

USGS-474-260

USGS-474-260

JUN 1970

UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

Stop 954, Box 25046
Federal Center, Denver, Colorado 80225

274 7000

COMPLETE BOUGUER GRAVITY MAP OF THE NEVADA
PART OF THE GOLDFIELD AND MARIPOSA 2° SHEETS

By

D. L. Healey, R. R. Wahl, and F. E. Currey

MASTER

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

SLC

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Stop 954, Box 25046
Federal Center, Denver, Colorado 80225

COMPLETE BOUGUER GRAVITY MAP OF THE NEVADA
PART OF THE GOLDFIELD AND MARIPOSA 2° SHEETS

By

D. L. Healey, R. R. Wahl, and F. E. Currey

ABSTRACT

The complete Bouguer gravity map of the Nevada part of the Goldfield and Mariposa 2° sheets results from a compilation of gravity data from several sources. The majority of these data were obtained by field crews from the U.S. Geological Survey; however, some data from the U.S. Department of Defense, Defense Mapping Agency, are scattered over the map. East of long 117°15', most of the gravity stations were obtained as part of the gravity survey of the Nevada Test Site and adjacent areas. In the vicinity of Yucca Flat (southeast corner of map), the gravity stations are too numerous to show. The purpose of this map is to make these gravity data available to the public.

INTRODUCTION

The accompanying map shows the complete Bouguer gravity map of the Nevada part of the Goldfield and Mariposa 2° sheets. The contour interval is 5 mGals and the map scale is 1:250,000. Also shown are the gravity stations (solid dots) and the gravity base stations (triangles) established during the gravity survey.

East of long 117°15', the majority of the gravity stations were established by field crews from the USGS (U.S. Geological Survey). The gravity stations in this area were obtained as part of a gravity study of the NTS (Nevada Test Site) and contiguous areas. The study was sponsored by the DOE (U.S. Department of Energy, formerly the U.S. Energy Research and Development Administration).

The principal gravity datum was 979,604.7 mGals at the Las Vegas, Nev., airport (Woollard, 1958). Supplementary gravity bases were established throughout the area as needed. A description of the Goldfield base is given in Healey (1976a).

In the area north of lat 37°30' and east of long 117°15' and also between lat 37°00' and 37°30' and long 116°45' and 117°15', most of the gravity station locations were established by planetable surveying. The surveying was done by field crews from the USGS. With minor exceptions, the remainder of the gravity stations were established where elevations were listed on the topographic maps.

Two areas on the accompanying map lack gravity coverage. One area, adjacent to Stonewall Mountain and centered near lat 37°30' and long 117°00', was not covered by modern topographic mapping when the fieldwork was being done; also the rough topography precluded planetable

surveying. The second area, located along the north border of the map between Ralston Valley and Reveille Range, was outside the area of interest. Restrictive time schedules and limited access did not permit additional work in this area.

In the southeast corner of the map, gravity stations are not shown in the 15-minute quadrangle bounded by lat 37° to $37^{\circ}15'$ and long 116° to $116^{\circ}15'$. The gravity study of the NTS has been concentrated in this quadrangle and several thousand stations have been established. These stations are far too numerous to show.

SOURCES OF GRAVITY DATA

The list of "Sources of gravity data" shown on the accompanying map are cited fully in the references. The list includes the sources for the gravity data and also the reports in which some of these data are published.

The stations obtained from the Department of Defense (written commun., 1974) total about 200 and are widely scattered over the map. Likewise, the stations obtained from Mabey (written commun., 1963) are few in number and are scattered along bench-mark lines.

REDUCTION OF DATA

The data have been reduced to the complete Bouguer values by standard reduction procedures (Nettleton, 1976). The reduction density was 2.67 Mg/m^3 . Corrections for latitude, elevation, and instrument drift were applied. After January 1971, corrections for Earth tides were also applied. Prior to that time, repeated base observations were made to account for this correction. Terrain corrections through Zone H (Hammer, 1939) were either hand computed or estimated from adjacent stations for each station. The total terrain corrections were determined to a radial distance of 166.7 km by the Plouff (1966) computer program. This program utilizes two sets of maps (card decks) where the topography is digitized in 1x1 minute and 3x3 minutes of latitude and longitude.

The accuracy of the data herein reported was summarized by Healey (1976a, p. 3). However, in the Yucca Flat area (southeast corner of map), the stations are thought to be accurate to within $\pm 0.2 \text{ mGal}$, as opposed to the 0.3 mGal in other valleys. This increased accuracy results from a better evaluation of the applied terrain correction and a tighter base-station network.

REFERENCES CITED

- Anderson, R. E., Ekren, E. B., and Healey, D. L., 1965, Possible buried mineralized areas in Nye and Esmeralda Counties, Nevada, in Geological Survey Research: U.S. Geol. Survey Prof. Paper 525-D, p. D144-D150.
- Hammer, Sigmund, 1939, Terrain corrections for gravimeter stations: *Geophysics*, v. 4, no. 3, p. 184-194.
- Healey, D. L., 1976a, Principal facts for gravity stations in the western part of the Goldfield 2° sheet, Nevada: U.S. Geol. Survey Open-File Rept. 76-57, 15 p.
- _____, 1976b, Principal facts for gravity stations in the Nevada portion of the Mariposa 2° sheet: U.S. Geol. Survey Open-File Rept. 76-58, 10 p.
- Healey, D. L., and Miller, C. H., 1962, Gravity survey of the Nevada Test Site and vicinity, Nye, Lincoln, and Clark Counties, Nevada--Interim report: U.S. Geol. Survey Open-File Rept. (TEI-827), 36 p., 8 illus.
- Miller, C. H., Healey, D. L., and Currey, F. E., 1974, Gravity map of the northern Nellis Air Force Bombing and Gunnery Range, Nevada: U.S. Geol. Survey Geophys. Inv. Map, GP-902.
- Nettleton, L. L., 1976, Gravity and magnetics in oil prospecting: New York, McGraw-Hill Book Co., 464 p.
- Peterson, D. L., 1973, Bouguer gravity map of parts of Esmeralda and Mineral Counties, Nevada, and Inyo and Mono Counties, California: U.S. Geol. Survey Open-file Rept.
- Plouff, Donald, 1966, Digital terrain correction based on geographic coordinates [abs.]: *Geophysics*, v. 31, no. 6, p. 1208.
- Wilson, C. W., 1975, Bouguer gravity map of Clayton Valley, Nevada: U.S. Geol. Survey Open-File Rept. 75-333, 1 map.
- Wilson, C. W., and Peterson, D. L., 1977, Principal facts for gravity stations in Clayton Valley, Nevada: U.S. Geol. Survey Open-File Rept. 77-256, 3 p.
- Woollard, G. P., 1958, Results for a gravity-control network at airports in the United States: *Geophysics*, v. 23, no. 3, p. 520-535.

Distribution

U.S. Department of Energy, Nevada Operations Office, Las Vegas, NV:

E. M. Douthett (2)
P. B. Dunaway (2)
M. E. Gates, c/o R. R. Loux
R. W. Newman
D. A. Nowack
A. J. Whitman

U.S. Department of Energy, Nevada Test Site Support Office, Mercury, NV:

B. C. Moore

U.S. Department of Energy, Mercury, NV:

CETO Library

U.S. Department of Energy, Washington, DC:

H. Hollister (2)
J. K. Bratton (2)
J. L. Liverman
Office of Public Affairs
W. H. Pennington

U.S. Department of Energy, Technical Information Center, Oak Ridge, TN: 27

Defense Nuclear Agency:

Test Construction Division, FCTC/DNA (Attn: J. W. LaComb, Clifford Snow), Mercury, NV
Director (Attn: SPSS, Milton Peek, Eugene Sevin, T. E. Kennedy); SPTD, Washington, DC
C. E. Keller, FCTMC/DNA, Kirtland AFB, NM

Los Alamos Scientific Laboratory, Los Alamos, NM:

R. B. Brownlee	R. R. Sharp
E. A. Bryant	E. J. Sowder
R. H. Campbell	T. A. Weaver
L. S. Germain	
J. W. House	
Library	
K. H. Olsen	

Lawrence Livermore Laboratory, Livermore, CA:

N. W. Howard
L. D. Ramspott
D. L. Springer
Technical Information Library Division
John Toman
R. L. Wagner

Lawrence Livermore Laboratory, Mercury, NV:

W. B. McKinnis

Sandia Laboratories, Albuquerque, NM:

J. R. Banister
C. D. Broyles
M. L. Merritt
W. C. Vollendorf
W. D. Weart

Sandia Laboratories, Mercury, NV:

R. D. Statler

Panel of Consultants:

Carl Kisslinger, University of Colorado, Boulder, CO
Joseph Lintz, University of Nevada, Reno, NV
N. M. Newmark, University of Illinois, Urbana, IL
Vincent Schultz, Washington State University, Pullman, WA
J. T. Wilson, University of Michigan, Ann Arbor, MI

Defense Advanced Research Projects Agency, Arlington, VA:

G. H. Heilmeier

Colorado School of Mines, Golden, CO:

Maurice Major

Desert Research Institute, Reno, NV:

P. R. Fenske

Environmental Protection Agency, Seattle, WA:

Attn: Water Division

Environmental Protection Agency, National Environmental Research Center, Las Vegas, NV:

G. B. Morgan

Fugro National, Inc., Long Beach, CA:

J. R. Miller

National Oceanic and Atmospheric Administration, Weather Service Nuclear Support Office, Las Vegas, NV:

H. F. Mueller

Fenix & Scisson, Inc.:

R. H. Ashlock, Las Vegas, NV
Grant Bruesch, Mercury, NV

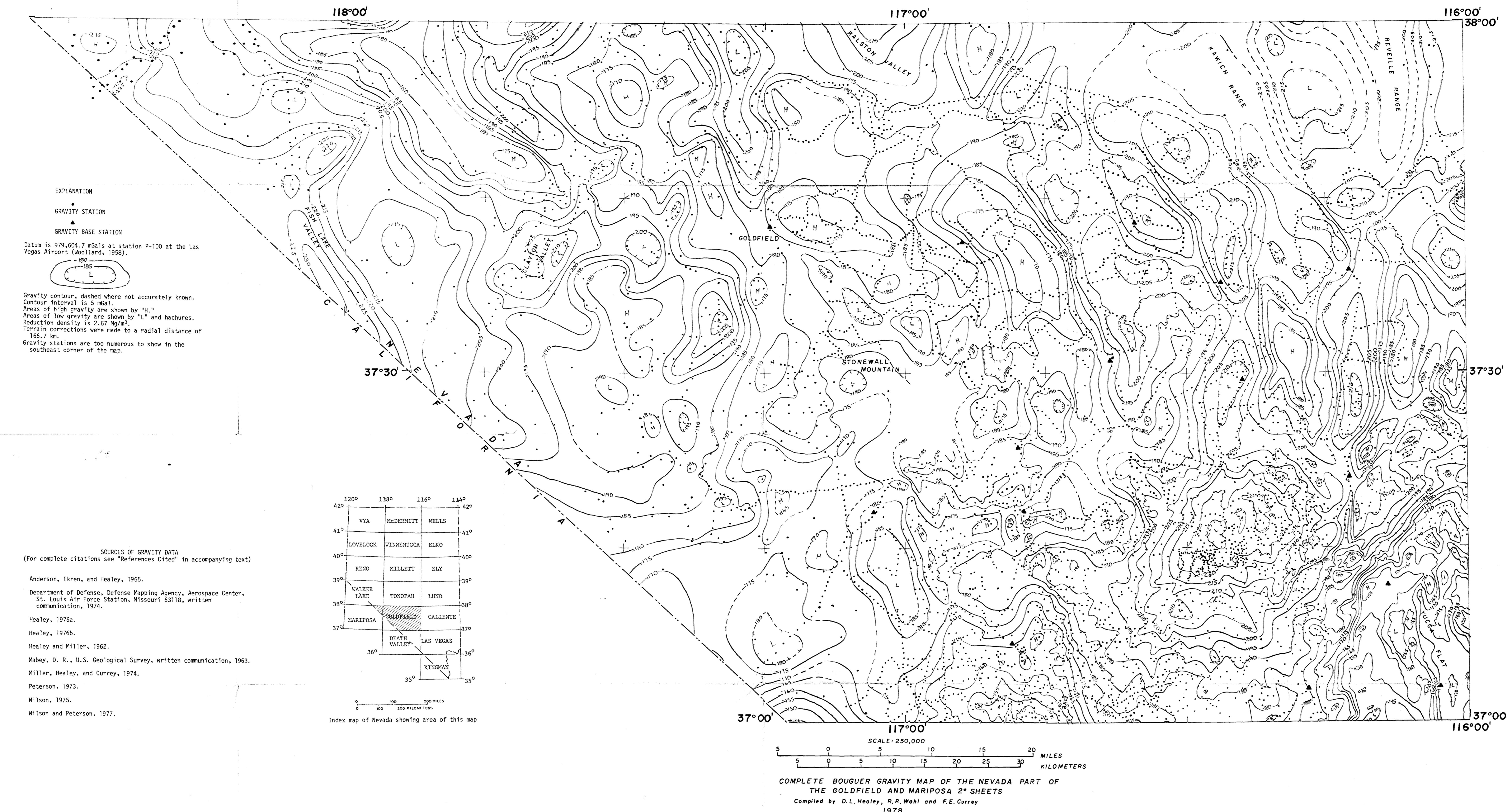
Holmes & Narver, Inc.:

F. M. Drake, Las Vegas, NV
Resident Manager, Mercury, NV

U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS:

Library

U.S. Bureau of Mines, Denver, CO:


P. L. Russell

U.S. Geological Survey:

Geologic Data Center, Mercury, NV (15)
K. W. King, Las Vegas, NV
Library, Denver, CO
Library, Menlo Park, CA

U.S. Geological Survey, Reston, VA:

Chief Hydrologist, WRD (Attn: Radiohydrology Section)
Library
Military Geology Unit
J. C. Reed, Jr.

