

17
Electrochemical Society

DE87 004735

75-Word Abstract Form

Extended Abstract must be submitted with the 75-Word Abstract by May 1, 1986

San Diego, California—October 19-24, 1986

Submit to: The Electrochemical Society, Inc.
10 South Main Street, Pennington, NJ 08534-2896
With a copy to the Organizing ChairmanAbstract No.
(to be assigned by the Society)

Schedule for Industrial Electrolysis of Fused Salts

(Title of Symposium)

Industrial Electrolytic/High Temperature Materials

Sponsored by

(Division/Group)

Title of paper Cyclic Voltammetric Study of the Reduction of U(III) to Uranium Metal

in Molten LiCl-NaCl-CaCl₂-BaCl₂

Authors (Underline name of author presenting paper) D. S. Poa, Z. Tomczuk, and R. K. Steunenberg

Business affiliation and address Chemical Technology Division, Argonne National Laboratory

9700 South Cass Avenue

Argonne, Illinois 60439-4837 (312) 972-4506
(State or Country) (ZIP Code) (Telephone No.)

(Type abstract in this area—double-spaced.)

The electrochemical reduction of U(III) to uranium metal in molten LiCl-NaCl-CaCl₂-BaCl₂-UCl₃ electrolyte was investigated, using cyclic voltammetry. The reaction was reversible and controlled by diffusion mass transfer, both at low-carbon steel and molybdenum electrodes. The rate increased with UCl₃ concentration up to about 3.4 mol %, and with temperature over the range 436-528°C. Standard potentials ranged from -1.07 to -1.50 V vs. Ag/AgCl; the U(III) diffusion coefficients from 0.5 to $4.0 \times 10^{-6} \text{ cm}^2/\text{s}$.

80
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Do you require any audiovisual equipment?

 35 mm (2 x 2 in.) slide projector Vu-Graph Specify other (subject to availability and cost)

Has the information in this abstract been presented verbally, submitted for publication, or published?

 Yes No

If the answer is yes, please provide the reference (except in the case of invited review presentations).

Is a full length paper on this work to be submitted for Society Journal publication? Yes NoPapers presented before a Society technical meeting become the property of the Society and may not be published elsewhere without written permission of the Society. Papers presented at Society technical meetings must be authored by a member or sponsored by an active member.
D. S. Poa, Z. Tomczuk, and R. K. Steunenberg

(Insert name of Society member author or sponsor)

MASTER

CYCLIC VOLTAMMETRIC STUDY OF THE REDUCTION OF
U(III) TO URANIUM METAL IN MOLTEN
LiCl-NaCl-CaCl₂-BaCl₂-UCl₃

D. S. Poa, Z. Tomczuk, and R. K. Steunenberg
Chemical Technology Division
Argonne National Laboratory
Argonne, IL 60439-4837

Introduction

Cyclic voltammetry was used to investigate the electrochemistry of the reduction of UCl₃ to uranium metal in molten LiCl-NaCl-CaCl₂-BaCl₂ (49.7-8.0-26.5-15.8 mol %) containing dissolved UCl₃. The purpose of the study was to obtain information on the kinetics of the reaction, which will be used in the design of electrorefining equipment for the reprocessing of core and blanket fuel discharged from the Integral Fast Reactor (IFR). The electrorefining operation employs the above salt as the electrolyte and a liquid cadmium pool as the anode.

Literature values for the standard potentials of the U(III)/U(0) couple in LiCl-KCl, NaCl-KCl, and NaCl-KCl-MgCl₂ eutectic salts have been critically reviewed by Plambeck (1). Comprehensive reviews of the electrochemistry of uranium have been published by Martinot and Caligara (2,3). Polarographic studies of uranium species in molten LiCl-KCl and LiCl-KCl-MgCl₂ eutectics have been reported by Hill et al. (4).

Experimental

The electrochemical cell comprised (a) a low-carbon steel crucible (vol., 325 cm³), which served as the cell container, (b) a working electrode consisting of a 0.32-cm-diameter metal (either molybdenum or low-carbon steel) rod encased in an alumina tube in such a way that an apparent surface area of 0.079 cm² was exposed to the electrolyte, (c) a liquid cadmium counter electrode, and (d) a Ag/AgCl reference electrode. The cell was located in a furnace well in the floor of a high-purity, helium-atmosphere glove box. The cell temperature was measured with a calibrated Chromel-Alumel thermocouple.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

molybdenum or low-carbon steel) rod encased in an alumina tube in such a way that an apparent surface area of 0.079 cm^2 was exposed to the electrolyte, (c) a liquid cadmium counter electrode, and (d) a Ag/AgCl reference electrode. The cell was located in a furnace well in the floor of a high-purity, helium-atmosphere glove box. The cell temperature was measured with a calibrated Chromel-Alumel thermocouple.

The UCl_3 in the electrolytic was generated in situ by dissolving metallic uranium in the liquid cadmium, and then adding CdCl_2 to the salt phase.

Single-sweep and cyclic voltammetric scans were made with a potentiostat (PAR Model 173) coupled to a PAR Model 175 universal programmer. Current-voltage curves were recorded with a Hewlett-Packard Model 7044-A recorder.

Results and Discussion

Figure 1 shows typical cyclic voltammograms for the reduction of U(III) to the metal at a molybdenum electrode at 465°C . A simple, well-defined cathodic current peak (i_{pc}) was observed. The anodic current peak, which is sharp and symmetrical, is characteristic of the oxidation of a solid deposit from an electrode surface.

The cathodic peak current (i_{pc}) was linearly proportional to the square root of the potential scan rate ($v^{1/2}$). Plots of i_{pc} vs. $v^{1/2}$ for various temperatures (436 to 528°C) and for the two different

cathode materials (molybdenum and steel) were linear and passed through the origin. In addition, the peak current potentials and the separations between the peak and half-peak potentials (15 to 20 mV) were independent of potential scan rate. These results indicate that the charge-transfer reaction of the U(III)/U(0) couple is reversible and occurs under diffusion-controlled conditions.

In general, the reduction rate of U(III) increased with increasing temperature. Over a temperature range of 436 to 520°C, the increase in the magnitude of the reduction peak current of U(III) with temperature can be approximated by a linear relationship. The temperature coefficients for U(III) under these conditions were 1.1×10^{-2} mA/°C at the steel electrode and 6.1×10^{-3} mA/°C at the molybdenum electrode.

When the UCl_3 concentration in the salt was increased from 1.8 to 3.4 mol %, the reduction peak current increased by a factor of four to five. Further increases to 5.3 and then to 6.7 mol %, however, caused no significant change from the rate at 3.4 mol %.

Figure 2 shows that the separation between the cathodic and anodic current peak potentials increased consistently, and all the peak potentials shifted in a positive direction with increasing UCl_3 concentration. The reduction peak potential for U(III) shifted from -1.5 V (vs. Ag/AgCl) at 1.8 mol % UCl_3 to about -1.2 V at 6.7 mol %.

Standard potentials obtained for the U(III)/U(0) couple in this electrolyte ranged from about -1.07 to -1.50 V, depending on the experimental conditions.

Values of the diffusion coefficient for U(III) ions in this electrolyte at 465°C were estimated at 0.5×10^{-6} to 4.0×10^{-6} cm^2/s , depending on the UCl_3 concentration.

Values of the diffusion coefficient for U(III) ions in this electrolyte at 465°C were estimated at 0.5×10^{-6} to 4.0×10^{-6} cm^2/s , depending on the UCl_3 concentration.

In general, the results of this study are in reasonable agreement with earlier data obtained with other molten chloride electrolytes (1-4).

Acknowledgment

This work was supported by the U.S. Department of Energy as part of the Integral Fast Reactor Program under contract number W-31-109-Eng-38. The authors also wish to thank M. Steindler, L. Burris, W. Miller, and R. Wolson of the Chemical Technology Division for their guidance and assistance.

References

1. J. A. Plambeck, Encyclopedia of Electrochemistry of the Elements, Vol. X, A. J. Bard, ed., Marcel-Dekker, New York (1976).
2. L. Martinot and F. Caligara, At. Energy Rev. 11, 3 (1973).
3. L. Martinot, Gmelin Handbook of Inorganic Chemistry, Suppl. D1, Springer-Verlag, Berlin (1984).
4. D. L. Hill, J. Perano, and R. Osteryoung, J. Electrochem. Soc. 107, 698 (1960).

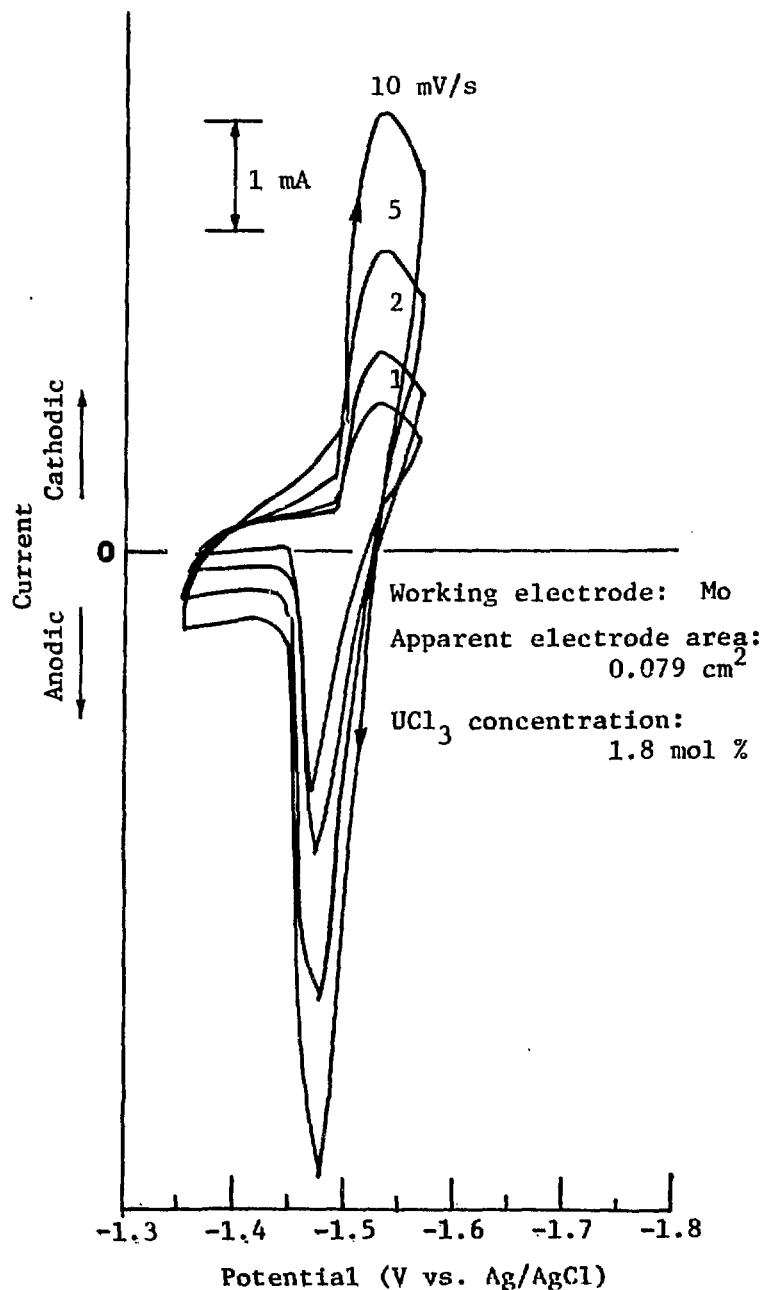


Fig. 1. Effect of Potential Scan Rate on Cyclic Voltammograms for the Reduction of U(III) at 465°C.

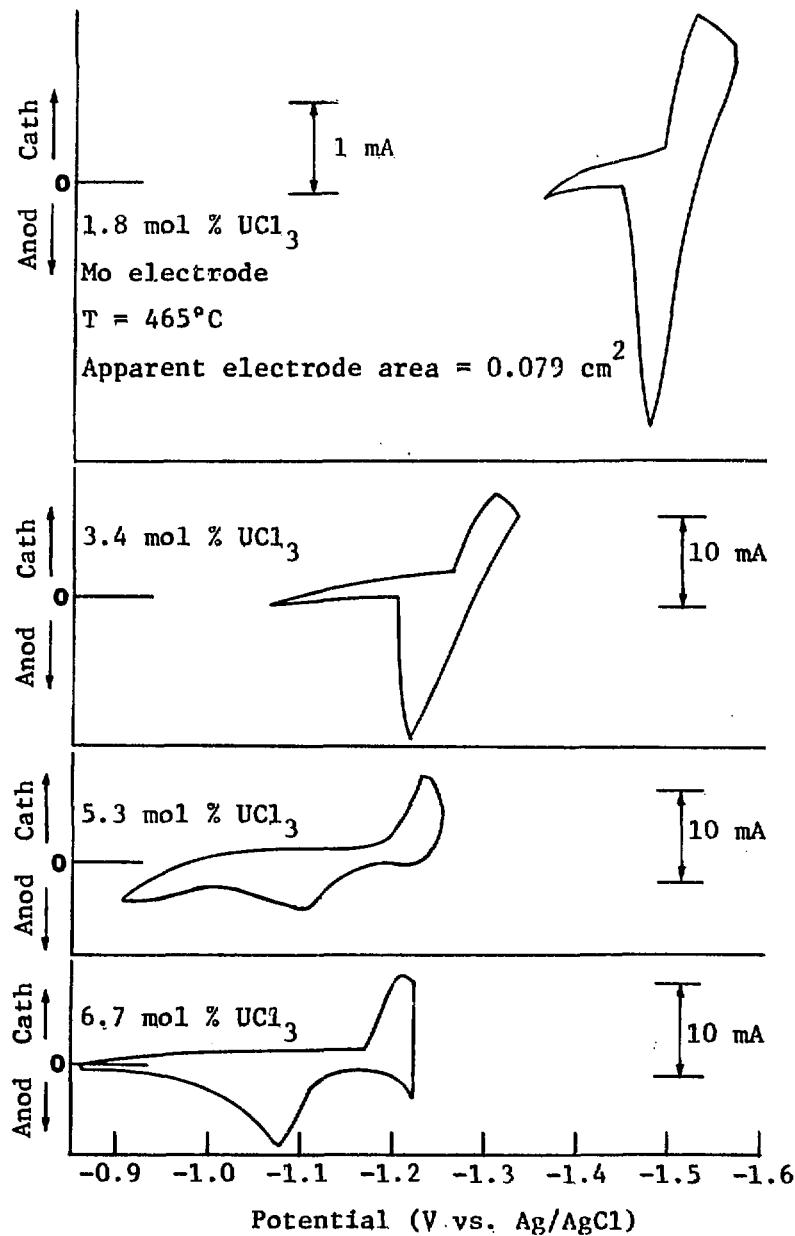


Fig. 2. Effect of UCl_3 Concentration on Voltammograms for the Reduction of U(III) at 2 mV/s Scan Rate.