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Abstract 
The equilibrium molecular dynamics formulated by Newton, Lagrange, and 
Hamilton has been modified in order to simulate rheological molecular 
flows with fast computers. This modified "Honeguilibrium Molecular 
Dynamics" (NEMD) has been applied to fluid and solid deformations, under 
both homogeneous and shock conditions, as well as to the transport of 
heat . The i r revers ible heating associated with dissipation could be 
controlled by carrying out isothermal NEMD calculat ions. The new iso­
thermal NEMD equations of motion are consistent with Gauss' 1829 "Least-
Constraint" principle as well as certain microscopic equilibrium and 
nonequilibrium s t a t i s t i c a l formulations due to Gibbs and Boltzmann. 
Application of isothermal NEMD revealed high-frequency and high-strain-
r a t e behavior for simple fluids which resembled the behavior of polymer 
solutions and melts at lower frequencies and s train r a t e s . For solids 
NEMD produces p las t ic flows consistent with experimental observations at 
much lower strain r a t e s . The new nonequilibrium methods also suggest 
novel formulations of thermodynamics in nonequilibrium systems and shed 
l igh t on the fai lure of the "Principle of Material Frame Indifference." 

Introduction 

Newton's and Fourier 's linear formulations of viscous flow and heat flow 
have long served as useful descriptions of monatomic simple-fluid be­
havior. At least for gases, the basic physics of these linear theories 
was well understood by the close of the 19th century. At that time, 
Boltzmann's transport equation, soon to be solved by Chapman and Enskog 
[2 ] , gave a quanti tat ive explanation of Newtonian gas viscosity and 
Fourier ' s heat conductivity. 

For more complicated molecular or polymeric f luids, particularly lubr i ­
cants , deviations from Newtonian viscous flow have been abundantly docu­
mented in the 20th century, since Boltzmann's day. Very recently, 
advances in computer technology heve made i t possible to simulate these 
deviations via nonequilibrium molecular dynamics (NEMD), reproducing 
nonlinear non-Newtonian effects observed experimentally. NEMD has even 
been able to show that now-Newtonian effects occur for the very simplest 
materials at hiqh ra tes of s train. «** 0? • ™ * • « £$g 

4550 



Nonlinear problems, and their simulation using computers, are attracting 
attention in many places—Australia, Belgium, England, France, Holland, 
I ta ly , Japan, Russia, and the United States [3]. The main goal of this 
modern research is to make a quantitative connection between the micro­
scopic interatomic and intermalecular. force laws and observed macro­
scopic rheological laws. 

Of course the many-body correlations present in dense fluids and solids 
are contained in the fundamental dynamical equations of Newton, 
Lagrange, and Hamilton. So why has i t taken so long to apply these 
equations to rheological problems? Straightforward application is limi­
ted by computer hardware to relatively short (nanoseconds) and small 
(millimicrons) problems. These calculations are further complicated by 
small-system boundary effects and by the relatively large size of s t a t i ­
s t ical fluctuations. I t has taken time to develop methods circumventing 
these problems. 

In the last decade, nonequilibrium molecular dynamics has begun to simu­
late steady homogeneous flows in the absence of physical boundaries. 
The NEMO methods, which are based on modifications of the equations of 
motion to include dynamical constraints, are beginning to be applied to 
polyatomic molecules of rheological interest. Here we describe results 
obtained so fa.: for relatively simple central-force models. We forecast 
the possibilities for calculations in the next few years. 

Because computational advances have outstripped theoretical ones, the 
theoretical side of nonlinear transport in dense fluids and solids is 
wide open. The effects found in relatively straightforward computer 
simulations deviate substantially from theoretical predictions. I t is 
not clear why this is so or how the theory will come to terras with the 
new results [4]. In rheology i t is taken for granted that material 
behavior can be nonanalytic. This assumption is less common in micro­
scopic physics, but certainly is strongly suggested by some theoretical 
approaches and the new computer experiments. 



Equilibrium Molecular Dynamics 

Equilibrium molecular dynamics was developed by Alder, Rahman, Verlet, 
Vineyard, and their co-workers [5-8]. The main goals of molecular dyna­
mics are (1) characterizing the approach to equilibrium, (2) character-
zing equilibrium, and (3) characterizing reproducible nonequilibrium 
phenomena. In every case a correspondence must be established between 
the microscopic view of matter, based on Newton's, Lagrange's, or 
Hamilton's equations, and the phenomenological kinetic ana constitutive 
equations of continuum mechanics. The microscopic laws are typified by 
Newton's "Equation of Motion": 

mq = F . (1) 

The macroscopic analog, for a material with a pressure tensor P, a den­
sity p, and a stream velocity u, is the continuum "Equation of Motion" 

pu = - V-P . (2) 

Newton's microscopic equations are incomplete in the sense that the 
boundary conditions need to be specified in detail before nonequilibrium 
problems can be attacked. The macroscopic equations are likewise incom­
p l e t e . The "Constitutive Relations" relating the pressure tensor, temp­
e ra tu re , and heat flux to the s t ra in-ra te tensor and the temperature 
gradient , must be given to specify a well-posed problem. The const i tu­
t ive relations are usually imagined to come from clever experiments. 
The ambition of a molecular-level theorist is to circumvent the labora­
tory and find the constitutive properties using microscopic equations oE 
motion instead. 

To link the microscopic and macroscopic points of view i t is f i r s t 
necessary to formulate microscopic analogs of the continuum macroscopic 
var iab les : temperature, energy, the pressure tensor, and so on. The 
formulation of Irving and Kirkwood [Pj is the usual bcsis for these 
def in i t ions . Temperature, for instance, is related to the mean-squared 
velocity relat ive to the local stream velocity: 

(3/2)kT = {l/2)m<(v-u)2> . (3) 
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Trajectories governed by the equilibrium equations of motion (1) are 
eas i ly generated. The early calculations [5-8] solved these coupled 
equations for up to several hundred par t i c les , and successfully charact­
erized the approach to equilibrium and the equilibrium equation of 
s t a t e . The l inear transport coefficients were also obtained from the 
Green-Kubo l inear response theory [10]. The equilibrium resul ts—pres­
sure and temperature as functions of energy and volume—agreed well with 
the Los Alamos Monte-Carlo estimates—pressure and energy as functions 
of volume and temperature—based on Gibbs' s t a t i s t i c a l mechanics 
111-12]. 

The early thermodynamic resul ts showed that deviations from the large-"" 
system thermodynamic limit can be as small as 1/K or (lnN)/N, provided 
tha t periodic boundary conditions are used to eliminate surface effects 
[13] . Thus a reasonable equilibrium equation of s t a te can be obtained 
with only 100 p a r t i c l e s . 

About ten years l a t e r in 1969, perturbation theories were developed [14] 
which made i t possible to calculate , by using known hard-sphere func­
t i o n s , the equations of s tate for "simple fluids" with pairwise-additive 
forces . I t became possible to generate complete phase diagrams for 
these simple fluids by perturbation theory, without further simulations. 
The equilibrium properties of simple fluids became a "mature" f ie ld . 

The linear nonequilibriura properties are a remaining challenge. The 
straightforward nonequilibrium perturbation theory doesn't seem to con­
verge [15] i and the Green-Kubo calculations are both time-consuming and 
imprecise. 



Evolution of Nonequilibrium Molecular Dynamics 

To verify linear v iscosi t ies and conductivities, and to explore nonlin­
ear t ransport , the equilibrium work had to be generalized. I t was 
necessary to formulate boundary conditions, or altogether new equations 
of motion, to measure nonlinear effects : How does the viscosity vary 
with s t ra in rate? How does thermal conductivity vary with tenperature 
gradient? How are the momentum and heat currents coupled together? 
Dealing with the nonlinear problems was a two stage process. The f i r s t 
stage was to use special boundaries [16-17] or external fields [18] to 
maintain local temperatures or ve loc i t ies . This work showed that exper­
imental viscosi t ies and conductivities could be reproduced, with uncer­
t a i n t i e s on the order of several percent, by several independent 
methods. The next stage was the development of more efficient calcula-
t ional methods, to reduce the uncertainties, for application to non­
l inear problems. The two major obstacles were (1) the relatively large 
influence of physical boundaries and (2) the nonsteady increases in 
temperature and pressure caused by irreversible 'heat ing. Both d i f f icul ­
t i e s have been eliminated by using clever nonequilibrium schemes. 

At f i r s t , moving physical boundaries were used to drive viscous shear 
and di la ta t ional flows. These were later eliminated by using time-
dependent periodic boundaries in conjunction with equations of motion 
which reproduced the desired macroscopic flow fields [19]. The.simplest 
case is plane Couette flow, with the x component of stream velocity pro­
portional to y. A "Doll's Tensor" Hamiltonian, formed by adding the 
microscopic velocity (px/m) to the stream velocity Ey, reproduces the 
macroscopic flow field and also generates new momentum-dependent 
Cor io l i s ' forces: 

H = H o + £ S P x '' H o = * + E<P 2/2m) ; <*> 

x = (Px/m) + ey ; y = (Py/n>) ; (5) 

Px = F x ; Py = F y " ^ p x ' ( 6 ) 



The set of Doll 's-tensor equations of motion derived from (4) can be 
shown to reproduce identically the f i r s t law of thermodynamics for 
Couette flow: 

(7) 
E = - IVF x y , 

where the energy E and the pressure-tensor component P™ are the 
instantaneous values of fluctuating microscopic variables. The moving 
boundaries used in conjunction with these nonequilibrium equations of 
motion are ident ica l to those of Lees and Edwards [16]. A variant of 
these boundaries, in which periodic images move toward the central pe r i ­
odic ce l l , can be used to simulate Shockwaves. [20]. 

Heat conduction could not be handled in such a straightforward way. To 
generate a heat current in a homogeneous periodic system an external 
force linear in the energy (pushing energy-rich par t ic les to the r ight 
and energy-poor par t ic les to the lef t ) had to .be developed [21], Once 
t h i s was done, both deformation and heat current could be simulated in 
small periodic systems. 

What about the i rreversible heating? This was a potentially serious 
problem, because large gradients are required in order to measure a 
s t a t i s t i c a l l y well-defined response. The heating leads to thermodynamic 
changes of s t a t e . In Ashurst's original calculations reservoir regions 
were maintained at constant temperatures by rescaling the velocity d i s ­
t r ibut ion , r e l a t ive to i t s mean, to maintain a constant second moment. 
This same end can be achieved, more elegantly, by imposing a "nonholon-
omic" ( i . e . , involving ve loc i t ies , not just coordinates) constraint on 
the motion: 

(d/dt)]T.{p 2 /2ra) = 0 . (8) 



If the constraint is arbitrarily imposed by adding to each particle an 
acceleration proportional to its momentum: 

Ap = - CP , (9) 

then the (time-dependent) friction coefficient z, can be given as an ex­
plicit function of the interparticle forces and the momenta: 

x, = ]^F-p/][]p.p . (10) 

With both the artificial boundaries and the irreversible heating remov­
ed, it became possible to study steady nonlinear flows, with large 
gradients, for the long times necessary to obtain good statistics. The 
main unresolved question then was: would the computer calculations 
correspond to laboratory experiments? 

Is NEHD Legitimate Physics? 

Do the NEHD simulations correspond to physical reality? One way to 
approach this question is empirical. Calculations can be carried out 
with different constraints. For instance, constant temperature or con­
stant energy or constant pressure constraints could be imposed on a sys­
tem undergoing shear deformation. To the extent that the resulting 
shear stress is independent of the constraint type, it is at least 
plausible that the measured stress-strain rate relation is physically 
correct. Evans carried out such an investigation, comparing shear 
stresses under conditions of constant temperature and constant energy. 
The two simulations agreed within the relatively small shear stress 
fluctuations [22]. 

It is also possible to analyze some of the NEMD methods theoretically. 
The isothermal dynamics used by Ashurst, for instance, can be simply 
related to Gauss' variational principle of least constraint [23]. Gauss 
believed that the trajectory observed, in a constrained system, would be 
that which minimized the mean-squared change in the particle accelera­
tions due to the constraints: 

Y*m(6q) = minimum. (11) 



If t h i s minimization is carried out under the constraint of fixed kine-
t i c energy then exactly Ashurst's velocity-rescaling scheme r e s u l t s . 
The same isothermal NEMD calculations can also be related to Gibbs' 
equilibrium ensemble studies [24]. Gibbs proved that the most l ike ly 
d is t r ibu t ion for a fixed-teraperature fixed-volume system i s one in 
which the s ta te probabil i ty varies as exp(-E/kT). I t is interest ing 
t h a t isochoric NEMD equations of motion which fix T, but allow E to 
vary , identical ly reproduce Gibbs* canonical d is t r ibut ion if that d i s ­
t r ibut ion is chosen i n i t i a l l y . 

I t i s also possible to connect NEMD with low-density nonequilibrium 
theory [25], Boltzmann showed how to t rea t the col l is ional evolution of 
nonequilibrium systems by computing the single par t ic le dis t r ibut ion 
function f (q ,p ) . In the case that the only nonvanishing component of 
the s t ra in- ra te tensor i s e = du x /dy, Chapman and Cowling's resu l t s 
show [26] that the shear and normal s t resses , for Maxwell molecules, 
are 

Pv„V/NkT = - ET + 0(ET ) 3 ; 
*y 

P x xV/NkT - 1 = +(4/3) ( E T ) 2 + 0(et) 4 ; 

PyyV/NkT - 1 = -(2/3)(ET) 2 + 0 ( E T ) 4 ; 

P Z 2V/NkT - 1 = -(2/3) (ex) 2 + 0 ( E T ) 4 , (12) 

where the "collision time" T is of the order of the time between colli-
* 9 

s ions . The system gradually heats up: dlnT/dt = (2/3)e T . 
How must these r e su l t s be modified if the isothermal NEMD res t r ic t ion is 
imposed, so that temperature is fixed? This s i tuat ion can be analyzed 
from the viewpoint of the relaxation-time model of the Boltzmann equa­
t ion [10]: 

(3f/3t) = -d(qf)/dq - d(pf)/dp + (fQ - f ) / x , (13) 

where f Q is the local equilibrium distribution: 

f 0 = (N/VJexpt-pVamkTJ/tZnmkT)3/2 . (14) 



If f is expanded as a power series in the collision time, f = f + 
rfj + i f 2 + ••• then the equations of motion, 

x = (px/m) + ey ; 

7 = (Py/m) ; 

z = (Pz/m) f 

P x = F x - E P y - (^ 2V3)P X; 

Py = Fy " (E 2V3)P y ! 

P Z

 = F z ~ (E 2 V3)P Z ; (15) 

are consistent with (13) if 

f l / f o = ~et PxPy/mkT ] , 

V f o = E 2[(P xP y/raM) 2-(tP x

2+4p y

2+p z

2}/3n«kT)+1] . (16) 

I t i s easily verified that this steady-state isothermal NEHD dis t r ibu­
tion function (16) reproduces the known exact pressure tensor (12). 

Results so far Obtained from HEMP 

The f i r s t NEMD resul t s [16-18] established that computed linear viscosi­
t i e s and heat conductivities agreed with experiment. Work on the non­
l inear frequency and amplitude dependence of the transport coefficients 
can not so easily be compared with experiment because very high rates 
are involved. I t i s necessary that neighboring par t ic les move at a 
non-negligible veloci ty , relative to the sound speed, in order for the 
small-system shear s t r e s s to exceed background fluctuations. I t was 
therefore extremely interesting to find [271 that the solid-phase power-
law dependence of s t ress on strain rate established in NEHD simulations 
at very high rates -jould be extrapolated, over four orders of magnitude 
in s t r a in r a t e , to give satisfactory agreement with experimentally-
measured plas t ic flows. The extrapolation and the experimental data are 
both somewhat uncertain, but the good agreement suggests an underlying 
simplici ty in the flow mechanism over a wide range of r a t e s . 



Similar agreement will probably r e su l t for l iquids . I t has long been 
known that Maxwell's relaxation-time model of viscoelast ici ty i s an 
oversimplification for large molecules. Lamb[28] has presented a 
corresponding s ta tes plot of the rea l and imaginary parts of the shear 
impedance as functions of frequency for a variety of large molecules. 
The frequency-dependent viscosity derived from these curves deviates 
substant ial ly from the Haxwellian model, but resembles much more closely 
[4] corresponding calculations carried out by Evans 129] for a simple 
central-force model at much higher frequencies. 

Hanley and Evans have considered the nonequilibrium thermodynamics of 
systems undergoing shear [30]. Analogs of the thermodynamic Haxwell 
r e l a t i o n s , but involving the s t ra in ra te as an independent variable, 
were developed and checked numerically. This thermodynamic work made 
i t possible to evaluate the shift in equilibrium phase diagrams induced 
by shear. With the development of th i s theory there is motivation to 
characterize phase-diagram shifts experimentally. 

Finally the Principle of Material Frame Indifference, notoriously hard 
to t e s t in laboratory experiments due to the high angular veloci t ies 
involved, can readily be tested in computer experiments. These computer 
experiments established that high rotational speeds cause an angular 
heat flow in response to a radial temperature gradient, a violation of 
Fourier 's law which is easily understood from the point of view of the 
Boltzmann equation [31]. 



What Lies Ahead? 

Work in progress suggests that new results will emerge at an accelera­
ting pace over the next few years. Groups working on larger molecules, 
butane [32] and decane [33], as well as platelike and rodlike molecules 
capable of undergoing smectic and nematic liquid-crystal phase transi­
tions [34] should begin to assess the importance of molecular shape to 
rheological nonlinearities. VJork is also in progress on the simulation 
of granular materials, a promising potential application of NEMu where a 
variety of interesting experimental data alreedy exists [35]. The 
possibility of transverse displacement of periodic images, with a super­
imposed constant normal force, suggests that solid-phase coefficient of 
friction measurements could also be carried out. 

The generalization of the results obtained so far to the more complica­
ted molecular models should proceed smoothly. This should make possible 
a detailed comparison of microscopic simulations with the mesoscopic 
models developed by Bird and his Wisconsin coworkers [36] to describe 
polymeric systems. These latter models are already firmly linked to 
experiment, so that the end product of the developing HEMD techniques 
will be a detailed physical understanding of rheological flows. 
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