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ABSTRACT 

In ohmically heated ISX-B discharges, both the intrinsic iron 

impurity ions .and small amounts of argon introduced as a test gas 

accumulate at the center of the plasma. But during certain beam-heated 

discharges, it appears that this accumulation does not take place. 

These results may reflect the conclusion of Stacey and Sigrnar that 

momentum transferred from the beams to the plasma can inhibit inward 

impurity transport. 



IMPURITY TRANSPORT DURING NEUTRAL BEAM INJECTION 
I N  THE ISX-B TOKAMAK 

One of t h e  concerns about t h e  use  of n e u t r a l  beam i n j e c t i o n  a s  a  

method of a u x i l i a r y  hea t ing  i n  tokamaks is  t h a t  a d d i t i o n a l  i m p u r i t i e s  

may be in t roduced  i n t o  t h e  d i s cha rge  due t o  s p u t t e r i n g  by h igh  energy 

atoms o r  i ons .  However, Stacey and sigmarl have shown t h e o r e t i c a l l y  

t h a t  t h e  consequences of t h i s  e f f e c t  may be  amel iora ted  by a  r educ t ion  

of t h e  r a d i a l  impuri ty  i n f l u x  due t o  t h e  momentum which t h e  beams t r ans -  

f e r  t o  t he ' p l a sma .  For a  s i n g l e  impur i ty  s p e c i e s ,  they demonstrate  t h a t  

a l though t h e  d i r e c t  i n f luence  o'f c o i n j e c t i o n  ( i n  t h e  d i r e c t i o n  of t h e  

plasma c u r r e n t )  on t h e  impuri ty  i s  t o  enhance i t s  inward t r a n s p o r t , 2  t h e  

f i r s t - o r d e r  flows i n  t h e  f l u x  s u r f a c e s  a r e  s imul taneous ly  a l t e r e d  i n  

such a  way t h a t  outward t r a n s p o r t  may be t h e  ne t  r e s u l t .  W e  ana lyze  

s p e c t r a l  d a t a  from two sequences of d i s cha rges  i n  t h e  Impuri ty  Study 

Experiment (ISX-B) tokamak which i n d i c a t e  t h a t  du r ing  i n j e c t i o n  t h e  

impur i ty  i n f l u x  i s  indeed s t r o n g l y  reduced, o r  even r eve r sed ,  i n  t h e  

i n n e r  ha1 f o f  t h e  plasma. 

The plasmas w e  d i s c u s s  he re  a r e  produced i n  deuterium wi th  an ohmic 

h e a t i n g  c u r r e n t  of 110 kA. For t h e  i n j e c t i o n  ca se ,  500 kW of n e u t r a l  

hydrogen i s  i n j e c t e d  between 70 and 170 m s  i n  d i s cha rges  which l a s t  a 

t o t a l  of 200 m s .  The e l e c t r o n  hea t ing  produced by t h e  beam r e s u l t s  i n  a  

c e n t r a l  temperature  o f . 1400  eV, a s  c o n t r a s t e d  w i th  750 e V  f o r  t h e  non- 

i n j e c t e d  case .  I n  a l l  i n s t a n c e s  deuter ium gas i s  b led  i n t o  t h e  d i s cha rge  

from 30 m s  u n t i l  t h e  end of t h e  sho t  i n  o r d e r  t o  r a i s e  t h e  e l e c t r o n  

concen t r a t i on .  The time behavior  of n is  shown i n  Fig.  1. Without e  
i n j e c t i o n ,  t h e  d e n s i t y  cont inues  t o  r i s e  u n t i l  t h e  plasma d i s r u p t s  

around 150 ms. .  With i q j e c t i o n ,  t h e  d e n s i t y  "clamps" a t  110 m s  and no 
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F i g .  1. Evolu t ion  of the l ine-averaged c l c c t r o n  concen t r a t i on ,  n  e  ' 
i n  plasmas w i t h  (dashed l i n e )  and wi thout  ( s o l i d  l i n e )  n e u t r a l  beam 
i n j s c t i o n  ,. 



d i s r u p t i o n  occurs .  This  clamp i s  c h a r a c t e r i s t i c  of most i n j e c t i o n  d i s -  

charges i n  ISX-B. Although t h e  t o t a l  e l e c t r o n  concen t r a t ion  i s  l i m i t e d ,  

t h e  r a d i a l  p r o f i l e s  a r e  not  s t r o n g l y  a f f e c t e d .  The mechanism by which 

clamping occurs  is  not understood, but  i t  may r e f l e c t  an  a l t e r a t i o n  i n  

t h e  b a s i c  t r a n s p o r t  processes  such a s  we d i scuss  f o r  t h e  impur i t i e s .  

The temporal evo lu t ions  of two argon l i n e s 4  a r e  shown i n  F ig .  2. 

Argon i s  introduced i n  a  s h o r t  (%4-ms) puff a t  100 m s ,  and t h e  i n t e g r a t e d  

r a d i a t i o n  along a  c e n t r a l  chord i s  observed. Extensive use  i s  made 'of 

t h e  RECYCL code5 t o  ana lyze  s p e c t r a l  d a t a .  This  code enables  us  t o  

c a l c u l a t e  t h e  r a d i a l  d i s t r i b u t i o n s  of l i n e  emissions of va r ious  ion iza-  

t i o n  s t a g e s  f o r  assumed t o t a l  impuri ty  p r o f i l e s  and t r a n s p o r t  v e l o c i t i e s .  

The A r  V I I  l i n e  is  computed t o  be emit ted from a  s h e l l  about 2 cm wide 

centered  near  20 cm ( t h e  plasma minor r a d i u s  i s  26 cm). I n  both i n j e c -  

t i o n  and non in j ec t ion  d i scha rges ,  t h e  A r  V I I  r a d i a t i o n  a t t a i n s  a  cons tan t  

l e v e l  w i t h i n  a  few mi l l i s econds  of i n t roduc ing  t h e  gas .  This  behavior  

i s  i n d i c a t i v e  of a  cons t an t  f l u x  through t h e  plasma per iphery  dur ing  the  

e n t i r e  s h o t ,  i . e . ,  of anomalous outward d i f f u s i o n  t h a t  causes t h e  argon 

t o  r e c y c l e  r a p i d l y  i n  t he  edge.6 

The A r  X V I  l i n e  e x h i b i t s  s t r i k i n g l y  d i f f e r e n t  behavior  f o r  t h e  two 

sequences of s h o t s .  It i s  emit ted mainly i n s i d e  a  r a d i u s  of 1 3  cm, and 

c a l c u l a t i o n s  us ing  t r a n s p o r t  v e l o c i t i e s  of 1-2 cm/ms, t o  ag ree  wi th  t h e  

observed onse t  of t h e  r a d i a t i o n ,  i n d i c a t e  t h a t  s i g n i f i c a n t  emission from 

A r  X V I  should take  p l ace  from the  plasma c e n t e r  i n  both cases .  This  

l i t h ium- l ike  ion  thus  provides a  u s e f u l  monitor of t h e  argon concentra-  

t i o n  i n  t h e  i n t e r i o r  of t he  d ischarge .  It i s  seen  i n  Fig.  2  t h a t  dur ing  

i n j e c t i o n  t h e  A r  X V I  r a d i a t i o n ,  s i m i l a r  t o  t h e  A r  V I I  r a d i a t i o n ,  reaches 

a  s teady  s t a t e .  The r e l a t i v e  i n t e n s i t i e s  i n d i c a t e  t h a t  t h e  argon d i s -  

t r i b u t i o n  is  not s t rong ly  peaked a t  t h e  c e n t e r .  I n  c o n t r a s t ,  t h e r e  i s  a  

continued r i s e  i n  t h e  A r  X V I  s i g n a l  without  i n j e c t i o n .  This  r i s e  i s  

much l a r g e r  than can be explained by the  inc reas ing  e l e c t r o n  concentra-  

t i o n ,  and i t  i n d i c a t e s  t h a t ,  even i n  view of t h e  r a p i d  r e c y c l i n g  a t  t h e  

plasma edge, t h e r e  i s  a  slow, con t inua l  accumulation of argon i n  t he  

plasma i n t e r i o r .  Therefore ,  i t  appears  t h a t  t h e  presence of n e u t r a l  

beam i n j e c t i o n  does a l t e r  t h e  t r a n s p o r t  s u f f i c i e n t l y  i n  t h e  i n t e r i o r  of 

t h e  plasma t o  prevent  accumulation of t h e  t e s t  impur i ty .  -. 
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We have also analyzed the iron radiation from the same sequences 

for which the argon was studied. Figures 3 and 4 illustrate the time - 

behavior of several spectral lines. Again it is observed that the 

interior ions, such as Fe XVIII and Fe XIX, evidence accumulation in the 

ohmic heating case but that the intensities during injection are quite 

low. Also, the Fe XX radiation is barely above the background level, 

even though this ion should be abundant at the electron temperatures 

achieved during injection. In contrast, it is immediately obvious that 

the iron concentration in the exterior of the plasma rises shortly after 

injection; for a fixed iron density profile, the radiation from stages 

such as Fe IX would be expected to decrease by a factor of about three 

since this ion radiates from a much narrower shell in the hotter plasma. 

It is possible to obtain quantitative, although not highly accurate, 

assessments of the total iron behavior throughout the plasma volume by 

adjusting profiles in the RECYCL code until satisfactory agreement is 

obtained between computed and measured emission rates. The accuracies 

of the individual computed rates are believed to be no better than a 

factor of two due to uncertainties in the atomic physics and in the 

transport velocities of the impurities. The calibration of the mono- 

chromator introduces an additional uncertainty in the interpretation of 

the data, and we estimate that our inferred profiles may be in error by 

a factor of three. 

The profiles obtained for the two sequences at 141 ms are shown in 

Fig. 5. The noninjection concentration peaks at the center, as might be 

expected. However, there appears to be no way to explain the data 

obtained during injectibn without inferring a profile that has a maximum 

near one-half of the plasma minor'radius. If the iron concentration is 

assumed to be nondecreasing inside 15 cm, radiation from Fe XIX and , 

Fe XX should be respectively five and ten times the observed values. 

Consequently, the iron profile must be "hollow," and even if there is a 

larger influx of iron during injection, it must accumulate at some 

intermediate radius. Despite the problems inherent in inferring radial 

concentrations from line-averaged data, it seems that the profiles of 

Fig. 5 are at least qualitatively correct. 
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Fig. 3.  Comparison of emissions from %e IX, %'e XV, 
and Fe XVI. Figures  3(a)-3(c)  a r e  without i n j e c t i o n ;  
F igs .  3(d) -3( f )  a r e  with i n j e c t i o n .  I n j e c t i o n  l a s t s  
from 70-170 m s .  
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Fig .  4 .  Comparison of emiss ions  from Fe X V I I I ,  Fe X I X ,  
and Fe XX. F igu re s  4 (a ) -4(c )  a r e  wi thout  i n j e c t i o n ;  
F i g s .  4(d)  -4 ( f )  a r e  w i t h  i n j e c t i o n .  I n j e c t i o n  l a s t s  from 
70-170 m s .  
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Pig .  5.  P r o f i l e s  of t o t a l  iron concentration with  i n j e c t i o n  
(dashed l i n e )  and without  i n j e c t i o n  ( s o l i d  l i n e ) .  



Direct comparisons of our analysis with the theory of Stacey and 

Sigmar are not possible at present. The detailed physics of the external 

drag terms that appear in their formalism is not well understood, and in 

reality we must consider a multicomponent rather than a two-component 

plasma (oxygen and carbon are the dominant impurities). However, it is 

worth examining their criterion for flow reversal under the assumption 

that the theoretical terms containing the beam momentum transferred to 

the plasma ions dominate those which contain the momentum transferred to 

the impurities. In this case, the requirement as a function of plasma 

radius can be expressed as 

in the mixed collisionality regime of the ISX experiments. Here, I is b 
the total neutral beam current, H(r) is the normalized power deposition 

profile, and Bi and BZ respectively represent the ratios of plasma ion 
and impurity ion drag frequencies to the collision frequency, v . If . . iz 
this inequality is satisfied everywhere in the plasma, then no impurity 

penetration may be expected from the mechanisms considered in this 

theory, i.e., from interspecies collisional friction and momentum exchange 

from external sources. It is also worth noting that both the ion pres- 

sure gradient,.aP./ar, and the poloidal field, B , approach zero as 
1 P 0 

r -t 0, and in ISX discharges it appears that the former becomes small 

faster than the latter. In such circumstances the neutral beam require- 

ments may be satisfied for small, but not large, values of r, and hollow 

impurity profiles could develop in principle. It is evident that our 

observations are in qualitative agreement with a possible result of 

Stacey and Sigmar's theory, but because of the uncertainties it cannot 

yet be said that they substantiate the calculations. 

Finally, we note that particle transport problems are so complex 

that it is impossible to generalize the present results to all, if 



indeed to many, injection experiments in tokamaks. We believe that a 

broader scope of both experimental and theoretical studies of the influ- 

ence of neut~al beams on transport must be pursued in order to understand 

this problem. 
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