
Qo^F -^604^0^--/

LBL-26417

v

l

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA n «H Cf'Ajt,f > i.' ■' i' I' - 44/v’f

J i >
Information and Computing 
Sciences Division

To be presented at the 5th International Conference 
on Statistical and Scientific Database Management, 
Charlotte, NC, April 3-5, 1990, and 
to be published in the Proceedings

A Framework for Query Optimization in 
Temporal Databases

MAY 3 0 Wo

H. Gunadhi and A. Segev

November 1989

DISTRIBUTION T! !!P DOC'jr.IT IS UNLIMITED

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



DISCLAIMER

This document was prepared as an account of work sponsored 
by the United States Government. Neither the United States 
Government nor any agency thereof, nor The Regents of the 
University of California, nor any of their employees, makes any 
warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of 
any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial products process, or 
service by its trade name, trademark, manufacturer, or other­
wise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government 
or any agency thereof, or The Regents of the University of Cali­
fornia. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States 
Government or any agency thereof or The Regents of the 
University of California and shall not be used for advertising or 
product endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer.



LBL-26417

A FRAMEWORK FOR QUERY OPTIMIZATION IN 
TEMPORAL DATABASES

LBL—26417 

DE90 011339
Himawan Gunadhi & Arie Segev

Computing Science Research & Development 
Information & Computing Sciences Division 

Lawrence Berkeley Laboratory 
1 Cyclotron Road 

Berkeley, California 94720

and

Walter A. Haas School of Business 
The University of California, Berkeley 

Berkeley, California 94720

November 1989

Proceedings in the 5th International Conference on Statistical & Scientific 
Database Management, Charlotte, NC, April 3-5,1990

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

This work was supported by the Director, Office of Energy Research, Applied Mathematical 
Sciences Research Program, of the U.S. Department of Energy under Contract No. DE-AC03- 
76SF00098.



LBL-26417 
Dec. 1988

A FRAMEWORK FOR QUERY OPTIMIZATION IN 
TEMPORAL DATABASES

Himawan Gunadhi and Arie Segev

Walter A. Haas School of Business 
The University of California and 

Computing Sciences Research and Development Department 
Lawrence Berkeley Laboratory 

Berkeley, California 94720

Revised Nov. 1989

Abstract
We investigate issues pertaining to query processing of temporal databases in a relational 

environment. Tuple-versioning of relations is the adopted method of temporal data representa­
tion. New operators are necessary in order to exploit the richer semantics of temporal queries. 
We define four types of temporal joins— theta-join, time intersection, time union and the 
event-join. Factors that affect processing strategies are discussed, especially the problem of 
estimating data selectivity for various temporal operations. Strategies for implementing the 
temporal equijoin operator are evaluated.

(Forthcoming in the 5th Int. Conf. on Statistical & Scientific Database Management)

This work was supported by the Applied Mathematical Sciences Research Program of the 
Office of Energy Research, U.S. Department of Energy under Contract DE-AC03-76SF00098.



1. INTRODUCTION AND MOTIVATION

The importance of temporal data models lies in their ability to capture the complexities 
of real world phenomena which are inherently dependent on time. Traditional approaches, 
such as the relational model of data, are incapable of handling all the nuances of such 
phenomena. Temporal models open up the possibility for new types of operations to enhance 
the retrieval power of a database management system (DBMS). One of the potential draw­
backs of such models is the lack of processing efficiency- the size of data and the complexity 
of time-oriented queries may yield unsatisfactory performance.

Many papers have been published on logical models that incorporate to varying degrees 
the time dimension. Most fall into the following categories: (1) Extensions to the relational 
model, e.g. [Clifford & Tansel 85, Ariav 86, , Clifford & Croker 87, Snodgrass 87]; (2) 
Enhancements of the Entity-Relationship model, e.g. [Klopproge & Lockemann 83, Adiba & 
Quang 86], and (3) Independent modeling such as the concept of the 
Time Sequence Collection (JSC) by [Shoshani & Kawagoe 86, Segev & Shoshani 87]. Many 
operators have been introduced in these papers, although in the relational context, the primary 
emphasis has been on their integration into the syntax of established query languages, such as 
SQL and QUEL. This is motivated by the desire to implement a temporal DBMS by minimal 
modification to current relational technology.

Our approach is to look into the functional requirements of queries on a temporal rela­
tional database. From there we define a set of fundamental join operators and investigate 
implementation and optimization strategies. We are motivated in part by the desire to study 
the feasibility of implementing the TSC model in relational form, or on top of an existing 
relational DBMS. In this paper, we do not attempt to define a complete set of temporal rela­
tional algebra, instead we focus on temporal joins, classified according to the attributes and 
operators specified in the join predicates. It is our belief that these joins should be capable of 
capturing the semantics of most, if not all, of the temporal join operators found in the litera­
ture. We outline several major issues that affect the design of query processing methods, with 
special emphasis on selectivity estimation of temporal relations for various operations. 
Finally, we look at a specific temporal operator, the temporal equijoin, and evaluate alterna­
tive strategies for its implementation.

The rest of the paper is organized as follows: In the next section, we discuss the rela­
tional representation of temporal data, and introduce basic definitions. In section 3, we define 
and discuss temporal operators and joins. In section 4, factors that impact query optimization 
are discussed, elaborating on mathematical modeling of the behavior of temporal relations. 
Implementation and efficiency issues penaining to the temporal equijoin operator is explored 
in section 5. Finally, section 6 offers conclusions and an outline of future work.

1



Our contributions are:

• The classification and definition of four classes of temporal relational joins: Theta, Time 
Intersection, Time Union and Event joins. We feel that these definitions are needed for 
future research in the area of temporal query optimization.

• An introduction to the problem of selectivity measurement with respect to temporal rela­
tions, and how to model the dependencies that exist within such relations. As in tradi­
tional query optimization, deriving good selectivity estimates is of fundamental impor­
tance. In this paper we present the first step towards that goal.

• Evaluation of implementation strategies for the temporal equijoin, in the context of a 
relational environment To the best of our knowledge this paper is the first to address 
the issue.

2. RELATIONAL REPRESENTATION AND DEFINITIONS

A convenient way to look at temporal data is through the concepts of Time Sequence 
(TS) and Time Sequence Collection (TSC) [Segev & Shoshani 87]. A TS represents a his­
tory of a temporal attribute(s) associated with a particular instance of an entity or a relation­
ship. The entity or relationship is identified by a surrogate (or equivalently, the 
time-invariant key). For example, the salary history of an employee is a TS. A TS is 
characterized by several properties, such as the time granularity, lifespan, type, and interpola­
tion rule to derive data values for non-stored time points. In this paper, for the sake of expo- 
sitional convenience, we concentrate on one common type of data - stepwise constant 
(SWC). SWC data represents a state variable whose values are determined by events and 
remains the same between events; the salary attribute represents SWC data. Time sequences 
of the same surrogate and attribute types can be grouped into a time sequence collection 
(TSC), e.g. the salary history of all employees forms a TSC. There are various ways to 
represent temporal data in the relational model; detailed discussion can be found in [Segev & 
Shoshani 88a]. We assume a time-interval representation, as shown in the examples of Table 
1: The relations EMP_SAL, EMP_COM, EMP_MGR, EMP_DEP, DEP and DEP_TRAVEL 
represent employee salaries, commission rates of employees, employees’ managers, employ­
ees’ departments, department locations and departmental travel budgets respectively.

We use the terms surrogate (S), temporal attribute, and time attribute (Ts or TE) 
when referring to attributes of a relation. For example, in Table 1, the surrogate of the 
EMP_SAL relation is E#, SAL is the temporal attribute, and Ts and TE arc time attributes. 
We assume that all relations are in first temporal normal form (1TNF) [Segev & Shoshani 
88a]. 1TNF does not allow a surrogate instance to have more than one value of a temporal

2



EMP SAL EMP COM E#C RATE

EMP MGR E# MGR Ts Te EMP DEP E# D# Ts Te
El TOM 1 5 El D3 1 12
El MARK 9 12 El D2 13 20
El JAY 13 20 E2 D1 1 17
E2 RON 1 18 E2 D2 18 20
E3 RON 1 20 E3 D3 1 20

DEP D# FLOOR Ts Te DEP TRAVEL D# BDGT TS Te
D1 4 1 20 D1 30 1 4
D2 1 1 7 D1 40 5 20
D2 2 8 20 D2 35 1 20
D3 2 1 7 D3 20 1 8
D3 5 8 20 D3 15 9 20

Table 1. Examples of Temporal Relations

attribute at a given time point. The implication for a temporal relation is that there are no two 
intersecting time intervals for a given surrogate instance. Whenever it is clear from the con­
text, we will use the term "surrogate" instead of "surrogate instance". For the same reason, we 
often refer to the "temporal relation" as "relation".

2.1. Basic Notations

Let r,-(Ri) be a relation on scheme /?,• = {5t-, Aily .... A^, TS,TE}, where S’,- is the surro­
gate of the relation with domain dom(Si), and TE are the time-start and time-end attributes 
respectively, with dom(Ts) = dom(TE). Aij denotes the attribute with a corresponding 
domain dom (A^). We distinguish between the surrogate and other non-time attributes for 
expositional convenience. It is not necessary to distinguish between temporal and non- 
temporal A^ ’s, although one or more should be time-varying in order for temporal joins to 
produce non-trivial results. The characteristics and measures of the time attribute are 
described in [Segev & Shoshani 87]. It is assumed throughout that we are dealing with a time 
domain which can be represented as a finite or countably infinite set of integers.

Define 7,- = (7$, TE} as the time-subscheme and R;' = Ri - T( as the 
non -time subscheme of r{-. Let x, represent a tuple in r,, and x,( • ) the projection of x,- on

3



some relational attribute(s). For a given tuple, *,■ (TE)] define a bounded interval, and
the time-values immediately preceding and succeeding any of these boundaries are indicated 
by a decrement or increment of 1 respectively. Define and r2 to be T-compatible if 
and r2 are defined over compatible domains. Compatibility does not always mean identical 
domains, but we will assume so in this paper. The time intersection operator 
Xi(Ti) nx2(T2) (or equivalently, x^ intersects x?) returns true if 
Xi(Ts) ^ x2(Te) ^Xi(Te) >x2(Ts), and null otherwise, where rx and r2 are T-compatible. 
We shall always assume that any joins on time are always made on T -compatible domains. 
Any join between rx and r2 will produce r3 with scheme /?3 =/?/ u /?2' u r3, where the 
derivation of r^-T^ and r^.Tg which make up r3.r3 is dependent on the type of temporal join. 
Where null values are involved, we use 0 to indicate the value for a single null attribute, and 
{0, ..., 0} for a set of such attributes.

3. TEMPORAL RELATIONAL OPERATORS

In this section we provide a description of temporal comparison operators and definition 
of temporal joins.

3.1. Temporal Comparison Operators

Comparisons over time attributes can be made at the explicit constraint level using stan­
dard arithmetic operators, i.e. V\ ">" and or at a higher level of semantics, for 
example "intersects" as defined previously. Many such operators have been defined in the 
literature [Allen 83, Navathe & Ahmed 86, Adiba & Quang 86, Segev & Shoshani 87]. The 
following is a list of the relevant ones: 
xx before x2 iff x^Tg) <x2(Ts)
xx overlaps x2 iff j^GTy) < x2(Ts) ^xx{TE) > x2(Js) ^xx(TE) < x2(JE) 
xx starts x2 iff xx(Ts) =x2(Ts) ^xx(TE) <x2(Ts) 
xx equal x2 iff xx(Ts) = x2(Ts) *xx(TE) = x2(TE) 

xx during x2 iff xx(Ts) > x2(Ts) ^xx(TE) <x2{TE) 
xx finishes x2 iff xxfTE) = x2(JE) ^xx(Ts) > x2(Ts)

"Overlaps", "starts", "equal", "during" and "finishes" are subsets of "intersects"; they are 
defined in order to enhance the expressiveness of the query language. The predicate "before" 
can be more broadly defined as t-before, where f > 0, and measures units of time. This 
allows the predicate to be used to specify the meet (t = 0) and precede (t = 1) predicates, as 
well as represent arbitrary ordering relations, such as "x! 2 units of time before x2. Other 
temporal predicates not defined can be expressed in terms of conjunctions or disjunctions of 
the above set; e.g., the disjoint predicate can be expressed as "x x before x2 or x2 before

4



II*1 .

3.2. Temporal Joins

A temporal theta-join, TO-join, is made up of the conjunction of two sets of predicates, 
PT and Pr>. Pj represents the set of time join predicates, i.e. those defined over time attri­
butes, while Pr' represents the set of non-time join predicates. There are three subclasses of 
temporal joins that are of special interest, based on the specification of join predicates: 
Time intersection class, time union join and event-join. Time intersection type of joins have 
a time predicate of rx.Tx n r2.r2. Where the non-time predicate has an equality operator, the 
join is called temporal equijoin, or TE-join, while if it is null, the join is a time join or 
T-join. In the event that the predicate is a non-equality type, we group it for processing pur­
poses with the rest of the theta-join class. The semantics of a TE-join in the context of 
-INF relations is given in [Clifford & Croker 87].

3.3. Temporal Equijoin

In the TE-join, two tuples xx e rx and x2 e r2 qualify for concatenation if the non-time 
join attributes have the same values and their time intervals intersect. Each concatenated 
tuple will have time attribute values that define the non-empty intersection of the two joining 
tuples. Note that the concatenation of tuples is non-standard, since only one pair of Ts and 
Tg attributes is part of the result tuples. If Ty- are the non-time join attributes, where the sub­
scripts i and j denote the relation number and attribute number respectively, then

7-! TE-JOIN r2 on Tn = Ta A • • • A

= {jEjlljO?!')-*,(«,') A

— ^2(^2') ^

x^T^ nx2(T:j) *0 A 

x3(Ts) = maxix^Ts), x2(Ts)) A 

x2(Te) = minix^Tg), x2(Tg))

}

Given the query "Find the departments and their locations for all employees" on Table 1, we 
formulate the following join: EMP_DEP TE-JOIN DEP on EMP_DEP.D# = DEP.D#. The 
result is shown in Table 2.

5



Result E# D# FLOOR TS Te
El D3 2 1 7
El D3 5 8 12
El D2 2 13 20
E2 D1 4 1 17
E2 D2 2 18 20
E3 D3 2 1 7
E3 D3 5 8 20

Table 2. Result of TE-join between EMP_DEP and DEP relations

3.4. Time-Join

A T-join causes the concatenation of tuples from the operand relations only if their time 
intervals intersect No predicate on non-time attributes is specified.

/*! T-JOIN r2

= {x3\x3(Rl')=Xl(R1,)^

— xiiRi) ^

n jr2(T2) ^ 0 A

x3(rj) = max{xx(Js), x2(Ts)) A 

x3(Te) = min (x^T^), x2(TE))

}

Although semantically a T-join is just a TE-join with a null predicate on the non-time attri­
butes, it is a useful operator and is distinct from an optimization perspective. It is needed to 
answer the following query on the relations of Table 1: "Find employees who worked when at 
least one department had a travel budget greater than 38." The join is formulated as 
EMPJDEP T-JOIN DEP_TRAVEL, and the result shown in Table 3.

3.5. Time Union Join

The A TU-join is characterized by a union operation on the time intervals. There may 
be other time predicates specified, and we denote the set of such operators as PT. PR> can 
also be made of any arbitrary predicate. For every pair of tuples X\ and x2 that qualify on the 
other joining predicates, between one and three tuples can be produced, depending on the rela­
tionship between the time intervals of the operands. A TU-join is needed if a pair of tuples is 
considered to satisfy PR- even for cases where Xi(Tj) n x2(T2) = 0. For example, the

6



Result E# D# D# BDGT TS TE
El D3 D1 40 5 12
El D2 D1 40 13 20
E2 D1 D1 40 5 17
E2 D2 D1 40 18 20
E3 D3 D1 40 5 20

Table 3. Result of T-join between EMP_DEP and DEP_TRAVEL relations

following query requires a TU-join on the relations of Table 1: "Within the time interval 
[6,10], was any department’s travel budget less than any employee’s salary ?" (Note that the 
particular budget can be at a different time than the employee’s salary.) We formulate the 
query as follows: DEP_TRAVEL TU-JOIN EMP_SAL on DEP_TRAVEL.BDGT < 
EMP_SAL.SAL, and the resulting relation is shown in Table 4. The union join operation is 
somewhat analogous to a cartesian product operator in the conventional database context

Result D# BDGT E# SAL Ts te

D3 20 0 0 6 8
0 0 El 22 9 10
D3 20 E2 30 6 8
0 0 E2 30 9 10
D3 20 E2 35 6 8
0 0 E2 35 9 10
D3 20 E3 25 6 8
0 0 E3 25 9 10
0 0 El 20 6 8
D3 15 0 0 9 10
D3 15 El 22 9 10
0 0 E2 30 6 8
D3 15 E2 30 9 10
0 0 E2 35 6 8
D3 15 E2 35 9 10
0 0 E3 25 6 8
D3 15 E3 25 9 10

Table 4. Result of TU-join between DEP_TRAVEL and EMP_SAL

Formally,

rl TU-JOIN r2 on PR> ^ PT = r31 u r32 u r33

where

7



r31 = U3ilj:3i(/?i0 =A:l(/^l,) A 

■*3l(^2,) —x2^l) ^

PR* & Pf ^

X\(Ti) ^ x^Ti) ^ 0 ^

X21(JS) = maxQc^Ts), x2(Ts)), Sc x3l(TE) = min(xi(TE), x2(TE))

}

r32 = t-*32^32(^i0 = xi(Ri') ^

x32(Rj') = {0, .... 0} A 

.Pfl' & Pj A 

XiiTs) < Xj(Ts) ^

x32(Ts) = Xi(Ts) Scx32(Xe) = min(Xi(TE), Xj(Ts) - 1) 

i =1 or 2; y = 2 if / = 1 and y = 1 if / = 2

}

r33 = {-^33l^33(^i0 = Xi(Ri') ^

x33(Rj') = {0,...,0}/^

PR* & Pj ^ 

xi(TE)>xj(TE)h

x33(Ts) = moxCXjCr^), *;(r£) +1) & x33(r£) = x,(r£) 

i =1 or 2; y = 2 if / = 1 and y = 1 if t = 2

}

3.6. Event-Join

An event-join groups several temporal attributes of an entity into a single relation. This 
operation is extremely important because due to normalization, temporal attributes are likely 
to reside in separate relations. To illustrate this point, consider an employee relation in a non­
temporal database. If the database is normalized we are likely to find all the attributes of the 
employee entity in a single relation. If we now define a subset of the attributes to be tem­
poral (e.g., salary, department, manager, commission-rate, etc.) and they are stored in a single 
relation, a tuple will be created whenever an event affects at least one of those attributes.

8



Consequently, grouping temporal attributes into a single relation should be done if their event 
points are synchronized. Regardless of the nature of temporal attributes, however, a physical 
database design may lead to storing the temporal attributes of a given entity in several 
relations— this is the case for the employee relations in Table 1. The analogy in a conven­
tional database is that the database designer may create 3NF relations, but obviously, the user 
is allowed to join them and create an unnormalized result.

The event-join operation combines elements of the temporal equijoin and and time union 
join. In order to describe an event-join between and r2, we first present the operator 
TE—OUTERJOIN. A TE-outerjoin is a directional operation from rl to r2 (or vice versa). For 
a given tuple Xi e rlt outeijoin tuples are generated for all points t s [x^Ty), ^i(T£)] such 
that there does not exist x2 e r2 with x2(S) =x1(5) and t e [x2(Ty), x2(T£)]. Note that all 
consecutive points t that satisfy the above condition generate a single outeijoin tuple. Using 
those operations the event-join, rx EVENT-JOIN r2, is done as: (1) tempi <— rx TE-JOIN r2 
on 5; (2) temp2 4- rl TE-OUTERJOIN r2on S; (3) temp3 <— r2 TE-OUTERJOIN rl on S; 
(4) result <— tempi u temp2 u temp3. Given the query "Find the managers and commission 
rates received by employees", we formulate the following event-join query: EMP_MGR 
EVENT-JOIN EMP_COM. The result of this join is shown in Table 5.

Result E# MGR C RATE Ts Te
El TOM 0 1 1
El TOM 10% 2 5
El 0 10% 6 7
El 0 12% 8 8
El MARK 12% 9 12
El JAY 12% 13 20
E2 RON 0 1 1
E2 RON 8% 2 7
E2 RON 10% 8 18
E2 0 10% 19 20
E3 RON 0 1 20

Table 5: Result of Event-Join between EMP MGR and EMP COM

We can now provide a formal definition of an event-join. Let / denote an arbitrary 
interval [Ty, r£] over time; for two intervals Ii and /2, /i C/2 ^ /i-Ty >I2.TS and 
I\.Te <, l2.TE\ the cardinality of an interval, 1/ I, is measured as \TE -Ts + ll.

rl EVENT-JOIN r2

= (x3l*3(J?1') = jr1(RI')A

9



XliRz) — X2^2) A

■*3(^*3) = 1) ^ •*2(^*2)

for^! s rj «fe x2 e r2,

^3(^0 = {0, ...,0}^

X3(r3) = max{l/I l/cx,^)} A

there does not exist Xj such thatx; (5;) = x3(S1) & Xj (Tj) n x^T^) 

for / = 1, y = 2 or / = 2, y = 1

}

4. FACTORS AFFECTING QUERY OPTIMIZATION

There are several important factors that distinguish the processing environment of tem­
poral databases from conventional ones. We provide a brief introduction into several of them, 
and go into more detail over the selectivity estimation problem.

4.1. Data Organization

Temporal data may be organized in several ways. The first is a static organization, which 
is relevant for many scientific and statistical analysis. A second organization is to have data 
sorted according to a specified key order, reflecting the most common queries on the database. 
One possibility is to have data sorted by the key combination of surrogate and time start 
(5, Ts). A third organization is to take advantage of the clustering on Ts that results from 
append-only databases. Lastly, in a dynamic database, data may be left unsorted-- a query 
optimizer has to determine if it is worthwhile to specifically sort the data before processing a 
given query, or if it is better to use an unordered strategy. It is also possible that data is 
organized by a combination of the above methods, in the event that the database is partitioned 
into several segments, e.g., into an append-only historical store and a dynamic current time- 
window store.

4.2. Specialized Indexing Methods

Conventional indexing techniques may not be satisfactory performance-wise for temporal 
data retrieval. Several papers have been published in this field, e.g., [Lum et al 84, Rotem & 
Segev 87, Gunadhi & Segev 88, Kolovson & Stonebraker 89]. If appropriate indexing struc­
tures are developed, query response times may improve substantially. Research in this area

10



has focused on single relation operations, but there is the potential for performance gains if 
multirelational indexing is pursued.

4.3. Metadata

The maintenance and availability of statistical information about the temporal relation is 
a critical aspect of query processing. One important metadata is the lifespan of the relation, 
i.e. the time of the first event, and the current time or end of the last event Where the data­
base is segmented into more than one tier, there must be additional information on the current 
time-window. Moreover, statistical metadata may be required for such information as the the 
rate of arrival of new surrogate instances, departure of current instances and probability den­
sity functions for temporal attributes. Statistical data may be updated by random sampling for 
very large databases, or by a compile time scan.

4.4. Architecture of Query Processor

The final issue is the use, if any, of a conventional query processor for the processing of 
temporal queries. An implementation such as that of [Snodgrass & Ahn 87] is based on the 
construction of a temporal database on top of a conventional one. Minimal modification of the 
underlying processor is likely to cause inefficiencies in the processing of many temporal 
operators.

4.5. Estimation of Selectivities

Accurate cost estimation of relational operations is a crucial component of query optimi­
zation. A substantial amount of literature exists on selectivity estimation, among them by 
[Yao 77, Selinger et al 79, Christodoulakis 83, Piatetsky-Shapiro & Connell 84, Lynch 88, 
Mularikrishna & Dewitt 88, Ahad et al 89]. However, estimation techniques for snapshot 
relations cannot be readily applied to temporal relations. First of all, each relation consists of 
time-ordered histories of the modeled surrogates instances. Secondly, histories of surrogate 
instances may begin and end at different points in time. Third, some histories may be disjoint, 
i.e. there are intervals within it for which no data exists. Fourth, the temporal attributes them­
selves may also be time-dependent in behavior. Clearly, without modeling some or all of 
these properties explicitly, simple extension of existing methods will yield inaccurate results. 
Further, there are many operations, mainly joins, that cannot be estimated without explicit 
modeling, e.g. event-join and intersection join results. We will discuss the basic characteris­
tics, desired measures and modeling approaches that can be taken.

11



4.6. Basic Characteristics of Temporal Relations

The following are the basic characteristics that have to be considered in modeling a rela­
tion with one temporal attribute.

Arrival of surrogate instances. Arrival of a new surrogate instance adds a new Time 
Sequence (TS) to the relation. Surrogates instances arrive according to some probability distri­
bution; for example, a company may hire 120 new employees a year, at a uniform rate of 10 
a month.

Departure and re-entry of surrogate instances. After arriving, a surrogate may remain for 
the duration of the relation’s lifespan, leave permanently at some point, or leave and re-enter 
later. All these may be modeled by a single stochastic process, or perhaps by separate 
processes. If the surrogate instance is allowed to return, we assume that no new TS will be 
generated, instead the old TS of the surrogate instance is extended, but with a resulting 
discontinuity in its lifespan. As an example, from the EMP_MGR relation of Table 1, we can 
infer that employee El "arrives" at time 1, "leaves" at time 6, then "re-joins" at time 9; subse­
quently, a discontinuity is created in the lifespan of its TS, between tuples 1 and 2.

Arrival of tuples for a TS. The arrival process of tuples for a given TS follows some proba­
bility distribution representing the behavior of that surrogate. Further, each surrogate instance 
may have its own tuple arrival process, or may share an identical distribution with the other 
instances.

Distribution of temporal attribute values. We assume that each new tuple marks a change 
in the value of the temporal attribute of a particular surrogate; thus two consecutive tuples of 
a given TS must have different temporal attribute values, except when a discontinuity exists 
between two consecutive tuples. Attribute values may be time-dependent, in which case they 
can either be dependent on the event time itself, e.g. salaries paid based on seniority, or 
dependent on the value in one or more prior period(s), e.g. the value of a fixed deposit.

4.7. Multi-Attribute Temporal Modeling

A more complex scheme for a temporal relation is one involving multiple temporal attri­
butes. We have to consider the interdependence amongst attributes in terms of both the timing 
of events and value changes in temporal attributes. In general, it would not be desirable to 
maintain relations where the temporal attributes are not synchronous [Navathe & Ahmed 86], 
If such relations are maintained, then each new tuple indicates that one or more attributes 
have changed values. On the other hand. If the attributes are synchronous, we can model 
them as if they form a single attribute temporal attribute. In this case, the preceding discus­
sions on modeling and measurement parameters directly apply.

12



4.8. Examples of Unary and Binary Estimates Needed

We will outline the main types of estimates needed for query processing purposes by 
using examples. For unary operations: (1) "How many employees were in the company 
between time 1 and 12?" (2) "Get all the manager records for E#1 between time 2 and 10." 
(3) "Find all commission records between time 4 and 10.” and (4) "How many tuples in 
MANAGER have MGR = TOM between time 1 and 12?" For the case of binary estimates, 
they pertain to join sizes, i.e. the number of intersecting tuples for intersection type joins, the 
number of outeijoin tuples for an event-join, and the result of a time union join.

4.9. One-Attribute Model and Assumptions

We now introduce a model for the case of a single temporal attribute. The basic model 
consists of three independent probability distributions to describe the surrogate arrival process, 
tuple arrival process, and distribution of temporal attribute values. Several other parameters 
are added in order to increase the estimation power of the model.

Surrogate arrivals. Let {N* (t)} , f = 0, 1, 2, • • • define the number of surrogate instance 

that arrive in period (0, r] for relation rt-. We model {iV* (f)} as a Poisson process with 

arrival rate Xf.

Tuple arrivals. Let [N^ (r)} , r = 0, 1, 2, • • • be the number of tuple arrivals in period 

(0, r] for an arbitrary surrogate instance in relation rf. We model this counting process as a 
Poisson process with rate Xf. The tuple arrival process for each surrogate instance is indepen­
dent and identically distributed (i.i.d.).

Distribution of temporal attribute values. We model the temporal attribute values at 
different change time points during the surrogate instance’s lifespan by an i.i.d. sequence of 
uniform random variables over the temporal attribute domain. Although it is incorrect to 
assume that for a given surrogate instance, two successive changes can yield the same tem­
poral attribute value, the impact on estimation should not be significant if the relations and 
domain sizes are large. This approach is taken to simplify estimation, since time-dependent 
characterization requires knowledge of the actual behavior of the temporal attribute, which 
varies widely in reality.

Life-span of each TS. There are two ways in which to model the length of a surrogate 
instance’s lifespan, which we denote as LSf.. The first method is to assume that it is as long 

as the lifespan of the relation itself, LSr.. The second way is to assume that it follows some 

probability distribution with mean LSf(, and that the distribution for each instance in the sur­

rogate domain is an i.i.d. random variable.

13



Treatment of Null Values. The null values in this model will be handled by using a param­
eter, called the existence density: 8^ = °f <^ata P0^nt,s Therefore 1 - 8^ gives us

number of time points
the proportion of changes within a time sequence or relation that will generate nulls. Implicit 
is the assumption of uniformity in the distribution of nulls along surrogates’ lifespans.

5. IMPLEMENTATION AND OPTIMIZATION OF TE-JOIN

We evaluate strategies for implementing the temporal equijoin and their associated costs. 
As an example, we will use the TE-join previously described in section 3 between the 
EMP_DEP and DEP relations on D#. Table 6 shows some statistics about the two relations. 
We make the following assumptions: (1) The values of D# is uniformly distributed throughout 
both relations; (2) Neither relation is sorted or clustered, and join processing is earned out by 
the nested-loop algorithm with DEP as the outer relation; (3) Each disk block holds 50 tuples 
of either relation; (4) The result relation, RESULT has 120,000 tuples or 2,400 pages; (5) The 
buffer size in main memory is BUF - 20 pages; and (6) No pipelining is used, which means 
that the temporary results (TEMPi) are written to disk. The cost Cy of step j is measured in 
the number of disk I/O’s.

Statistic EMP DEP DEP
Relation Size (tuples), Ir,-1 
Relation Size (pages), Br.
Number of Unique D#, lr, (D#)l 
Number of Unique E#, Ir,- (E#) 1

100,000
2,000

40
5,000

2000
40
40

n.a.

Table 6. Statistics for Two Relations

We consider three approaches to the problem. The first illustrates a naive strategy, which 
would be the case if a temporal interface were to be built on top of a conventional system. 
The second strategy employs a standard theta-join operator where the time stamps are treated 
as ordinary attributes. In this case, a change is needed in the query processor to replace stan­
dard concatenation of tuples by its temporal equivalent. The third is an approach specifically 
designed for the TE-join, and requires a major change to the optimizer.

5.1. Naive Approach

In this strategy, the handling of the time attributes is ignored at the level of the conven­
tional DBMS. Thus a simple equijoin on the non-time joining domains is executed, and the 
result is retrieved by a special temporal processor which carries out the restrictions over time

14



attributes, creates the new time stamps for qualifying tuples, and projects the final result In 
other words, the logical steps carried out are as follows:

Step 1. TEMPi EMPJDEP[£># =D#]DEP

Step 2. TEMP2 <- G((emp_dep.ts s dep.te) a (empj)ep.te > dep.ts JTEMP i)

Step 3. TEMP3 <r- UvEMPt - Temp-do- - To^TEMPi) CONCATENATE 

[TEMPOS = max (EMP JDEP.Ty, DEP.TS),

TEMP2.Te = min {EMP JDEP.TE, DEPTg)}

Step 4. RESULT «- d#. r,, te)(TEMP3)

We divide the operation into four steps for clarity of exposition. The CONCATENATE 
operator in Step 3 is introduced to allow the appending of attributes not directly created by a 
join or cross product Note also that in Step 3 we distinguish between the similarly named 
time-stamps in the temporary relation by qualifying them on their original relations. The I/O 
cost is computed in the following manner. For step 1,

C, =BDEP
BDEP

BUF
x BEMP DEP + BTEMPi'

which represents the cost of nested-loop execution plus the cost of writing the temporary 
result to disk. TEMP j is the result of a conventional equijoin, which means that a cross pro­
duct on the time domains is carried out for qualifying tuples. Given our uniformity assump­
tion.

C! = 20 + (2 x 2,000) + \EMP DEP 1 x 50 
50

104,020.

We assume that steps 2 to 4 are executed in a single scan, i.e. C2_4 = Ptempx + Presult 
= 102,400. The total cost of this approach is therefore 206,420 disk I/O’s.

5.2. Theta-Join Strategy

In this strategy, we convert the intersection predicate on time into a conjunction of ine­
quality predicates on the time attributes, and treat them as "ordinary" predicates. The query is 
then processed as a conventional theta-join. Since the creation and concatenation of the new 
time attributes is unique to temporal data, these operations will still be carried out separately 
by a temporal processor. The strategy is made up of the following steps:

Step 1. TEMPX <- EMPJDEP [D# = D# ]DEP WHERE

15



EMP_DEP.TS <, DEP.Tg A

EMP_DEPTe £ DEP.TS

Step 2. TEMP2 «- UffEiiPl - r^.D£P - tdb,)(TEMP CONCATENATE 

[TEMPOS = max (EMPJDEP.Ts, DEP.TS),

TEMP2.Te = min(EMP_DEP.TE, DEP.Te)}

Step 3. RESULT *- ri(NAM£. d#. rs.

Steps 2 and 3 are identical to steps 3 and 4 of the previous strategy. The total cost is the sum 
of the cost of reading in the two relations by the nested-loop method, the cost of writing 
TEMP j and the cost of reading in TEMP j and writing RESULT. Since TEMP ^ and RESULT 
are of the same size, the total cost comes to 4,020 + 3 x 2,400 = 11,220. This is considerably 
lower than the previous method. In this case we were able to transform a temporal operation 
to an equivalent conventional one (from the point of view of optimization); we are con­
strained, however, in this approach to the non-temporal nature of a traditional optimizer. Also, 
some temporal operators cannot be translated into equivalent relational operators, e.g. the 
event-join operator.

5.3. Directly Implementing TE-JOIN

The TE-join operator can be implemented independently. There are two primary issues: 
(1) The manner in which comparison between the tuples is carried out and (2) How concate­
nation of the new time attributes is achieved. The previous approaches required time-stamp 
comparisons to be evaluated twice, but we can create the new time stamps for the result tuple, 
i.e. find T$ = max (EMPJDEP.Ts, DEP.Ts) and TE = min (EMP JDEP.TE, DEP.Te), then 
concatenate them iff they are satisfied by the predicate T$ <TE. This test substitutes for the 
intersection predicate on the two relations’ time subschemes.

In algebraic terms, we execute the query as follows:

IW u Ri U (T’s. Te)) a^rlAlj = aTj* S Tg x r2) CONCATENATE (Ts, Tt))

The following procedure executes it.

16



for each x x e r L {
for each x2 e r2 { 

find T$ and Tg 
for p e PR' ^PT

if not p, do the next x2
else output tuple on scheme (^?1/ u i?2 u (7j, T*e))

)
}

The total cost is merely the cost of reading in the relations for the nested-loop method 
and the cost of writing the output This comes to 6,420 pages, which is cheaper than the cost 
of the second strategy. Bear in mind that the sizes of the example relations are relatively 
small, and the savings would be even more significant for joins involving very large relations.

6. SUMMARY AND FUTURE RESEARCH

We have introduced and defined four classes of temporal joins: Theta, intersection, union 
and event joins. We believe that these joins can be used for a large number of join-type 
queries which have been introduced but not formally defined or identified by others. More­
over, we have developed a framework within which we can evaluate techniques that can 
optimize the execution of queries involving such joins. We show by example that there are 
inherent differences between using conventional query processors and developing specialized 
procedures and algebra to solve these queries. We must remember that the time attributes in a 
tuple-versioning model must always be treated differently than other attributes, although in 
many algebraic operations, they may be qualified with the same type of predicates as non-time 
attributes. Further, we showed that the selectivity estimation problem is of even greater 
importance for temporal relations, and that it cannot be modeled in the same way as conven­
tional relations.

Current and future research address the following issues:

• Developing selectivity estimates based on the model presented, and to expand the scope 
and sophistication of the model itself. There is also a tradeoff between accuracy of esti­
mates, and the expense of maintaining the necessary statistics and deriving the estimates.

• Investigating the optimization of each class of join. For the temporal equijoin, we are 
looking at algorithms that exploit data ordering and specialized indexing. Further, the 
event-join operator is likely to be a commonly used operator, and yet it has no 
equivalence in the "snapshot" database context. Comprehensive tests of the efficiency of 
alternatives algorithms are necessary.

17



• Extending the investigation of temporal operators to those involving temporal ordering 
and aggregation.

• Continuing our study into the design of efficient data structures, in order to improve the 
data retrieval capability of a temporal DBMS.

REFERENCES

[Adiba & Quang 86] Adiba, M, Quang, N.B., Historical Multi-Media Databases, Proceedings 
of the International Conference on Very Large Databases, Aug. 1986, pp. 63-70.

[Ahad et al 89] Ahad, R., Rao, K.V.B., McLeod, D., On Estimating the Cardinality of the 
Projection of a Database Relation, ACM Transactions on Database Systems, 14, 1, Mar. 
1989, pp. 28-40.

[Ariav 86] Ariav, G., A Temporally Oriented Data Model, ACM Transactions on Database 
Systems, 11, 4, Dec. 1986, pp. 499-527.

[Christodoulakis 83] Christodoulakis, S., Estimating Record Selectivities, Information Systems, 
8, 2, 1983, pp. 105-115.

[Clifford & Croker 87] Clifford, J., Croker, A., The Historical Relational Data Model 
(HRDM) and Algebra Based on Lifespans, Proceedings of the International Conference 
on Data Engineering, Feb. 1987, pp. 528-537.

[Clifford & Tansel 85] Clifford, J., Tansel, A., On an Algebra for Historical Relational Data­
bases: Two Views, Proceedings of ACM SIGMOD International Conference on Manage­
ment of Data, May 1985, pp. 247-265.

[Kolovson & Stonebraker 89] Kolovson, C, Stonebraker, M., Indexing Techniques for Histor­
ical Databases, Proceedings of the International Conference on Data Engineering, Feb. 
1989, pp. 127-139,

[Gunadhi & Segev 88] Gunadhi, H., Segev, A., Physical Design of Temporal Databases, 
Lawrence Berkeley Lab Technical Report LBL-24578, January 1988.

[Lynch 88] Lynch, C.A., Selectivity Estimation and Query Optimization in Large Databases 
with Highly Skewed Distribution of Column Values, Proceedings of the International 
Conference on Very Large Databases, Aug. 1988, pp. 240-251.

[Lum et al 84] Lum, V., Dadam, P., Erbe, R., Guenauer, J., Pistor, P., Walch, G., Wemer, H., 
Woodfill, J., Designing DBMS Support for the Temporal Dimension, Proceedings of 
ACM SIGMOD International Conference on Management of Data, Jun.1984, pp. 115- 
130.

18



[Mulakrishna & DeWitt 88] Mulakrishna, M., DeWitt, D.J., Equi-Depth Histograms for 
Estimating Selectivity Factors for Multi-Dimensional Queries, Proceedings of ACM SIG­
MOD International Conference on Management of Data, May 1988, pp. 28-36.

[Klopproge & Lockemann 83] Klopproge, M.R., Lockemann, P.C., Modeling Information 
Preserving Databases: Consequences of the Concepts of Time, Proceedings of the Inter­
national Conference on Very Large Databases, Aug. 1983, pp. 399-416.

[Navathe & Ahmed 86] Navathe, S., Ahmed, R., A Temporal Relational Model and a Query 
Language, UF-CIS Technical Report TR-85-16, Univ of Florida, April 1986.

[Piatetsky-Shapiro & Connell 84] Piatetsky-Shapiro, G., Connell, C., Accurate Estimation of 
the Number of Tuples Satisfying a Condition, Proceedings of ACM SIGMOD Interna­
tional Conference on Management of Data, May 1984, pp. 256-276.

[Rosenthal & Reiner 84] Rosenthal, A., Reiner, D., Extending the Algebraic Framework of 
Query Processing to Handle Outetjoins Proceedings of the International Conference on 
Very Large Databases, Aug. 1984, pp. 334-343.

[Rotem & Segev 87] Rotem, D., Segev, A., Physical Organization of Temporal Data, 
Proceedings of the International Conference on Data Engineering, Feb. 1987, pp. 547- 
553.

[Segev & Gunadhi 89] Segev, A., Gunadhi, H., Event-Join Optimization in Temporal Rela­
tional Databases, Proceedings of the International Conference on Very Large Databases, 
Aug. 1989. pp. 205-215.

[Segev & Shoshani 87] Segev, A., Shoshani, A., Logical Modeling of Temporal Databases, 
Proceedings of ACM SIGMOD International Conference on Management of Data, May 
1987, pp. 454-466.

[Segev & Shoshani 88a] Segev, A., and Shoshani, A., The Representation of a Temporal Data 
Model in the Relational Environment, Lecture Notes in Computer Science, Vol 339, M. 
Rafanelli, J.C. Klensin, and P. Svensson (eds.), Springer-Verlag, 1988, pp 39-61.

[Segev Sc Shoshani 88b] Segev, A., Shoshani, A., Functionality of Temporal Data Models and 
Physical Design Implementations, IEEE Data Engineering, 11, 4, Dec. 1988, pp. 38-45.

[Selinger et al 79] Selinger, P.G., Astrahan, M.M., Chamberlain, D.D., Lorie, R.A., Price, 
T.G., Access Path Selection in a Relational Database System, Proceedings of ACM SIG­
MOD International Conference on Management of Data, May 1979, pp.23-34.

[Shoshani & Kawagoe 86] Shoshani, A., Kawagoe, K., Temporal Data Management, Proceed­
ings of the International Conference on Very Large Databases, Aug. 1986, pp. 79-88.

19



[Snodgrass 87] Snodgrass, R., The Temporal Query Language TQuel, ACM Transactions on 
Database Systems, Jun. 1987, pp. 247-298.

[Snodgrass & Ahn 85] Snodgrass, R., Ahn, I., A Taxonomy of Time in Databases, Proceed­
ings of ACM SIGMOD International Conference on Management of Data, May 1985, pp. 
236-246.

[Snodgrass & Ahn 87] Snodgrass, R., Ahn, I., Performance Analysis of Temporal Queries, 
TempIS Document No. 17, Department of Computer Science, University of North Caro­
lina, August 1987.

[Yao 77] S.B. Yao, Approximating Block Accesses in Database Organizations, Communica­
tions of the ACM, 20, 4, Apr. 1977, pp. 260-261.

20


