i l t e r s  c o u l d  be u s e d .  
Therefore ,  t o  ensure the s a f e t y  of t he  pub l i c ,  t he  r a d i o a c t i v i t y  i n  t h e  . 
s p e n t  f u e l  must be pro tec ted  by m u l t i p l e  b a r r i e r s .  A c a s e  can be made 
t h a t  t h e  c l a d d i n g  of s p e n t  f u e l  e l e m e n t s  c a n n o t  be c l a s s i f i e d  a s  a 
b a r r i e r ,  s i n c e  it may con ta in  c r acks ,  ho l e s ,  e t c .  Therefore ,  t o  e n s u r e  
a minimum of double containment  of t h e  s p e n t  f u e l ,  t h e  f u e l  r o d s  ( o r  
e n t i r e  assemblies)  would be placed i n t o  a c o n t a i n e r  and t h e  c o n t a i n e r  
would be placed i n t o  an overpack. This  mu l t i p l e  encasement of t h e  f u e l  
would r equ i r e  a d d i t i o n a l  f a c i l i t i e s ,  adding t o  the o v e r a l l  cos t  and a l s o  
t o  the  complexity of t he  opera t ions .  

The v a u l t  concept shown i n  Figure 5-3 r e l i e s  on h e a t  p i p e s  t o  c o o l  t h e  
f u e l  assemblies.** This  method of s to r age  has s eve ra l  advantages .  The 
system is  pass ive  and does not r e q u i r e  v e n t i l a t i o n  on a r o u t i n e  b a s i s .  
A backup low c a p a c i t y  ( l o w  f l o w  r a t e )  v e n t i l a t i o n  s y s t e m  may be  . . . 

d e s i r a b l e  t o  take a i r  samples, a l low major repairs lmodif  i c a t i o n s  t o  t h e  
h e a t  p ipes ,  provide c l ean  a i r f l o w  c o n t r o l  f o r  nonroutine-manned e n t r y ,  
and a l low a degree of s a f e t y  by providing the  required d i f f e r e n t i a l  a i r  
p r e s s u r e  f o r  normal opera t ions .  This system would probably n o t  c o n t a i n  
i t s  own backup s y s t e m s ,  s u c h  a s  c o s t l y  r e d u n d a n t  s e c o n d a r y  b l o w e r s ,  . . 
power supply,  and HEPA f i l t e r s ,  and i t  cou ld  a l s o  be a r e c i r c u l a t i n g  . . 

system. This  v e n t i l a t i o n  system would provide perhaps  0.5 t o  2 e n t i r e  . , 

v a u l t  a i r  changes  pe r  hour  which i s  l e s s  t h a n  a t y p i c a l  h o t  c e l l  
v e n t i l a t i o n  system used f o r  r o u t i n e  a i r f l o w  and cooling. 

A ve ry  s i m i l a r  concept t o  u t i l i z i n g  hea t  pipes is shown i n  Figure 5-4 i n  
which metal f i n s  a r e  used to  t r a n s f e r  h e a t ,  by c o n d u c t i o n ,  o u t  of t h e  
v a u l t  s t o r age  a rea .  This cool ing system i s  p a s s i v e  i n s i d e  t h e  v a u l t .  - - - 
Forced convect ion is  used to  sweep the  h e a t  from t h e  f i n s  o u t s i d e  t h e  
v a u l t  s t o r age  a rea .  The a i r  from t h i s  sweep would be noncon tamina t ed  
and HEPA f i l t r a t i o n  may be op t iona l .  In t h i s  des ign ,  t he  e n t i r e  c e i l i n g  

*Nukem GmbH of ~ e r m a n ~ ( l ' )  and Ontar io  Hydro of canada(12) b o t h  have 
proposed a dry  s to rage  concept f o r  spent  fue l  t h a t  ~ i t i l i z e s  a concre te  
v a u l t  cooled by n a t u r a l  convection. 

**A hea t  pipe i s  a h e a t - t r a n s f e r  d e v i c e  c o n s i s t i n g  of a s e a l e d  me ta l  
tube  with an i nne r  l i n i n g  of wick l ike  c a p i l l a r y  m a t e r i a l  and a s m a l l  
amount of f l u i d  i n  a vacuum. Heat is absorbed a t  one end by v a p o r i -  
z a t i o n  of the f l u i d  and is  re leased  a t  the o the r  end by c o n d e n s a t i o n  
of the  vapor. Fluid c i r c u l a t i o n  is  enhanced by t h e  c a p i l l a r y  a c t i o n  
of  the  wick and grav i ty .  The tubes a r e  comple t e1  y s e a l e d  and would 
provide no pathway f o r  r e l e a s e  of r ad ioac t ive  ma te r i a l  from t h e  v a u l t  
t o  the  environment. The tubes may be a x i a l 1  y o r  r a d i a l l y  f i n n e d  t o  
i n c r e a s e  t h e i r  hea t  t r a n s f e r  a b i l i t y .  



of the v a u l t  could be metal which would a s s i s t  t r a n s f e r r i n g  h e a t  ou t  of 
t h e  vau l t .  

This  v a u l t  concept .wuld  a l s o  be provided an a i r  r e c i r c u l a t i o n  sys tem 
t h a t  would cool and f i l t e r  r e l a t i v e l y  small  volumes of a i r ,  i. e., a b o u t  
0.5 t o  2 v a u l t  a i r  changes  per  hour .  T h i s  sys tem would p r o v i d e  a  
nega t ive  a i r  p ressure  i n s i d e  the v a u l t ,  perhaps -1.0 i nch  of mter. 

a 
The v a u l t  des ign  i n  Figure 5-5 assumes a  "closed" v a u l t  with no c o o l i n g  
devices .  The v a u l t  would only be open d u r i n g  p lacement  o r  removal of 
spen t  fue l .  V e n t i l a t i o n  would be s i m i l a r  t o  t h a t  discussed i n  t h e  h e a t  
pipe o r  metal f i n  s to rage  concepts;  i.e., a  r e c i r c u l a t i n g ,  low c a p a c i t y  

. . v e n t i l a t i o n  system employed mainly t o  r e t a i n  a  'negat ive pressure  and not 
used f o r  cool ing.  

The a b i l i t y  t o  use  a  v a u l t  d e s i g n  w i t h  no s p e c i f i c  c o o l i n g  d e v i c e s  
( o t h e r .  than the  hea t  s i nk  provided by the  v a u l t ' s  concre te  s t r u c t u r e )  is  
on ly  pos s ib l e  with spent  f u e l  t h a t  has been cooled abou t  8  t o  1.0 y e a r s  
a f t e r  r e a c t o r  discharge.  

I 

One poss ib l e  l o c a t i o n  f o r  a  v a u l t  f a c i l i t y  a t  t h e  BNFP would be j u s t  
w e s t  of t he  FRSS and south from the  Separa t ions  P l a n t  ( s ee  Drawing 533D- 
A-5001 and 533~-A-5018)'. This l o c a t i o n  would a l low use of e x i s t i n g  r a i l  
spu r s ,  roads ,  and the  FKSS Vehicle Unloading Bay. 

Spent f u e l  would e n t e r  the BNFP and be unloaded from t r a n s p o r t  c a s k s  i n  
t h e  FRSS. The f u e l  would be placed i n  the pool f o r  temporary s to rage  o r  
go d i r e c t l y  t o  the  RPC f o r  packaging i n t o  a  s t o r a g e  c o n t a i n e r  ( e i t h e r  
i n t a c t  o r  disassembled).  I f  the  f u e l  were no t  t o  be d i s a s s e m b l e d ,  i t  
would p r o b a b l y  be p o s s i b l e  t o  per form t h e  c o n t a i n e r  p a c k a g i n g  i n  
f a c i l i t i e s  ad jacent  t o  the  Spent Fuel Dry Storage Vault  (SFDSV). 

Fuel would be s tored  on racks i n  the SFDSV and cool ing could be provided 
by va r ious  means a s  discussed previously.  The walls of the SFDSV would 
be concre te ,  t h i c k  enough to  reduce the  r a d i a t i o n  exposu re  immedia te1  y 
o u t s i d e  the  SFDSV t o  l e s s  than one-tenth mremlhour. 
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6.0 CAISSON (SILO) STORAGE CONCEPTS 

The ca i sson  concepts reviewed inc lude :  ( 1 )  c a i s s o n s  w i t h  n a t u r a l  con- 
v e c t i o n  cool ing ,  ( 2 )  ca i s sons  with hea t  pipe c o o l i n g ,  and ( 3 )  c a i s s o n s  
w i th  no cooling. In  a d d i t i o n ,  each of t he  concepts  i s  rev iewed on t h e  
b a s i s  of aboveground s to rage  and below ground s torage .  The c a i s s o n ,  o r  
s i l o ,  concepts  of s t o r i n g  spent  f u e l  a r e  all s i m i l a r  i n  t h a t  o n l y  s m a l l  
q u a n t i t i e s  of packaged r e a c t o r  f u e l  a r e  s tored  i n  each ca i s son  and t h a t  
t h e r e  a r e  many ca i s sons ,  i n  c o n t r a s t  t o  l a r g e  v a u l t s  c o n t a i n i n g  many 
f u e l  conta iners .  

The c a i s s o n  c o n c e p t s  w i t h  n a t u r a l  d r a f t  c o n v e c t i o n  are  shown i n  
F igures  6-1 and 6-2. The aboveground s to rage  concept,  Figure 6-1, u s e s  
a l a r g e  concre te  s t r u c t u r e  f o r  each  c a i s s o n  t o  p r o v i d e  s h i e l d i n g  and 
p r o t e c t i o n  from n a t u r a l  phenomena. Outside a i r  is a l l owed  t o  e n t e r  a t  
t h e  bottom of t he  concre te  ca i s son  and n a t u r a l  convection c u r r e n t s  move 
the.  a i r  upward and out openings provided a t  the  top of t he  s t r u c t u r e .  A 
conc re t e  plug i s  provided a t  t he  top of t h e  c a i s s o n  f o r  i n s e r t i o n  and 
removal of spent  fue l .  Since t he  heated a i r  i s  ven ted  t o  t h e  o u t s i d e  
environment without HEPA f i l t r a t i o n ,  t h e  s p e n t  f u e l  must be c o n f i n e d  
w i t h i n  a t  l e a s t  two containment b a r r i e r s .  These b a r r i e r s  would probably 
cons ' i s t  of a metal con ta ine r  wi th  a metal overpack. 

I f  t he  ca i s sons  a r e  placed underground, the  s o i l  would a c t  a s  a r a d i a -  
t i o n  s h i e l d  and m i s s i l e  b a r r i e r ,  t h e r e f o r e ,  t he  need f o r  a mass ive  con- 
c r e t e  s t r u c t u r e  i s  e l i m i n a t e d .  F i g u r e  6-2 i l l u s t r a t e s  a p o t e n t i a l  
d e s i g n  u t i l i z i n g  n a t u r a l  c o n v e c t i o n  c o o l i n g  f o r  s p e n t  f u e l  s t o r e d  
underground. In t h i s  c a s e ,  t h e  s p e n t  f u e l  would be p l aced  i n  d o u b l e  
containment and p l a c e d  i n t o  c a i s s o n s  w i t h i n  an e n g i n e e r e d  berm ( s e e  
Sec t ion  7.0). Vents a r e  provided a t  the top and bottom of t h e  s t o r a g e  
c a i s s o n  and p a s s  t h r o u g h  t h e  s o i l  t o  t h e  o u t s i d e  e n v i r o n m e n t .  No 
f i l t r a t i o n  is provided because of the  s e c u r e  c o n t a i n m e n t  of t h e  s p e n t  
f u e l .  

Caisson s t o r a g e  u s i n g  h e a t  p i p e s  f o r  c o o l i n g ,  b o t h  above  and below 
ground, a r e  shown i n  Figures  6-3 and 6-4, respec t ive ly .  The c o n c e p t  of 
aboveground s to rage ,  Figure 6-3, i s  very s i m i l a r  to  the n a t u r a l  convec- 
t i o n  aboveground s to rage  shown i n  Figure 6-1. The r e l a t i v e  s i z e  of t h e  
conc re t e  s t r u c t u r e  and normal opera t ions  would be the same f o r  both.* 

The hea t  pipes could be provided through t h e  upper  c o n c r e t e  plug.  I f  
a d d i t i o n a l  hea t  removal is  requi red ,  hea t  pipes could a l s o  be introduced 
through the  s i d e s  .of t h e  c o n c r e t e  s h i e l d .  I n  e i t h e r  c a s e ,  t h e  h e a t  
p ipes  would be placed i n  o r i e n t a t i o n s  t h a t  would minimize the amount of 

*A conceptual  design combining n a t u r a l  convection (Figure 6-1) and h e a t  
p ipes  (F igure  6-3) f o r  cool ing s tored  s p e n t  f u e l  a s s e m b l i e s  has  been 
proposed by Elec t rowat t  Engineering S e r v i c e s ,  Ltd .('I Each c o n c r e t e  
s i l o  i n  the  E l ~ ~ t ~ u w a L t  c o u c e p t u a l  d e s i g n  would have t h e  a b i l i t y  t o  
s t o r e  seven PWR f u e l  assemblies  and could handle a maximum heat  load of 
40-kilowatt  per s i l o .  



r a d i a t i o n  "shining" through t h e  h e a t  p i p e  a c c e s s  o p e n i n g s .  The h e a t  
p ipes  would t r a n s f e r  heat  from the s to red  spent  fue l  to  the o u t s i d e  a i r  
where it would be d i spersed  by n a t u r a l  convection and forced c o n v e c t i o n  
(wind ) . 
The use of hea t  pipes  i n  underground s to rage  of s p e n t  f u e l  is  shown i n  
F igure  6-4. ' This concept may o r  may no t  use  an  e n g i n e e r e d  berm. The 
concept  is shown using a  berm, which is  l i k e l y  t o  be more expensive than 
no t  using an engineered berm. However, i t  i s  assumed t h a t  s t o r a g e  of 
s p e n t  f u e l  underground can be  o p e r a t e d  s a f e l y  w i t h o u t  employing an 
engineered berm. A d e t a i l e d  engineer ing s a f e t y  a n a l y s i s  would have t o  
be  conducted to  support t h i s  assumption. The h e a r  p i p e s  a r e  i n s e r t e d  
i n t o  the  concre te  sh i e ld ing  plug and draw hea t  from the spent  fue l  t o  be 
d i s p e r s e d  by na tu ra l  convect ion i n t o  the  ou t s ide  a i r .  

The f i n a l  ca i sson  s to rage  concepts  reviewed a r e  above and below ground 
s t o r a g e  w i t h  no a u x i l l i a r y  c o o l i n g .  These c o n c e p t s  a r e  shown i n  
F igures  6-5 and 6-6, r e spec t ive ly .  These concepts a r e  probably the  most 
s imple  and l e a s t  c o s t l y  des igns  assuming they can be operated s a f e l y  and 
t h a t  the  hea t  l oads  from the  spent  f u e l  i s  not too severe.  

The aboveground ca isson  concept ,  shown i n  Figure 6-5, provides  no coo l -  
i n g  o the r  than the  heat s i nk  e f f e c t  of t h e  l a r g e  c o n c r e t e  s t r u c t u r e ,  
i . e . ,  hea t  is,  l o s t  out the  s i d e s  of the c a i s s o n . *  The o u t s i d e  w a l l  of 
t h e  conc re t e  w i l l  become heated s l i g h t l y  once equi l ib r ium is  reached. A 
s l i g h t  degree of cool ing w i l l  take p lace  on the ou te r  conc re t e  w a l l  due . . 
t o  n a t u r a l  convection. I f  t h e r e  is any wind o r  v e n t i l a t i o n  f l ow ,  t h e  
c o n c r e t e  w i l l  a l s o  be s l i g h t l y  c o o l e d  by f o r c e d  c o n v e c t i o n .  T h i s  
c a i s s o n  concept could work e i t h e r  o u t s i d e  o r  i n s i d e  a  bu i ld ing .  

The concept shown i n  Figure 6-6, underground spent  fue l  s t o r a g e  w i t h o u t  
a u x i l i a r y  cooling,** is almost the same a s  the  ca i sson  s t o r a g e  d e s i g n e d  
by AGNS f o r  t h e i r  proposed s t o r a g e  o f  h u l l s  and g e n e r a l  p r o c e s s  
t rash.(7.  8* It was demonstrated i n  the AGNS des ign  t h a t  t h e  use of 
a n  e n g i n e e r e d  berm would a l l e v i a t e  some of  t h e  d e s i g n  p r o b l e m s  
concerning ear thquakes,  f l oods ,  and heat  removal. The d e t a i l s  of such a  
berm a r e  discussed i n  o the r  p a r t s  of t h i s  r epo r t  ( s ee  Sec t ion  7 .0) .  I t  
may be pos s ib l e  t o  f a b r i c a t e  ca i s sons  d i r e c t l y  i n  t h e  ground w i t h o u t  a  
berm because of t he  low se i smic  c l a s s i f i c a t i o n .  I f  t h i s  were p o s s i b l e ,  
i t  would e l imina t e  the expense of designing and bui lding a  berm. 

' I  

*Nuke rm n (I1) Ontar io  Hydro of canada,(12) and the Nevada Test 
S i t e  ?lgf "9 '5r'have proposed d ry  s to rage  concepts f o r  s t o r i n g  s p e n t  
f u e l  t h a t  u t i l i z e  the aboveground c a i s s o n  concep t  w i th  no a u x i l i a r y  
coo l ing  . 

**The a f g a d a  T e s t  S i t e  (139 1 4 9  15) and t h e  A t l a n t i c  R i c h f i e l d  Com- 
PanY have both proposed d r y  s t o r a g e  c o n c e p t s  f o r  s t o r i n g  s p e n t  
f u e l  t h a t  employ ca i s sons ,  o r  s i l o s ,  be low ground w i t h  no a u x i l i a r y  
coo l ing  . 



The ca i s son  concepts would r equ i r e  t h a t  s p e n t  f u e l  be p l aced  w i t h i n  a 
s t o r a g e  conta iner .  This  o p e r a t i o n  would be per formed i n  t h e  RPC and 
f u e l  could be d i t h e r  disassembled o r  l e f t  i n t a c t  f o r  s to rage .  The spent  
f u e l  s t o r age  con ta ine r s  would be placed wi th in  a bottom-loading sh ie lded  
cask and t ranspor ted  t o  t he  underground ca i s son  f a c i l i t i e s .  For  above- 
ground s to rage  t h e  c o n t a i n e r s  would be moved t o  t h e  C a i s s o n  Loading  
F a c i l i t y  f o r  i n s e r t i o n  i n t o  conc re t e  ca i ssons .  

A t  the  outdoor underground s to rage  s i te ,  a p la t form i s  p l aced  ove r  t h e  
s t o r a g e  ca i s son  to  i n t e r f a c e  with the  loaded spent  f u e l  c o n t a i n e r .  The 
loaded spent  f u e l  cask is placed on the platform u s i n g  a g a n t r y  c r a n e .  
The cask doors  and platform doors  a r e  opened and t h e  l o a d e d  s p e n t  f u e l  
c o n t a i n e r  is lowered by a c a p t i v e  h o i s t  i n t o  t h e  c a i s s o n .  Fo l lowing  
disengagement from the  con ta ine r ,  t he  h o i s t  cab le  r e t r a c t s  i n t o  the cask 
and the  doors on both t he  c a s k  and p l a t f o r m  a r e  c l o s e d .  The c a s k  i s  
placed on i ts t r a i l e r  and a s h i e l d i n g  p lug  i s  p l a c e d  on t h e  c a i s s o n .  
The p l a t f o r m  i s  t h e n  r e a d y  t o  be moved t o  t h e  n e x t  c a i s s o n '  and t h e  
on - s i t e  spent  f u e l  cask may be returned t o  t h e  RPC t o  p i c k  up a n o t h e r  
spen t  f u e l  conta iner .  

For aboveground c a i s s o n  s t o r a g e ,  t h e  s p e n t  f u e l  w i l l  be p l aced  i n t o  
c o n t a i n e r s  and t h e n  i n t o  c o n c r e t e  c a i s s o n s  i n  t h e  RPC. T h i s  would 
e l i m i n a t e  the need of an on-si te  t r a n s p o r t  cask, but i t  would complicate 
the  ma te r i a l  handling problems wi th in  t h e  RPC and t h e  C a i s s o n  Loading  
F a c i l i t y  ( s e e  Drawings  533D-A-5014 and 533D-A-5015). The c o n c r e t e  
ca i s sons  w i l l  be bulky and very  heavy (about  100 tons) .  

An a l t e r n a t i v e  t o  t he  Caisson Loading F a c i l i t y  would be t o  t r anspo r t  the  
spen t  f u e l  con ta ine r s  i n  a cask t o  the  ca i sson  s to rage  a rea .  A s e p a r a t e  
f a c i l i t y  b u i l t  s p e c i f i c a l l y  f o r  l o a d i n g  t h e  f u e l  c o n t a i n e r s  i n t o  
conc re t e  ca i s sons  would be loca ted  ad j acen t  t o  the  outdoor s to rage  a rea .  
A sh ie lded  mobile boom crane would be used to  place the loaded c o n c r e t e  
ca i s sons  i n  place aboveground. 
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71 0 ENGINEERED BERM . , 

. . 

' : / .  

The ca i s son  s to rage  ' concepts  discussed i n  t h i s  r e p o r t  may, o r  may n o t ,  
r e q u i r e  an engineered,  be&. This would . .  be . decided by a ,  s a f e t y  a n a l y s i s .  
I t  was assumed t h a t  t h e  'be1,ow g r o u n d  c o n c e p t s  'would  r e q u i r e  a n  
engineered berm, while the  aboveg.round concepts  , would . .  not. ' 

By using an engineered berm*,. the  e n t i r e .  c a i s son ,  ,assembly may be p l aced  
i n  s o i l  above' grade. level. ,  The berm is e r e c t e d .  from m a t e r i a l s  h a v i n g  
known permeabi l i ty  and ion  exchange p rope r t i e s .  The ca i s sons ,  which may 
b e  m e t a l ,  a r e  t h u s  i s o 1 , a t e d  from t,he . ' n a t g r a l  s o i l ,  .which c o u l d  be  , 

a c i d i c .  T h i s  app roach  a l s o  a l l o w s  a t h ' r e e - d i m e n s i o n a l  d r y - w e l l  ' 

monitor ing system t o  be i n s t a l l e d  before  the berm m a t e r i a l s  a r e  set  i n  
place.  Any leakage i s  monitorable  bile s t i l l  wl th in  the  berm.(4) 

The use of a berm a l s o  he lps  i n  determining t h a t  the containment systems 
w i l l  not be breached during a des ign  b a s i s  seismic e v e n t  o r  a t o r n a d o .  
It  i s  much e a s i e r  t o  c a l c u l a t e  the e f f e c t  of de s ign  b a s i s  a c c i d e n t s  i f  
t h e  p r o p e r t i e s  of t h e  s o i l  a r e  w e l l  known,  a s  i n  t h e  c a s e  of  a n  
engineered berm. 

An example of an engineered berm is  shown i n  Figure 7-1. A c l a y  pad i s  
l a i d  a t  t h e  e x i s t i n g  g r a d e  l e v e l  and i s  c o v e r e d  w i t h  a l a y e r  of 
r e l a t i v e l y  l a r g e  aggregate .  The purpose of t he  c l a y  and g r a v e l  l a y e r s  
i s  t o  break the  c a p i l l a r y  communication between t h e  o r i g i n a l  s o i l  and 
t h e  berm. The a g g r e g a t e  i s  t h e n  cove red  w i t h  a n o t h e r  c l a y  l a y e r  t o  
provide a d d i t i o n a l  c a p i l l a r y  c o n t r a s t .  The r ema inde r  of t h e  berm i s  
cons t ruc ted  of a homogeneous f i l l  having known ion  exchange p r o p e r t i e s  
and a pore s t r u c t u r e  which is  more open and f r e e  dra in ing  than t h e  c l a y  
pads. 

I n  the  f i l l ,  above the  c l a y  pads ,  a h o r i z o n t a l  ne twork  of m o n i t o r i n g  
p ipes  is  l a i d  which can be made of any app rop r i a t e  m a t e r i a l .  The berm 
m a t e r i a l  i s  added and capped with ano the r  r e l a t i v e l y  impermeable  c l a y  
l a y e r .  The toe  of t he  berm is  open, i n  the manner of an e a r t h  f i l l  dam, 
t o  provide an escape rou t e  f o r  water which may pass  t h r o u g h  any  b r e a c h  
i n  t he  c l a y  cap. A monitorable  su r f ace  dra inage  system is provided  f o r  
s u r f a c e  run-of f  from the  berm. 

I n  t he  case of underground ca i s son  s to rage  concepts ,  holes  a r e  excavated 
i n  t he  berm and corrugated c a i s s o n s  ( o r  c o n c r e t e  " s i l o s " )  a r e  s e t  i n  
place.  Large a g g r e g a t e  i s  p l a c e d  a round t h e  m e t a l l i c  c a i s s o n .  The 
purpose of the  aggregate  i n  t h i s  case i s  t o :  ( 1 )  b r e a k  t h e  c a p i l l a r y  
communication between the ca i s son  i t s e l f  and the s o i l ,  and ( 2 )  i n s u l a t e  
t he  metal from any a c i d i c  s o i l .  

*An engineered berm such  a s  d e s c r i b e d  h e r e  becomes a b a r r i e r  i n  t h e  
confinement system. It could r ep l ace  one of the  fue l  con ta ine r s  except 
i n  t he  na tu ra l  convect ion case  where the berm is bypassed. 



. . 

The ca i s son  may be equipped with'  a dip.' l e g  f o r  monitoring purposes which 
is ,  i n .  t u r n ,  equipped 'with a va lve  and a p re s su re '  gauge.  'An accumula- 
t i o n  of .water  o r  change  i n  a c t i v i t y  l e v e l  I n s i d e  t h e  c a i s s o n  c a n  be . . 
d e t e c t e d  v i a  t h i s  r o u t e .  B e s i d e  e a c h  c a i s s o n  is a d r y , w e l l  which,  
coupled wi th  the  underlying. p i p e  ne twork ,  y i e l d s  a t h r e e - d i m e n s i o n a l  
" f i x "  on any leaked r a d i o a c t i v i t y . .  ;The c o v e r  b locks . '  are d e s i g n e d  t o  
s e a l  t he  top '0.f the  cai.sson. . . ' 

. . 

Since  ca i s son  breathing w i l l  be minor and since tornado c r i t e r i a  (3. p s i )  " . .  . 

. i s  not  s u f f i c i e n t  t o  break a prop 'e r ly  design cover-block s e a l ,  t h e r e  is  
no r e a s o n  t o  p r o v i d e  f o r  ' c o n t i n u a l  a i r f i o w .  I f ,  however ,  ' t h e  need 
a r i s e s ,  a small  HEPA f i l t e r  c o u l d  'be mounted on the .  d i p  tub'e and t h e  
v a l v e  l e f t  open. 
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8.0 DISCUSSION. 

Regardless  of the  spent  f u e l  s t o r age  ,,concept. eniployed , c e r t a i n '  f e a t u r e s  
w i l l  be common to  all. The d ry  s to rage  f a c i i i . t y  ( c a i s s o n ,  v a u l t  , etc  . ) 
may be divided i n t o  the  fol lowing f u n c t i o n a l  areas(21)  inc lud ing  : 

(1) A t ruck . and  r a i l r o a d  rece iv ing  bay providing washdown of v e h i c l e s  
and a i r  l ock  v e n t i l a t i o n  c o n t r o l  

( 2 )  A cask rece iv ing  and decontaminat ion. .area where c a s k s  a r e  removed 
and decon tamina t ed  b e f o r e  b e i n g  p l aced  o n t o  o n - s i t e  t r a n s p o r t  
v e h i c l e s  

. . 

(3)  Various opera t ing  a r e a s  f o r  c o n t r o l  and ope ra t i on  of the  f a c i l i t y  
. , , . 

( 4 )  A f u e l  handling and. t r a n s f e r  -a rea  where . ' fue l  is  removed from t h e  
shipping casks i n  a  dry  e n v i r o n m e n t ,  i n s p e c t e d ,  p l a c e d  w i t h i n  a  
s t o r a g e  con ta ine r ,  and t r a n s f e r r e d  ' t o  s t o r a g e .  . .  

(5) A f u e l  s t o r age  a r e a  f o r  the  d r y  s t o r a g e  of LWR spent  nuc lear  fue l  . 

( 6 )  Miscellaneous ' support  a r e a s  providing f o r  emergency power,  h e a l t h  
p h y s i c s ,  e m e r g e n c y  m o n i t o r i n g ,  , h e a t i n g ,  . v e n t i l a t i o n ,  ' d a t a  
a c q u i s i t i o n ,  etc'. . . ,  

. . 

Each concept d i scussed ,  i n  a d d i t i o n ,  may o r  may n o t  u t i l i z e  f u e l  d i s -  
assembly and encapsula t ion  which has the' e f f e c t  of r e d u c i n g  t h e  volume 
occupied by the  f u e l  and reducing the  number of ' c a n i s t e r s  by a  f a c t o r  of. 
two and e l imina t ing  nonfuel-bearing components from s torage .  

Regardless  of t he  v a u l t  c o n c e p t  chosen  f o r  d r y  s t o r a g e ,  t h e  s t o r a g e  
r acks  must be designed t o  remain s u b c r i t i c a l  f o r  all c r e d i b l e  degrees  of 
moderation, r e f l e c t i o n ,  and s t o r e d  f u e l  i n t e r a c t i o n .  The r a c k s  must 
a l s o  be d e s i g n e d  t o  m a i n t a i n  t h e i r  s t r u c t u r a l  i n t e g r i t y  d u r i n g  a l l  
c r e d i b l e  acc ident  s c e n a r i o s .  The d e s i g n  of c r i t i c a l l y  s a f e  s t o r a g e  
racks  is s i m i l a r  f o r  each of t h e  v a u l t  s t o r a g e  o p t i o n s .  It  might  be 
p o s s i b l e ,  however, t o  f a b r i c a t e  dry  s to rage  racks from ca rbon  s t e e l  o r  
o t h e r  m a t e r i a l s  less. c o s t l y  than the  mater ia l s '  of c o n s t r u c t i o n  (gene r -  
a l l y  s t a i n l e s s  s t e e l )  used f o r  underwater s to rage .  A d'ry s to rage  f a c i l -  
i t y  would r e s u l t  i n  a  s l i g h t l y  h igher  exposure to  the genera l  p u b l i c  i n  
t h e  event of a  c r i t i c a l i t y  i n c i d e n t ,  b u t .  would. be so d e s i g n e d  a s  t o  
s t i l l  remain wi th in  e x i s t i n g  guidel ine 's .  C r i t i c a l i t y  w i t h i n  a  c a i s s o n  
i s  not a  problem, a s  discussed i n  t h i s '  r epo r t  ( t h e r e  is only one s to rage  
c o n t a i n e r  i n  each ca i sson) .  

I n  dl the  concepts  discussed i n  t h i s  r e p o r t ,  t he  fue l  i s  placed w i t h i n  
a  f u e l  s t o r a g e  c o n t a i n e r .  Whether t h e  f u e l  i s  l e f t  i n t a c t  ( o n e  
assembly /conta iner )  o r  compacted v i a  d i s a s s e m b l y  ( two PWR o r  f o u r  BWR 
a s sembl i e s / con ta ine r ) ,  i t  w i l l  be p l aced  w i t h i n  a  s t o r a g e  c o n t a i n e r .  
This  s to r age  con ta ine r  w i l l  p r o t e c t  and conta in  t h e  f u e l  f o r  a minimum 
period of 20 years .  The most l i k e l y  m a t e r i a l  o f .  c o n s t r u c t i o n  w i l l  be 



s t a i n l e s s  s t e e l ,  a l though o t h e r  m e t a l l i c  m a t e r i a l s  may be a c c e p t a b l e  
depending upon d e t a i l e d  engineer ing eva lua t ions .  The fue l  c o n t a i n e r  is  
assumed t o  be a  9-1/4 i n c h  by 9-1 /4  i n c h  s q u a r e  w i t h  118  i n c h  t h i c k  
wal l s .  The 9-1/4 i nch  square des ign  was s e l e c t e d  because  i t  accommo- 
d a t e s  both i n t a c t  PWR assembl ies  and disassembled PWR and BWR spent  f u e l  
assembl ies .  The ends w i l l  be r e m o t e l y  m e c h a n i c a l l y  capped ,  a l t h o u g h  
remote welding of t h e  cap i s  poss ib le .  The l i d  w i l l  be tamper-proofed 
and each con ta ine r  w i l l  bear  an unremovable, e a s i l y  read,  i d e n t i f i c a t i o n  
number. 

There a r e  s eve ra l  reasons f o r  placing the  i n t a c t  fue l  assembl ies  w i t h i n  
f u e l  s t o r age  conta iners .  These r e a s o n s  i n c l u d e  : ( 1 )  t h e  f u e l  cou ld  
d rop  o f f  p a r t i c l e s  of r a d i o a c t i v e  crud,  c ladding ,  o r  even f u e l  and t h e y  
would s t i l l  remain secure  a t  the  bottom of t he  c o n t a i n e r  and would n o t  
contaminate  the  s to rage  a r e a ,  ( 2 )  f rom a n  a c c o u n t a b i l i t y  s t a n d p o i n t ,  
each  con ta ine r  can be i d e n t i f i e d  e a s i e r  from the  permanent markings made 
on each con ta ine r ,  ( 3 )  from a sa feguards  s t andpo in t ,  each c o n t a i n e r  may 
be  i n d i v i d u a l l y  capped and a  tamper-proof seal o r  l ock  may be a t t a c h e d  , 
( 4 )  t h e  racks w i l l  be l e s s  expensive t o  f a b r i c a t e  s i n c e  they may now be 
s imply s u p p o r t  b r a c k e t s  made from a n g l e  i r o n ,  p i p e s ,  e t c . ,  ( 5 )  t h e  
s t o r a g e  con ta ine r  may meet t h e  q u a l i f i c a t i o n s  t o  be c l a s s i f i e d  as a  
containment b a r r i e r  and, t h e r e f o r e ,  the f u e l  would be one s t e p  c l o s e r  t o  
permanent d i sposa l  even as i t  w i t e d  on i t s  i n t e r i m  d r y  s t o r a g e  s i t e ,  
( 6 )  from an opera t ions  s t andpo in t ,  t h e r e  would be a  maximum of two s i z e s  
of  s t o r a g e  con ta ine r s  (BWR and PWR) compared w i t h  v a r i o u s  w i d t h s  and 
l e n g t h s  of f u e l  assemblies ,  ( 7 )  a  f u e l  assembly encased i n  t he  proposed 
s t o r a g e  con ta ine r  would be a b l e  t o  b e t t e r  s u r v i v e  a c c i d e n t  s c e n a r i o s  
i n v o l v i n g  i m p a c t s ,  rough  h a n d l i n g ,  e tc. ,  and ( 8 )  i f  d e s i r e d ,  t h e  
c o n t a i n e r  could be loaded with fue l  and then some medium o t h e r  t h a n  a i r  
( h e l i u m ,  w a t e r ,  n e u t r o n  p o i s o n s ,  e t c .  ) c o u l d  be s e a l e d  w i t h i n  t h e  
c o n t a i n e r  t o  provide b e t t e r  hea t  t r a n s f e r ,  l e s s  co r ros ion ,  o r  reduce the 
p o s s i b i l i t y  of c r i t i c a l i t y .  It is not known, a t  t h i s  time, whe the r  t h e  
use of i nd iv idua l  con ta ine r s  would be b e n e f i c i a l  o r  u n d e s i r a b l e  i n  i t s  
impact upon seismic c r i t e r i a .  

8.1 I n t e g r a t i o n  'of Wet and Dry Storage 

I f  one were designing a  d r y  s to rage  f a c i l i t y  "from sc ra t ch , "  it  would be 
more economical t o  bu i ld  ' e i t h e r  wet pool s to r age  o r  d ry  s t o r a g e  bu t  no t  
both.  A unique advantage of the  BNFP i s  t h a t  a  f G 1  s to rage  des igner  is 
not  s t a r t i n g  from sc ra t ch . .  Indeed, t h e r e  is  a l r e a d y  an e x i s t i n g  pool  
s p e c i f i c a l l y  designed f o r  the s to rage  of LWR s p e n t  f u e l .  To i n c r e a s e  
t h e  s p e n t  f u e l  s t o r a g e  c a p a c i t y  of t h e  BNFP, orie h a s  a c h o i c e  of 
expanding pool s to r age  o r  adding d ry  s torage .  

I f  one were to  combine wet and dry s to rage  a t  the same l o c a t i o n  ( e .  g . ,  
BNFP), the  pool would be used fo r  high burnup fue l  r e c e n t l y  d i s c h a r g e d  
from a r e a c t o r ,  say one- t o  five-year-old fue l .  The d r y  s t o r a g e  would 
h a n d l e  o n l y  f u e l  t h a t  had been s t o r e d  a t  l e a s t  f i v e  y e a r s  a f t e r  
d i s cha rge  from a r eac to r .  This s eg rega t ion  of fue l  r e s u l t s  because  t h e  
wet s to r age  mode, due t o  water ' s  c a p a b i l i t y  t o  r e j e c t  g r e a t e r  q u a n t i t i e s  
of hea t  than a i r ,  is capable  of s t o r i n g  f u e l  which has  a  much h i g h e r  



hea t  load. This five-year o r  g r e a t e r  s t o r age  per iod  would n o r m a l l y  be 
accomplished a t  the  u t i l i t y  s to r age  pools but. could a l s o  be done a t  t h e  
BNFP pool. For example, assume. a g roup  of a s s e m b l i e s  t h r e e  y e a r s  o l d  
(from d ischarge)  i s  t r a n s p o r t e d  t o  t h e  BNFP and  p l aced  i n  t h e  pool .  
Af t e r  two more y e a r s ,  t h i s  f u e l  c o u l d  be removed and p l aced  i n  d r y  
s to rage .  

Of c o u r s e ,  t h e  o n l y  r e a s o n  one would want t o  remove f u e l  f rom w e t  
s t o r a g e  i n t o  d ry  s to rage  is i f  the  dry  s to rage  were less c o s t l y ,  s a f e r ,  
o r  s u i t a b l e  space was a l r eady  a v a i l a b l e  a t  the  f a c i l i t y .  Otherwise, one 
would j u s t  bu i ld  more pools and accommod'ate i nc reased  s t o r a g e  r e q u i r e -  
ments. Whether d ry  s to rage  i s  less c o s t l y  i s  d i f f i c u l t  t o  judge without 
a d e t a i l e d  cos t  comparison of t he  two s to rage  modes. I n t u i t i v e l y ,  t h e  
d r y  s to rage  would be l e s s  expensive because it is  l e s s  complex than pool 
s to rage .  However, Reference 21 concludes t h a t  w e t  and d r y  s p e n t  f u e l  
s t o r a g e  f a c i l i t i e s ,  based  on f e a s i b i l i t y  s t u d i e s ,  would r e s u l t  i n  
approximate1 y t he  same cos t .  

I f  f u e l  were s tored  long enough, perhaps 1 0  y e a r s  f o l l o w i n g  d i s c h a r g e  
from LWR's, t h e n  i t  cou ld  even be p o s s i b l e  t o  d e s i g n  a d r y  s t o r a g e  
f a c i l i t y  t h a t  r e l i e d  on pass ive  means f o r  h e a t  removal .  Such p a s s i v e  
means might inc lude  cool ing f i n s ,  h e a t  p i p e s ,  o r  n a t u r a l  c o n v e c t  i o n .  
Forced convection could be el iminated and along with i t  a l a r g e  p o r t i o n  
of t he  f a c i l i t y  cos t .  Using p a s s i v e  c o o l i n g ,  a d r y  s t o r a g e  f a c i l i t y  
would q u i t e  l i k e l y  cos t  l e s s  than a wet s to r age  pool. 

8.2 RPC and RMSC 

The use of t h e  RPC f o r  s p e n t  f u e l  s t o r a g e  i s  shown c o n c e p t u a l l y  i n  
Drawings 533D-A-5002 and 533D-A-5003. It was o r i g i n a l l y  i n t e n d e d  t o  
show t h a t  t he  RMSC could a l s o  be used f o r  f u e l  s t o r a g e ,  bu t  p h y s i c a l  
c o n s t r a i n t s  (e.g., l i m i t e d  he igh t )  w i t h i n  t he  RMSC and o the r  ope ra t i ona l  
uses  of the  c e l l  made t h i s  u n d e s i r a b l e ,  i f  n o t  i m p o s s i b l e .  The p l a n  
view (Drawing 533D-A-5002) shows the  proposed d i sa s sembly  equipment  i n  
t h e  RPC, and all of t he  equipment assoc ia ted  with r e p r o c e s s i n g  removed 
except  f o r  the e x i s t i n g  windows, manipula tors ,  and cranes.  

It is  assumed t h a t  the  FRSS pool is a l s o  u t i l i z e d  f o r  s t o r a g e  of f u e l  
( p a r t i c u l a r l y  f u e l  t h a t  ha s  no t  had a chance  t o  c o o l  a l ong  t ime) .  
T h e r e f o r e ,  f u e l  would e n t e r  t h e  BNFP i n  t r u c k  o r  r a i l  c a s k s  and be 
handled and unloaded i n  the  same manner t h a t  was o r i g i n a l l y  proposed f o r  
reprocess ing .  Fuel would e n t e r  t he  RPC v i a  the fue l  t r a n s f e r  canal ( see  
Drawing 533D-A-5003). Here t h e  f u e l  would e i t h e r  be d i s a s s e m b l e d  o r  
l e f t  i n t a c t .  In e i t h e r  c a s e ,  t h e  f u e l  would be p l aced  i n  a s t o r a g e  
c o n t a i n e r  and placed i n  the s to rage  rack. 

Compared t o  o the r  a l t e r n a t i v e s ,  the  use of the  RPC f o r  dry f u e l  s t o r a g e  
i s  imprac t ica l .  The t o t a l  s t o r a g e  a r e a ,  assuming t h e  f u e l  has  been 
compacted by disassembly, i s  o n l y  438 MTU. J u s t  a s  i m p o r t a n t  a s  t h e  
inadequate  c a p a c i t y  i s  t h e  f a c t  t h a t  t h e  use  of t h e  RPC f o r  s t o r a g e  
h inde r s  the  disassembly opera t ions  planned. f o r  the RPC. I f  d i s a s s e m b l y  
were n o t  conducted  i n  t h i s  c e l l ,  t h e  c a p a c i t y  would  n o t  i n c r e a s e  



( indeed ,  i t  decreases)  because the e x t r a  room made a v a i l a b l e  by removing 
t h e  disassembly equipment i s  more than l o s t  by the f a c t  t h a t  f u e l  i s  no 
longe r  compacted and i n t a c t  f u e l  assemblies  a r e  s tored .  

I n  a d d i t i o n ,  the s to rage  of f u e l  is expected t o  be f o r  an i n t e r im  period 
of t ime, approximately 10 t o  30 years .  The RPC i s  e s s e n t i a l  f o r  r ep ro -  
c e s s i n g  LWR fue l .  I f  the  RPC were committed to  s t o r a g e ,  t h e  p o t e n t i a l  
use  of t h e  BNFP, sometime i n  t h e  f u t u r e ,  f o r  r e p r o c e s s i n g  would be 
s e v e r e l y  r e s t r i c t e d .  For these  reasons,  the  RPC is considered impracti-  
c a l  f o r  s t o r i n g  spent  fue l  (except  f o r  r e l a t i v e l y  small  q u a n t i t i e s  used 
f o r  in -ce l l  opera t ions  o r  t e s t s )  and i t s  use f o r  t h i s  purpose  w i l l  no t  
be  pursued f u r t h e r .  

8.3 Contact Ce l l s  

The use of t he  contac t  c e l l s  (UPC, ILC, HLC, HILC, and PPC) a t  BNFP f o r  
t h e  d ry  s to rage  of spent  f u e l  i s  shown i n  Drawings  533D-A-5004 ( p l a n  
view) and 533D-A-5005 ( e l e v a t i o n  view). A l l  of t h e  e x i s t i n g  t a n k s  and 
p ip ing  a r e  shown removed and po r t i ons  of the  wal l s  between t h e  i n d i v i -  
dua l  c e l l s  would a l s o  be removed. An overhead c rane  has been added t h a t  
runs  t he  l eng th  of t he  f i v e  c e l l s .  Maintenance f o r  t h e  c r a n e  would be 
performed i n  the crane maintenance a r ea  ( former ly  t h e  PPC). A p o r t i o n  
of  t he  wall between t h e  RPC and t h e  HILC has  been removed (shown i n  
Drawing 533D-A-5005) t o  a l l ow  f u e l  t r a n s f e r  between the two c e l l s .  

Two of t he  nega t ive  f e a t u r e s  of u t i l i z i n g  the  RPC f o r  s to rage  a r e  e l imi-  
na ted  by using the  contac t  c e l l s ,  i .e. ,  the  l im i t ed  s to rage  capac i ty  and 
t h e  i n t e r f e r e n c e  with the  p o t e n t i a l  d i s a s s e m b l y  o p e r a t i o n s .  The o n l y  
major disadvantage of u s i n g  t h e  c o n t a c t  c e l l s  i s  t h a t  t h e  p o t e n t i a l  
o p t i o n  of using BNFP a t  some f u t u r e  d a t e  f o r  reprocessing would be l o s t .  
The f i v e  c e l l s  c u r r e n t l y  con ta in  most of t he  equipment necessary f o r  the 
s e p a r a t i o n  of the  d i sso lved  LWR f u e l  i n t o  uranium and plutonium s t r e a m s  
and the  subsequent processing of those streams. 

Fuel would be unloaded i n  the  FRSS po'ol and brought t o  t h e  RPC v i a  t h e  
t r a n s f e r  canal.  In the  RPC, t he  f u e l  i s  e i t h e r  p laced  i n  s t o r a g e  con- 
t a i n e r s  d i r e c t l y ,  o r  f i r s t  disassembled (compacted) and then placed i n t o  
s t o r a g e  conta iners .  The contained fue l  is then t r ans fe r r ed  by t h e  f u e l  
t r a n s f e r  c a r t  t o  the  contac t  c e l l  s t o r age  a rea .  An overhead crane l i f t s  
a  con ta ine r  ( f i l l e d  with f u e l )  and p laces  i t  i n  a  s to r age  rack. 

Due t o  the  height  of t he  c e l l s ,  f u e l  may be v e r t i c a l l y  s tacked (double-  
t i e r e d )  which y i e l d s  a  s t o r a g e  c a p a c i t y  of 3341 MTU f o r  d i s a s s e m b l e d  
f u e l  and h a l f  t h a t  f o r  noncompacted f u e l .  T h i s  i s  a  l a r g e  e n o u g h  
c a p a c i t y  t o  make the  contac t  c e l l s  a  v i a b l e  dry  s t o r a g e  o p t i o n  f o r  LWR 
s p e n t  fue l .  Any expansion of t h i s  capac i ty  would be d i f f i c u l t ,  however, 
s i n c e  these  c e l l s  a r e  surrounded by e x i s t i n g  f a c i l i t i e s .  

8.4 FRSS Pool 

The f u e l  rece iv ing  and s t o r a g e  s t a t i o n  pool may a l s o  be used f o r  the  dry 
s t o r a g e  of spent  f u e l  and is  shown i n  Drawings 533D-A-5006 ( p l a n  view) 



and 533D-A-5007 ( e l e v a t i o n  view). Fuel wodd e n t e r  the  BNFP i n  t ruck  o r  
r a i l  casks and be unloaded i n t o  the  t e s t  and decon tamina t ion  p i t .  ' The 
cask  would be cooled down by steam/water and then l i f t e d  by t h e  135- ton  
c r a n e  and lowered i n t o  the  Cask Unloading Pool (CUP) v i a  the cask access  
h a t c h  ( s e e  Drawing 533D-A-5007). The c rane  would be' unhooked from t h e  
cask ,  l e a v e  t he  CUP, and the  acces s  ha tch  would be replaced. 

Spent f u e l  i n s i d e  the  cask would be remotely removed and sen t  t o  the  RPC 
t o  be e i t h e r  disassembled and placed i n  a  con ta ine r  o r  t o  be placed i n t o  
a  con ta ine r  ' i n t a c t .  The con ta ine r i zed  f u e l  would be s e n t  back'  t o  t h e  
FRSS pool and ,p l aced  i n t o  a  s t o r a g e  r ack .  The c a p a c i t y  of t h e  FRSS 
would be about 976 MTU f o r  d i s a s s e m b l e d  f u e l  and 488 MTU f o r  i n t a c t  
f u e l .  

To convert  t he  FRSS pool t o  accommodate d r y  s p e n t  f u e l  s t o r a g e  would 
r e q u i r e  ex tens ive  modi f ica t ions .  In  wet s t o r a g e ,  t h e  wa te r  a c t s  a s  a  
r a d i a t i o n  s h i e l d ,  b u t  s i n c e  t h e  w a t e r  i s  removed f o r  d r y  s t o r a g e ,  a 
s t r u c t u r e  would need to  be added over the pool a r e a  t o  p r o v i d e  s h i e l d -  
ing. A l a r g e  movable sh i e ld ing  wal l  would a l s o  need to  be added to  seal 
o f f  t h e  CUP a r e a  t o  a l l o w  m a i n t e n a n c e  t o  be performed on t h e  p o o l  
crane.  

The use  of t h e  FRSS f o r  d r y  f u e l  s t o r a g e  ' i s  a  m i s a l l o c a t . i o n  of 
resources .  Wet s t o r a g e . o f  spent  f u e l  is much b e t t e r  f o r  removing t h e r -  
mal loads ,  p a r t i c u l a r l y  from one- t o  five-year-old f u e l ,  than d r y  s t o r -  
age is. I n  a d d i t i o n ,  d r y  s t o r a g e  would decrease the  s torage  capac i ty  of 
t h e  pool and would add a d d i t i o n a l  c o s t s  due t o  t h e  many m o d i f i c a t i o n s  
requi red  t o  allow' t he  pool t o  be used f o r  d ry  s t o r a g e .  The use  of t h e  
FRSS f o r  d r y  s to rage  appears  undes i rab le  and imprac t ica l .  This  c o n c e p t  
w i l l  not be pursued f u r t h e r .  

8.5 Waste Tank 'S toraee  

The use of t he  e x i s t i n g ,  but modified, waste tanks a t  BNFP f o r  t h e  d r y  
s t o r a g e  of spent  f u e l  is shown i n  ~ r a w i n g s  533D-A-5008 ( p l a n  view) and 
533D-A-5009 ( e l eva t ion  view). As with the o the r  c o n c e p t s  d i s c u s s e d  so 
f a r ,  f u e l  e n t e r s  the  FRSS and i s  s e n t  t o  the RPC f o r  poss ib le  d i s a s sem-  
b l y  and con ta ine r i za t i on .  A t  t h i s  po in t ,  the  s c e n a r i o  changes  f o r  t h e  
waste tank s to rage  concept.  

The waste tanks ( t h e r e  a r e  t h r e e  400,000-gallon t anks  a t  t h e  BNFP) a r e  
l o c a t e d  away from the  Separa t ions  bu i ld ing ,  which conta ins  t h e  FRSS and 
RPC. To ge t  the  c o n t a i n e r i z e d  f u e l  f,rom t h e  S e p a r a t i o n s  a r e a  t o  t h e  
waste tanks r equ i r e s  the  use of an on-si te  t r anspo r t  cask. This cask is  
envis ioned t o  be bottom unloading, s i m i l a r  t o  an e x i s t i n g  c a s k  a t  t h e  
BNFP which was t o  be used to  t r anspo r t  h u l l s  conta iners .  The cask would 
t r a n s p o r t  one t o  f o u r  s p e n t  f u e l  c o n t a i n e r s  t o  t h e  was te  t a n k s  f o r  
unl.oading ( s ee  Drawing 533D-A-5009 ). 

A polar-type c rane  would be used to  d e p o s i t  t h e  f u e l  w i t h i n  a  s t o r a g e  
rack. A c r ane  maintenance and an operat ing/viewing a r e a  would a1  s o  be 
provided. A l l  of the  i n t e rna l .  p i p i n g  and equipment  now i n  t h e  was t e  



t anks  would be taken out.  The modi f ica t ions  r equ i r ed  t o  t r a n s f o r m  t h e  . 
waste  tanks i n t o  a  dry  spent  f u e l  s t o r a g e  f a c i l i t y  a r e  e x t e n s i v e  and 
c o s t l y .  

A l l  t h r e e  waste tanks toge ther  would provide about 360.0 MTU c a p a c i t y  f o r  
disassembled fue l  and about 1800 MTU c a p a c i t y  of i n t a c t  f u e l .  F u t u r e  . . 

expansion would be l l lni ted by phys ica l  c o n s t r a i n t s  and economics. 

The use ,of  the  waste tanks f o r  dry s t o r a g e  of spent  f u e l  a p p e a r s  t o  be 
u n r e a l i s t i c  and uneconomical compared w i t h  some of t h e  o t h e r  c o n c e p t s  
reviewed i n  t h i s  r epo r t .  The l i m i t e d  expansion c a p a b i l i t y , .  t h e  c o s t 1  y  
m o d i f i c a t i o n s ,  and t h e  d i f f i c u l t  o p e r a t i n g  c o n d i t i o n s  c o m b i n e  t o  ' 

e l i m i n a t e  t he  waste tanks from f u r t h e r  cons ide ra t i on  i n  t h i s  r epo r t  a s  a  ' . 

d r y  spent  fue l  s t o r age  concept. 

8.6 PNC No. 1  and No. 2  

The use of the  p lu tonium n i t r a t e  c e l l s  (PNC) f o r  t h e  d r y  s t o r a g e  of . . 

spen t  f u e l  is shown conceptua l ly  on Drawings 533D-A-5010 (plan view) and 
533D-A-5011 ( e l e v a t i o n  view). Spen t  f u e l  e n t e r i n g  t h e  BNFP, i n  t h i s  . . 

concept ,  would f i r s t  be con ta ine r i zed  i n  t h e  RPC and p l aced  i n s i d e  an 
on - s i t e  t r a n s p o r t  cask. The cask would be t r a n s p o r t e d  by t r u c k  t o  t h e  
ca sk  unloading bay which would be b u i l t  next t o  the PNCs. 

The cask would be removed from the  t r u c k ,  l i f t e d  up, and t h e n  lowered  
through the  access  hatch i n t o  the  cask unloading c e l l .  The f u e l  would 
be  removed from the  cask and placed h o r i z o n t a l l y  i n  t h e  s t o r a g e  a r e a .  
H o r i z o n t a l l y  o r i e n t e d  s t o r a g e  was s e l e c t e d ,  d e s p i t e  o p e r a t i o n a l  
p r o b l e m s ,  b e c a u s e  t h e  e x i s t i n g  c e l l  h e i g h t  p r e c l u d e s  v e r t i c a l  
placement. ' 

The wa l l s  of the e x i s t i n g  PNC's a r e  from 18- t o  20-inches t h i ck .  To be 
used f o r  spent  f u e l  s to rage ,  t h e  w a l l s  would need t o  be i n c r e a s e d  i n  
t h i c k n e s s  by th r ee  t o  four  f e e t .  In  a d d i t i o n ,  the  m l l  s e p a r a t i n g  c e l l  
No. 1 f rom c e l l  No. 2  would need t o  be removed a s  would a l l  of t h e  
e x i s t i n g  s l a b  tanks  and s h i e l d i n g  p a n e l s .  A l l  of t h e  f a c i l i t i e s  t o  
unload the  cask and handle the  f u e l  would need to  be cons t ruc ted .  

The use of the  PNC's would r e s t r i c t  the p o t e n t i a l  use of t h e  BNFP f o r  
r ep roces s ing  spent  fue l .  Physical  c o n s t r a i n t s  w u l d  l i m i t  the expansion 
o f  t he  PNC's i f  a d d i t i o n a l  s t o r age  was des i r ed .  The presen t  capac i ty  of 
t h e  PNC s t o r a g e  concep t  i s  366 MTU. Because of t h e  many n e g a t i v e  
f e a t u r e s  of using the PNC1s f o r  f u e l  s t o r age  (most no tab ly  the ex tens ive  
mod i f i ca t i ons  'and new c o n s t r u c t i o n  r e q u i r e d ) ,  t h i s  concep t  h a s .  been 
r e j e c t e d  and w i l l  not be s tud ied  f u r t h e r .  

8.7 Emergency .. - - - U t i l i t y  - - - . . - - . . - Area . . .. (EUA) . . ..- - - - 

A s  with many of the  o ther  concepts  reviewed, the  use of the EUA f o r  fue l  
s t o r a g e  only makes sense ( t o  even c o n s i d e r )  i f  i t  i s  assumed t h a t  t h e  
use of the  BNFP f o r  reprocessing is  .no t  a  v i ab l e  op t ion ,  i . e . ,  t h e  BNFP 
would not be used f o r  reprocessing.  The EUA, m o d i f i e d  f o r  s p e n t  f u e l  



s t o r a g e ,  is shown conceptua l ly  i n  Drawings 533D-A-5012 ( pla ,n  view) and 
533D-A-5013 ( e l e v a t i o n  view). Spent f u e l  would f i r s t  be c o n t a i n e r i z e d  
i n  the  RPC ( d i s a s s e m b l y  i s  o p t i o n a l  ) and s e n t '  t o  t h e  EUA i n s i d e  an 
on-s i te  t ruck  cask. . . .  

The cask would be placed i n s i d e  a  cel l  and remotely unloaded. The spent  
f u e l  would be placed i n  s to rage  racks v i a  cranes.  The capac i ty  a s  shown 
i n  Drawing 533D-A-5012 i s  2680 MTU. 

Very l i t t l e  of t he  e x i s t i n g  EUA bu i ld ing  would be usable  i n  i t s  p r e s e n t  
form. A l l  of the  equipment p r e s e n t l y  i n s i d e  would need t o  be removed. 
The e x i s t i n g  wal l s  would need to  be increased i n  th ickness  (by  t h r e e  t o  
f o u r  f e e t )  and a d d i t i o n a l  ho t  c e l l s  would need t o  be c o n s t r u c t e d  f o r  
handl ing the  spent  f u e l .  The modi f ica t ions  would be very e x t e n s i v e ,  i n  
f a c t ,  i t  would probably be e a s i e r  and perhaps less c o s t l y  t o  bu i ld  a  new 
f a c i l i t y  r a t h e r  than t ry ing  t o  modify t h e  EUA. O v e r a l l ,  t h e  n e g a t i v e  
a s p e c t s  of u t i l i z i n g  the  EUA f o r  spent  f u e l s  s t o r age  outweigh any  pos i -  
t i v e  f a c t o r s .  T h e r e f o r e ,  t h e  EUA w i l l  be e l i m i n a t e d  from f u r t h e r  
c o n s i d e r a t i o n  a s  a  d ry  spent  f u e l  s t o r age  f a c i l i t y .  

8.8 Caisson S torage  Aboveground 

Caisson s torage  aboveground w i l l  f i r s t  r e q u i r e  t h a t  incoming f u e l  be 
con ta ine r i zed  i n  the  RPC, where i t  may a l s o  be disassembled ( o p t i o n a l ) .  
The packaged spent  f u e l  w i l l  be t ranspor ted  through the  GVOS f u e l  t rans-  
f e r  tunnel (new cons t ruc t ion )  and i n t o  the  Caisson Packag ing  F a c i l i t y .  
Once the  f u e l  i s  placed i n t o  a  c o n c r e t e  c a i s s o n ,  t h e  c a i s s o n  w i l l  be 
loaded onto a  t ruck  and sen t  t o  the  aboveground ca i s son  s to rage  a rea .  

8.8.1 Caisson Packaging F a c i l i t y  

The Caisson Packaging F a c i l i t y  (CPF) i s  shown i n  Drawings 533D-A-5014 
( p l a n  view) and 533D-A-5015 ( e l e v a t i o n  view). This f a c i l i t y  is not used 
f o r  s to r age  i n  the aboveground ca i s son  c o n c e p t  bu t  o n l y  t o  l o a d  s p e n t  
f u e l  con ta ine r s  i n t o  concre te  ca i ssons .  

The concre te  ca i ssons  themselves  a r e  ass.umed t o  be f a b r i c a t e d  a t  t h e  
BNFP s i t e  and t r a n s . p o r t e d  t o  t h e  CPF. The t r a n s p o r t i n g  v e h i c l e ,  
presumably a  l a r g e  f la t -bed t ruck ,  would back i n t o  the  CPF . t r uck  loading 
and unloading bay., The ca i s son  handl ing c r a n e  would unload t h e  empty 
c a i s s o n  and s e t  i t  down i n  the  ca i sson  s torage  area.. 

To load a  ca i s son  w i t h  f u e l ,  an  empty c a i s s o n  would be t a k e n  o u t  of 
s t o r a g e ,  v i a  the s to rage  c r a n e ,  and lowered  i n t o  t h e  c a i s s o n  l o a d i n g  
c e l l  through the access  hatch i n  the  c e l l ' s  c e i l i n g .  The c a i s s o n  would 
be detached from the  c rane ,  the  c rane  would be l i f t e d  ou t  of t h e  c e l l ,  
and the cover blocks i n  the c e i l i n g  would be r ep l aced .  The l i d  on t h e  
c a i s s o n  would be removed with the  i n - ce l l  crane. 

Meanwhile, spent  f u e l  con ta ine r s  would be l oaded  i n t o  a  f u e l  t r a n s f e r  
c a r t  i n  the  RPC and decontaminated i n  the fue l  t r a n s f e r  tunnel.. Smear 
samples would be taken and d e p o s i t e d  i n t o  a  g lovebox where r a d i a t i o n  



readings  would be taken. I f  the' samples. showed the conta iner  was s t i l l  
t o o  "hot" from ex te rna l  .smearable contaminants,  i t  would ,be decontami-  . '. 
nated f u r t h e r  ( a  second d e c o n t a m i n a t i o n  f o r  any c o n t a i n e r  woutd be . .. 

unusual).  When the  con ta ine r  was deemed c lean ,  i t  m u l d  be t r a n s f e r r e d  
. . i n t o  the ca isson  loading c e l l  v i a  the  f u e l  t r a n s f e r  cart. 
. . 

I n  the  ca i s sqn  loading c e l l ,  the  overhead c r a n e  would l i f t  up a s p e n t  
f u e l  conta iner  and depos i t  i t  wi th in  a . c o n c r e t e  c a i s s o n .  The c a i s s o n  
l i d  would be placed back on top of the  ca isson  and locked .  The e n t i r e  
o p e r a t i o n  i n s i d e  the  ca i s son  loading c e l l  is f r e e  from contamination and 
once the spent  f u e l  is placed i n s i d e  the  ca isson ,  i t  i s  also e s s e n t i a l l y  
f r e e  of r ad i a t ion .  

A f i l l e d .  ca i sson  may be l i f t e d  out of the  c e l l  and temporar i ly  s e t  down 
i n  the  ca i s son  s to rage  a rea .  The s h i e l d i n g  p rov ided  by t h e  c a i s s o n ' s  
c o n c r e t e  r e d u c e s  o u t s i d e  s u r f a c e  r a d i a t i o n  l e v e l s  t o  s a f e  w o r k i n g  
l e v e l s .  . For t h i s  reason,  the  cais'son may be approached by personnel and 
t a s k s ,  such  a s  a t t a c h i n g  i d e n t i f i c a t i o n  t a g s ,  p a i n t i n g ,  a d d i t i o n a l  
locking  of t he  l i d s ,  e tc . ,  may be performed,manually without t h e  use of 
r emote  equipment .  When t h e  r e q u i r e d  s e c u r i t y  and  a c c o u n t a b i l i t y  
ope ra t ions  have been performed, the  c a i s s o n  i s  l i f t e d  by t h e  h a n d l i n g  
c rane  and s e t  upon the bed of t he  truck. This could be t h e  same t r u c k  
t h a t  brought i n  an enpty caisson.  The t r u c k  would then .  t r a n s p o r t  t h e  
c a i s s o n  to  the  on-si te  . s to rage  loca t ion .  

The s to rage  s i t e ,  known a s  the Caisson Spent Fuel S torage  Area (CSFSA), 
would c o n s i s t  of approximately 20 a c r e s  of land d e d i c a t e d  t o  d r y  s p e n t  
f u e l  s torage.  The s to rage  a r e a  i s  shown i n  Drawing 533D-A-5016. It 
would r e q u i r e  about 12 a c r e s  of land to s t o r e  2000 MTU of  mixed PWR and 
BWR f u e l .  This assumes disassembled fue l  spaced 1 5  f e e t  a p a r t ,  c e n t e r  
t o  center .  Two PWR assemblies  or  four  BWR assemblies  a r e  s tored  i n  each 
ca i s son .  

. . 8.9 Caisson Storage Below Ground . . 
:, 

The below ground ca isson  s to rage  a rea  is shown i n  Drawing 533D-A-5017. 
Fuel t h a t  a r r i v e s  a t  the Barnwell Nuclear Fuel P l a n t  and i s  de t e rmined  
t o  be des t ined  f o r  dry  s t o r a g e ,  would be f i r s t  s e n t  t o  t h e  RPC t o  be 
c o n t a i n e r i z e d .  The f u e l  would be p l aced  i n d i v i d u a l l y ,  o r  i n  sma l l  
groups,  wi th in  a metal conta iner .  A l i d  would be p laced  on t o p  of t h e  
c o n t a i n e r  and secured i n  place. 

Fuel con ta ine r s  would be loaded out of the  RPC ( o r  perhaps the RMSC) v i a  
a bottom loading cask,  s i m i l a r  to  the e x i s t i n g  h u l l s  c a s k  a t  t h e  BNFP. 
This  cask would be l i f t e d  onto a f l a t b e d  t r u c k  and t r a n s p o r t e d  t o  t h e  
below ground ca isson  s to rage  area.  A g a n t r y  crane would l i f t  the t rans-  
p o r t  cask and place i t  above a s t o r a g e  c a i s s o n .  The lower  s h i e l d i n g  
doors  on the cask would be opened and a fue l  conta iner  would be lowered 
i n t o  a caisson.  

The cask would be removed and the crane would place a concre te  sh i e ld ing  
l i d  over  t h e  loaded  c a i s s o n .  The c o n c e p t u a l  d e s i g n  o n l y  shows one 



con ta ine r  (two P,WR assemblies  o r  four  BWR a s sembl i e s )  i n  each  c a i s s o n ,  
a l though i t  would be poss ib le  t o  have more than one f u e l  c o n t a i n e r  per  
ca i sson .  

Each ca i s son  would inc lude  a concre te  pad,  a t  ground l e v e l ,  t o  a c c e p t  
t h e  s i z e  and weight of the  t r anspo r t  cask. These concre te  pads could be 
combined to  form a s o l i d  mat above  t h e  s t o r a g e  a r e a  o r  t hey  c o u l d  be 
j u s t  l a r g e  enough t o  support the cask, allowing f o r  d ra inage  between the  
conc re t e  pads. Which of these  v a r i a t i o n s  is used would depend upon cos t  
and d r a i n a g e  r e q u i r e m e n t s .  The c a i s s o n s  a r e  assumed t o  be s p a c e d  
15 f e e t  a p a r t  and w i l l  r equ i r e  about 12 a c r e s  of l a n d  f o r  2000 MTU o f  
f u e l  s t o r age  (assuming disassembled fue l ) .  Two PWR a s s e m b l i e s  o r  f o u r  
BWR assembl ies  a r e  s tored  i n  each caisson.  

The below ground s to rage  concept shown on Drawing 533D-A-5017 u s e s  an 
engineered berm. A d e t a i l e d  d e s c r i p t i o n  of such a berm i s  d i s c u s s e d  i n  
Sec t ion  7.0 of t h i s  r epo r t .  The below ground c a i s s o n s  cou ld  a l s o  be 
used i n  non-engineered s o i l ,  i f  a s a f e t y  a n a l y s i s  confirmed the v a l i d i t y  
of t h i s  app roach .  I n  g e n e r a l ,  t h e  below-ground s t o r a g e  concep t  i s  
viewed a s  being more d i f f i c u l t  t o  expand ( p a r t i c u l a r l y  i f  an e n g i n e e r e d  
berm is used) than would be the  aboveground s to rage  concept. 

8.10 S torage  Vault  Concept , .. . . .  . 

A dedica ted  v a u l t  s t o r age  concept f o r  t h e  d r y ,  i n t e r i m  s t o r a g e  of LWR 
spen t  f u e l  is shown i n  Drawings 533D-A-5018 (p lan  view) and 533D-A-5019 
( e l e v a t i o n  view). The conceptual f a c i l i t y  i s  shown a t tached  to  the =st 
s i d e  of the  e x i s t i n g  FRSS and the  south s i d e  of the e x i s t i n g  S e p a r a t i o n  
P l a n t  a t  the BNFP. 

A s  wi th  the  o t h e r  conceptual s t o r age  f a c i l i t i e s  and scenar ios  d i scussed ,  
t h e  s p e n t  f u e l  i s  f i r s t  c o n t a i n e r i z e d  i n  t h e  RPC. A s  w i t h  a l l  t h e  
concepts ,  the  fue l  may be l e f t  i n t a c t  o r  disassembled.  I n t a c t  BWR and 
PWR f u e l  would be i n d i v i d u a l l y  placed i n  approximately 6-inch square and 
9-inch square metal con ta ine r s ,  respec t ive ly .  Disassembled f u e l  would 
be placed i n  9-inch square con ta ine r s ;  2 PWR as sembl i e s / con ta ine r ,  o r  4 
BWR assembl ies /conta iner .  

F u l l  c o n t a i n e r s  of f u e l  would be s e n t  o u t  of  t h e  RPC t h r o u g h  a n  
a i r l o c k e d  decontamination a r e a  (which would be p a r t  of what i s  now t h e  
GVOS). The decontamination s t e p  is  opt iona l  s i nce  t h e  c o n t a i n e r s  w i l l  
remain i n  a ho t -ce l l  type v a u l t  r e m o t e l y  s t o r e d  f o r  pe rhaps  10  t o  30  
years .  The d e c o n t a m i n a t i o n  s t e p  may be used t o  f a c i l i t a t e  g e n e r a l  
"housekeeping" r a t h e r  than necessary t o  preclude the  spread of cnntami-  
n a t i o n  o u t s i d e  the  f a c i l i t y .  

The spent  f u e l  con ta ine r s  a r e  t r ans fe r r ed  from the decontamina t ion  a r e a  
i n t o  the  f u e l  s t o r age  area.  An i n - ce l l  crane w i l l  p l a c e  t h e  c o n t a i n e r  
i n  a s to r age  rack f o r  in te r im s torage .  The fue i  s t o r a g e  a r e a  shown on 
Drawing 533D-A-5018 has  a capac i ty  of about 2000 MTU, which is comprised 
of 70% BWR assemblies  and 30% PWR assemblies  ( s e e  Tab le  2.1). A c r a n e  
uai11,tenance area is  provided a t  the southern end of the  s torage  a rea .  
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9.0 CONCEPTS ELIMINATED FROM FURTHER CONSIDERATION 

The following concepts ,  d i scussed  i n  Sec t ion  8.0, have been e l i m i n a t e d  
from f u r t h e r  cons idera t ion :  

FRSS pool without water 
Waste tank s to rage  
Emergency U t i l i t y  Area Building (EUA) 
PNC Nos. 1 and 2  
Remote Processing Cel l  (RPC) 

The use of t he  FRSS pool f o r  d ry  s t o r a g e  of s p e n t  f u e l  was e l i m i n a t e d  
because:  ( 1 )  e x t e n s i v e  m o d i f i c a t i o n s  would be r e q u i r e d  t o  p r o t e c t  
personnel  from excess ive  r a d i a t i o n  e x p o s u r e  and t o  remove t h e  f u e l ' s  
t h e r m a l  l o a d ,  ( 2 )  u s e  of t h e  pool  f o r  d r y  s t o r a g e  d o e s  n o t  a l l o w  
a c c e p t a n c e  of even mode ra t e  q u a n t i t i e s  of s h o r t - c o o l e d  f u e l ,  and 
( 3 )  pools  appear t o  be more e x p e n s i v e  t h a n  h o t - c e l l  f a c i l i t i e s ;  a n d ,  
t h e r e f o r e ,  t h e  use of t h e  p o o l  f o r  d r y  s t o r a g e  a p p e a r s  t o  be a  
m i s a l l o c a t i o n  of s ca rce  resources .  

The use of t he  t h r ee  q i s t i n g  waste tanks f o r  d ry  s to rage  of s p e n t  f u e l  . . 
a t  BNFP was el iminated because: ( 1 )  e x t e n s i v e  m o d i f i c a t i o n s  would be 
r equ i r ed ,  ( 2 )  i t  would be a  m i s a l l o c a t i o n  of r e s o u r c e s ,  ( 3 )  s t o r a g e  

. capac i ty  would be r e s t r i c t e d  from e x p a n s i o n ,  ( 4 )  o p e r a t i o n s  would be 
awkward and d i f f i c u l t ,  and (5) i t  would s eve re ly  l i m i t  t h e  use  of BNFP 
a t  some f u t u r e  da t e  f o r  t he  reprocessi'ng of spent  fue l .  

The Emergency U t i l i t y  Area (EUA) was el iminated from f u r t h e r  c o n s i d e r a -  
t i o n  b e c a u s e  : ( 1 )  e x t e n s i v e  m o d i f i c a t i o n s  would be r e q u i r e d ,  
( 2 )  s t o r a g e  capac i ty  would be l i m i t e d ,  and (3) the  p o t e n t i a l  use of BNFP 
f o r  reprocessing would be r e s t r i c t e d .  

For s i m i l a r  r e a s o n s ,  t h e  p lu ton ium n i t r a t e  c e l l s  Nos. 1 and 2  were  
r e j e c t e d .  The PNC's would (1)  r e q u i r e  ex tens ive  modi f ica t ions ,  ( 2 )  have 
a  very l im i t ed  s t o r a g e  a r e a ,  ( 3 )  s e v e r e l y  l i m i t  t h e  use of BNFP f o r  
p o t e n t i a l  reprocessing,  and (4 )  r e q u i r e . b u i l d i n g  new access  f a c i l i t i e s .  

Las t l y ,  the  RPC was r e j ec t ed  b e c a u s e :  ( 1 )  s t o r a g e  c a p a c i t y  would be 
v e r y  l i m i t e d ,  ( 2 )  s t o r a g e  would i n t e r f e r e  w i t h  t h e  d i s a s s e m b l y  
ope ra t i ons ,  and (3) t h e  use of the RPC f o r  fue l  s to rage  would l i m i t  t h e  
p o t e n t i a l  use of BNFP f o r  poss ib le  r e p r o c e s s i n g  of s p e n t  f u e l  a t  some 
l a t e r  da te .  
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l0.0 SHIELDING ANALYSIS SUMMARY 

. I t  was d e t e r m i n e d  t h a t  PWR f u e l  w o u l d ,  i n  g e n e r a l ,  r e q u i r e  more  
s h i e l d i n g  than BWR f u e l ;  s o ,  t h e  s h i e l d i n g  a n a l y s i s  was based on PWR 
f u e l .  The a n a l y s i s  is  presented i n  the Addendum t o  t h i s  r epo r t ,  

The following f u e l  s p e c i f i c a t i o n s  were used i n  the  sh i e ld ing  a n a l y s i s :  

Fuel 
Maximum enrichment (%U235) 
Maximum burnup (MWdIMTU) 
Maximum s p e c i f i c  power (MWIMTU) ' 

Assembly ou t s ide  square  ( inches)  
Maximum a c t i v e  f u e l  l e n g t h  ( f e e t )  
Fuel loading (MTU per  assembly) 
Number of assemblies  i n  s to rage  (%) 
Can i s t e r  ou t s ide  square  ( inches)  
Can i s t e r  wal l '  th ickness  ( i nches )  . 

. Disassembled assemblies  per c a n i s t e r  

PWR 
4.1 

33,000 
3 5 

8.55 
12.5 

0.480 
70 

9.25 . 

0,125 
2 

An ORIGEN c a l c u l a t i o n  was performed t o  g e n e r a t e  n e u t r o n  and gamma-ray 
s o u r c e  t e rms  ( s e e  T a b l e  2  o f  Addendum). The computer  p rogram Q A D  
s h i e l d i n g  c a l c u l a t i o n s  i n c l u d e d  t h e  n e u t r o n - c o n c r e t e  K e r n e l  and 
gamma-ray p o i n t  K e r n e l  t e c h n i q u e s .  C o n c r e t e  n u c l i d e  d e n s i t i e s  a r e  
summarized i n  Table 4  of the  Addendum. The sh i e ld ing  models used i n  the 
QAD a n a l y s i s  a r e  i l l u s t r a t e d  i n  Figures  7  through 10 of the  Addendum. 

Fo r  s h i e l d i n g  a n a l y s i s  p u r p o s e s  an  a r r a y  of a b o u t  1 8 0 0  PWR f u e l  
con ta ine r s  was assumed to  be uniformly spaced wi th in  a  v a u l t  (ho t  c e l l ) .  
The con ta ine r s  ( 2  PWR assemblies  i n  each c o n t a i n e r )  a r e  assumed t o  be 
spaced about 15 inches  a p a r t ,  c e n t e r l i n e  t o  c e n t e r l i n e .  

An examp,le of t h e  s h i e l d i n g  a n a l y s i s  r e s u l t s  which shows o r d i n a r y  
c o n c r e t e  t h i c k n e s s ,  t o  a c h i e v e  a  0 .1  m i l l i r e m / h o u r  dose  r a t e ,  f o r  
va r ious  PWR assembly hea t  l oads ,  i s  shown below. More d e t a i l e d  r e s u l t s  
a r e  descr ibed and i l l u s t r a t e d  i n  the Addendum. 

Heat Load, Kw/PWR Assembly 

[0.1 mi l l i r emlh r  @ 1 f o o t ]  4.0 2.0 1.0 0.5 

Caisson wal l ,  t h i cknes s  ( i nches )  64 ' 63 6 1 57 
Cassion.  c e i l i n g ,  th ickness  ( inches)  ' 50 48 46 43 
Vault  w a l l ,  th ickness  ( inches)  ' ' 70 69 66 63 
Vault  c e i l i n g ,  th ickness  ( inches)  64 63 6 0 5 7 

The dose r a t e  of 0.1 mi l l i rem/hour  shown above is  a  c o n s e r v a t i v e  l i m i t .  
A more r e a l i s t i c  l i m i t  might 'be  abou t .1  mil l i rem/hour .  A c h a r t  s i m i l a r  
t o  the  one above is shown below f o r  a  dose r a t e  of 1.0 m i l l i r e m / h o u r  a t  
one foo t  from the  concre te  on the  "cold" s ide .  



Heat Load. Kw/PWR Assembly 

[1.0 mi l l i r emlh r  @ 1 f o o t ]  4.0 2.0 1.0 0.5 . . 

. . .  . . . ,  . 

Caisson wal l ,  th ickness  ( i nches )  .56  5 5 52 49 
Caisson c e i l i n g ,  th ickness  ( i nches )  42 40 38 3 5. . ,  . . . 

. . .  * .  

Vault  w a l l ,  t h i cknes s  ( i nches )  6 2 60 5 7 54 . . .  
... . . 

Vault c e i l i n g ,  th ickness  '( inches)  56 54 52 49' . . 

. . 

One can see  from the  above t h a t  f o r  reasonable  dose r a t e s  and hea t  l o a d s .  . 
, (which r e f l e c t  t he  time from r e a c t o r  d i scharge)  t h e  s h i e l d i n g  r e q u i r e d  ; . . 

, . 

from the  ca i sson  a l l s ,  i n  g e n e r a l ,  is  a b o u t  4 '  t o  5 f e e t  of o r d i n a r y  . . . ,  . .". I. . ,, 
, .. 

c o n c r e t e .  The s h i e l d i n g  r e q u i r e d  f o r  v a u l t  ( h o t  c e l l )  w a l l s ,  i n  ' ,,, 

g e n e r a l ,  i s  about 4-112 t o  5-11.2 f e e t  of o rd inary  concrete .  
. ' ,a 

I ,  . 

It should be noted t h a t  the  ca i s sons  w i l l  normally be much f u r t h e r  away 
than  one f o o t  which was used i n  t h e  s h i e l d i n g  a n a l y s i s .  I n  a c t u a l  
s t o r a g e  t he  ca i ssons  w i l l  be placed i n  an open a r e a  w i t h  a t  l e a s t  one 
f ence  surrounding the  s to rage  site. Personnel m u l d  not ge t  any c l o s e r  
t han  100 t o  200 f e e t  except t o  move o r  h a n d l e  t h e  c a i s s o n s  f o r  b r i e f  
pe r iods  of time. Therefore ,  t h e  w a l l  and c e i l i n g  t h i c k n e s s e s  of t h e  
c a i s s o n s  cou ld  p r o b a b l y  be reduced  w h i l e  s t i l l  m a i n t a i n i n g  s a f e  
c o n d i t i o n s  t o  personnel and t h e  genera l  publ ic .  

A summary of the ca i s son  w a l l  s h i e ld ing  requirements a t  10 and 100 f e e t  
from the  c a i s s o n ' s  e x t e r i o r  wall is given below. 

Heat Load 
KwIPWR Assembly 

Dis tance  Dose 
( f e e t )  (mremlhr) 4.0 2.0 0.1 0.5 

Caisson w a l l ,  th ickness  ( i nches )  10 0.1 57 55 52 50 
10 1.0 48 46 44 40 

0.1 41 40 38 34 

t 1.0 33 31 28 25 

Another dose r a t e  c a l c u l a t i o n  was made involving "sky shine" ( r a d i a t i o n .  
r e f l e c t e d  from a s o u r c e  by t h e  a t m o s p h e r e )  d u r i n g  t h e  l o a d i n g  of an 
underground caisson.  The dose would be received by personnel who would 
be semi-remotely i n s t a l l i n g  t he  sh i e ld ing  l i d  on .an underground ca isson .  
The f u e l  i n  t h i s  a n a l y s i s  was assumed to  have the following p r o p e r t i e s :  
4.1% en r i ched ,  29,000 MWd/MTU b u r n u p ,  32 MWIMTU s p e c i f i c  power, and 
2-year cooled (conserva t ive) .  The dose po in t  l o c a t i o n  i n  both cases  ws 
assumed to  be t h r ee  f e e t  above ground l e v e l .  The tops of the f u e l  r o d s  
were l oca t ed  a t  an e l eva t ion  of -5.5 f e e t  r e l a t i v e  to  ground l e v e l .  It 
was determined t h a t  the  dose r a t e s  due to  gamma sky s h i n e  from 1 .0  MTU 
o f  f u e l ,  l o c a t e d  i n  a n  o p e n  c a i s s o n  h o l e  i n  t h e  g r o u n d ,  w e r e  
170 mremlhour a t  10 f e e t  from the hole and 6 mremlhour a t  50 f e e t .  



11.0 THERMAL ANALYSIS SUMMARY 

The means of s t o r i n g  LWR spent  f u e l  w i l l  be based, t o  a  g r e a t  e x t e n t ,  on 
thermal cons ide ra t  i o n s .  An a n a l y s i s  was pe r fo rmed  t o  d e t e r m i n e  t h e  
f e a s i b i l i t y ,  f o r  v a r i o u s  c o n c e p t s ,  of s t o r i n g  s p e n t  f u e l  i n  a  d r y  
environment. The comple t e  a n a l y s i s  ( i n c l u d e s  s h i e l d i n g  and t h e r m a l  
cons ide ra t i ons )  i s  presented a s  an Addendum t o  t h i s  r e p o r t .  In  genera l ,  
su r f ace  and c e n t e r l i n e  t e m p e r a t u r e s  were d e t e r m i n e d  f o r  i n t a c t  f u e l ,  
disassembled f u e l ,  and f u e l  s t o r e d  i n  a r r a y s  f o r  t h e  v a r i o u s  s t o r a g e  
concepts .  Heat loads of 4  kW, 2  kW, 1 kW, 0.5 kW, and 0.25 kW p e r  f u e l  
assembly (bo th  BWR and PWR) were analyzed. Various concepts f o r  s t o r i n g  
the  spent  f u e l  i n  a  dry  mode were reviewed f o r  f e a s i b i l i t y  from a  t h e r -  
mal s tandpoin t .  Various means of coo l ing  such a s  n a t u r a l  c o n v e c t i o n ,  
f o r c e d  convec t  i o n ,  use  of h e a t  p i p e s ,  u se  ' of c o o l i n g  f i n s ,  and n o  
cool ing  devices  were a l s o  analyzed f o r  t h e i r  f e a s i b i l i  ty .  

. . 
11.1 No Aux i l i a ry  Cooling 

P a r t  of the thermal a n a l y s i s  was t o  d e t e r m i n e  t h e  f e a s i b i l i t y  of no t  
cool ing  the  spent f u e l  (no a u x i l i a r y  cool ing dev ices  1. It was assumed 
t h a t  the wa l l s  of t h e  v a u l t  were 5 - foo t  t h i c k  c o n c r e t e .  A 2000 MTU 
a r r a y  of 30% BWR/70% PWR a s s e m b l i e s  (more con ' s e rva t  i v e  t h a n  d e s i g n  
bases )  each with a  h e a t  load of 1 kW was assumed to  be s to red  w i t h i n  the 
v a u l t .  The temperatures reached by the f u e l  .and t h e  c o n c r e t e  were i n  
excess  of s a f e  s torage  condi t ions ,  which makes the "no cool ing" concep t  
i n f e a s i b l e .  This  s i t u a t i o n  r e s u l t s  from the low thermal conduct iv i ty  of 
conc re t e ,  the  r e l a t i v e l y  low ope ra t i ng  t e m p e r a t u r e  l i m i t  of c o n c r e t e ,  
and the r e l a t i v e l y  small  sur face  a r e a  w i th in  a  v a u l t  t o  d i s s i p a t e  h e a t .  
The decay  h e a t  f rom 2000 MTU of  s t o r e d  f u e l  i s  shown ( f o r  v a r i o u s  
i nd iv idua l  assembly hea t  loads)  i n  Table 9 of the  Addendum. 

The aboveground ca isson  concept with no cool ing i s  f e a s i b l e  f o r  i n t a c t  
and d i s a s s e m b l e d  f u e l  a s s e m b l i e s ,  i f  a d e q u a t e  s p a c e  s u r r o u n d s  each  
ca i s son .  Table 10 i n  the Addendum summarized the ca i sson  wa l l ,  c a n i s t e r  
s u r f a c e ,  and f u e l  p in  t empera tu re s  u t i l i z i n g  t h e  aboveground c a i s s o n  
concept .  

The below ground ca isson  concept with no c o o l i n g  i s  a l s o  f e a s i b l e  f o r  
i n t a c t  and disassembled f u e l  assemblies ,  i f  the  decay hea t  is  no g r e a t e r  
than  1 kW f o r  a  PWR and 0 .5  kW f o r  a  BWR f u e l  assembly .  C a l c u l a t e d  
temperatures  a r e  presented i n  Table 11 of the Addendum. 

1  1.2 Natura l  Convect ion  

The thermal ana lys i s  (Appendix B of the Addendum) i n d i c a t e s  t h a t  n a t u r a l  
convect ion cool ing i s  f e a s i b l e  and adequate t o  cool  v a u l t s  and c a i s s o n s  
t o  the maximum l i m i t  of decay hea t  s t u d i e s  ( 4  kW f o r  PWR and 2  kW f o r  
BWR f u e l  assembl ies ) ,  i f  the vau l t  and ca i sson  a r e  cons t ruc ted  t o  f r e e l y  
p e r m i t  t h e  e n t r a n c e  and e x i t  of a i r .  T h u s ,  t h e  u s e  of n a t u r a l  
convec t ion  r e l a t e s  no t  o n l y  t o  t h e r m a l  f e a s i b i l i t y  bu t  a l s o  t o  t h e  



s u i t a b i l i t y  of convecting a i r  around a  ca i s son  and r e l ea s ing  it i n t o  the 
environment ,without f  il t e r i n g  . P e r h a p s  d o u b l e  c o n t a i n m e n t  would be 
requi red  which would i nc rease  t h e  maximum f u e l  p i n  t e m p q r a t u r e .  The 
thermal a n a l y s i s  assumed - s ing l e  containmerit f o r  a l l  c o n c e p t s ,  .bu t  d i d  
no t  t ake  c r e d i t  f o r  any containment o f f e r e d  by t h e  f u e l  c l a d d i n g  ( t h e  
a c t u a l  con ta inmen t  s y s t e m . w o u l d  be d e c i d e d  by a  s a f e t y  a n a l y s i s ) .  
Table  12 of the Addendum p r e s e n t s  t e m p e r a t u r e s  i n  n a t u r a l  c o n v e c t i o n  
cooled . v a u l t s  and ca i ssons  e i t h e r  above o r  below ground. 

11.3 Forced Convection 

Inc reas ing  the  a i r f l o w  v e l o c i t y  by fo rced  c o n v e c t i o n  ( b l o w e r s )  v e r s u s  
n a t u r a l  convection r e s u l t s  i n  a  r e l a t i v e l y  small  'decrease i n  temperature 
d i f f e r e n c e  .between the a i r  and the fue l  s to rage  c a n i s t e r .  Using f o r c e d  . 

convect ion to  s i g n i f i c a n t l y  decrease  f u e l  pin temperature appea r s  t o  be 
f u t i l e .  The major advantage of forced convection is to  provide a  pos i -  
t i v e ,  cons t an t  supply of a i r  t h a t  a l lows the  placement of HEPA f i l t e r s  
w i t h i n  the v e n t i l a t i o n  system ( the  forced  a i r  sys tem can  overcome t h e  
p re s su re  d i f f e r e n t i a l  a c ros s  t he  f i l t e r s  and the ductwork). 

11.4 Heat Pipes  

Cooling by using heat  pipes is f e a s i b l e  fo r  all of the  s to rage  concepts.  
For example, i n  the vau l t  s t o r age  concept a  2-inch-diameter copper  h e a t  
p ipe  may be placed i n  the  c e n t e r  of fou r  c a n i s t e r s  which each  c o n t a i n  
two PWR disassembled fue l  assemblies  ( s e e  F i g u r e  18 i n  t h e  Addend um). 
Four f i n s ,  each  12 i n c h e s  l o n g ,  conduc t  8 kW of h e a t  from t h e  f u e l  
assembl ies  by na tu ra l  convect ion and r ad i a t i on .  The opera t ing  tempera- 
t u r e  of t h e  f i n s  is  est imated to  be 400 t o  450°F. The rack supports  may 
pas s  through holes  i n  the f i n s ,  which w i l l  no t  g r e a t l y  r e d u c e  t h e  f i n  
e f f i c i e n c y .  The number of h e a t  p i p e s  r e q u i r e d ,  i n  t h i s  example,  i s  
one-fourth of the t o t a l  number of f u e l  c a n i s t e r s  (assuming  2 kW h e a t  
load  per c a n i s t e r ) .  

11.5 Metal Fins  

. . 
The c o n c e p t  of u s i n g  f i n s  t h r o u g h  c o n c r e t e  w a l l s  i s  not  f e a s i b l e .  
Assuming a  t o t a l  conducting l eng th  of 6  f e e t  and the use of carbon s t e e l  
wi th  a  thermal conduct iv i ty  of 30 BTU/hr-f t-OF, the  maximum t e m p e r a t u r e  
d i f f e r e n t i a l  ac ross  the f i n s  is  400°F. By assuming a  maximum c o n c r e t e  
t e m p e r a t u r e  of 500°F ( v e r y  c o n s e r v a t i v e )  and a  t o t a l  decay  h e a t  of 
5089 kW (1.736 E 7  BTUIhr),  t h e  c r o s s  s e c t i o n a l  a r e a  of t h e  f i n s  
c a l c u l a t e s  t o  be approximately 26,000 s q u a r e  f e e t .  T h i s  r e p r e s e n t s  a  
p r o h i b i t i v e l y  l a r g e  mass of s t e e l .  To r educe  t h e  c o n c r e t e  t o  a  more • 
reasonable  temperature,  say less than  200°F,  would r e q u i r e  even more 
f i n s .  



12.0 CONCLUSIONS 

The s t o r a g e  of LWR s p e n t  f u e l  i n  a  d r y  e n v i r o n m e n t  a p p e a r s  t o  be  
t e c h n i c a l l y  f e a s i b l e  and i n t u i t i v e l y  more economical t h a n  wet s t o r a g e ,  
i f  e x i s t i n g  w e t  f a c i l i t i e s  a r e  n o t  a l r e a d y  a v a i l a b l e .  F o r  s m a l l  
q u a n t i t i e s  of spent  f u e l  ('an i nd iv idua l  r e a c t o r  s i t e ) ,  i t  i s  p r o b a b l y  
more economical t o  s t o r e  u t i l i z i n g  t h e  c a i s s o n  app roach  r a t h e r  t h a n  
v a u l t  s to rage .  For l a r g e r  q u a n t i t i e s  of s p e n t  f u e l ,  t h e  v a u l t  s t o r a g e  
concept is  probably l e s s  cos t l y .  

The major d i f f e r e n c e  among the  var ious  v a u l t  and ca i sson '  concepts  i s  the  
means of e l imina t ing  the  r a d i o l y t i c  decay hea t  from the  fue l .  The ther-  
mal a n a l y s i s  demonstrated t h a t  t he  on ly  concepts  t h a t  a r e  n o t  f e a s i b l e  
on a thermal b a s i s  a r e  the  "no a u x i l i a r y  cool ing" c o n c e p t s  and t h e  use  
of metal f i n s .  

The most t imely and l e a s t  c o s t l y  a p p r o a c h  a p p e a r s  t o  be s t o r i n g  t h e  
spen t  f u e l  a t  an e x i s t i n g  nuc lear  f a c i l i t y .  Prev ious  s t u d i e s ( 1 8 )  have  
surveyed e x i s t i n g  hot c e l l  f a c i l i t i e s  i n  the  United S t a t e s  t o  d e t e r m i n e  
t h e i r  a b i l i t y  t o  r e c e i v e ,  h a n d l e ,  d i s a s s e m b l e ,  and  r e c o n s t i t u t e  
f u l l - l e n g t h  Light  Water Reactor (LWR) spen t  f u e l  assemblies.  Several  of 
t h e  hot c e l l s  examined would be adaptab le  t o  the  s to rage  of spent  fue l .  

Of t h e  nine methods evaluated ( s e e  Tabl 'e 12-1 f o r  summary of s t o r a g e  
concep t s ) '  f o r  u t i l i z i n g  the  BNFP f o r  d ry  s to rage  of spent  LWR f u e l ,  f i v e  
have been r e j e c t e d  from f u r t h e r  cons ide ra t i on .  The f i v e  r e j e c t e d  con- 
c e p t s  a r e :  ( 1 )  FRSS pool without water ,  ( 2 )  waste  tanks,  ( 3 )  Emergency 
U t i l i t y  Area b u i l d i n g ,  ( 4 )  PNC Nos. 1 and 2 ,  and ( 5 )  t h e  RPC. The 
above concepts  were r e j ec t ed  f o r  a . v a r i e t y  of r e a s o n s ,  bu t  i n  g e n e r a l ,  
b e c a u s e  t h e y  r e q u i r e d  e x t e n s i v e  m o d i f i c a t i o n s  t o  t h e  BNFP, t h e  
ope ra t i ons  would be d i f f i c u l t ,  t h e  s t o r a g e  c a p a c i t y  would be l i m i t e d ,  
and t h e i r  use would s eve re ly  l i m i t  t he  use of BNFP f o r  o t h e r  p u r p o s e s ,  
e.g., reprocessing.  

The four  remaining concepts  a r e  all deemed f e a s i b l e  f o r  d r y  s t o r a g e  of 
LWR s p e n t  f u e l .  The f o u r  c o n c e p t s  i n c l u d e :  ( 1 )  c o n t a c t  c e l l s ,  
( 2 )  c a i s son  s to rage  aboveground, ( 3 )  ca i s son  s t o r a g e  be low g round ,  and 
( 4 )  a  dedicated s to rage  vau l t .  This  s t u d y  was made assuming  t h a t  t h e  
BNFP would not  be used f o r  reprocess ing  now o r  i n  t h e  f u t u r e .  I f  t h e  - 
BNFP were to  be used f o r  r e p r o c e s s i n g ,  t h e  c o n c e p t  of u t i l i z i n g  t h e  
con tac t  c e l l s  f o r  spent  f u e l  s t o r age  would be t o t a l l y  imprac t i ca l .  

The ca i s son  (above and below ground) and d e d i c a t e d  v a u l t  s t o r a g e  con- 
c e p t s  could be used a t  BNFP o r  a t  hundreds of o the r  poss ib le  l o c a t i o n s .  
However, e x i s t i n g  f a c i l i t i e s  a t  Barnwcll make the  use of t h e  BNFP v e r y  
a t t r a c t i v e  compared with v i r t u a l l y  any  o t h e r  p o t e n t i a l  s t o r a g e  s i t e ,  
inc lud ing  e x i s t i n g  n a t i o n a l  l a b o r a t o r i e s .  The BNFP may u t i l i z e  t h e  
e x i s t i n g  RPC f o r  f u e l  disassembly and c o n t a i n e r i z a t i o n .  The s i t e  a 1  s o  
has  a  r e l a t i v e l y  l a r g e ,  new, and uncontaminated pool t h a t  may be used to  
s t o r e  r e l a t i v e l y  hot f u e l  (cooled one to  f i v e  years  a f t e r  d i scharge  from 
an  LWR). In a d d i t i o n ,  t h e  c l o s e  l o c a t i o n  of t h e  RPC, t h e  p o o l ,  and 



a v a i l a b l e  ad jacent  land ( e i t h e r  f o r  v a u l t  s t o r a g e  o r  f o r  t h e  c a i s s o n  
load ing  f a c i l i t y )  w i l l  f a c i l i t a t e  the  handling of t he  spent  fue l .  . . 

To meet the sh i e ld ing  c o n s t r a i n t  of 0.1 mi l l i rem/hour  dose r a t e  l i m i t  a t  
one foo t  from the concre te  w a l l  o r  c e i l i n g  on t h e  " c o l d "  s i d e ,  4 3  t o  
70 i n c h e s  of o r d i n a r y  c o n c r e t e  a r e  r e q u i r e d  f o r  a  r a n g e  of 0 . 5  t o  
4.0 kW/PWR assembly, r e spec t ive ly ,  i n  c a i s s o n  o r  v a u l t  s t o r a g e  of LWR 
spen t  fue l .  To meet the  sh i e ld ing  c o n s t r a i n t  of 0.1 m i l l i r e m l  hour  dose  
r a t e  l i m i t  a t  ten f e e t  from t h e  c a i s s o n  c o n c r e t e  w a l l  on t h e  "co ld"  
s i d e ,  49 t o  57 inches  of o rd inary  concre te  a r e  r e q u i r e d  f o r  a  r ange  of 
0.5 t o  4.0 kW/PWR assembly i n  c a i s s o n  s t o r a g e  of LWR s p e n t  f u e l .  TO 
meet the  sh i e ld ing  c o n s t r a i n t  of 0.1 m i l l i r e m / h o u r  dose  r a t e  l i m i t  a t  
one hundred f e e t  from the ca i s son  concre te  wall on t h e  "co ld"  s i d e ,  3 3  
t o  42 i nches  of o rd inary  c o n c r e t e  a r e  r e q u i r e d  f o r  a  r ange  of 0 .5  t o  
4.0 kW/PWR assembly i n  ca i sson  s to rage  of LWR spent  fue l .  

Vaul t s ,  e i t h e r  above o r  below ground o r  f o r  i n t a c t  o r  d i sassembled  f u e l  
assembl ies ,  can n o t  a d e q u a t e l y  conduc t  s u f f i c i e n t  decay  h e a t  a c r o s s  
t h e i r  w a l l s  t o  d i s s i p a t e  t h e  h e a t  w i t h o u t  some t y p e  of a u x i l i a r y  
coo l ing  . 
A s ing l e - can i s t e r  c a i s s o n  above  ground can d i s s i p a t e  t h e  decay  h e a t  
adequate ly ,  but below ground, a u x i l i a r y  cool ing is required f o r  c a n i s t e r  
decay hea t  g r e a t e r  .than a p p r o x i m a t e l y  2 kW, depending  on e s t a b l i s h e d  
d e s i g n  c r i t e r i a .  

Natura l  convect ion c o o l i n g  of a  . v a u l t  and a  c a i s s o n  i n  which a i r  i s  
c i r c u l a t e d  i n t o  and out ,of the vau l t  and c a i s s o n  i s  f e a s i b l e  i f  l a r g e  
openings a r e  provided a t '  the  bot tom and t o p  of t h e  v a u l t  and c a i s s o n  
w i t h  no f i l t e r s  i n  the i n l e t  o r  o u t l e t .  No at tempt  ms made to  quant i fy  
p re s su re  drops ac ros s  f i l t e r s  and determine t h e i r  e f f e c t  on cooling. 

Fo rced  c o n v e c t i o n ,  a 1  t hough  n o t  t h e o r e t i c a l l y  n e e d e d  f o r  t h e r m a l  
per formance  of a  v a u l t  o r  . c a i s s o n ,  i s  d e s i r a b l e  t o  s u p p l y  s p e c i f i c  
q u a n t i t i e s  of c o o l a n t  a i r .  Forced c o n v e c t i o n  a l s o  a s s u r e s  a d e q u a t e  
p r e s s u r e  head f o r  f i l  t e r i n g  t h e  c o o l a n t  a i r ,  which might  e l i m i n a t e  
double  containment depending on s a f e t y  analyses .  

A proper ly  finned heat  pipe i s  a  good p a s s i v e  sys tem t h a t  can remove 
s u f f i c i e n t  q u a n t i t i q s  of decay  h e a t  i n  a  v a u l t  o r  c a i s s o n .  A l s o ,  
s u f f i c i e n t  numbers a r e  required t h a t  a  b u i l t - i n  redundancy  i s  provided  
when i n s t a l l e d  i n  a v a u l t ,  i. e., i f  s eve ra l  heat  pipes should f a i l  , t h e  
t o t a l  hea t  d i s s i p a t i o n  c a p a b i l i t y  would no t  be s i g n i f i c a n t l y  r educed .  
I n s t a l l i n g  metal f i n s  through the concre te  w a l l  of a  v a u l t  o r  ca i sson  is 
n o t  thermal ly  p r a c t i c a l  due t o  the amount of f i n s  r e q u i r e d  and i s  not  
recommended. 



TABLE 12-1 

SUMMARY 0F.SPENT FUEL DRY STORAGE CONCEPTS AT BNFP 

Disassembled 
Dry Storage (compacted) Remarks Concerning Dry Storage 

Locat ion Capaci ty  (MTU) of Spent Fue l  

RPC and RMSC 

Contact Cells 

FRSS Pool 

Waste Tanks 

438 Imprac t ica l  - l i m i t e d  capac i ty  - 
ope ra t i ona l  problems 

334 1 Des i rab le  assuming no reprocess- 
ing - F a c i l i t i e s  i n  place - c o s t  
e f f e c t i v e  - v e r t i c a l l y  s tacked 
( two t i e r )  

976 Imprac t ica l  - e x t e n s i v e  modif i- 
c a t  i ons  

3600 Undesirable  - e x t e n s i v e  modifi- 
c a t i o n s  

, . 
366 PNC No. 1 and No. 2 

EUA 2680 

Caisson - Aboveground 2000 + 
(un l imi ted  ) 

Caisson - Below ground 2000 + 
(un l imi ted  ) 

Vault  2000 + 

Imprac t ica l  - l i m i t e d  capac i ty  - 
ex tens ive  modi f ica t ions  

Undesirable  - e x t e n s i v e  modifi- 
c a t i o n s  

Acceptable s to rage  concept - 
some handling problems with 
heavy ca i ssons  

Good s to rage  concept - ha rde r  t o  
expand than aboveground - may 
r e q u i r e  engineered berm 

Good s to rage  concept - expansion 
i n  modules - e x i s t i n g  technology 



BLANK PAGE 



13.0 REFERENCES 

. , 

1. Doroszlai ,  P. G.; Fe r ron i ,  F. G.; ' and ~ a t k i n s ,  G. Y., Transport  and 
Dry S torage  of Spent Fuel  Elements, paper presented a t  the European 
Nuclear Conference 79, Hamburg, E lec t rowat t  E n g i n e e r i n g  S e r v i c e s ,  
Ltd., Zurich, Switzerland (May 1979). 

2. P a i n t e r ,  M. J.; and Meyer, H. S.., Des ign  a n d -  O p e r a t i o n  o f  a Dry 
Spent Fuel S torage  I n s t a l l a t i o n ,  Final  Summary f o r  the  1979 a n n u a l  
ANS meeting ( A t l a n t a ,  ~ e o r g i a )  , CONF790602-25, A l l i e d  Chemical 
Corporat ion,  Idaho Nat ional  Eng inee r ing  L a b o r a t o r y ,  Idaho F a l l s ,  
Idaho (1979). 

3. Blackburn, L. D., et al, Maximum Allowable Temperature f o r  S t o r a g e  
of Spent Nuc lea r  R e a c t o r  F u e l ,  Hanford E n g i n e e r i n g  Development  
Laboratory,  Richland, Washing ton ,  HEDL-TME 78-37, UC-70, an i n t e r im  
r e p o r t  (May 1978). 

4. Godfrey, W. L., 
High-Level GPT, Allied-General Nuclear  S e r v i c e s ,  Barnwel l  , South  
Caro l ina ,  NT/75/212 (May 1975). 

5. Henry, K. H. ; and Turne r ,  D. A., S t o r a g e  o f  S p e n t  U n r e p r o c e s s e d  
Fuel (SURF), Rockwell I n t e r n a t i o n a l  , .Roc kwe l l  Hanf o r d  O p e r a t i o n ,  
Richland, Washing ton,  RHO-SA-40  arch 1978). 

6.. King,  F. D.; and ,  Bake r ,  W. H., I n t e r i m ' S t o r a g e  of  S p e n t  F u e l  
A s s e m b l i e s ,  Savannah R i v e r  L a b o r a t o r y ,  Aiken , South C a r o l i n a ,  
CONF-760701-8, DP-MS-76-39 (1976). 

7. Thomas, L. L., On-Site So l id  Waste H a n d l i n g ,  T r a n s p o r t a t i o n ,  and  
S torage  - Base l ine  Descr ip t ion ,  A l l i ed -Gene ra l  Nuc lea r  S e r v i c e s ,  
NMS-4 (June 1977). 

8. S t a f f ,  S tud ies  and Research,Concerning BNFP: S torage  and Hand l ing  
o f  Wastes  f rom Uranium F u e l  P r o c e s s i n g  A l t e r n a t i v e s ,  A l l i e d -  
General Nuclear Se rv i ce s ,  AGNS-1040-3.3-34 (October 1978). 

9.. Anderson, K. J., et  al, Fina l  ~ e ~ o r t :  , ~ n ~ i n e e r i n ~  E v a l u a t i o n s  of 
Wastes Handling and  S t o r a g e  F a c i l i t i e s ,  A l l i ed -Gene ra l  Nuc lea r  
Se rv i ce s ,  AGNS-35900-4.2-26 (November 1979). 

10. ~emorandum: W. R Waltz t o  R. T. Anderson, "TMI-2 Fuel C h a r a c t e r -  
i s t i c s  - Decay Heat," NT/80/55 (February 27, 1980). 

11. Klein,  D., Dry S torage  of Spent Fuel from Light-Water-Reactors wi th  
Inhe ren t ly  Safe  A i r  Cooling, Nukem GmbH (August 1979). 

12. Barnes, R. W. ; and D r o l e t  , T. S., U t i l i t i e s  E x p e r i e n c e  w i t h  t h e  
S torage  of I r r a d i a t e d  Fue l ,  Ontar io  Hydro,  T o r o n t o ,  O n t a r i o ,  M5G 
1x6, paper presented a t  workshop on t h e  Management of Spent  Fuel 
and Radioact ive Wastes, Washing ton ,  D. C. (September 16-19, 1979). 



13. Ramspott, L. D., e t  al, Technica l  C o n c e p t  f o r  a T e s t  o f  G e o l o g i c  
S t o r a g e  of Spen t  Reac to r  Fue l  i n  t h e  C l i m a x  G r a n i t e ,  Nevada T e s t  
S i t e ,  Lawrence Livermore Labora to ry ,  UCRL-52796 (June 15, 1979). - 

14. S t a f f ,  Fuel T e m p e r a t u r e  T e s t  I n t e r i m  R e p o r t ,  Nevada T e s t  S i t e ,  
Westinghouse E l e c t r i c  Corpora t ion ,  WI:JBW:79-367 (October 1979). 

15. S t a f f ,  Drywell Spent  Fue l  T e s t  I n t e r i m  Thermal Repor t ,  Nevada T e s t  
S i t e ,  W e s t i n g h o u s e  E l e c t r i c  C o r p o r a t i o n ,  W I :  JBW: 79-388 Novem- 
b e r  1979). 

16. R ichards ,  L. M. ; and S z u l i n s k i ,  M. J., "Subsurface  S t o r a g e  of Com- 
m e r c i a l  S p e n t  N u c l e a r  F u e l , "  N u c l e a r  T e c h n o l o g y ,  Volume 4 3 ,  ' 

(mid-April 1979). 

17. Hicks,  T. G., Ed i to r - In -Chie f ,  S t a n d a r d  Handbook o f  E n g i n e e r i n g  
C a l c u l a t i o n s ,  McGraw-Hill Book Company, New York ( 1972 ). 

18. Menon, M. N., Spent Fue l  Handling and Packaging Program -- A Survey 
o f  Hot C e l l  F a c i l i t i e s ,  Hanford Engineer ing  Development Labora to ry ,  - 
HEDL-TME 78-53, UC-70 ( J u l y  1978). 

19. S t a f f ,  U. S. Department of Energy, N u c l e a r  Waste Management Pro-  
gram - Summary Document (FY 1980) ,  O f f i c e  of Nuclear Waste Manage- 
ment,  DOE/ET-0094, UC-70 ( A p r i l  1977). 

20. C o t t r e l l ,  J. E., e t  a l ,  C o n v e r t i n g  R e p r o c e s s i n g  P l a n t ' s  F u e l  
Rece iv ing  and S t o r a g e  Area t o  a n  Away-From-Reactor (AFR) S t o r a g e  
F a c i l i t v  - F i n a l  R e ~ o r t .  A l l i e d - G e n e r a l  N u c l e a r  S e r v i c e .  AGNS- 

21. Anderson, P. A. ; and  H. S. Meyer , Dry S t o r a g e  o f  S p e n t  N u c l e a r  
F u e l ,  Exxon  N u c l e a r  I d a h o  C o m p a n y ,  I n c  . , NUREG/CR-1223 
( A p r i l  1980). 

22. S t a f f ,  A l l i e d - G e n e r a l  N u c l e a r  S e r v i c e s ,  " D e s i g n  F u e l s ,  " D e s i g n  
C r i t e r i a ,  DC-519-002 ( J a n u a r y  1980). • 

23. S t a f f ,  U.S. Nuclear Regula to ry  Commission,  G e n e r i c  E n v i r o n m e n t a l  
Impact Sta tement  on Handling and S t o r a g e  of Spent L i g h t  Water Power 
Reac to r  Fue l ,  NUREG-0575, Vol. 1 (August 1979). 



REPORT NO. AGNS-3590e1.3-96 

ADDENDUM 

SPENT FUEL DRY STORAGE STUDIES AT BARNWELL NUCLEAR FUEL PLANT 

Kenneth J .  Anderson 

September 1980 

Allied-General Nuclear Services 
Post Off ice  Box 847 

Barnwell, South Carolina 2981 2 



. . . . 
F i n a l  Report 

. . , ( .  . . . 
. . 

on 

THERMAL AND SHIELDING AKAYLSIS ,I . 

. . . . 

OF THE 
,. . . . 

ALLIED CErfERAL KUCLEAR SERVICES 

CAISSON AP!D VAULT 

LkR SPCNT FUEL STORAGE 

prepared f o r  . . .  
. .:. 

. . . . 

A1 1 i ed General Kucl e a r  Servic'es . ', % . .  . . 

. . . . :  
. . . . 

. . 
August 12,  1880 . . 

, . ' a 

Hernian L. Crawford . . . . 

John Robert Genser 

RIDIHP,LGH, CGGERS AND ASSOCIATES 
2219 Summit S t r e e t  

Col unlbus ,. ,Oli i 0 43201 



TAELE OF COKTENTS - 

I n t r o d u c t i o n  

Surrrriiary o f  S h i e l d i n g  a t ~ d  Therrnal Resu l t s  

Sh ie ld ing  D iscuss ion  

Thermal   is cuss ion 

Sh ie ld ing  Resu l t s  

Therri~al Resu 1 t s 

Maximum Fuel  P i n  T e ~ ~ p e r a t u r e  i n  Dry Storage I ( 24 

Tota l  Cecay Weat 

Cool i n g  Concepts 
. . 

.' KO Cool i n g  

Na tu ra l  Convect i o n  

Forced C o ~ ~ v e c t i o n  

Heat Pipes 

F i n s  

E f f e c t  o f  Oecay Heat i n  a Hot Ce.11 

E f f e c t  o f  D i v i d e r  'P la te  Thickness 47 . 

. . .' . , . . 

E f f e c t  of P i n  Gap s i z e  : I 50.' 
; r].. , , 

E f f e c t  of '  I n s u l a t i n g  One Side o f  Can is te r  . . . 5 0  
. : -. 

I .  / E f f e c t  o f  Environr~iental  Teniperature . 53 
. " 

E f f e c t  o f  Pool Water . .  53 ., 

. . 
. . 

Conclusions 

References 
, . 

Appendix A - Ana lys is  o f  No-Cooljng Concepts 

Appendix B - Ana lys is  o f  Natura l  Convect ion Concepts 



LIST OF TABLES . ! .  

. 1 
. I .  3 :  

. . Page.  . . . . . , , 
, , 

. . .  8 

. . 

.. 12 
. . . I  : 

T.able 1, Fuel S p e c i f i c a t i o n s '  . ,. . 
. I .:. , : .  . .. , 

T a b l e  2. Reutron and Ganuna source Terms 13 . I . ' .  . , 
. . ,, . . . 1.1. , 

Tab le  3. Garrma source' ~ p e c t r h n  For 4 KW/PWf? 14. !' . . . 
. . 

. . Table 4. Ord inary ,  Concrete Dens i ty  (grarcs/cc..) '15 

Table 5... Kaxinium Fuel P i n  Temperature (F) f o r  one 
. - 

I n t a c t  PKR Fuel Assembly i n  Cry. C a n i s t e r  26 

Table 6. Maximum Fuel P i n  Temperature (F) f o r  one . .' 
. . 

I n t a c t  BWR Fuel Assenrbly i n  Dry Can is te r  27 

, . Table 7. Maxin:um Fuel P i n  Temperature (F)  f o r  Two 

. . . . Disassembled PWR Fuel Asselriblies i n  . Dry . Can is te r  

' 
wi'th 0.125 .inch  h hick D ' iv ider  P l a t e  and 0.0085 Inch  

Gap Between P ins  32 

Table 8. Maximum Fuel P i n  Temperature (F) f o r  Four 

' Disassembled BWR Fuel .  Assenibl i e s  i n  ~r~ Canis ter  
, . .  

M i t t 1  0.125 Inch  Thick D i v i d e r  P l a t e  and 0.0099 Inch 

Gap Between Pins 3 3 

Table 9. Decay Heat from 30%/7093 BWR/PWR Fuel Asseniblies 

f o r  To ta l  Storage o f  2000 MTU . , 

Tab1 e 10. Temperatures ( F )  f o r  KO-Cooled Above-Ground , 

.: 

Caissons w i t l i  I n t a c t  and' Disassembled . . 

PWR and 6WR Spent-Fuel. Assenrbl i es 

Table 11. Ten~peratures (F )  f o r  No-Cooled .Eel ow-Ground 

Caissorls w i t h  I n t a c t  and Disasserribled 

PWR and BWH Spent-Fuel Assemblies 



. .  

LIST CF TABLES (cont inued) 
. . 

Table 12. ~ e n l ~ e r a t u r e s  (F) ' f o r  Na tu ra l  ' convect i o n  Cooled. 
. . *: , . 

: L . 

Vau l ts ,  and caissons w i t h  I n t a c t  and Cisasseicbled 
. . 

PWK and B\!R Spent-Fuel 'ksseubl i e s  
. , 

Table 13. Maximum ~ e r ~ . ~ e r a t u r r s '  o f  Two ~isass 'emb' led PI!R Fuel 

Assenbl i e s  Stored i n  Cry 100 F ~nv i ron rnen t  'With 

0.125 Inch  Thick D i v i d e r  P l a t e  and 0.0085 I n c h  

Gap Between P ins  Shokiing E f f e c t  o f  Cecay'Heat 
, . 

Table 14. Maxirrlurn Ternkeratures o f  Two Disasser~~bled PKR Fuel 

Asserribl i e s  Stored i n  Dry  100 F Ellvironriient w i t t i  .2 KW 
I 
I 
I Per Assembly (To ta l  4 KW) and 0.0085 Inch 6.ap 

' : I  1, ' . 
. ... ,< 

! Between Pins S h o ~ i n g  E f f e c t  o f  D i v i d e r  P l a t e  
' ,j 

. . 
. Thickness 

Table 15. haximum Temperatures o f  Two D i  sassernbl ed PKR Fuel. 

Assenlblies Stored i n  Cry 100 F Environment w i t h  

* ! 
1 . .  0.125 Inch  Thick b i v i d e r  P l a t e  and 2 KW per  Assembly 
; r? 
!, , 

: .I..i (To ta l  4 KW) Showing E f f e c t  o f  P i n  Gap S ize  . I . !  . . 
~. 

! 1'1 Table 16. Maximum ~ e r ~ i p e r a t u r e s  o f  Two Disassembled PWF? Fuel 

Assemblies Stored i n  Dry 100 F Environrllent w i t h  

0.125 Inch  Thick D i v i d e r  P l a t e  and 0.0085 I n c h  Gap 

.. ] 1-1 Between Pins Showing E f f e c t  o f  I n s u l a t i n g  One Side 

,.  Li 
i.. -I of Can is te r  f o r  a Range o f  Decay Heat 

, . . c 
Page 



, . 

LIST OF TAELES. ( c o n t i n u e d l  ! 

I . ' .  . . ... . 
. . .  Page . . ' , , , :  i t '  

. . , >: . 
\. 

. . 
, .  , , 

Table 17. Piaxin~ulli, Tei i iperatures o f  Two Disasse~rb led PWR Fuel . . ' . ?'. . ' 
: !  

Assemblies Stored i n  Gry E n v i r o n ~ e n t  w i t h  4 KW Per I 
! 

. . 

Asseiiibly, 0.125 Inch T h i c k  D i v i d e r  P la te ,  and 0.0085 
: ( .  

Inch Gap Between . . Pims showing ~ f f e c t  o f  I n s u l a t i n g  One ' .  . . ' I  . : '  

' , s i d e  of C a n i s t e r  f u r  a. Range, o f  Environniental  . ' . .  

Temperature 5 4 i I 

i. 

Table 1.8. Ftaxirriurn c a n i s t e r .  Water Tei i~perature and ~ a n i  s ter -kack  . . .  . . 
. . . i .  . ,. 

Annulus .Water Temperature R ise  f o r  Two Disassenbled 
- . '.. . 1.. 

: I '  
I 

PWE Fuel Asser~ibl ies i n  a Rack f o r  a Range o f  Decay I 

Heat 
I 

55 i 
1 '  



LIST OF FIGURES 

. .b , . 
. . F i g u r e  1. Ccisson Wall S h i e l d i n g  Requirenents . 

I n F i  yurt! 2. Caisson Wall' S h i e l d i n g  Requirements 

F i g u r e  3. Caisson Wall S h i e l d i n g  Requ i re rents  , , 

. . 

F i s u r e  4. Caisson Cei 1  i n s  S h i e l d i n g  Rec;uiren;ents 

.Figure 5. Vau l t  \#!all S l l i e l d i n y  Requireliients , ' 
: J - '  , ' .  

i ! 
F igu re  6. V a u l t  Cei 1 i n y  S h i e l d i n g  R e ~ u i r e n ~ e n t s  : I ' .  

' I 
. , 

' . !  
F i yu re  7. Caisson S h i e l d i n g  Model 

. I ~ i c j u r e  8. Caisson. S h i e l d i n g  Rodel 
. . 

F igu re  9. Vau l t  S h i e l d i n g  Model 

F igu re  10. Vau l t  S h i e l d i n g  l ode1  

' F igure  11. ~ o c a t i o n  o f  H o t t e s t  Fuel Pins i n  PWK Asselnbly.. 

F i y u r e  12. Loca t i on  o f H o t t e s t  Fuel Pins i n  BWR Assembly 

I j .  F igu re  13. Maximum Fuel  P i n  Temperature f o r  One I n t a c t  

PWR Fuel  Assembly i n  Dry Can is te r  

! 

, .. .- ~ i ~ u r e  14. kax in~un~  Fuel P i n  Terriperature f o r  One I n t a c t  
/ l i  
, i . 

@ . '! BblR Fuel  Assenibly i n  Dry Can is te r  

F i su re  15. Disassembled . . Fuel P i n  Con f igu ra t i on  

F igu re  16. kaxi.n~un~ Fuel P i n  Terllperature f o r  Two 

Disassembled PKR Fuel Assenbl ies i n  Dry 
I 

I I Can is te r  w i t h  0.125 11lch Thick D i v i d e r  P l a t e  

1 and 0.0085 Inch  Gap Eetvieen P ins  , 

Page . . 

5 .  :.. 

6 : 



LIST OF FIGURES (continued) . . , . 

F i g u r e  17. F.laximum Fuel P i n  Temperature f o r  Four,  
. . 

D i s a s s e ~ ~ ~ b l e d  BWR F u e l  ~ s s e n l b l  i e s  i n  ~ r y  

Canis ter  w i t h ' 0 . 1 2 5  Inch  Thick D i v i d e r  P l a t e  . 

and 0.0099 Inch Gap Between P ins  

Fi'sure 18. Typica l  Heat P i p e  Cool ing Four BWR Fuel Assemblies 



ABSTRACT 

A s h i e l d i n g  ana lys i s  was performed f o r  1  i g l i t  water  r e a c t o r  (LIJR) spent . . 

fue l  s torage i n  caisson and v a u l t  envi  ron r~en ts  f o r  pararrietric decay 

heat i n  k i lowat ts /assenb ly .  The s h i e l d i n g  w a l l  and c e i l i n g  
. . 

requiren;ents f o r  o r d i n a r y  concre te  vary from 70 t o  43 irrckes' f o r  

caisson and v a u l t  s t o r a y e  over  a range of 4 t o  0.5 Kb!/Ph'R assembly. . 

These s h i e l d i n g  requireinents p rov ide  dose r a t e : l i m i t s  o f  l e s s  than  0.1 
- '  . 

n l i l l i r em/hour  a t  one f o o t  away f rom t h e  concrete on t h e  "co ld"  side.. . . 

To prov ide  dose r a t e  l i r r i i t s  o f  l ess  than 0.1 m i l . l i r en /hour  a t  t e n  f e e t  

auay from t h e  concre te  on t h e  "co ld"  side, t h e  s h i e l d i n g  requirements 

fo r  o rd inary  concrete vary  frorr; 57 t o  49 inches f o r  caisson storage ' . . '  ' , 

over a  range o f  4 t o  0.5 KW/PWR assenlbly. 

.To provide dose r a t e  l i m i t s  o f  l e s s  than 0.1 m i l l i r e ~ / h o u r .  a t  one . , 

hundred fee t  acay f rom t h e  concrete on t h e  " c o l d "  side, t h e  s h i e l d i n g  ( 

, requirements f o r  o r d i n a r y  concrete vary f r o f i  42 t o  , 3 3  inches f o r  . 
, . 

caisson storage over a  r a n j e  o f  4 t o  0.5 KW/PWR.asserlibly. 

Therrrial analyses were perforri led f o r  PWR and BWH spent f u e l  s t o r e d  i n '  . . . 

v a u l t s  and caissons above and below ground a n d . f o r  an engineered berm . . . 
I 

f o r  var ious  c o o l i n g  ri~ethods. Ranges of decay heat o f  0.25 t o .  4 kw pe r  

PNR fuel  assembly and 0.25 t o  2 kw pe r  BWR f u e l  assembly were 

corlsidered. These analyses prov ide  maximum f u e l  p i n  tef iperature and - , . . 
. . 

maximurn cni l i  s t e t  stii.fdct! Lemperature. I n t a c t  and d i  sasseriibled fue l  , 

, . 
assembl i es biere assumed. 



2 

. . . . 

Also, coo l i ng  of two P I R  disasseriibled f ue l  asscmbl i e s  was studied, f o r  a 

. . range of decay heat o f  0.5 t o  4 kw per assembly, a range o f  d i v i d e r  
. . . . 

p l a t e  th ickness o f  0 t o  0.25 inch, a range o f  p i n  gap s i z e  (average :.. . . . . .  . . . ,  . . . 
. . . o  

d is ta l ice between p ins )  o f  0 t o  0.009. inch, and f o r  one s ide  o f  the  .. . y 
. . . . 

: i ' '  
. *, 

. .  . -. ;. . can is te r  insulated.  Cooling o f .  a can is te r  i n  a rack i n  a w a t e r  pool . .  i .  
I ' 
r ' . : I .. > 

a lso was analyzed. . i 
. . 

. . 



I n  compliance h i t11  t h e  request  o f  t h e  Nay 30,. 198C, l e t t e r  (1) 

DOE/3026-80-105, DOE-3026-0.2 f rom t h e  A l l i e d  General Nuclear  Serv ices 
.. . 

(AGRS) t o  ~ i d i h a l ~ h ,  Eggers and Associates (REA), a  t h e r ~ a a l  and 

s h i e l d i n g  ana lys i s  t;ere performed f o r  l i g h t  water  r e a c t o r  (LKR) spent 

fuel '  s torage i n  caisson arld v a u l t  environn:ents. The CAD (2 )  

po in t - ke rne l  computer code w i t h  three-d.imens'iona1 geometry and 

s e l f - s h i e l d i n g  c a p a b i l i t y  was used t o  per form t h e  neut ron and gamma . , '  

. . 

s h i e l d i n g  ca l cu la t i ons .  The ORIGEN (3 )  i so tope  genera t ion  and 

d e p l e t i o n  computer code was used t o  prepare t'he neut ron and paninma ray  

source s t rens ths  and t h e  energy spectra. 

Thermal analyses were pe r fo rsed  w i t h  mathematical models o f  t h e  PUR and . 
., , ,  

BWR fuel  asseli,blies i n  i n t a c t  and disassembled c o n f i  yurat ions.  The . . 

TRUKP (4) heat t r a n s f e r  computer code was used t o  c a l c u l a t e  

t,eniperatures f o r  t h e  'var ious parametr ic  s tudies.  Hand c a l c u l a t i o n s  

were used f o r  f e a s i  b i  1  i t y  c a l c u l a t i o n s  ' o f  cool  i ng requirements, t o t  a1 : 

heat l o a d  c a l c u l a t i o n s ,  and t h e o r e t i c a l  yap sizes. Standard heat 

t r a n s f e r  c o r r e l a t i o n s  were used o r  p laced i n  a  form s u i t a b l e  f o r  use i n  
. . .  

t h e ,  TRUMP progranl. . . 



SUMFiARY OF SHIELDING AKD TttERFIAL RESULTS 

... . ' . 
i ', 

, . .  . , 
, . 

2 .  
, . 

The st~i.elding requirements of ordinary concrete t o  reduce the dose r a t e  . . . . .. . 

t o  a 'level of 0.1 n~i 11 irem/hour 'at one foot from the  concrete on t h e  
' a 

. . 
. . 

"cold' side a re  i l l u s t r a t e d  in Figures 1 and 4 through 6. Figures 2 . 

. . 

and 3 i l l u s t r a t e  the  shielding'  requirements of ordinary concrete t o  .' . ! .  

. . . . 
reduce. the dose rate t o  a level of 0.1 mil l i rer~~/hour  a t  ten and'one 

, . 

hundred fee t ,  respect'ively, from the  caisson c,oncrete kiall on the  : . . 
. . 

! 

"cold" side. The para~tleter of 4 t o  0.5 kilo\ratts/Pk'R asserCbly i s  sl~own ' , ,: .. . 

on. a l l  the  figures. The caissons contain two disasseriibled PWR . .. . . 

. . 
assemblies in a sin4le canis te r  and the vaults are  ciodeled as 42 x 42 

canis te rs  containing tuo disasserribled PWR assemblies ' in each canister.  ., . . 

Fiyure 1- ' i  1 lus t ra tes  the caisson concrete wall shielding requirements' 

a t  one foot Prori~ t l ~ e  ex ter ior  wall. Fi,gure 2 i l  l 'us trates  the  caisson, 

concrete wall shielding requirements a t  ten f e e t ! f r o ~ ~ ~  the  exterior 

wall. Figure 3 i l l u s t r a t e s  the  caisson concrete wall shielding 

requirerrients a t  one hundred f ee t  frorn the ex ter ic r  wall. Figure 4 

. i l l u s t r a t e s  the caisson concrete cei 1 ing shielding requirements. 

Figure' 5 i l l u s t r a t e s  the vault concrete wall shielding requirements. 

Figure 6 i l l u s t r a t e s  the vault concrete ce i l ing  shieqding requirements. 

The resu l t s  of the thermal analysis are presented in tables  and figures 

which are presented 1 a t e r ,  and detai led calculat ions are presented in  

Appendices. 



' 1 ;  .. ... . CONCRETE '(INCHES), 

-CAISSON WALL SHIELDING REQUIREMENTS FIGURE. I 



CONCRETE (INCHES) 

FIGURE 2 -CAISSON WALL SHIELDING REQUIREMEN'TS 



' I-: 
CONCRETE (INCHES) 

' 

FIGURE 3- CAISSON WALL SHIELDING REQUIREMENTS 

i li 



CONCRETE (INCHES), , . 

FIGURE 4 -CAISSON CEILING SHIELDING REQUIREMENTS 
- 



I 

FIGURE 5 -VAULT WALL SHIELDING REQUIREMENTS - 



CONCRETE. (INCHES) . . 

FIGURE 6 -VAULT CEILING SHIELDING REQUIREMENTS 



SHIELDING DISCUSSION -- 

r; . . 

The s h i e l d i n g  a n a l y s i s  was based upon PWR f u e l  only. The f u e l  I .  

1 7  

s p e c i f i c a t i o n s  were taken  f rcm AGNS supp l ied  documents (5,6,7) and a re  i 

repor ted  i n  Table 1. 

I 

An OkIGEN c a l c u l a t i o n  was perforreled t o  generate neutron and ~anrma-ray 
. . 

. . . . '. source terrrrs end .a re  repor ted  i n  Table 2 .  The garnma photon' spectrum n 
fo r  t h e  4 KW/PI*I'R assembly fue'l i s  o u t l i n e d  i n  Table'  3. 

, . 

The QAD st l ie1 d i  ng c a l c u l a t i o n s  inc luded t h e  neutron-concrete kerne l  and 

garaila-ray poi  n t  k e r n e l  techniques. The concre te  nucl  i de d e n s i t i e s  are  

sun;marized i n  Table 4. 

-.. I 1 ' .  
? .  . . . ,  ' . The s h i e l d i n g  . . . .  . geometry models used i n  t h e  QAD ana lys i s  are i l l u s t r a t e d  ,:, 

I . . . I  . . I *  ,., i n  F igures 7 through 10. S p e c i f i c a l l y ,  F igures  7 and 8 are t h e ' c a i s s o n  ." '. 

~ . . .  
. . 

I ,  s h i e l d i n g  model; ' F igures  11 and 12, t h e  v a u l t  s h i e l d i n g  model .. 
! 

. . 
The vau l t ,  s to rzge capac i t y  i s '  s p e c i f i e d  t o  be 2000 kTU .and loaded 70% 

1 ; r~it t i  PWR assee:bl i e s  and 304: w i t h  BWR asseri~bliks. A t  0.190 hTU/BgR 
. -. 

. . .  asserlibly and 0.480 MTU/PWR assenrbly, approxinlately 3562 PkR assernbl i es . , . ,  

may be s t o r e d  o r  1781 c a n i s t e r s  o f  two disassembled PWR assemblies 

each. Th is  c o n s t i t u t e s  a n  ar ray  o f  c a n i s t e r s  of approximately 42 x 42 
I I j  

.... and was used i n  t h i s  analys is .  

0 '  i I.-; 
L! 

i Tile caisson and v a u l t  s h i e l d i n g  models were based upon designs i n  AGliS 



. . .  . . 
. . .  . . . . 

TABLE 1. FUEL 'SPECIFICATIONS. . .  . . . .  ,. 
i 

, . 
. . .  . . . ; 

. . . .  . . . .  
. . . . ! 

- ' . . .  . , 
. . .  . . 

. . . .  . . .  . . - .  : 3 . : .  

. . .  . . . . 
3 .  . . . . .  . . . . . .  ., . . . . . . . ' 

.. ; ,, 
. , . . . : ' _ .  .' 

. . .  .Fuel  . .  . . . P W R .  . '  ( I  . ; .  - . . . . . ,  , 

. . . . .  . . 
. . : .  . 

. . . , , :  . . . . 

*.. 
j , . . . . .  ' . 1 

. . .  . , Maximunl enrichment ( X  U235) I 4 ..I .; . . 
. . . . 

. . .  . . .  . . . . .  
. , 

. . 
. ,  . . 

-7 
. .  ,. . . .  . . .  . . .  .. Maxi~~~urnburnup ( ~ ~ D / ~ Y T u )  : . . . .  33,000 . . 

. .; ! :  
* .  : .  
I '  . , . :. . .  

. .i . . 
35 . , Maximuni spec i . f ic  power (IUrW/MTU) . . 

. . 
. . 

Assembly cross sect  i o n  ( inches)  
. . .  . . . . .M,aximurn a c t i v e .  f u e l  l e n g t h  ( f e e t )  : ' . , i2.5 . . j . .  . . ,. . . . 

Fuel load ing  (MTU) 0.480 

PWR asseniblies ( X  o f  t o t a l  i n  s torage)  

Canis ter  6 y t s i d e  cross sect ion  ( inches)  

Canis ter  w a l l  th ickness ( inches)  

~ i s a s s e r ~ ~ b l e d  assenibl i es p e r  c a n i s t e r  



TABLE 2. NEUTRON AND GAMY& SOURCE TERM . . 

a : 
. KW - Cool i ng Pt~otons Neutrons 

- . Time, ~ PWR Wont hs (sic-PWR) (Sec-PWR) 

.7 
( a )  8.693(7) --> 8.693*10 



Energy (Kev) [photons/ (sec-PRR).] .: . . 

. . . . 
. . . . .  . . .  

.. . . .: 
. . 

. .: . . .  
I . .  

. . .  . .. , , . .. I 

, . . '  6. 
. , 

> , .  

. . , . > .  
. . ' I .  . I 

. . . . 
. . . .. 

. . .  

. , .  . . .  

11 
( a )  1.186'(11) --> 1.186*10 



TABLE 4. ORDINARY CONCRETE DENSITY 

Nucl ide 

Density , 
3 

. . gramslcm . . .  

hydrogen ' . 

a1 umi num 

silicon 

sulfur 

pot assi urn 

calcium 

i ron . . 



FIGURE 7' - CAISSON SHIELDING MODEL 
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FIGURE 8 - CAISSON SHIELDING MODEL 
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FIGURE 13- VAULT SHIELDING MODEL 



THEKkAL DISCUSSION 
. . 

. . . .  ..(. , . . I .. 
. . . .  . ",'. "..,': : i  '. . . . . . . . .  . .. . . .  . . . s . . I .  

. . 
, '  The rnaxiraum f u e l  p i n  temperature and approximate l o c a t i o n  were . .'. . . . . ' : 

.. ' , ' _  , 
. . . ' I  I 

. . . . .  : ! , ' . . . . .  . . . . 

estinlated. The su r face  temperature o f  t h e  c a n i s t e r  a l s o  was . . 
. .  . . . . . I . .  . . .  . . . a  

. . . _  . .. :. 
. . .  

.deter?ai,ned, b u t  t h i s  t ask  was performed separate f r o m  t h e  maximum fue l ' . ' .  , . . '  , , '  . .  . !' . . .  . . . . .  .,. . 
. , . .. ( . . .  ' 

. , .  
. . , ., . . ' .  . : . . .  , . 1 : .  ' p i n  . te r ;~pera ture  s tudy  so t h a t  t h e  da ta  would be more use fu l .  Fo r  : .. .. . .. , . . ,  . , . . 

. 8  
. . . :,. , '.. , ; , . . . . . 
( .: , . ." . - ,  . . I  . .  

example, t h e  sur face temperature depends on t h e  t y p e  c o o l i n g  and t h e  . , ; ,  . . . .' . . . , . . .  
. . . . . . . ' .. ; 

o p t i n i z a t i o n  o f  a p a r t i c u l a r  t y p e  o f  coo l  ins.  Op t in i i za t i on  i s  beyond, , . , ., , : :  . ' ;  . . .: . . . . . . . . ... . 
. . . ,, . 

t h e  Scope o f  t h i s  study. As t h e  su r face  temperature v a r i e s  dependins ' ,  % . .  , . 
. . .. , . . ,  

' . . . I  . . . . . .  . , .  
on the.method o f  coo l i ns ,  t h e  maximum f u e l  p i n  temperature also,changes"; .. .. 

. . . . 
. . . .. 

. .. . ' : .  . b y  a n o n l i n e a r  amount due t o  r a d i a t i o n .  Thus, i f  i t were d e c i d e d ' t o .  . . . : , .  . . 
. . . ~ . . ; 

, .  . . . ,, . . . . 
. . . .  '._ . 

" v a r y t h e s u r f a c e t e m p e r a t u r e ,  i t w o u l d b e d i f f i c u l t  t o e s t i m a t e t h e ,  . . . . -  . 
. . . I 

' , . '  . 

, . n iax iku i  f ue l  p i n  ter1;perature f rom da ta  depending on a p a r t i c u l a r  va lue ' .  
. . 

. . 

of c a n i s t e r  sur face temperature. Therefore, t h e  maxi~num f u e l  p i n  I 

. . . .  . .  . . 
., i . . . . 

' ten,perature i s  d i sp layed  over  ranses o f  c a n i s t e r  sur face temperature . ' ' . ,  _ . '  .. 
. . .  8 .  ' . . . .  

. . 
. . .  , ... 

' < .  
and .decay ,heat. As engineer ing studi 'es e f f e c t  a s p e c i f i c  c ~ o l . i n g  . . . , . .. . . . '";-.; , . . .  . 

* . .  , 
. ' 

. . ' . :. ; 

, . , . . . . .  
s y s t e n l  design, a new sur face t e ~ ~ p e r a t u r e  would be ca lcu la ted .  ~ i t h  t h e  : .  ' .  . . I .  . . . . . I 

, . . . - ..,. .. . , . . . , .. . 
l a t e s t  va lue o f  s u r f  ace temperature, t h e  n~axirnur~~ . f u e l  p i n  curves wou1.d . 

. 9 .  2 .., , 

: . '  
. . 

be en tered t o  o b t a i n  t h e  new value o f  maxir~~um f u e l  p i n  temperature.. . . 
, . .. I . ? ,  . , . !  . . \ ,  . 

s . .:' 
. . 

, . , . . '  
. . .  

. . . . ,. s 

. . . . .. , . . 
To show feas i  b i ' l  i t y  o f  cool i r ig ,  t h e  most f avo rab le  s i t u a t i o n s  were.  . , 

. ~' . . , . . i .. . 

.. . - cons idered f i r s t .  I f  a s i t u a t i o n  was shown t o  be n o t  f e a s i b l e ,  t hen  

o the r  s i t u a t i o n s  t h a t  can ,be shown t o  be worse by deduct i o n  were no t  
. .: 

r~ratheniat i c a l  l y  analyzed. 
... 



. . 

The siajor p o r t i o n  o f  t h i s  study per ta ins  t o  d ry  storage, which n~eens . 
, . , 

w i t 1 1  a i r  as t he  coolant. Other gases were not  considered. . . .  

, .  . 

I n  analyses. of na tu ra l  convect ion on t h e  ex terna l  sur face o f  t h e '  . '  . . , ' 

-1.i 8 I. c a n i s t e r  and whenever t h e  Rayle igh number ivas ' less 'than 1' x 10; t h e  . . 
. . : - j  . . .  . . f o l  lo \ r ing  c o r r e l a t i o n  was used i n  c a l c u l a t i n g  t h e  heat t r a n s f e r . ,  

. . 
.' . 

c o e f f i c i e n t .  
. . 

.: :r . ' . '  0.25 
-2 . . . . . 

h = 0.52 Ra . .  . 

where h = heat t r a n s f e r  c o e f f i c i e n t  , Btu/h-sq.ft-F 

Ra = R a y l e i ~ h  number , . . . :  

,! p . "  , , .  8 .  . . . #  

! . 5  . . For values o f  R a y l e i ~ h  number greater  than 1 x 10, t h e  fo l lowing'  . . 
. . .  . , . . 

' 
c o r r e l a t i o n  was used. 

. . 

0.333 
. h  = 0.126 Ra . . . . :: . '  . . ,  

On t h e  outs ide o f  t h e v a u l t s  and caissons i n  which na tu ra l  convection , 

. . I occurs a t  r e l a t i v e l y  low temperature, t h e  fo l l ow ing  c o r r e l a t i o n  was ., 

. ..! j 
: where d t  ' = temperature d i f f e rence  between surface and ambient 

. 8 '  . ' b __.. 

. ' ,  ., I.:! . . , 

: 

. 1 "  a1 1 analyses o f  i pen t  fue l  i n  a h o t '  c e l l ,  on ly  PWR disassembled 
4 

' i 
. . 

: - spent f u e l  was assumed. 



. . .. 
. . . . . . . .  

, . : 
. . . .  . . .  . . : t .  

8 .  

. . . . . . . . .  . . . . .  . . , . .  . . . . .  . . .  a : ' : .  . . . . .  . . . .  . ,  . 
.?:'.... : 

. . 
. : , ; , .  . b . .  .I:. .: 

. . . I . ,  . . , .. ,. 
St11 ELDJNG RESULTS. 

, - .  

. . . . . . .  .: I , : .  . . " . . : .  _ . ,  , . I ,  . . . . . .  . . .  , .. - . . . . . :  . . . .  . . . . . . . . . .  ' . - : : :  
:. : . . .  . . . , -  . . . . .,: . . , .:. " ' . .... .... . . .  . . . .  . . . . . . . . . .  t;,. 

. . . .  . . _ . . . .  . . . .  . . . . .  . . . .  . . .  : 
. . . . ,.. s . : .  , . , A ,  ..," 

. . . . . ,.: . .  
1 ,  .... . . ........ . I n  o rde r  t d  achieve t h e  0.1 ; ~ ~ i l l i r e m / h o u r  dose r a t e  1  i l ~ i i t s  a t  o n e - f o o t  : .:,.. . . .  . . . . .*.. ! .  , :. :.I 

. , . t . :  . " 
a .  8 ; . . . . .  . * . . .  . . .:<;,, 

. I  :.,:,;: , . . . .  
. . . . .  ! . ..,* .?, frorn t h e  e x t e r i o r  concrete, t h e  f o l  l ow ing  an!ou,nts o f  o r d i n a r y  concrete.  :' . , . : . .  . .  ' .  . . < .',,!: . 

. . . . . .  . . , . . s  .;.. . . ,  ..:';.; 
. . .  a r e  needed f o b  t h e  ca isson w a l l  corresponding t o  4, 2 ,  1 and 0.5 . K.~!/PwR' . . . . . . .  . , 
, . . , ;' . ..: ;, i !'- . ... .'- . 

. . . . . . . . . . . . .  
' ) .  . , . . . . !I, 

* , ; 2 -.: 
. . . . .  . . . . . . . i f . .  

. . asserr~bly, r e s p e c t i v e l y :  64, 63, 61' and 57 .inches. - .. I 

,. . .s, .,; * . : -  ' 

. . . . . .  . . . .  ,. , .. ' ,  . 8 , . . 
. . . . . . . . . . . . . . . . .  . . . .  

. . . .  . . , .-,,:.:. . . , '. -, 
. . ~ .  . 

. . . . . . . . .  . . . . .,,. . . 
, .! . . .  

. I n  o rder  t o  achieve t h e  0.1 m i l l i r k m / h o u r  dose r a t e  l i m i t s  a t  t e n  f e e t  , ' : . . . . 
. . . . ,  , . : : . I  . . . . .  . ._ . : . . . .  . . 

' 

. . '  f rom t h e  e x t e r i o r  concrete, t h e  f o l  l ow ing  a ~ o u n t s  o f  ' o rd ina ry  concre te  . . 
. , " .  . . .  . . .  !.:, 

. ' I . .  

. . . .  . . . . 
. . I ' ,  

' a re  needed f o r  t h e  caisson w a l l  co,rresponding t o  4, 2, 1 and 0.5 KW/PWR . . . . :;. :.,. . . , ,  , 

a .  . . . .  ,? . . : ;  , 
. . .  . . . . . . .  assembly, r e s p e c t i v e l y :  57, 55, 53 and 4 9  inches.. . ,  . , . 

. . .  . . . . 
9 :  

I .  : . 
. . 

. . . .  . . 

. I n  o rder  t o  achieve t h e  0.1 n i l l i r e m / h o u r  dose r a t e  ' l i m i t s  a t  one ' . . .  
. *( 

. . . .  ~ 

. hundred f e e t  frorn t h e  e x t e r i o r  concrete, t h e  f o l l o w i n g  anlounts o f  . . :  
. . . . 

. . o rd ina ry  concre te  are  needed f o r  t h e  ca isson  all corresponding t o  4, , . 

. . .  2, 1 ar~d 0.5 .KW/PI;\'R assembly, r e s p e c t i v e l y :  42, 40, 37 and 33 inches. . . . > . .  
, . 

I n  c r d e r  t o  achieve t h e  0.1 m i l  l i rern/hour  dose r a t e  1  i l i i i t s  a t  one f o o t  . . 
, . 
. . 

from t h e  e x t e r i o r  concrete, t h e  f o l l o w i n g  amounts o f  o r d i n a r y  concre te  
: . . % .  

. I  .. 
. . .  

. . . , 

are needed f o r  t h e  caisson c e i l i n g  corresponding t o  4, 2, 1 and 0.5 . :: 
. . I .  

KW/PG:R assernbly, r e s p e c t i v e l y :  50, 48, 46 and 43 inches. 
(." . 

. . . . 
. . .  . . . .  l i  . . 

. . 
i ;  0 .  

., . ..... 1n .o rde r  t o  a c t ~ i e v e  t h e  0.1 r ~ r i l l  i r e~ i l / hou r  dose r a t e  1  i t n i t s  a t  one f o o t  . . )  . .  
. . I .  

. . . . . . .  
f rh~ t h e  e x t e r i o r  co t~c re te ,  t h e  f o l l o w i n g  anlounts o f  o r d i n a r y  concre te  

' 
. . . . .  - 

. . . . . . 
a re rieeded f o r  t l l 'e v a u l t  w a l l  corresponding t o  4, 2, 1 and (3.5 KW/PWR 

. . 
assembly, r e s p e c t i v e l y :  .70, 69., 66 and 63 inches. 



I n  order t o  achieve the 0.1 n~illirer:i/l~our dose ra te  limits a t  one foot 
. . 

from the exterior concrete, the following amounts of ordinary concrete 
. . .  

L . .  
are needed for  the vault cei 1 ing corresponding t o  4 ,  2 ,  1 and U.5 

a .  . . . 

KW/PCR assembly, respectively: 64, 6;3, 60 a n d  57 inclies. 
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. . .  THEhRAL RESULTS . . 
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. . . r . . . . .  .;. k,::' 5 . . . . . .  . . . .  . , , . Maximum Fuel P i n  Ter~~perature i n  Dry Storage , . . . .  .. . . . . . . . . . . . . . . .  ; . , .+, . . .  i .  
'::,().:. : .?.',; . . . . . . . . . .  . . . . A , ? . .  - .  ,;.,, ,,.., ' y . 2  ,. 

. .~ $ ..,~. .:. - -  . , ,.: .,; ;;.: .: . ' 
, .  . . . , ,. :; , . :. . . . .  

,.,: . ,<:$;,, .:. . , .: i' :?.:.i' 
. . . . . . . . . . .  -. . . . .  .. '.>.~, ::<,.; b , ,  :;f<:::~. . . . . . .  . . .. I . .  , . . . . 

... . . . .  . . . . . .  
.*it L*3y ?. 8 ; ' .  .,, <* 

. . . . ..... . . . , . . ... : : , 
. .  . " . . . : ., "; ,:,:<>,..:!..l ! ' , s " .  

c%.  J .  .....;k.: . : <  
. . . ' .  haxinlunl f u r l  p i n  temperatures were ca lcu la ted  f u r  rang& o f  c a ~ s t e r . ~ ~ . ; ~  , . . .  .. , , : .A.r, a,3 . . . . .  ...... - " -' ...... . . .  , , ..yq '., ; . .! :." 3. 

. ., ., . : . . . . . . . .  . . . . .  .. . .  ..... . . i 1 . i.. ' ;I;; , ; ;;,.,,;yJA ! : . . . ..,, ..;:,.. .,~LV'.. . ,  . 
... sur f  ace ten~yerature and are  presented i n t h e  f urm o f  cJeneral i zed  desi i n  .. :. ~ ~ , : ~ ~ $ x . : i . ~ ~ ' .  

. , .  . . . . .  ,>:, . ,:,. ,:,;, . .  ;:?, k::;:: 1;; 
. . .  ..... . % .  

.',.?.': , 
.,.. ...'>;:.. f , .  :. :.." . ' *  

. . . .  . . . , . . ;.: (.;;',,:i7; $?:;$!, .;;;t,>:;:: 
. . .  . . .  . . : curves. ~ a n i  $ t e r  s u r f  ace temperatures were =a1 c u l  ated . . .  f o r  i p e c i  f i c .  . , ., :'.':: , .... : . ,  , .. &. .  -;;. a .i.;* .:,.>,-..+: .. , C.  .,~i.;:~i+,,.:;i.~,, 

. . .  . ' :. " . i,r7.,' .;'.!..j'.< ,,.;i:.' . :. . . .  . j&... ,:.~.;,~;*,; .... : 

. . ,.. 

. . .  . . . , -cool  i n g  s i tua t ions ,  and niaximum f u e l  p i n  temperatures f o r  t h e  'spec,if ic,.::. . . . . .  ::, ;:j~$'-,:::i../q;~~:~. 
. . . . . . . . .  . :  ' .  . . 

. . . . . .  . . . . .  . A  

. 1 ; : . , :. $. ,, : 
. . 

: y . :  " .* < . ; , <$<: < :'.+$!?-. 
v .. . .- 
' . .  : . s i t u a t i o n s  were deterni i  ned f r o n ~  t h e  des'i ~n -curves. . . . . .  , u . >- ; ..,A: :.!;, .:;. ' . . , . . , , , ; .: . E :. 

. . . . .  
L. ' . . . . .  .,, % I.,: ;~,!'3;..;:;;,r!5., ,?) 

: .. . . .  . . . . 
. . .  . . 

. . . . . .  . , , !., 2 ;; ,: % 

: ( . . .  . . .  . . . . . . . .  
c 4  :?,:.<.:::,-.it/::,!,.;: 

. . . . .  . . .... :... . .. . . , ' ,  , . , . .  . . . . .  
, . - .  ,;,>"."'. 

. . 3;. :.' ..;: 3.i : 
. :. '? :, ;;,, : .., :, 

. . 
. . .  , . l a b l e s  5 and 6 present t h e  maximum f u e l  p i n  temperature f o r  rangcis . . . . . . .  of.,:!; . .:...<:. :. ::! '!?; ~ , ~ : ~ ~ ~ ~ i ~ , ~ . $ ; ~  

.. - ;.+ P,?. ,., 2.. ..:. > . . . . . . . .  . . ,. . . .?;.'.;;, 
. . . . . .  

' . . .  . ::i::+ ,, 

. . .; d&ay . . hea t  and c a n i s t e r  s u r f a c e  temperature f o r  t h e  P\$ and BWR . . . . inti& . ., . ; , '. j': a . . , , ' ,  , . .*, ';:'.~,i~.j!::.i:::~8<+:., . ,......I. $:-.:$ . . . . h. : ., 
. . . . .  . .  . ..: . . , . . .".,: : .:,.-..> > ~. li;+ " 

. . ., , . : . :  .". 
. . . . . .  , . ;<: ),. .:. 

. ..... . ' fuel assem61 ies, resp.ect ively. The 10,cat i ons o f  t he  n ~ a x i ~ u n  . ,; >, , . ,.. . , ..... * . I .  ; :? ,. ,,: 2 
. . . . .  . . .  . .... . . .L !'.; .i 

, . .  ... . . .  . . . . . . . . . .  c.t;, ,:, ' '.' 
1 .  :' . . . . . . .  .: . > .  (,,,i::.;:.:,:; . . . .  .:,: : . .  (.',... " .. - .  . . . . .  .; ..r 

......... .: temperatures a r e  ind ica ted ,  i n  Figures 11 and 1 2 ,  r t2spec t i ve ly .  : : . .  , .  :!,: :.;; .: : ,,: i .:;:!I . . . . .  . '4 " . , . ; . . . . . . . . . l  
. . , . . . . .  . . . . . .  . . -.:.,I:. . -1 :  , , ,  

. . . .  . . .  . . .  . . 3 -2:- . . . . .  ~ i 'mens iona l  data used i n  t h e  ana lys is  are a lso ind icated.  . Fi.gures 13 .: :. . . . .  I: .2 . -" ' , L - L .  .... 
. . . . . .  . ( .  . . . . . . . . . . . . . .  

1:;. :-,. j ; ,~;:,.;.,':- 
.: .<.. . .  . . . . . . . .  ?> 

. . . ' . . . . .  ,:!. . ..' ?..r :::'. . . . . . , .. . . . . 
. . . -: . ,  ;. .! 

and 14 g raph ica l l y  t h e  temperature. data  i n  a form t h a t  ;an b6 " .  . '. . . .  . ... . . ,  .... . +. .  ...... . I; : 2 .u 
. . : .,. . . 

. .  ,. . . , '.: ,?.,.' :., 1 '  . . ~. 
>, ,. ,, : L , ; . . ' h 4 : , j  

. . .  . . . . . . . . . . . .  .;::',..i.: '!,..;,;.!; 
..: used fo r .  various c a n i s t e r  coo l i ns  condi t ions.  . . . .  : . . t .  . . 

. . . . .  . . 
. * < :> , , .;,. <;c: 

. . .  . . . . , ' t ,  : , 
. :. ) ., ,?, . , :I. c 7  .I; .,i 

. . . . . . 
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, . , , : ,  c . , . ,  . "  
. . . . .  . . , , . .  " . " '  . . . . . . . .  . . . . . . . . .  

: .  . 
. . .  8 : .  . .  . ,;, < ' , " , .  

- .  ' < . .  ,\ ! ?  7 
', . . I .  ..... .. . : , .  . . . . . .  Tables 7 and 8 present  t h e  maximum f u e l  p i n  temperature f o r  ranges ck : ' .  . ., , .,. . , ..'> ' ?:' . 

. . . . . . . . . . . . .  ..:,: .;!" >;' ..:, 
. . .  . . .  ., , ' , " c . . 

. . . . .  . . . . . .  > .  . . . .  ..'.., 3 .  
. . .  .. . . <. ; :  :.$',; . . . .  . . .  - . ? f .  

.... .. decay heat and c a n i s t e r  ' su r f  ace temperature' f o r  two disassembled PWR : 1'. . . . .  ;. ;,;;3 $:.>:... .. ; .  
. . , . L' . i '  ' * .  

. .  , .  . . .  , . .- . t. 
. ' ! , I  , . . . , ,  

. . .  . . . . ti, '.: 
. . and f o u r  d is is ienlb led BRR f u e l  ' asiembl ies, respect ive ly .  , A . ' . .. . . . . . .  . . , . -.: .. . .,. :. ., a >  .,.,. . ,,. . . :  ,,?a :.' 

, . . . . . -  . .  . . . . . .  . . :. 
. . .  . . . . . .  ...;. 'I -' . ( ~ . ' .  . ,  . . 

:: ,> ' ,.,, 0.-125-inch-thick d i v i d e r  p l a t e  was assumed, and yap s izes are  i nd i ca ted  :: . .:' * .  . j '  .. . . . . : .  ..; . ; .  rb': .:. . . .  
, . . . , . . . . . . . , # ,. , ':I : .  , . . .- i., . . . . . . . . .  . . . '  ' i n . t h . e  tables. T h e l o c a t i o n s ' o f  maximum temperature are s t ~ o w n ~ o n . :  . . .  . . . . . i ,  : . I .I . . . . .  . . . . . 2 

. . . '. . : . . . .,,::. 
. . . . . . .  . . .  . . . .  : ...::; .*. 

. . . , .  
. . . . ,  . . 

F igu re ,  15 f o r  a number o f  s i tua t ions .  For t h e  s i t u a t i o n  w i t h  heat , : ; . . . . . .  . . . . . . . .  . . / . . . . . . .  ., I . .' ' 
, . . . .  . . . .  .. . . . . : . ,  . . . . . .  . . 

. :  - . . .  . . . . . .  . . - .  ., 
. . .  . . ,  

. . . . . . . .  . . :  . . '  . . . .  I. .! , 
, , : : 

.'. . , . . . . . . . .  . . . . '  . . .  . Sransfer;ed from t h e  f o u r  s ides o f  t h e  can is ter ,  two locat ions,  . . . . . . 
. . .  

f'. .:. , ' 

; . .  . :. .~ '. .: .- 
. . . . . . . .  ..: . . . . .  

; . ,. .:> , 
. . . . . . .  . . . < .  . . . . .  . . . . . . . . . . .  . , .. . . . .  . . . . .  . . .  . . ,. ., 

~ o c a t i b h s .  1 a n d 2 ,  were equal l y  h o t .  These loca t ions  a l s o  are, . . .  . v : .  ..<. . . .  . . . :. * : : . . . . .  . . . .  : 
. . . . . . . . . . . .  . . . . .  I ' . . . . 

, . .  approx'inlately th ree  p i ns  sway from the  d i v i d e r  p la te ,  which conducts'  . :. . . .  . . . .  b. . . . .  . . .  . . .  . . . . ..  . . 
.... . . . . . .  . : : . . . , :  . . . . .  . . . . 

. . 8 ' '  heat toward the s ides .af the  canister .  horeover, these l oca t i ons  are . . ;  . . :  .: . 
a , ' ,  - . . . . .  . . .  . . 

. . .  . . ; . ,: ! .., +: . 
' . :  . . . . . .  . . . . . .  . . . . 

. . . . . .  . . . . . .  on: t h e  diagonal w t~ i ch  i s -  perpendicular  t o  t h e  d i v i d e r  p la te .  F i ~ u r e s :  . ;  . 
,: .,. .. ,, *:. . : .  ..... 

. . . . . : _. . ; , ! .. . . - . .  %.,. . 
. . . . . . I * \ , . .  , 

. : . . , . .  . .-. . 



16 and 17 grapt!ically s h o ~  trends. 
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TABLE 5. ItAXIMUM FUEL PIN TENPERATURE (F )  FOR ONE 
INTACT PWR FUEL PSSEKELY I N  D R Y -  CANISTER.. ' . .. i t  

- .  . . . .  . 
. . . . ?  

r .  

. . 
. . I .  : . . .  . . 

Kaximum Fue l  P i n  ~ e n i ~ e r a t u r e  f o r .  ~ n d i c a t e d  , , . . ' . L  ..;.. . . Decay . . . . .  . , 
. .;. . ' ,  

. , .  . ,.I 
Heat, C a n i s t e r  Sur face  ~ e n p e r ' a t u r e ,  F . " .  ; . .  . . .  . . . .  . : . .  ..::.,a 

kw 100 300 5 00 700 lOOO;.; . ,. . ,. . . ' . 
. :,, .: 

. . ., . . , .  . . . .  



TABLE 6. KAXIhUbi FUEL PIN TEtviPERATURE ( F )  FOR ONE 
INTACT BRR FUEL ASSEKBLY I N  GRY CANISTER . . .  

Maxilllur~i Fuel P i n  Temperature f o r  Ind ica ted  . ,: 
, ; i! . Decay 

, I "  Heat, Carl ister Surface Tempe'rature,' F . , 

; ir . . kw 100 300 5 00 700 1000 : 



0 .  208 FUEL PlNS 

@HOTTEST FUEL PlNS 
. .. 

FIGURE I I. LOCATION OF HOTTEST FUEL PlNS IN PWR ASSEMBLY ' . : 

?. 



I 

INSTRUMENT TUBE DIMENSIONS ARE IN INCHES 
, 

. . 0 63 FUEL PINS ' , 

@ .  HOTTEST FUEL PIN 

I-.. I 



. . 

FIGURE 13 MAXI MUM FUEL PIN TEMPERATURE FOR ONE INTACT, 
., PWR FUEL ASSEMBLY IN DRY CANISTER 



CANISTER SURFACE TEMPERATURE- F . 

- FIGURE 14. MAXIMUM FUEL PIN TEMPERATURE FOR ONE INTACT 1; . .  BWR FUEL ASSEMBLY IN DRY CANISTER' 
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. . :. ;..? .:. :,, ;:, f.. . ,  . . .  . . . .  . .  . . . . . . . . .  . . . . . .  . TABLE 7.' MAXINJM FUEL PIN TEMPERATURE, ( F )  FOR TWO DI;SA~SEKBLED :. . < .  , . . . . .  . . .  
. . . . . . .  

, P\>JR FUEL ASSEhB;BL I E S  I N  DRY CANISTER WITH 0 . 1 2 5  I&CH, THI.:CK,:''!- ;'.l'i:;,-, . ,  , . ' .;i,!-?5' 

. , .  
. '  \ :.. ' 8  . 

. . . . . . . .  D I V I D E R  PLATE AND 0.0085 INCH GAP BETWEEN P I N S  ' , ,  ' '  i 
+; .,,. : . . ,  ::.::.,: . 

. - .  . . . . . . . . . .  ., ,, ;>.., . . . . . .  . . ?: ;, . >:.,:.,..*<. 
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.' ,:& . : % ' : '  . . . . "  " . .  . . . . .  . . $, ,,: ;.i . . ! ' :"- . . % .::-,. : 

~ .,. . ' ; . . .  " .  "..  , . ;  , . . . . . .  " ; '5 . . .  * I "  
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. . i  . . L ,  . .  . .  . . . .  M a x i n ~ u r n  , F u e l  P in  T e m p e r a t u r e  f o r  lndikated. , . : . , , ..?.k.e:: ,, :. , >; c- ;; , { D e c a y  . . .: . . . .  ; ,:;..I . ... . , .,. !. .!:: 

..... 
. . .  :. , 
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. .  ,.I : H e a t ,  , . . . . . :.: (. .. , : 
. . 

kw. 100 300 500' ' 
, 
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TABLE 8. MAXIMUM FUEL P I K  TERPERATURE (F) FOR FOUR CISASSERELED 
BkR FUEL BSSERBLIES IF! DRY CARISTER WITH 0.125 INCH THICK ..,, . 

DIVIDER PLATE AND 0.0099 INCH GAP EETNEEN PIkS ., '  

r 1 :  Cecay haximum ~ u e l '  P i n  Temperature f o r  Ind ica ted  
Canister  sur face Temperature, F 

100 3CO 500. 7 00 . , 1000 



-p j- + ' +  + .  

. . . -. ~.,, . . 
L : . ,< . . .  . . . .  . . 

. . .  i . .  . . 
0 .  

. . 
, . , . ,  ' 1  . .  

, 
t =.O.OO (NO WALL) TO 0.25 INCHES : . " ' ; .: 7;  '; , . . . . . .  . ' . ': . . ' .  . , > ,  ' . . . . .  

f 

SQUARE-LATTICE PACKING ASSUMED IN ANALYSIS 

< '  , . . . < .\. . ' . . . . . .  . . .  
416 (0.430 0.) PWR FUEL PINS (2  ASSEMBLIES) : 

, 

' :: .. . ' : . . . _ " y  ,. . . .  . ! . : 
. . '. . -  . . 

.. : .  . . .  . . .  . . . , . . 196 (8.563 D.) BWR 7x7 PIN .'. . . . . . .  . . I.' . . . <  . . , 
. . . . . .  . . 1 7 (4 ASSEMBLIES). . . 

. . . . .  . . .  . . 252(0.501 D.) BWR 8X.8  PIN . . . 
, 

. . . . . . .  . . .  ' .:,:. 
! ' . 

, . .  .: . . . . .  I , .  . , 

. . . .  I . . . '  

. . .. ' . . . . .  

FIGURE 15 DISASSEMBLED FUEL PIN CONF~GURATION~ 
. i ., . . 
...A . . . . .  . -  . . . . . . 

. . . . '  . . 

. . 
I .  

1'. ,i , . .  . . . . . . 
. . -- . . ,, ' . . 
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CANISTER SURFACE TEMPERATURE - F 

FIGURE 16. MAXIMUM FUEL PIN TEMPERATURE FOR l W O  
DISASSEMBLED PWR FUEL ASSEMBLIES IN DRY , '  

CANISTER WITH 0.125 INCH THICK DIVIDER PLATE .. 

AND 0,0085 INCH GAP BETWEEN PINS 
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To td l  Decay H'eat 

Table 9 presents t h e  t o t a l  decay heat frob1 3562 PWR and 1527 BKR f u e l  

asselllbl i e s  f o r  a range of decay heat rate.  
. . 

! :; p . .. Cool i ng Concepts 
i - , . . . 

' .: 

To det  e r n ~ i  ne f easi b i  1 i t y  o f  a coo l  i n g  concept, t h e  value of decay heat . , Q 

o f  1 kw was used, w h i c l ~  i s  t y p i c a l  o f  5 t o  6 yea r  c o o l i n g  t i m e  a r ~ d  

represents t i l e  value f o r  t h e  "average" f u e l  assembly. I f  a concept was. . . ,: 

de te r r~~ ined  t o  be f r a s i  b le ,  t h e  ana lys i s  31s; was extended over  a range 
: ' ' , 

. . 

of decay heat so t l ~ a t  t h e  therraal perforrllance o f  f u e l  w i t h  coo l  i n g  

I t i i ~ ~ e s  d i f f e r e n t  than 5 , t o  G years car1 be assessed. 
. .  . ,  

No Coo l ing  

I. ! 
~ ~ ~ & n d i x  A presents t h e  ana lys i s  o f  v a u l t  and caisson no-cod l ing  

' ' 

concepts and shows sarilple ca l cu la t i ons .  A1 1 o f t h e  v a u l t  concepts w i t h  

no coo l i ng  are r ~ o t  f e a s i b l e  because o f  t h e  r e l a t i v e l y  low thermal 

c o n d u c t i v i t y  o f  concrete, t h e  r e l a t i v e l y  low opera t ing  temperature 

l i n r i t  o f  concrete, and t h e  r e l a t i v e l y  small sur face area t o  d i s s i p a t e  '. . . .  

. . 

The above-ground caisson concept w i t h  no cool  i n g  i s  f e a s l  b l e  f o r  i n t a c t  

and disassen!bl ed f u e l  assenib.1 i es, i f  adequate envi'ronmental space / 

surrounds each caisson. Tab1 e 10 sunimari zes ' the var ious  temperatures 

f o r  I r i t a c t  and disassembled PlJR and Bb!R f u e l  assemblies. 

The below-sround caisson concept w i t h  no c o o l i n g  i s  feas ib le '  f o r  i n t a c t  
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Notes : 

. -  . .  i , . ,  ;.:' 
. . . . .  1. T o t a l  decay heat  r a t e  depends on va lue  assumed ,. . .. . . . . . . I .  !..i 

. . .  
" . I  . . 

. . , . . . 
f o r  PWK and Bh'R mix tu re .  Maximum t o t a l  i s  w i t h  4 kw ' : '. \ , .  L .,. >. 

: . . :' .. I 

3 p e r  PKR and 2 kw p e r  BWR fue l  assembly o r  .a t o t a l  .. . . . .  
f . -  . . . . .  

' . .  5 14,248 kw p l u s  3054 kw, which i s  17,302 kw: '; . . , ! I.z: . " . . . . . . ' . ,. 
. . . ;  . .  , . ; . . . . , '. c 

. . . I .  . ' .  ;. 
. t 

. ,  . . ., 
. . . . .  2. Values apply  f o r  i n t a c t  o r  disassembled f u e l  . # I  . .  I .  .. . . . . .  

, . 1 _  . . . . f." , :, : 

assemblies. Fo r  s t o r e d  PWR disassembled f u e l  . . . . .  . . . . it ; .. ', , . . ,  

. . . . .  asserilbl.ies, t h e  number o f  c a n i s t e r s  i s  h a l f  t h a t  f o r  . . 
. . . . 

s t o r e d  i n t a c t  f u e l  assemblies, b u t  t h e  decay h e a t .  ' ' . . . s . . . . . .  . , ,  , .. ... ., . 
, . . v  . .  

r a t e  p e r  c a n i s t e r  f o r  disassembled PWR f u e l  . . . .  . . .  . . . . . . ! .  ! . ,:-, . .  
. . . . . . .  . . .  a .  . .  : 

. . , . 
assembl ies i s  t w i c e  t h a t  f o r  i n t a c t  f ue l  asse,nbli;s, ' r .  - .  . . . .  . . , . .  . . . . . . . . .  t h u s  t h e s e  e f f e c t s  o f f s e t  ' each o ther .  'A s i r r l i l a r  . . .  . . . . . . 

. . . .  ' . . :  . . . . .. : . . e f f e c t  occurs -  w i t h  t h e  RWR f u e l  assemblies, b u t  t h e  . . - .  . . < ,  . . 
, . , . .  4 .' , . ,, ,. - . . 

. . , ' ,. f a c t o r  i s  f ou r  ( f ou r  assembl ies i n  a c a n i s t e r ) .  . . ,. . , ,,: :, :Y;.:: 

. . .  . . . .  
. . .!.:., , . ' .: a,. . . .  . . .  . . . . . . .  . . . . . . .  . :  . .  

: .  : .  . 
. . . .  
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TABLE 10. TERPERATURES (F )  FOR NO-CGOLED ABOVE-GROUND CAISSONS WITH 
INTACT AND' DISASSENGLED PWR AEID 6WR .SPENT-FGEL ASSEMBLIES 

T o t a l  Can is ter  Decay Heat, kw 
' .  Ten~perature o r  . . 

Temperature Dif ference, '  F 
0.25 0.5 1 2 . 4  8 

Ambient' temperature, 100 100 ,100 100 100 100 * 
Ambient-outside w a l l  d t  

~ a i  sson outs ide  temperature 101 101 102 104 ;lo8 115 

Caisson w a l l  d t  11 22 

Caisson i n s i d e  temperature 

Cani s te r -ca i  sson . d t  

Canistersurfacetenlperature 135 ' 166 222 3'11 4 7 2  660 
. . 

Maximum fuel  p i n  temperature:' 
. . .  . . . 

.PWR i n t a c t  f u e l  asser~lbly 165 220 312 450 ' 658' . -- . . 

PWR disassembled f u e l  

165 218 310, 444 BWR i n t a c t  f u e l  assembly - - - - 
289 422 635 886 . . BWR d i  sassembled fue l  -- - - 

* 
d t  r e f e r s  t o  temperature d i f f e r e n c e  

Note: 
For i rldi v idua l  assenlbly decay heat load, d i v i d e  column 
headings by 2 f o r  PWR disassei i~bled f u e l  and by 4 f o r  BWR 
d i  sasse~nbl ed fuel .  Thus, t h e  i nd i  v i  dual assembly decay heat 
ranges of 0.25 t o  4 kw per  PWR assembly and-0.25 t o  2 kw p e r  
BWR assembly are included. 



. . . ,  * 

. . : ' !' ; 
. . , .  . . .  . 

disassembled f u e l  assemblies, if t h e  decay heat i n  each: ' fuel  assembly . ' . . ' . . ' . .. . . .. f v ,  

. .  . . ., . :.e . 
. I . . .  I .' ... . 

. " 
. . . .  . , . 

i s  no g r e a t e r  t h a n  1 kw f o r  a  PWR arid 0.5 kw f o r  a BWR f u e l  assen~bly.. . . '  .;;'',: . - : I  . ' , . ,.'< 
. 3 .  

. . 
. . . . 

s 
. . , , . .., , 

: . .. : .. 
.Ca l cu la ted  temperatures are presented i n  Table 11. As l:ti'e t a b l e  ' . . ' , . . , . . . .  . . . . " .  : I.; . I 

.. , . :. .. . . .  
. . , .  . 

.. :.: ' : " . 

i nd i ca tes ,  w i t h  a  t o t a l  o f  2 kw i n  t h e  caisson, t h e  concre te  [ _ .  ' 
R 

. . . . .  
. . 

. .  % 

. , 
: '. . . . 

. . .  . I .  temperature i n  t h e  v e r t i c a l  sicit! w a l l  i s  629 F, w l ~ i c h  i s  . g rea te r  t han  . . . L C .  ; ." 
. . . , . .  .i ' . .  

1 .  . . . . . . . 

t h e  somewhat a r b i t r a r y  value o f  500 F d iscussed i 'n  Appendix A. A . . ;  . ! '  ,' 

. .  . . . . . .  
I . I  

. . 
d e t a i l e d  des ign  study w i t h  op t in i i za t ion ,  r e d e f i n i n g  o f  des i yn  c r i t e r i a , . .  % . .  . .  

.. . 
. . . " . , 2 .  

and t h e  use o f  a  d e t a i l e d  fherrrlal model i n s t e a d  o f  t h e  .'closed for in  . 
. . I . . . '  

. . .' ! .  

s o l u t i ~ n  used i n  Appendix A nay revea l  t h a t  t h e  2 kw decay heat i s  
I '  
1 

a c c e p t ~ b l e .  Thus, w i t h  these rese rva t i ons ,  2 kw i s  i n d i c a t e d  as 

f e a s i b l e  i n  Table 11. Above 2  kw, s to rage i n  a  below-ground, no-cooled 1 ,  

caissop does n o t  appear t o  be feas ib le .  8 
. I  * 

The data  i n   able 11 are v a l i d  f o r  a  ca isson o r  an array o f  ca issons i n  ' . . ,  . . ! .  . . :  
.!.; . ' ,  

, . . 
l e v e l  pround o r  i n  an engineered berm, if t h e  center- to-cent  e r  spacing .:. . . , . . 

. . 1 ; ., 
. . 

i s  a t  l e a s t  9.44 f e e t ,  ah ich  i s  t h e  o v e r a l l  s i z e  o f  t h e  caisson ' t h a t  . . . .  
. . 

was anqlyzqd. 

Natura l  Convect ion 

. . ; .  . 
. ! .a .  . . 

Table 12 presents temperatures i n  na tu ra l - convec t i on  coo'led v a u l t s  and 
I i .  

1. 
, . 

. . ca issons e i t h e r  above o r  below ground. Values i n  t h e  t a b l e  were . .  . , .. . 
. .. 

. . . . 
, . . . . ' ,  :. 

c a l c u l a t e d  assuming no heat i s  conducted th rough t h e  w a l l s  o f  t h e  v a u l t . .  ,. , .  , ., ' 

. .  . . . .  . . .  

o r  caisson. 4s discussed i n  Appendix B, t h e  use o f  Table 12 i nc ludes  a  . . 
. . . . . .  

. . 

smal l  amount of conservat ism f o r  t h e  v a u l t s  and below-ground caisson, 

b u t  f o r  t h e  above-ground caisson t h e  aciount o f  conservat is t r  i s  . . . . ' ) ,  . . . , 

approximate,y 20 percent. Thus, a  c o r r e c t i o n  can be a p p l i e d  by t h e  use. ' 

o f  Table 10 k;ith Table 12, i f  desired. Th i s  procedure i s  descr ibed i n  % . 

Appendix B. 



TABLE 11. TEKPERATU'RES ( F , )  FCR I4.0-COOLED' EELOK-GROUND CAISSOIS WITH 
I~TACT AND DISPSSEVELED PKR. AED BWR SPENT-FUEL ASSEMBLIES 

T o t a l  Can is ter  Decay Heat, kw ' 

Teri~peratu r e .  o r  
' 0  Terr~perature' D i f f e rence ,  F 

2 4 .  8 0.25 0 .5 '  ' 1 
' .  . n 

,I I j Ar~~b i  en t  terr~perature * 100 100 100 1GO Not 

; n .  . Art~bihnt-outside t o p  d t  ,, 7 . 12 2 3 42' Feas ib le  . . . .  .. 

: I d  ' ... 

. . . Caissorl ou ts ide  ten~perbiture ' 107 112 123 142 Not' 

.i 1 
I I ca isson access p l u g  d t  36 73 146 292 Feas ib le  . ' .. I..: . . 

Caisson i n s i d e  t o p  terap. 143 185 269 ' 434 Not : p  < : .  , , , 

24 49 9 8 '  , ,195 ~ a i ' s s o n  top-wal 1 d t  ~ e a s  i b l  e 

167 234 367 629' 'Not  ~ . .  , 
i r .Ca,isson i n s i d e  w a l l  temp,. , . 

. .. . . 

Cani s te r - ca i  sson d t  22 3 3 42 . 41 Feas ib le  

Cani s t e r  su.rf ace temperature 189 267 409 670 . , Not 

Maximu111 f u e l  p i n  temperature: . . Feasible, ' --- 

PWR i n t a c t  f u e l  assembly 217 312 473 . 741 Not , , 

296.' 456 731 Feas ib le  
. . 

, . [': PWR disassembled f u e l  -- 
I .  1 

BWR i n t a c t  f u e l  assembly 216 ,309 468' 736 Not . , . . 

BWR disassembled f u e l  -- - - 459 733 F e a s i b l e '  : 
I 

. . 
. . 
, 1;:. , 

d t  r e f e r s  t o  temperature d i f f e rence  

. 1 :  Note: 
For i n d i v i d u a l  assembly decay heat load, d i v i d e  column 
headings by 2 f o r  PllrR disassembled f u e l  and by 4 f o r  BWR 

1. disasses~bled fue l .  Thus, t h e  i n d i v i d u a l  assernbly decay heat 
ranges o f  0.25 t o  4 kw per  PMR asserr~bly and 0.25 t o  2 kw p e r  

I 
BWR asserilbly are included. 

? I 



. . 

. TABLE 12. TEMPERATURES ('F) FOR NAl.C!IIAL CUNVtCTION. COOLED VAULTS AND. . . ,  

CAISSONS WITH INTACT RtlD DISI\SSEMBLED PWR AND ERR' . . . . .  . . . . .  
. .  : 

SPENT-FUEL ASSEI+BL IES ... . ,  

. . . . , . .  
. , 

. - . . ,  Tot a1 Can is te r  Decay. Heat, kw . . , . .- i : - : . . ,  I . .  . . 
. . .I.,. , 

. . .. 
A .  

~ e m ~ e r a t u r e  D i f f e rence ,  F 
0.25 0.5 1 2 4 8 I i 

I 

Ambient temperature * 
I n l e t - o u t l e t  a i r  d t  

Out 1 e t  a i  r t er;;peratur-e 

Cani s t e r - a i  r d t  

Can is te r  sur face temperature 136 161 203 279 415 655 
, . 

, . . . ., 
Fiaxinlum f u e l  p i n  temperature: 

166 216 297 426 621, PWR i n t a c t  f u e l  assembly -- ... . 

PWR disassembled f u e l  - - 195 267 390 586 876 . '  
% ! ,  ; 

- 8  

6WR i n t a c t  f u e l  asseri~bly 

BWR disassembled f u e l  - - - - 272 396 593 882 . , 

* ' .  . 
, , . 
' ,. 

d t  r e f e r s  t o  temperature d i f f e r e n c e  . .. . . 

. 1:: a 
. .. 

Note: . . 

For i ndi  v idua l  asseri~bly decay heat load, d i  v i d e  ' c o l  unin . . 
, ! 

tieadings by 2 f o r  PWR disasserr~bled f u e l  and by 4 f o r  BWR . . 
d i  sassernbled f u e l .  Thus, t h e  i n d i v i d u a l  assembly. decay heat . . 

. . 
ranges o f  0.25 t o  4 kw pe r  PWR assembly and 0.25 t o  2 kw pe r  . . .  . . 
BWR assembly are included. . . 



[ . '  T l ~ e  a r ~ a l y s i s  i n  Appendix ti i n d i c a t e s  t h a t  n e t u r a l  convect ion  c o o l i n g  i s  

feas ib le  and. adequate t o  cool  v a u l t s  and caissons t o  t h e  ri~axin;urn 

expectea l i r n i ' t  o f  decay heat ( 4  kw f o r  P\$R and 2 kw f o r  BWH f u e l  

assei ibl ies),  if t h e  v a u l t  and ca isson are  const ruc ted t o  f r e e l y  permi t  
. . 

t h e  entrance and e x i t  o f  a i r .  Thus, t h e  use o f  n a t u r a l  convect ion  
. , 

r e l a t e s  n o t  o n l y  t o  thermal,  f e a s i  b i  1 i t y  but  t o  t h e  e n v i  ronciental . . 

s u i t a b i l i t y  . o f  convect ing a i r  around a caisson a n d ' e j e c t  i n g  i t  i n t o  t h e  

environne'nt v i i thout  f i 1 t e r i n g .  Perhaps double containment 'wou ld  be 

required, and t h i s  ana lys i s  does no t  i nc lude  double containment, ~ h i c h  . 

would increase t h e  naximuni. f u e l  p i n  temperature. 
. . 

Forced Convection 

I n  Appendix B; t h e  v e l o c i t y  o f .  5.67 f t / s  i s  shown t o  be a t t a i n a b l e  f o r  
. . , . .  

na tu ra l  convect ion w i t h  a r t l su l ta r l t  va lue o f  heat t r a n s f e r  c o e f f i c i e n t  "' ' .  

.of 1.11 Btu/11-sq. f t -F .  A fo rced convect ion. co r * re la t i on  revea ls  t l ~ a t .  

if t h e  a i r  f l o w  v e l o c i t y  w r e  increased t o  10 f t / s ,  t h e  va lue o f ,  heat 
. . 

t r a n s f e r  c o e f f i c i e n t  would increase t o  on ly  1.52 Btu/h-sq. ' f t -F.  Th is  

would r e s u l t  i n  considerably g rea te r  fan poker w i t h  a r e l a t i v e l y  small  
. .. 

decreiise i temperature d i f f e r e n c e  between t h e  a i r  and t h e  can is ter .  

( j A1 so, t h i s  terr~perature d i f , ferer i t  i al. i s  re1 a t  i ve ly  small  cor~~pared t o  t h e  

o v e r a l l  temperature d i f f e r e n c e  .between t h e  a i r  and t h e  h o t t e s t  f u e l  

pin. Therefore, us ing  fo rced convect ion t o  decrease f u e l  p i n  

te r~~pera tu re  appears t o  be f u t i  l e .  

The major advantaye o f  fo rced co r~vec t ion  i s  t o  prov ide  a p o s i t i v e ,  

constant su'pply o f  a i r  i n  which f i l t e r s  can be i n s t a l l e d  t o  ensure a 

c lean environment. For  l e a s t  f a n  power, t h e  a i r  f l o w  r a t e  v!ould be 

.adjusted t o  t h e  cninirtrum l e v e l  cons is ten t  ' w i t h  t h e  nraxin~uri~ a1 lovab le  



. . . . fuel pin ter~~perature.  . . 
. . . . 

Heat Pipes . . ' . .. 

The heat pipe .concept i s  feas ib le  f o r  a l l  of the  s t o r a j e  concepts. For . . . . ... . 
. . 

.. . . .  
. . 

the vault storaye, above and below ground, a 2-inch-diameter copper . . . . . . .  . ... 
, . . . 

. . 
heat pipe may be placed in the  center of four canis te rs  which contain . > .  

, . . . . . . . 

PWR disassembled fuel as shown in Figure 18. ~1 ie re fo re ; ' t he  heat pipe' . . . ' 

cakacity i s  8 kw. Four. f i n s ,  each 12  inches long, conduct' h.eat. from ' . I - .  ' . .  . .  . 
' . .  

1 . .  . , 

the fuel assenrblies, which t ransfer  heat t o  the  f i n s  by natural - .  I :  

: ,  

convection and radiation. The operat'i'ng temperature of . the f i n s  i s  : I '. ,' I. . ' 

. . 

estimated t o  be 400 F t o  450 F ,  depending on the  eff ic iency desired and . . .  , .  . .. . 
I;. : I  ! .  
! 

the expense. The rack supports nlay pass through holes in the  f i n s ,  1 

~ h i c h  will not greatly reduce the  f i n  effectiveness. The number of 
I 

P 

heat pipes required i s  one-fourth of the t o t  a1 number of PWR canisters .  
# 

For BWR disassembled fuel with 4 kw per canis ter ,  twice as many heat 
. . . . . . ,  . 

pipes would be required as that  for  an equal number of PIJR canisters .  . . 
' ! I  

The copper f i n s  can be coated t o  increase t h e i r  emittance t o  r 
I . )  !. '  

. . . . .  . . . . .  . . .  approximately 0.9, which i s  equal t o  that  of concrete. Therefore, . . . .  . , 
% .  ! .  . , . 

maximum fuel pin t e ~ p e r a t u r e s  can be deterwined from Table 10 f o r  . . . . . ! 
' i .  I 

. . , ' no-cool ed caissons. Temperature values are approximately equal. whether 
. . 

.' . . . 

natural convect ion occurs by circulation within a closed caisson , . . . . . 
. . 

betkieen canis ter  and c w c r e t e  or between canis te r  and ' f ins .  , I n  t h i s  , . 

, , 

example,. a t o t a l  decay heat of 8 kw i s  assumed. Entering Table 10 with . . 

. . . . 
8 kw, the temperature d i f fe rent ia l  between the canis te r  and caisson . .  . 

(intrepreted as canis ter  and f i n s  in t h i s  e x a ~ ~ p l e )  i s  194 F, Thus, 
: , 

. assuming a f i n  temperature of 450 F,  the canis ter  surface temperature 

would be 450 F plus 194 F or 644 F. Using t h i s  value and the data of 



I 
C 

PWR FUEL, . . .  4 
ASSEMBLY 

CANISTER . . 

400-450 F 
OPERATING 
TEMPERATURE 

DIMENSONS 

2.0 0.0. COPPER TUBE HEAT P I E .  
WATER HEAT TRANSFER FLUID. 
8 KW MAXIMUM CAPACITY. 
0,125 X 12 COPPER FINS 

HEAT PIPES STAGGERED AMONG ARRAY 
ONE HEAT PIPE REMOVES DECAY HEAT FROM FOUR 
FUEL ASSEMBLIES. 

. . 

. . 

I 
. I  
! 

ARE 1'4 INCHES j 
i 

FIGURE 18. TYPICAL HEAT PIPE COOLING FOUR PWR FUEL ASSEMBUES : 



~ax imum fue l  p i n  temperature as a  f unc t i on  o f  can i s t e r  s ~ r f a c e  . .. . .  . 
E 

tert~perature, t h e .  ri~aximuri~ f u e l  p i n  ter~iperature call be detrsrmi ned. 

F ins  . . . . , . .  . . ,  - 
8 .  

- : .. . . . . 
. - .  , . .  

.. , . .  , . . 
The concept o f  us ing f i n s  t t ~ rough  t h e  c o ~ ~ c r e t e  wa l l s  i s  not a . . .  feas ib le .  i 

. . 

I n  t h i s  concept, t he  f i n s  s l ~ o u l d  be i n s t a l l e d  s lan ted  i n  r e l a t i o n  t o  
. . 

t h e  w a l l  cross sectSon t o  reduce nuclear. r a d i a t i o n  t l~yough  t h e  s tee l .  ' 
, 

~ s s u m i n ~  a  t o t a l  conducting l e r ~ g t h  o f  6  feet ,  the  use..of carbon s tee l  . !. . 

. . 

w i t h  t t lerr l~al conduc t i v i t y  o f  30 Btu/h- f t -F,  t h e  maxiinunl. tenberature  . . , 

d i f f e r e n t i  a1 across t he  f i n s  i s  400 F  (niaximum concrete temperature o f  
. .  , 

500 F), and t o t a l  decay heat o f  5689 kw (1.736 E 7  BtuLh); t he  cross 

sec t iona l  area o f  t h e  f i n s  would be approx i l~ ia te ly  26,000 square feet .  

This represel l ts a  p r o h i b i t i v e l y  l a rge  mass o f  s tee l .  

F ins  are feas ib le ;  i f  used w i t h  a  l ieat p i pe  as discussed prev ious ly .  

I ns i de  vau l t  f i n s  were discussed. Carbon s tee l ,  s t a i n l ess  's teel  ,' o r .  . . - : ' 
, . . .  , . 

. . copper f i n s  also. would be placed around t t ie  heat p i pe  ex terna l  t o  t he  . . . . '  , ' . 
. .  . 

vau l t .  Assuming a view f ac to r  between f i n s  t o  t h e  environment b f 0 . 2  , : . ,  " . . . . . 

f o r  6- inch-high f i n s  spaced 2 inches on center, a  temperature 

d i f fe rence  between t h e  f i n  s u r f  ace and t h e  envi roninent o f .  300 F, and a . . 

'heat t r a n s f e r  c o e f f i c i e n t  value f o r  na tu ra l  convection of 1.2 , 

. . 
.Btu/h-sq. f t -F ;  t he  r e q u i r e d t o t a l  f i n  sur face area would be 28,000 

square feet .  Since adequate space e x i s t s  on t o p  o f  t he  vau l t ,  t he  f i n s  . .  

cou ld  be spaced f a r t h e r  apart .  t o  increase heat t r a n s f e r  by r ad i  ati.on. ' . 

F ins  i n  two o r  th ree  decks would be requ i red on t op  o f  t he  vau l t  f o r  

disassembled f ue l  assemblies. Whether t h e  f i n s  would be i n s t a l l e d  i n  

decks, which are commercially avai lable,  o r  i n s t a l l e d  as c i r c u l a r  f i n s  

d i r e c t l y  on t h e  heat pipes and protrude several f ee t  above t he  t o p  of 



t he  vau l t  i s  a  design dec is ion  beyond t h e  scope o f  t h i s  repor t .  
I 

E f f e c t  o f  Decay Heat i n  a Hot C f l  - 

r t h e  maximum temperature f o r  each case has been ca l cu l a ted  us ing  t h e  
1 ; 

spec i f ied  arrlbi ent temperature. Table 13 presents t he  maxinlum f u e l  p i n  
. . 

: .: r; , : . . 
a .  . . . : ,  

' - H  
q . .;" 4 .  temperature w i t h  a  0.125-inch-thick d i v i d e r  p l a t e  i n  t h e  ,can'i.ster and a !;.. . . . . 

! . . ,  ,. 
. . 
. . 

0.0085 inch gap between f u e l  p i ns  i n  a  square a r ray  f o r  two 
. ' . .  .; p . . .. 

.* disassen~bled PWR fue l  asseinbl ies. Heat was assumed t o  be t r ans fe r red  .I . 
. ' .%.  . . . . 

. . .. , ., , . . , .. . . 

- from four' sides o f  t h e  c a n i s t e r  by na tu ra l  convection and rad ia t ion .  
. . 

:.. , . .,; .E .. , 

~ r i  eslittarlce o f  0.4 was used on t h e  ex terna l  sur face o f  the  canister . '  ' ' , 
: ' 1 '  ' 
. .. . . 

. . . . . . 
i 

If 10 a i r  changes per hour were assuri~ed i n  t i l e  hot  c e l l ,  t h e  r e s u l t i n g  

t f7 
v e l o c i t y  would not  increase t i l e  heat t r a n s f e r  c o e f f i c i e n t  greater  than 

I !  t h a t  which could be a t t a i ned  by natura l  coiivection. By a  heat balance, 
_ I  . . . . . . . 

t he  mininius~ supply o f  a i r  rnust be 84.3 standard cub ic  f e e t  per minute: .  . , . . . , 
. . . . . ..- . .  . 

( I ) .  This i s  equivalent  t o  t h e  f ue l  be ing i n  a  room 17.2 f ee t  cube. ' - .  -,,. . . .  :. 
' 4 : . . .  
: . . . 

. ,  . : ' . The locat ions of t he  rnaxin~u~n f u e l  p i n  temperature are Locations 1 and .2 ,  '. . '  . , 
. . 

. , .  , , . 
' . .  . ' I  

. , .  
t .  

i n  F igure 15, whictl i s  approximately three p ins  away from .tl.le d i v i d e r  

E f f e c t  o f  D i v i de r  P la te  Thickness 

.... 
. . 

Table 14 presents the  maximum f u e l  p i n  temperature f o r  a  range o f  I -' . - 

d i v i d e r  p l a t e  thickness f o r  two disassembled PWR fue l  assembl i e s  each 

w i t h  2 kw decay heat. For no d i v i d e r  p la te ,  the  c e n t r a l l y  located fuel 
. . 

. I . , 
p ins  i n  t he  20 by 20 p i n  ar ray  are ho t t es t  (416 p ins  are' i n  t h e  

.. . I. . . 
can is ter ,  but only 20 p ins  w i l l  f i t i n  a row, assurnin9.a squa,re 

1 '  mat r ix ) .  With a  d i v i d e r  p la te ,  the, t ~ o t t e s t  p ins  are approxin~ately i n  

Locations 1 and 2 i n  F igure  15. / I..- 



. .  < ' . .  . . . . .  
TABLE 13. ~AXIMUM TEMPERATURES OF TWO DISASSENBLEU PWR FIJEL ASSEMBLIES. .. . ; . i .  ;. . 

"3 

. . .  . 
! '  . 

. . . . .  STORED IN DRY 100 F ENVIRONMENT WITH 0.125 INCli.;.?HICK L . .. . . . , .  
, ; .::,. . L L DIVIDER PLATE AND 0.0085 INCH GAP BETWEEN PI& . .  " ,  ' . , 

. . . . .  . . .  . . .  SHOWING EFFECT OF DECAY HEAT . . . .  . . . .  . . .  . . , .  . . ?.  

, ' 
. . .  '.. , .  ' 

- .  . !. , , . , , . .  

. ' I ;  ' . .  
. . . . :  . . . . . .  

D ec ay 
Heat Rate 

Per 
Assembly, 

kw 

Viaximum 
Fuel  P i n  

Temperature, 
F 

Kaxiniurn 
Storage 
C a n i s t e r  . . 

Temperature, 
F " .  

. . .  . . . . . .  . . . . 
Naxilnurn , . . . . , ..,. . , .' 

. . t:, 

D i v i d e r  . . . .,. ..'. : .  . 
. . .  . . . . 

. . . . .  . . P l a t e  : . . .  , : .  
.. ' 

. . . ?  

. . .  .Temperature,' .: . . . , 
. i  . '.: . . . . .  . . . . . .  . " i:. . . .  F : . .: > .. : I .  

. . .  . : 
?. .' .,. 

. , : i "  : 



TABLE 14. MAXIkUM TEMPERATURES OF TWO DISASSEMBLED PkR FUEL ASSEKBLIES 
STOKED I N  DRY 100 F ENVIRORhENT WITH 2 KW'  PER ASSENBLY 
(TOTAL 4 KW) AND 0.0085 INCH GAP BETWEEN P I N S  . 
SHOWING EFFECT OF D I V I D E R  PLATE .THICKNESS 

hax i  mum Maxi mum 
D i v i de r  Maximum Storage D i v i d e r  

P l a t e  P.1 a te  Fuel P i n  Cani s t e r  
Thickness, . Temperature, Temperature, Temperat u re, 

' . F  ' F inch . . F 

I..., 



. . 
k i t h  the  t h i r ~ n e s t  p la te ,  t h e  l o c i d i o r ~  nray liduvtl one o r  ',:wo p i ns  .c loser . . ' 

, . .  . ., . . 
, .: . . 

. . . .. 

t o  t h e  p la te ,  because 1.i t t l e  heat i s  co~lducted f rom t h e  center  o f  the  
$" $.. 

i . ; .. 
can is te r  w i t h  a  t h i n  p la te .  , i t  . 

. . : !  : 

_ . .  . '.. 
, . . . .. . 

. . . . .  . ,. > . .  

. ' !:' 
' I  ' 

E f fec t  o f  P i n  Gap Size . : . 
. . ;. . , . I 

. . , . .  . . r . .  I 

. . . . : . .  . ' 1. i .  . . 
. . 1 .  

, i .: ,' 

I : .  .: 
. . 

Table 15 presents t he  rrlaxirnunl fue l  p i n  ten~perature  f o r  a  range o f  gap . 
. ' .  ., 

. . , . .  , . .. . . . 
' . ! L .  : 

s i ze  f o r  tkio disassernbled PWR f ue l  assemblies each b i t h  2 kw decay 

, I 
. . 

heat. ' The gap s i ze  corresponding t o  t h e  s p e c i f i e d  1.64 a r e a  f a c t o r  i s '  
. .  

0.0085 inch  f o r  t h e  0.430 inch  diameter f ue l  pins. ' This value' was . ' , '  . . , I . 
.. 8 . '  

. . ca lcu la ted by us ins  t h e  r e l a t i o n s h i p  t h a t  t h e  yap s i ze  i s  equal t o  , .. 

(1.098 - 1)(0.430) o r  0.0085 inch, where t h e  f a c t o r .  1.098 i s  t h e  squ,are . . . . 
. . . ,  

' 1. 

r o o t  o f  t he  f a c t o r  1.04. A1 thougli s l  i y h t l y  d i f f e r e n t  heat t r a n s f e r  . i 

. . ! 
, . 

coe f f i c ien t  values were used i ns i de  t he  can is te r  t o  acdocnt f o r  t h e  .. 
. . . I 

d i f f e ren t  spacing, sap s i z e  had l i t t l e  d i f fe rence i n  maximum 
I 

temperature, except f o r  zero sap. For zero gap, lowest  maximum I '  
, . 

t 

temperature was p red ic ted  because of t he  add i t i ona l  conduction around ! 
i. 1) 

t he  f ue l  p i n  cladding. . . 
I 

E f f e c t  o f  Insu l  a t i ~ g  One S ide  o f  Canis ter  

. . 

Tzb1.e 16 presents rnaxin~unl f u e l  p i n  temperatures f o r  two disassen~bled - . 

P ~ J R  fuel assemblies f o r  a  range o f  decay heat w i t h .  one s ide o f  t h e  
. . , I 

c ~ n i s t e r  insu la ted,  i .e., heat i s  t ransfer red f r ~ m  th ree  sides only. 
. , 

The l oca t i on  o f  t he  r;axinlusi f ue l  p i n  temperature i s .  a t  Locat ion 3 i n  
I 

Figure 15. fi~axirnurn can i s t e r  teniperature occurs on t h e  insu lh ted  side, , 

. r 

which, acts as a  f i n  t o  cor~duct tleat t o  t he  corners o f  the  canister .  

Thus the  d i v i d e r  p l a t e  does not t r a n s f e r  heat t o  t h e  one hot  corner, 

and the  l oca t i on  o f  the  ho t t es t  p i n  s h i f t s  toward t h e  hot  corner 



TABLE 15. I"IAX.IWUM TERPERATURES OF TWO DI  SFtSSEMELEC PNR FUEL ASSEKBL.IES 
STORED. IN CRY 100 F EF!VIROKMENT WITH 0.125 INCH THICK . . 

DIVIDER PLATE AND 2 KW PER ASSEKBLY (TOTAL 4 KW) 
StIOWING EFFECT OF P I N  CAP SIZE' . . 

Pkx i  mum . . Maximum 
Gap Maxi mum Storage C i v i d e r  

' . Fuel P i n  Canis ter  P l a t e  E e t  ween 
Pins, Tenperature, Tenperatu re, Temperature, 

: i nch  F F F 



. . .  : . . . . . .  , : a  ., 
. . ..:. . 

. I ..:. . . 

TABLE 16. HAXIMUM TEKPEFATURES OF TWO DISASSEWBLEC PWR FUEL ASSEYBLIES~. ..: :. :' .. ,;;''.; . . . .  
. !+: . '! 

: i  .. . ' 7 . .  

. . . . .  ... STOKED I r J .  DRY 1CO F. ENVIROKNERT WITH 0 . 1 2 5  INCH THICK. . : . , . . . : '  
. : . , 

. . .  ,:_. \ 
. . . . . . . .  . . , ', , ;.:; , .. :' 

. . .  . . 
.,., . . 

D I V I D E R  PLATE AND 0.0085, INCH GAP BETWEEN P I N S  'StiOWING , , 4 . .. ... . . , 
: s i  .:.., I:;,, 
5 r .  

. . 
. . .  . . >  . .  . .  

EFFECT OF INSULATING ONE S I D E  OF CANISTER FOR A',RANGE . . . .  . .  . . . .  . 
.:.. ! j . , $ ' : , : .  :. . , i , , ' : ' ,  ., ' . . .  . . . .  . . .  .., . ..: . . .  Y,;. ?'.:...'. 

. . . . . .  : .  . .  OF DECAY HEAT ' . . : .;..,-. . ". .#.  . . 
. . . : . .  . . .  L : . :  . - .  . f  ; j  ..' . . . . . . . . .  . , . _ .  

. . . , a , : . , :  :,i;:.?,: . , !  I . . . . . . .  ........ . . 
. . . .  - .  ....;. 2.. 

. . . . .  . . , . .  . .  , _ .  ('  ' 
, .  . . .,. s. 

. ,  : _ . .  ~' 

, . / .  . ,  ,' '. . . . .  D ec 'ay  N a x i m u m  : I: I . Max.i's~urn' - . . . . . . .  . . 
, , . '.;;: , >.r, 

:, , . ' . *  - .  . ., . 
H e a t  . R a t e  M a x i r ~ ~ u r n  S t o r a g e  , .  G i v i d e r .  :: .- ' '. . , . . .  . ' I  ; .:;. 

> .  

. . .  . , , :: 
. : .  

. . .  . . .  P e r  F u e l  P i n  C a n i s t e r  , P l a t e  . .  . . . . -  . . . .  . ,:. . , .  . 
. , . . 

. . . .  
. , ..:, 

i .  2 . .  

A sse r l i b l y ,  T e m p e r a t u r e ,  T e m p e r a t u r e ,  , '  T e m p e r a t u r e , .  , . . , :  . . .  . . ..v'.. . ' ., - ., 
. . . . . . . . . . . . . . . , . . . :  . . kw F F . .  F . . .  . .  

( .;.,:.. . . . . ,  . . 
.'I 



a few pins.  

E f f e c t  of Envi ronnler~tal  Temperature 
. . 

, . 
. . .. . 

. . 

Table 17 presents t h e  h o t t e s t  fue l  p i n  ten;perature f o r  a range o f  

environmental te r i~pera ture  f o r  two disassembled PG:R f u e l  asseri~bl i e s  each . ' . 

w i t h  4 kw decay heat. The value' f o r  100 F ambient was copied f rom a 
. . 

prev ious ana lys i s  t o  complete t h e  t rend.  The maxirilum value decreases 

w i t h  i nc reas ing  environmental ter~ ipereture because heat can be 

t r a n s f e r r e d  more e f f i c i e n t l y  by r a d i  a t  i o n  a t  hicj t ler temperatures. 
. . 

E f f e c t  o f  Pool Water 

': 

' Tiible. '18' presents t h e  rr,axir~un; bu l k  water temperature i n s i d e  a cc 'n i s te r  

con ta in ing  two disasstrr~ibled PWR fuel asse r~~b l i es  w i t h  t h e  c a n i s t e r  i n  a : 
. . 

rack ~ i t h  0.125 inc l i  c learance betvieen t h e  c a r l i s t e r  and rack on a l l  

1 . f o u r  sides. Natura l  convect ion i s  s u f f i c i e n t  t o  r ~ ~ a i n t a i n  teri~peratu.res 
1. . . 

. .  below b o i l i n g  assun~irlg an i n l e t  teniperature o f  120 F. I f  t h e  i n s i d e  of ' .  

1 -  . '  t l i e  c a n i s t e r  were t o  be .dry, t h e  sur face terrrperature, wtiictl i s  a 

1 f unc t ion  o f  how nluch heat  crossed t h e  surface, h o u l d  be t h e  same' 
I , 1.'. 

I : . . because t h e  decay heat viould not  have changed. However, t h e  n:axircum 
~. ! . , 1 -.- 

.pin. temperature would be g rea te r  and t h i s  value can be ascerta ined f rom 
. . I I ... 

I , . t h e  general curves o f  n;axinlun decay heat versus c a n i s t e r  surface 

teriiperature, vihicti were presented p rev ious l y  herein.  Thus, bo i  1 i n g  
I . ~ ' I 

viould not  occur ou ts ide  o f  t h e  c a n i s t e r , a n d  the.temperature.wou1d be 

j 1  t h e  same as i f  t h e  i n s i d e  o f  t h e  c a n i s t e r  had hater .  
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; p > .  .. TABLE 17. EiAXIMUW TERPERATURES OF TWO DISASSEMELED PWR F U E L A S S E ~ B L I E S  ' . ', . .. . . .  . ;. . 
STORED I N  DRY ENVIHONF~ENT WITH 4 KW PER ASSEI?BLY, 0 .125  INCH . '  . . ' 3  . . 

, . . . 
. .  . . .. '. . .. 

TH ICK D IV IDER PLATE, AND 0 .0085  INCH GAP BETWEEN PINS: ' '. . . . . :  .: ; :..: .: . , . ,  ' '  
:- . , .  

. .. . .  . . .  . 

SHOWING EFFECT OF IKSULATING ONE S I D E  OF CANISTER .FOR..A 1 .: , ' 

. . 
, . ,:.!: . .;., 

. . . , 

RANGE OF ENV I RONMEb1TAL TEMPERATURE - . . 
' :. . . . . . .. 
i: . ..: ,.' 

. . . , , . 
. . . . , . t . '  . .L , .  . ,  .... 

. .), 
. .  . . , \ I . -  

. . , . .  
. . . . . .  

. . . . . . ! . 9.. . 
. ,  . .  

M a x i  mu111 ; . . M a x i n ~ u m  , . . .  % .. . P . , . ,  , . 'i E n v i  ron- . , .  
. . . 

. '  * _  1 .  
M a x i  mum S t o r a y e  ' D i v i d e r  ..; I '  . 111ent a1 ' " i  . i .  . . .  . . . .  t . .  : 
F u e l  P i n  ' C a n i s t e r  . . . : . P l a t e  . .  1 ' '  ., . .  . .  Tenlpe r- . . . . .; : _ .  ,.,. , . ' +: . . 

. .:.: 
a t u r e ,  T e r n p e r a t u  r e ,  T e m p e r a t u r e ,  , . ~ , e l n p e r a t u r e . , .  . - : . . .  . . . . . . I  . . . ,  > : .  , 

F F F . , F. .. . ,  , , . , ,  . 
: ,  . . . I .  

. . . . . .  . . . 



. . . . . . 

TABLE 18. NAXIMUM CANISTER NATER TEMPERATURE AND CANISTER-RACK ANNULUS 
. . 

WATER TEIviPERATUHE RISE' FOR TWO DISASSEMBLED PWR FUEL . . 
. . 

, .ASSEMBLIES I N  A RACK FOR A RAKE OF BECAY HEAT . . . . . . .  

: I ., . 
. . .  'a .' , Cecay Maxi liiurn ' .  Temperature , . .  

. , Heat Rate Water . . ' R i s e  i n  . .  . . . . .  . . . . 
. . . . .  

Per . Tewperature Canister-Rack . . . 
' ! 

, . l::r ' . . . . . . .  Assen~bl y, i n  C a n i s t e r ,  . Annulus,. 
. ., ' 

F . . . .  kw F 
. . : :  . . . 

I * . . 

~ p~ -- 
. . 

* .  
Temperatures c a l c u l a t e d  w i t h  a water  i n l e t  temperature o f  120 F. 



t ,'.,z , . '. 

. . ' ! :  . " .  

To n;eet t h e  s t ~ i e l d i n ~  c o n s t r a i n t  of 0.1 m i l  1  i renl / l~our  dose r a t e  1  i m i t .  " . , ; .  I : .  . 
. . . . 

a t  one f o o t  f rom t h e  concre te  w a l l  o r  ceS 1  i n 9  on t h e  "cold! side., 7 0  t o  . . . . .'I 
. , . .  . .  

43 inches o f  o r d i n a r y  concre te  a r e  r e q u i r e d  f o r  .a ran(;e.of 4 t o  0.5 ' .  . . _  . . 
. . .  . . 
. . ; , .  ':.. 

Kb/PWR assembly i n  c a i  sson o r  v a u l t  s to rage o f  LWR ,spent ,  f u e l .  . . .. . 
- . .  . . .  

To m e t  t h e  s h i  e l d i  ng cunst  r a i  n t  o f  0.1 nli 11 irem/t iobr dose r a t e  1  im i  t . '  '.': .: ' '  
. ' i  

. - .  . . 
a t  t e n  f e e t  f r o ~ i l  t h e  ca isson concre te  w a l l  on t h e  " co ld "  s ide,  5 7 t o  49 .; : ' ..'.'' 

a ' . . :  ,, 
. , 

. .. 
inches o f  o r d i n a r y  concre te  are  r e q u i r e d  f c r  a  range o f  4 t o  0.5 K ~ / P W R  , '  . . .  . . . . . . 
assembly i n  ca isson s torage o f  LWR spent f u e l .  . . 

. . . . .. 

To meet t h e  s h i e l d i n s  c o n s t r a i n t  of 0.1 m i l l  i r e ~ a / h o u r  dose r a t e  1  i m i f  .' ' .. . . . ' " .. 
. . '  . . 

a t  one hundred f e e t  f rom t l ~ e  caisson concre te  w a l l  on t h e  " co ld "  side, i 
I + . . .  I 

42 t p  33 inches o f  o r d i n a r y .  concre te  a re  r e q u i r e d  for '  a '  r a n i e  o f  4 t o  .:. :'... I ,. . ,  , #  

. . 

0.5 KK/PKf? assembly i n  ca isson s torage o f  LKR spent f u e l .  . . 

. . . .  . I . . '  

. . . . 
.' c 

. . .. . : 

For  t h e  sanie c a n i s t e r  surface temperature and t o t a l  decay ,heat  i n  a . . .  .. . 
. . 

, . 1 .  

c a n i s t e r  w i t h  i n t a c t  f u e l  assembl ies; decay heat can be t r a n s f e r r e d  . . . . I . .  
. . . ,. . . 

- .  . .. . I . . ' 1 '  ( 

i n t e r n a l l y  f rom a  7  by 7 p i n  o r  an 8 by 8 p i n  Eb!R ~sseelnblp a n d  a  15 by , 
! .  . . 

. . . . . .  , : j .  . .  
15 p i n  PWR assembly i n  approxin late ly  t h e  same r a t i o  as t h c i , r  r e s p e c t i v e .  - . I . .  

. . 
. . .. J .  . 

. r .  c a n i s t e r  sur face areas, therefore,  the, n~aximum fue l  p i n .  temperatures. . . . i: e '  
, . 

. I , . 
are a p ~ r o x i ~ ~ i a t e l y  equal. . , . .  . : . .  

.. . I ; , ' .  
L ,  - : . . .  ... , 

. . . .  . 
. . . . . . . . . . 

. . . .  . 
. * ' I  

For  t h e  sane t o t a l  decay l ieat i n  a , c a r ~ i s t c r  w i t h  disassen:bled f u e l  . , .  
' , 

p ins, t h e  .maxin~urn fue l  p i n  t e r i ~ ~ e r a t u r e  f o r  Eh!R f u c l  p i n s  i s  c n l y  
. . , , 

s l i g h t l y  g rea te r  t h a n  t h a t  f o r .  PRR f u e l  p i n s  because t h e  BWR f u e l  p i n s  , , ;  ., 
, . . . 

and t h e  spaces al;;c;nS f u e l  p i n s  are on ly  s l i g h t l y  g rea te r  t han  those f o r  



PWR fuel pins. 

, . 

.Vaults, e i the r  above or below ground o r  . fo r  in t ac t  or disassembled fuel . . 
. : . . . . . . 

asser~~blies ,  can not adequately conduct su f f i c i en t  decay heat across i t s  

walls t o  d i s s ipa te  the  heat without some type of auxiliary cooling. 

A sinple-canis ter  caisson above ground can d iss ipa te  the  decay 'heat 

i . I i  j 
adequately, b u t  below ground, auxiliary cooling i s  required f o r  . , 

canis te r  decay heat greater  than aproximately 2 kw, depending on 
. . , . 

. -  1 4  4 established desisn c r i t e r i a .  . . . . .  ..: 1 

Natural convection cooling of a  vault and a  caisson i n  which a i r  is  . , 

circulated i'nto and out of the vault and caisson . i s  feas ib le  i f  l a r se  

openi ngs :are provided a t  t he  bottom and top of the  vault and caisson 

w i t h  no f i l t e r s  in the  in l e t  or out le t ,  b u t  no attempt was' made t o  

quantify pressure loss  of f i l t e r s  and determine t h e i r  e f fec t  on 

. cool i ng. . . 

. , 

. -. ' . .  . Forced convection, a1 though not theoret ical  ly  needed f o r  thermal 

. : I..! , . performance of a vault or  caisson, i s  desirable  t o  supply specif ic  . . 

.- 

. . I-; .. 

quant i t ies  of cool ant a i r .  Forced convect ion a1 so assures adequate 

pressure head f o r  f i l t e r i n g  the coolant a i r ;  which might. eliminate 

double contai nillent depending on design c r i t e r i a .  

A properly finned heat pipe i s  a  good passive system tha t  can remove 

. suf f ic ien t  quant i t ies  of'decay heat in a vault or caisson. Also, 
I .  

suf f ic ien t  numbers are required that  a  bui l t - in  redundancy i s  provided ; I 
when ins ta l led  in  a  vault ,  f .e., i f  several h e a t  pipes should f a i l ,  the 

t o t  a1 heat dissipation .capabi 1  i t y  would not be s ignif icant ly reduced. 



. . . . I n s t a l  l i n g  f i n s  throuylr  t h e  concre te  bid11 o f  a v a u l t  or:cdisson. i,s 'not ; . . . , !  . 
. . 

t h e r ~ ~ ~ a l  l y  p r a c t  i c a l  and i s  no t  rticol~nlended. 
' .I.:. . ' 

.. 1 . . .  . .  . . . , : . .  .: 
I . ( 

. ' .  . . 
. I 

A 0.25-inch-t l r ick d i v i d e r  p l a t e  i n  a- c a n i s t e r  decreases the: niaxirnum . . , . . . 
. . .  1 , .  . . : 

. !  .'  
fue l  p i n  t r n ~ p e r a t u r e  69 F b e l o w  t h a t  w i t h  n o d i v i d e r  p l a t e  f o r  a t u t a l  , . <'  . , . . . . . .  , . 

. . 
; .  . . , I .  ..: ,e ',' 

o f  4 kw decay heat  i n  t h e  can is te r .  
.: : ' ~. 

. .. , . . .. . . 
. . . . . .. 

I '  

. . ,  

. .  
The major ~ l .~ect ianis~n o f  heat t r a n s f e r  w i t h i n  a dr) c a n i s t e r  i s  , . 

I ,  

, . 
; .  r a d i a t i o n .  Therefore, i f  c o n d i t i o n s  are changed which increase t i l e  , . . 

". , . 
; . : . .  ' 

temperature d i f f e r e n t i a l  betweep t h e  c a n i s t e r  and 1 ocat  i o n  o f  n~ax in iu i~~ _ ;  ' I '  , . .  
I .  . . . . . .  , 

. .; I. , 

f u e l  p i n  temerature (such as i n c r e a s i n g  r n v i  ronn~ent a1 temperature, . . .  , _ . .  
,. 6 

; . ! '  
i n s u l a t i n g  one s ide  o f  a c a n i s t e r ,  o r  i n c r e a s i n g  t h e  gap :between F ins ) ,  . , .  :: . . , '  .. < , ,  1 

1 . 
. . 

t h e  r a t e  o f  change o f  temperature d i f f e r e n t i a l  w i t h  inckeas i  ng decay . . . . . :  . 

I heat  decreases because r a d i a t i o n  heat t r a n s f e r  a t  e leva ted  t'en;perature . . . , .  ' 

. . : .  

\ :  
i s  vore  e f f i c i e n t  owing t o  t h e  four th-power dependency of r a d i a t i v e  

' , ' '' , , 

heat f l u x  on temperature o f  a r a d i a t i n g  surface. . . 

'. . . . 

t .  . . 
. . . . 

. .  . , 

. . . . . . 
6 .  

. . . ' 3  . . ,  

. . 
. . 

. . 

. . 
. . 

: .  
. . 

. . . . 

. .. ., . 
. . 

. . 
. . 

. . 
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ANALYSIS OF NO-COOLING CONCEPTS 

r. . . . 
Ca l cu la t i ons  are presented h h i c h  i n'dicate t h e  thermal performance of a 

.. . 
v a u l t  and a ca isson w i t h  no coo l i ny .  

. . 

Above-Ground Vau l t  f o r  I n t a c t  Fuel . 

. . . . 
The f o l l o w i n g  d a t a  were used i n  tllii ana lys is :  . . 

A r r~ l i e r~ t  teniperature ( t  a'), F 100 
. . 

. . Thermal c o n d u c t i v i t y  o f  concre te  (k) ,  Btu/h-sq. f t - F  1.05 , 

500 
. .  , 

h a x i r ~ ~ u r ~ ~  ten~pera tu re  o f  cot icrete, (ti ) , F 

hi tt ance o f  concrete, .(e) 0.9 

I n s i d e  v a u l t  c e i l i n g  area, square f e e t  7146 .. 

I n s i d e  dinlensions ( l e n g t h  and w id th )  .o f  square v a u l t ,  f e e t  84.'53 

I n s i d e  t ~ e i g h t  o f  vau l t ,  (H),  f e e t  3 0 

Concrete w a l l  th ickness  ( c e i l i n g  and wa l l s ) ,  (L),  f e e t  5 

Outside dir~lensions ( l e n g t h  and w id th )  o f  square v a u l t ,  f e e t  ' 94.53 

: I I n s i d e  sur face area ( c e i l i n g  and.wa l ls ) ,  (A i ) ,  sc,. ft 17,290 

' 1,:: Outside sur face area ( c e i  1 i n g  and n a l  l s ) ,  ( A O ) ,  sq. ft 24,060 

T t~e  val ue o f  t herri;al conduct i v i  t y  o f  concrete \;as .obt a i  ned f r o n  

Refererice 10. The n~axinun tercperature (5CO F )  t h a t  concre te  car] 

cont inuous ly  w i t l ~ s t a n d  w i t h  approximate ly  a 10 percent reduc t  i o n  of 

i .  s t rength,  bu t  wi th,  no d e l e t e r i o u s  t e ~ p e r a t u r e  e f f e c t s ,  \;as conf i rri~ed 

w i t h  th t i  Po r t  l and  Cer~ient Associ a t  i on, 5420 01 d drc l lard Rcad, Skokie, 

I 1  1 i noi  s  (312) 966-6200. 



Decay heat was assumed t o  be conducted through ttre ce i  1 i n g  and f ou r  
. . . . 

v e r t i c a l  wa l l s  of t h e  vau l t ,  bu t  not  through t h e  floor,:, s ince t h e  . . . . 
, . . . 

therr~la l  conduc t i v i t y  o f  d ry  s o i l  i s  - r e l a t i v e l y  low compared w i t h  t h a t ,  . . 
. .  ' 

. . . . 
r .  ' 

.. . . . . I . . 

. . . - .  ..\ ' . . 
. . >*.,', ,; 

of concrete. ~ l s o ,  t heconduc t i ng  d is tance through t h e  s'oi;l i s  . .  . . . " . .  .:' . .  ! .: . 
. . . .  . ! .  . . . 

a . .  

than t h a t  o f  concrete, except around t h e  per:imeter' o f  t h e  vault.., . !' . ? I  : 
. . . . . :. . . 

. . 
'C . . . .  . . . .  , 

. . . . .. . . 
, . . . 

Heat conducted through t he  w.iills o f  t h e  vau l t  ,w i thou t  cons jder ing !! , . , . ,  
1 '. . .  . 

\ . . . " .  ! . .  .: . .  . .  . . . 
... , 

r effects of t h e  t h i c k  corners i s  ,ca lcu la ted a's fol lows.: , . . .  . . _. . . ) , . .  . 
t;iy:$ . . . . .  . . . . , : i ,  . .  . . . . , L  3 

,, ::a> ,. . Qw = k ( A i  ) (dtw)/L = 1.05(17,290) (dtw)/5 . . ( - 1 )  . .: . '  I. . . . 

= 3630.9 dtw 

. . .I , I .  . . .  
, . . . . . . ,:. . ' " 

. .  . ':, . > , . .. . 
where . ~ w  = heat conducted through vau l t  aa l  l s ,  e x c l u d i  n~ corni&s',, Btu/h 

_ +  . ... . 
I :?..:; 

. . . .:;. ' i  
. . % . .  C * : 

dtw = temperature d i f f e rence  between i ns i de  and outs ide wa l l  s ,  F . . "  .'...,- ' I  .: . . . 
. . * .  . . I . .  . . ,  .. 

and o ther  symbols and values were presented p rev ious ly  i n  t h e  tabu la ted . . 
. . i 

. 4 .  'S . '  i ,' ;I 1, 

data. . . i . +  "' 

. *  . 1 ' 
. . ! . .  . 

. . . . . . 
. . :. . 

1 .  ' 
Rohsenow (11) presents a r~~ethod of co r rec t i ng  f o r  heat conducted. . . . , 

. . 
I . .  

throuyh t he  t h i c k  corners o f  t he  vau l t  as fo1lor;s: 
, . 

1 . ,. 

Qcor r  = 0.559NkH(dt~) = 0.559(4) (1.05) (30) (dtw) (A-2) , , 
; 

= 70.4 dtw i 

I 

where Qcurr  = heat conducted through corners, Btu/h 

I\I = 4, number o f  'corners 

Adding t he  co r rec t i on  f o r  the  corners t o  t h e  heat t r ans fe r red  through 

tile wa l l s  o f  dimensions equal t o  t h e  i n s i d e  d.imensions o f  the  vaul t ,  

t he  t o t a l  heat conducted through t h e  wa l l s  and c e i l i n g  o f  the  vau l t ,  

Qt, i s  



Qt = Qw + Q c o r r  = 3630.9 d t c  + 70.4 dtw 

= 3701.3 dtw 

A t  t h i s  s tage  i n  t h e  ana lys i s ,  t h e  temperature o f  t h e  o u t s i d e  w a l l  i b  

no t  known, t he re fo re ,  dtw can not  be determined. The teniperzture o f  

t h e  i n s i d e  w a l l s  i s  assumed t o  be t h e  n~ax inue~ va lue  o f  500 F. The 

outs ide  w a l l  . t en~pera tu re  car1 be c a l c u l a t e d  by cons ide r ing  n a t u r a l  

convect ion and r a d i a t i o n  t o  t h e  atmosphere, wl .~ ic l l  was assumed t o  be a t  

1UO F. The q u a n t i t y '  o f  heat  t r a n s f e r r e d  by n a t u r a l  convect i o n  i s  

0.333 
Cc = h (Ao) (d ta )  = 0.18 ( d t a )  (24 ,CGO) ( d t a )  (A-4 ) 

1.333 
= 4330.8 ( d t a )  

. . 

bikere Qc = heat t r a n s f e r r e d  by n a t u r a l  convect icn,  Btu/h 
! 

0.333 
h  = 0.18 ( d t a )  , heat t r a n s f e r  coe f f i c i en t ,  E!tu/h-sq. f t - F  

d t a  = temperature d i f f e r e n c e  between o u t s i d e  w a l l s  and ambient, F 

I..; The q u a r ~ t i t y  o f  heat t r a n s f e r r e d  f rom t h e  ou ts ide  \~:alls t o  t h e  
I 

envi  ronnient ,by r a d i  a t  i on i s  
. . 

. 1.1 .; - 8 4 4  Qr = 0.172 x 10 e(Ao)[To - Ta ] 

-8 4 4  
'= 3724.5 x 10 [To - (560) 3 

-ohere Qr = heat r a d i a t e d  f rom .outs ide c a l l s  t o  ambient, Btu/h 

e  = 0.9, emi t tance o f  concrete w a l l s  

' 

.. I 
1 . .  . To = . tcnpera ture  o f  ou ts ide  v:all sur face,  R 

Ta .=  56C R (100 F) ,  t e ~ p e r a t u r e  o f  envi ronc~ent  

The o v e r a l l  tesperd ture  d i f f e r e n c e  f r o n  t l re  i n s i d e  sur face o f  t l i c  v a b l t  I.-- 



. .  . .  ,/ - ' ! ,  

. . 
. . 

i . .  . . '  . . i  

. . .  . ... . . 
, . .  

. .. . '. .. 

t o  the cnvi rorl~iier~t i s  .:' . . 
. . < .  

. . 

. . .  . . . . L '  ,. ' . . . . 
. . 

. ,  . . . . . 
dtw + dtd = 50C - 100 = 400 F . (A-6) , '  . . . ; , ' : ' . ' . . " ' ,  ... ,' 

. . , . 
I . , . -  . ' I  . 

. , . .  . . . , . a  . . 
I 

Also, t he  t o t a l  quantity of heat conducted through t h k  walls must be , 
. .' . . ,j :; ', 

. . . . <  
, . .  . . . .;', 

transferred f r o s  the  external surf ace of the  cal  i s ,  therefore, , , ,  ' , ,. , . ....., . . .....( . . . .  _ . , 
. . > ,' . 

. . .  
. . . . . . . . .  

. . . . .  ' 

. , .. . . .  . . . . 

. . < .  Equations A-3 tl:rough A-7 were solved simultaneously,. and the  following., . ' :  

values viere determined, t o  the  nearest 
-. . 

dtvr = 368 F 

dta  = 32 F 

cc = 4.39 E5 B t u / h  (128.7 kw) 

Ur = 9.12 E5 Btu /h  (267.3 kw) 

integer values of temperature: ' 1 . .  .: 
: . ,  . . .  ' .  . . 

. . .: . . ,. Assurning 1 kw in each .fuel assembly, the  t o t a l  q~z ln t i ty  of decay heat : . .  , . . . ! . 

. . .. . 

that  must be transferred i s  5089 kw. Therefore, only 7.8 percent o f "  :' . . 
. . . .  . 

the required tieat can be t ransferred out of the vault with rlo cooling 

and wittiin t h e  assur~ted 500 F temperature l imit  fo r  concrete. Ilerlce, 1 ,  

I . 

the vault concept with no cooling i s  not f eas ib le  f o r  i n t a c t ;  spent fuel. . . , .  ? .  

asser~lblies each with 1 kw decay tieat. 

I t  also can be assumed tha t  t h e  rio cooling cor~cept i s  not feasible ' . for  . . 

. . 
disassen~bled fuel assen~bl i es,  since the vault would bb smal l e r  than . . :  . . . 

that  fo r  in tac t  fuel. Tt~ersfore,  with less  surface area, less  lleat 
. . 

would be t ransfer red  than tha t  calculated previously. .' .. ' , 

' ... 

Ey silllilar reasorring, the  no cooling concept ~ i t h  a below-grour~d vault . .  

. . , . 

i s  not feasible ,  since only the  top of the vault would be exposed t o  . .. 



Above-Ground Caisson f o r  Cisdsse~i ibled Fuel 

. . 
I : 
' .  

The t l ~ e r ~ ~ i a l  ana lys i s  f o r  t h e  above-ground ca isson i s  s i m i l a r  t o  t h a t  , ' ,  ' . '* . 

: . . I . .  : 

I . . d iscussed p r e v i o u s l y  f o r  t h e  vau l t .  It was assunled t h a t  an, adequate 
, . 

ii r space e x i s t s  between ad jacent  ca issons,  f o r  n a t u r a l  convect i o n  and ' .  

, . . . . I  ; .  
. . . . 

rad i ,a t  ion.  t d  t h e  env i  ronlr~erlt, o therw ise  t i r e  conf i .gura t  i o n  would be . . .  . : : r .  . . 
' . s i m i l a r  t o  t h a t  o f  t h e  belob-ground caisson, wtlich i s  assessed l a t e r  , . ' . ' . . 

. 

. . . 

l ierein. The f o l l o \ r i n y  da ta  were used dur ' iny t i l e  analysi 's o f  t h e  . . . .. r- . .. 
. . 

I : .  . . .  . . 
above-ground ca i  sson: ' _ .  . / _ . .  . . . .  

. . . . 
A~iibi ent . tempera ture  - ( t  a)  , F . , 100 

. . . . . . 

: Tlitrriial coiiduct i v i  t y  o f  concre te  ( k )  , Btu/h-sq. f t - F  ' .  1.05. 
, . 

500 
. . 

. . f~axirriuri~ t t r l r~yerdture o f  concrete, F . . 

~ n r i  tt ance o f  concrete, ( e l  ) 

. . Emi t tar lce. o f  s ta in less ,  s t e e l  c a n i s t e r ,  (en )  
I 

I - 
I n s i d e  caisson c e i l i n g  drea, square f e e t  2.07 

I 
I I n s i d e  d i l~ ;e r~s ions  ( l e n g t h  and w id th )  o f  square caisson, f e e t  1.44 

I n s i d e  he igh t  o f  caisson, (H) ,  f e e t  20 . . 

Concrete vial 1  th ickness  , ( c e i  1 i n g  and wal l s ) ,  ' ( L ) ,  f e e t  4 ' 

Outside diri~ensiorls ( l e n g t h  and w id th )  o f  square caisson, feet 9.44 . 

I n s i d e  sur face area ( c e i l i n g  and w a l l s ) ,  ( k i ) ,  sq. ft 117.3 

Outside sur face area ( c e i l i n g  and ~ a l l s ) ,  (Ao), sq. f t  1146 

Outs ide sur fhce area o f  s t e e l  can i s te r ,  (As), sq. ft 44.9 

. . 

Decay Cleat has assurried t o  be conducted t l r r o u y l ~  t h e  c e i l i n c j  a r~d f o u r  

v e r t i c a l  w a l l s  o f  t he  caisson, bu t  [ lo t  t l r ruugh t h e  f l o o r ,  sir lce t l re  

therr~ral  c o r ~ d u c t i v i t y  o f  d r y  so i  1 i s  r e l a t i v e l y  low curitpared witll t h a t  

of concrete. A1 so, t h e  conduct ing d i s t a r ~ c e  t l i rougl l  t i l e  so i  1 i s  g r e a t e r  

than t h a t  o f  conct-ete, except arourid t h e  ~ ; e r i r ~ ~ r t e r  o f  t i l e  caisson. 



Therefore, l ~ e a t  r t i ~ ~ ~ o v a l  t h r  )uc;ll t h e  f 1 oor bias negl ected. kor*eovt.r, 

s ince t h e  above-ground caisb;on concept w i t h  no coo l i ng  i s  f e a s i b l e  as 

sllown l a t e r ,  neg lec t ing  heat t r d n s f e r  t h r o u g l ~  t l i e  f l o o r :  i s  . 
, . 

. . . . 
, . .  . . . . 

. . conservative. . . : . :  . - .. . . ,. . . 
F I . .  . : l . '  ; . . . . >  . . , . .. . , . . . , . . .  . . . . .  

, . . .  * 

. ~ . ... . , . 
. . . , 

. .  . . . .  . . . . 
- .  * > .  . . i . :  : 

.. . ' <  . '  . ~ , 4 .  

Heat collducted through . the wa l l  s of t h e  ca'i sson w i t hou t .  consi 'deripg . '. 
. . .  # .. 

. . ' . : .  : .  . 
. .  . :, 

s . .  . . 
I .  

, . >, .... . 
. , 

. . . .  . .  . . . '  rf f e c t i  o f  t he  t h i c k  co r r~e rs  i s  ca lcu la ted  as f o l  lo$s:-'. 
. .. 

. . . . ..;. . . . . .  a 
. . . . .  

; . '  . . . . .  
. . . . '! , t .  :. 

:. . . .. _ . ' I 

villtire Qw = heat conducted througl l  wal l s ,  exc lud ing .corners, Gtu'/h . . . , . .  . . . .. 
, , .  . . . . . :. . . 

.I. 

d t  . temperature, d i f ference between i n s i d e  and outs ide wal ls ,  F , . ., Y : , . . .  . 
. . I '  .. . . . . . . < 

and o ther  sylllbo!s and values were presented p rev ious ly  i r i  t h e  t.abul'ated., . :' . . ...' . i j . .  . 
. .  . . I !  I.. 

d a t a f o r t h e c a i s s o n .  : .. . . . , .  . /  .:. 
. :  

. . - ,. . I . ,  e.; 
..? . . :. . .  . .; 

. . 
8 .  

I 

Using t h e  method o f  Rolrseno~~ discussed p rev ious ly  f o r  co r rec t i ng  fo r  I 
; .  

heat conducted t l ~ r o u g h  t h e  t h i c k  corners o f  t h e  caisson, t he  co r rec t i on  ! 

i s  

Qcor r  = 0.559bkH(dtw) = 0.559(4) (1.05) (20) (dtw) ( A - 9 )  

= 46.96 dtw i 

vihere Qcorr  = heat conducted through corners, Btu/h 

W = 4, nunib'er o f  corrlers 

Adding t h e  co r rec t i on  f o r  t he  corners t o  the heat t ransf .erred through 
1 .  . . . .. 

t h e  wa l l s  o f  d in~er~s ions equal t o  t he  i ns i de  dioirnsions o f  the caisson, . , .  

t h e  t o t a l  heat conducted throush the  vial 1s and c e i  l i n g  o f  the  caisson, . . . . 

Qt, i s  . . 
'. . 

:. 

(A-10) . Ct = Qb + Qcor r  = 30.79 dtk; + 46.96 dtw . . . .  . 



= 77.75 dtw 

A t  t h i s  s tase i n  t h e  ana lys is ,  t h e  ter i iperature o f  t h e  o u t s i d e  w a l l  i s  

r iot kncwn, t t ~ e r e f o r e ,  d t ~  can n o t  be detern ined.  Also, t h e  ter i ipcrature 

of t h e  i n s i d e  w a l l s  m igh t  be l e s s  t h a n  t h e  r;;axiri:~n~ va lue  o f  500 F. The 

ou ts ide  h a l l  teniperature can be c a l c u l a t e d  by cons ider i r lg  n a t u r a l  

c o n v e c t i ~ n  and r a d i a t i o n  t o  t h e  6tnlosphere, which was assused t o  be a t  

100 F. The q u ~ r ~ t i t y  o f  heat  t r a n s f e r r e d  by n a t u r a l  cor lvect ion i s  

0.333 
Uc = h(Ao) (d ta)  = 0.18 ( d t a )  (11'46) ( d t  a) (A-11) 

1.333 
= 206.3 ( d t a )  

where Qc = heat t r a n s f e r r e d  by n a t u r a l  convect ion,  Gtu/h' 

0.333 
II = 0.18 ( d t a )  , heat  t r a n s f e r  c o e f f  i c i  et i t ,  Btu/l:-sq. f t - F  

d t a  = tentperature d i f f e rence  betb~een o u t s i d e  w a l l  s  and a ~ ~ ~ b i e n t ,  F  

The q u a n t i t y  u f  treat t r a n s f e r r e d  f rom t h e  ou ts ide  w a l l s  t" t h e  
. . . . 

, . env i  ronrr;ent by r b d i  a t  i or1 i s  
. ,. . 1 . , :  

. . - 8 4  4  . . . . Qr = 0.172 x 10 el(Ao)LTo - Ta ] (A- 12') ,. . . 
.. !. 

1 .  . . . . . .  
i - 8 4  4 

= 0.172 x 1 G  (G.9)(114G)[T0 - (560) ] , 

1 -8 4 4  
= 177.4 x 16 [To - (5GO) 1 

1 
a 

: 1 '  , . .  
wtlere .Qr = heat rad ia ted  f ru r :~  u u t s i d e  w a l . 1 ~  t o  arnbient, E?tu/h 

i . . . . . e '  = 0.9,. emi t tance of concre te  w a l l s  
) ' .  I 

To = te ln l~era ture  o f  ou ts ide  w a l l  sur face,  R 
. . .. . 

: I . . 
Ta = 560 R (100 F) ,  tes;perature o f  f r l ~ i r o l i ~ n e n t  1 .  

. . - . .. 
. \ .  : . 

: I 
: i 

The t o t a l  q u a n t i t y  of ,  l ieat conducted t trrouyh t h e  w a l l s   lust be . . .. 

. . ' . : ,  I 
t r a l l s f r r r e d  froel t l i e  e x t r r r l a l  su r fhce  o f  t h e  k s l  l s ,  t lur .efore,  f o r  t u o ,  i .:. 



. . 
. .. . . . . .  . . .  . . i . . , . . .:. " : . . . .  . 

, <. 
. . 

, '. 
, . ' .) . .', , ' . .  .( .. . . ' .. . . ; !., .:a<: . . 

' . . :.,'....:.; ." . . '  I . :  . 
Since t h e  i n t e r i o r  ter~ iperature.  o f '  t h e  concre te  i s  we1 1 below' t h e  . . .  . , .  . .?+... . . .. 

. . . . . . 1 . '  ., , 
.*. . ' . .  

, . :  .\ . .  . . 1 " 

n~axi~r~ur~r .l i 1r1i.t f o r  concrete, t i re  above-ground caisson concept Gi'th. rio . '. : ,, . /; . . :  , ,  .i . - .  is 
. . . . , . , . :". I 

, . .  I .  ._  . ' . _ . I  

. ,.,. , .  

cool i rry i s  f eas ib le .  Thus, t h i s  ana lys i s  i s  c o r ~ t i n u e d  t o  c a l c u l a t &  tlit..:, . .:.. ..:, 
. . .. ,. 

I .. - . . ... : _  .. . . 
, .. . 1 . "  ' 

t e r~~pera tu re  d i f fe r r t . rce  betweell t h e  i 11tt.ri o r  s u r f  aces o f  t h e  caisson and . ,: . '  :,'. ,.$; ' . . : . .  . .  
. . . . 

. .  . .  . . 
. . . . . . .  .. 

t h e  e x t w i o r -  sur faces o f  t h e  can is te r .  From t h i s  tesrperature .., , . . , ,; . . , .  .. . . . 
. , . . , . . . 

d i f fe rence,  t h e ' e x t e r n a l  sur face o f  t h e  c a n i s t e r  was estimated.. Using . . - . ; . . .. . .. 
. . 

. . I ,  

t h e  p rev ious l y  c a l c u l a t e d  data  o f  n~axirllum f u e l  p i n  ten;per&ture as a,' . ... .. ,. .. . *. : _ . . 

. .  . . . . . .  . ' I .  .. . 
, . . . . . 

. , . , 
f unc t i on  o f  cani.ster sur face teniperature, t h e  maximum f u e l  p i n  . .  . . . . ,  

. . 
, ;  

temperature was d e t e r n i  ned. 

. . . . ' ,  
The c o r r e l a t i o n  o f  Jakob (12) \$as used t o  c a l c u l a t e  t h e  h r a t  t r a n s f e r '  . .  . . . : , ,  

4 ", 
,. . .  

. . .  t : ' .  . ... .:.: 
. .  ) . .  : 

c o e f f i c i e n t  due t o  n a t u r a l  convect ion i n  t h e  4-inch-wide space. bet$e?n % . . .:'.: .,. ::. 
. . 

t h e  c a n i s t e r  and caisson. The Crashof number was c a l c u l a t e d  f i r s t  t o  . ' .  . ..  
. . . . i .  

. . 

determine whet her  a 1 a r ~ i  nar  o r  t u r b u l e n t  c o r r e l  a t  i o i i  s, t~ould be used. . . .  : .  

. . + .  
. . 

The access p l u g  over  t h e  caisson was assuraed t c  n ~ t  be sealed t i g h t l y ,  
' 

: , . . , ' . . ,  . 
. .' . . . .  I: . .  , . 



. . 

C ..:.. 
th1.s t t ;e  Cr6st1of number was c ~ l c u l ~ t e d  us ing a i r  p rope r t i es  a t  e levated 

ter;,gerature bu t  a t  atr,~ospheri c  pressure. The Craslicjf r1us;ber i s  -... 

= 2.583 EG 
. . 

. ,  . . ,' . 

. . ". , . ., . 

, P;:. ' L. : ; .. . 
.. . . ..  . ' .  . , . . .  . ..,.. . \.,t,ii.re G r  = Grashof nuabttr, Lased on 4 - i n c h - ~ i d e  a i r  space . ._ 

. . . . 

g = 32.2 f t / s / s , .  g r a v i t a t i o n a l  acce lera t ion . 
. . 

. . , . . . . , 

1 ; .  r .. 
,. . b = 0.001552 ( l / F ) ,  coe f f i c i en t  of cub ica l  exparlsion of a i r  
. 4 

I 
. . 

. . L = 0.333 ft (4  inc t~es) ,  a i r  yap between caisson and can i s t e r  
. :. 

. . r, , :- ,. <it = 76 F, ' terr~perature d i f f e rence  between caisson and can is te r .  

. _  . 
. . v  = 0.000233 sq. f t / s ,  k i t ler~rat ic  v i s c o s i t y  o f  . a i r  

. . , . [ :.: 
i . .  

. . 
. The ter~rperature d i f fe rence of 76 F was deterr~iined by i t e r a t i o n  a f t e r  . . . . 

. . 

t i l e  equations w t~ i ch  f o l  low were so l  vrd. Tlie Grashof number i s  between : ' . . . . .  

. ,:' the  1  i r i ~ i t s  of 200,000 and 11,000,000 and Jakob recoi~iuiends t h e  f o l l o v ~ i n g  . 

( ' ,  . '  

. , c o r r e l a t i on  t o  c a l c u l a t e  t h e  e f fec t i ve  thermal conduc t i v i t y  .o f  a i r  i n  I ,: 1-1 ' . , . . . . . .  I 1 ,  : ,  , . . t he  4-inch-wide. space between t h e  can is te r  and .caisson. . . 

. .. 
, . . . 0.333 0.1111 

ke = 0.065 (k )  (Gr) (L/H) . . (A- 15) 

r 0.333 0.1111 . , : I  , .  , .  , = 0.065 (0.0176) (2.583 E6) (0.01665) 
. . , . . . I  

= 0.0991 Gtu/h- f t -F 
I '  . , , : ' ,  

, ' .  I 
w'llere ke = e f f e c t i v e  cor~duct i v i  t y  o f  a i  r,  Gtu/h-ft-F 

. , .  
' . 1 ' .  . . 

1,: k = 0.0176 Gtu/h-ft-F, thermal conduc t i v i t y  .of a i r  . ' 

,, . ,. . . . 
. , . . 

. , . . L / H  = 0,333120 = 0.01665, r a t i o  o f  a i r  space width t o  t~.eicjht 

. . 

 he q a n t i t y  o f  heat t rans fe r red  from the  can is te r  t o  t h e  caissorl by I. . ' 

I.... ' natural  convect i on  ( c a l c u l a t e d  as conduct ion, using t h e  e f f ec t i ve  , 

. . . . 



. . .  A-10 . . . .  . . .  . ,  . .  . . . . . . . . , . .  
. . ' I .  

. . .  . ' 

. . . ,.I . 
. . . .  ,. , . . . 

{ 1:'. 
: . . , .  . . < .  

. . .  . . . .  .. '. 
. . .  tt,er.nlal cor~duct  i v i  t y )  i s " ,  , ' ' I - 

. . .  . ' 9 ,  ' .  .. , 
I .  

I . ; . 8 '  ' 

. * I . .  . . . .  ! ;:: ; . . .  . . .  . . , .  j . l  

Uc = ke (As ) (d t ) /L  . -  . . .  , (.. . . . .  ,, . (A-16); . .:.: . .  ,: ,,', + . ::! 
. . ,  . . . . .  I .  < .. 

I, . . . . . . . .  : . + . -: . . .  . . I . .  . . .  
= 0.0991(44.9) (76)/(i1.333) . . . . . . . .  , .  : i :  

.+ . . 
. . .. .. , . . . s . .  ..; .;' ' " 

... . . . . . . . . .  : . . ' I .  : . . 
' I. , , . . , . : c .  * 

,:. . .  ',. . . .  . . . . . .  = l O l G  Btu/h (0.30 k ~ ) .  . : . . . .  : ;.. " .  ... *. . .  :. : ' . .>  
. . , !:;., .$ 

!' * 
. . , . - .  . . .  . . . ,. . , . .  . .  . . ., i, ;.; .. 

. . .  .... . . . . .  . . '_ -: , (i .. , :;. ; . ;  
. ' 

. , a .  . . . , . . , ,, "1 ::3. ..'. . - . . .  . . . .  wt~ere Cjc = heat t r r n s f k r r e d  across the .4 - inch -w ide .  a i r  
, . by ' 

, , ' ,  ' " .,, : . . . .  . I .  . I , : + . , : ,  

j . .  . .  : . . . . .  - '  . . . . . .  . . . . .:. : " ". . : . . .  
,. . . , . . .  . _ "  v * '  

i. , . , ,. , . .  *. '.'l 
. . .  . . , . 

.; ' . .  ! , . S  

conduct ion ' . , .  . 
e . * . .  : . '  , '. , 4 . :  . 

. . . . .  . . 
. . . . .  . . . . ,  

, . , . I 

. . t . . . .  !. . . . .  
. . !. .:ti.:,. . . .  .,,;', . 1.. - . . . . . . . . . .  ke  = 0.0991 B tu /h - f t -F ,  e f f e c t i v e  t l~ 'ermal  c ~ n & ~ i c t i v i . t ~ '  . . .  . , of a i , r  ' , '  . .  ' . . ' ,  . 

, . : . > . . , ; a  . !  
. . . . . . .  :,- ',. 

. :. . . .  , . . , .  . ....., I. ' i . . ,  . .  ..: .. I ' . . . .  . . hs  = 44.9 sq. ft, sur face area o f  c b n i s t e r  s ides  a114 ends.' . !  * ,.: .. .. .  . .  . . . ! a  .. ' 
, ,  . ,  

. . ,  . '  . .  ., , I  

&, : . .  ' , . .  . . . . . . . .  . . . .  . . . .(, . . . : t.. , '.. - :  
: : . , .. 

. . . .  d t  = 76 F, teniperature d i f f e r e n c e  bet\;rker~ ca isson and. c a n i s t e r  , : . . . . . . . .  .,. . . . .  . , : .  
. .  Y .  

. 
. . . . . . . .  . . . . . .  8 : .  

. . I !.' '!. . . . . .  . . .  . > .  . . . .  . : .  : '  ' . . . . . . . . . . .  ., .. , . , .. 
.' L = 0.333 ft (4  i n c l ~ r s ) ,  a i r  gap . betreeen caisson-and c a n i s t e r  i : .  . . . i .  . . . .  , .  . , .  ,,, . . .  

. I ;  ' ;;*,; 

. . . .  
, . . . . .  . .  i' . . .  .. , , , ,, , . .: 

. . . . .  ' . , . .,l'..! ,:, , '. 
. . .  . .  s 

. . . . . . . . . .  . . . . .  . . . . . . :. . : ,  . . . . , .  ' j . . '., . . . . .  . . .  , . . . .  . _  .< . .  ;_. . . .  . . , . ' .. s';. ,!<, . .:. , 

. . . . 
. . '  . . .  . . . 1 . , . I  

. . . . . . .  . , I ! .   he q u a n t i t y  o f  heat r a d i a t e d  f rom t h e  c a n i s t e r  t o  the c a i s i o n  i s  ' :  ' . . -  . . . , ! ! .  . -  
( .>.: 

. . .  . . . . .  .,. . .;! . . . 
, ,  . . . . . .  . .  = 2390 Btu/h (0.70 kw) ' . . . .  . . .  

! " " '  , . - ::. 
. . .  t .  

. '  . ! ,:.,' 

._ " .  . ' - . . , . .  . :  . . . . . . . . . .  _ . '  . 
+ .  . , . . 

, ;*. < " ' . , 
I 

: . , . a  . . . . .  . . .  wllere Qr = heat r a d i a t e d  f rom c a n i s t e r  t o  caisson, Btu%h . ' . . 
, , ., '. 

. . . . . . . . .  
. , , . 1 . .  ;: 
, . .  . . . . . I .  .: 

). ' I .  i '  

. . .  . < , . 
= 0.38, r a d i a t i o n  f a c t o r  between ' can is te r  and .caisson . . .  

I 

e '  = 0.9, emit tance o f  concre te  v:alls 
. . ..' . , . . .  . . .  ' .  : i  

e" = 0.4, emit tance o f  s t a i n l e s s  s t e e l  c a n i s t e r  . . .  ,. . 
.. , . . 9 .  

, . . . < 3 ' .  

. . : ' A 

. ! .  I 

. . . . . . .  As = 44.9 sq. ft, sur face r r e a  o f  s t e e l  c i i n i s t e r  : .  . . . .a 
. . . , . . .  i. ,.' . . 
. . .  

Ts = 682 R (222 F) t e r n p e r ~ t u r e  o f  c a n i s t e r  sur face . '  . . . . . + .  . . .  . , . . . . . . . .  ? .  . 
1 .  ' . . . . .  . . 

. . 
. . T i  = 606 R (146 F), temperature o f  i n s i d e  caisson, sur face . , . 

. . . . . . . ,., 
. . .  ,. . , . . . . 

. " . . ..I . . . . 
. . .  . . .  . . . >  . . .  . .  , . . .  . . . . .  . . . 

. . .  . . , . ' ,  , . : ...', 
. . ' . : . . . . . .  . " 

... Th is  arralysis ( ind ica tes  t h a t  t h e  above-ground c a i s s o n  ui   ti^. no c o o l  i n g  . . .  . . . . . :  : . 
. * : . 

. . . .  , i s  f e a s i b l e  f o r  1 kv, decay heat, which represents t h e  . design . decay heat .:-. .. , . . . 
. . .  . . . .  . "  . f o r  one i n t a c t  f u e l  assembly o r  0.5 kw f o r  each o f  t r i o  dis&ser;ibled . . 

. . 
. . 

. . .  . . ~ . .  , . . .  4' . 
.. , . .# .. , . . .  . .' . , , . . . 



f u e l  asscr,;bl ies .  Since t h e  i n s i d e  t e r ~ ~ p e r a t u r e  . o f  t h e  c 6 i  sson i s  e:ell. 

below t h e  n;axir;ll;m value o f  500 F f o r  concrete, t h i s  ana lys i s  was . " . .  .,, .. 
. . . .. . . .. . 1 

repeated f o r  t l ~ e  range o f  decay heat, v h i c h  r e s u l t s  a r e  surnnlitri zed i n  ''':,:; 

r- Table  9 i n  t h e  repor t .  1 

, r : , S ince t h e  concekt of above-ground ca isson w i t h  n o  coo l  iny: i s  . f eas : i b le  . . . ,. . ! 
. . . . . . 

f o r  disasienlbled f u e l  assenlbl i es ,  i t  a1 so i s  f e a s i b l e  f o r  i n t a c t ! f " e l  . ' ' .  

asser,;bl i es kh ic t l  have l e s s  t o t a l  decay heat t h m  t l ~ a t  o f  d i sassk r~~b led  

f u e l .  Ter~~perhture values f o r  t h e  c i in i  s t e r  and .caisson w a l l  s  can :be 
. . . . . . . . 

: I .  
.., . ub ta ined  f rom Tbble 9 us ing  t h e  approp r ia te  v.alue o f  t o t a l  decay- heat 
. . . .  , 

r i n  t h e  can is te r .  A f te r  t h e  c a n i s t e r  sur face ten~pera tu re  was 

deterri l i  r~ed, t h e  nlaxirliun~ fuel  p i n  temperature was e s t  iniat ed u s i n g  t h e  

r appropr ia te  data  of ~naxirnum f u e l  p i n  temperature presented as a  . f 1  

f unc t i on  o f  c a n i s t e r  sur face teniperature. 

Below-Ground Caisson f o r  Gisassembled Fuel 

The fo l l ov i i ng  data were used d u r i n g  t h e  ana lys i s  o f  t h e  below-ground 

. I caisson: 
. . _ . .  ( ' .  ,Ambient ten~pera ture  ( t a ) ,  F 100 

. 
.',i . .. I ... . .. , 

, . 
. . 1 . ;  . . . . . . .  . 

, i . .T t~ern~al  cor~duct  i v i  t y  of concrete (k) , Btu/h-sq. f t - F  1.05 ... .. , ,, , . 
, .. . 

.,. . . . .  
. . /. . ' .  

. . 1.. 

.. Maxir~ium temperature o f  concrete, F  500 * .  / ii 
. , 

. . . .. 

l 

Erni tt ance o f  concrete, ( e l )  0.9 . . I ~ r n i t t a n c e  o f  s t a i n l e s s  s t e e l  can is te r ,  (e" )  

1nside.caisson c e i l i n g  area, square f e e t  2.07 

I 
I I n s i d e  dinlensions ( l e n g t h  and w id th )  o f  square caisson, f e e t  1.44 
1 

1 1  , ~ n s i h e  h 6 i y h t  o f  caisson, (H),  f e e t  20 

I " 

' Concrete w a l l  th ickness ( c e i  I i n g  and wal l s ) ,  (L),  f e e t  4  

Outs ide dintensions ( l e n g t h  and wid th)  o f  square caisson, f e e t  9.44 

I I 
I n s i d e  sur face area ( c e i l i n g  and wa l l s ) ,  (A i ) ,  sq. ft 11 7.3 



I . . . . . * 
Outs ide t o p  sur face area , (Ao), sq. f t  . . ' . . . .  89.1. . ;  . . . . . .  I 

, , 

. . . .  . . 

. ,, .I . . .  I 
. . . .  Ot i ts ide sur fbce area o f  s tee l .  c a n i s t e r ,  (As), sq. . . ft, . ' .  . . . .  . ,.C4.9; , . , , ! . , ' %  -.. ...... : .. . . .  : . . . . ,  3 .  . . .  , . . -  . . . 

% .  ' . . 
, . - .. . . . . : .  . . . :.. 

. . .  . . , . .  . . . . . . ! '. i 
. . ' I  . . ' 8  1 . . . . 

? , . . . . . .  
. The c a ~ ~ i s t e r  bas ,assun&d t o  c o n t a i n  t u o  P l i R  d'i.sbssenlbl&d fu6;l:i; , :  , 

: '. .:. . :-: . . '" 1 ,:. ". :. . . . .  , , . . . . . . . . . .  . . . t .  . . .  'i 
. , 

... . . . . .  
i : , :., 8': *". ". . .  : .a 

. .  . . . ,  :," .7' : . :  
. ' . . .  asseribl i e s  each  \ . i th  1 kw decay h e a t  or a  t o t a l  o f  2 kw 'in: t h e  c a i  ssorj. . . .  . . .  :. .,;::;., .;:., ;j.: 

' . . ,  . ," 
. . . I  . . - - .  . . . . . . . .  i <, * !.' 

. . . .  Heat was assuriied t o  be t , rabs fe r red  f r o m  t h e  . . .  9 . 4 4 f o o t  squace . . .  t o p '  . . t o : t l l e  . . , :; , . ' .,, i . .  _ .  . . 
. .  :. . ., . 

. . 4 ' , . ,  . . . . . . . .  : > , ,  . . . . . . . .  
I . .  . . .  e n v i r ~ n m e n t  by n a t u r a l  convect ion  and rad i ,a t l oh .  . . ~ h & q u a n t i ~ ~ :  . . p f  . , .  .* heat  . . .  . ': :., ; . .  - :, 

! :  a . '  . . . . . . ,  ' . :  . . . . . . .  
. a:.' ' . , \ .. 

t r a n s f e r r e d  by n a t u r a l  convect i o n  i s  . . .  . . \ . ., . :  -,; :.: 
. . . r  : . 

7 . . .  . . ' 1  
, . .  . . . .  . . . . .:, :., a ,  . ' . , , i$": . . . . . . . . . . .  . . . . .  . . . . .  . . ' I  . .,.: . . 

. . .  . . .  0.333 . . , . , . , . . . 
qc h(Ao) (&a) = 0.18 ( d t a )  , (89.1) ( d t a )  . ; .. , : ' .  . : ( A - 1 8 )  I :, j . . , :  . . .  i:' 'L,.,: ,"'.? 

. . . . . .  
7 .  '.'.> , v . , ,  . . .  , .  : <  

.. , . . ' . , .  :.. 

. . . . . . .  I .: .;:,. .i . . . . ~. 
. I  . - , . I . . ,  . ,;, ' '.I '9'; 

. . . .  . . . . . . . .  . . . . . .  : '  . .{:.a ' 

, .. where Qc = heat t r a n s f e r r e d  by n a t u r a l  convecti.on, B tu /h  . . .  .. ,, . . . .  .. i . . ." 

. . , . . . ' .i 
, . .  . . 

' . 0.333 . . .  , 8 

. . . . 
, . . . . .  . - . ~ ; ' .  . j , .  . ! .  , .  ' a 

. .  8 h = 0.18 ( d t a )  , heat t r a n s f e r  c o e f f i c i e n t ,  €tu/h-sq. f t -F  , i .  
, ; ,  ' , ;?  . . . . .  . , . ; ! ..., '.; 

. . . . .  :_>, . , .. ' < , l ' . .  .... .. , . . . .  
. ,  . . . .  . . .  . ' f  d t a  = tenyera ture  d i f f e r e n c e  b e t ~ e e n  o u t s i d e  t o p a n d a r ~ ~ b i e n t ,  . . F . . , I .  i , :  . .  . ... .. . 

. . . .  . :. . . .  
8 .  

: 
: , : .. 1; . ;, . ,, 4:: .., 

# . .  . . . . .  
, . 

T l ~ e  tesye ra tu re  d i f f e r e n c e  o f  42 F has d e t e r m i n e d  by i t e r a t i o n  a f t e r  f . 
. . . . . . . . .  . . .  . . . . .  

so l  v i  ny t h e  na tu ra l  convec t i on  and r a d i a t i o n  equat.ions. The q u i i n t i t y  . . I ,  . . .  
. . . . 

I .  

o f  heat t r a n s f e r r e d  f rom t h e  o u t ~ i d e  t o y  sur face o f  t k ~ e  caisson t o  t h e  ' .  . 
' . . 4 .  

. . 
. ! > '  . ~ . ,  

. . , :. . . 
. . .  

. . (  

env i ro r~n~en t  by r a d i  a t  i orb i s  . . . .  
. . 

- 8  4 4 
= 0.172 x 10 (0.9)(89.1)[(602) - (560) ] 

, 

1 

= 4550 Btu/h (1.33 kw) 
I 

f 

. . 
. . . . .  . . .  . . . . 

' '1 . ,. 
. . . . . .  where Qr = heat r a d i a t e d  f rom ou ts ide  t o p  t o  anlbie.nt;.6tu/h . . . . .  

. . . . 
I . .  . . .  . . ,. 

e' = 6.9, enli'ttance o f  concre te  w a l l s  , . 
. . .  " .  . $ 

. . .  
To = 602 R (142 F), temperature o f  ou ts ide  t o p  sur face , . h  

; :. ' 

I ' .  . . 
. . . . . . . .  Ta = 560 R (100 F), temperature o f  e n v i r o n ~ ~ i e n t ]  . ; 

. ..'.! 
" .). . .  . . . .  . . .  

, . 
. . . . .  



TI* t o t a i  q u a i t i t y  o f  heat t r a l ~ s f e r r e d  f r o ~ i i  t h e  t o p  s u r f r c e  o f  t h e  

ca issor~  t o  t h e  env i  r o n ~ ~ l e n t  nlust be equal t o  t h e  q u a n t i t y  conducted . , , ' . . . 

across t h e  4 - f o o t - t h i c k  tok ;  there fore ,  

.dtw = ~ w ( ~ ) / [ k ( A o ) ]  . . (A-20) . : 

. . . . 

. .  , 

where dtw = temperature d i f f e r e n t i a l  across caisson top, F , .. . . 
. . 

, , .  . , 
Qw = '6824 Etu /h  ( 2  kw) , decay heat o f  two Pb!R assembl i es, 

. . 
:.: and o ther  sy~~t;ols are  de f ined  i n  t h e  aforenlentionbd t a b l e  o f  data. 

. . 

The temperature o f  t h e  i n s i d e  t o p  surface o f  t h e  caisson i s  434 F (100 
I 

F p lus  42 F p l u s  292 F). The average temperature o f  t h e  i n s i d e  
. . . ,  . . . .  ! .  . . 
. , 

, . 
v e r t i c a l  w a l l  s  o f  t h e  c a i s s o n  was e s t  inlated by t h e  method o f  ~ohsenciw" ' 

' 

, ' . [  ::... . . . . 

. , (11). This nethod assumes t h a t  t h e  434 F i n s i d e  terl lpeiat'ure extends 
. . 

. , 

. I-. .: 

. . u n i f o r ~ i l l y  across t h e  p l a n e  o f  t h e  i n s i d e  t o p  and tllat,:. heat '  from t h e  . . 
. . 

. i ns ide  v e r t i c a l  w a l l s  i s  conducted outward. and upward through t i l e  'si.de . . 

- , .. , . 

I. '. wal ls.  The thermal  c o n d u c t i v i t y  value o f  1.05 Btu/h- f t -F,  was used f o r  

t h e  v e r t i c a l  s i d e  wa l l s ,  hence t h e  s ide  w a l l s  were assun~ed. ' io 'be I!?.? ,, . . 

I constructed e i t h e r  o f  concrete, wet s o i l  encased by a  s t e e l  l i n e r ,  o r  

I ' sorr~e f i n n i n g  arranyerrient at tached t o  t h e  s t e e l  1  i tier and ex tend ing i n t o  
I 

dry  s o i l  t o  produce t h e  equ iva lent  thermal c o n d u c t i v i t y  as t h a t  of 
. . 

concrete. Also, s i t i ce  t h e  method i s  f o r  a  c y l i n d e i ,  an &u i 'va len t  1 
. . . 

.. . diameter has c a l c u l a t e d  by assun~i ng t h e  c i  rcu~nference of t h e  e q u i v a l e n t  ; , . ' $  . .  .. . . 

cy1 inder i s  equal t o  t h e  pe r ime te r ,  of t h e  . four  square w a l l s  of . s L  . _ . 1  . . 

I I 

d in~er~s ion 1.44 fee t .  Thus, t h e  equ iva lent  diameter (D) i s  1.834 fee t .  

The i l l s i de  t ~ e i c j t ~ t  (H) of 20 feet a l s o  has used i n  t h e  c a l c u l a t i o n  f o r  . 
... 

. . ' t h e  tereperature d i f f e r e n c e  between t h e ,  v e r t i c a l  i n s i d e  wal.1 and, t h e  ..' : .. . ..:', . . .  . . . , . . . . . .  . . i r ~ s i d e  top  o f  t h e  caisson as fo l l ows :  : . . 



. . . . . .  . . . . ' . "  :. 
. . . . . . . .  d t c  = ((iw)l n[4tl/L]/[6,28kH], . . ; - :  ' . (A -21 ) ' [  . . *.,,,: 

t .  
' .  

. ,  , . . ... 5 . 
. .  . . 

= .  (6624) l  n[4(20)/1.834]/[6.28(-1.06) (ZG)] . " . . '  ! . . . . . . . . .  . ? :  . I  

. , . - '. . y .  ; 
. . . . . .  , . . '  . 8 .  . . . ,  . . " '  : 

. . . . .  = 195 F . . . .  . . . .  ;.. '..,, ,, 

. . I  . :  

. . . . .  .x ' . . . . . .  . _ . .  . . . . . . ', ; ' .; ' I . . . s . . . . . . ; .. -;. 
. . . . .  . ,  . ' t :  where d t c  = temperature d i f f e r e n c e  between caisson fop.: . . .  a r i ds i ,des ,  F and; ,'; .: ; ,  . . . . " . . . .  : .  . i 

. I '  

' I. . . . . . . . .  . . . .  I . . .  .. # '  . ' I .  . )  , .. . . .  ' . .  I $  . . . . .  
. : .  

. . . . .  . ;. 
o t h e r  synlbol s  have been def ined p r e v i o u s l y  .' . . . . . .  . . . .  . 

. . . .  . -. . . . . . . . .  . .  . . '!.;*. . . . .  . . . ' . '  P I  . . ( '  . . . . . . . . . .  , < , .  . . . '. . , . . : , ,  . 
. . .  . . A  . . .. , . 

. . . . . , .  . i ' . .  
. . :, . ,  . 

. . 
. a .  

. %  

. . .  
, 1 '  The temperature o f  t h e  i n s i d e  w a l l s  i s  629 (434 F p l u s  ' 1 9 5 ~ ) .  Th.?.,. ' - '  . .  ' . . . .  , . . . .  

. . . . . . .  . . . . . .  . . . : ,  . . 
. . . . . . .  . . .  . . . . .- .; . > .  . . . . . . . . .  . temperature d i f f e r e n t i  a1 between t h e  i n s i d e  caisson Gal 1s and t h e  . . . . . .  ., .. ... : . 'I . 

. . . :. 
, - 

i .I ; .  . . 

c a n i s t e r  was c a l c u l a t e d  by t h e  same n ~ e t h o d  shown p r e v i o u s l y  (.Equations .:.,I.. , .:;. ,,., , ,  . . . . .  .- . ...... 
. I . ,  . 

:., 
. . .  . . . . .  . . .  . . . . . .  . .. . .  I .. 

. . .  < ; .  , ..\ 
. . 

< ,. , 

A-14 through A-17). A f t e r  de termin ing  . the c a n i s t e r  ' s u r f a c e ,  ' ,, . . 
. . , ., ' > . t, :" :' 

. . .  . __:, . .., . * .  . . . . . . . . . .  ,., . . .  ;. , . . . 
, . . . .  temperature, t h e  rnaxirllum fuel  p i n  tempera ture  was est imated f r o r i i t h e .  

. ,  .. . . .  ' 
' . . !  ." 

. , 
. ,. . 
. . 

. . . : . .  .. . . .  I.... 

app rop r ia te  data  of ~ilaxinium f u e l  p i n  temperature as a f u n c t i o n  of . , !,, 
. . 

. . , ' i  . . ;". . . . .  . . . .  _ . j  a .(. 

. . .  . . 
. . . . . .  . . ' I '  ' : '  

c a n i s t e r  sur face ten;perature. . . .  . . . . ! :  ... , :' . 
. . 

. . 
. . . . . . 

, '  . . .  . . . . .  . , . . , / %  .... . . . , ::i .:,. . . .  . . . (' . . 
. , . .!. 

! ' .  ' : , -  

TI16 var ious  ten~pera ture  and temperature d i f f e r e n t i a l s  i n  t i l e  f u e l  and . : . .  .- . ,. . 
. , : I  . 

ca isson f o r  ranges o f  decay heat f o r  i n t a c t  and disassen~blea PkR and 
! 

BWR f u e l  assemblies are summarized i n  Tab le ' lO  i n  t h e  repor t .  
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ANALYSIS OF NATURAL COKVECTICK CORCEPTS 

' ri 
Ca lcu la t i ons  are presented h h i c h  i n d i c a t e  t h e  therrnal per fo in~ance of a : 
v a u l t  and a caisson w i t h  n a t u r a l  convect ion  cool ing,  i.e., k i t h  a i r  : 

. . 

c ' i r c u l a t i n g  f rom o u t s i d e  a t  100 F and e x i t i n g  t h e  v a u l t  o r  caisson 

. w i thou t  r e s t r i c t i o n .  Since f i l t e r s  were no t  ass~ir~led a t  t h e  e x i t ,  - 
, . J f i l t e r .  pressure l o s s  was not  inc luded i n  t h i s  analysis.' 

J '  . .  .. 
Vau l t  w i t h  Disassembled Fuel . .  ," . 

, . . :n  .; . . . . . . 

. . Since o ~ l l y  7.8 percent  o f  t h e  decay, heat can be conducted acrcss t h e .  
' 

; p - .  - 

; 1 :  above-sround v a u l t  w a l l s  (Appendix A), t h i s  heat l o s s  was neglected i n  
@' , 'i . -  . 

, p .. . .  , ' . . t h i s  analys is .  Thus, t h i s  ana lys i s  app l i es  t o  above- round and .. . . 
! ' 1  

belovi-ground vaul ts .  The f o l l o w i n g  da ta  were used i n  t h e  n a t u r a l  

. . .  . , I  C?; convect ion ana lys is :  
, . <:: , ;, 

: 9 

~ m b i  en t  temperature ( t  a), F , 100 
f3 

! 1 . 4  Kaxinium temperature o f  concrete, F 500 . ~ 

. . . . 
. . I  . . 

, . . . . ". 
, !  .,: 

' Can is ter  he ight ,  ( L ] ,  f e e t  14.17 . : -  

. . .,1 . . . . . . .. 
, .  . . .  . . . ,,; Canis ter  p i t c h  (center - to -center  d is tance) ,  inches 15 

1 - 1  
Can is ter  ou ts ide  dimension, inches 9.25- ' 

, , . . .  . . ' . ,  i . . .  
, . . : .  

, .  . Outside sur face area o f  s t e e l  can is te r ,  (As), sq. ft 44.9 

Flow area between can is ters ,  (Af) ,  sq. ft . . 0.968 . . .  . 

i i 
An open-type rack was assun~ed, thus e f f e c t s  o f  t h e  rack were neglected ,, 

. . .;' , , . ;  
I 

and' t h e  outs ide  surface area o f  t h e  c a n i s t e r  was used f o r  heat . s .  

. . . .  ... ! 8 ' .  
I 

.- . :  . . . . 
. . .  - r ': 

1. . . .  . . t r a r ~ s f e r .  Also, i n  an i n f i n i t e  ar ray  o f  can is ters ,  t i l e  hea t .  t r a n s f e r  . . . .  . I 

. . .  
. . ' c t ~ a r a c t e r i s t i c s  i n  t h e  sbace between a ~ r o u p  o f  f o u r  c a n i s t e r s  were i ; ' ; . ,  



. . 
assunled t o  be l i k e  t t ~ o s e  everywtwre i n  t h e  array.  Thus,. o n l y  . . 

. . 
. . . . . .  . 

one- four th of four  c a n i s t e r s  ( i  .e., one c a n i s t e r )  need 11e considered.. 
. . 

, I  .. . . 
The f low area between f o u r  c a n i s t e r s  was c a l c u l a t e d  by s u b t r a c t i n g  t h e  . . . . 

. . . , . . 
c ross  sec t  i o r ~ a l  area o f  a c a n i s t e r  ( o r  one- four th  o f  f ou r ,  w h i c t ~  ' i s .  . . . .  . . . . .  ., . . 

. ,  . . . 
3 : .  

85.6 square i r~ches )  f rom t h e  area i n  a  15- by 15- inch a r r a y  (225 square . . 

inches).  Hence, t h e  f l o w  area i s  139.4 square inches o r  0.968 square 

feet.  The per imeter  o f  a c a n i s t e r  i s  9.25(4) o r  37 inches (3.083 

fee t ) ,  t t ~ u s  t h e  h y d r a u l i c  d iameter  (D)  o f  t h e  f l o w  area i s  
. . 

4(0.968)/3.083 o r  1.256 fee t .  The decay heat o f  four 'd is8ssen1b led  Bk'R , . . %  . . . 

f u e l  assemblies, which i s  4  kw o r  13,650 Btu/h, was assumed f o r  ' t h e  . . . . .  . . 
. .  . , 

sample c a l c u l a t i o n s  which f o l l o w .  

. . . :  . 0 .  

. . . .  . 

The q u a n t i t y  o f  a i r  needed t o  coo l  a  c a n i s t e r  i s  . . 
. . 

. . . . 
..'. , . ,. . , 

W = Q/ [C(dt) ]  = 3.791/[0.24(dt)] = 15.8/dt (e-1) 
. . 

where W = a i r  f l o w  r a t e  t o  coo l  c a n i s t e r ,  1b/s 

Q = 3.791 B tu /s  (13,650 Btu/h),  decay heat 
'.. i 

C = 0.24 B t u / l  b-F, heat c a p a c i t y  o f  a i r  

d t  = ten~pera ture  d i f f e r e n t  i a1 between i n l e t  and o u t l e t '  a i r  . . . . 

. . . . . . 

The q u i l n t i t y  o f  a i r  t h a t  i s  convected i n  t h e  space among . c a n i s t e r s  . ' ' . ' ' . '  
, . 

,. , 

depends on t h e  pressure l o s s  i n  f l o w i n g  i n t o  and out  o f  t h e  space among . . . '  

c a n i s t e r s  and on t h e  f r i c t i o n a l  p ressure  l o s s  i n  f l o w i n g  a long t h e  . . 

can is te rs .  This  pressure ' loss  rcust a l s o  be balanced by the  a v a i l a b l e  a '. 

po ten t  i a1 energy (bucyancy) which depends on t h e  d e n s i t y '  d i f f e r e n c e  of , ' 

t h e  i n l e t  and o u t l e t  a i r .  . . .  . .. 
. .  . . e:' 

For  t h e  c a l c u l a t i ~ n s  rrhich fo l l ow ,  a va lue  o f  42 F  was assuriled f o r  dt .  

Thus, t he  o u t l e t  c i r  vias assumed t o  be 142 F and t h e  average 



ter,,pcrature o f  121 F \,as used t o  c a l c u l a t e  t h e  average a i r  d e n s i t y  

I betvieen t h e  i n l e t  and o u t l e t  o f  t h e  vau l t .  A value o f  0,0684 pounds 

p e r  cubic f e e t  bias ca lcu la ted.  . . . .  , 

The v e l o c i t y  o f  t h e  a i r  i s  

vihere V = a i r  v e l o c i t y ,  f t / s  
/ . , .  .:: . . . '  . . 

I 
. . . W = 15.8/42 = 0.376 Ib /s ,  a i r  f l o w  ' r a t e  f r c m  Equat ion B-1 . . . . 

i . . .  GEKa= 0 .~6b4 lb/cu. ft, average a i r  d e n s i t y  ' 

Af = 0.968 sq. ft, f l o w  area among f o u r  c a n i s t e r s  . 

I I .: . , . . 
The Reynold's nun,ber, hh i ch  was used; t o  es t lma te  t h e  f r i c t i o n  f a c t o r ,  '' , . :, / "  , , .  

, . 

where Re = Reynold's number 

I D = 1.256 ft, h y d r a u l i c  diarileter o f  f l o w  area 

I v = 0.0001941 sq. f t / s ,  k inen la t ic .  v i s c o s i t y  

I . . . . 

A f r i c t i o n  f a c t o r  ( f )  of 0.022 bas determined fcom ,standard f r i c t i o n ?  : .. 

. . 
' . 

, I '  
I f a c t o r  curves us ing  t h e  smooth-surface curve. ~ x p r e s s k d  a s  a pressure ,.!,; . . 

' . . It., % .'. . 
. . 

..: , .  . l o s s  c o e f f i c i e n t  (k f ) ,  t h e  value o f  K f  i s  . .  . .  . . . . ... 

. . .. , 
., . . s. . . 

l c  . . . . . .  . . . ,  . . , . . . . .  . .... 
. I  . . .  . 

where K f  = number of v e l o c i t y  heads due t o  f r i c t i o n  
. . 

, . 

. * 
.. . 

I' ' . " f = 0 . ~ 2 2 ,  f r i c t i o n  f a c t o r  . ,:,. , . . 
. . 

- . . .  L = 14.17 f r e t ,  (170 inches), h e i g h t o t  a' c a n i s t e r  ". , '  

. . . . 
. . . . ,. . . 

. . .: . . ; I , ':: . . .* . 
.:.: .- . . ' . .  . . . . 

. . 
The standard values f o r  entrance a n d , e x i t  pressure l o s s  c o e f f i c i e n t s  . : . . ( . ~ I I .  '. , . .. . 



. . . . . . .  . .  . . . .  . . . . . . . :. . 

B-  4  . .  . . . . . 
. . 

. . '  
. . 

. .  . 
are 0.5 anti 1.0, respec t i ve l y .  Tt~us, t h e  t o t a l  pressure l o s s  . . . . . . 

.! . .: 

c o e f f i c i e n t  ( K )  i s  K = 0.25 + 0.5 + 1.0 = 1.7'5, w l ~ i c h  i s  t i l e  sun) o f  t l ~ e  . . . ' .  . . I !  . , 

f r i c t i o n a l  p ressure  l o s s  c o e f f i c i e n t  and t h e  i n l e t  and ou t l e t . . va lues .  
. .' 

. . . , .  ' .  L : I. . 

Since c a l c u l a t i o n s  were performed ove r  a  range o f  f l o w  r a t e s  and t h e  

f r i c t i o n  f a c t o r  was as great  as 0.04 f o r  low v e l o c i t i e s ,  a  va lue  o f  K 
. .  . ( . .  

equal t o  2 was used subsequently. 
. . . , ! ' .  . . 

. . 
The v e l o c i t y  head i s  

,. . . 
. . 

. . 

Vh = DEKa(V) (V)/[2gc] (B-5) . .  . . . . . . .  
:-?. 

. . . . 

. . . . 
wt~ere Vh = v e l o c i t y  head, lb/sq: ft . . . .  . . .. . 

. . . . . . . . .  

gc = 32.2 1 brn- f t / l  bf-s/s,  g r a v i t a t i o n a l  constant  
. 

t: 

The t o t a l  pressure l o s s  i s  . . . .  . . 
. .  . 

. . . . 

dP = K(Vh) = 2(0.0342) = 0.0684 lb/sq.  f t  ' . (B-6) . 8 '  

This va lue  o f  pressure l oss  must be balanced by p o t e n t i a l  etiergy, which 

overcomes t h e  f l o w  res i s tance  (pressure  l o s s  c a l c u l a t e d  i n  Equation 

B-6). The p o t e n t i a l  energy from buojtancy f o r c e  i s  

. . . . 
where PE = p o t e n t i a l  energy, Ib/sq. ft 

. . 

DENin .= 0.071 lb/cu. ft, d e n s i t y  o f  i n l e t  a i . r  a t  100 F 
. . 

CENout= 0.0659 l b j c u .  ft, d e n s i t y  o f  o u t l e t  a i r  a t  142 F . . . . .. .@ 
: , .  

. . 

Since the p o t e n t i a l  energy i s  apprcjximately equal t o  t h e  pressure loss,, 

t h e  assurr~ed value o f  42 F f o r  t h e  temperat l i re d i f f e r e n t i a l  Set\:ecn t h e  



I o u t l e t  a11d i n l e t  a i r  i s  va l i d .  

r..: , , . . :  
. Ins tead of s u b s t i t u t i n g  values i n t o  Equations 8-2 through 8-7, t h e  

requ i red  f l o w  r a t e  t o  balance t h e  r e s i s t i v e  l o s s  and p o t e n t i a l  . ' ' 

. . 

e n e r w  can be d e r i v e d  as f o l l  ows: . . 
I 

. : :-,, 

1 : r  . . By subs t i t u t i nc j  p r e v i o u s l y  de f ined  symbols i n t o  Equat ion 8-8, t h e  . . '1. 

. . .. . 
I . -  .r.. 

1 . . . f o l l ow ing  equat ion f o r ' f l o w  r a t e  can be determined. 
I-. ... 

. . 

I ., 1 :., . : .  , where blp = f l o w  r a t e  c a l c u l a t e d  f rom pressure l o s s  cons ide ra t i ons  . . . . .  
I ,.. 

. . 

. . 
. . . , . 

. < 

The f l ow  rate,  Wp, nlust be a t  l e a s t  equal t o  t h a t  ca . lcu la ted f rom :, ' ,.: 
. . . , 

Equation B-1, which can be v e r i f i e d  by s u b s t i t u t i n g  prev ious  values : , ' 

. . 
. .  . i n t o  Equations B-1 and B-9. . 

The tenlyerature d i f f e r e n t  i a1 between a  c a n i s t e r  s u r f  ace and t h e  maximum 

..... . . .  ' 

( o u t l e t )  a i r  temperature was c a l c u l a t e d  f rom a standard c o r r e l a t i o n  f o r  

I .I na tu ra l  convect ion on a  v e r t i c a l  wal l .  A i r  p r o p e r t i e s  were evaluated 

I-.: : a t .  t h e  average o f  t h e  temperature d i f f e r e n t i a l  between t h e  c a n i s t e r  

I 
. . I. : ,* 

surface and t h e  average a i  r ten~pera ture  a t  atniospheric pressure. The 

. . . . 
Rayleigh number i s  

= 2.41 E l l  I 9 : .  

wtrere Ra = Ray l e i  sh number, based on 14.17-foot-hi gh c a n i s t e r  

s = 32.2 f t / s / s ,  ~ r a v i t a t i o n a l  acce lera t ion  



b = 0.001316 ( l / F ) ,  c o e f f i c i  cn t  o f  c u b i c a l  expan:.ion of a i r  

L = 14.17 ft (170 inches) ,  c a n i s t e r  h e i g h t  . .  ., . . *I . . 

. . 

d t  = 273 F, temperature d i f f e r e n c e  betwt.cn t h e  a i r  and c a n i s t e r  

v  = 0.000307 sq. f t l s ,  k i nemat i c  v . i scos i t y  o f  a i r .  . . . , . .  
. .. . 

. . . . 
The heat t r a n s f e r  c o e f f d c i e n t  due t o  n a t u r a l  convect ion  i s  , . . .. 

0.333 > .  
114.17 = 0.126(0.0203) (2.21 E l l )  

. . 
..: . ... .. 

The q u a n t i t y  o f  heat convected f rom t h e  sur face of t h e  c a n i s t e r  t o  t h e  , 2 .  

, . .  : : i 
! 

. . . . 

a i r  i s  c a l c u l a t e d  next,  and t h e  va lue  o f  t espe ra tu re  : . d i f f e r e n t i a l  of . ; . . . . .  

273 F was se lec ted  so t h a t  t h e  q u a n t i t y  o f  heat w'ould equal 4  kw, whi'ch .. ' , ._ .  
, ' 8 ,  

.. . 
. , 

' , 
was assumed a t  t h e  s t a r t  o f  Appendix B. . . 

. . . .  . f  

. . .  Qc = h ( A s ) ( d t )  = l . l l ( 4 4 . 9 )  (273) = 13,600 e t u l h  ( 4  'ku) ('E-12) '. . . . .  . . . 
. . . .. 

where Cc = q u a n t i t y  o f  heat convected f r o m s c a n i s t e r  surface, E tu /h  

As = 44.9 sq. ft, c a n i s t e r  sur face area 
> .  
i, . ' 

d t  = 273 F, temperature d i f f e r e n t i a l  between c a n i s t e r  and a i r  ' . .  

: , t ' ,  

' , . I  :. 
, . 

The q u a n t i t y  o f  heat r a d i a t e d  t o  t h e  t o p  o f  t h e  v a u l t  has been . ' . . 
.. . . . 

' ,  

es t imated t o  be approximate ly  4  percent  o f  t h e  t o t a l  ; the re fo re ,  it was : ., '.: : . . .. , . 
. . . . . . 

nhc~ l rc ted .  The reason f o r  t h e  snlal l  va lue i s  due t o  t h e  smal l  view 
. . . . .  . . 

f a c t o r  o f  a  v e r t i c a l  c a n i s t e r  t o  t h e  t o p  of t h e  v a u l t  when.other 

chn i  s t e r s  are i n  c lose  p r o x i ~ n i t y .  

Using t h e  n~axirrrurn a i r  ter l iperature o f  142 F c a l c u l a t e d  prev ious ly ,  t h e  

n~aximun; sur face teri lperature o f  a  c a n i s t e r  i s  142 F p l u s  273 F  o r  415 F . 

as i n d i c a t e d  i n  Table 12 under t t re  column beaded 4  kw. 



Temperdture d i f f e r e n t i a l s  f o r '  a range o f  f 1 ow r a t e  has c a l c u l a t e d  a n d  

surlunarized i n  Table 12 i n  t h e  repor t .  F;axinlur~l f u e l  p i n  ten~pera tures  
* 

were d e t e r n ~ i r ~ e d  froi l l  da ta  o f  r~laxirllun~ f u e l  p i n  t e r ~ ~ p e r a t u r e  as a f u n c t i o n  

p .  . , . : 

of c a n i s t e r  sur face temperature. 
. . . . 

The concept o f  n a t u r a l  c o r ~ v e c t i o n  c o o l i n g  , i s  f e a s i b l e  f o r  a vau l t ,  i.f. , '  . . . ' 

no f i l t e r s  o r  o the r  s i g n i f i c a n t  pressure'  losses a re  i n  t h e  e x i t  f rom 
. . 

t h e  v a u l t  and i f  t i b e  maximun~ EWR disassen~bled f u e l  temperature o f  593 F 
" 

. . 

: r  . : .  i s  accept'able f o r  an asse'nibly w i t h  1. kw f o r  long-tern1 storage. 

Gel ow-Cround Caisson w i t h  D i  sasserilbl ed Fuel 

. . 

IT The f l o w  area around a c a t l i s t e r  i n  a caisson i s  1.472 square. feet ,  

which i s  g rea te r  than  than  arourld a c i r n i s t e r  i n  a v.ault. Therefore, . . . . 
. . .. . 

t h e  pressure l o s s  i s  l e s s  i n  a caisson t h a n  t h a t  i n  t h e  v a u l t  analyzed 
. . 

. p rev iously.  The temperature d i f f e r e n t i a l  . .. t o  d i s s i p a t e  '4 kw was 

determined t o  be 32 F i ns tead  o f  42 F, u s i n g  t h e  same procedure as 
. . . .. 

f '.' . . shown p rev ious l y  i n  t h i s  appendix. Th is  . d i f f e r e n c e  (10 F)  i s  small 
. . 

I 
. . .. . conipared t o  t h e  o v e r a l l  tert~perature'  d i f f e r e n c e  f rom t h e  h ~ t t e s t  fue l  

. . . . . 

p i n  t o  t h e  o u t l e t  a i r .  Therefore, temperature values i n  Table 12 can 

:;. a1 so be, app l ied  t o  below-ground caissons w i t h  a small. amount o f  . . 
I . I 

. . I .  conservatism. 

. ,For  t h e  above-yround cii isson, cons iderab le  heat i s  conducted across t h e  ' . . $  
. . ./_ ' 

. . ,.:. I 

w a l l s  o f  t h e  caisson t o  t h e  environnient. Therefore, Tables 10 and 12 I ... . , ; . .. : ,  : 'm, . . 
, .  . . . .  

a . ' . .  a re used t o  e s t i r ~ ~ a t e  t h e  decay heat that can be d iss ipa ted,  assuming a i' . . . s , .. 
. . . . .  . I . . 

L rriaxirr~uni f u e l  p i n  ter~lpcrature. E n t e r i n g  Table 12 h i t h  390 F f o r  t h e  
. . . . I 

' %  I , 
, . 

, . maxiniun; f u e l  p i n  teriiperature o f  a disassembled PKR f u e l  asseri~bly, t h e  . . , . #  
. . ' I  

5- . . . . ,  "decay heat d i ss ipa ted  t o  t h e  a i r  i s  a t o t a l  o f  2 kw ( 1  kw per.assembly) " '  . I 
. . . i 

. . 
- . . .  and. the  o u t l e t  a i r  tcri iperature i s  126 F. Assur;~ing t h a t  t h e  i n s i d e  1 . ... 



. . ca isson w a l l s  s i l l  a l s c  be a t  t h e  maximum a i r  temperature, 'enter inc,  . . ,. 
. . 

Table 10 w i t h  126 F f o r  t h e  i n s i d e  caisson w a l l  temperature, a  ' t o t a l  o f  . 
. . ,  . . 

. . .  approximately 0.5 kw can be d iss ipa ted.  , Thus, t h e  t o t a l  decay heat . . )  , . .  p 

. . 

tha t .  car1 be d i s s i p a t e d  i s  2.5 kw (1.25 kw per  assembly). By s i m i l a r '  - ' . . 
, . .  . ~ 

. . ', ' 

use o f  these tab les  o f  data, i f  a ~ ~ e c i f i e d t o t a l  decay heat i s  wanted, 
. . , , . . 

' .  . , 

!. ; 
t h e  temperatures can be i n t e r p o l a t e d .  A l t e r n a t i v e l y ,  if some - . . . .  , . .. . . . . ' 

corlservatism can be t o l e r a t e d  i n  t h e  est imate, o n l y  Table 12 need be 

used, s ince t h e  q u a n t i t y  o f  heat conducted through t h e  above-ground 
. . . . .  .. , . 

ca isson i s  approxirnately 0.5 kw d i v i d e d  by 2.5' kw o r  20, percent o f  t h e  , : , . . 
. . 

> .  . t o t  a1 . , % :.::' . , ; . . 
' . i  
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