L /O 7 — OUT I ——/

LBL-26417

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA 3
peraiy, a4/ f

Ji
Information and Computing MAY 3 0 Wo
Sciences Division

To be presented at the 5th International Conference
on Statistical and Scientific Database Management,
Charlotte, NC, April 3-5, 1990, and

to be published in the Proceedings

A Framework for Query Optimization in
Temporal Databases

H. Gunadhi and A. Segev

November 1989

DISTRIBUTION T! 'P DOC'"jr.IT IS UNLIMITED

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

DISCLAIMER

This document was prepared as an account of work sponsored
by the United States Government. Neither the United States
Government nor any agency thereof, nor The Regents of the
University of California, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial products process, or
service by its trade name, trademark, manufacturer, or other-
wise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government
or any agency thereof, or The Regents ofthe University of Cali-
fornia. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States
Government or any agency thereof or The Regents of the
University of California and shall not be used for advertising or
product endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer.

LBL-26417

A FRAMEWORK FOR QUERY OPTIMIZATION IN
TEMPORAL DATABASES

LBL--26417

DE90 011339
Himawan Gunadhi & Arie Segev

Computing Science Research & Development
Information & Computing Sciences Division
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, California 94720

and

Walter A. Haas School of Business
The University of California, Berkeley
Berkeley, California 94720

November 1989

_MASTER

Proceedings in the 5th International Conference on Statistical & Scientific

Database Management, Charlotte, NC, April 3-5, 1990 M

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

This work was supported by the Director, Office of Energy Research, Applied Mathematical
Sciences Research Program, of the U.S. Department of Energy under Contract No. DE-AC03-
76SF00098.

1LBL-26417
Dec. 1988

A FRAMEWORK FOR QUERY OPTIMIZATION IN
TEMPORAL DATABASES

Himawan Gunadhi and Arie Segev

Walter A. Haas School of Business
The University of California and
Computing Sciences Research and Development Department
Lawrence Berkeley Laboratory
Berkeley, California 94720

Revised Nov. 1989

Abstract

We investigate issues pertaining to query processing of temporal databases in a relational
environment. Tuple-versioning of relations is the adopted method of temporal data representa-
tion. New operators are necessary in order to exploit the richer semantics of temporal queries.
We define four types of temporal joins-- theta-join, time intersection, time union and the
event-join. Factors that affect processing strategies are discussed, especially the problem of
estimating data selectivity for various temporal operations. Strategies for implementing the
temporal equijoin operator are evaluated.

(Forthcoming in the 5th Int. Conf. on Statistical & Scientific Database Management)

This work was supported by the Applied Mathematical Sciences Research Program of the
Office of Energy Research, U.S. Department of Energy under Contract DE-AC03-76SF00098.

1. INTRODUCTION AND MOTIVATION

The importance of temporal data models lies in their ability to capture the complexities
of real world phenomena which are inherently dependent on time. Traditional approaches,
such as the relational model of data, are incapable of handling all the nuances of such
phenomena. Temporal models open up the possibility for new types of operations to enhance
the retrieval power of a database management system (DBMS). One of the potential draw-
backs of such models is the lack of processing efficiency-- the size of data and the complexity
of time-oriented queries may yield unsatisfactory performance.

Many papers have been published on logical models that incorporate to varying degrees
the time dimension. Most fall into the following categories: (1) Extensions to the relational
model, e.g. [Clifford & Tansel 85, Ariav 86, , Clifford & Croker 87, Snodgrass 87]; (2)
Enhancements of the Entity-Relationship model, e.g. [Klopproge & Lockemann 83, Adiba &
Quang 86], and (3) Independent modeling such as the concept of the
Time Sequence Collection (TSC) by [Shoshani & Kawagoe 86, Segev & Shoshani 87]. Many
operators have been introduced in these papers, although in the relational context, the primary
emphasis has been on their integraton into the syntax of established query languages, such as
SQL and QUEL. This is motivated by the desire to implement a temporal DBMS by minimal
modification to current relational technology.

Our approach is to look into the functional requirements of queries on a temporal rela-
tional database. From there we define a set of fundamental join operators and investigate
implementation and optimization strategies. We are motivated in part by the desire to study
the feasibility of implementing the TSC model in relational form, or on top of an existing
relational DBMS. In this paper, we do not attempt to define a complete set of temporal rela-
tonal algebra, instead we focus on temporal joins, classified according to the attributes and
operators specified in the join predicates. It is our belief that these joins should be capable of
capturing the semantics of most, if not all, of the temporal join operators found in the litera-
ture. We outline several major issues that affect the design of query processing methods, with '
special emphasis on selecnivity estimation of temporal relations for various operations.
Finally, we look at a specific temporal operator, the temporal equijoin, and evaluate alterna-
tive strategies for its implementation.

The rest of the paper is organized as follows: In the next section, we discuss the rela-
tional representation of temporal data, and introduce basic definitions. In section 3, we define
and discuss temporal operators and joins. In section 4, factors that impact query optimization
are discussed, elaborating on mathematical modeling of the behavior of temporal relations.
Implementation and efficiency issues pertaining to the temporal equijoin operator is explored
in section 5. Finally, section 6 offers conclusions and an outline of future work.

Qur contributions are:

e The classification and definition of four classes of temporal relational joins: Theta, Time
Intersection, Time Union and Event joins. We feel that these definitions are needed for
future research in the area of temporal query optimization.

e An introduction to the problem of selectivity measurement with respect to temporal rela-
tions, and how to model the dependencies that exist within such relations. As in tradi-
tional query optimization, deriving good selectivity estimates is of fundamental impor-
tance. In this paper we present the first step towards that goal.

e Evaluation of implementation strategies for the temporal equijoin, in the context of a
relational environment. To the best of our knowledge this paper is the first to address
the issue.

2. RELATIONAL REPRESENTATION AND DEFINITIONS

A convenient way to look at temporal data is through the concepts of Time Sequence
(TS) and Time Sequence Collection (TSC) [Segev & Shoshani 87]. A TS represents a his-
tory of a temporal attribute(s) associated with a particular instance of an entity or a relation-
ship. The entity or relationship is identified by a swrrogate (or equivalently, the
time —invariant key). For example, the salary history of an employee is a 7S. A TS is
characterized by several properties, such as the time granularity, lifespan, type, and interpola-
tion rule to derive data values for non-stored time points. In this paper, for the sake of expo-
sitional convenience, we concentrate on one common type of data -- stepwise constant
(SWC). SWC data represents a state variable whose values are determined by events and
remains the same between events; the salary attribute represents SWC data. Time sequences
of the same surrogate and attribute types can be grouped into a time sequence collection
(TSC), e.g. the salary history of all employees forms a TSC. There are various ways to
represent temporal data in the relational model; detailed discussion can be found in [Segev &
Shoshani 88a]. We assume a time-interval representation, as shown in the examples of Table
1: The relations EMP_SAL, EMP_COM, EMP_MGR, EMP_DEP, DEP and DEP_TRAVEL
represent employee salaries, commission rates of employees, employees’ managers, employ-
ees’ departments, department locations and departmental travel budgets respectively.

We use the terms surrogate (S), temporal attribute, and time anribute (Ts or Tg)
when referring to attributes of a relation. For example, in Table 1, the surrogate of the
EMP_SAL relation is E#, SAL is the temporal attribute, and T and T are time attributes.
We assume that all relations are in first temporal normal form (1TNF) [Segev & Shoshani
88a]. 1TNF does not allow a surrogate instance to have more than one value of a temporal

EMP SAL | E# | SAL | Ts | T EMP COM | E#C RATE | Ty | T
El| 20 | 1| 8 El 10% | 1 | 7
El| 22 | 9|20 El 12% | 8 | 20
E2| 30 | 1] 16 E2 8% | 2 | 7
E2 | 35 |17 | 20 E2 10% | 8 |20
E3 | 25 1| 20
EMP MGR | E# | MGR | Ts | T EMP DEP | E# | D# | Ts | T
El | TOM 1] 5 El [D3 | 1| I2
El | MARK | 9 | 12 El | D2 | 13 | 20
El | JAY 13 | 20 E2 |D1| 1|17
E2 | RON 1| 18 E2 [D2 | 18 | 20
E3 | RON 1] 20 E3 | D3| 1]20
DEP | D# | FLOOR | Ts | T DEP TRAVEL | D# | BDGT | T | T
DI | 4 1 | 20 DI | 30 1 | 4
D2 |1 1| 7 Dl | 40 5 | 20
D2 | 2 8 | 20 D2 | 35 1 |20
D3 | 2 1| 7 D3 | 20 1 | 8
D3 |5 8 | 20 D3| 15 9 | 20

Table 1. Examples of Temporal Relations

attribute at a given time point. The implication for a temporal relaton is that there are no two
intersecting time intervals for a given surrogate instance. Whenever it is clear from the con-
text, we will use the term "surrogate"” instead of "surrogate instance". For the same reason, we
often refer to the "temporal relation” as "relation”.

2.1. Basic Notations

Let r;(R;) be a relation on scheme R; = (S;, A, ..., Ajn» Ts, Tg }, where §; is the surro-
gate of the relation with domain dom (S;), Ts and Ty are the time-start and time-end attributes
respectively, with dom (Ts) = dom(Tg). A;; denotes the attribute with a corresponding
domain dom(A;;). We distnguish between the surrogate and other non-time attributes for
expositional convenience. It is not necessary to distinguish between temporal and non-
temporal A;;’s, although one or more should be time -varying in order for temporal joins to
produce non-trivial results. The characteristics and measures of the time attribute are
described in [Segev & Shoshani 87]. It is assumed throughout that we are dealing with a time
domain which can be represented as a finite or countably infinite set of integers.

Define T; =(Ts,Tg} as the rime-subscheme and R;"=R;, -T; as the
non-—time subscheme of r;. Let x; represent a tuple in r;, and x;(-) the projection of x; on

some relational attribute(s). For a given tuple, [x;(Ts), x; (Tg)] define a bounded interval, and
the time-values immediately preceding and succeeding any of these boundaries are indicated
by a decrement or increment of 1 respectively. Define r; and r, to be T—compatible if T,
and T, are defined over compatible domains. Compatibility does not always mean identical
domains, but we will assume so in this paper. The 1ime intersection operator
x)(T))Nxy(Ty) (or equivalendy, x, intersects x,) returns rrue if
X1(Ts) S x9(Tg) Nx(Tg) 2 x5(Ts), and null otherwise, where r,; and r, are T—compatible .
We shall always assume that any joins on time are always made on T —compatible domains.
Any join between r, and r, will produce r; with scheme R3 =R," U R, U T3, where the
derivation of r3.Tg and r3.Tr which make up r4.T'3 is dependent on the type of temporal join.
Where null values are involved, we use & to indicate the value for a single null attribute, and
(D, ..., D} for a set of such attributes. '

3. TEMPORAL RELATIONAL OPERATORS

In this section we provide a description of temporal comparison operators and definition
of temporal joins.

3.1. Temporal Comparison Operators

Comparisons over time attributes can be made at the explicit constraint level using stan-
dard arithmetic operators, i.e. "=", "#", ">" and "2", or at a higher level of semantics, for
example "intersects” as defined previously. Many such operators have been defined in the
literature [Allen 83, Navathe & Ahmed 86, Adiba & Quang 86, Segev & Shoshani 87]. The
following is a list of the relevant ones:
xy before x5 iff x1(Tg) < xo(Ts)
xy overlaps x5 iff x| (Ts) < xTs) Ax1(Tg) > x(Ts) ANx(Tg) < x(Tkg)

xy starts x5 iff x,(T5) =x(T5) Nx(Tg) < x5(T)

xyequal x5 iff x(Ts) =xo(Ts) Nx(Tg) =x2(TE)'
xy during x5 iff x,(Tg) > xo(Ts) Nx(Tg) < xo(Tg)

xy finishes x4 iff x|(Tg) =x,(Tg) Nx(Tg) > xo(Ts)

"Overlaps”, "starts”, "equal”, "during" and "finishes” are subsets of "intersects"; they are
defined in order to enhance the expressiveness of the query language. The predicate "before"”
can be more broadly defined as t-before, where ¢ 2 0, and measures units of time. This
allows the predicate to be used to specify the meet (¢t = Q) and precede (¢ = 1) predicates, as
well as represent arbitrary ordering relations, such as "x; 2 units of time before x,". Other
temporal predicates not defined can be expressed in terms of conjunctions or disjunctions of
the above set; e.g., the disjoint predicate can be expressed as "x, before x, or x, before

X1 .

3.2. Temporal Joins

A temporal theta-join, T 6—join, is made up of the conjuncrion of two sets of predicates,
Pr and Pgp.. Pr represents the set of time join predicates, i.e. those defined over time attri-
butes, while Pp- represents the set of non-time join predicates. There are three subclasses of
temporal joins that are of special interest, based on the specification of join predicates:
Time intersection class, time union join and event—join. Time intersection type of joins have
a time predicate of r,.T; N r,.T,. Where the non-time predicate has an equality operator, the
join is called temporal equijoin, or TE~join, while if it is null, the join is a fime join or
T—join. In the event that the predicate is a non-equality type, we group it for processing pur-
poses with the rest of the theta-join class. The semantics of a TE —join in the context of
-1NF relations is given in [Clifford & Croker 87].

3.3. Temporal Equijoin

In the TE-join, two tuples x; € r; and x, € r, qualify for concatenation if the non-time
join attributes have the same values and their time intervals intersect. Each concatenated
tuple will have time attribute values that define the non-empty intersection of the two joining
tuples. Note that the concatenation of tuples is non-standard, since only one pair of T and
Tg auributes is part of the result tuples. If ¥;; are the non-time join attributes, where the sub-
scripts i and j denote the relation number and attribute number respectively, then

riTE-JJOINraonY =YyAN - ANY . =Yy,
= {x3lx3(R) =x ;R A
x3(R7) = xR A
(T Nxy(TY #D A
x3(Tg) = max (x(Ts), xo(Ts)) A
x3(Tg) = min(x(Tg), xo(Tg))
}

Given the query "Find the departments and their locations for all employees” on Table 1, we
formulate the following join: EMP_DEP TE-JOIN DEP on EMP_DEP.D# = DEP.D#. The
result is shown in Table 2.

Result | E# | D# | FLOOR | Ts | Tz
El | D3 | 2 1| 7
El | D3 |5 8 | 12
El | D2 |2 13 | 20
E2 | DI | 4 1|17
E2 | D2 |2 18 | 20
E3 | D3 |2 1| 7
E3 | D3 |5 8 | 20

Table 2. Result of TE-join between EMP_DEP and DEP relations

3.4. Time-Join _ -
A T-join causes the concatenation of tuples from the operand relations only if their time
intervals intersect. No predicate on non-time attributes is specified.
ry T-JOIN r,
= (x3l53®) = 1RO A
x3(R2) = xR A
1T Nx T =D A
x3(Ts) = max (x(Ts), x5(Tg)) A
x3(Tg) = min (x,(Tg), x(Tg))
}

Although semantically a T-join is just a TE-join with a null predicate on the non-time attri-
butes, it is a useful operator and is distinct from an optimization perspective. It is needed to
answer the following query on the relations of Table 1: "Find employees who worked when at
least one department had a travel budget greater than 38." The join is formulated as
EMP_DEP T-JOIN DEP_TRAVEL, and the result shown in Table 3.

3.5. Time Union Join

The A TU-join is characterized by a union operation on the time intervals. There may
be other time predicates specified, and we denote the set of such operators as Pr. Pg. can
also be made of any arbitrary predicate. For every pair of tuples x; and x, that qualify on the
other joining predicates, between one and three tuples can be produced, depending on the rela-
tionship between the time intervals of the operands. A TU-join is needed if a pair of tuples is
considered to satisfy Pp. even for cases where x,(T)) N x,(T,) = . For example, the

Result | E# | D# | D# | BDGT | Ts | Tg

El | D3 | D1 40 5| 12
El | D2 | D1 40 13 | 20
E2 | D1 | D1 40 5|17
E2 | D2 | D1 40 18 | 20
E3 | D3 | DI 40 5120

Table 3. Result of T-join between EMP_DEP and DEP_TRAVEL relations

following query requires a TU-join on the relations of Table 1: "Within the time interval
[6,10], was any department’s travel budget less than any employee’s salary 7" (Note that the
particular budget can be at a different time than the employee’s salary.) We formulate the
query as follows: DEP_TRAVEL TU-JOIN EMP_SAL on DEP_TRAVEL.BDGT <
EMP_SAL.SAL, and the resulting relation is shown in Table 4. The union join operation is
somewhat analogous to a cartesian product operator in the conventional database context.

Result | D# | BDGT | E# | SAL

Tg | Tg
D3 | 20 %) D 6 8
D %) El | 22 9 10
D3 | 20 E2 | 30 6 8
(7] %)} E2 | 30 9 10
D3 | 20 E2 | 35 6 8
D 1) E2 | 35 9 10
D3 | 20 E3 | 25 6 8
1) 1) E3 | 25 9 10
2 |2 El1 |20 | 6 | 8
D3| 15 %)} D 9 10
D3 15 El 22 9 10
1] 7] E2 | 30 6 8
D3 | 15 E2 | 30 9 10
%] 1) E2 | 35 6 8
D3 15 E2 | 35 9 10
D %) E3 | 25 6 8
D3 15 E3 | 25 9 10

Table 4. Result of TU-join between DEP_TRAVEL and EMP_SAL

Formally,
ry TU-JOIeronPR'/\FT =ryaVrypury

where

ra; = {x31lx3;R,) =x,(R)) A
x31(R) = x(RHA
Pg- & Pr A
X T) NxyT) = DA
x31(Ts) = max (x (Ts), x2(Ts), & x31(Tg) = min(x(Tg), xo(Tg))
}
ri = {x3lxnp®) = x;®) A
x3,(R;) = {9, ..., D} A
Pg- & Pr A
x; (Ts) < x;(Ts) A
x32(Ts) = x;(Ts) & x3(Tg) = min(x;(Tg), x;(Tg) = 1)
i=lor2, j=2ifi=1landj=1ifi =2
}
ri3 = {x3lp®) =x®) A
x13(R;) = {9, ..., D} A
Pp- & Pr A
x;(Tg) > x;(Tg) A
x33(Tg) = max (x; (Ts), x;(Tg) + 1) & x33(Tg) = x;(Tg)

i=lor2;j=2ifi=1andj=1ifi =2

3.6. Event-Join

An event-join groups several temporal attributes of an entity into a single relaton. This
operation is extremely important because due to normalization, temporal attributes are likely
to reside in separate relations. To illustrate this point, consider an employee relation in a non-
temporal database. If the database is normalized we are likely to find all the attributes of the
employee entity in a single relation. If we now define a subset of the attributes to be tem-
poral (e.g., salary, department, manager, commission-rate, etc.) and they are stored in a single
relation, a tuple will be created whenever an event affects at least one of those attributes.

Consequently, grouping temporal attributes into a single relatdon should be done if their event
points are synchronized. Regardless of the nature of temporal attributes, however, a physical
database design may lead to storing the temporal attributes of a given entity in several
relations-- this is the case for the employee relations in Table 1. The analogy in a conven-
tional database is that the database designer may create 3NF relations, but obviously, the user
is allowed to join them and create an unnormalized resulit.

The event-join operation combines elements of the temporal equijoin and and time union
join. In order to describe an event-join between r, and r,, we first present the operator
TE-OUTERJOIN . A TE-outerjoin is a directional operation from r; to r, (or vice versa). For
a given tuple x; € ry, outerjoin tuples are generated for all points ¢t € [x;(Ts), x1(Tg)] such
that there does not exist x, € r, with x5(S) =x(S) and ¢ € [x,(Ts), xo(Tg)]. Note that all
consecutive points ¢ that satisfy the above condition generate a single outerjoin tuple. Using
those operations the event-join, r; EVENT-JOIN r,, is done as: (1) templ « r; TE-JOIN r,
on S; (2) temp2 « r; TE-OUTERJOIN r, on S; (3) temp3 « r, TE-OUTERJOIN 7, on S;
(4) result « templ U temp2 U temp3. Given the query "Find the managers and commission
rates received by employees”, we formulate the following event-join query: EMP_MGR
EVENT-JOIN EMP_COM. The result of this join is shown in Table 3.

Result | E# MGR | CRATE | Ts | Tg
El | TOM 7] 1 1
El1 | TOM 10% 2 5
El | O 10% 6 7
El | O 12% 8 8
El | MARK 12% 9 | 12
El | JAY 12% | 13 | 20
E2 | RON 7] 1 1
E2 | RON 8% 2 7
E2 | RON 10% 8 | 18
E2 | O 10% | 19 | 20
E3 | RON %) 1| 20

Table 5: Result of Event-Join between EMP_MGR and EMP_COM

We can now provide a formal definition of an event-join. Let / denote an arbitrary
interval [T, Tg] over time; for two intervals [/, and /5, [y g/, if [\.Tg 21,.Tg and
1,.Tg <1,.Tg; the cardinality of an interval, |71, is measured as Iz - T + 11.

ry EVENT-JOIN rq

= {X3IX3(R 1’) = xl(Rl') A

x3(R3) =x5(RH A
X3(T3) =x(T{) NxyTy)
forx,er, &xyer,,
VxsR)=x; (RN
x3R;) = {9, .., DI
x3(T3) =max{IIl | Ig x;(T;)} A
there does not exist x; such that X; (Sj) =x5(5,) & x;(T;) N x3(T3)

fori=1,j=20ri=2j=1

4. FACTORS AFFECTING QUERY OPTIMIZATION

There are several important factors that distinguish the processing environment of tem-
poral databases from conventional ones. We provide a brief introduction into several of them,
and go into more detail over the selectivity estimation problem.

4.1. Data Organization

Temporal data may be organized in several ways. The first is a static organization, which
is relevant for many scientific and statistical analysis. A second organization is to have data
sorted according to a specified key order, reflecting the most common queries on the database.
One possibility is to have data sorted by the key combination of surrogate and time start
(S, Ts). A third organization is to take advantage of the clustering on T that results from
append-only databases. Lastly, in a dynamic database, data may be left unsorted-- a query
optimizer has to determine if it is worthwhile to specifically sort the data before processing a
given query, or if it is better to use an unordered strategy. It is also possible that data is |
organized by a combination of the above methods, in the event that the database is partitioned
into several segments, e.g., into an append-only historical store and a dynamic current time-
window store.

4.2. Specialized Indexing Methods

Conventional indexing techniques may not be satisfactory performance-wise for temporal
data retrieval. Several papers have been published in this field, e.g., [Lum et al 84, Rotem &
Segev 87, Gunadhi & Segev 88, Kolovson & Stonebraker 89]. If appropriate indexing struc-
tures are developed, query response times may improve substantially. Research in this area

10

has focused on single relation operations, but there is the potential for performance gains if
multirelational indexing is pursued.

4.3. Metadata

The maintenance and availability of statistical information about the temporal relation is
a critical aspect of query processing. One important metadata is the lifespan of the relation,
i.e. the time of the first event, and the current time or end of the last event. Where the data-
base is segmented into more than one tier, there must be additional information on the current
time-window. Moreover, statistical metadata may be required for such information as the the
rate of arrival of new surrogate instances, departure of current instances and probability den-
sity functions for temporal attributes. Statistical data may be updated by random sampling for
very large databases, or by a compile time scan.

4.4. Architecture of Query Processor

The final issue is the use, if any, of a convendonal query processor for the processing of
temporal queries. An implementation such as that of [Snodgrass & Ahn 87] is based on the
construction of a temporal database on top of a conventional one. Minimal modification of the
underlying processor is likely to cause inefficiencies in the processing of many temporal

operators.

4.5. Estimation of Selectivities

Accurate cost estimation of relational operations is a crucial component of query optimi-
zation. A substantial amount of literature exists on selectivity estimation, among them by
[Yao 77, Selinger et al 79, Christodoulakis 83, Piatetsky-Shapiro & Connell 84, Lynch 88,
Mularikrishna & Dewitt 88, Ahad et al 89]. However, estimation techniques for snapshot
relations cannot be readily applied to temporal relations. First of all, each relation consists of
time-ordered histories of the modeled surrogates instances. Secondly, histories of surrogate ‘
instances may begin and end at different points in time. Third, some histories may be disjoint,
i.e. there are intervals within it for which no data exists. Fourth, the temporal attributes them-
selves may also be time-dependent in behavior. Clearly, without modeling some or all of
these properties explicitly, simple extension of existing methods will yield inaccurate results.
Further, there are many operations, mainly joins, that cannot be estimated without explicit
modeling, e.g. event-join and intersection join results. We will discuss the basic characteris-
tics, desired measures and modeling approaches that can be taken.

11

4.6. Basic Characteristics of Temporal Relations

The following are the basic characteristics that have to be considered in modeling a rela-
tion with one temporal attribute.

Arrival of surrogate instances. Arrival of a new surrogate instance adds a new Time
Sequence (TS) to the relation. Surrogates instances arrive according to some probability distri-
bution; for example, a company may hire 120 new employees a year, at a uniform rate of 10
a month.

Departure and re-entry of surrogate instances. After arriving, a surrogate may remain for
the duration of the relation’s lifespan, leave permanently at some point, or leave and re-enter
later. All these may be modeled by a single stochastic process, or perhaps by separate
processes. If the surrogate instance is allowed to return, we assume that no new TS will be
generated, instead the old TS of the surrogate instance is extended, but with a resulting
discontinuity in its lifespan. As an example, from the EMP_MGR relation of Table 1, we can
infer that employee E1 "arrives” at time 1, "leaves” at time 6, then "re-joins” at time 9; subse-
quently, a discontinuity is created in the lifespan of its TS, between tuples 1 and 2.

Arrival of tuples for a TS. The arrival process of tuples for a given 7S follows some proba-
bility distribution representing the behavior of that surrogate. Further, each surrogate instance
may have its own tuple arrival process, or may share an identical distribution with the other
instances. '

Distribution of temporal attribute values. We assume that each new tuple marks a change
in the value of the temporal attribute of a particular surrogate; thus two consecutive tuples of
a given TS must have different temporal attribute values, except when a discontinuity exists
between two consecutive tuples. Attribute values may be time-dependent, in which case they
can either be dependent on the event time itself, e.g. salaries paid based on seniority, or
dependent on the value in one or more prior period(s), e.g. the value of a fixed deposit.

4.7. Multi-Attribute Temporal Modeling

A more complex scheme for a temporal relation is one involving multiple temporal attri-
butes. We have to consider the interdependence amongst attributes in terms of both the timing
of events and value changes in temporal attributes. In general, it would not be desirable to
maintain relations where the temporal attributes are not synchronous [Navathe & Ahmed 86].
If such relations are maintained, then each new tuple indicates that one or more attributes
have changed values. On the other hand, If the attributes are synchronous, we can model
them as if they form a single attribute temporal attribute. In this case, the preceding discus-
sions on modeling and measurement parameters directly apply.

12

4.8. Examples of Unary and Binary Estimates Needed

We will outline the main types of estimates needed for query processing purposes by
using examples. For unary operations: (1) "How many employees were in the company
between time 1 and 12?" (2) "Get all the manager records for E#1 between time 2 and 10."
(3) "Find all commission records between time 4 and 10." and (4) "How many tuples in
MANAGER have MGR = TOM between time 1 and 127" For the case of binary estimates,
they pertain to join sizes, i.e. the number of intersecting tuples for intersection type joins, the
number of outerjoin tuples for an event-join, and the result of a time union join.

4.9. One-Attribute Model and Assumptions

We now introduce a model for the case of a single temporal attribute. The basic model
consists of three independent probability distributions to describe the surrogate arrival process,
tuple arrival process, and distribution of temporal attribute values. Several other parameters
are added in order to increase the estimation power of the model.

Surrogate arrivals. Let (N; (¢)} ,¢t =0, 1,2, - - define the number of surrogate instance
that arrive in period (0, ¢] for relation r;. We model {N] (¢)} as a Poisson process with
arrival rate A

Tuple arrivals. Let (NS (1)} ,7=0,1,2, --- be the number of tuple arrivals in period
(0, t] for an arbitrary surrogate instance in relation r;. We model this counting process as a
Poisson process with rate Af. The tuple arrival process for each surrogate instance is indepen-
dent and identically distributed (i.i.d.).

Distribution of temporal attribute values. We model the temporal attribute values at
different change time points during the surrogate instance’s lifespan by an i.i.d. sequence of
uniform random variables over the temporal attribute domain. Although it is incorrect to
assume that for a given surrogate instance, two successive changes can yield the same tem-
poral attribute value, the impact on estimaton should not be significant if the relations and
domain sizes are large. This approach is taken to simplify estimation, since time-dependent
characterization requires knowledge of the actual behavior of the temporal attribute, which
varies widely in reality.

Life-span of each 7S. There are two ways in which to model the length of a surrogate
instance’s lifespan, which we denote as LS; . The first method is to assume that it is as long
as the lifespan of the relation itself, LS,.. The second way is to assume that it follows some
probability distribution with mean LT;" , and that the distribution for each instance in the sur-

rogate domain is an i.i.d. random variable.

13

Treatment of Null Values. The null values in this model will be handled by using a param-
number of data points
number of time points
the proportion of changes within a time sequence or relation that will generate nulls. Implicit

is the assumption of uniformity in the distribution of nulls along surrogates’ lifespans.

eter, called the existence density: 8f = . Therefore 1 — 8F gives us

S. IMPLEMENTATION AND OPTIMIZATION OF TE-JOIN

We evaluate strategies for implementing the temporal equijoin and their associated costs.
As an example, we will use the TE-join previously described in section 3 between the
EMP_DEP and DEP relations on D#. Table 6 shows some statistics about the two relations.
We make the following assumptions: (1) The values of D# is uniformly distributed throughout
both relations; (2) Neither relation is sorted or clustered, and join processing is carried out by
the nested-loop algorithm with DEP as the outer relation; (3) Each disk block holds 50 tuples
of either relation; (4) The result relation, RESULT has 120,000 tuples or 2,400 pages; (5) The
buffer size in main memory is BUF = 20 pages; and (6) No pipelining is used, which means
that the temporary results (TEMP;) are written to disk. The cost C; of step j is measured in
the number of disk I/O’s.

Statistic EMP DEP | DEP
Relation Size (tuples), Ir; | 100,000 2000
Relation Size (pages), B,, 2,000 40
Number of Unique D#, Ir;(D#)! 40 40
Number of Unique E#, Ir;(E#)I 5,000 na. |

Table 6. Statistics for Two Relations

We consider three approaches to the problem. The first illustrates a naive strategy, which
would be the case if a temporal interface were to be built on top of a conventional system.
The second strategy employs a standard theta-join operator where the time stamps are treated
as ordinary attributes. In this case, a change is needed in the query processor to replace stan-
dard concatenation of tuples by its temporal equivalent. The third is an approach specifically
designed for the TE-join, and requires a major change to the optimizer.

5.1. Naive Approach

In this strategy, the handling of the time attributes is ignored at the level of the conven-
tional DBMS. Thus a simple equijoin on the non-time joining domains is executed, and the
result is retrieved by a special temporal processor which carries out the restrictions over time

14

attributes, creates the new time stamps for qualifying tuples, and projects the final result. In
other words, the logical steps carried out are as follows:

Step 1. TEMP | « EMP_DEP [D# = D#|DEP
Step 2. TEMP; < O(gmp_DEPT; < DEPTg) A (EMP_DEPTy 2 DEPT;)T EMP)
Step 3. TEMP 3 ¢ T1emP - Tous osr - Towr TEMP) CONCATENATE
(TEMP4.Ts = max(EMP_DEPTs, DEP.Ts),
TEMP 3.Tg = min(EMP_DEP.T;, DEP.T¢)}
Step 4. RESULT « TTqvauz. ps. Ty, 7,)TEMP3)

We divide the operation into four steps for clarity of exposition. The CONCATENATE
operator in Step 3 is introduced to allow the appending of attributes not directly created by a
join or cross product. Note also that in Step 3 we distinguish between the similarly named
time-stamps in the temporary relation by qualifying them on their original relations. The I/O
cost is computed in the following manner. For step 1,

Bpgp
X B + B ,
BUF EMP__DEP] TEMP,

Cl =BDEP +

which represents the cost of nested-loop execution plus the cost of writing the temporary
result to disk. TEMP, is the result of a conventional equijoin, which means that a cross pro-
duct on the time domains is carried out for qualifying tuples. Given our uniformity assump-
tion,

Cy =20 + 2 x 2,000) + -EMP Dsf)P 1% 50 _ 104,02,

We assume that steps 2 to 4 are executed in a single scan, i.e. Co4 = Prgyp, + PresuLr
= 102,400. The total cost of this approach is therefore 206,420 disk I/O’s.

5.2. Theta-Join Strategy

In this strategy, we convert the intersection predicate on time into a conjunction of ine-
quality predicates on the time attributes, and treat them as "ordinary” predicates. The query is
then processed as a conventional theta-join. Since the creation and concatenation of the new
time attributes is unique to temporal data, these operations will still be carried out separately
by a temporal processor. The strategy is made up of the foilowing steps:

Step 1. TEMP | « EMP_DEP [D# = D#DEP WHERE

15

EMP_DEPTg < DEP.T; A
EMP _DEP.Ty 2 DEP.Tg
Step 2. TEMP 5 « TTTEMP, - Taur osr - Towr TEMP 1) CONCATENATE
(TEMP,.Tg = max(EMP_DEPTs, DEPT;),
TEMP ,.Tz = min(EMP_DEP.Tg, DEP.T;))
Step 3. RESULT « [Taume. p#. T, 7y TEMP)

Steps 2 and 3 are identical to steps 3 and 4 of the previous strategy. The total cost is the sum
of the cost of reading in the two relations by the nested-loop method, the cost of writing
TEMP, and the cost of reading in TEMP, and writing RESULT . Since TEMP | and RESULT
are of the same size, the total cost comes to 4,020 + 3 x 2,400 = 11,220. This is considerably
lower than the previous method. In this case we were able to transform a temporal operation
to an equivalent conventional one (from the point of view of optimization); we are con-
strained, however, in this approach to the non-temporal nature of a traditional optimizer. Also,
some temporal operators cannot be translated into equivalent relational operators, e.g. the
event-join operator.

5.3. Directly Implementing TE-JOIN

The TE-join operator can be implemented independently. There are two primary issues:
(1) The manner in which comparison between the tuples is carried out and (2) How concate-
nation of the new time attributes is achieved. The previous approaches required time-stamp
comparisons to be evaluated twice, but we can create the new time stamps for the result tuple,
ie. find Ts = max(EMP_DEP.Tg, DEPTs) and Tg = min(EMP_DEP.Tg, DEP.T¢), then
concatenate them iff they are satisfied by the predicate Tg < T¢. This test substitutes for the
intersection predicate on the two relations’ time subschemes.

In algebraic terms, we execute the query as follows:

s oryoa, r;»["A,r, Ay = rady ATE S TE] ((r, X ry) CONCATENATE (T3, T7))
7

The following procedure executes it.

16

foreachx; € r {
for each x5 € r, {
find T and Tg
forp € Py APp
if not p, do the next x4
else output tuple on scheme (R," U R, U (Ts, Tg))

The total cost is merely the cost of reading in the relations for the nested-loop method
and the cost of writing the output. This comes to 6,420 pages, which is cheaper than the cost
of the second strategy. Bear in mind that the sizes of the example relations are relatively
small, and the savings would be even more significant for joins involving very large relations.

6. SUMMARY AND FUTURE RESEARCH

We have introduced and defined four classes of temporal joins: Theta, intersection, union
and event joins. We believe that these joins can be used for a large number of join-type
queries which have been introduced but not formally defined or identified by others. More-
over, we have developed a framework within which we can evaluate techniques that can
optimize the execution of queries involving such joins. We show by example that there are
inherent differences between using conventional query processors and developing specialized
procedures and algebra to solve these queries. We must remember that the time attributes in a
tuple-versioning model must always be treated differently than other attributes, although in
many algebraic operations, they may be qualified with the same type of predicates as non-time
atributes. Further, we showed that the selectivity estimation problem is of even greater
importance for temporal relations, and that it cannot be modeled in the same way as conven-
tional relations.

Current and future research address the following issues:

e Developing selectivity estimates based on the model presented, and to expand the scope

and sophistication of the model itself. There is also a tradeoff between accuracy of est-
mates, and the expense of maintaining the necessary statistics and deriving the estimates.

e Investigating the optimization of each class of join. For the temporal equijoin, we are
looking at algorithms that exploit data ordering and specialized indexing. Further, the
event-join operator is likely to be a commonly used operator, and yet it has no
equivalence in the "snapshot” database context. Comprehensive tests of the efficiency of
alternatives algorithms are necessary.

17

e Extending the investigation of temporal operators to those involving temporal ordering
and aggregation.

e Continuing our study into the design of efficient data structures, in order to improve the
data retrieval capability of a temporal DBMS.

REFERENCES

[Adiba & Quang 86] Adiba, M, Quang, N.B., Historical Multi-Media Databases, Proceedings
of the International Conference on Very Large Databases, Aug. 1986, pp. 63-70.

[Ahad et al 89] Ahad, R., Rao, K.V.B,, McLeod, D., On Estimating the Cardinality of the
Projection of a Database Relation, ACM Transactions on Database Systems, 14, 1, Mar.
1989, pp. 28-40.

[Ariav 86] Ariav, G., A Temporally Oriented Data Model, ACM Transactions on Database
Systems, 11, 4, Dec. 1986, pp. 499-527.

[Christodoulakis 83] Christodoulakis, S., Estimating Record Selectivities, Information Systems,
8, 2, 1983, pp. 105-115. '

[Clifford & Croker 87] Clifford, J.,, Croker, A., The Historical Relational Data Model
(HRDM) and Algebra Based on Lifespans, Proceedings of the International Conference
on Data Engineering, Feb. 1987, pp. 528-537.

[Clifford & Tansel 85] Clifford, J., Tansel, A., On an Algebra for Historical Relational Data-
bases: Two Views, Proceedings of ACM SIGMOD International Conference on Manage-
ment of Data, May 1985, pp. 247-265.

[Kolovson & Stonebraker 89] Kolovson, C., Stonebraker, M., Indexing Techniques for Histor-
ical Databases, Proceedings of the International Conference on Data Engineering, Feb.
1989, pp. 127-139,

[Gunadhi & Segev 88] Gunadhi, H., Segev, A., Physical Design of Temporal Databases,
Lawrence Berkeley Lab Technical Report LBL-24578, January 1988.

[Lynch 88] Lynch, C.A., Selectivity Estimation and Query Optimization in Large Databases
.with Highly Skewed Distribution of Column Values, Proceedings of the Internarional
Conference on Very Large Databases, Aug. 1988, pp. 240-251.

[(Lum et al 84] Lum, V., Dadam, P., Erbe, R., Guenauer, J., Pistor, P., Walch, G., Werner, H.,
Woodfill, J., Designing DBMS Support for the Temporal Dimension, Proceedings of
ACM SIGMOD lInternational Conference on Management of Data, Jun.1984, pp. 115-
130.

18

[Mulakrishna & DeWitt 88] Mulakrishna, M., DeWitt, D.J., Equi-Depth Histograms for
Estimating Selectvity Factors for Multi-Dimensional Queries, Proceedings of ACM SIG-
MOD International Conference on Management of Data, May 1988, pp. 28-36.

[Klopproge & Lockemann 83] Klopproge, M.R., Lockemann, P.C., Modeling Information
Preserving Databases: Consequences of the Concepts of Time, Proceedings of the Inter-
national Conference on Very Large Databases, Aug. 1983, pp. 399-416.

[Navathe & Ahmed 86] Navathe, S., Ahmed, R., A Temporal Relational Model and a Query
Language, UF-CIS Technical Report TR-85-16, Univ of Florida, April 1986.

[Piatetsky-Shapiro & Connell 84] Piatetsky-Shapiro, G., Connell, C., Accurate Estimation of
the Number of Tuples Satisfying a Condition, Proceedings of ACM SIGMOD Interna-
tional Conference on Management of Data, May 1984, pp. 256-276.

[Rosenthal & Reiner 84] Rosenthal, A., Reiner, D., Extending the Algebraic Framework of
Query Processing to Handle Outerjoins Proceedings of the International Conference on
Very Large Databases, Aug. 1984, pp. 334-343.

[Rotem & Segev 87] Rotem, D., Segev, A, Physical Organization of Temporal Data,
Proceedings of the International Conference on Data Engineering, Feb. 1987, pp. 547-
553.

[Segev & Gunadhi 89] Segev, A., Gunadhi, H., Event-Join Optimization in Temporal Rela-
tional Databases, Proceedings of the International Conference on Very Large Databases,
Aug. 1989. pp. 205-215.

[Segev & Shoshani 87] Segev, A., Shoshani, A., Logical Modeling of Temporal Databases,
Proceedings of ACM SIGMOD International Conference on Management of Data, May
1987, pp. 454-466.

[Segev & Shoshani 88a] Segev, A., and Shoshani, A., The Representation of a Temporal Data
Model in the Relational Environment, Lecture Notes in Computer Science, Vol 339, M.
Rafanelli, J.C. Klensin, and P. Svensson (eds.), Springer-Verlag, 1988, pp 39-61. '

[Segev & Shoshani 88b] Segev, A., Shoshani, A., Functionality of Temporal Data Models and
Physical Design Implementations, /[EEE Data Engineering, 11, 4, Dec. 1988, pp. 38-45.

[Selinger et al 79] Selinger, P.G., Astrahan, M.M., Chamberlain, D.D., Lorie, R.A., Price,
T.G., Access Path Selection in a Relational Database System, Proceedings of ACM SIG-
MOD International Conference on Management of Data, May 1979, pp.23-34.

[Shoshani & KaWagoe 86] Shoshani, A., Kawagoe, K., Temporal Data Management, Proceed-
ings of the International Conference on Very Large Databases, Aug. 1986, pp. 79-88.

19

[Snodgrass 87] Snodgrass, R., The Temporal Query Language TQuel, ACM Transactions on
Database Systems, Jun. 1987, pp. 247-298.

[Snodgrass & Ahn 85] Snodgrass, R., Ahn, I, A Taxonomy of Time in Databases, Proceed-
ings of ACM SIGMOD International Conference on Management of Data, May 1985, pp.
236-246.

[Snodgrass & Ahn 87] Snodgrass, R., Ahn, I, Performance Analysis of Temporal Queries,
TempIS Document No. 17, Department of Computer Science, University of North Caro-
lina, August 1987.

[Yao 77] S.B. Yao, Approximating Block Accesses in Database Organizations, Communica-
tions of the ACM, 20, 4, Apr. 1977, pp. 260-261.

20

