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FOREWORD

This is one of a series of reports describing research, development,
"and demonstration activities in support of the National Program for
Building Thermal Envelope Systems and Insulating Materials. The national
program involves several federal agencies and many other organizations in
the public and private sectors that are addressing the national objective-
of decreasing energy waste in the heating and cooling of buildings.
Results described in this report are part of the national program through.
delegation of management responsibilities for the DOE lead role to
Oak Ridge National Laboratory.

Other reports in this series include the follow1ng, whlch are
available from NTIS:

1. DOE/CS-0059, The National Program Plan for Butilding Thermal
- Envelope Systems and Tnsulating Materials (January 1979);

2. ORNL/SUB-7556/1, Assessneiit of the Corrosivencss of Cellulosic
' Insulating Materials (June 1979).

3. ORNL/SUB-7504/3, Recessed Light Fixture Test Facility (July 1979).

4. ORNL/SUB-7559/1, Problems Associated with the Use of Urea-
Formaldehyde Foam for Residential Insulation (September 1979).

5. ORNL/SUB-7551/1, Interim Progress Report on an Investigation of
Energy Transport in Porous Insulator Systems (October 1979).

6. ORNL/TM-6494, A Technique for Measuring the Apparent Conductivity
of Flat Insulations (October 1979)

7.+ ORNL/SUB-79/13660/1, Minnesota Retrofit Insulatzon In Situ Test
Program Extension and Review (February 1980).

8. ORNL/TM-7266, An Experimental Study of Thermal Resistance Values
(R-Values) of Low—Denszty Mineral-Fiber Building Insulation Batts
Commercially Available in 1977 (April 1980).

Ted S. Lundy

Program Manager

Building Thermal Envelope Systems
and Insulating Materials

Oak Ridge National Laboratory

E. C. Fréeman

?rogram Manager, Buildings Divison
Office of Building and Community Systems
Department of Energy
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EDITOR'S NOTE
- Although ORNL has a policy of reporting its work in SI metric units,
this report uses English units. The justification is that the insulation
industry at presént operates completely with English units, and reporting
otherwise would lose meaning to the intended readership. To assist the
reader in obtaining the SI equivalents, these are listed below for the

units occurring in this report.

Property Unit Used SI Equivalent

Dimension ‘ in. 25.4 ﬁm

Dimension ft ' _ 0.3048 m

Density 1b/fe3 16.02 kg/m3

Power ‘ Btu/h : 0.2929 W

Thermal conductivity Btu in./h ft2 °F 0.1441 W/m K

Thermal resistance h ft2 °F/Btu 0.1762 K m2/w

Temperature °F : °C. = (5/9)(°F — 32)

Temperatﬁre difference °F ‘ °C = (5/9)°F
ACKNOWLEDGMENTS

The authors wish to thank J. P. Moore of the Metals and Ceramics
Division for reviewing the draft rebort and T. G. Godfrey, Metals and
Ceramics Division, for his review of the draft report and help in
developing the PDP/8e computer program. We also acknqwledge~F. J. Weaver
and R. S. Graves for help in data processing. We also wish to thank
Sharon Bﬁhl and Jane Anderson for careful typing of several drafts,

M. R. Sheldon for her technical editiﬁg efforts, and the Reports Office

staff for preparation of the final report.

vii



ANALYSIS OF HEAT TRANSFER IN BUILDING THERMAL INSULATION

H. A. Fine, S. H. Jury, D. W. Yarbrough, and D. L. McElroy
ABSTRACT

The measurement of the apparent thermal properties ;
(i.e., conductivity, resistivity, and resistance) of insulation
by the guarded hot-plate technique is mathematically simulated
on a computer by assuming that coupled conductive and radiative
heat transfer occurs in an absorbing and emitting single-phase
gray medium. Calculations are performed for insulation
extinction coefficients between 0.001. and 1000 ft'l, thicknesses
between 0.0208 and 1.0 ft, continuous-phase thermal conduc-
tivities between 0.1800 and 0.1980 Btu in./(h ft2 °F), hot-plate
temperatures between 485 and 635 R, and cold-plate temperatures
between: 435 and 585°R.

A three-region approximate solution to coupled conductive
and radiative heat transfer in an infinite slab of absorbing and
emitting gray material bounded by black surfaces is also-
developed and shown to agree to within *0.5% of the numerical
results for most cases. The approximate solution to the coupled
problem and the exact solution to the uncoupled problem are used
to establish the effect of test conditionms (such as specimen
thickness, plate emissivity, plate temperatures, and continuous-
phase thermal conductivity) on the measured apparent thermal
properties of an insulation specimen.

. Examples of the temperature profiles within the insulation
and a table of representative thicknesses for guarded hot-plate
test specimens (i.e., the minimum specimen thickness required
for measurement of an apparent thermal resistivity that is
within 2% of the value at infinite thickness) are also presented.

A means to extrapolate thermal resistance data from thin to
thick specimens is suggested by this analysis. Predictions from
‘the extrapolation are shown to be cunsistent with cxicting
thermal resistance data on low—den51ty mlneral fiber building
insulation batts.

1. INTRODUCTION

Heat transfer within insulation may occur by conduction and radiation
in the solid phase and by conduction, convection, and radiation in the gas
phase. These mechanisms interact and combine to produce the total heat

flux through the insulation and the temperature profile within the



insulation. The primary goal of this study is to understand how conduc-
tion and radiation interact to yield the thermal properties of insulation
without the influence of convection.”®

In general, a useful understanding of a complicated heat transfer
problem is sought from analysis of experimental data using theoretical
models of the interacting phenomena. Although several theoretical models
exist,l’2 virtually no experimental data can be found in the literature
for the problem of interest. Several significant events have occurred
since 1976 that have fbcused attention on the need for additional
theoretical and experimental analyses of heat transfer in insulation.
These events are outlined helow., A new thcorctical approach thal clearly
shows the relationship between two modes of heat transfer within insula-
tion and the properties of the insulation and test facility.follows.

First, in 1976, the American Society for Testing and Materials (ASTM)
approved a significant change in the ASTM Cl77 specification for the
standard guarded hot-plate test method.3 Among the changes, ASTM Cl177-76
provided a new method to estimate the maximum thickness of specimens that
can be used in the guarded hot-plate apparatus; the specification also
noted that the thermal properties of a specimen may change with specimen
thickness. Prlor to this change, the maximum thickness was limited to
one—~third of the lateral dimension of the central section of the apparatus.
Since the lateral dimensions of most central sccctions were less thaan 6 in.,
the majoricty of tests were conducted ét a specimen thickness of less than
2 in. Thus prior to 1976, few studies provided data sets on the specimen
thickness effect, and a linear extrapolation of any available data to
design thickness was emploved, The Cl77-76 specification, however, indi-
cated the need for measurements nn insulations at their design or full or
actual-use thickness.

Second, since 1976, a number of laboratories have increased the
central section dimension to 12 in., which by the pre~1976 specification

would allow sample thicknesses up to 4 in. but by the new specification

*In this analycis convection is estimated as enhanced conduction
(Sect. 2.7).



allow thicknesses of 6 in. or more.. These devices should provide direct
experimental data on the effect of thickness, aséuming that the increased
thickness does not increase the measurement error.

Although ASTM has endorsed the philosophy of full-thickness testing, a
cautionary statement has been.appended to C177-76 and a position statement
prepared.4 Both suggest that identification of measurement accuracy and the
full-thickness effect require calibration standards, which do not exist.

Third, in 1979, the Federal Trade Commission (FTC) issued a final .
rule on 1abeiing and advertising of home insulation that includes
prescribed standardized test methods for determining R-values of home
insulation materials.d The rule states all tests must be performed at
a specimen thickness greater than that fof which the apparent thermal
resistivity of the material does not change by more than 2% with further
increases in thickness. The effective date of this rule was to have been
November 30, 1979, but this has been delayed.

Later in 1979, the Department of Energy (DOE) Residential Conservation
Service (RCS) program issued a final ruie,6 which became effective
December 7, 1979, and would recognize the FTC final rule as including
requirements for thermal resistance testing. Since the RCS program is
a major federal effort to eﬂcourage energy conservation measures, such as
application of home insulation, the understanding of full-thickness
testing is an important part of the national effort for energy
conservation.

Fof'an infinite planar section of insulation at steady state, the
total heat flux is a constant that is independent of position within the
specimen. - Thus, the thermal conductivity, resistivity, and resistance
to heat transfer of an insulating material may be defined b& analogy to
pure conductive‘heat transfer. (See Appendix Al for the definitions given
in ASTM Cl177-76.) However, while the total heat flux must be constant,
the fraction of energy carried by each mechanism varies, with a nonlinear
temperature profile resulting even when the properties are not a function
of temperature. Because of the presence of radiativg heat transfer, the
thermal properties of insulation are apparent thermal properties that are
a function of the physical and oﬁtical’properties of tﬁe insulation and

its bounding surfaces.



Realizing that measured values for the thermal properties of insula-
tion may depénd on the apparatus as well as the insulation, several
investigators have employed limiting—case solutions to the actual heat
transfer problem to define the effect of measurement conditions on the
measured result.’”9 These attempts have generally been based either
on uncoupled (i{e., noninteracting) conductive, and radiativg heat transfer
in an absorbing, emitting, and scattering single-phase gray medium/»8
or on conductive plus radiative heat transfer with only scattering.9

Exact solutions to the coupled conductive and radiative heat transfer
problem for absorbing, emitting, and isotrnpically scattering single-phase
‘gray materials bounded by nonblack isothermal infinite parallel plates
have been developed by Viskantal and by Lii and Ozisik.2 These analyses
show that a linear temperature profile exists only for tlie pure scattering
case and that as the importance of scattering relative to absorption
decreases the nonlinearity of the temperature profile increases. The
worst limiting case, as indicated by the most nonlinear temperature
profile, occurs for black bounding surfaces and no scattering within the
material,

In the current work, the measurement of the apparent thermal proper-
ties (i.e., conductivity, resistivity, and resistance) of insulation by
the guarded hot-plate technique is modeled using a digital computer that
solves the coupled conductive and radiative heat transfer problem for an
absorbing and emitting single-phase gray medium bounded by infinite
parallel black isothermal plates. The results of these calculations for
the worst limiting case and the previously determined results for the best
limiting case are used to brackét the effect of sample thickness on the
appatrent thermal properties of insulation and to develop an extrapolation
equation that shows the relapionship between the apparent thermal propcr-
ties and the measurement conditions (e.g., hot- and cold-plate emissivi-

ties and temperatures and specimen thickness).
2. THEORETICAL CONSIDERATIONS

In a properly designed and operated guarded hot plate, the guards
minimize lateral heat exchange with the metered section so that a net flux

occurs only in the direction normal to the hot and cold specimen surfaces.



Under these condltlons, the specimen is equlvalent to an infinite slab of
the same thickness. The heat flux and temperature proflle within the slab
and the specimen are identical. Thus, heat transfer by ‘coupled conduction
and radiation in an absorbing and emitting‘single—phase gray slab(boundedl
by infinite, black, isotﬁermal parallel plates approx1mates the worst
limiting case for heat transfer w1th1n an 1nsulat1on sample contalned in a

guarded hot plate with' the hot plate up.
2.1 The Viskanta and.Grosh'Analysis

The temperature profile and total heat flux for the general coupled
" radiation and conduction problem are functions of the emissivities of the
"bdunding surfaces and four dimensionless parameters that describe the

sample aﬁd,test conditions:

8y = cold surface absolute temperature _ —z-(reduced temperature) , (1)
" hot surface absolute temperature Vit
o . L _ - sample thickness (optical thickness) , (2)
1/E  photon mean free path within sample
' KcE conductive heat flux , (3)
Np,=—== (radiation-conduction number) ,
40T3  radiative heat flux
and . .
" _ O _ scattering coefficient (albedo) , (4)

E ~extinction coefficient

where the parameters are defined in Table 1.

In the case of interest, the emissivities are equal to one and the
extinction coefficient is equal to the absorption coefficient, that is,
the pure absorption case for which the scattering coefficient and the
albedo equal zero. Also, the thermal conduct1v1ty was assumed to be that

of the contlnuous phase (i.e., air).



Table 1. Nomenclature

4, 4B, ATy,
A(a)’ A(U)

B, BCE); B(Tp),
B(a), B(0)

i
E
Ep(T)
.
G¢(1)
h
I(o)
I(x)
Kair
kapp
ke
keff
kT’

kot

q¢, <

Constants in appropriate relationship
Constants in appropriate relationship

Thickness of region 7

Extinction coefficient, F = a + ¢

nth-order integral exponenti&l function of T

Volume fraction of fibers in insulation

Parameter definedAby Eq. (8)

Heat transfer coeffiéient

Intensity of light incident on a sample at x = 0

Intensity of light emerging from a sample of thickness =x
Thermal conductivity of air

Apparent thermal conductivity

Continuous-phase thermal conductivity

Effective thermal conductivity, see Eq. (23)

Radiative conductivity, see Eq. (21) ‘
Total or enhanced thermal conductivity, see Eqs. (56) and (57)
Sample thickness ‘

Full or actual-use thickness

Representative thickness for guarded hot--plate apparatus test
specidens

Weighring factor in Eq. (62)
Refractive index T
Refractive index at

Number of increments within simulated sample

‘Radiation-conduction number defined by Eq. (3)

Conductive heat flux

Radiative heat flux

Tatal heaﬁ flux

Total heat flﬁx through region <

Parameter defined by Eq. (29), (30) or (31)

Correlation coefficient



Table 1. (Continued)

~ Absolute temperature at T

Thermal resistance

Thermal resistance of region <
Differential thermal resistivity
Apparent thermal resistivity, 1/kapp

Absolute temperature

-

Absolute temperatufe.for a linear temperature profile, T i,(T)
=Ty +t (T/T°)(T1 - T7)

Modified mean absolute temperature defined in Eq. (55)

Hot-plate absolute temperature

Cold-plate absolute temperature

Absolute temperature at interface between regions I and II

Absolute Fémperature at interface between regions II and IiI

Position

Absorption coefficient ,

Dimensionless slope at T = 0, see Eq. (12)

CIC)) L

Constant equal to 1.42089

Convergence limit

Emissivity

Emissivity of hot plate

Emissivity of cold plate

Dimensionless or reduced temperature, T/Ti

Dimensionless temperature at T

ith value of the dimensionless tcmperature at T

Dimensionless temperature at cold plate, T;/T

Scattering coefficient

Stefan-Boltzmann constant

Dimensionless position, Fx

Variable of integration in Eys. (7), (9), and (10)
Optical thickness, EL .

Parameter in Eq. (60), position at which Z = TLin
Albedo, Eq. (4)




The temperature profile for the pure absorption case with black
boundaries was found by solution of the nonlinear 1ntegro—d1fferent1al
equatlon developed by Viskanta and Grosh, 10,11

r,dLe(zT) n? (1) (r) — 1/2[B(T)E’2(T) + B(T°)Ey(1° — 1)
dt®
o (5)
T 4
+f n (T’)E1(|T-— )6 (T’)'dT'] ,
0 .
subject to boundary conditions

8(0) = 89, 6(t°) = 1.0 . (6)

Viskanta and Grosh have shown that the dimensionless temperature 6(T)
equals

[

oty = 6ty + < [ 22 (Jt = 1) + E, (1)
2N 0 3 "3

r

: (7)
C 4+ ,—rTT[E’B(T" -17) — E3(T’)]}64(T’) dat” ,
where
GUT) = 3 (B(O) (5@ + L e+ a -1
' r
+B(T°)[(1——)E’ (t°) —E,(z° fr)+%:—° (8)

+ zivrie(O) + Z[6(r°) — e(onf).

Since a closed-form solution for Eq. (7) is not available, a numerical

technique was used to obtain a solution for the temperature profile. 10,11
Having determined the ‘temperature profile, Vlskanta and Grosh show
that the total heat flux through the sample equals



-k—c(T —T)+25‘T4[E' (1°) + = £, ( °)—i]
9t = 71 7 4 253\ e 241 3T°

AED! oy _ 1 e .
+ 11[‘r_°E4(T ) -3+ %‘] +_[0 n(x )iEz,(T’" ™)
(9)

4

™17 dr’) + o1t

+ TL[E3(T —17) - E3(T')]

(]

-4 ) N T 2 - o - 4 - -
— 20T,E. (t°) — 20 n(t)E,(1° — )T (t7) dt” ,
273" -Jy 2 .

where the conductive heat flux is given by the first two terms in Eq. (9)

and the heat~flux due to radiation by the last three terms.ll Combination

of the integrals in Eq. (9) yields

4l 1 . 1
T [— E, (%) — 3r°]

k
e -
(T1 — TZ) + 20

@ T 2|7
4 1 ° 1 (10)
+ ‘Tl[—FEa(T ) + ?l_-;,-]
TO
+ / n.z('r’)io E.(t®° —1") — E (T’)]Tz'('r') dT'E
0 . T 3 N
Equation (7) can be differentiated to show that
de/dt = (1'/21vr) (B(O) [E'3(T) + E () /T° = 1/3T°]
+ B(T°)[—E4(T°)/T° — E3('r.° - 1) +'1/3T°]
| (11)

E’2(|-r—'r’|)

To
+ (ZNP/T")[O(T") - 9(0)] + /0‘ | nz.(T’)

+ (1/T°)[E'3(T° — 17y — E'3(T')] £94(T') dr’)
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By inspection of Eq. (11) one can show that the dimensionless slope B must

satisfy the inequality

or, — T '
8=d(7—1—_—§£ 21
o ay
4 | |
T T=20

for a solution to be correct. An iterative technique different in detail
bul similar in principle to that used by Viskanta and Groshlo’li was - ‘
developed in the current work for determination of the tewperaLure profile '

and heat flux.
2.2 The-Lii and Ozisik Analyses

An alternate solution technique was developed for the foregoing
problem by Lii and Ozisik.2 This solution is based on a normal mode
expansion of the combined conduction and radiation heat transfer problem
in an absorbing, emitting, and scattering medium. For further details of

this analysis, the reader is referred to the or‘igina_l_‘paper.9
2.3 Some Limiting lLase Anélysis (Thin, Thick, Rennex)

Sparrow and Cecol? ghow that fur Lhe optically thin limit, the mean
free path of a photon, 1/E, within an object is large compared to the

thickness of the object, L. Thus

L

TOET/—E—EL . 1 . ‘ (13)

For this case, it was assumed that the radiant heat flux is not affected
by the material and the conductive and radiative mechanisms do not

interact.l? The total heat flux through the object then equals

At = 9ot qp » | (14)
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where g, is given by Fourier's law, which for a planar object of thickness

. L, constant properties, and unidirectional heat flow at steady state equals
Tl —'T2 o . (15)

The radiant heat flux between two infinité‘parallel plates at T; and T,

and with emissivities €; and €y equals

—( 4 4)-
q, = A S (16)
L S R
€1 & '
Substitution‘of Eqs. (15) and (16) into Eq. (14) yields
T, — T 5<T4—T4> .
9t = % T T T, . " . (17)
' € € :
For black plates e€) = €3 = 1, and Eq. (17) becoﬁes
T, — T : '
o =k L2 L5t~ : 18) .
q, =k, L2 + 5y -1 . a8

When the limit §f zero optical thickness is substituted info Eq. (12)
and L'Hospital's rule is used to evaluate the indeterminant term that
" arises, Eq. (10) simplifies fo Eq. (18). B
Siegel and Howelll3 discuss the optically thick'limiting case, where
the dimensions of an object are‘large compared to the mean free path of é
"photon in the object, '

T =FTED L, a9
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and the photons that carry radiant energy within the object behave in a

manner similar to photons in the conductive heat transfer process.

The
radiant heat flux is approximated by
g = Ky ar ' (20)
v dx :
where for a gray medium the radiative conductivity k, equals
k=18 n'5r | (21
T 3 o ’ _ )
For combined conduction and radiation heat transfer,
qt = —Keff — » - (22)
dx ' :
where Koff, the effective thermal conductivity, equals
Ketf = Ko + kp s (23)

Eliminating both k. ¢y between Eqs. (22) and (23) and kr hetween the
result and Eq. (21) and integrating the result yields the approximate

total heat flux at steady state for one—-directional hecat flow in an
optically thick slab,.

3ol ) (24)

Combining the total heat flux for the optically thin limiting case

- solution, Eq. (18), with the definition of the apparent thermal
conductivily

kapp = Q¢ L/(Ty = Tp) (25)
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yields a linear relationship between kapp and L for conétant values of the

plate temperatures:

| 8<T‘£‘ - T‘2‘> | |
= + </ .
kapp kc T, — Ty L . 4 (26)

Substitution of the total heat flux for the optically thick limit,
Eq. (24), into Eq. (25) shows that the asymptotic approach of the
apparént thermal conductivity to an upper limit that is dependent on the
absorpfion coefficieht of thé sample occurs at large sample thicknesses

and high absorption coefficients. The asymptotic limit equals

g2 c'x(T4 - T4>
kK =k + 2 \1 2 (27)
app e 3a<Tl-— T2> *

A review of several methods for treating the effect of thickness 6n
the apparent thermal properties of insulation was récently prepared by -
Rennex./ The models discussed by Rennex assume that interaction dbes not
occur bctween conduction and radiation within the insulation and that the
heat fluxes are additive.

Rennex discusses three solutions to the pure radiative heat transfer
problem. At thermal or radiative equilibrium, the radiant heat flux
between two infinite parallel plates at T) and T) separated by a gray

medium equals

ol - )
9 =1+ [(7e) + ey —2J¢ - : ‘(28)

An exact solution for @ developed by Heaslet and Warming14 shows that for

° > 1:

__4/3 ‘
Q = .l.o + .Y . . B} (29)
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where vy = 1.42089. The éxponential—kernel approximati0n12’15 to this’
problem yields

= 4/3
Ay (30)
while Rgﬂnex7 proposes
_ : 4/3
9 = T+ 4/3[1 + 0.0657 tanh (21%)] (31)

as a replécement for Eq. (29).

Assuming that the radiative and conductive heat fluxes do not
Ainteract and that the total flux equals the sum of the two independent
. fluxes, Rennex/ developed the fonllowing equationg for the effect of
thickness on the apparent thermal conductivity by combining Eq. (29),
(30), or (31) with Eq. (28) and Eqs. (28) and (15) with Eq. (14) to-
obtain gz. This value of g4 was then inserted into Eq. (25) to yield

73

4o'm

k =k + 5 . L, .
P e 24,30 Lo.0657 (32)
€ & |
. 4o m - :
kapp =k, + g___i , 3% L, | (33
£ 4 -
aﬁd‘
-73
k = ' AOTm ) I
° b
app %— 1+ %— + 0.0657 tanh (27°) (34)

when it is assumed that €] = ep = € and (Tf-— Tg)/(Tl-— To) = AT%,
For conduction and radiation with pure scattering (w = 1), interaction
between the two modes of heat transfer does not occur,l’z’12 and the con-

ductive and radiative heat fluxes through the specimen are added to find
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the total heat flux. For pufe scattering, g, is given by Eq. (28) aﬁd Q
is ‘given by Eq. (29) with t° edual to oL.12 It is therefore clear that
"Eq;.(32), developed by Rennex,7 ié exact fbr combined conduction and
radi#tion with pure écéttering (w=1). '

For 1° greater fhan'2,<tanh (21°) is equal to unity and thus Eqs. (32)
and (34) are identical. As all'cases of interest in fhis analysis have
values of t° greater than 2, only Eqs. (32) and (33) need to be discussed
further. The only difference betwéen Eqs. (32) and (33) is the constant
in the denominator of Eqs.:(29) and (30). The value 1.42089 was found
for the exact solution,]f4 While‘l.333§ was found by the‘approximate o
technique,'lz’15 As this is the only difference, only the exact solution
‘which yields Eq. (32) will be used in subséqueﬁt analyses.

Since the thermal.resistivity~equals the inverse of;the thermal
conductivity, inverting Eq. (32) yields an expression for the apparenf

-~

thermal resistivity. For the pure scattering case,

1 B(o) -
Rg =% = A(o) + .if) R (35)
: app
where
A(G) = 1
- 42 op3
e l + T° + 30 .
‘bandv
2E - vy
€
B(O) = f :
—é‘—(% -2) +v (- 166T; ‘ (37)
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2.4 Numerical Value of the Extinction Coefficient

In general, the extinction coefficient is a function of wavelength.
To date, spectral or average extinction coefficients have not been
measured for fibrous insulation for the wavelength range of interest,
3 to 20 pm. Pelannel6 has, however, measured the percent transmittance of
visible light, 0.4 to 0.7 pm, through fiberglass insulation, which can be

converted to extinction coefficients using Beer's law:l3

%%%%—= exp (—Ex) . : (38)

The rcsults of these calculations, which represcnt an approximation to the
values of interest, indicate that the extinction coefficient fqr fiberglass
insulation lies in the range of 50 to 150 ft=l, The optical thicknesses

of the majority of insulation test specimens will, therefore, lic in. the
region where Eqs. (26) and (27) do not apply. Thus, we turn to the ‘
development of the relationship between the apparent thermal conductivity
and sample thickness for intermediate optical thicknesses. For this '

purpose, the three-region approximation is a useful concept.
2.5 Development of a Three-Region Approximation

In principle, the effective thermal conductivity is au Intensive
property of a material. The radiation conductinn approximation, defined
by Eq. (20), however, is.not a valid concept near the gurfaces of au
bbject. In this region, photons may pass through the object without
interacting, a situation similar to the optically thin limit. It is,
therefore, appropriate to approximate a planaf insulation sample as an
oplically thin section of thicknesé dry which is immediately adjacent to
the hot surface in the test apparatusA(fegion 1), an optically thick
central section (region II), and an optically thin section of thickness
dLy which is immediately adjacent to the cold surface in the test
apparatus (region III).: The total heat fluxes through each region will

then equal



S Y : "
qt,I = kc dLl -+ 0<T1 - Tl*) ’ . (39)
| o 4
] . Tl* — Tz* N 40<T1* T2*> N 40)
i1~ “eT—dL —dL, 3o - dy — dLp) ’

and

Tox — T

o 28 T2 =fb b 41
U111 = Ko iz, +°(T2* -T2*> , (41)

where T} and T) are the temperatures at the interfaces between regions I
and II and II and III, respectively.

To simplify the analysis, it wi11 be assumed that the thicknesses of
regions 1 and'III are equal. As some photons will be absorbed as sobn as
they enter the sample and others will travel well into the sample, an
average thickness for reg{ons I and III will be defined as the distance
which will absorb one—hélf thé'incident radiant energy. According to

Eq. (38), for the pure absorption case this thickness equals
dLy; = diy =—(&n 0.5)/E = 0.69315/F . (42)

Combining Eqs. (39) through (42) yields

| R
L ,
T*=T—T—T)‘ , (43)
| <1A 2)R + R, + R,
- _ ‘ 44
Tz*‘T2+(T1 7)) ¥R TR, (44)
172 T
and
T, — T
17 72 | (45)
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where R], Ry, and R3 are the thermal resistances of the regions. The

values of these resistances are

R = 1

1 — (2 2 ’ (46)
(k_2/0.69315) + 0<Tl* + Tl><Tl* + Tl>

7 Tt° — 2(0.69315) —
4 -/2 2 ’ :
a +-§ 0<Tl* + T2*><T1* + T2*> (47)

R, = —
2 %
(o4

and

1
Ry = 3 '
3 = (m2 2 ) '
. (k_0/0.69315) + 0<T2* + T2>(T2* + T,) (48)

= ’

A relationship between the apparent thermal resistivity and specimen
optical thickness was obtained by combining Eqs. (45) through (48) and
the inverse of Eq. (25) for the pure absorption case. The resulting

relationship is

1 B : '
R =g A + 5 (49)
. app _ ‘
where
1 .
A(a) =
o 2 2, ’ (s0).
kc + (40/3q) <T1* + T2*> <‘T1* + qu*> (501
andA
B(a) = : _ 1T2 >
A (kc_/0.69315) + (cr/a)< 1*‘+ Tl><T1* + T1>
i .
+ ~ R '
(k_/0.69315) + (G/nL)<T2* + 1§><T2* + T2> (51)
_ 2(0.69315) /a.

kc + (45/3&)(?%* + T%*)(fl* + 2&*) )
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The foregoing analysis provides simplified equétions, such as
Eqs. (35) and (49), for interpretation of the dependence-of the apparent
thermal conductivity and resistivity of insulations ﬁpon measurement
condition. These equations clearly show the dependency df the apparent
thermal resistivity (or conductivity) on optiéal thickness and are finite

for infinite t°.
2.6 Effect of Temperature on Apparent Thermal Conductivity

The apparent thermal conductivity is dependent onAtempérature and
strongly dependent on the term Tﬁ when the continuous—-phase thermal
conductivity, extinction coeffiéient, and plate emissitivity are approxi-
mately constant over the temperature range of interest and when the albedo

equals one (pure. scattering):
Kapp = A(Ty) + B(T)Tp ' - (52)

The values of A(Tm), B(Tm), and Tm are established by the solution to the

uncoﬁpled heat transfer problem [Eq. (32)] with -

AT, = kg 5 | O (53)

| 43L | |
BUI) = GaJey =1 + (3t°/4) + 0.0657 * o (54)

and
4 .4 |1/3 | o
T = LZ— = \? + )z, + 1,)14 H3

_ The dependence of the apparent tﬁermal conductivity on temperature
for the pure absorption case (w = 0), as given by the three-region
approximation, appears to be more complicated than Kq. (52). As a first
apbroximation, however, it can be assumed that kapp~is linearly dependenq

on Zﬁiwﬁen the albedo equals zero.



20
2.7 Effect of Convection and Solid-Phase Conduction

Ideally we would like to include the effect of solid-phase conduction
and coanvection in our solution efforts. At present, we can only estimate
these effects. The contribution of solid-phase conduction to the apparent
thermal conductivity of the insulation may be estimated by analyzing the
insulation as an air-fiber composite. This composite will consist of a
continuous phase with low thermal conductivity (i.e., air) and a randomly
distributed phase with high condutivity (i.e., fibers). The thermal
conductivity of the comﬁosite is given by thc Maxwell-Eucken equa;ion17

and equals

1+ 2F
s

ktot = kair 1 —-Fg : (56)

Convection within the insulation will occur in parallel with
conduction. Analysis of the parallel heat transfer problem yields an

enhanced or total thermal conductivity,

: mr\ S
ktot o= kc<1 + T) . . (57)

&

- Rearrangement of Eq. (32) yields

45T
m

kapp T Re T (27e) =1 + (3/4)T° + 0.0657 L.

(58)

Thus for the pure scattering case, the quantity kapp'— ke will be
unaffected by changing the value of the continuous-phase thermal con-
ductivity [i.e., substituting ki¢o¢ from Eq. (56) or (57) for k,]. If

changing k, does not affect k — kg (i.e., the apparent k,), then for

app
any total thermal conductivity,
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kapp = kabp + (kto,t‘ 0.18) .

(59

x <k | x =o0.18
e toto. | Te

3. PROCEDURE

An iterative techhique‘different in detailvbut similar:in principle
to that used by Viskanté and Groshl0O»>1l wag developed in the current work
for determination of -the temperatufe profile and heat flux. 1In this
solution, the interval (0, L) was divided into N subintervals of equal
length L/N and Eq. (7) was solved for the temperatures at the N — 1
interior pdints. '

To begin a numérical calculation, values were selected for' the
" absorption coefficient, thickness, refractive index, continuous-phase
thermal conductivity, and hot- and cold-face absolute temperatures. The
computer program is given in Appendix A2, and a flow chart of the program
.is shown in Fig. 1. The series approximation for the exponential integral
functionsl8 and the function G(t) [Eq. (8)] were then evaluated, and an
initial estimate for the dimensionless temperatufe profile was calgﬁlated

from the equation

6(t) — 6, [(s — 1 - T/T) + 1](r/r°)

= (60)
1-6, 1+ @®-1)QA—t/t)/t%)

Finally, the iterative solution was begun by calculating the N — 1

interior temperatures, 61t1(t), of Eq. (7) using the trapezoidal rule
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— ————— e —— e | — —

Fig. 1. Flow Chart for the Computer Program Used to Solve the
Coupled Conductive-Radiative Heat Transfer Problem.
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and the initial estimate for 6(t), Gi(r), to evaluate terms on the right
side of Eq. (7). A-run,was successfully terminated when Eq. (12) was

sétisfied and

oM -t L, (61)
6’L~(T) ’ .

for all interior points. The coavergence limit § was usualiy set equal
to 0.0001. | |

_A If either or both of the convergence criteria were not met, a
weighted average of the’ current and previous values for o( 1) was used
to produce a new estimate for the temperatures at the iﬁternal points.

The new estimate equaled

o™ () + met(n) | (62)

142 _
87D = M+ 1 ’

where M was initially set equal to one. if, however, the calculated error
became large, the'computer'set M equal to 24 + 1 and Eq. (60) was used to
restart the iterative procedure. The new estimates for 6(t) were used in
Eq. (7), and the iterative process continued until both convergence
criteria Were'met.i ‘

After successful convergence of the temperature profile was obtained,
the trapezoidal rule was employed to calculate the total heat flux thfough

the specimeh and the apparent thermal conductivity USing Eqs. (10) and (25).
4, RESULTS
Calculations were performed for guarded hot-plate conditions that

" would approximate building-insulation test conditions. In all cases, the

refractive index of the sample was assumed to equél one. The effect of
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the number of subintervals, convergence criterion (§), absorption
-coefficient, thickness, cdntinuousfphase thermal conductivity of the
‘specimen, and bot- and ;old—plate temperatures was investigated. Calcula-
‘tions for conditions identical to those studied By viskantalOs1l and Lii
and 0zisik? were.also run. '

When the optical thickness 1° of the simulated sample was increased,
the solution diverged in the initial calculations. At first the
divergence problem was controllable for certain cases by increasing M
(i.e., slowing the initial divergence of the solution). Increasing M,
however, also slowed the convergence of the solution and led to long run
timés. In many cases, LU0 iterations were made without convergence.

Extensive testing of the program indicated that if the number of

subintervals was chosen such that

1° _ EL o (63)
7 i 0.12 ,

convergence of the .program generally occurred with M equal to one. In the
few cases where convergence did not occur, the origin of the problem was

" traced to a poor. initial estimate for 6(t), which generally resulted from
setting B in Eq. (60) too close to one. In these few céses, the'program
would have eventually converged. However, as each iteration takes
approximatelly 11 * (¥/50)2 min on a PD/8e computer, these runs were
stopped and restarted after increasing B.

The variation of the calculated total heat flux resulting from
changing the size of convergence limit & from 0.1 to 0.00001 was studied
for a sample with an absorption coefficiént of 100 ft'l, a thickness of
0.25 ft, a continuous-phase thermal conductivity of 0.1800 Btu in./(h £t2 °F),
and hot- and cold-plate temperatures of 560 and 510°R, respectively. For
§ equal to 0.001 and 0.00001, the calculatcd total heat fluxes were within
0.01% of tﬁé value obtained for &8 equal to 0.0001, while for § equal to
0.1 and 0.0l1, the calculated total heat fluxes were within 0.07% of the
value for § equal'to 0.0001. While the run times for & greater than 0,01
were substantially less than those for § less than 0.001 (3.5 vs 10.5 h),
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it was concluded that a small value for § should be used to obtain the
most accurate value for'the total heat flux. Thus, in all ensuing runs,
the convergénce limit § was set equal to 0.0001. .

The relationships between the apparent thermal properties and sample
thickness were investigated for hot- énd cold-plate temperatures of
- 560 and 510°R, respectively. As the absorption coefficients for fibrous
insulation are.not known, calculations were performed for absorption
coefficients between 0.001 and 1000 ft~1 at'a thickness between 0.25 and
12 in. (0.0208 and 1 ft). The total heat fluxes, apparent thermal
conductivities, and apparént thermal resistances for these calculations
are given in Tables 2 through 4. The total heat fluxes through samples
of thickness 0.042, 0.083, 0.292, and 1.0 ft are also plotted as functions
of the absorption coefficient in Fig. 2. The apparent thermal conductivi-
ties are shown in Fig. 3. The apparent thermal resistanceé and resistivi-
ties for a = 50, 100, 150, and 200 ft~! are shown in Figs. 4 and 5,
respectively,

Examples of the nonlinearity of the temperature profiles obtained in
the present solution technique are shown in Fig. 6. To highlight the
nonlinearity of the profiles, the difference between the calculated
temperature T and the temperature for a linear profile Ty, are plotted
versus the fraction of the optical thickness of the sample t/t1°. In all
cases, the temperature gradients at the hot and cold surfaces are steeper
than those for uncoupled radiation and conduction. Substantial.differences
from the arithmetic-mean test temperature that would be expected at the
midpoint of the specimen for uncoupled heat transfer [(T) + T2)/2] were
also evident in all the cases studied. 4

The effect of varying the hot- and cold-plate temperatures on the
apparent thermal conductivity was determined for sample thicknesses of
1 and 3 in. (0.0833 and 0.25 ft) with absorption coefficients of 50, 100,
150, and 200 ft=l, A slight inérease in the values of the apparent thermal
condnetivity was found when the test temperature difference, T} — Ty, was
increased (see Table 5). Increasing the mean test temperature, with a
constant 50°R temperature difference, however, resulted in a marked

increase in the apparent thermal conductivity (see Table 6).



Table 2, Total Heat Flux Throuza a Sample with n
Contained Between Black Plates at 560 and 510°R

1 and k, = 0.1800 Btu in./(h ft2 °F)

deat Flux, 3tu/(h ftz), for Various Sample Thicknesses, ft

o
- 1 .

(££75) 0.0208 0.042 0.083 0.1667 0.292 0.5 0.75 1.0
0.001 88.6081 70.4637 61.6411 57.1019 55,1660 54,0902 53.3226
0.01 88.6010%  70.4502 61.6148 57.0494  55.0742 53.9329 53.0052
0.1 88.5355 70.3136 61.3561 56,5355 54,1733 52,3828 49,8406
1.0 87.9557 69.05%4 58,9432 51.8902  46.4435 40.3550 31.1361

10.0 82.5162 59.3525 £3,1394 29,1116  19.7842 12.9430  9.1395 7.0820
25.0 . 75.6693 49.2417 21,0268 17.9210 11.0037>  6.6915  4.5509 3.4480
50.0 67.7297 39.9042 22.6427 12.0500 7.0850 4.2055 2.8267

75.0 62.3065 34,7119 18.8298 9,7325 5.65362  3.3287

100.0 58,3839 31,4447 16.66C7 8.4994 4.9034

125.0 55,4303 29.4128¢  15.21614  7.7335 4,4509D

150.0 53,1351 27.6971 14.2557d  7,2157

200.0 49.8217 25.6095¢  13.01522  6.5548

500.0 42.3077 21.2300¢  10.65914

1000.0 39,2559¢  19,6532€
AThickness = 0.020833 ft.
DThickness = 0.2917 ft.
CThickness = 0.0417 ft,
dThickness = 0.0833 ft.

€Thickness

0.04167 ft.

9¢



Table 3. Apparent Thermal Conductivity of a Sample with n =1 and
ke = 0.1800 Btu in./(h fr2 °F) Contained Between Black Plates at
560 and 510°R

o Thermal Coaductivity, Btu in./h (ft2 °F),. for Various Sample Thicknesses, ft
(££7h) 0.0208 0.042 0.083 0.1667 0.292 0.5 0.75 1.0 oa -
0.001 0.4430 0.7103 1.2279 2.2841  3.8660 6.4908 12.7974
0.01 0.4430 0.7101 1.2274 2.2820 3.8596 6.4720 12,7213
0.1 0.4427 0.7088 1.2222 2.,2613  3.7965 6.2859 11.9617
1.0 0.4391 0.6961 1.1742 2.0756  3.2548 4.8426 7.4727 17.0145
10.0 0.4119 0.5983 0.8593 1.1647 1.3064 1.5532  1.6451 1.6997 1.8634
25,0 0.3777 0.4964 0.6181 0.7170° 0.7704D 0.8030 0.8192  0.8275 0.8534
50,0 0.3381 0.4022 0.4510 0.4821  0.4965 ~  0.5047  0.5088 : 0.5167
75.0 0.3110 0.349¢ 0.3751 0.3894 0.3958D - 0.3994 0.4045
100.0 0.2915 0.3170 0.3319 | 0.3400 0.3436 0.3483
125.0 0.2767 0.294¢%€ 0.30424 0.3094  0.3116D o : 0.3147
150.0 0.2652 0.2783 0.28504 0.2887 ‘ 4 0.2922
200.0 0.2487 0.2563¢ 0.2602¢ 0.2622 ‘ 0.2642
500.0 0.2112 0.2125¢ 0.2131 . ‘ 0.2137

1000.0 0.1962¢€ 0.196J : 0.1968

ACalculated from Eq. (27).
DThickness = 0.2917 ft,

CThickness = 0.0417 ft.
dThickness = 0.0833 ft.
€Thickness = 0.,020833 ft,
fThickness = 0.04167 ft.

LT



Table 4.

Apparent Thermal Resistance of a Sample with n'=

1 and

k, = C.1800 Btu in./(h ftz) Contained Between Black Plates

at 560 and 510°R

Thermal Resistance, h ft2 °F/Btu, for Various Sample Thicknesses; ft

(£e7h 7 -
0.0208 0.042 0.083 0.1667 0.292 0.5 0.75 1.0
0.001 0.564 0.710 0.811 0.876 0.906 0.924 0.938
0.01 0.564 9.710 0.811 0.876 0.908 0.927 0.943
0.1 0.565 7.711 0.815 0.884 0.923 0.955 1.003
1.0 0.568 ).724 0.848 0.963 1.077 . 1.239 1.606
10.0 0.606 0.842 1.159 1.718 2.527 3.863 5.471 7.060
25.0 0.661 L.015 1.612 2.790 4.544Q 7.472  10.987 - 14.501
50.0 - 0.738 1.253 2.208 4,149 7.057 . 11.889 17.688
75.0 0.802 1,440 2.655 5.137 8.8442 15,021
100.0 0.856 ~.590 3.001 5.883 10.197
125.0 0.902 ~.700D 3.286¢ 6.465 11.2344
150.0 0.941 :.811 3.507¢. 6.929
200.0 1.004 1.9520 3.842¢€ 7.628
500.0 1.182 2.3550 4.691C
1000.D 1.2744  2.544¢
AThickness = 0.,2917 ft.
bThickness = 0.0417 ft.
>Thickness = 0.0333 ft.
dThickness = 0.020833 ft.
°Thickness = 0.04167 ft.

8¢
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Fig. 2. Variation of Total Heat Flux with Absorption Coefficient,
« (ft71), and Thickness for k, = 0.1800 Btu in./(h ftZ °F), T = 560° R
and 79 = 510°R.

Cglculations were performed to determine how the apparent thermal
conductivity of samples with-an absorption coefficient of 75 ft~1 and
sample thicknesses of 0.0883, 0.1667, and 0.2917 ft (1, 2, and 3.5 in.)
changed as the thermal conductivity of the continuous phase was increased
trom 0.1800 to 0.1980 Btu iu./(h fr? °F). As can be seen in Table 7, an
increase in the continuous—phase thermal conductivity resulted in an

increase of similar magnitude in the apparent thermal conductivity.
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Table 5. Effect of Test Temperature Difference on the Apparent Thermal Conductivity@

Thermal Conductivity, Btu in./(h ft2 °F), at

(fé) (fg) ({Ejb : a =50 fr-l : a = 100 fr-l a= 150 fr-l a = 200 £l
' L =0.0833 ft L =0.25ft L =0.0833 ft L =0.25ft L =0.0833 ft [ = 0.25 ft [ = 0.0833 £t L = 0.25 ft
550 520 S3%.14 0.4509 0.4927 - 0.3317 0.3426 0.2849 - 0.2897 0.2601 0.2627
560 510  535.39 0.4510 (0.4933)¢ 0.3319 0.3428 .  0.2850 0.2898 0.2602  0.2629
570 500 535.76  0.4519 0.4939 €. 3323 0.3432 0.2853 0. 2900 0. 2604 0.2630
580 490 536,26 0.4521 0.4948 0.3327 0.3436 0.2856 0.2903 0.2606 0.2633
585 485  536.55 0.4532 {0.4953)¢ 0.3330 (0.3439)¢ 0.2858 0.2905 0.2608 0.2634
590 480  535.88 0.4537 0.4960  0.3333 0. 3442 © 0.2860 - 0.2907 0.2609 - 0.2635
600 470 537.62 0.4549 0.4973 0.3339 0.3449 0. 2864 0.2912 0.2612 - 0.2639

2Sample properties were n = 1, ko, = 0.1800 Btu in./(h ft2 °F), and € = 1.
by, defined by Eq. (55). '

cInterpolated.value.

€€



Table 6. Effect of Mean Test Temperature on the Apparent Thermal Conductivity
for a Test Temperature Difference of S50°F4

Thermal Conductivity, Btu in./(h ft2 °F), at

To/ Ty '(Z"Pj) a =50 ft—l a = 100 fr—1 a =150 ft-! a = 200 ft—1
L =0.0333 ft [ =0.25 ft L = 0.2833 ft L[ = 0.25 ft L = 0.0833 ft L = 0.25 ft L = 0.0833 ft [ = 0.25 ft

435/485  460.5 0.3308 0.3576 0.2554 0.2621 0.2255 0.2234 . 0.2096 0.2112
475/525  50C.4 0.3504 0. 4252 - 0.2342 0.3030 0.2560 0.2598 0.2357 .2378
505/555  53C.4 0.4400 0.4819 0.3261 0.3367 0.2808 0.2854 0.2566 0.2592
510/560  535.4 0.4488 0.4919 0.3317 0.3426 0.2851 0.2898 0.2603 0.2629
515/565  540.4 0.4576 0.5020 0.3373 0.3486 0.2894 0.29a3 0.2639 0.2666
545/595  570.4 0.5134 0.5651 0.3726 0. 3860 0.3164 0.3222. 0.2865 0.2897 .
585/635 610.3 = 0.5956 0.6607 0.4238 0.4406 0.3553 0.3626 0.3188 0.3227

ASample properties were n = 1 and K,-= 0.93160 + 2,768 X lO“’Tm [Btu ia./(h £t2 °F)]., Also, € = 1. Calculated using the three-
region approximation, :

7e
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Table 7. Effect of Continuous-Phase Thermal
Conductivity? on the Apparent Thermal
Conductivity for a = 75 £l

: Thermal Conductivity, Btu in./(h £t °F)
Length '

ft '
(fe) ke kapp Kapp — kq
0.0833 _ 0.1800 ‘0.3751 " 0.1951
0.1809 0.3761 0.1952
0.1858 . 0.3810 0.1952
0.1980 0.3934 0.1954 -
0.1667 0.1800 0.3894 0.2094
. . 0.1809 0.3903 0.2094
0.1858 0.3952 0.2094
0.1980 0.4075 0.2095
0.2917 0.1800 0.3958 0.2158
0.1809 0.3967 0.2158
0.1858 0.4016 0.2158

0.1980 0.4139 0.2159

ATest conditions were n = 1, Ty = 560°R, Ty =
510°R, and € = 1.

‘AFinally, several calculations were made to duplicate the results
of Viskanta and Groshl0Osll and Lii and Ozisik.2 The conditions for
these calculations.assumed an arithmetic-ﬁean test temperature of
AA535°R, (Ty + T9)/2, and a thermal conductivity of air equal to
0.1800 Btu in./(h fr2 °F). The remainder of the conditions were then
calculated from the values of the dimensinnless parameters. The differ-
ence between the calculated total heat fluxes and the values given in
the literature varied from less than 0.1% to slightly more than 4.5%
(see Table 8).
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0.054 Btu/(h ft °F).

Results of Validation Calculations
a L ' Gcalc dref Error
(££71) (ft) [Btu/(h ££2)]  [Btu/(h £t2)] (%)
Optically Thin Limit¢%
0.001 0.0208 88.6646. 88.6654 0.001
0.042 - 70.4637 70.4649 0.002
0.083 61.6411 61.6439 0.005
0,292 55.1660 55.1762 0.019
0.5 54,0902 54,1077 0.032
1.0 53.3226 53.3577 0.066
Optically Thick Limit?
25 1.0 3.4480 3.5557 3.03
50 0.75 2.8267 2.8705 1.53
75 0.5 3.3287 3.3705 1.24

125 0.2917 4.4509 4.4949 0.98

200 0.16A7 6.5548 6.6030 0.74

500 0.0833 10.6591 10.6877 0.27

- 1000 0.0417 19.6532 19.6677 0.074
Lii and Ozisik (ref. 2) '

280 0.00357 5,835,7b 5,833.7 0.034
56 0.0179 2,259.1b 2.262.4 —0.146
28 0.0357 1,821.3P 1,821.4 —0.0055

Viskanta and Grosh (ref. 10)

100 0.001 571,132¢ 571,100 0. UUb

10 0.01 78,842¢ 78,900 —0.086
1 0.1 29,600€ 29,500 0.339

100 0.01 70,402¢ 71,400 -~ —1.398

10 V.1 21,088¢ 21,900 —3.708
1 1.0 15,569¢ 16,300 —4.485

100 0.001 203, 1684 203,800 -0,310

100 0.01 85,7844 89,900 —4,573

100 0.1 16,3949 16,300 0.577

' Viskanta (ref. 11)
100 0.01 70,402¢ 70,377 0.050

AConditions: T; = 560°R, T, = 510°R, and Kk, =

0.015 Btu/(h ft °F).
beonditions: Ty = 1070°R, Ty = O°R, and k, =

0.015 Btu/(h ft °F).
CConditions: = 2000°R, T9 = 1000°R, and k, =

0.547 Btu/(h ft °F).
deonditions: = 3000°R, T = 1500°R, and k, =
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5. APPLICATIONS

The effects of thickness and other test conditions on the apparent
thermal conduct1v1ty, resistivity, and re51stance of 1nsulat10n is widely
recognlzed, although the magnitude of the effects 1s not well deflned To
~ establish the magnltude of the effects, equations that relate the apparent:
thermal propertles of insulation .to the test' condltlons were developed in
an earlier section. To bracket the magnitude of the effects for tests
performed on building insulations, thé results for the numerical solution
and the threé—region approximation to the coupled heat transfer problem
are compared with the limiting solutions for which no interaction is
assumed between conduction and radiation. The accuracy of the numerical
solution of the coupled heat transfer problem which is used to model the
measurement of the apparent thermal conductivity in a guarded hot plate

~

must however, be discussed. first.
5.1 Analysis of Errors

To assess the accuracy of the numerical solution used in this wofk,
the solution results should be compared to the results of an analytical
solution to the same problem. An analytical solution to the problem of
interest is, however, not available. Thus, the results of the numerical
solution can only be compared with the limiting solutions for the
optically'thin and thick cases; the results reported by Viskanta and
Grosh,1’10’11 which were obtained using a similar numerical technique; and
the results of the Lii and 0zisik? method.

When the total heat fluxes calculated using the numerital solution
technique for 1° < 103 are compared with the values calculated from
Eq. (18), the agreement between the results obtained from the numerical
solution and those calculated using Eq. (18) is better than 0.07% in all
cases, as shown 1n the first six rows of Table 8. »

While the optically thick limit is generally considered to be
applicéble for optical thicknesses greater than 10, rows 7 through 13 of
Table 8 indicate that the total heat flux obtained from the present
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iterative solution does not'approach the limiting value until 1° is
Agreater than 40. At this point, however, the agreement is better than
0.3%. It must be remembered that Eqs. (23) and (24) are approximations
.and that exact agreement betweeen the present iterative solution and the
approximate solution will only occur at infinite optical thicknesses. The
fact that the iterative and approximate solutions approach the same value
at t° values as low as 40 is further evidence that the present iterative
solution technique yields correct results.

An altermate solution technique based on a normal-mode expansinn of
the combined conductive and radiative heat transfer problem in an
absorbing, emitting, and scattering medium has been developed by Lii and
0zisik?2 (see Sect. 2.2). 'The total heat flux through an infinite slab
was calculated for several cases, including that of black plates (g = 1)
and no scattering (w = 0), for an optical thickness of one. Results from
Lii and Ozisik and from the present work are shown in Table 8 (rows 14
through 17). As can be seen from the table, the agreement is better than
0.04% for two cases and 0.15% for the third case.

A final check on the accuracy of the present iterative solution
involved repeating some of the cases reported by Viskanta and Grosh.10
All the Viskanta and Grosh cases were not repeated, as disagreements of
more than 4,5% occurred for some of the first cases Lreated (see Table 8).
Thus, a careful check of all the data reported by Viskanta and
Groshl»10,11,19 yag yndertaken in an attempt to explain these discrepan—
cies before redoing additional cases.

When the first three Viskanta and Crosh publicationslosllvlg were
compared, it was found that the total heat fluxes for similar cases in all
three agreed. However, it was also seen that the conductive and radiative
heat fluxes did not agree in many cases, Furthermore, in the cases for
which the largest disagreements nccurred between Viskanta and Grush's
results and the current work, the largest disagreements also occurred for
the conduction_and radiation heat fluxes in Viskanta and Grosh's own
publications.

It appears that Viskanta and Grosh's problem arises from the procedure
used to calculate the conduction heat flux. Their original workll

clearly stated that the conductive heat flux equals the first two terms
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of Eq. (9). However, in their first paper, it appears that only the first
term was used. This error was probably carried over into their second
paper,19 which was prépared concu;rently with their first paper.

A fﬁrther comparison of the first three-worksloxll’19 with a later
paper1 shows that the error may have been corrected. This compérisqn
showed disagreemenf of the total heat fluxes for identical cases in
Viskanta and.Grosh's own papers but excellent: agreement of the last
paper's results with the present work (see the last row of Table 8).
Further comparisons with Viskanta and Grosh's work were not attempted, as
it was not possible to state with complete certainty which of their
results were correct. ' ‘

Based on the excellent agreement between the total'heatvfluxes
obtained from the present iterative solution and”the values calculated
for the optically thin and .thick limits (t° << 1 and T° > 40) and the
agreement with the results reported by Lii and 0zisik2 and Viskanta,1
it was concluded that an error of less than 0.1% should be expected

between the present results and the value of the total heat flux.
5.2 Thickness Effect

The effect of sample thickness on the apparent thermal conductivity
is shown in Fig. 3. The linear behavior for small sample thicknesses and
low absorption coefficients is easily explained by the optically thin
1imiting case of Eq. (26). As the optical thickness increases, the
apparent thermal conductivity asymptotically approaches a limiting value,
Eq. (27). The intermediate regime will be discussed in terms of the
apparent thermal resistivity, as the three-region approximation shows a
linear dependence of R% on 1/1°. |

Equations (43) through (48) are easily solved using an iteratiﬁe.
technique as indicated in Appendices.A3'and A4, The iteration quickly
cnnvergesAwhen T)* and To* are set equal to T and T, respectively, in
Eqs. (46), (47), and (48). The values of R}, Ry, and R are then used to
find T1* [Eq. (43)] and T* [Eq. (44)]. The process is repeated until the
values of T(* and To* used in Egs. (46), (47), and (48) approximate those
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obtained from Eqs. (43) and (44). [A convergence limit similar to
Eq. (61) may be employed to establish a criterion for successful
convergence.] The total heat flux through the sample is then calculated
-using Eq. (45), and the apparent thermal resistivity or conductivity is
caléulafed. ' |

As.it is not possibie to have a negative thermal resistance, it is
- clear from Eq. (47) that the minimum optical thickness of the sample must
be 1.3863. However, as region'II is assumed to be optically thick, it is
likely that this three-region approximation will only be valid for optical
thicknesses considerably greater than 1.3863. 'Table 9 shows the values of
the apparent thermal conductivities calculated using the three-region
approximation and the percent difference between these values and the
appatrent thermal conductivities calculated for corresponding conditions
using Eqs. (10) and (25). As can be seen in this table, the largest error

is less than 2%. For g greater than or equal to 50 ft—1 and T° greater
than 4, the largest error is only —0.55%. The three-region approximation

is an excellent one for the analysis of the coupled conduction and
radiation heat transfer problems of interest.

The apparent thermal resistivities obtained from the numerical
‘iterative solution‘are plotted versus the reciprocal of the sample
thickness in Fig. 5. As can be seen from this figure'and the rcoults of
the least squares analyses given in Table 10, Rg varies linearly with
1/1t° as suggested by Eq. (49) for t° > 2.

The data used in the analyses in thie and following secLlons were
obtained from the numerical solution for optical thicknecoco lcss than 40
and trom the three-region apprnximation'for‘r9 grcater than 40, The
numerical solution of Eqs. (7) and (1lQ) was limited to optical thicknesses
less than 40 because of computer limitations. ,

A comparison of Eq. (50) with the definition of the effective thermal

¢onductivity suggests that

Ax) = keff ) : ' (64)



Table 9. Apparent Thermal Conductivities? Predicted by the Three-Region Approximation
1 and kz = 0.1800 Btu in./(h ft2

for a Sample with n =

Black Plates at 560 and 510°R

°F) Contained Between

Thermal Conductivity, Btu in./(h ft2 °F), for Various Sample Thicknesses, ft

[0 }
(£t~ '
0.0208 0.042 0.083 0.1667 0.292 0.5 0.75 1.0
25 . 0.6064 0.7096 0.7649 0.7994 0.8166 0.8255
50 0.3973 0. 4485 0.4804 0.4953 . 0.5040 0.5082 0.5103
: (—1.22) (—0.55) - (—0.46)  (—0.28) (—0.13) (—0.13)
100 . 0. 2900 0.3168 0.3316 0.3398 0.3434 °  0.3455 0. 3464 0.3469
(—0.51) (=0.059)  (—0.077) (—0.067)  (—0.059)
150 0.2656 0.2784 0.28510  0.2866 0.2902¢  0.2910 0.2914 0.2916
(+0.12) (40.037)  (+0.028)  (—0.025) | '
200 0.2492 0.2565¢  0.26030  0.2622 . 0.2630°  0.2635 0.2637 0.2638
(+0.19) (+0.63)  (+0.023)  (0.09) _
500 0.2114 0.2125d  0.2131>  0.2134 0.2135¢  0.2136 0.2136 0.2136
| (#0.075)  (40.019)  (—0.010) - |
1000 0.1963¢  0.1966  0.19672  0.1968 0.1968¢  0.1968 0.1968 0.1968
: (#0.013)  (+0.003)

QValues in parentheses are percent difference of two solutions.

bThickness
CThickness

dThickness

€Thickness
fThickness

0.0833 ft. .
0.2917 ft.
0.0417 ft.
0.02083 ft.
0.04167 ft.

7.
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Table 10. Least Squares Analysis Results

E 1/k o
(fe1) [ £2 °F/ (B inyja  AE) B(E) T

w=0,e=1, t° > 2 - '
10 0.5366 - 0.5344  0.5463 ©0.99995

25 1.1718 1.1713 . 0.9274 0.99999-
50 1.9354 1.9350 - '1.1589 0.99996
75 ' 2.4724 2.4717 1.2147 0.99997
100 ' 2.8707 2.8715 . 1.1691 0.99993
125 3.1779 3.1781 1.1348 0.99999
150 . 3.4220 3.4216 °© 1.0863 0.99999
200 3.7854 3.7848 0.9797 0.99998
500 : 4.6801 4.6798. 0.5679 0.99977
1000 5.0804 5.0803 0.3165 0.99992
w=1, e=1, ° > 2, L > 0.0833 ft
10 0.5366 0.5403 0.6481 0.99996
25 0.1718 1.1840 1.1346 0.99946
50 1.9354 1.9424 1.5856 0.99962
75 2.4724 2.4769 1.7554 0.99972
100 2.8707 ’ ©2.8737  1.7982 0.99979
125 - 3.1779 - 3.1800 1.7809 0.99983
150 3.4220 » 3.4235° 1.7349 0.99987
200 3.7854 3.7863 1.6118 0.99990-
- 500 4.6801 4,6802 1.0162 1.0
1000 5.0804 5.0804 0.6071 1.0

dCalculated from Eq. (27).

The couparisuon of the regression analysis intercepts A(d) and the inverse
of keff calculated from Eq. (23) shows that the intercept of Fq. (49)
equals the inverse of the effective thermal conductivity (see Table 10).
A comparison of Eq. (49) for the coﬁpled counduction and radiation-heat
transfer case (w = 0) and Eq. (35) for the uncoupled conduction and
radiation case (w = 1) is shown in Fig. 5 for black plates (e = 1) and
extinction coefficients of 50, 100, 150, and 200 fe-l, This figure
clearly shows that a linear relationship exists between ﬁhe4apparent
thermal resistivity and 1/t° for both the coupled and the uncoupled cases.
Furthermore, Fig. 5 §ho&s that the intercepts for both cases equal the

inverse of the effective thermal conductivity and that the only difference
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between the linear relationships predicted by the two cases results from
different values of the slopes. ‘A comperison of the values of the slopes,
‘B(a) and B(o), is shown in Fig. 7 and Table 10. The pure absorption case
(w=0) has:the smaller slope.

. Finally, Rennex/ correctly concludes that the apparent thermal
resistance has a linear dependence on samble thickness as the sample
thickness appfoaches infinity. As the apparent thermal resistivity
quals ;he apparent thermal resistance divided by thickness, extension

of Rennex's analeis also shows that Rf is inversely dependent on T°,

app Co
2 ='—1—72_ , ' o
k(142 (66)
fe] kc : ' . '
" and
2/e — 1 + 0.0657) f40T3
. e 657) /40Ty (67)
kK /k +1 > , '
c S
where
1607 3
D B | (68)

8 30

. The slope obtained from Rennex's equation is incorrect for sample
thicknesses of less than 1 ft. 'As can be seen in Fig. 5, Rennex's equation-
yields thelcorrect intereept for infinite thickness, 1/L = 0, but has a
slope that is much greater than the correct slope for the pure scatterlng
case (w = 1).A This difference resulted because Rennex developed the
relationship assuming infinite thickness, whlch is inappropriate for the.
building—insulation case. This has subsequently been changed to yield a
value for B [Eq. (67)] that agrees with B [Eq. (37)]. 20
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Fig. 7. Comparison of the Slopes for Extinction Coefficients Between
10 and 1000 ft~l in the Relationship Between the Apparent Thermal Resis-
tivity and 1/1° for the Pure Absorption Case (w = 0), the Pure Scattering
Case (w = 1), and the Rennex (ref. 7) Relationship.

5.3 ‘'lemperature Effect

The plate temperatures in a guarded hotFplate apparatus establish the
test temperature ditference (7] — T2) and the modified-mean absolute test
teﬁperature (Ty)» The cffect of these parawelers on the measured results
was examined in the theory section. .

To test the wvalidity of the assumptioné made in the theory section,
calculations'were performed at several mean test temperatures for 1- and
3-in.-thick (0.0833- and 0.25-ft) samples with absorption coefficients of
50, 100, 150, and 200 ft~1 (see Table 6). The resulting apparent thermal
conductivities were then fitted by the method of least squares to a linear
relationship similar to Eq. (52) for each value of o and L. The correla-
tion coefficient was determined. Even though continuous-phase thérmal
conductivity used in the éalculations were allowed to vary with Tm;
linear relationships similar to Eq. (52), but having different intercepts
and slopes, fit each set of data with a correlation coefficient of
0.998 or better.
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Calculations were also performed to establish the effect of the test’

temperature difference on k (see Table 5). Prior to these calculations,

app .
it was believed that the mean test temperature could be approximated as

T (69)
m 2 ot

~ However, least sﬁuares analyses of these results showed that the slight
but significant variation of kapp shown in Table 5 resulted from Ty — T,
changing T,, Eq. (55), even though the approximate value of T, Eq. (69),
was coﬁstant. Thus, the test temperature difference does ﬁot have a
direct effect on the measured value of kapp’ but rather an indirect effect

that results from the dependence of Ty on Ty and Ty as shown in Eq. (55).
5.4 Emissivity Effect

The emissivities of the plates in. a guarded hot-plate apparatus
affect -the measured value of the apparent thermal conductivity. The
plate emissivity effect is examined in this section.

The plate emissivities were easily incorporated into the analysis of
the uncoupled conduction and radiation heat transfer problem (w = 1). The
results of this analysis [Eq. (32)] clearly show the relationship between
the apparent thermal conductivity and the emissivity of the plates.

The iterative solution and the three-region approximation assumed
that the bounding surfaces were black (e = 1). Viskantal has, however,
reported a set of results that shows the effect of emissi?ity on the total
heat flux for coupled conduction and radiation. These values may be
inserted into Eq. (25) to show the effect of the emissivity on the
apparent thermal conductivity of a sample with an. optical thickness of
one. As can be seen in Table 11, decfeasing the plate emissivity decreases
the calculated apparent thermal conductivity. Furthermore, the decrease
is larger for the pure scattering case than for the pure absorption case
or, conversely, the incfease in the apparent. thermal resistivity is more

for the pure scattering case than . .for the pure absorption case for
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Table 11, Effect of Albedo and Emissivity on the
Apparent Thermal Conductivity for N, = 1.0,
T°4= 1.0, and 09 = 0.5

Apparent Thermal Conductivity,@ Btu in./(h ft2 °F)

. ,
w=0b w=0.5 w=1,0¢
1.0 0.2316  0.2295 0.2273
0.75 . 0.2215  0.2185 0.2143
0.5 0.2127 0.2085 . 0.2025
0.25 : 0.2055 0.1990 0.1914
0.1 ©0.1994  0,1937 0.1847

QCalculated from dimensionless heat fluxes given
by Viskanta (ref. 1) assuming 7] = 713.33 °R and k, =
0.1800 Btu in./(h £t °F).

bpure absorption.,

CPure scattering.

identical test conditions. As the intercepts in the -relationships between
Riland 1/1° equal the inverse of k. gf and this value is independent of e,
the larger- increase in Rg for the pure scattering case must correspond to

a larger increase in the slope, B(o).
5.5 Conduction in the Solid TPhase and Couvectllon Effeect

In an attempt to include solid-phase-conduction and convection in
the present analysis, the continuous-phase thermal conductivity can he
enthanced as shown in the ﬁheory section to include contributions due to
these otﬁer mechanisms. The enhanced value for the thefmal conductivity
is then used in the calculations, in place of the value for air, to
determine what effect these mechanisms have on the apparent thermal
conductivity. :

For insulations with densities between 0,37 and 1.56 lb/ft3, Eq. (56)
. yields total thermal conductivities that are 0.5 to 3.2% larger than the
value for air. Values for Kyop equal to 1.005, 1.032, and 1.1 ki, (the

case for hL/ke'= 0.1) were used in place of kyiy for several calculations
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(see Table 7). As can be seen from the last column in the table, changing
ke does not affect kapp" ko (i.e., k,). .Thus, the'assumption of Eq. (58)

is applicable. These calculations show that .k, does change with thickness.
5.6 Albedo Effect

Prior. sections have examined the effect of thickness, temperature,
emissivity, and contiﬁuous-phase thefmal conductivity on the apparent
thermal conductivity or resistivity. These analyses were based on the
solutions" for the pure absorption case (w =0) and the pure scattering
case (w = 1). However, both absorption and scattering occur in ihsuletien,’
and the actual case of importance has an albedo somewhere between zero
and one. . ' A
. Viskanta1 has developed a solution for coupled conduction and
radiation in an absorbing and scattering medium. Combination of
Viskanta's results and Eq. (25) permits the dependence of the apparent
thermal conductivity on the albedo to be demonstrated for t° and N, = 1.0,
82 = 0.5, and various values of the plate emissivity. As shown in
Table 11, the apparent thermal conductivity for an intermediate value of
the albedo (w = 0.5) consistently falls between the values for the albedo
equal to 0 end 1.0. Since this trend occurs for any cembination of
thickness, temperature, emissivity, and continuous-phase thermel conduc-
tivity which yields the specified values of the dimensionless parameters,
the effects of thickness, temperature, emissivity, and continuous-—phase
thermal conductivity (resistivity) which were developed in the preﬁious
secfions for w= 0 and 1.0 bracket the effect of these variables on the

apparent. thermal conductivity for am albedo between O and 1.0.
5.7 Full-Thickness Calculations

' Definitions of the thermal properties and a method for establishing
. the minimum or representative thickness for which tﬁeée properties een be .
‘defined for low—densify materials are set forth by the ASTM3 in C177-76.
(A portion of.this specification is. reprinted in Appendix Al.) The ASTM

‘method for establishing the representative thickness and R-values are used
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by the FIC.? These specifications are discussed in this section. It is
also shown how the equations that represent the effect of thickness on the
apparent thermal resistivity for the pure scattering calculation [Eq. (35)]
and for the pure absorption calculation [Eq. (49)] may be used to
establish the value of the representative thickness and the full-thickness
resistance of building insulation.

The ASTM Cl77-76 specification requires that the thermal resistance
be a linear function of the sample thickness and that the function have a
value of zero at zero thickness. Further, the specification recognizes
that a minimum sample thickness may exist above which the definitions
apply and a procedure for estimating this fhickness is set forth (see
Sect. XI.4.6 in Appendix Al). A

For a material whose thermal properties are a function of thickness,
the ASTM specification appears to define two thermal resistivities — an
average or mean thermal resistivity and an instantaneous or differential
thermal resistivity. The mean thermal resistivity is defined as the slope
of the resistance versus thickness curve, which is assumed to go through

zero at zero thickness; that is,

= B = R(0) _ R(L) ‘ (70)
L L—-0 L

The dlfferential thermal resistivity is the incremental change in the

resistance for an incremental increase in thickness,

R(L.,) — R(L,) -
R = =_2__.-- 1 = A‘R . '(71)
L L2 - Ll AL

In the limit of L, approaching [, the differential thermal resistivity

equals the derivative of the resistance function:

dr
lim R, = == , .
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Then, according to Cl77-76, the representative thickness is the minimum

* .sample thickness for which the differential thermal resistivity is

within 27 of the mean thermal resistivity of the largest'sample‘that is to
be characterized or that cah be measured in the test apparatus.

The FIC final rule? requires that all measuremeﬁts for the resistance
of building insulation be made at a specimen thickness greater than that
for which the.apparent thermal resistivity of the material does not change
by more than 2% with thickness increases to full thickness., The FTC final
rule does not specify whether the mean or the differential thermal
resistivity must be used to establish the-fepresentative thickness Lp.
While it is believed that the intent of the FIC rule was to require that
the méan value be used, it will be shown that using the differential
thermal resistivity leads'to another criterion for establishing Lp.

A In ;hé current work, the apparent thermal resistivities were ‘

calculated from the total heat flux through the specimens,

(73)

Thus, these resulting values equal the average or mean thermal resistivi-

ties. Rearrangement of Eq. (73) yields
a .
R = RfL , (74)

and combination of Eq. (74) with Eq. (35) or (49) yields

R = A(E)L + Eégl . (75)

The values of A(E) and B(E) have been determined for t° > 2 and are given
in Table 10. S .

Substituting Eq. (75) into Eq. (71) or (72) shows that the differ—
ential thermal resistivity is-equal to A(E), a constant, for a material

with a fixed extinction coefficient and for T° > 2. Since A(Z) is the
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same for w = 0 or 1, the differential thermal resistivity has the same
value for a given material whether thermal photons are scattered, absorbed,
or both. Since A(E) equals 1/kgff, the differential thermal resistivity

equals

R = 1
L 2-
k, + (L6n OT;)/3E’

(76)

for 1° > 2 and any albedo.

The ASTM method for determining Lp requires the determination of the
thickaess ab which the value of the differential thermal resistivity is
within 2% of the value for the mean thermal resistivity of the biggest
sample that is to be characterized or that could be tested. As the |
diffgrential value is a constant for a given material for 1° > 2 and as
the mean value will be decreasing as [ increases, the ASTM method |
establishes the minimum thickness for an insulation above which the
definition of the thermal conductivity applies. For products with full-
use thickness less than Lp, testing should be done at conditions
applicable to.their use,

' The represéntative thickness, Lp, as defined by ASTM C177-76 is the
valge of [ for which the mean thermal resistivity [Eq; (35) or (49)] is
1.02 times the differential thermal resistivity, Eq. (76),

A(E) + % = 1.024(E) , 77)
or
o B(E)
Lp = 30 zicmy - | (78)

The representative thickhess Lp 1is given by

L. 6003(a)keff‘ |
R o] (79)
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for the pure absorption case, and

50k k .
4 .2 8 c
12| 2= - 2) + v < - > :
.- [3 € ] Ketf Kegs (80)
R g

for the pure scattering case, where a and ¢ are in ft=1 and Lp is in inches.
Equation (80) is in agfeement with Rennex.’ Representative thicknesses

for specimené having extinction coefficients between 10 and 100 ft~l are
given in Table 12.

The value for B(E) with w= 0 and € = 1 [i.e., B(a)] was the lower
limit for B(E) at a given vélue of £. The value of B(E) with w = 1 and
et 1 [i.e., B(0)] was the upber limit. -Since A(F) is independent of
.w and € the valugs of Lp given‘in Table 12 represent the upper and lower
limits of the representative thickness as set forth by the ASTM specifica-
tion. If the extinction éoefficient is in the range 50 to 150 ft~1 as
calculated from Pelanne's data,16 then the represent?fivé thickness is in
the range 1.27 in. (£ = 150, w = 0,'5 = 1) to 13.3 in. (£ = 50, w =1,
€ = 0.9). If an average E of 100 ft~1 is assumed'typiéal, then Lp

Table 12. Representative Thicknesses for Guarded
Hot-Plate Test Specimens

Representative Thickness, in.

E
(fe7h) w=0, € =1 w=1,e=1 " w=1, € = 0.9
.10 61.1 76.9 92.9
25 19.0 26.8 ‘ 32,3
50 7.19 11.0 13.3.
75 3.93 - 6.21 ' 7.50
100 2.44 4.03 ' 4.87
125 1.71 ' 2.84 3.43
150 1.27 2.11 2.55
200 . 0.78 " 1.30 1.57
500 " 0.15 0.24 0.29

1000 - 0.037 0.057 - 0.069
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varies from 2.44 in. (w =0, € = 1) to 4.87 in. (w=1, € = 0.9). This
large range of Lp values indicates the importance of the characteristics
of the apparatus and the insulation optical properties.

Equations (35) and (49) show that the apparent (mean) thermal
resistivity continues to decrease until [ reaches infinity. Thus, an
alternate definition of Lp could be the thickness at which the thermal
resistivity equals 1.02 times the value at infinite thickness. The

‘criterion based on the mean thermal resistivity is

: B(E) _ L B®T '
A(E) + T 1.02|A(E) + Ego] 1.024(E) . (81) .

As Egs. (77) and (81) are identical, the ASTM method and this alternate
method Based on the mean thermal resistivity are identical. As noted
above, above this Lp the ASTM definition of thermal conductivity applies.-
For products with full-use thickness LF'< Lp, this criterion leads Lo the

following expression for Lp:

I = SOB(E)/EA(E)
R 1+ [51B(EY][BA(E)T.;] °

(82)

A third method for fixing Lp 15 to use the differential thcrmal
resistivity. This procedure wouid require the determination of the
thickness above which the differential thcrmal resistivily would not
change by more than 2% with further increases in thicknees. The analyses
pertormed earlier in this section and in Sect, 5.2, howevef, show that the
value of A(E) and, hence the differential thermal resistivity, does not
change for 1° > 2, Therefore, this third method would be independent of
wand € and fix Lp as

p<t. (83)

&fN

Based on this criterion, for E equal to 50, 100 or 150 ft'l, Lp equals
0.48, 0.24, or 0.18 in., respectivély.
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If the third method for determining Lp is used, the full-thickness
resistance of the material can be determined from two or more measurements
of the_thermal resistance of the material at thicknesses,grea;er.than Lk.

- The measurements are then uSeditoAgmpirically establish ;he'lineér
relationship between RAand:L; Table.lé shows the ratios-of the resistance
obtained from either the'nuﬁerical or three;fégion SOIutidn to the value
calculated from a one-parameter line Baéed dpon'a'meésurément on a 1-iﬁ.-

thick sample, where

R = RZ(l in;)L ) N )

The values from Eq. (84) show errors as large as 17.8% (a = 50 ft-1,
w=1, and L = 12 in.). They are within 2% of the numerical solution's
R-value for L less than 2 in..and E less than 150 ft~l or 3.5 in. for
E = 200 ft-1, - I a
. Table 14 showé the ratio of the solution resistance to that.calculated
from a least squares line obtained from the values of R calculated at
0.042 (1/2 in.), 0.083 (1 in.), and 0.1667 ft (2 in.). ‘Table 14 shows
that the resulting R-values from the two-parameter fit are within 27 of
the value obtained by the numerical or three-region solutions.

The above observations have been further tested using R-value data
recently published by Tye et al.2l The data include R-values for a range
of specimen thicknesses from l.44 to 7.22 in. The R-values at specific
insulation densities were calculated from measurements of apparent thermal
conductivity and a correlation of apparent thermal conductivity and
density. Apparent thermal conductivities were determined to within 3%
from full-thickness guarded hot-plate meaéurements. qAn analysis was made
using sets of measured R-values of fiberglass insulation from three
manufacturers. The R-value data for a given manufacturer's product were
divided into groups having density ranges of 0.l 1b/ft3. For example,
R-value data at various thicknesses with densities in the interval from
0.55 to 0.65 1b/ft3 were grouped for the analysis. Finally, each grOuﬁ

of R-values was adjusted to constant density using an empirical expression
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Table 13. Ratio of Thermal Resistance
from Eq. (75) to the Value
from Eq. (84)

Ratio for .Various E at

Thickness
(in.) 50 ft71 100 ft=! 150 ft71 200 ft~l
. w=10,e=1
1 1.0 1.0 1.0 1.0
2 1.067 1.024 1.013 1.008
3.5 1,099 1.034 1.018 1.011
b 1.117 - 1.040 1.021 1.013
9 1.126 1.043 1.022 1.014
12 1.130 1.045 1.023 1.014
w=1, € =1
1 1.0 1.0 1.0 1.0
2 . 1.090 1.036 1.020 1.013
3.5 1.133 1.053 1.029 - 1.018
6 1.159 1.062 1.034 1.021
9 1.172 1.066 1.036 1.023
12 1.178 -~ 1.068 1.037 1.023

Table 14. Ratio of R from Eq. (75) to R
Obtained from a Two-Parameter Line Fit
to Data at 0.5, 1, and 2 in.

Ratio for Various F at

Thickness -

Une)  50.£e-1 100 £671 150 £e71 200 feol
w=0, € =]

1 1.00085  0.99991  1.00021  1.00007
2 0.99985  1,00001  0.99997  0,99999
3.5 0.99965  1.00008  1.00035  1.00028
6 ©0.99995  1.00068  1.00042  1.00035
9 0.99962  1.00068  1.00045 ~  1.00039
12 1.00064  1.00069  1.00047  1.00041

w=1, 8 = 1

1. 00485 1.00163 1.00075 1.00041
0.99652 0.99988 0.99949  0.99973
0.98948 0.99672 0.99853 0.99921
0.98448 0.99523 0.99788 0.99887
0.98184 0.99447  0.99754 0.99869
0.98045  0.99406 0.99737 0.99860

DO WN
[ ]
. o
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"for thermal conductivity vérsus density that was reported by Tye et al.21

Seven sets of R-values at constant density and given manufacturer were

so generated. ' | .
. The seveﬁ sets of data were use&‘to test the'applicability of Eq. (75)
for describing the AR-value data and to compare Eq. (75);with Eq. (84).

For éach set of data the constantslin»the two equations.were computed
using tﬁe method of least squares and the Qariances were calculated.l As
expected, the variances obtained using Eq (75) were alwéys less than those
obtained using Eq. (84). The differences between the two,équations were
not dramatic. . The results, however, which are summarized in Table 15,

are fully supportive of Eq. (75). ' A |

A more revealing test of the applicability of Eq. (75) was provided

by four sets of data of R-values on approximately 1.5 in., 3 in., and
full-thickness specimens. The approach was to calculate a value for R .
at full thickness using both Eq. (84) with the constant determined from a
thin specimen andAEq. (75) with the slofé AR/ AL detefmined-from,two thin-
specimen R-value measurements. The calculated R-values at full thickness
are compared with the experimental values in Table 16. The results in the
table clearly show an improvement resulting from the use of Eq. (75) ‘to

_obtain full-thickness R-values.

Table 15. Summary of Results Obtained Using Eqs. (75) and (84)
to Describe Experimentally Determined AR-Values :

anatacturer Dyietty Mberin s @0 D 0w 09
: Slope Intercept )

A 0.5 8 2.699 2.607 0.3904 .0.088 0.076
A 0.6 , 8 ~ 2.801 2.616 0.8649 - 0.689 0.633
A 0.7 8 3.065 2.955 0.5990 0.461 0.432
B. 0.4 19 2.616 2.383 1.179 0.635 . 0.555
c 0.5 10 2.841 2.568  1.035 0.686 0.628
c 0:6 19 2.994 2.968 0.126  0.303 0.300
c 0.7 18 3.141 3.031  0.508 U.131 0.061
. v

n . . -
Z[Ri(exp) - Ri(calc):lz/(n— 8), where n = number of points in the data set and
=1 ‘ ‘ ,

s = 1 for Eq. (84) and 2 for Eq. (75).
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Table 16. Comparisons of Full~-Thickness R-Values from
Eqs. (75) and (84) with Experimental Results

R-Values for each Data Set?

~ Method Used to Obtain

Full Thickness R-Value A .. B . c D Average
‘ » .(1204—3) (1205-3) (1206-3) (1206-4)
'Eq. (84) with data at 18.79 18.75 17.39 18.49 18.4
thickness of l.44 in.D '
Deviation from 4,6 10.3 9.8 5.5 7.6
experimental value, % ’
Eq. (75) with data at 18.48 16.25 16.36 17.59 17.17
thickness of 1l.44 and )
2.88 in.
Deviation from 2.9 4.4 3.3 0.4 2.8¢
experimental value, %

Full-thickness measurement 17.96 17.00 '15.84 17.52 17.08

_ Full-thickness, in. © 6,00 6.00  5.10 . 5.64

apata from ref. 21 are for measurements on quadrasected nominal 6 in.
fiberglass batts coded in the reference with the numbers in parentheses.

PExact thicknesses are given in ref. 21.

CAverage of the absolute deviations.

6. CONCLUSIONS

The most significant accomplishments and conclusions are enumerated
below. ) .

l. A numerical procedure was developed and applied to solve the
coupled conductive and radiative heat transfer problem of an infinite
slab of an absorbing and emitting gray medium bounded by black plates,
This procedure allowed an assessment of the effects of boundary conditions
and media properties on the apparent thermal properties of the media.

2., The accuracy of ;he total heat flux obtained from the numerical
procedure was established as 0.1% of the calculated Qalue. This accuracy
was determined by comparing the numerical solution results with the heat
fluxes obtained from the optically thin and thick analytical solutions and

with alternaﬁe solutions found in the literature.ls»2
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3. The numerical solution was used to model measurement of the
apparent thermal conductivity of insulation for specimens with optical
thickness less than 40. Calculations were performed for absorption
coefficients between 0.001 and 1000 ft~! and specimen thicknesses between
0.0208 and 1.0 ft.

4, A three-region approximation to the cbupled heat transfer problem
was developed and shown to yield results within *0.5% of the apparent
~thermal conductivity obtained from the numerical technique for optical
thicknesses greater than 4.

' 5. The three-region approximate solution to the coupled broblem
(w = 0) and the numerical solution to the uncoupled problem (w = 1) were

used to show that

1 _ 1 B(E)
kT k..t . (85)
app eff

The values of B(E) were determined for the limiting cases of pure
absorption (w = 0) and pure scattering (w=1). |

6. Data available in the literaturel were used to show that the
plate emissivity had an effect on B(E) and that the value of B(E) for the
pure absorption case with black plates fixed a lower limit for B(E),
while the value obtained for the pure scattering case with nonblack
plates fixed the upper limit. '

7. The apparent thermal conductivity for the pure absofption
and purc ecattering cases were shown to depend on T, where T, =
[(rd + 13Ty + 1) /41173,

8. A small change in the continuous-phase thermal conductivity
resulting from solid-phase conduction or convection produces the same
Changeiin the apparent thermal conductivity.

9. The results of the analysis provide a method to establish how
critical parameters define the range of apparent thermal conductiviﬁy of
building insulations, for example, representatlve sample thlcknesses.

10. An analysis of existing data for fiberglass batts supports the
use of Eq. (75) for the correlation of R-values with specimen thicknesses
above 1 in. The slope in Eq. (75) can be used to determine full-thickness

R-values from thin specimen measurements more accurately than Eq. (84).
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7. RECOMMENDATIONS

The three-region approximation and the numerical solution are
valuable tools for the analysis ofvcoupled conductive and radiative heat
transfer in an absorbing and emitting slab bounded by black surfaces. The
usefulness of these solutions can, hbwe?er, be greatly increased by
extending the analyses to include varying emissivity and albedo. With
these analyses completgd, it may be possible to determine the properties
of insulation, such as extinction coefficient and albedo, by making
apparenlt thermal conductivity determinations at several mean test tempera-
tures. Furthermore, once-fhg extinction coefficient and albedo are
determined, the effects of sample thickness and plate emissivity will also
be established. Thus, one set of experiments may lead to a thorough
understanding of the relationship between sample properties and test
conditions for all similar types of insulation. ‘

Further development of theoretical analyses must incorporate accurate
experimental data, which should be obtained on well-characterized
specimens. The aim of this program should be the validation of the
theoretical analyses through accurate measurement of apparent thermal
conductivity as a function of thickness, temperature, emissivity, and
continuous-phase thermal conductivity. Development of techniquco for
extinction coefficient and albedo measurments on insulation must also
be parl uvl the experiméntal program.

Since insulation is often used in shapes that have cylindrical or
spherical symmetry, analyses of heat transfer in cylindrical and apherical
coordinates should be undertaken to develop an understanding of how the
properties of insulation are affected by these geometries and how the
results of measurements on plaﬁar samples must be corrected when thg'
insulation is used in another shaﬁe.

Finally, an effort should be made to use Eq. (75) for the deter-
mination of full-thickness R-values from measurements on relatively thin
specimens. The Eq. (75) extrapolation of measured R-values to full-
thickness R-values when combined with improvements in determining R-value
density dependence should be considered in the development of improved

standards for measurement.
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APPENDIX A
DEFINITIONS ANb TECHNIQUE FOR MEASUREMENT' OF THERMAL 3ROPERTIES*
'45 'TERMINOLOGY

" Note 9 — As Definition C168 is under revision, the definitions and

symBois given here should be used.
"4,1 Definitions

4.1.,1 Thermal Reéi"sta'mce, R

The temperature difference required to produce a unit of heat flux
through the specimens under steady-state conditions. For a flat slab,

it is calculated as -follows:

4.1.2 Thermal Conduétancé; r

Under steady-state conditions, the heat flux required to produce a
unit temperature difference; the reciprocal of the thermal resistance of

the.Specimen. For a flat slab, it is calculated as follows:

-
>

v

Eg

e
VI ) :

4.,1.3 Thermal Conductivity, A

. Under steédy-state conditions, the heat flux per unit temperature
 gradient in the direction perpendicular to an isothermal surface. For

thin specimens or low—dehsity>materials this definition must be applied

*Reprinted from ASTM Cl77-76, Standard Test Method for Steady-State
Thermal Transmigion Properties by Means of the Guarded Hot Plate, with
- the permission of the American Society for Testing and Materials (ASTM).
This standard may be obtained from ASTM, 1916 Race St., Philadelphia, ‘
Pennsylvania 19103. '
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with caution. Thermal condﬁctivity of a material can be defined only
where several conditions are met (see 1.6):( the thermal resistance of
specimens of a material must be sufficiently indeﬁehdent of the area of
the specimen, of where the specimen is selected in the sample, of the-
temperature difference across the specimen, and, for a flat slab specimen,
the thermal resistance must be prbpor;ional to the thickness. The latter
can beAdemonstrated by plotting the thermal resistance of a number of
specimens of the material against specimen thickness. The line through
the point must increase linearly with thickness from zero thermal
reoigtance at scro thickness, when this coudlilon 1s met, the thermal
conductivity can be determined as the inve;se of the slope of the stréight

line and the thermal conductivity can be calculated as follows:

AA _ @ x D _ D

A(Tl-— Tz) - R
The above requirement assumes that the heat transfer within the specimen
is independent of thickness and temperature difference. It recognizes the
existence of a minimum thickness and maximum temperature difference for

which thermal conductivity can be defined. For the purposes of this

method, a 2% dependence willAbe considered maximum for each.

4.1.4. Thermal Resistivity, » -

Under steady-state conditions; the températnre gradient; in the
direction perpendicular to the isothermal surface, per unit heat flux;
the reciproéal of the thermal conductivity. It can only he defined when
thermal conductivity can be defined. For a flat siab, it is calculated

as follows:
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4.2 Symbols
The symbols used in this method have the following significance

(Note 10):

“thermal conductivity, Wwem™ ekl or Wemek™Llem™2

thermal resistivity, Kem*Ww ! or Kem2ow lep~1
= thermal conductance, Wem™2-x~1
= thermal resistance, Kem2ew~1

= heat flux, that is, time rate, of heat flow per unit area, Wem™2

2

A

r

r

R

Q = time rate of heat flow, W

q

A = area measured on a selected isothermal surface, m
D

= thickness of specimen measured along a path normal to isothermal

surfaces, m

T temperature of warm surface of specimens, K or °C

Ty

temperature of cold surface of specimens, K or °C

Note 10 — Various units may be found for the thermal properties in
the literature. The International System of Units is used exclusively

in this test method and conversion factors to inch-pound and kilogram-

bcalorie systems can be found in Tables 2a and 2b for thermal resistance

and thermal conductivity.
Xl.4 Determining the Thermal Conductivity and Resistivity of a Material

Xl.4.1 General — A thermal property of a material can'be determined
by a single measurement only if the sample is typical of the material,‘and
the specimen(s) are typical of the sample. The procedure for selecting
the sample should normally be specified in the material specification,
or directly by the parties concerned. The selection of the specimen from

_the sample can be partly specified in the material specification and
partly in thé test method. The specification in the test method must be
given priority and disregarded only after careful technical consideration.
A number of these requiredents have been given above. The thermal
resistance of a material is known to depend on the relative magnitudes of

the heat transfer process involved. Thermal conduction, radiation, and °
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convection are the primary mechanisms. Of these, only conduction is
linearly dependent on AT. These processes are well researched, but they
can combine, or couple, to produce nonlinear effects that are difficult to
analyze, and even more difficult to measure.

X1l.4.2 Dependence of Specimen Thickness — Of the process involved,
only conduction produces a heat flow that is directly proportiomal to the
thickness of a specimen. The others result in a more complex relationship.
The thinner and less dense the material, the more likely that the resis-
tance depends on processes other than conduction., The result is a
condition that does not satisfy the requirements of the definitions for
thermal conductivity and thermal resistivity, bnth defining intrinsic
properties, since the apparent respective values show a dependence on the
specimen thickness. For such materials, it may be desirable to determine
the thermal resistance at conditions applicable to their use. There is
believed to be a lower limiting thickness for all materials below which
such a dependence occurs. Below:-this thickness, the specimen may have
unique thermal transmission properties, but not the material. It remains,
thefefore, to establish this minimum thickness by measurements.

X1.4.3 Dependent on Temperature Difference — The magnitude of all
the thermal transfer processes depends on the temperature difference
across the specimen. The dependence is more complex than direct propor-
tionality for all processes except conduction. Fnr many materials the
complex dependence occurs at temperature differences that are typical of
use. TIn such a case, it is wise to uscc a value for the test Lual Is
typical of use, and to determine an approximate relationship for a range
of temperature differences. The dependence can be linear for a wide range
in temperature differences,

Xl.4.4 Method of Detefmining Dependence on Temperature Difference —
If the temperature-difference dependence of the thermal properties is not
known for a material, a minimum of three measurements is necessary. These
are made with widely differing temperature differences. A second-order
dependence can be revealed by these measurements. When a simple linear
" relationship is known to occur, only two measurements, that is, one extra,
need be made. This establishes the linear dependence for that particular

sample,
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X1.4.5 Determination.of Minimum Thickness for Which Thermal
Properties of the Material May Be Defined — If the minimum thickness
for which the thermal conductivity and resistivity can be defined is not
known, it is>neéessary to estiﬁate this thickness. There is no established
procedure for determining this thickness (Note Xl). Tﬁe somewhat crude
procedure outlined below may be used for determining the thickness and
Qhéther it occurs in the range of thickness in which a material is likely
to be used (Note X3). A ‘

Note X1 — If improved methods for determining the thickness in
question are developed or proposed, ASTM Subcommittee Cl16.30 would
appreciate receiving information aboﬁt them. Contact the chairman of
the subcommittee through ASTM Headquarters.,

X1.4.6 Procedure:

Xl.4.6.1 Select a uniform sample of material of thickness equal to
the greatest thickness to be characterized, or to the maximum allowable
thickness for the test appératué. This thickness is termed D5.

Note X2 — This particular testAmay be conducted in the Guarded Hot
Box, Method C236.

X1.4.6.2 Cut five sets of specimens from the samples. These should
range in thickness from the smallest thickness likely to be used in
practice, termed D1, to D5 in approximately equal increments. The sets
-of specimens are then designated Sl to.S5 according to their thickness.

X1.4.6.3 Measure the thickness and thermal resistances of S1, S3,
and S5. | A

Xl.4.6.4 Calculate (R3-R1)/(D3-D1), (R5-R3)/(D5-D3), and R5/DS5.
"These are termed AR/AD values. '

X1.4.6.5 If these three values differ by less than 2%, then the
material can be characterized by a thermal conducfivity and resistivity.

X1.4.6.6 If the three values differ by more than 27, then measure
_ the thickness and thermal resistance of S2 and S4. Calculate the values
of (R2-R1)/(D2-D1), (R3-R2)/(D3-D2), (R4-R3)/(D4-D3), (R5-R4)/(D5-D4) and
R5/D5. |
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Note X3 — It is important to differentiate between added thermal
resistance in measurements caused by the placement of the thermocouples
below the surfaces of the plates, added resistance caused by poor specimen
surfaces, and added thermal resistance caused by the coupling of the
conduction and radiation modes of heat transfer in the specimens. All
three can affect the measurements in the same way, and ofted the three
may be additive.

X1.4.6.7 Thicknesses above which all the AR/AD values agree with the
value of R5/D5 to within 2% may be characterized by thermal conductivity
and thermal resistivity. Allowance must be made in interpretation of the
results for experimental error. A plot of the AR/AD's and R5/D5 verscuc
thickness may aid in reducing the uncertainty. Least squares curve
fitting of R versus D may also help. A larger numbef of specimens may be
used where greater definition is required. Thickness dependence may be a
function of mean temperature and temperature difference across the
specimens. For the purposes of this mefhod, this single check, if
performed at typical operating temperature and temperature dlfferences,

shall be adequate to indicate the degree of thickness dependence.
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APPENDIX B

PDP/8e FOCAL PROGRAM LISTING, TYPICAL OUTPUT AND
NOMENCLATURE LIST FOR THE NUMERICAL SOLUTION

C-FOCAL.J 4. CODASIII 33534W

gle 21 C RADI ATION/CONDUCTION IN. SI.AB- FILE 3« SHJ | AUG 79

P1.02 L S 3,4:G 14,01 '

2160 F 1=0,N; D 2

21. 79 F J=0,N; D 9 '

@175 S AROF J=1,N3 S A=A'°‘(FSTR(95@@*J)*F5TR(9500"J‘ 1))%AL*L/ (2%N)
P1.80 S Q= CA®( TH-TC)/L+2x S1xTCt 4*x( FSTR(3500+N)~- 1/ 3)/ CAL*L)

21.85 S @0*2*51*‘“‘('4*( FSTR(:’S@Q*N)/(AL*L)'1/2*1/(3*1\1-*1.))*51*1“(4
P1.86 S =Q+2xSIxA

21.98 T 1T “A2">2 A" "y ' K EFF='", 28. 06, Q‘L/(TH‘TC)) 11
21796 G 15.21 :

2. 85 S TL=TC/ TH+(I/N)*»( 1-TC/ TH)

B2. 87 S T2=FSTR(9000+1)

$2. 09 S DF=T2-TL3S T3=T2*%TH3 S T4 T3-TC-(TH-TCI*1/N

22 11 T %3,1,%8.06, T2, DF, X10.03, T3, T4 !

29.081 C EVALUATION OF @

#9. P2 S NK=N-J; S Dia FSTRC 39@0+NK) - FSTR( 3000+J)
©9.85 S EG=(RIt2/(L¥AL))*DI*(FSTR(9000+JI* TH) * 4
99.06 S DUsFSTR(9500+J,E®; R

15. 81 C-MULTIFLE INPUT .
'NO. OF CALCS. TO ENTER=',NO, 13T “"ENTER AL.,K,L, TC, TH, RI, "» |

15. 86 A
15¢ 16 F 11=1,N03 A ALCII1),CACII)LLCIL), TCCLI1), THCIID)LRICIID, !
1519 S i1=1 :
1S« 21 I (NO-I1I) 1599, 1526
15¢26 S AL=ALCII1); S CAsCACII)3S LaL(I1)3S TCTCC(II): § TH=TH(IL)
15¢ 27 S N=F] TRCAL*L/(5%. 12)+.5)3 S N=5%N
1528 1 (N-S?)15.351 (N-495)15.31;S N=4953G 15. 31
15430 S N=5@9
15¢ 31 S RI=RICI1)3S 11=11+13S SI=. 1714E-8
15¢32 S RCCA®AL/C4x SI*TH?* 3)3 S DUsFSTR(9900, TC/ TH)3 $ DU=FSTR(9008+N, 1)
15¢33 S IV=1000@3S DUsFSTR(IV+ 1, AL); S DUsFSTR(IV+2,CA); S DUsFSTR(IW 3, L)
15¢ 34 S DUrFSTR(IV+ 4, TC)3 S DUsFSTR(IW S, TH); & DU= FSTR(I V+ 6, RI)
1535 S DU FSTRCIV+7,N)3 S DUEFSTR(IW9,S81)3S DUsFSTRCIV+ 11, RO)
15408 T 11, "CASE NO.="'", 23, I1-1, 13T "AL=", 212. 04, AL, t -
1542 T "CA=*, 21806, CA " Lz',L,*" RC=', R(C, |
15¢45 T * TC=*",26,TC, "™ TH=', TH, " RI=", Rl, ' N=',N
1S« 46 L. S 3,9:G 11.02
1S.56 L. P 3
- 1560 T "TIME,HR= ", $6o 22, FTIM(Q)/3600: LBL S WG lo ll
15.99 @ o

*



68

C“ l'-‘O CN_QJQO CODASl I 1 33534U

@1. 81 C RADI ATION/ CONDUCTION IN SLAB. FILE 4. SHJ 16 JULY 79

21. 82 1¢36L S 4,95G 1.51

@' 11 1U= {00003 S ALsFSTR(IV+1);S CAsFSTR(IV+2)3 & LsFSTR(I W 3)
#l.12 TCaFSTR(IV+4)3 S TH=FSTR(CIV+5)3 S RI=FSTR(I W 6)

21. 13 N=FSTR(IV+7)3S. SE=FSTR(IW9)3S RC=FSTRCIW 11)

@1. 32 Vi=AL*L3D 12/ S DUs(TC/THI* 4

@1. 33 BEr 1+( 1-DU)%(1/3-E4)/C 10+ 2« RCx( |- TC/ TH))

P1. 34 XS5= 1=+ S*FSQT(TC/ TH) /€ 1+ FSUT( W) )#( 1+ 195 RC))

@1. 36 I=@,NSD 3e 155 DUs FSTRCASOP+1, (TCH( D+ I *I#CTH-TCI/(N+Ds 1))/ TH)
Ole 49 T. *"XS=2", %7« 83, XS, * BETA=', BE, {13 F I=@,N; S WisAL*I#L/N; D 2
B1. 45 I=@,N3D 4 S DU=FSTR(4000+1, G)

81. 38 P4

@1.99 S 493G 1.11

g2. 01 EVALUATION OF E INTEGRALS

02. 89S E3=93 S E4=031 (2433998+W1)2.15,2¢151 C10-VW1)2.07:D 12

92. 87
22. 15

D= FSTRC 3500+1, E4)
DUr FSTRC 3800+1, E3)3 R

94. 01
04. 95
Q4. 97
94. 10
Ade 20

CALCULATION OF GCID

G=(1/7C2«RC)I)=(TC/THI* &4

Gu Gk (-FSTR(3S500+1)+1xFSTR(ISQPE+N)I/N+( 1=-1/N)/ 3)
Gl=aC(1-1/N)xFSTR¢3S@B+N)~- FSTR( 3500+N-1)+1/(3%N)>)/( 2« RC)
GG+ GI+CTC/TH+(1/N)*{ |- TC/ TH))3 R:

12, 91
12¢ 85
12+ 19
12. 15
12. 38
12, 31
12 35 ¢
15e 40
12. 45
12. 50
12- 60
124 65

> EVALUATION OF E3 INTEGRAL
CWI) 12.50, 124 45, 12. !
CWi= 1) 12. 15, 124 15, 12+ 30
ElsAG-FLOGCWD +Al* W]+ A5 W1t 20 A= WIL 3+t A4S WIt 4+ ASE wit53 GOTO 12. 35
Ela( Wit 4+BlxWin3+ B2« W %2+ B3x W1+ B4)
EIsEI/C(WIn4+ C1xWIt3+C2xWIR2¢ CI* Wi+ CA) = (WIS FEXP( W) ))
E2= FEXP(=W1)=Wi*E|
E3s( FEXP(- W) -WIsE2)/ 2D 13 R
E332.53S E4s 1/ 3 R
Wi=- W13 S El=.57721566+FLOG(VWI);S 21213 S KK=@; S Kam 1
KKaKK+ 13 S KAcKA*KK? S Sl=S1»VW)

D
S
S
s
]
S
S
F
T.
F
L
L
Cc
S
s
S
93. 19 S D=s(BE- 1)*( 1-1/(N*XS))3 R
c
S
S
S
]
c
I
1
S
S
S
S
S
S
S
s
S EIsEl+S)/(KK*KA)

1278 1 C1E- &FABS(SI/(KK*KAA*EI))) 12 6
12.38 E3a( 1+ W) =FEXRP(WI)-WI1t 2%E1)/ 2 R
13. 01 EVALUATION OF E4 INTEGRALS

13. 18 E4=( FEXP(- WD) -WI*E)/ B R

S
C
S
14. 81 C ENTER PARAMETER VALUES

1485 S AB=~¢ 57721566 S Al=2.999991933 S A23-. 2499 1855 S A3=. 05519968
la¢ 180 S A4m~-. 009760043 S AS2.80107857; S Bl=8.573328743 S Ba= 18. 8590169 7
14¢ 15 S BX»B. 6347608893 S B4=. 267773733 & C1=29.57332235

14020 S C2»25. 63295615 S C3=21.09965308; S . C4=3.958496933L R 4
14021 L S 4 353G 15.01 .

* .



69

C-FOCAL.J 4+ CODASIII 33534V

@1. 81 C RADI ATION/ CONDUCTION IN SLAB. FILE 9. SHJ ‘| AUG 79
@1.02 T “2=*,%,2," TIME,HRe= ", 6. 2 FTIM( @)/ 3600, I3 R
Ple 11 S 1MW 100005 S AL=FSTR(IW 1)3 § cmrsrmxwansx.-rs:muwa)

01612 S TCuFSTR(IV+4)3S TH=FSTR(IV+5)3 S RI=FSTR(IV+6)" : .

P1¢ 13 S N=FSTR(IVW7)3 S sx-rsrr«xwm:s Ro-rsrmxwu)
. -08le 14 S JUu 1BsN/CALXLIIL P9 :

" @81eS1 F Im=1,N~13D 735 'rz-rsrmaumxnwcaxmcus- Du-rsmnwoaoox.'ra
#1.52 S Z=p@2 S DUsFSTRC(9@O1)-CTC/ TH+( 1-TC/ THI/N)>3F 1=@,N3D 10
01653 4 €2-2) {973 D 169251 (DUr 1E-4) 1o 5431 (2= 1E-4) 159, 1o 55, 1 55
#1.54 T “BETA=", %7+ B3, N*( TH* FSTR(908@1)-TC)/( TH-TC), !

P1e55 F I=9,N3D 1.58
- 81«57 GOTO 1¢51

' @158 S ‘n-crsrmnuunmrs‘musuvn>/<mn:s DU= FSTRC 4508+1., T:1)
814859 T AL ALY ] F2 Fo-FL TCALC TCAL C~TLIN

#1608 T. 31 -

$1.70 L S 9,33G 1.6 . .
#1.97 S M= 1+2sM3 T !, "LARGE ERROR=*, %, 25, " REREAT USING M=*, S4M, 1!
P1.98 L S 9,4 G .82

97. 81 C EVALUVATION OF T2(1) INTEGRAL

67.95 S IN=@93S A=P3 F J=@0,N3D 8

87.99 R

98. P81 C ADJWNCT 70 GROUP 7

28.02 S D@3l (JJ-J)B:.P55S DU=FSTR( 3002+J)

P8.95 S Di=s@3 S K=FABS(I-J)31 (JJ-K)B.97:S DisFITR( 3000+K)

88.07 S D2 @3 S NKaN-J31 (JJ-NK)8. 895 S D2= FSTR( 3080+NK)

#8.29 S Di=-D1+DW S D2=D2- DU '

8. 190 S EP=RI®2«( D1+ D2#1/N)« FSTRC4500+J)* &5 1 (-IN)8. 23D 93 B
88. 20 S A=A+ (U+EF) % AL%L/ ( 2%N)

98. 30 D 9.1 S,IN. 13 R

89.01 C ADUINCT T0 GROUP 8

2. 05 S IN=IN+1

#9.190 S U=EF; R

19. 81 C LARGEST ERROR DETECTOR

1084 I ¢1-1)19.993S ERFABSK l-FSTR(9OOD+I)/FS‘l‘m450001))

10. 18 1 CER-Z)10.993 S5 Z=ER

18.99 R

11« 81 C SET START VALUE OF M

1182 SM=13T * M=, %6,M, I3L P9

1183 L S 9, 3G 15.5

*

L G 18

x

*x Y

C- FOCAL.J4s CODASIII 33534V

*

21.@21 C FSTR USE BY FILES 3, 4&9. SHJ FILE 10. SHJ 1 AUG 1979



1e1. be

L. G 3

G

0« OF CALCS. TO EITEfm:3

ENTER ALsK»L, TC. ™, RI,

15¢ 10.015 12.0933 1518 1560 11
1180 12.915 1€.2333 151¢ 1560 t1
1156 10.015 1@. @93 351€ 1566 11

CASE NO.o 1

e 50. pE0E
Can ©.215000 L= ©.083308 Rem
Tom 518 THw 56e Rie e
TNE KA a0 49
X5 2.978  BEVa .o
Ie 0. 48225679995 202  TINLdfs 4 65
* 8 7418206599 E- 003  TIAL dRes 433
ls 0. 2267622622E- 0€3 TilinF.e S.12
C.B2167776ME- L4 TLikilhe 5.3%
fe- 8. 37252331 10E- €51
1 F2 Far TCALT
® 6:910714 D.eCOROE SI¢. koo
1 ©.913289 e.eee?s:s Si1.aal
2 0.915717 e.ee1431 S12. 549
3 0.918814 @.8C1043 Sla. 659
4 0.920202 0.00234a S15. 33
S 0.922297 0.082654 516. 436
6 8.924315 ©.CE2887 517,617
7 @.anenin 8 eojece biBeTii
8 ©.923170 e.eel17e 519,775
9 .930024¢ 0.003238 520914
e 8.911340  a.203267 $E1edde "
)WY JULRE b, eed26e za 'y 429
12 B4 (TR L 92.:"7
13 0937109 ¢.zedi3o 524 781
1a 0.98313 ¢.oc310a 525738
15 2.940509 0, COJ0EY 320. 08
16 £.942185 0.¢C2399 527. 623
17 ©.983846 0.20277¢ 523,554
18 8.9454094 €.082637 52. 477
12 0.947132 B.0E2433 2518 304
20 2.949750 Q. 8a2310 531, 208
21 2.952377 C.e6Z1cd $32.211
22 €.951711 @, ¢e1933 £33. 013
21 2.953591 @.oet3es 53a.¢11
24 8.955187 6.eBi6tE 534.9¢5
25 @.956773  e.e01a2t $35. Me
26 @.UB 364 0.201221 $36. €3¢
27 2.959945 B.€CICI6 $37.560
28 €.761522 ©.008807 533, 62
29 2.961096 ©.€805)6 539, 33¢
30 8.964667 C.80I82 Sak. 294
31 2266225 A ecci6l Sal. 093
32 e.9673e7- o.0c005¢ 560027
33 8.967377- o.cue20s S4Z. $5t-
Ja €.772958- 0. cee4Ty 563 732
35 0.072525 C. eeeus? S44. Lla
36 8.9731C6~ €.COCIT 4 548 499
37 80150 e G.eBIo0Z Sar. Jsg-
B €.977292 e.0C127M 5470 235
P e.9TI7e0- €.ea1453 Sad. |56
a6 £.930533 @.08i1Cle 5d. 203
a1 8.932195 e.ce€1744 550, 02e-
42 R.933 66 0.2E1344 358 205
41 £.335534 2.e€I210 550097
44 @.787349- 9.001737 552,915
Qs @947 173 3 553, 37-
a6 0.99 1074~ S8, 661~
47 8.793871- 536. 120
& 05176 S87, .
® 8.997qa80- 0.eeB73a 534,540
S€  1.020080 ©.eePBEe 5e¢. gve

An 0. 15160778400 01C

0.622912

TCia e Tt

m e 225717 0042k OCL

sS4 4.

2. Les
¢ aa)

< Libe

Ce GuTLRS

CASE NQ.~ ¢

70

A= 190. 0000
Cam 0.015000 L 0. 243300 RO
TCn S10 e 560 Rie (D
TIME KR 5. 43
X 5= 8.991  BETAm 1. 047
= 0, 2062042011E-002 TIHEHRe 5.89
Ze 0.4764655605E- 003 TIMEdR= 6.33
0. 1533819822E- 003  TIALHR.» 6. 77
Is 8.56749719134E-004  TIALHS. 121
fm- 8. 5290541 155E- 801
1 F2 F2- TCALC
8 0.910714 @.e0000¢ $10. 000~
I 8912319 0.0080329 s1e.999
2 2.71383) e.00861d 511,775
3 6.915M7 0.000356 S12. 022
4 8916868 ©.021052 513. 446
5 ©913303 e.ce1211 S1a. 250
6 2.919787 0.0813aR 515,838
7 ©.921037 0.201404 S15.809
6  8.922446 ©.201528 S16.57¢
9 BYZITIA B eBISYL S17. 321
12 8.225115 2881646 513465
11 0.926638 9.001635 $13.401
12 ©.927735 €.861715 $17.532
13 8.92703t ©.ee1735 sze. 257
14 2.930319 @.001747 $20.977
IS 8.9316060 C.00175) $21.096
16 2.932975 ©.001753 522, 418
17 %93a105 A 2817487 42191
18 e.735a10 e.e81737 $23.330
19 0.926671 9. €e1722 5240 536
20 €.937923 0.0817¢3 S&5. 24
i [T samvuy
L Griwiade  usowivag aeurusy
23 BivGICI!  R.QEIBVL
2a 6.942022 8.081574
25 2.944168 2. D155y
26 0.945X6 0.¢R15:¢
27 £.746633 €. 2Cles¢
23 2.9a7365 8. 221436
2 a.nmmna o aa)na
30 e.950321 e.eridag
31 8.7515a6 e.221291
32 2.952768 0.001237
33 @.051483 0.¢01182
34 2.9552e5 @.00112¢
35 £,956421 . 0e1C04
36 0.757634 0. 0DI0OY
37 2.9549a5 0. 20916
38 8.960€53 e.e00378
M e.961262 ¢.e0B301
ae  2.062864 % ¢0C728
a1 0.963067 f£.ePPL5Y
82 @.764967 €.000512
a3} e.n66e6s 0. 0CE5CH
48 €.96726) ¢.200420
a5 8.765458 0. 20€Jac
a6 €.962652 C.0RAZ6L
a7 0.972343 e€.cepI5e
%  £.9720)a ©.00000%
@ 2.97322) e ee0ee9
se 8.77aa12 g.zeeRTH
S1 8.975599- £, 020166
52 @.976717- f.P0R254
53 8.971 74 . DBA3AI
Sa @.979161- 0. ABRaIL
55 0.79034- 0.c20513
56 ©.731%5a0- £ 20E6RD
57 0.982712- 0. eneb4e
54 P.003920- £.0RAT6Y
59 8.78%138- 8.00089
62 0.73631- 0.7EeICo
61 €.797557- W 0CON63
62 29347V R.eC10E)
63 e.99¢Cla ¢. o103
66 .97 13e L.LRIR4Y
€5 Q172527 O PRIEDS
¢ €971 0 0. 2BV 64
8) E9I3314 Liltiae. FPYRISS
63 ©.276760 0. £LCGYT Suds lave
6 8.7913€)- €. 0r0ur) £5. 4 4o
7 1.8ceeec . cEEeCy L. vue

MBIV T IaCele v

ta €. 10683050 Guke 2C2

1. 245823
7 A=

TCALL- 1A

4 b

¥ 027602

CASE NO, - 3

A 150. poBE
Cam e.015002 L 6. 08360 hee 1.6068725
Ton $10 e 560 Riw 1 s 185 e
TIHE KR 7.33
s 8.995 bLT A L2
0. 1261275378 E- 802  TIOkdiPuw 8. 32
€ 3067862683k~ 63  TIAL Hi.s 2.24
Ie 8.1107762801E-003 TldidRs 18 24
Te 0.4J06339@19E-€C4  TLILUR=  1).20
m-0.5327102760L- 221 )

1 1 &4 F2= 3L TCALL TCALC-TLL
©.910%714 8. 8000BE 510- 080~ 0. 000
0.911716 0.280152 510,561
8.912711 0.200290 511.118
©.913687 0. 000421 511,664
©.9146a5 0. 088529 512, 28)

0-5 13588 0. 0808622 512,729
2.916517 0. 0206701 $13. 298
0. 008769 St 764

0

2

23

2a

25

26

27

=

Ed

2

n

32

EE)

3e

33 02741635 0. E0NIF?

36 6.9a2aT8  0.221131

37 £.983326 0.001143

B 6.9aa161 8.20113)

» e.9a5001 o©.e€2112)

a9 B.9asga 0.021112

al 8946678 0.€e1108

a2 8.947516 ©.001087

41 6.9a8352 2.0€1073

aa 8.9 188 0.081859

a3 8.93002) e.ecless

46 8950857 ©.0081027

a7 8.951600 0. 06R2101€

a8 £.932523 B.eee992

#® 06.95135¢ €.0¢9 7]

56 0.954153 % ge® Sa

S1 8.053815 ©.2€0733

52 0.93584a 0.000912

53 0.756672 0.062890

Sa 0.957568 ©.£088¢7

55 0.958326 ©.20e3ad

56 B950152 0.008319

57 0.959977 @.2e8M3 537537
8.950881 0.0808767 Su3. el

% e.96162a 0. 080740 534.510

68 £.9620a7 ©.200712

61 0.063201 ©.000053

62 £.06a837 0.08863a

63 0.704909 0. PL062)

ha P.76572% 2, 000398

65 £.9665a7 ©.020361

82 ©€.U61J83 8. BBEIS

67 D.987191  0.00R@H

68 8.90A798 0. eepabe

69 ©0.964G11 ©8.008425

T 8.97062% 0.000200

71 8.0713a) 4. ¢ABISI

72 8.972255 ©.000316

70 9773087 Q.0000%

7a 9.2733M 002029

75 @.41AWE  B. BBUZRE 383320

76 £.0733€0 0. 0ODIGH S40s 200

77 8.776J10 0.e00128 5a6. 734

7 8977119 @.p0epeT Sa7. 187

19 MITINPR - & 0007 247: ¢40

40 8.97872¢ 5a3. 092~

Wi i gee e

A8 0.780351- £49,997-

92 6 Agyisa. o.a0dlls B

a8 Boosruede o 606ITA | Sude Vol

45 8,09277) @. 008221 558, 353~

36 0.083580- €.0eB264 S5€. 185

47 @.9neM7- . eeele? $51.257-

N 8.93519% ©. BEBID 83 (. TEVE

49 2.936004 ©.C0EX ) $52. 1o2-

9¢ ©.996313 0.000432 552,615

] 99 76 0. g9BaTY 853, ¢7¢-

v; 2. 331 ngtt 8. 604587 553. 525~

23 ©.930256¢ 0. BOEL4! T 583.932

0a v.99edfa 6.680572 544, a4

9%  0.908393+ ©.CUBY $54:9 83~

56 6.771729- 0, BVOGIY 9550 U3

21 AQ928hA Q. OARAM A5G HAT-

7§ 8.993a13 ©.0008615 5560 211~

99 0.994271- €. 808627 $56. 772

180 €.9951a% ©.00060) 557,241

198 2.9960X- ©. 88056 557,782~

182 2.996759- 2 €O ) 558. 296~

103 2.991911- €. 0BROBY 558.73 30~

180 ©.793913 ©. 2202306 559. 39 1-

i05 1. bhpsEE 8. BOORBD Leu. 000

71647560065 ALY

e €. 1625775993 ke 0OZ

e.217
B. 132
V. oue

Lt

8. 223757
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Focal Program Nomenclature for Program'in Appendix B

Symbol

AL
N

cA
TH
TC
SI
KEFF -
T2

. Tl

TL, DF, T3, T4

NK, J, IV, I, KK, KA, JJ, M
IN, K

D1, EG, DU, D2, EF
RI '

NO

RC

Wl

BE

XS

D

G, Gl

El, E2E3, E4

AQ, Al, A2, A3, A4, A5, Bl, B2,
B3, B4, Cl, C2, C3, C4

EI

Definition

Trapezoidal area

T Q.

Batt ;hickness
Number of increments
Heat flow rate.

k

Ty

T

[¢]
o = 0,1714 E-8

- keff

Néew reduced temperature distribution
01d reduced temperature distribution
Outpﬁt convenience variables

Indices

Convenience Variables .

Refractive index

Number of cases

Defined in line 15.32 File 3
Defined in 01.32 File 4

b

Defined in 01.34 File 4

Defined in 03.10 File 4

Defined in Group 4 File 4
El(x),~Ez(x), Eg(x); E,(x) integrals

Parameters set in Group 14 of File 4
EIG—x)
Error defined in Group 10 File 9

01ld value of EF
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APPENDIX C

PDP/8e FOCAL PROGRAM LISTING, TYPICAL OUTPUT, AND NOMENCLATURE
LIST FOR THREE-REGION APPROXIMATION"

C-FOCAL.J 4+ CODASIII 33534V

THREE REGION RAD/COND. FILE 85 SHJ 20 MARCH 889

91. 81 C

@1. 02 C INPUT IS IN BTU, HR, FTw DEGe R UNITS.

@1« 83 C OUTPUT IS IN BTU, IN, HR, FT, DEG.R WNITS

@185 A "PR,EP,N@ ?" PR, EP,N®T !15S N=@®3 T "AL, XL, CA» TH» TC, EH, EC 2?2 "
21. §6 S N=N+|

Ble 18 A ALC(N),XLCN), CAC(N),» TH(N)» TC(N), EH(N), EC(N>3 T !

Ple 11 I (N-NO@)1.86;S N=0

Ble 12 S N=N+ |3 S AL=AL(N)3 S ML=XL(N)3 S CA=CA(N); S TH=TH(N); § TC= TC(N)
Pl. 13 S EH=EH(N)3 S EC=EC(ND

@1. 15 S 1=0;S Sl=e 1714E-85S PICD=2TH; & P2( D=TC

0120 S RIZ1/CCA*AL/ PR+ SI*EH* (THE 2+ TIC Dt 2) %« (TH+ TIC 1) ))

@125 S R2a(XL*AL-2*PR)I/(CA*AL+C 4/ ) * 312 (TIC 12+ T2C DL x(CTIC D+ T2 1))
@1« 38 S R3I=1/C(CA*AL/ PR+ SISECS(T2C 1)t 2+ TC1 2)2CT2( 1D+ TC))

@135 S I=1+1

Ble 48 S Bi=TH+( TC- TH) * R1/ ( Rl+ R2+ R3)

@le 45 S T2=TRC+( TH- TC)=R3/ (Rl+ R2+ R3)

BleSO I (-FABSCCTI-TIC 1))/ TICI)I+EP) 1o 6,5 10 6
P1.55 1 (FABSCCT2-T2( 1))/ T2(1))-EP) 1.7
Pl.68 S TICD=TI3S T2A =TI (I-10@ 1.2
@1 65 GOTO 2.0@5

01. 70 S @& ( TH-TC)/ ( Rl+ R2+ R3)

@le 7S S CP= 1 2%« @x XL/ ( TH-TOC)

0190 T “CA='">%211.R4.CA " AL=", AL, " XL='HXL," =, EH, !
@191 T “EC='LEC,*" TH='",TH," TC='",TC," BR='",PR !

21.92 T "EP=", EP, !

P1e95 T "='"5 %1126, Q" CP=",Ch !

P1e96 T "Ti=", Tl," To=",T2,!

22.21 I (N-N® 1. 1264 .

82-085 D 1.92D 1.913D 192 T "w*%* DID NOT CONVERGE &x%kxx', |
02. 19 I (N-ND)1.12:Q

*



L G 85

* G

PR, ERP, N @

: 1900 :@. 0833
: 150 :02.0833 :0.015

CA=
EC=
EP=
0=
Til=
Ca
EC=
EP=
0=
Ti=
Ca
EC=
EPl=
6=
Ti=
*

2.2150
1. 0000
2. 0001
22. 447040
550. 242566
2. 2150
1.0008¢
2. 2201
160591717
555, B5Q59 7
2. 2150
1. 00020
2. 2001
14. 259955
556+ 788 139

?7: 0. 69315
AL,XL, CA TH» TCo EHL EC ?:5€ :0.0833 :0.0215 :560 :510
:56@ 512 1 1
: 560 1516 :1 :1

t2.015

Al =
TH=

cP=
T2=
Al =
TH=

CP=
Tge

1=

Ck=
Te=

s 1E-4

74

: 3
sl 2

5¢. 0200 XL= ~ 0.2833 Hi= 1. DODO
560. 0000 TC= S510. 0000 PR= @. 69 32
Q. 448761
521. 183533
100. 2000 KL= . P.02833 EHi= 1. 2600
S60. 20006 TC= S510. 0006 PR P« 69 32
0. 331702
5154372918
150. 0000 XL= 0. 0833 Ei= 1. 0200
560. 0000 TC= S10. 9000 PR= fe 69 32
Q. 285085

513. 423984

Nomenclature for Program in Appendix C.

[y

Identification

Apparent thermal conductivity

(lnnstants set equal to 1

Constants set cqual‘fo 1

Convergence criteria, 1 X 10~%

Number of data sets < 100

Dimensionless boundary region thickness, 0.69315
Thermal resistance of region I

Thermal resistance of region Il

Thermal resistance of region III

Absolute temperature at interface I/II

Absolute temperature at interface II/III
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APPENDIX D
FORTRAN PROCRA/l ¥OR THREE-REGION APPROXIHATLON

The following program outputs ‘values for the temperature at the

interior points which divide the total insulation thickness into threc

regions. The temperature calculations include an output for the tea-

perature profile in the middle region.

Identification Jf Variables

XK
XL

TC
TG

thermal cénductiﬁity of air

specimen thickness 4

temperature of cold boundary

temperature of hoé boundary

temperature between regions 2 and 3
temperatﬁre betwgen regidﬁs 1 and'Z

heat flux ‘

effective thefmallpondugtivity of spacimen
alpha, définéq in nomenclature

refractive ladex

pafémeter defining thickness of regions 1 and 3
convergenceﬁgriterion

StefanfBoltégann constant2;

emissivity $F7 cold plate

emiesivity of hot plate-

distance inté specimen’
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Program Listing

PICC: 3911

C0100 DIMENSIOBN XACT)s KL (725 TCCT)s T1CT5 75735 T2 72 T 1) THCT),
ceeoc C1QCTa T TICOC T T T2 ACPCIS TCOD)

co3coe CATA XK/.C13207..014179%,.014%34, +C1% 015115 015795, .C1
6670/

0C400 ‘DATA XL/.C333,.2% S*(0.C/

00500 DATA TC/435.0, 47540, S0%.Cs €100 S1540s E45+05 §35.0/
0600 AL=2CC. '
00700 : DATL TG/U85., 52C., E€C€., €60+ S6%4s S9F4, 6354/

CcC800 RI=1.C :

00900 FR=.6931°%

C10C0 FP=.00001

C1100 Sl=.1714E-%

01200 FH="1.

C1300 FC=1.

01400 © DO 100 I=1.7

01500 ' D@ 100 J=1.,2

01600 w=1

01608 THA=TGC(1)

Cl1610 T1A=TC(K)

U1620 T2A=TH

C1630 NC=0

C1700 17 NC=NC+ ]

C1800 IF ¢ NC.-GT.-100) G2 T@ 99

02100 "R1=1./7CXKC(I)®AL/FR+SI* Fk ( TInk 2+ T1A*x2)x ( TH+ T18))
2200 R2=(XL(J)I*AL-2%xFR) /CXKCID*AL+( 1+3333)%SI*x( T1A**2
cz2300 1+ T2A*%x2) % ( T1A+T2A)) :

02400 R3=1+/(XK(I)XAL/FR+SIHECK( TOA** 2+ TCC.L) %% 2) % ( T2A+ TC(K)))
c2500 TIB=TH+( TC(K)-TH)*P1/(R]1+R2+R3) -

02600 T2R=TC(RI+{TH=ICCKII®RFI/(RI+HZ+R3I)

2700 TSTI=ABS((TIB-TIA) /T18&)

02800 TST2=ABS((T2E-T2R) /T2A) :

02900 . IF (T8Ti-LT-FP.ANL-TSTP.LT.FP) G2 TE 9°F

2910 TIA=TIE :

0292¢ T2A=TOR

cannn ‘ G TA 17

03100 ¢ TICI,Jd,i)=TID

03200 T2C¢1,J,K)=T2B

03300 G@® TB@ 96

03400 99 TYPF 10CC,1,d,K

02500 1000 FARMAT(2X, * N@ C@ONV.',313)

03600

03700 96 RC1,JsKI=CTH-TC(K))>/C(RI+RS+R3)

€3800 CPCI,JsKI=124QCI,JsKI®RKALCI) /CTH-TCCK))

€39C0 100 CEeNTINUF .

0390S TYPE 150 )
03910 150 FORAATC3Xs *INTEFX s 245 *K'» 3Xs *LENGTH 'S 3%, 'T COLL's 3Xs

3911 1° T* *L3Xs ' Tx 'L 2K, T HOT'»4Xs* € *5SX, 'K EFFY)
* .
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P4CCC:B 100 :
. 04000 D@ 20C I=1,7

04100 D@ 200 J=1,2

C4200 K=1 E ' :
C4300 TYPE 10015 15Jds8, XKD, XLCI)s TCCKY S TOC1,J,K)
c4a301 1 5 TICILJsK) s TGCK)» CCLaJ3K) s CPCLsds KD
C440C 1cc1 FORMATC1X, 212, F9+ €5 F 7 1 4F3.2, 2FS . 1)
C450C 2co CONTINUF

04600 TYPF 10C2, (XKC(I1),I=1,4)

047C0 ' TYPE 1C€C2,(XL(JYsd=1,7)

0430C TYPF 1CC2,(TC(K)sK=1,6)

4900 1002 FERMAT(2X, 7F9.3)

os100 D@ 4CC 1=1,7

.eszec D8 4CC J=1,2

PAGE 2

€cs300 £=1

C5400 TCI)=T2CI,JdsK)

0S500 D@ 395 L=2,11

05600 XC1)=FR/AL

05700 DX=C(XL(J)>-2%xX(1))/10.0

05800 : X(L)=XC1)+(L-1)%FX

05900 TP=T(L-1)

06000 A=(4%xS1) /¢ 3*AL)

06100 B=XK(I)

06200 NC=1.

06300 30 C=CRCILJLKIIXCCL= D% DX+ XACID* T2( 1, Js KD+ A% T2
06400 1 IadsKI)x%ky . .

06500 :

06600 : NC=NC+ 1

06700 IF (NC.GT.100) G3 T3 21°%

06300 CF=(A* TP*%x 4+ Px TP-C) /( 4% p* TPXx 3+ F)
06900 - IF ¢ ARS(CF).LT.FP) G@ T2 21

C7000 TP=TP-CF :

c7100 5¢ Te 3C

07200 21 T(LY=TP

€7300 39S CENTINUF

C7400 TYPF 10C3, I,d,K

07500 1003 FeRMAT(2X, 313)

7510 TYFF 160C

c7rec 1eQr FORMATCOLK, Y20 UAL UE TEHAPY)

07eco reg 293 L=1,11

c7700 TYPF 1004, X(L), T(L)

07300 1C04 FORMAT(2X, F3. €6, FIC.3) -

€7900 3983 CZNTINTIF ;

03000 400 CONTINUE

08010 21¢ TYPF 100S,L

03020 100¢ FARMAT(2X,* T T'IT NZT CONUVEREGF',13)
BG2S 32 TO 40C

08100 FND

*
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Sample Output for o = 200

INDEX K L ENG T T COLT T T* T HET o K FFF
1 1 0.0132C7 0.0333 435.C0 437.39 432.71 435.00 10.43%1 (.2C9%6
2 1 0.013207 C.25CC ~43%5.00 435.3C 434.23 435.C0 3.52C3 C.2117 -
I 2 0.014178.0C.0833 475.0C 47744 ES22.6%8 . S25.0C 11.7907 C.2357
2 2 0.C14173 C.2500 475.CC 475.85 S24.22 E25.00 3.963% 0.2373
1 3 6.014834 0-0333 5S05.C0 ©S07.43 SE2.65 SES.0C 12.8375 0.2566
2 3 0.014334 C.250C 5C5.C0 ©S5C5.32 554.2]1 SE85.0C 4.3194 C.2592
1 4 C.015CC0 C.0333 S10.00 S12.43% 5S7.64 560.0C 13.C131 C.26C3
2 4 0.01500C 0.25CC 510.0C S1C.34 55%.21 S€C.C0 4.33C9 C.2629
1 S 0.015115 0.0333 -S15.0C S17.49 S62.€4 565.0C 13.2C01 C.2639
2 € 0.01S11S 0.2500 S1S.00 S15.34 FS64.2]1 SES5.CC 4.4429 (C.2€66
I 6 C-018795 0.6333 S§45-00 E£47-523 S322.6) ©S3€.0N 14.3309 C.236°
2 6 0.015795 0.2500C ©S4%.C0 FS4%.35 £94.2C S9S5.0C  4.3231 0.2397
1 7 0.016670 0.0833 S85.00 S87.53 632.57 635.CC 15.9437 0.3137
2 7 0.016670 0.2500 S35.00 S535.87 €34.18 635.0C

S+37836 0.3227

1 ! 1
X VALUE TEMD

. 003466 4374394
.011103 442.073
.018739 Q446.729
026376 451.345
«034013 455.927
+ 041650 460+ 476
. 049287 464499
. 086924 469.472
.064561 473.919
- 072197 473.333
. 079834 482714
]

UNLUF TEMP

« 003466 43C%.804
< 027773 440.821
- 082079 4US.799 -
. 076386 48Cs 738
.100692 45%.639
. 1250CC 460. 50C
« 149307 465.324
. 173614 470.1C8
197921 4744855
.222227 479.563
«DU6E34 484.233
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Washington, DC 20580 '

K. C. Howerton
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R, P. Tye
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-C. L. Carter
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S. Cady
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