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1.0 INTRODUCTION 

Recent changes in U.S. domestic nuclear energy policies have deferred 

indefini te ly the reprocessing of spent nuclear fue l .  Consideration 5s 

therefore being given to  the retr ievable  storage of spent fue l .  The 
Spent Fuel Handling and Packaging program has as i t s  goal the design and 
eventual construction of a f a c i l i t y  to  s tore  the increasing inventory of 

spent fue l .  Seven storage concepts have been proposed. ( '  ) In evaluating 
5 - .  the s u i t a b i l i t y  of these concepts, many features must be examined. Since 

a s ignif icant  amount of f i s s i l e  material i s  s t i l l  contained in the unreprocessed 
fue l ,  nuclear c r i t i c a l i t y  safety i s  one of the items of concern. The 

purpose of t h i s  study i s  t o  provide a comparison of the concepts from the 

viewpoint of c r i t i c a l i t y  safety.  

The seven concepts considered are:  

Drywell Storage Concept (DWSC) 

Sealed Storage Cask Concept-1 (SSCC-1) 

Sealed Storage Cask Concept-RSSF (SSCC-RSSF) 

Sealed Storage Cask Concept-2 (SSCC-2) 

Drywell With Supplemental Cool ing (DWSC-2) 

Air Cooled Vault Concept ( A C V C )  

Water Basin Concept (WBC) 

I t  i s  important to  emphasize tha t  t h i s  study i s  a comparison. No 
attempt was made to  demonstrate safety by finding the absolute worse cases 
for  each concept. Rather, a s e t  of conservative conditions was applied to  
a l l  concepts ailowing a basis for  comparison between them. Likewise, i n  

some instances,  resu l t s  from t h i s  study due to  i t s  conservatism would imply 
an unsafe s i tuat ion for  a given concept, whereas detailed analysis of an 
actual design may show i t  t o  be acceptable. 

With the re la t ive ly  long storage times involved (25-100 y a r s ) ,  t h e  

possibi l i ty  of abnormal conditions should be considered. One major assump- 

t ion carried through the study i s  tha t  water i s  allowed to enter the storage 

package. Water floods of casks and vaul ts ,  as well as intrusion of low 



density water was a l so  allowed. Consideration was given t o  both i n t a c t  fuel 
rods and f i n e  powder which could r e s u l t  from rod d i s in tegra t ion .  

2.0 SUMMARY 

The seven s torage concepts were analyzed from the  viewpoint of nuclear 

c r i t i c a l i t y  sa fe ty .  While the  analysis  i s  not adequate f o r  use i n  

l i cens ing ,  i t  provides an adequate basis  f o r  comparison. All concepts, with 
the  exception of t he  water 'basin, were assumed t o  use the  same can i s t e r  type. 

This 13-in. ID cyl inder  contains one PWR assembly (Westinghouse 17 x 17) 

which i s  composed of f resh  U02 fuel enriched t o  3.5 w t %  2 3 5 ~ .  ~ a n i  s t e r  

f a i l u r e  and water in t rus ion were allowed. Consideration was a l so  given t o  
fuel  rod d i s in tegra t ion  due t o  U02 oxidation.  The basic assumptions and 
methods a r e  described i n  the  next sect ion.  Details  of t he  analysis  and the  

r e s u l t s  a r e  given in  the  following sect ions .  

For the  case of i n t a c t  fuel  rods, the  s ing le  can i s t e r  concepts a r e  pre- 

fe r red  from the  viewpoint of c r i t i c a l i t y  sa fe ty .  The SSCC-1 would be the  
best  choice followed by the  SSCC-RSSF, and next the  Drywell. For the  

mult iple can i s t e r  concepts the  order of preference i s  DWSC-2, SSCC-2, and 

ACVC.  For i n t a c t  fuel rods a l l  concepts a r e  po ten t ia l ly  l icensable ,  however 

the  SSCC-2 and ACVC may be questionable. 

The d i s in tegra t ion  of fuel rods poses a sa fe ty  problem f o r  a l l  con- 
cepts .  ( a )  While one concept could be more reac t ive  than another, the  d i f -  

ference i s  small.  As described none of the  concepts(a)  would be acceptable 

unless: 

e Disintegration i s  shown t o  be incred ib le ,  or  

Water in t rus ion i s  shown t o  be incredible .  

Canister  redesign and/or 1 ess  r e s t r i c t i v e  assumptions (a1 lowing c r e d i t  
f o r  burnup f o r  instance) might y ie ld  a s a f e  design even i f  the  two items 

above cannot be met. 

( a )  The Water Basin Concept i s  an exception s ince  fuel  rod d i s in tegra t ion  
i s  not considered t o  be a problem f o r  t h a t  type of storage.  



3.0 METHODS 

The object of t h i s  study was to  provide a  c r i t i c a l i t y  safety comparison 

of the spent fuel storage concepts described in Reference 1 .  Therefore, 

ra ther  than a  detailed study into each concept to  determine the special 

condition which would const i tute  the worst credible case for  i t ,  a  

standard s e t  of assumed conditions was applied to  a l l  concepts. Comparisons 

are  generally made on the basis of :he effect ive multiplication fac tor  k e f f .  

A c r i f ica l  system will have keff  equal to  one. Values less  than one are  
. . subcr i t ica l .  A common practice i s  to not allow k to  exceed 0.95 to  ef f  

provide an adequate safety margin. 

Each concept was assumed to  contain a  s ingle  PWR assembly containing 

U02 enriched to  3.5 w t %  2 3 5 ~ .  I t  was shown tha t  using a  single PWR assembly 

i s  conservative when compared to  three BWR assemblies (see Sections 4.1 

and 5.3) .  The BWR fuel was assumed to  be enriched to  2.6 w t %  2 3 5 ~ .  No 

c red i t  was taken f o r  f i ss ion  products or f i s s i l e  depletion. The assembly 

s izes  used were tha t  of the Westinghouse 17 x 17 and the General Electr ic  

8 x 8 fo r  the PWR and BWR respectively. I t  was assumed each concept used 

the same 13-in. ID (PWR) or 17-in. ID ( B W R )  helium f i l l e d  canis ter .  These 

canis ters  are sealed and leak checked. However, with the long storage 

times (25-1 00 years) and potenti a1 ly 1 arge number of canisters (>50,000) , 
the possibi l i ty  of canis ter  leakage and water intrusion must be considered. 

This study assumes the canis ters  f a i l  and water completely f i l l s  them. 

Another abnormal condition considered was the possibi l i ty  of fuel rod 

dis integrat ion.  This phenomenon, which i s  caused by U03 oxidation a t  ele- - 
vated temperatures, can reduce fuel rods to  f ine  powder. This condition was 

t reated as U02 in water a t  optimum moderation (2400 g UO2/&). The optimum 

moderation condition was assumed because the amount of water in the canis ter  

would not be controlled. 

Along with the disintegration cases in t ac t  fuel rods were also consid- 

ered. These were taken as 0.323-in. pe l le t  diameter fuel rods (standard 

Westinghouse 17 x 17) a t  optimum water to  fuel volume ra t io .  This 

optimization was used because a f t e r  i r radiat ion and transportation the rod 

pitch could not be guaranteed to  be the original as bu i l t  values. This 's 

a  conservative assumption. 



Various neutron ref lect ion conditions were applied to  the various con- 
cepts.  For single canis ter  concepts, these amounted to  the actual or a 
conservative approximation to  the material surrounding the package. For 

m u 1  t i p l e  canis ter  concepts, the possi b i  1 i ty  of f i  11 ing the en t i r e  storage 

area w i t h  water introduced f u l l  water ref lect ion cases. An i n f in i t e  thickness 

of surrounding water can be approximated by 6 inches i n  the calculations.  

In a l l  concepts, the s tee l  canis ter  walls were neglected. 

- .  For multiple canis ter  concepts, the possibi l i ty  of essent ial ly  dry 

canis ters  with interspersed water between them was also considered. The fuel 
material was modeled as homogeneous UO a t  the smear density of a PWR 2 
(Westinghouse 17 x 1 7 )  assembly with 1 w t %  water. The 1 w t %  water was 
included to account for  residual moderators in the fuel assembly. This i s  

l i ke ly  to  be quite conservative, however since the goal in the study i s  

comparison, the conservatism should not generate concern. The density of 

the interspersed water was optimzed fo r  each of the multiple canis ter  

concepts. 

All of the calculations were performed with the KENO-IV Monte Carlo 

code. Neutron cross sections were prepared w i t h  the E G G N I T - I I ( ~ )  code 

using processed ENDFIB-IV neutron cross section data.  

4.0 SINGLE CANISTER CONCEPTS 

Three of the seven concepts place each fuel assembly in a position 
tha t  i so la tes  i t  from a l l  the others,  using earth o r  concrete for  shielding. 
They are  the Drywell, the Sealed Storage Cask Concept-1, and the Sealed 
Storage Cask Concept-RSSF. Individual discussions of  the s ingle  canis ter  

concepts fol 1 ow be1 ow. 

4.1 DRYWELL 

The drywell (PWR consists of a 16-in. diameter ver t ical  hole in the 

ground with a 318-in. wall ,  16-in. O . D .  s teel  pipe f i t t i n g  t ight ly  inside.  

A 2 - f t  layer of grout i s  poured i n  tqe bottom and a fuel assembly canis ter  

i s  placed on i t  ( O . D .  = 14 inches, leaving 518-in. radial clearance).  The 

hole i s  then plugged with a 7- f t  concrete plug. 



The worse case evaluated was a f u l l  water flood in the  pipe, the canis- 

t e r  and the s o i l .  The compositions of the s o i l s  and concrete used a r e  given 
in Appendix A .  The computer model t h a t  was used was somewhat s impl i f ied .  

A drawing of the geometry model used i s  given i n  Figure B.l of Appendix B.  

The s t e e l  was el iminated,  leaving the  fuel  element in a 16-in. diameter 

cylinder of water, surrounded by water-laden s o i l .  The r e su l t an t  r e a c t i v i t y  

f o r  i n t a c t  fuel  rods was keff  = 0.935 . 0.005 f o r  30 vol% H20 in s o i l .  For 

40 vol% H20 in the  s o i l ,  the  r e a c t i v i t y  i s  keff  = 0.924 i 0.004. 

In the  case of the BWR drywell,  the  hole i s  20 i n .  in diameter, with 

the  17-in. ID BWR c an i s t e r  s i z e .  This contains three  BWR assemblies. The 

r e s u l t s  f o r  a f u l l  f lood condit ion w i t h  i n t a c t  rods a r e :  kef f  = 0.860 + 0.005, 

with 40 vol% H20 in the  surrounding s o i l .  The PWR appl ica t ion of t h i s  

concept i s  c l e a r l y  l e s s  reac t ive  than the PWR. 

If  the  fuel  has d i s in tegra ted  and mixed with water while the can i s t e r  

and so i l  a r e  flooded. then the  PWR case wi l l  approximate a 13-in. cyl inder  of 

solut ion w i t h  f u l l  water r e f l e c t i on .  Assuming optimum so lu t ion ,  

2400 g U02/L, the  r e a c t i v i t y  i s  keff  = 1.055 + 0.00G. 

4.2 SEALED STORAGE CASK CONCEPT-1 (SSCC-1) 

The SSCC-1 (PWR) i s  a  concrete cask surrounding a &ngle  c an i s t e r .  The 

cask i s  an annulus 40 in .  th ick ,  with i t s  inner surface  4 in .  from the  

can i s t e r .  There i s  more concrete above and below the  can i s t e r .  A hori-  

zontal cross  sect ion of t h i s  geometry i s  shown in Figure B . 2 .  

This concept i s  geometrically very s imi la r  t o  the  drywell; the  two 

s i gn i f i c an t  d i f ferences  a r e  the nature of and the dis tance  t o  the r e f l e c t o r .  

The r e a c t i v i t y  of the SSCC-1 with only the can i s t e r  flooded i s  k e f f  = 0.929 & 

0.005. W i t h  the associated s t a t i s t i c a l  devia t ions ,  t h i s  value i s  equivalent  

t o  the drywell.  If  both the cask and can i s t e r  a r e  flooded, the fuel  has 

e s s en t i a l l y  f u l l  water r e f l e c t i on ,  a  case which has k e f f  = 0.943 i 0.005. 

In case of rod d i s i n t eg ra t i on ,  i f  the  cask and can i s t e r  a re  boch flood- 

ed, then the  s i t ua t i on  may be approximated by f u l l  water r e f l e c t i on ,  which 

gives ke f f  = 1.055 i 0.006. i f  the cask i s  not flooded, the  r e a c t i v i t y  i s  

about the  same, k e f f  = 1.051 2 0.006. 



4.3 SEALED STORAGE CASK CONCEPT - RSSF (SSCC-RSSF) 

T h i s  concept i s  based on t h e  R e t r i e v a b l e  Sur face  Storage F a c i l i t y  

(RSSF) above ground casks. I t s  des ign  i s  somewhat s i m i l a r  t o  t h e  SSCC-1. 

The c a n i s t e r  i s  enc losed  i n  an overpack (a  s l i g h t l y  b i g g e r  c a n i s t e r ) ,  

which i s  loaded i n t o  t h e  conc re te  cask. For hea t  t r a n s f e r  reasons, t h e r e  

a r e  n a t u r a l  convec t ion  a i r  passages b r i n g i n g  i n  o u t s i d e  a i r  and channe l ing  

i t  p a s t  t h e  overpack. 
1. 

. . From a c r i t i c a l i t y  s a f e t y  s tandpo in t ,  t h e  cases analyzed f o r  t h e  

SSCC-1 can be a p p l i e d  t o  t h e  SSCC-RSSF. Data O i l  overpack s i z e  and i n n e r  

annulus d iameter  were n o t  a v a i l a b l e .  It was assumed these dimensions would 

n o t  make t h e  SSCC-RSSF s i g n i f i c a n t l y  d i f f e r e n t  f r om t h e  SSCC-1. There fo re  

no a d d i t i o n a l  c a l c u l a t i o n s  were performed. 

MULTIPLE CANISTER CONCEPTS 

Four o f  t h e  seven concepts i n v o l v e  more than  one f u e l  assembly pe r  

l o c a t i o n .  They a re :  t h e  Sealed Storage Cask Concept-2, w i t h  s i x  assembl ies 

i n  one conta inment  vessel  ; t h e  Drywe l l  w i t h  Supplemental Cool ing,  w i t h  t e n  

assembl i e s  ; t h e  A i  r -Cooled Vaul t Concept, w i t h  500 assembl i e s  p e r  v a u l t  , 
and t h e  Water Bas in  Concept, which has ove r  4000 assembl ies p e r  bas in .  

I n d i v i d u a l  d i scuss ions  o f  each o f  t h e  m u l t i p l e  c a n i s t e r  concepts f o l l o w  

be1 ow. 

5.1 SEALED STORAGE CASK CONCEPT-2 (SSCC-2) 

The SSCC-2 i s  s i m i l a r  t o  SSCC-1 i n  t h a t  t h e  s h i e l d  i s  a t h i c k  concre te  

annulus. The SSCC-2, however, i s  l a r g e r ,  w i t h  an i n s i d e  r a d i u s  o f  29 inches.  

I n s i d e  a r e  s i x  c a n i s t e r s  a r rayed  w i t h  t h e i r  c z n t e r s  on a 36- in .  d iameter  

c i r c l e  c o n c e n t r i c  w i t h  t h e  annulus. 

The o n l y  s i m p l i f i c a t i o n  made i n  t h e  computer model was a change f rom 

r e c t a n g u l a r  f u e l  assembl ies t o  c y l i n d r i c a l ,  p r e s e r v i n g  c r o s s - s e c t i o n a l  area 

and volume. T h i s  assumption shou ld  have a min imal  e f f e c t  on r e a c t i v i t y .  A 

h o r i z o n t a l  c r o s s - s e c t i o n  o f  one quadran t  o f  SSCC-2 w i t h  f l o o d e d  c a n i s t e r s  i s  

shown i n  F i g u r e  8.3. 



A f u l l  flood of the  cask and a1 1 can i s te r s  nearly i s o l a t e s  each assembly, 

so each one i s  surrounded by an e f f ec t i ve ly  i n f i n i t e  water r e f l e c t o r .  The 

r e a c t i v i t y  f o r  the  i n f i n i t e  water r e f l e c t i on  case i s  keff = 0.943 i: 0.005. 

The f u l l  f lood of SSCC-2 r e s u l t s  i n  keff = 0.942 i 0.005. 

A worse case is the  draining of the cask while the  can i s te r s  remain 

flooded, resu l t ing  in keff  = 0.985 i 0.006. This i s  the  worst case evaluated. 

The r e a c t i v i t y  of SSCC-2 w i t h  the  can i s te r s  i n t a c t  and the  cask f i l l e d  

w i t h  in terspersed water (heavy fog), i s  given i n  Table 1. 

TABLE 1 .  SSCC-2 w i t h  I n t ac t  Canisters  and Interspersed H20 

H20 Density, g/cm 3 reff 

3 The r e a c t i v i t y  peaks a t  about 0.07 g/cm water w i t h  k = 0.396 k 0.005. ef  f 
These very iow values occur because only s i x  fuel  assemblies a r e  involved. 

5.2 - DRYWELL WITH SUPPLEMENTAL COOLING (DWSC-2) 

DWSC-2, the  drywell concept w i t h  heat pipes,  i so l a t e s  ten can i s t e r s  

i  n a sing1 e concrete vaul t. The can i s t e r s  a r e  arranged in  two para1 l e l  rows 

of f i v e ,  6 f t  apar t  center- to-center .  Within rows, the  can i s t e r s  a r e  

spaced on 3 - f t  cen te r s .  

The major s impl i f i ca t ion  made i n  the  computer model used was the  

el imination of the  heat pipes. A p l o t  of the  model appears in  Figure B.4. 

Since one foo t  of water i s  enough f o r  f u l l  neutronic i s o l a t i o n ,  a f u l l  

water flood i s o l a t e s  each can i s t e r .  I f  the  basin i s  flooded the  worst t h a t  

could then happen i s  concurrent flooding of a c a n i s t e r ,  r e su l t ing  in  an 

i n f i n i t e  water r e f l e c t i on  case w i t h  kef f  = 0.943 i 0.005. 



With the  can i s t e r s  s t i l l  flooded b u t  the  vau l t  drained,  keff  = 0.944 i 

0.005. This i s  e s s en t i a l l y  the  same as the  vau l t  f lood case. The draining 

of the  vau l t  introduced two competing e f f ec t s .  These a r e  an increase in 

in te rac t ion  between assemblies versus descreased r e f l e c t i on .  These e f f ec t s  

balanced each other  out. 

. . The r e a c t i v i t i e s  f o r  i n t a c t  c an i s t e r s  and in terspersed water in the  

vau l t  a r e  shown in  Table 2, and displayed in  Figure 1 .  . 
. . 

TABLE 2 .  DWSC-2 w i t h  I n t ac t  Canisters  and Interspersed H20 - 
3 

H20 Densi t y  , g/cniJ 

3 The condition of g r ea t e s t  r e a c t i v i t y  i s  0.03 g/cm H20; again,  the  

values a r e  low because of the  small number of assemblies involved ( t e n ) .  

5 .3 AIR COOLED VAULT CONCEPT ( A C V C )  

The a i r  cooled vau l t  contains 500 assembl i e s  in f i v e  blocks of 100 each 

(10 x 10 square, 3 - f t  c en t e r s ) .  The blocks a r e  in  a row, with 6 f t  between 

blocks (center- to-center ;  e s s en t i a l l y ,  one row i s  skipped).  Each assembly 

i s  in  a standard c a n i s t e r ,  which i s  enclosed i n  a s l i g h t l y  l a rge r  s t e e l  

overpack can i s t e r .  Above and below the  overpack array a r e  3 f t  of a i r  

space, followed by concrete. 

For the  purpose of computer modeling, the conservative assumption of 

an i n f i n i t e  two-dimensional a r ray  was made. A p l o t  of the  model, a  hori- 

zontal cross-section of one (f looded) c an i s t e r  and i  t s  surrounding space 

i s  shown in Figure B . 5 .  

For the  case of a f u l l  f lood of the vau l t  and can i s t e r s ,  the  r e s u l t  i s  

again f u l l  water r e f l e c t i on  with r e a c t i v i t y  kef f  = 0.943 0.005. 



H20 DENSITY, cjL 

FIGURE 1. Reactivity of DWSC-2 for Low Density Interspersed Water-KENO-IV - 

* Error bars indicate one standard deviation. 



Leaving the canis ters  flooded while draining the vault resu l t s  in a 

worse case, with kef f  = 1.028 2 0.007. For comparison, the same si tuat ion 

with B A R  fuel has keff  = 0.889 c 0.004. A BWR ~eometry appears in 

Figure 8.6. 

Table 3 gives reac t iv i ty  for  cases of interspersed H20 and in tac t  cani- 

s t e r s .  These data are  presented graphically in Figure 2 .  

TABLE 3. ACVC with Intact  Canisters and Interspersed H20 

Densi ty  H20, g/cm 3 

0.01 

0.02 

0.03 

0.04 

0.05 

0.07 

0.09 

3 The highest reac t iv i ty  i s  a t  0.02 g/cm interspersed water density. 

This value i s  much higher than the peak values fo r  the SSCC-2 and DWSC-2 

interspersed water cases. This i s  caused by the much larger number of 

interacting canis ters .  

5.4 - WATER BASIN CONCEPT ( W B C )  

This concept i s  included for  reference purposes only, since i t  i s  not 

a passive system. The reference design of the WBC ca l l s  for  assemblies 

stored in racks within a large water pool. The water provides radiation 

shielding and a cooling medium. The water i s  pumped through heat exchangers, 

venting the thermal energy to  the environment. The design ca l l s  fo r  PWR 

assemblies to  be stored on 15-in. by 15-in. grids.  BWR assemblies would 

be stored on 8-in. by 8-in. grids.  Fixed neutron poisons would not be 
used. 

Since storage of spent fuel in water basins i s  an established tech- 

nology, no calculations were performed on th i s  design. Comparisons can be 



H20 DENSITY, g l l  

FIGURE 2. Reacti vi ty of ACVC f o r  Low Dens i  ty  Interspersed Water-KENO- IV 

* Error bars indicate  one standard deviation.  



made to  existing basins. Table 4 shows the rack spacing for  a BWR and PWR 

basin. The original values were probably quite conservative. Reducing 

conservatism and adding s ta in less  s teel  to  the racks allows a s ignif icant  

reduction in spacing. Addition of boron as a neutron poison allows greater 

reduction. 

TABLE 4. Fuel Storage Rack Spacings (4 

Three Mile Island Dresden 
PWR BWR 

Original, inches 
Stainless steel,  

inches 
Stainless steel + 

boron, inches 

- 
The spacing given in Table 4 indicates tha t  the proposed 15-in. and 

8-in. spacing could be a l i t t l e  optimistic.  However, a small increase in 

spacing or use of s teel  plates could resolve potential c r i t i c a l i t y  safety 

questions. 

The problem of fuel rod disintegration does not a r i se  i n  water basin 

storage. The lower fuel temperature essenti a1 ly precludes the oxidation 

reaction. Even i f  disintegration were to  occur the combination of large 

area for  dispersion and quick detection would render the problem mute. 

I n  general, the water basin concept generates no reasonably unresolvable 

c r i t i c a l i t y  safety concerns. While any given basin design requires rigorous 

demonstration of safety,  the existing experience with water basin storage 

shows that  such demonstration i s  possible. 



CONCLUSIONS 

In making comparisons between spent fuel storage concepts, a division 
should be made between in t ac t  fuel rods and disintegrated fuel rod cases. 

For in tac t  fuel rods the single canis ter  concepts have a s l i g h t  ad- 

vantage over the multiple canis ter  concepts in t h e i r  s l ight ly  lower reac- 

t i v i t i e s .  For th i s  reason the single canister concepts would be favored 
from a c r i t i c a l i t y  safety viewpoint. Although a l l  three of these concepts 
have approximately equal r eac t iv i t i e s  the SSCC-1 would be preferred. This 

preference i s  due to  i t s  reduced likelihood of water intrusion. The 

SSCC-RSSF would be next in preference and the Drywell l a s t .  The Drywell 
i s  l eas t  favored of the s ingle  canis ter  concepts because i t  i s  below ground 

level and minor flooding could provide a source of water. The above ground 
casks would require a major flood or severe cask damage coupled with heavy 

precipitation to  provide a water source. 

Of the mu1 t i p l e  canisteF concepts (excepting WBC) , for  the in t ac t  fuel 
rod cases the DWSC-2 i s  preferred. All concepts have essent ial ly  equal 
reac t iv i ty  fo r  a complete flood condition. The DWSC-2, however, has the 
lower reac t iv i ty  fo r  the canis ter  flooded, inter-canis ter  space dry condition. 
The ACVC shows a higher reac t iv i ty  than the SSCC-2 for  th i s  condition. Both, 
however, could have a c r i t i c a l i t y  safety problem for  th i s  condition. The case 
of essent ia l ly  dry canis ters  with interspersed water poses no problem for  

the DWSC-2 or the SSCC-2. This condition could be a potential problem for  
the ACVC. Therefore the second preference would be the SSCC-2 and l a s t  the 
ACVC. For in t ac t  fuel rods a l l  concepts are  potentially viable. The SSCC-2 

and ACVC may be questionable, however. 

For the disintegrated fuel rod case a l l  of the concepts have a potential 

safety problem. A 13-in. diameter cylinder of 3.5 w t X  enrichment U02 i n  

water a t  2400 g U02/k with water ref lect ion i s  c r i t i c a l .  A cylinder diameter 

of ten inches or  less  would be required to  achieve an accepted react ivi ty  

under these conditions. The case could be made tha t  the single canis ter  

concepts need not have f u l l  water re f lec t ion ,  however the reduction in 
reac t iv i ty  would n o t  be suf f ic ien t  to  render an acceptable reac t iv i ty  value 



a t  the 13-in. diameter. From the standpoint of c r i t i c a l i t y  safety none of 

the concepts as described (except WBC) would be acceptable unless : 

Disintegration i s  shown to  be incredible,  or 

Water intrusion i s  shown to  be incredible. 

There ex is t s  a potential tha t  s ignif icant  canis ter  redesign and/or cha'pges 

the basic assumptions(a) could yield an acceptable design even i f  the two 

I items above cannot be met. 
/ - .  

None of the concepts can match the WBC in preference from the c r i t i c a  

l i t y  safety viewpoint. The f a c t  t ha t  storage in WBC currently ex is t s  i s  a 

fac tor ,  b u t  i t s  immunity from the disintegration problem i s  i t s  major 

advantage. 

( a )  Allowing credi t  fo r  fuel b u r n u p  i s  the most notable candidate. 
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COMPOSITION OF REFLECTORS 

Compos i ti on of Ref 1 ec t o r s  

Composi t ion o f  04 

El ement Atom Percent  

0.417 

Dens i t y  = 2.35 g/cm 3 

Com~os i  t i o n  o f  Hanford Soi  1 (Atom Percent )  (6) 

Element Dry Soi  1 ,  No Voids 

0.0 

65.10 

27.87 

2.460 

1 .094 

1.914 

0.541 

1.022 

Dens i t y  = 2.43 g/cm 3 

30 Volume % H,O 
L 

40 Volume % Hz0 

24.90 

53.23 

17.46 

1.542 

0.685 

1 . I99  

0.339 

0.640 

Dens i t y  = 2.001 

32.07 

49.82 

14.46 

1.277 

0.567 

0.993 

0.281 

0.531 

Dens i t y  = 1.858 g/cn3 
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GEOMETRY MODELS FOR STORAGE CONCEPTS 





GEOMETRY MODELS FOR STORAGE CONCEPTS 

The following six figures show the geometry models used in the calcu- 

lat ions performed as part of the c r i t i c a l i t y  safety comparison for  the spent 

fuel storage concepts. Each concept i s  represented once. Other ref lector  
-. conditions were assumed for  each concept b u t  one figure i s  suff icient  to  

demonstrate the approach used. 



FIGURE B-1. Drywell Geometry Model, Flooded 

22 in. -4 
--+8.43 in+- 

FIGURE B-2. SSCC-1 Geometry Model, C a n i s t e r  Flooded 

B-3 



FIGURE B-3. SCCC-2, Geometry Model, C a n i s t e r s  Flooded 
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FIGURE B-4. DWSC-2 Geometry Model, C a n i s t e r s  Flooded 

d 
it 13 i n .  4 

FIGURE B-5. ACVC Geometry Model, One Flooded C a n i s t e r  (PWR) - 
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FIGURE B-6. ACVC Geometry Model, One Flooded Can is te r  ( B W R )  
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