

CONF-890718--36

ORDERING IN $Tl_2CaBa_2Cu_2O_8$ AND $Tl_2Ba_2CuO_6$ STUDIED BY PAIR DISTRIBUTION FUNCTION AND RIETVELD ANALYSIS

B.H. Toby*, W. Dmowski*, T. Egami*, J.D. Jorgensen[§], M.A. Subramanian[†],
J. Gopalakrishnan[†], A. W. Sleight[†], and J. B. Parise[†]

*Department of Materials Science and Engineering
and Laboratory for Research on the Structure of Matter
University of Pennsylvania,
Philadelphia, PA 19104-6272

CONF-890718--36

[§]Materials Science Division
Argonne National Laboratory
Argonne, IL 60439

DE90 013669

[†]Central Research and Development Department
E.I. du Pont de Nemours and Company
Experimental Station
Wilmington, DE 19898

The submitted manuscript has been authored by a contractor of the U.S. Government
under contract No. W-31-109-ENG-38. Accordingly, the U.S. Government retains a
nonexclusive, royalty-free license to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S. Government purposes.

September 1989

Submitted to the International Conference on Materials and Mechanisms of Superconductivity
-- High-Temperature Superconductors, Stanford, CA, July 23-28, 1989

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

¹This work was performed under the auspices of the U.S. Department of Energy, Division of Materials Science, Office of Basic Energy Sciences, under Contract W-31-109-ENG-38.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

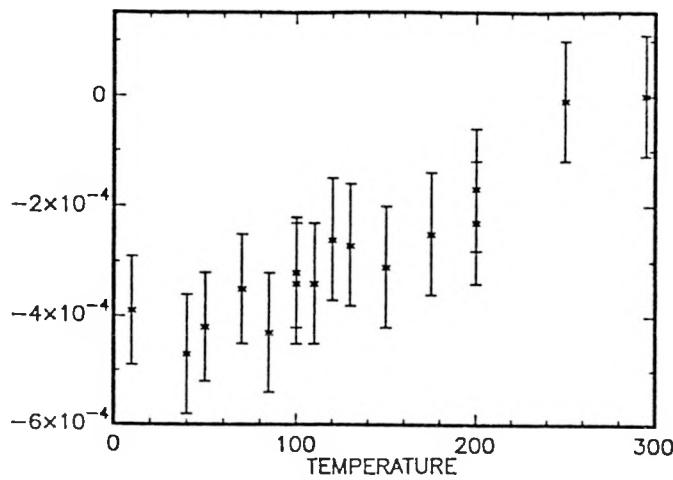
Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ORDERING IN $Tl_2CaBa_2Cu_2O_8$ AND $Tl_2Ba_2CuO_6$ STUDIED BY PAIR DISTRIBUTION FUNCTION AND RIETVELD ANALYSIS

B. H. TOBY^a, W. DMOWSKI^a, T. EGAMI^a, J. D. JORGENSEN^b, M. A. SUBRAMANIAN^c, J. GOPALAKRISHNAN^c, A. W. SLEIGHT^c and J. B. PARISE^c

(a) Department of Materials Science and Engineering and Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, PA 19104-6272 USA. (b) Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 USA. (c) Central Research and Development Department, E. I. du Pont de Nemours and Company, Experimental Station, Wilmington, DE 19898 USA.

Rietveld analysis indicates that the only long-range structural variation in $Tl_2CaBa_2Cu_2O_8$ with temperature is a shift of O(2) away from Cu and toward Ba with increasing T. Atomic pair distribution function analysis on two samples of $Tl_2Ba_2CuO_6$, one superconducting, the other not, shows substantial differences in their short range structure, but similar medium range structures, while Rietveld analysis shows very similar lattice constants and long-range structures.

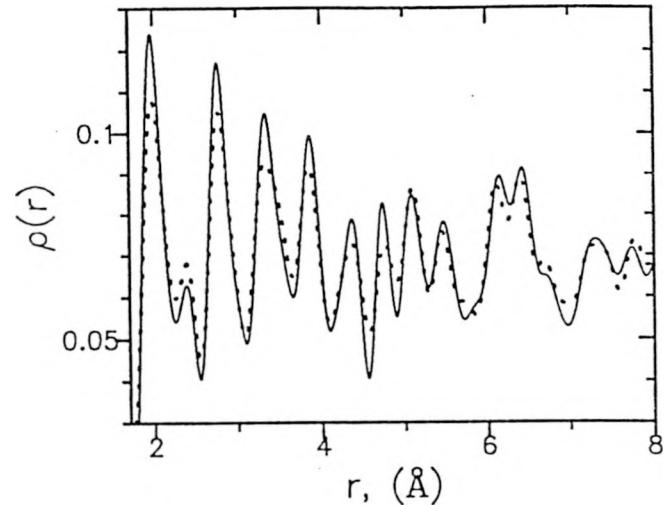

1. INTRODUCTION

Atomic pair distribution function (PDF) and Rietveld analysis have been used to examine the structures of $Tl_2CaBa_2Cu_2O_8$ and $TlBa_2CuO_6$ using time-of-flight diffraction data from the Argonne National Laboratory Intense Pulsed Neutron Source. Both PDF and Rietveld require measurement of neutron scattering intensities, $I(Q)$, as function of the scattering vector, Q , from which the atom-atom interference function, $S(Q)$, can be determined. However, for PDF analysis the pair distribution function, $\rho(r)$, is computed by a Fourier transform of $S(Q)$. The accuracy of $\rho(r)$ is limited unless $S(Q)$ has been measured with high precision up to large values of Q . This requirement is well met by pulsed-neutron diffraction [1].

The PDF is the atom-atom pair correlation function in *real space*, a 1-D analog to the crystallographic Patterson function. A PDF peak thus represents one or more interatomic distances and the peak area is a function of the scattering cross sections for the contributing atoms and their atomic coordination numbers. The PDF utilizes all diffraction information, including diffuse scattering and thus is a probe of correlations in the local atomic structure even when the structure deviates from perfect periodicity. This is in contrast to Rietveld analysis, which assumes long-range ordering, thus yielding the averaged position for each atom.

2. $Tl_2CaBa_2Cu_2O_8$

We measured 17 diffractograms from 10 g of $Tl_2CaBa_2Cu_2O_8$ at temperatures between 10 and 295 K. Rietveld refinements were performed using a disorder model with both O and Tl displaced in the $\langle 100 \rangle$ direction. As was previously reported, the lattice constants varied smoothly with temperature [2]. Atomic temperature factors also varied smoothly with temperature and atomic coordinates showed no significant changes in position *with the exception of O(2)*, which is approximately coplanar with Ba, between the Cu-O and Tl-O layers. Atom O(2) shifts toward Cu with decreasing temperature (see Fig. 1). Since the length of the Cu-O(2) apical bond usually reflects the local charge density at Cu, due to the Jahn-Teller distortion, this shift is consistent with a very slight increase in the effective valence of Cu with decreasing temperature. However, contrary to the XANES report on $YBa_2Cu_3O_7$ [3], there was no significant abrupt change in the O(2) position near T_c . On the other hand, PDF analysis of the same data did indicate some anomalous structural change in the vicinity of T_c , likely involving O(1) rather than O(2) [4]. Details of these findings will be reported elsewhere.


Figure 1. Change in fractional z coordinate for O(2) as a function of temperature. Error bars have length 2σ .

3. $Tl_2Ba_2CuO_6$

Two samples having nominal composition $Tl_2Ba_2CuO_6$ were prepared *in sealed gold tubes* using identical synthesis techniques, varying only the reaction temperature: 750° C produced a non-superconducting sample, but 875° C produced a sample with T_c of 65 K. While both samples show significant amounts of impurity phases (estimated at 20%), the location and integrated intensity of the impurity peaks are very similar between samples. Rietveld refinements yielded no discernable differences between the samples, including identical lattice constants: $a = 3.8462(1)$ Å and $c = 23.189(1)$ Å for the superconducting sample; $a = 3.8462(1)$ Å and $c = 23.188(1)$ Å for the non-superconducting sample.

In contrast, the PDF measured for each sample are quite different (Fig. 2) in short range (< 5 Å), but are almost identical in medium range (> 5 Å). This suggests that the medium to long range order of each sample is very similar, while there is a significant difference in the *short range order*, specifically the non-superconducting sample has much greater local disorder. It is possible that the increased disorder in the 750° C sample contributes to the destruction of superconductivity. Our result does not support the previous proposal that an increased T_c for this compound is directly correlated

with an increase in the c axis length (controlled by oxygen concentration) [5], but instead suggests that both the cell length and degree of short range order play a role in the superconducting state of the sample.

Figure 2. Atomic pair distribution function (PDF) experimentally determined by pulsed-neutron diffraction for $Tl_2CaBa_2CuO_6$ at 100 K: superconducting sample with $T_c = 65$ K (solid line); non-superconducting sample (dotted line).

ACKNOWLEDGEMENTS

This research was sponsored by the National Science Foundation through grants DMR-8519059 and DMR-8617950. The Argonne Intense Pulsed Neutron Source is operated by the Department of Energy under contract W-31-109-Eng-38.

REFERENCES

1. W. Dmowski, B. H. Toby, T. Egami, M. A. Subramanian, J. Gopalakrishnan and A. W. Sleight, Phys. Rev. Lett. **61**, 2608 (1988).
2. D. E. Cox, C. C. Torardi, M. A. Subramanian, J. Gopalakrishnan and A. W. Sleight, Phys. Rev. B **38**, 225 (1988);
3. S. D. Conradson and I. D. Raistrick, Science **243**, 1340 (1989).
4. T. Egami, B. H. Toby, W. Dmowski, S. Billinge, P. K. Davies, J. D. Jorgensen, M. A. Subramanian, J. Gopalakrishnan and A. W. Sleight, this volume.
5. Y. Shimakawa, Y. Kubo, T. Manako, T. Satoh, S. Iijima, T. Ichihashi and H. Igarashi, Physica C **157**, 279 (1989).