

233
7-1084 JS ①

LA-9893-MS

DR# 0180-5

I-15623

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36.

DO NOT MICROFILM
COVER

*Estimating the Risks
of Cancer Mortality and Genetic Defects
Resulting from Exposures
to Low Levels of Ionizing Radiation*

MASTER

Los Alamos

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DO NOT MICROFILM
THIS PAGE

Prepared by Kathy Derouin, Group HSE-8

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

NOTICE

**PORTIONS OF THIS REPORT ARE ILLEGIBLE. It
has been reproduced from the best available
copy to permit the broadest possible avail-
ability.**

LA--9893-MS

DE84 013855

**Estimating the Risks
of Cancer Mortality and Genetic Defects
Resulting from Exposures
to Low Levels of Ionizing Radiation**

Thomas E. Buhl
Wayne R. Hansen

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Los Alamos Los Alamos National Laboratory
Los Alamos, New Mexico 87545

CONTENTS

ABSTRACT	1
I. INTRODUCTION	2
A. Scope of This Report	2
B. The NEPA Implementation Process: A Brief Description	2
C. Use of Health Effects Estimates in NEPA Documents	3
D. Contents of the Report	4
II. CONSIDERATIONS IN CALCULATING RADIATION RISKS FOR NEPA DOCUMENTS	4
A. Typical Doses Considered in NEPA Documents	4
B. Health Effects Resulting from Radiation Exposure	5
C. Terminology	6
D. Calculational Assumptions Used in Estimating Radiation Risks	7
1. The Dose-Response Model	7
2. Projection of Cancer Risk Beyond the Period of Follow-Up	9
3. Comparability Between Populations	10
4. Numerical Value of the RBE	11
5. Stability of Demographic Data	11
III. RISK ESTIMATION PROCEDURES OF NATIONAL AND INTERNATIONAL ADVISORY GROUPS	12
A. Risks of Radiation-Induced Cancer and Genetic Disorders	12
1. U.S. National Academy of Sciences Committee on the Biological Effects of Ionizing Radiations (BEIR Committee)	12
2. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR Committee)	15
3. International Commission on Radiological Protection (ICRP)	17
4. National Council on Radiation Protection and Measurements (NCRP)	19
B. Risks of Somatic Effects Other Than Cancer	20
1. Effects from Irradiation in Utero	20
2. Nonstochastic Effects	22
C. Comparison of Risk Factors	23

IV. RISK ESTIMATION METHODOLOGY FOR USE IN U.S. DEPARTMENT OF ENERGY NEPA DOCUMENTS	27
A. Recommendations for Calculating Risk of Cancer and Genetic Disorder from Radiation Exposure	27
1. First Method	28
2. Second Method	30
B. Dose-Response Model for Low-LET and High-LET Radiation . .	31
C. Absolute Risk vs Relative Risk in Estimating Incremental Probability of Cancer Mortality	34
D. Calculation of the Risk of Cancer Mortality	36
E. Specification of Dose for Use in the Risk Calculation . .	39
F. Discussion of Risk-Rate Factors	43
1. All Cancers	43
2. Bone Cancer	43
3. Breast Cancer	44
4. Liver Cancer	44
5. Thyroid Cancer	44
6. Leukemia	45
7. Lung Cancer	45
8. Risk Factors for High-LET Radiation	46
G. Relating Cancer Incidence to Cancer Mortality.	47
H. Risk of Genetic Disorders in Offspring	47
I. Risk of Somatic Effects Other Than Cancer.	49
1. Effects from Irradiation <u>in Utero</u>	49
2. Nonstochastic Effects.	50
J. Effect of Current Research on Risk Assessment Procedures .	50
V. SUMMARY.	51
VI. ACKNOWLEDGMENTS	51
REFERENCES.	51

APPENDIXES

APPENDIX A. THE COMPUTER PROGRAM REPCAL	55
APPENDIX B. LISTING OF THE COMPUTER PROGRAM REPCAL	62
APPENDIX C. SAMPLE PROBLEMS AND COMPARISON OF REPCAL RISK ESTIMATES WITH THOSE OF BEIR III	76

TABLES

I.	TUMORIGENIC AND MUTAGENIC RISK FACTORS RECOMMENDED BY NATIONAL AND INTERNATIONAL ORGANIZATIONS FOR RADIATION EXPOSURE AT LOW DOSES	24
IIa.	RISK FACTORS (RISK/ABSORBED DOSE) RECOMMENDED FOR USE IN DOE NEPA DOCUMENTS.	29
IIb.	RISK FACTORS (RISK/DOSE EQUIVALENT) RECOMMENDED FOR USE IN DOE NEPA DOCUMENTS ASSUMING A QUALITY FACTOR OF 20.	32
III.	PARAMETERS USED FOR CALCULATING LIFETIME RISK FACTORS FOR CANCER	35
IV.	PROPORTION DYING IN EACH AGE INTERVAL	40
V.	POPULATION DISTRIBUTION BY AGE AND SEX.	41
VI.	AGE- AND SEX-SPECIFIC CANCER MORTALITY RATES.	42
VII.	RBE VALUE TO USE FOR OBTAINING LIFETIME RISKS FROM HIGH-LET RADIATION	46
VIII.	RATIOS OF THE LIFETIME RISK OF CANCER MORTALITY TO THE LIFETIME RISK OF CANCER INCIDENCE	47
A-I.	STRUCTURE OF INPUT FILE	55
A-II.	DEFINITION OF INPUT PARAMETERS	56
A-III.	INPUT FILES FOR A SAMPLE PROBLEM: CALCULATING THE TOTAL NUMBER OF CANCER DEATHS INDUCED BY A DOSE OF 10 Rads OF LOW-LET RADIATION	58
C-I	OUTPUT FILE FOR THE FIRST SAMPLE PROBLEM	78
C-II.	INPUT FILE FOR THE SECOND SAMPLE PROBLEM: CALCULATION OF THE TOTAL NUMBER OF CANCER DEATHS INDUCED BY CONTINUOUS EXPOSURE OF 1 Rad/Year OF LOW-LET RADIATION	95
C-III.	OUTPUT FILE FOR THE SECOND SAMPLE PROBLEM	97
C-IV.	COMPARISON OF REPCAL AND BEIR III ESTIMATES USING THE LINEAR DOSE-RESPONSE MODEL: CANCERS PER ONE MILLION PERSONS	113

ESTIMATING THE RISKS OF CANCER MORTALITY AND GENETIC DEFECTS
RESULTING FROM EXPOSURES TO LOW LEVELS OF IONIZING RADIATION

by

Thomas E. Buhl and Wayne R. Hansen

ABSTRACT

Estimators for calculating the risk of cancer and genetic disorders induced by exposure to ionizing radiation have been recommended by the U.S. National Academy of Sciences Committee on the Biological Effects of Ionizing Radiations, the U.N. Scientific Committee on the Effects of Atomic Radiation, and the International Committee on Radiological Protection. These groups have also considered the risks of somatic effects other than cancer. The U.S. National Council on Radiation Protection and Measurements has discussed risk estimate procedures for radiation-induced health effects.

The recommendations of these national and international advisory committees are summarized and compared in this report. Based on this review, two procedures for risk estimation are presented for use in radiological assessments performed by the U.S. Department of Energy under the National Environmental Policy Act of 1969 (NEPA). In the first procedure, age- and sex-averaged risk estimators calculated with U.S. average demographic statistics would be used with estimates of radiation dose to calculate the projected risk of cancer and genetic disorders that would result from the operation being reviewed under NEPA. If more site-specific risk estimators are needed, and the demographic information is available, a second procedure is described that would involve direct calculation of the risk estimators using recommended risk-rate factors. The computer program REPCAL has been written to perform this calculation and is described in this report.

We have briefly discussed somatic effects other than cancer, such as developmental effects resulting from irradiation in utero and nonstochastic effects that may occur

in the dose ranges considered in NEPA documents. No risk estimation procedures are given in this report for these effects because none have been recommended by any of the national and international committees reviewed here.

I. INTRODUCTION

A. Scope of This Report

Under the National Environmental Policy Act of 1969 (NEPA), the Department of Energy (DOE) identifies and assesses environmental impacts from its proposed major actions. An important consideration in assessments of DOE programs involving the use of ionizing radiation is the potential effect on public health.

In this report we will present a method that estimates impacts on health from projected radiation doses from a particular program or facility. This method will allow the DOE decision maker to determine whether a program has a negligible or a significant associated health risk, and it provides a numerical estimate of the risk. In some NEPA documents, several alternatives involving a proposed action are analyzed. Expressing the results of the radiological analysis of each alternative in terms of health effects would help to clarify differences among the alternatives, which may facilitate decision making.

These estimation procedures are proposed so that DOE health risk estimation can be standardized in NEPA documents. Radiation impacts from different proposed actions can be compared more clearly because one element of variability--use of different risk calculations methods--will have been eliminated.

We have used in this report only the recommendations of well-recognized national or international advisory committees. No attempt was made to derive independent risk evaluations.

B. The NEPA Implementation Process: A Brief Description

The NEPA established a national policy for the environment. It also provided for a Council on Environmental Quality (CEQ), whose function was to set up regulations governing policy implementation.

The purpose and content of DOE-associated NEPA documentation are governed by the CEQ NEPA Regulations (Council on Environmental Quality 1978), DOE NEPA Guidelines (USDOE 1980b), the DOE Environmental Compliance Guide (USDOE 1981a), DOE Order 5440.1B (USDOE 1982a), and various NEPA-directed Executive Orders. Three basic levels of documentation are included in the DOE NEPA-review process: the Action Description Memorandum (ADM), the Environmental Assessment (EA), and the Environmental Impact Statement (EIS). The ADM is prepared for each proposed action not exempted under the DOE Guideline. The ADM identifies potential areas of environmental concern. If a finding of no significant impact is made in the ADM, the DOE prepares a memorandum to this effect as a file record. No further NEPA documentation is necessary. If it is found that the proposed action has a potential for significant impact, an environmental impact statement (EIS) must be prepared.

If, based on the information in the ADM, DOE is uncertain whether the proposed action will result in significant impact, an EA may be required. The EA contains a more complete analysis of environmental impacts than that in the ADM and includes consideration of alternative courses of action. Based on the information in the EA, the DOE decides if the proposed action results in no significant impact or if an EIS is necessary.

The EIS treats environmental impacts more completely than either the ADM or the EA. Although recent CEQ regulations emphasize a concise EIS (150 or fewer pages of text), the analysis underlying the document is extensive and detailed. All significant impacts must be considered, alternatives to a proposed action must be fully analyzed, and the impacts from each alternative must be evaluated.

Under the NEPA review process, then, an EIS is prepared only if either the ADM or the EA indicates that the proposed action may have significant impact. Preparing an EIS is a complex procedure involving a scoping stage (with participation of affected federal, state, and local agencies and other affected parties), publication of a draft EIS, a period for comment by the public and by other government agencies, and publication of a final EIS culminating in a minimum 30-day public review period. The DOE's final decision regarding the proposed action and its alternatives is published as a Record of Decision. That final document states the rationale for the chosen course of action, including the environmental issues, and it identifies necessary mitigating measures.

C. Use of Health Effects Estimates in NEPA Documents

In view of the wide range of detail required for NEPA documents, two alternate methods of estimating health effects are presented in this report. The first method is simple and direct. Risk factors given in this report are used to predict the lifetime risk of dying of cancer and the risk of genetic

disorder in offspring in all subsequent generations as a result of exposure to ionizing radiation. These factors are average values calculated using the age and sex distribution of the U.S. population, the U.S. life tables, U.S. cancer mortality rates, and U.S. age-specific birth rates.

In situations where the characteristics of the population differ significantly from the average U.S. population, a somewhat more complex method using the specific characteristics of the local population may be used if these data are available. For this situation a second method of health risk estimation is presented. Risk-rate coefficients are recommended that can be used with local demographic and health statistics to calculate site-specific lifetime risk factors. A computer program was written to perform these calculations and is listed in Appendix B of the report.

D. Contents of the Report

Section II presents terminology and calculational models that are discussed in the report. Section III reviews the work that was considered in developing recommendations for lifetime risk factors and risk-rate coefficients. The lifetime risk factors and the genetic risk factors from the U.S. National Academy of Sciences Committee on the Biological Effects of Ionizing Radiations (the BEIR Committee), the United National Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), and the International Commission on Radiological Protection (ICRP) were reviewed, as well as a risk calculation method proposed by the National Council on Radiation Protection and Measurements (NCRP). Tumorigenic and mutagenic risk factors from these organizations were compiled in a common form so that they could be compared.

In Section IV risk factors and risk-rate coefficients are recommended for use in DOE NEPA documents. The calculational methodologies for estimating cancer risk and genetic risk are described in that section.

The final section, Section V, summarizes the recommendations made in the report.

II. CONSIDERATIONS IN CALCULATING RADIATION RISKS FOR NEPA DOCUMENTS

A. Typical Doses Considered in NEPA Documents

Doses from operation of DOE facilities are limited by DOE radiation standards found in DOE Order 5480.1 (USDOE 1980a). Annual doses to any member of the public are not to exceed 500 mrem to the whole body, gonads, or bone marrow, and 1500 mrem to any other organ. Annual doses to a suitable sample of the exposed population are limited to one-third of these limits. In addition to the dose limits, DOE policy requires that actual doses be kept to as small a fraction of the annual dose limits as is reasonably achievable (this is referred to as the ALARA policy).

When a dose assessment for a NEPA document is performed, some accident scenarios may involve consideration of doses larger than these dose standards. Dose criteria used to evaluate the suitability of facility siting are given in DOE Order 6430, which is now (October 1983) available only in draft form. For a one-time credible accident, the criteria would be 25 rem to the whole body, 300 rem to the thyroid, 300 rem to the bone surface, and 75 rem to the remaining organs. These criteria apply to the maximum exposed individual located either at the site boundary or onsite at the nearest separate facility (USDOE 1981b). Dose estimates for possible accidents for a proposed DOE operation may range up to these dose criteria.

These accident dose criteria are used as reference values for evaluating the suitability of facility siting. They apply only to accidents. The criteria do not imply the acceptability of doses at these levels, but they provide guidance for siting purposes.

B. Health Effects Resulting from Radiation Exposure

Radiation-induced health effects can be somatic, which occur in the individual receiving the radiation exposure, or genetic, which occur in his or her offspring. Early somatic effects, which can follow the exposure by minutes to weeks, result from high doses of ionizing radiation at high dose rates. These levels are usually not encountered in NEPA documents and are not discussed in this report. Late somatic effects, which usually occur years after the exposure, can be either stochastic, where the probability of injury depends on the dose received, or nonstochastic, where the severity of the effect depends on the dose.

The principal stochastic effect resulting from radiation exposure is induction of cancer. In Section IV, a method of estimating the cancer risks due to radiation is presented.

Other somatic effects include teratogenic effects (which are stochastic) and nonstochastic effects. Teratogenic effects may occur as the result of in utero irradiation of the fetus. These effects include microcephaly, growth impairment, and mental retardation. Nonstochastic effects can range in severity from very mild effects detectable only by sensitive biological testing to severe effects that can be life threatening. As will be discussed later in this report, at the dose levels resulting from routine facility operations that are assessed in NEPA documents, neither widespread teratogenic effects nor nonstochastic effects are expected to occur. In contrast to routine operations, analysis of some accident scenarios may involve consideration of doses in ranges where teratogenic effects and nonstochastic effects are not precluded. However, even these relatively higher accident doses are at the extreme low end of the range of doses where teratogenic effects and nonstochastic effects may occur, so that the importance of these effects is expected to be minimal.

Genetic effects resulting from radiation exposure are stochastic. These effects appear as a result of gene mutations or chromosomal aberrations. A method for estimating the risk of genetic disorder in the first generation and in all subsequent generations due to radiation exposure is discussed in Section IV.

C. Terminology

In the discussion of risk calculations, several terms are used in this report with specific meanings. These terms are defined in this section.

- The risk factor is the lifetime risk of radiation-induced cancer mortality per unit of absorbed dose. The risk factors have been averaged over the age and sex distribution of the population receiving the radiation exposure. The unit is rad^{-1} .

Sometimes a risk factor for genetic risk is given. In these cases, the risk factor is the risk of genetic disorder in liveborn offspring in the first generation or in all subsequent generations per unit of absorbed dose. In this case the absorbed dose is the gamete dose, defined below. This risk factor is also expressed in rad^{-1} . The context in which the term appears will clarify whether a somatic or genetic risk factor, or both, are discussed.

- The risk-rate factor is the risk of cancer mortality resulting from the radiation exposure per year per unit absorbed dose. The factor is expressed in $\text{rad}^{-1} \text{ year}^{-1}$ and is used in calculating the lifetime risk factor for cancer mortality described above.

- The latent period is the time between the radiation exposure and the appearance of the health effect.

- The expression period or plateau period is the time of an increased relatively uniform risk of cancer mortality resulting from exposure to radiation.

- The relative biological effectiveness (RBE) is the ratio of the absorbed dose of a reference radiation (such as 250 kVp x-rays) needed to produce a given biological effect to the absorbed dose of a particular radiation type (such as alpha or neutron) needed to produce the identical biological effect.

- The quality factor is the quantity used for radiation protection purposes that multiplies the absorbed dose so that radiation of different linear energy transfer (LET) can be expressed in a common term taking into account the different LET-dependent biological effectiveness of each radiation type.

- The genetically significant dose is the gonadal dose from all sources of exposure that, if received by every member of the population, would be expected to produce the same total genetic effect on the population as the sum of the individual doses actually received.
- The gamete dose is the dose accumulated by gametes before conception by the population at risk. The procedure used in BEIR III for calculating the gamete dose is described in Section IV.H.

D. Calculational Assumptions Used in Estimating Radiation Risks

Risk estimates, published by the national and international advisory groups reviewed in Section III, are based on the results of epidemiological studies. Use of these estimates entails several assumptions. These assumptions concern the shape of the dose-response relationship, the method for estimating the risk for times longer than the period spanned in the epidemiological study, the comparability between the studied population and the population that is the immediate concern in the NEPA dose assessment, the value of the RBE used to relate risk from low-LET radiation to risk from high-LET radiation, and the variability of demographic statistics used in estimating risk factors.

1. The Dose-Response Model. Epidemiological studies of the effects of radiation exposure typically are designed to observe the incidence or mortality rate of a health effect such as cancer in exposed and control (non-exposed) human populations. Because of the statistical nature of the appearance of these health effects, the highest quality data will usually be obtained from those population sectors receiving the largest radiation dose. At the low-dose levels of most interest in NEPA-related documents, the risk per unit dose is low, usually resulting in so few health effects that any increased effects are difficult or impossible to observe by epidemiological techniques. Alternatively, the sample size theoretically may be increased to improve statistical power. This is limited, however, by the size of the exposed population. For example, Land and Pierce estimate that a sample size of tens of millions of individuals would be needed to measure the carcinogenic effect of 1 rad of whole body radiation if our current estimates of the risk are accepted (Land 1983).

Consequently, the risk of health effects at doses below 5 to 10 rads has never been conclusively observed. The BEIR Committee in its 1980 report states that it is uncertain "as to whether a total dose of, say, 1 rad would have any effect at all" (BEIR III 1980, p. 139), and "it is by no means clear whether dose rates of gamma or x radiation of about 100 mrads/yr are in any way detrimental to exposed people; any somatic effects would be masked by environmental or other factors that produce the same types of health effects as does ionizing radiation." (BEIR III 1980, p. 139).

Because health effects are difficult to observe when subjects were only exposed at low doses, health risks potentially caused by low levels of ionizing radiation are estimated by extrapolating risks observed at high doses to the low-dose region. A mathematical relationship giving risk in terms of dose is used to perform the extrapolation. None of the mathematical models commonly used contain a threshold dose of radiation, below which the radiation would be expected to have no adverse effect on health. Until the 1980 BEIR report was published, the most commonly used model assumed a linear nonthreshold relationship between the dose D and the response E ,

$$E = aD + E_0 ,$$

where "a" is the risk per unit dose, and E_0 is the number of health effects in the absence of any dose. In its 1980 report, the BEIR Committee considered two additional nonthreshold dose-response models for induction of cancer by low-LET radiation: the linear-quadratic model, in which the response is a sum of a linear and a quadratic term,

$$E = aD + bD^2 + E_0 ,$$

and the quadratic model, in which the response is a quadratic function of the dose,

$$E = bD^2 + E_0 ,$$

where b is a constant.

In summary, epidemiological studies provide estimates of increased risk of cancer induction at relatively high doses where this risk can be more easily observed. In order to obtain estimates of risks at low doses, assumptions are made about the shape of the dose-response curve, and the high-dose risks are extrapolated to the low-dose region.

The question of the slope of the dose response curve and the magnitude of the risk factors may be affected by recent work by Loewe and Mendelsohn (1981) revising the dosimetry of the Japanese atomic bomb survivors. The possible effects this work may have on estimating the risk of radiation-induced cancer are discussed in Section IV.J.

We have elected to recommend the linear no-threshold dose-response model for all radiation types, including low-LET radiation (see Section IV.B). Until the uncertainty noted above in the Japanese atomic bomb survivor epidemiological data is resolved, the more conservative linear model is the most appropriate for long-term projections such as made in environmental documents. We do include a correction to the recommended risk estimate for low doses of low-LET radiation.

The national and international organizations whose recommendations are reviewed in Section III were unanimous in considering that linear extrapolation of risk from low-LET radiation exposure (from the high-dose high-dose-rate regions to low-dose low-dose-rate regions) tends to overestimate the cancer risk. As noted above, the BEIR Committee proposed using a linear-quadratic dose-response model to estimate total cancer risk induced by low-LET radiation. The Committee stated that the quadratic and linear model estimates would bracket the radiation risk, which would be more accurately represented by the intermediate estimates from the linear-quadratic model. For example, the linear-quadratic model produces estimates of total cancer approximately 2.4 times lower at a continuous exposure of 1 rad/year than would be those for the linear model (BEIR III 1980, p. 146). The NCRP developed a Dose Rate Effectiveness Factor (DREF) that would lower the linearly extrapolated estimate of total cancer risk resulting from low-LET radiation by a factor of 2 to 10 for low-dose low-dose-rate exposures (NCRP 1980). UNSCEAR lowered its risk estimate for total cancer induction from $250 \times 10^{-6}/\text{rad}$ of low-LET radiation to $100 \times 10^{-6}/\text{rad}$ of low-LET radiation for low-dose exposures (UNSCEAR 1977). The leukemia risk was similarly reduced. The UNSCEAR Committee notes that such a value is derived essentially from mortalities induced at doses in excess of 100 rad and thus the value appropriate for much lower dose values, and especially for environmental exposures to radiation, may well be substantially less. The ICRP also warns that risk estimates derived from data involving populations exposed at high doses and high-dose rates could overestimate the risk at low doses and low-dose rates, and they consider these possible overestimates in choosing the risk factors used in their report (ICRP 1977a).

For the choice of models to estimate the risk of genetic disorders, the situation is somewhat different. Only very limited evidence of genetic damage from radiation has been observed in human populations. Risk estimates have been obtained principally from laboratory work with several animal species, particularly with mice. These risk estimates were then used with assumptions about the dose-response relationship to estimate the risk of genetic disorders from radiation at low doses. A linear dose-response model has been used consistently by BEIR, UNSCEAR, and ICRP to estimate genetic risk.

2. Projection of Cancer Risk Beyond the Period of Follow-Up. The majority of the epidemiological studies have not yet followed the individuals in their study populations through their entire lifetimes. When the BEIR III report was being written, the data from Japanese atomic bomb survivor study--one of the most important studies for estimating radiation risks--encompassed only 30 years of observation. For some types of cancer, namely leukemia and bone cancer, no elevated cancer incidence had been observed for several years. This was interpreted as the risk returning to zero in about 25-30 years. An estimate of the total lifetime risk of incurring one of these cancers could be calculated straightforwardly. For many other cancers,

however, cancer incidence and mortality had remained elevated above levels found in the control populations. In order to calculate the total lifetime risk of having one of these cancers as a result of radiation exposure, the future risk had to be estimated. The risk was assumed to follow either the absolute risk projection model or the relative risk projection model.

Risk projection using the absolute risk model assumes that absolute risk, which is the difference between the risk of the exposed population and that of the control population, remained constant throughout the expression period. Risk projection with the relative risk model, in contrast, assumes that the ratio of the risk of the exposed population to the control population, as measured during the observation period, was a constant throughout the remaining expression period.

Determining which projection model is preferable may depend on the type of cancer being considered. For example, the BEIR Committee has noted that lung and breast cancer induction may be underestimated by the absolute risk model (BEIR III 1980). However, for many cancers, data are insufficient to indicate which projection model is more appropriate.

3. Comparability Between Populations. The major use of risk estimators in NEPA documents would be to estimate the health impacts of the proposed facility or activity on the surrounding population. This population, which has its own age and sex distribution, would usually be similar to the U.S. population. Even so, populations forming the basis of most epidemiological studies usually differ from the U.S. population in several ways. For example, uranium miner populations have been studied for the effects of radon decay products in inducing lung cancer. This population is composed mainly of males of working age. Exposures occurred while the miners were working in dusty underground mine atmospheres. Cigarette smoking was found to be more widely prevalent among these groups than in the U.S. population as a whole. Thus, there is a question as to what degree the lung cancer risks in this population represent those of a more typical population group.

Similar considerations apply to other groups used in epidemiological studies. The Japanese atomic bomb survivors formed a population group in which males of military age were largely absent, and in which spontaneous incidence rates of many cancers, such as breast cancer or digestive tract cancers, differed significantly from those of the U.S. population. Many epidemiological studies concerned groups that received radiation as a treatment for a specific disease. To what extent the pre-existing disease contributed to elevated cancer rates in many cases is not known.

The BEIR III Committee partially addressed this issue in its relative risk estimate of the number of cancer deaths from a hypothetical radiation exposure in a population group similar to the U.S. population. The Committee used absolute risk-rate coefficients derived from the epidemiological study

of these previously exposed populations to calculate relative risk-rate factors. The expected number of cancer deaths (calculated with the absolute risk-rate factors) resulting from radiation exposure that would occur between 10 and 30 years after the exposure was divided by the number of spontaneous cancer deaths during the same time period. (The period of 30 years after the exposure was used because this was the follow-up period for the atomic bomb survivor study, on which the absolute risk-rate factors were based.) Because the risk estimate was for the U.S. population, the spontaneous cancer mortality rate for the U.S. population was used in the relative risk calculation. The calculated ratio was used as the relative risk-rate factor. The number of cancer deaths, then, in the first 30 years after exposure was calculated using the absolute risk-rate factors from the exposed population (the atomic bomb survivors), but the projection was based on the characteristics of the population for whom the risk was calculated. The question remains as to the applicability of the absolute risk-rate factors to populations other than those that were studied.

4. Numerical Value of the RBE. The RBE should be used in converting risk factors for low-LET radiation to those for high-LET radiation. There is no reason why the RBE should be exactly equal to the quality factor. However, at the dose ranges considered in this report, there are very few measurements of the RBE. The quality factor is frequently used as the RBE, and this practice has been followed in this study. Following the ICRP (ICRP 1977a), we have used a quality factor of 20 for alpha radiation. An exception is the RBE for lung cancer, for which a range of values of 8 to 15 was explicitly given in BEIR III report, whose recommendations were used in estimating the risk of radiation-induced lung cancer (see Section IV.F.7). We have also used a maximum value of 10 for the RBE for neutron radiation.

5. Stability of Demographic Data. Age- and sex-averaged risk factors are calculated using demographic data describing the exposed population at a particular time. These data are the population distribution by age and sex, the probability of dying during a particular age interval, cancer mortality rates by age and sex (if the relative risk of cancer is to be calculated), and age-specific birth rates (for estimating the risk of genetic disorders in offspring).

The estimation of the risk factors assumes that the demographic data used in the calculation are relatively constant in time. While this may be true generally, it may not be a particularly good assumption for several parameters. Examples would include increasing lung cancer rates and falling birth rates. Interpretation of estimates of radiation-induced health risks should be made with these uncertainties in mind.

III. RISK ESTIMATION PROCEDURES OF NATIONAL AND INTERNATIONAL ADVISORY GROUPS

A. Risks of Radiation-Induced Cancer and Genetic Disorders

1. U.S. National Academy of Sciences Committee on the Biological Effects of Ionizing Radiations (BEIR Committee)

a. The BEIR I Report. In 1972 the BEIR Committee published their review of the evidence for effects on human health caused by exposure to low levels of ionizing radiation (BEIR I 1972). Because the recommendations of this report have been superseded by the 1980 BEIR report (BEIR III 1980), the BEIR I report will only be briefly discussed here.

Both somatic and genetic effects were considered in the BEIR I report. The linear dose-response model was used for both carcinogenic and mutagenic effects. The principal somatic effect was induction of cancer, but other effects such as the formation of cataracts and impairment of fertility were also included.

The BEIR I report published both absolute and relative risk-rate coefficients for the major cancers induced by radiation. If these rates are used with the estimates of latent period and plateau period given in BEIR I for each cancer type, the total lifetime risk can be calculated that is due to a radiation exposure at any age. The estimate of the annual number of cancer deaths in the United States resulting from continuous exposure to 0.1 rem/year is included in the report (BEIR I 1972, pp. 172-173) and illustrates the calculation procedure.

Four methods of assessing genetic risks were used in BEIR I: comparison with natural background radiation, a doubling dose method, a method based on an estimate of the mutational component in congenital anomalies and constitutional diseases, and a method based on the role of mutations in overall ill health. The BEIR Committee indicated that the above list is in the order of decreasing confidence.

Estimates of genetic disorders were based on a risk relative to the spontaneous mutation rate of 0.005 to 0.05 per rem, or a doubling dose ranging from 20 to 200 rem. Dominant, chromosomal, and recessive genetic disorders would eventually increase in proportion to the mutation rate. Diseases of complex etiology were assumed to have a mutational component between 5% and 50% of the incidence rate. Based on these factors, the BEIR Committee estimated that the equilibrium risk factor for genetic disorder in offspring ranged between 300 and 7500×10^{-6} for 5 rem per generation.

b. The BEIR III Report. The BEIR Committee in the BEIR III report published in 1980 reviewed its 1972 report and updated its risk estimates based on the most recent epidemiological results.

Although most features of the BEIR I were retained, several significant procedural changes were made in BEIR III. The most significant change in BEIR III was the recommendation that the linear-quadratic dose-response model be used to calculate cancer risks from exposure to low-LET radiation. The linear and quadratic dose-response models were also presented, and the BEIR Committee concluded that risk estimates using these two models represent upper and lower bounds, respectively, for the risk, which was best represented by the linear-quadratic model. The linear dose-response model continued to be used by the BEIR Committee for calculating cancer risk from high-LET radiation and for calculating the risk of genetic disorders for both high- and low-LET radiation.

These recommendations of the BEIR Committee were based on radiobiological considerations. Because of statistical considerations noted earlier, epidemiological studies are relatively insensitive to the shape of the dose-response model in the low-dose region, the areas where the greatest difference between these models would be expected. The use of one model rather than another has not been decided through epidemiological data, but independently through radiobiological research, which has formed the basis of understanding how radiation interacts with human tissue.

Unfortunately, risk-rate coefficients for low-LET radiation used in the linear-quadratic model were supplied by the BEIR Committee only for combined leukemia and bone cancer, and for all other cancers combined. Only linear risk-rate factors were provided for each cancer type singly.

The BEIR III report used a 3-year latent period and a 24-year expression period for leukemia and bone cancer. Risks from other cancers were calculated using a 10-year latent period and an expression period extending for the full lifetime. For in utero exposures, the latent period was taken to be 0 year, and the expression period was 12 years for hematopoietic tumors and 10 years for solid tumors. Most of these values for latent period and expression period represent only small changes from values in the BEIR I report. One notable exception is that BEIR III no longer uses a 30-year expression period in addition to the lifetime expression period for solid cancers as did BEIR I; it only considers a lifetime expression period.

One final procedural difference between BEIR I and BEIR III concerns the calculation of relative risk. In BEIR III explicit relative risk-rate factors usually are not given as they were in the earlier report. A relative risk calculation was performed using the absolute risk-rate factors for all cancers except leukemia and bone cancer; this will be described in Section IV.C. In addition, for this calculation, relative risks to individuals in the 0- to 9-year age group were found to be unreliable, and the relative risks for the 10- to 19-year age group were substituted for them in BEIR III.

More generally, the BEIR Committee tended to give age-specific absolute risk-rate coefficients rather than relative risk-rate coefficients (breast cancer was an exception in that both were given). The BEIR Somatic Effects Subcommittee stated:

"Review of the current data has led the present Subcommittee to conclude that the relative-risk model does not apply generally, but is applicable to the effect of age on cancer incidence for many sites at which cancer is induced by radiation. Thus, age at exposure and at cancer development has emerged as a major determinant of cancer risk from radiation. For this reason, this subject is also considered in some detail; both projection models have been used." (BEIR III 1980, p. 150)

In giving the lower and upper bounds of the risk estimates from the quadratic and linear models, respectively, as well as the central value of the risk estimate from the linear-quadratic model, the BEIR III Committee provided a measure of the uncertainty of these risk projections. At a single exposure of 10 rads, the estimates made with the linear model were 2.2 times larger than were those made with the linear-quadratic model. The linear-quadratic estimates were eight times larger than were the quadratic estimates. And finally, the estimates made with the relative risk projection model were three times larger than those made with the absolute risk projection model for all three dose-response functions (BEIR III 1980, Table V-2, p. 145).

Estimates of the risk of genetic disorders in BEIR III were calculated using two methods, the indirect relative-mutation-risk method (for equilibrium effects) and a new direct method (for first-generation effects). The relative mutation risk of genetic disorder was revised to 0.004-0.02 per rem, corresponding to a doubling dose of 50 to 250 rem. This method was used for all genetic disorders except chromosomal aberrations. The BEIR Committee estimated the equilibrium rate of chromosomal aberrations from the direct method; the expected number of these aberrations was low and did not appreciably affect the estimate of all genetic disorders at equilibrium. The BEIR III report follows BEIR I in using 5% to 50% for the mutational component in irregularly inherited disorders.

Using the indirect method, the BEIR Committee estimated the total number of genetic disorders at equilibrium from an exposure of 1 rem of low-LET radiation per generation to range from 60 to 1100 per million liveborn offspring. This estimate includes a reduction by a factor of 3 to account for the lesser effectiveness of low-dose-rate low-LET radiation to produce genetic effects (BEIR III 1980, p. 128). This dose-rate effect has not been observed for high-LET radiation, so that the risk of genetic disorder at equilibrium from 1 rem of high-LET radiation per generation would be 180-3300 per million liveborn offspring.

A direct method, based on new data giving the incidence of radiation-induced skeletal abnormalities in mice, allows estimation of first generation genetic disorders in man that are due to gene mutations. The risk of chromosomal aberrations from radiation exposure, which the BEIR Committee felt would be dominated by reciprocal translocations, was derived from human and marmoset data. For an exposure of 1 rem, 5 to 65 serious disorders and irregularly inherited disorders, and 0 to 10 disorders from chromosomal aberrations per million liveborn offspring would be expected in the first generation from an exposure of 1 rem. This risk factor took into account the sensitivity of oocytes to radiation, which was estimated to be from 0 to 0.44 of that of spermatogonia for mature and maturing oocytes, and negligible for resting oocytes (BEIR III 1980, p. 118).

As noted above, corrections for dose-rate effects from low-LET radiation were applied in the BEIR III report in the calculation of the risk of genetic disorders. They considered a dose-rate correction for cancer induction by low-LET radiation but it was not adopted. As stated by the BEIR III Committee, "most members of the Committee conclude that it is not now possible to assign a numerical value to any dose-rate factor by which risk estimates obtained in populations exposed to low-LET radiation at relatively high dose rates can be corrected to apply to exposures at low dose rates" (BEIR III 1980, p. 191). The Committee noted that the linear-quadratic model includes some correction for dose rate because the coefficient of the quadratic term depends on dose fractionation.

For high-LET radiation, the Committee did not apply any reduction for dose rate. Because of the reduced effectiveness of body repair mechanisms for high-LET radiation, they recommended the use of the linear dose-response model for both genetic and tumorigenic effects.

2. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR Committee)

a. The 1977 UNSCEAR Report. UNSCEAR published a comprehensive report in 1977 entitled Sources and Effects of Ionizing Radiation, which included a discussion of the health effects of low-level ionizing radiation exposure. The report reviewed recent work in radiation-induced carcinogenesis, genetic disorders, and developmental disorders from in utero exposure. Both tumorigenic and mutagenic effects were calculated with a linear dose-response model.

UNSCEAR published total lifetime risk of cancer mortality (or incidence) resulting from exposure to ionizing radiation. Risk factors were given per unit of absorbed dose (in rads), so that identification of the type of radiation--whether high or low LET--should accompany the risk estimate to make it meaningful.

UNSCEAR explicitly reduced its estimate of total lifetime cancer risk per rad of low-LET radiation from 250 to 300×10^{-6} /rad at moderately high doses (100 to several hundred rads) to 100×10^{-6} /rad at low doses (doses of a few rads) (UNSCEAR 1977, p. 414, paragraph 318). Risk factors for leukemia, from which the above total cancer risks were estimated, were observed to fall from 50×10^{-6} /rad at moderately high doses to 20×10^{-6} /rad at low doses.

Dose-rate effects, in addition to the dose magnitude effects discussed above, also were considered (for example, see UNSCEAR 1977, p. 413, paragraph 310 and p. 512, paragraph 646). Low-LET radiation delivered at low dose rates would be expected to result in a lower risk of cancer induction per rad, but UNSCEAR indicated that it would be impossible to quantify this effect for tumorigenesis (UNSCEAR 1977, p. 598, paragraph 183). A dose-rate reduction factor of 3 for low-dose-rate low-dose effects was included in the calculation of risk of mutagenesis from low-LET radiation (UNSCEAR 1977, p. 508, paragraph 611).

The risk of genetic disorders was estimated using a direct method based on research on skeletal abnormalities in mice exposed to radiation (work also used in the BEIR III report that appeared later) and an indirect method using a doubling dose of 100 rads. The UNSCEAR report and the BEIR III report are in good agreement in estimating the risk of genetic disorder. UNSCEAR estimates that low-dose-rate irradiation at the rate of 1 rad per generation would result in 63 genetic disorders per million liveborn offspring in the first generation (compared with 5 to 75 per million in BEIR III) and 185 genetic disorders per million liveborn offspring at equilibrium (compared with 60 to 1100 per million in BEIR III).

b. The 1982 UNSCEAR Report. UNSCEAR issued its report Ionizing Radiation: Sources and Biological Effects in 1982. The report

1. did not revise any risk factors for radiation-induced cancer from its 1977 report. UNSCEAR indicated that it is now reviewing models of tumor induction, but that it is postponing publication of its findings until questions concerning the dosimetry of the atomic bomb survivors are settled (UNSCEAR 1982, p. 11, paragraph 52). (See Section IV.J. of this report for a short discussion of the effects the review of this dosimetry may have.)
2. reviewed the evidence for nonstochastic risks from radiation exposure. Nonstochastic risks are discussed in Section III.B.2.
3. reviewed recent data on the risk of radiation-induced genetic disorders. The Committee concluded that no substantial changes in previous estimates of genetic risks were necessary.

As in the 1977 UNSCEAR report, the risk of genetic disorder was calculated using a direct method (risks for first generation only) and an indirect method (risks for first generation and for equilibrium). The direct method included the estimate that was used in the 1977 UNSCEAR report based on skeletal malformations in the mouse, and also included an estimate based on radiation-induced dominant cataract mutations in male mice. The sensitivity of oocytes to radiation, which had been considered low in the 1977 report and not included in the risk estimates, was quantified in the 1982 report. The oocytes were estimated to have from 0 to 0.44 times the sensitivity of spermatogonia. The UNSCEAR Committee estimated that the risk of genetic disorder in the first generation from dominant mutations induced by low-LET radiation at low-dose rates would be 10 to $20 \times 10^{-6}/\text{rad}$ for males and 0 to $0.9 \times 10^{-6}/\text{rad}$ for females. The genetic risk from structural chromosomal damage was estimated using human, marmoset, and rhesus monkey data. The estimate of $0.30 \text{ to } 10 \times 10^{-6}/\text{rad}$ (low LET) for males was similar to the estimates of $2 \text{ to } 10 \times 10^{-6}/\text{rad}$ (low LET) for males in the 1977 UNSCEAR report. The estimate in the 1982 report of $0 \text{ to } 3 \times 10^{-6}/\text{rad}$ (low LET) for females agrees with the statement in the 1977 report that the risk of structural chromosome damage in females was low.

Using the direct method, the UNSCEAR Committee estimated that the total risk of genetic disorder in the first generation would be $10.3 \text{ to } 30 \times 10^{-6}/\text{rad}$ for males and $0 \text{ to } 12 \times 10^{-6}/\text{rad}$ for females. These risk factors apply to irradiation by low-LET radiation at low-dose rates.

The indirect method calculation in the UNSCEAR 1982 report used a doubling dose of 100 rads (low LET) to estimate the risk of radiation-induced genetic disorders in the first generation after exposure and at equilibrium. The equilibrium estimate is 149 per million liveborn offspring at a dose of 1 rad (low LET) per generation. This is only a slight change in the previous estimate of $185 \times 10^{-6}/\text{rad}$ in UNSCEAR 1977.

The risk of genetic disorder in offspring in the first generation using the indirect method was estimated to be $21.9 \times 10^{-6}/\text{rad}$. This slight reduction from the estimate of $63 \times 10^{-6}/\text{rad}$ made in the UNSCEAR 1977 report was based primarily on more recent information that was available for the 1982 report. This estimate, as well as the estimates for first-generation effects made with the direct method, is in agreement with the BEIR III estimate of $5 \text{ to } 75 \times 10^{-6}/\text{rad}$.

3. International Commission on Radiological Protection (ICRP)

In ICRP Publication 26, Recommendations of the International Commission on Radiological Protection (ICRP 1977a), the ICRP presented a method for regulating radiation doses to radiation workers and the public based on limiting risks of somatic and hereditary effects. The dose-limitation procedure was designed to prevent nonstochastic effects (those for which the

severity of the effect varies with the dose) and limit stochastic effects (those for which the probability of the effect occurring, rather than its severity, depends on dose). The linear dose-response model for both tumorigenic and mutagenic risks was used in this dose-limitation procedure.

In developing its recommendations for dose limits, the ICRP presented risk estimates for both cancer mortality and genetic disorder resulting from exposure to ionizing radiation. These estimates were chosen for radiation protection purposes and considered to be conservative by the ICRP. The risk factors for cancer mortality are estimates of lifetime risks per unit dose of sufficient accuracy to be applied regardless of age or sex (ICRP 1977a, p. 9).

The ICRP in Publication 27, Problems Involved in Developing an Index of Harm (ICRP 1977b) further discusses risk calculation using these risk factors. The risk of breast cancer mortality is taken to be $50 \times 10^{-6}/\text{rem}$ for females and 0 for males (the average, $25 \times 10^{-6}/\text{rem}$,* is given in ICRP Publication 26). The ICRP sums the various organ risk factors to calculate a total lifetime cancer risk of $100 \times 10^{-6}/\text{rem}$ for males and $150 \times 10^{-6}/\text{rem}$ for females. The average would then be $125 \times 10^{-6}/\text{rem}$. This sex-averaged risk is reduced to $100 \times 10^{-6}/\text{rem}$ when the risk is averaged over the ages of the working population, because in exposed older workers, the cancer expression period is necessarily shortened by deaths from other causes.

The ICRP site-specific cancer risk factors quoted in this report are not age-averaged, but instead, they represent the risk when the "full expression period" is available. We infer this from the use of these risk factors in ICRP Publication 27 (ICRP 1977b). However, age averaging reduced the total cancer risk factor by only 20%, and a similar reduction would occur if age averaging were used for the site-specific cancer risk factors. Because of the uncertainties inherent in these risk factors, the ICRP factors are sufficiently close to the age-averaged factors to compare with risk factors recommended by other advisory groups (see Sec. III.C).

To calculate internal exposure, the ICRP uses the 50-year dose commitment in its system for limitation of dose received by intake of radioactive material during a year. The 50-year dose commitment to an organ is the total dose that an organ receives from radionuclide intake during the 50 years following that intake. The total 50-year dose is thus charged against the year that the intake occurred, even though some fraction of that dose may not be incurred for years after that intake. Multiplication of that organ

*Really as $2.5 \times 10^{-3}/\text{Sievert}$. The ICRP presents its risk factors in terms of dose equivalent (units of Sievert or rem) rather than absorbed dose (units of greys or rads) as other advisory bodies have done. To compare the recommendations of the ICRP with those of the other groups, we converted the rem values to rad values using a quality factor of 20.

dose by the organ's weighting factor, which is the proportion of the stochastic risk to that organ to the total risk when the whole body is irradiated uniformly, gives a weighted effective dose. Risk of stochastic effects from this effective dose can then be compared directly with the risk from uniform whole-body radiation.

Use of the 50-year dose commitment to calculate stochastic risk is compatible with the ICRP's risk factors. Because their risk factors are not age dependent, the age at which the dose is received does not affect the risk calculation. It is obvious, however, that exposures to older individuals may never result in a 50-year dose because their life expectancies can be much less than 50 years.

The ICRP considered reductions in risk owing to both low doses and low-dose rates in deriving its risk factors. Many of the risk factors were based on data taken at high doses and high-dose rates. For these factors, the ICRP states, "it is likely that the frequency of effects per unit dose will be lower following exposure to low doses or to doses delivered at low-dose rates, and it may be appropriate, therefore, to reduce these estimates by a factor to allow for the probable difference in risk. The risk factors...have therefore been chosen as far as possible to apply in practice for the purposes of radiation protection." (ICRP 1977a, p. 7).

Risks of serious genetic disorder given by the ICRP are 100×10^{-6} per rem (genetically significant dose) in the first two generations and an amount of the same magnitude in later generations (ICRP 1977a, p. 10). The total risk to all subsequent generations was taken to be 200×10^{-6} per rem.

The ICRP also used a risk factor for genetic disorder of 80×10^{-6} /rem in all subsequent generations (40×10^{-6} /rem for the first two generations) (ICRP 1977a, p. 12). This risk factor has been adjusted for the contribution that a uniform dose to a typical population would make to the genetically significant dose (ICRP 1977b); this is the genetic risk in an exposed population in terms of the gonadal dose to that population rather than the genetically significant dose.

For the purposes of comparison with estimates of risk of genetic disorder taken from the BEIR and UNSCEAR reports, the first risk factor, 200×10^{-6} /rem, is appropriate, and will be discussed with risk factors from other advisory bodies in Section III.C.

4. National Council on Radiation Protection and Measurements (NCRP)

The NCRP, in its Report No. 64, Influence of Dose and Its Distribution in Time on Dose-Response Relationships for Low-LET Radiations (NCRP 1980),

extensively reviewed the influences of dose magnitude and dose rate on carcinogenic and genetic effects in man. Radiation effects on a wide variety of biological systems, including simple cells, plants, animals, and finally humans were considered by the NCRP.

The NCRP noted that linear extrapolation of cancer risk from low-LET radiation exposure based on data for populations exposed at high doses and high-dose rates could lead to overestimation of risk at low doses and low-dose rates because the effect of biological repair mechanisms would not be taken into account. A Dose-Rate Effectiveness Factor (DREF) was developed to correct overestimates of total cancer risk and risk of genetic disorder resulting from exposure to low-LET radiation at doses of 20 rads or less and dose rates of 5 rads/year or less. For this dose magnitude and dose-rate range, the NCRP estimated that the linear hypothesis would overestimate the total number of tumors or genetic disorders in man by a factor of 2 to 10. The NCRP avoided giving DREFs for individual organs, or a single value for the DREF for all tumors, because of our present limited understanding of tumor formation and the widely different tumor responses to radiation in experimental animals.

Risk factors for selected cancers in humans were reviewed by the NCRP, but no specific factors were recommended for calculating the risk from radiation exposure. Similarly, latent periods and plateau periods were discussed, but no values were recommended for risk calculation for specific cancers. Instead, the report focused on correlating dose magnitude and dose-rate effects observed in a wide variety of biological systems so that the effects on man for exposure to ionizing radiation at low doses, or at high doses but at low-dose rates could be assessed, and the validity of the linear dose-response model for low-LET radiation could be examined.

B. Risks of Somatic Effects Other Than Cancer

1. Effects from Irradiation in Utero. In utero radiation exposure has been related to an increased risk of death of the conceptus and embryo and of teratogenic effects in animal experiments, and in some cases, in human populations (such as the atomic bomb survivors). The developmental effects include morphological changes (especially microcephaly for humans), functional disabilities (such as mental retardation), and growth impairment. These effects have been principally observed in populations exposed at high-radiation doses, although some effects have also been reported at doses as low as a few rads to the embryo.

Although these effects have been documented, the dose-response relationship has not been well defined. None of the organizations (with the exception of the ICRP) whose work is reviewed in this report have developed a method of quantitatively relating the risk of teratogenic effects to the

radiation dose. Many questions remain, such as the biological effectiveness of high-LET radiation relative to low-LET radiation.

In its 1977 report, the UNSCEAR Committee stated that, for somatic effects other than cancer, "data applicable to man can only be derived from human epidemiological studies. These studies are, however, not available at present, at least on the scale required and at the low doses of interest. The Committee believes that this point should be particularly emphasized so as to discourage numerical extrapolations not sufficiently justified by present knowledge." (UNSCEAR 1977, p. 707) Data obtained from animal experiments was qualitatively useful, but should not be used to establish a quantitative dose-effect relationship for man because of "(a) the great specificity of the malformations induced at comparable stages in different species and even among different strains of the same species; (b) the species difference in the duration of the foetal period ...; (c) the extremely variable form of the dose-effect relationships in different species." (UNSCEAR 1977, p. 707)

The UNSCEAR Committee did report an incidence rate for man of mental retardation associated with microcephaly of 10^{-3} /rad when irradiation occurred during the period of major organogenesis (9 to 60 days post conception). This incidence rate was measured at doses greater than 50 rads to the fetus, and the Committee warned against extrapolating this rate to the lower dose region (UNSCEAR 1977, p. 682).

In studies of individuals exposed in utero at Hiroshima and Nagasaki, microcephaly was observed at doses as low as 10 to 19 rad (kerma) at Hiroshima, but only at doses above 150 rad (kerma) at Nagasaki. The difference was presumably due to the larger neutron component to the dose at Hiroshima, although this conclusion may be altered by the recent reexamination of the dosimetry at Hiroshima and Nagasaki (UNSCEAR 1977, p. 682) (see Section IV.J). No dose-response relationship was given in the UNSCEAR report based on this data.

The BEIR Committee felt that, for some teratogenic effects where cell-killing effects could be directly measured, such as oocyte killing, "there do not appear to be any clear threshold doses under some conditions. For morphologic malformations, however, a generalized straight-line extrapolation from the results of acute irradiation at high or moderate doses is probably not valid. Because it is unlikely that any perceived developmental abnormality results from damage to a single target, there are probably threshold doses for all such abnormalities." (BEIR III 1980, p. 489.) The BEIR III report states that, at total exposures less than 1 R delivered at exposure rates of 0.01 R/min or less, widespread teratogenic effects would not occur, even though some effects involving single cells could occur (BEIR III 1980, p. 492). The report also states that natural and manmade

background radiation is so low that it is not believed to be a factor in the natural occurrence of teratogenic effects (BEIR III 1980, p. 487).

The report in which the ICRP systematically presented its risk factors, ICRP Publication 26, discussed teratogenic effects (ICRP 1977a, p. 13, paragraph 65) but presented no risk factors for those effects. In contrast to BEIR III and UNSCEAR, the ICRP has used a linear dose-response model in developing an index of harm to estimate effects from in utero irradiation in ICRP Publication 27 (ICRP 1977b). Risk factors for these effects were estimated to be 8×10^{-3} /rem for intrauterine death for exposures before implantation of the conceptus on the uterine wall and 5×10^{-4} /rem for malformation from exposures occurring during major organogenesis.

2. Nonstochastic Effects. Nonstochastic effects were briefly discussed in BEIR I, BEIR III, the 1977 UNSCEAR report, and in ICRP Publication 26. The most thorough treatment was found in the 1982 UNSCEAR report. No organization whose work is reviewed here has proposed a risk calculation procedure for nonstochastic effects in humans.

Nonstochastic effects in general exhibit an effective dose threshold. For doses below this threshold, no nonstochastic effects are expected to occur. In reviewing the reports described above, we have found that dose thresholds are generally well above the range of doses described in Section II.A that would be encountered in NEPA documents.

According to the ICRP, nonstochastic effects are not expected to occur over a lifetime at annual doses below 5 rem for all tissues (ICRP 1977a, p. 25, paragraph 126 and ICRP 1980).

The BEIR III report considered the effects of radiation exposure on the impairment of fertility, formation of cataracts, and aging. Doses less than 400 rads (low-LET radiation) to spermatogonial stem cells were not expected to cause permanent sterility in males. Doses to the ovary in the range of 300 to 400 rads (low-LET radiation) may cause some impairment of fertility in females, but the effect is somewhat dependent on age (BEIR III 1980, p. 499). Data on cataract formation were reported to be sigmoid in shape, with dose thresholds in the range of 20 to 450 rads (low-LET radiation) (BEIR III 1980, p. 500), but only above a dose threshold of 200 rads do vision-impairing cataracts begin to appear. With regard to aging, the BEIR Committee concluded that "there is no firm evidence that exposure to ionizing radiation causes premature aging in man or that the associated increased incidence of carcinogenesis is due to a general acceleration of aging." (BEIR III 1980, p. 505)

The 1982 UNSCEAR report reviewed in some detail the evidence for nonstochastic effects induced by radiation. The tissues having the lowest thresholds for induction of nonstochastic effects were the reproductive

organs, where acute doses as low as 10 rads (low-LET radiation) could cause temporary sterility in males (permanent sterility in males would not occur until acute doses exceeded 200 to 600 rads, and in females until doses exceeded 300 rads), and blood and blood-forming cells, where acute doses as low as 50 to 100 rads may cause some loss of lymphocytes and stem cells from the bone marrow and circulating blood. The UNSCEAR report discusses nonstochastic effects for many organs, including lung, skin, urinary tract, gastrointestinal system, and eye (UNSCEAR 1982, pp. 625-626).

C. Comparison of Risk Factors

Two different approaches were taken by the organizations reviewed here in presenting their risk estimates for cancer. Both UNSCEAR and the ICRP published age- and sex-averaged risk factors, giving the incremental lifetime risk to an individual of dying from a radiation-induced cancer either per unit absorbed dose (UNSCEAR) or per unit dose equivalent (ICRP). The BEIR Committees, in contrast, tended to publish an age- and sex-specific risk rate, giving the annual risk of dying from cancer in terms of age of exposure and elapsed time since the exposure.

The first approach has the advantage of simplicity because the cumulative organ dose to a population in an assessment area leads directly to the estimated number of health effects resulting from that dose by multiplying the cumulative organ dose by the risk factor for that organ. However, if the population-at-risk differed significantly from the population over which the risk factors had been averaged, the estimate of health effects using an age- and sex-averaged risk factor is unlikely to be representative. For example, if the population consisted of male radiation workers of age 25, the risk factor for total cancers from whole-body low-LET radiation is 40% higher than the age- and sex-averaged risk factor. [However, the uncertainties already associated with risk estimates are probably much larger than this (see Section III.A.1.b)].

This difficulty is remedied by using the second approach, which employs risk-rate coefficients for each sex and age group. The enhanced flexibility in this approach, however, is offset by an increased complexity. Input data required to perform this calculation of health effects include the population distribution by age and sex, life tables for each sex, and, if a relative risk projection model is used, cancer mortality rates by age and sex.

In order to compare the risk estimates from BEIR III with those from UNSCEAR and the ICRP, we calculated age- and sex-averaged lifetime risk factors from the BEIR III risk-rate factors when lifetime risk factors were not given. The risk factors recommended by these three groups are listed in Table I for the most important organs of concern. In obtaining the BEIR III lifetime risk factors, we used a life table calculation based on the 1980

TABLE I

TUMORIGENIC AND MUTAGENIC RISK FACTORS RECOMMENDED BY NATIONAL AND INTERNATIONAL
ORGANIZATIONS FOR RADIATION EXPOSURE AT LOW DOSES

	Age- and Sex-Averaged Lifetime Risk of Cancer Mortality (Cancer Deaths/10 ⁶ Person-rad)							
	Low-LET Radiation				High-LET Radiation			
			BEIR III ^a				BEIR III	
	UNSCEAR	ICRP	Absolute Risk	Relative Risk	UNSCEAR	ICRP ^b	Absolute Risk	Relative Risk
All cancers (whole-body radiation)	100 (75-175)	100 --	167 77 --	501 (Linear) 226 (Linear- Quadratic) 28 (Quadratic)	-- -- --	-- -- --	-- -- --	-- -- --
Bone ^c	2-5	5	1.4 ^d		20-50	100	27 ^d	
Lung	25-50	20	100	270	200-450	400	800-1500 ^e	2200-4000 ^e
Breast	25 ^f	25 ^f	36 ^f	23	--	500	--	
Liver	10-15	<10 ^g	15	56	100	<200	300	--
Thyroid	5-15	5	26	170	--	100	--	--
Leukemia (red marrow dose)	15-25	20	55 (Linear) 23 (Linear- Quadratic)		50-55 ^h	400	--	--
	--	--	3 (Quadratic)		--	--	--	--
	--	--			--	--	--	--

^aThe linear model was used in making these risk estimates, unless otherwise indicated.^bA quality factor of 20 has been assumed.^cDose calculated to the bone surface.^dThe BEIR III report lists a dose-squared exponential function and a linear function to express the dose-response relation for bone cancers. Only the linear function is given here.^eThe RBE of alpha radiation for lung cancer is 8-15.^fThe breast cancer risk for women has been reduced by 50% for the general population.^gThe ICRP risk for liver cancer was calculated from the risk factor for the "other cancers" category (ICRP 1977a).^hCalculated from Thorotrast patients.ⁱThe first two estimates $(10.3-30) \times 10^{-6}$ and $(0-12) \times 10^{-6}$ were obtained using the direct method. The third estimate was obtained using the doubling dose method. The quoted risk factors are taken from UNSCEAR (1982), which supersedes UNSCEAR (1977).

TABLE I (cont)

	Risk of Genetic Disorder per 10^6 Liveborn Offspring per rad					
	Low-LET Radiation			High-LET Radiation		
	UNSCEAR	ICRP	BEIR III ^a	UNSCEAR	ICRP ^b	BEIR III
First generation	10.3-30 (males) ⁱ 0-12 (females) ⁱ 21.9 (males and females) ⁱ	--	5-75	--	--	300-4500
First two generations	--	100	--	--	2000	--
Equilibrium	149	200	60-1100	--	4000	3600-66000

^aThe linear model was used in making these risk estimates, unless otherwise indicated.

^bA quality factor of 20 has been assumed.

^cDose calculated to the bone surface.

^dThe BEIR III report lists a dose-squared exponential function and a linear function to express the dose-response relation for bone cancers. Only the linear function is given here.

^eThe RBE of alpha radiation for lung cancer is 8-15.

^fThe breast cancer risk for women has been reduced by 50% for the general population.

^gThe ICRP risk for liver cancer was calculated from the risk factor for the "other cancers" category (ICRP 1977a).

^hCalculated from Thorotrast patients.

ⁱThe first two estimates $(10.3-30) \times 10^{-6}$ and $(0-12) \times 10^{-6}$ were obtained using the direct method. The third estimate was obtained using the doubling dose method. The quoted risk factors are taken from UNSCEAR (1982), which supersedes UNSCEAR (1977).

U.S. population distribution by age and sex (U.S. Bureau of the Census 1982) and the U.S. decennial life tables (USNCHS 1975).

The BEIR III lifetime risk factors were calculated assuming a linear dose-response curve for high-LET radiation, and a linear, linear-quadratic, or quadratic dose-response curve for low-LET radiation. This corresponds to the procedure used in the BEIR III report in which the three models were used to present a range of risk estimates. We note that, because the linear-quadratic and quadratic models are not linear in dose for low-LET radiation, the risk factors for these two models in Table I are average values per rad and not estimates of risk at 1 rad of dose (BEIR III 1980, p. 212).

Because the report of the BEIR III Committee supersedes previous reports, lifetime risk coefficients were not derived for the BEIR I report.

The reports reviewed here give the risk of genetic disorder per million liveborn offspring for either the first or first two generations and for the equilibrium situation (equilibrium corresponds to the case of a number of succeeding generations, each receiving the same additional radiation exposure to the point where the rate of elimination of mutant genes balances the rate of increase of mutant genes). The BEIR III report points out that the risk of genetic disorder at equilibrium in a single generation is numerically equal to the risk of genetic disorder in all succeeding generations due to a radiation exposure in a single generation (BEIR III 1980, p. 128). Accordingly, the equilibrium estimate has been used in Table I to give the number of genetic disorders in all succeeding generations.

As seen in Table I, the lifetime risk factors for low-LET radiation published by the BEIR Committee, UNSCEAR, and ICRP are in fair agreement. The BEIR III estimate of all cancer fatalities per rad of exposure is larger for the linear model than the estimates of UNSCEAR and ICRP; however, those two organizations deliberately tailored their risk factors for use at low doses, whereas BEIR III did not. A more fair comparison would be between the BEIR III estimate using the linear-quadratic model $[(77-228) \times 10^{-6}/\text{rad}]$ and the UNSCEAR and ICRP risk factors having a range of $(75-175) \times 10^{-6}/\text{rad}$, for which there is good agreement (BEIR III 1980, p. 212, Table V-25). (The same consideration applies also to the lifetime risk factor for leukemia.)

Using risk-rate factors from Appendix A of BEIR III, we calculated the BEIR III thyroid risk factor to be about twice as large as the UNSCEAR factor and five times as large as the ICRP factor. This discrepancy may be due to a difference in changing from an incidence to mortality risk. UNSCEAR gives a lifetime thyroid cancer incidence risk factor of 100 and $300 \times 10^{-6}/\text{rad}$ (UNSCEAR 1977, p. 385, paragraph 150). A 3% fatality risk per 25 years was then used to calculate the lifetime thyroid cancer mortality risk of $(5-15) \times 10^{-6}/\text{rad}$. The BEIR III thyroid cancer risk factor was calculated using a mortality-to-incidence ratio of 0.19 for thyroid cancer (the average of the

male and female values) given in Table V-15 (BEIR III 1980). This ratio would yield a mortality risk factor approximately 3 times larger than that used in UNSCEAR. Lowering the BEIR III risk factor of $25 \times 10^{-6}/\text{rad}$ by a factor of 3 to $8 \times 10^{-6}/\text{rad}$ would place it in the range estimated by UNSCEAR.

The risk factor for lung cancer from low-LET radiation is also higher in BEIR III than in either UNSCEAR or ICRP. The BEIR III estimate was calculated for an entire lifetime using the age-specific risk rate coefficients from Appendix A of BEIR III. The UNSCEAR estimate was based on a 40-year followup period for the uranium miner study and a 27- to 29-year followup period for the Japanese atomic bomb survivor study. Although the basis of the ICRP risk factor was not discussed, the ICRP did indicate that its risk factors were chosen to apply for radiation protection, which may mean they were chosen for the doses and dose rates typically found in operational radiation exposure.

Many of these comments also apply to the high-LET radiation risk factors. The risk of liver cancer mortality is 3 times higher in BEIR III than in UNSCEAR; no explanation is offered for this difference, because these risk factor values were taken directly from each report. The BEIR III Committee indicated that previous estimates of liver cancer risk made by several individual authors were three or four times too low for several reasons, including these authors' not considering future risk to surviving patients (BEIR III 1980, p. 375). The Committee did not indicate whether its revisions would also apply to the UNSCEAR risk factor for liver cancer.

IV. RISK ESTIMATION METHODOLOGY FOR USE IN U.S. DEPARTMENT OF ENERGY NEPA DOCUMENTS

A. Recommendations for Calculating Risk of Cancer and Genetic Disorder from Radiation Exposure

Recommendations for risk estimation methodology and for risk factor values based on the review of the literature presented in Chapter III are discussed in this section. These recommendations are intended to apply to NEPA-related documents published by the U.S. Department of Energy.

The reports reviewed in Section III to some degree present competing estimates of risk (is it better to use a risk factor from one report instead of from another report?). However, in a larger sense each subsequent report represents a cumulative (rather than competing) effort that includes the results of previous reports. The authors of the more recent reports have benefitted from reviewing the earlier reports and had available both the data on which the earlier reports were based and also data published since the appearance of those earlier reports. The later reports, because they

incorporate a larger epidemiological and experimental data base than the earlier ones, were used as the basis for the recommendations presented here.

The BEIR III report was relied on heavily in making these recommendations. Several extensions of the BEIR III report were developed so that the risk calculational methodology could be applied in a wide variety of circumstances. These extensions were consistent with the approach found in BEIR III.

As noted in Section II.C.1., the BEIR Committee expressed considerable uncertainty over just what the health effects at low doses (1 rad or less) of radiation are, or even if there are any at all (see, for example, p. 193, BEIR III 1980). Typical doses discussed in NEPA documents are generally in this low-dose range. In spite of these uncertainties, procedures for estimating health effects at low doses are given here because of the need to directly relate dose estimates to their impact on health so that the potential effects of proposed DOE activities can be presented more clearly and concretely to decision makers. This approach agrees with that of the BEIR Committee. In the BEIR I report, the BEIR Committee stated that "such (risk) estimates... are fraught with uncertainty. However, they are needed as a basis for logical decision making and may serve to stimulate the gaining of data for assessment of comparative hazards from technological options and development, at the same time promoting better public understanding of the issues." (BEIR I 1972, p. 7.) Similarly, in BEIR III, "The Committee recognizes that the scientific basis for making such estimates (for cancer risk from low dose, low-LET radiation) is inadequate, but it also recognizes that policy decisions cannot be reached or regulatory authority exercised without someone's taking a position on the probable cancer risk associated with such radiation." (BEIR III 1980, p. 177.)

Under NEPA, radiation exposures to members of the public, which would occur as a result of a proposed federal action, are evaluated. This evaluation may also include doses to personnel, such as office workers, whose tasks are not connected with the exposure-producing activity. To estimate the health risks resulting from these exposures, either a simple or a more detailed approach may be taken, depending on the population exposed.

1. First Method. If the exposed population is similar to the 1980 U.S. population in that it has a similar life table and age distribution, and similar (if relative risk is used) cancer mortality rates, or if this demographic data is not available for the exposed population,* then age- and sex-averaged lifetime cancer risk factors (Table IIa) calculated for the U.S.

*Use of risk factors averaged by age and sex over the U.S. population would lead to differences of up to a factor of 2 to 3 for the exposed populations with more extreme age and sex distributions. The uncertainties associated with risk estimation (see Sec. III.A.1.b.) may make a more detailed risk calculation unnecessary.

TABLE IIa

RISK FACTORS (RISK/ABSORBED DOSE) RECOMMENDED FOR USE IN DOE NEPA DOCUMENTS
(If a population-specific calculation is deemed unnecessary)

A. Age-and Sex-Averaged Lifetime Risk^a of Cancer Mortality per rad

Cancer Type/Organ Receiving Dose	Risk Factor ($\times 10^{-6}/\text{rad}$)			
	Low-LET Radiation		High-LET Radiation	
	Absolute Risk	Relative Risk	Absolute Risk	Relative Risk
All cancers/whole-body radiation	86 ^b	270 ^b	1700 ^c	5300 ^c
Bone cancer/bone surface		1.4 ^d		
Lung cancer/lung	100	270	1000 ^e	2700 ^e
Breast cancer/breast	36	23	720	460
Liver cancer/liver	15	56	300	1100
Thyroid cancer/thyroid	26	170	520	3400
Leukemia/red marrow	46 ^d		920 ^d	
<u>Prenatal Exposure</u>				
Hematopoietic tumors/fetus	280 ^f		2800 ^f	
Solid tumors/fetus	260 ^f		2600 ^f	

B. Risk of Genetic Disorder in Offspring per rad

Effects Occurring In	Dose Type	Risk Factor ($\times 10^{-6}/\text{rad}$)	
		Low-LET Radiation	High-LET Radiation
First Generation	Gamete	5- 75	300- 4500
All generations subsequent to exposure	Gamete	60-1100	3600-66000
First generation	Gonadal	2- 34 ^g	130- 2000 ^g
All generations subsequent to exposure	Gonadal	25- 500 ^g	1500-30000 ^g

^aSome factors may differ slightly from those given in Table I because of a different population age distribution.

^bIf the dose is greater than or equal to 20 rads from a single exposure, or delivered at a rate greater than or equal to 5 rads/year, these risks should be multiplied by two to become $170 \times 10^{-6}/\text{rad}$ (absolute risk) and 530×10^{-6} (relative risk).

^cThe factor of two reduction for low-dose, low-dose-rate low-LET radiation was deleted for high-LET radiation. An RBE of 10 was used here in calculating the risk from high-LET radiation, because whole body high-LET radiation would normally involve neutron radiation. If the quality factor of the neutron radiation is known, this should be used as the RBE instead of 10.

^dNo risk projection is necessary for either leukemia or bone cancer. Both absolute and relative risk calculations give the same result.

^eThe risk factor for lung cancer due to exposure to environmental levels of radon and its decay products is taken to be $100 \times 10^{-6}/\text{WLM}$ (see Section IV.F.7).

^fThe risk factors for prenatal exposure obviously are not age-averaged. An RBE of 10 was used in calculating the risk from high-LET radiation, since high-LET irradiation of the fetus would normally involve neutron radiation. If the quality factor of the neutron radiation is known, this should be used as the RBE instead of 10. Because the cancer expression periods are short (10-12 years), the absolute and relative risk models give the same result.

^gThese risk factors assume that the exposed population has the same age-specific birth rate as the US population (USNCHS 1982) and the same age and sex distribution as the 1981 US population (US Bureau of the Census 1982).

population can be used. This would be a simple and straightforward approach, involving only multiplication of the absorbed dose by the absolute and relative lifetime cancer risk factors to obtain the lower and upper estimates, respectively, for the incremental lifetime risk of dying of cancer as a result of the exposure.

We recommend that the lifetime risk of cancer incidence also be given. This is obtained from the cancer mortality risk calculated here by using the conversion factors given in Section IV.G.

The risk of genetic disorder in the first generation and in all subsequent generations can be estimated in the same manner. The number of genetic disorders per million liveborn offspring per rad of exposure is presented in Table IIa. This risk factor is expressed in terms of the gamete dose. If the population exposed to the radiation is expected to have the same number of offspring as would the typical U.S. population, then the risk factor of genetic disorder in terms of gonadal dose, also presented in Table IIa, may be used directly.

The risk factors in Table IIb were calculated from those in Table IIa for use with dose equivalent (in rem) instead of absorbed dose (in rads). A quality factor of 20 was used to make this calculation for all risk factors except for whole-body radiation. Because whole-body high-LET radiation normally would result from neutron exposure, we used a quality factor of 10 for whole-body exposure.

Risk factors for all cancers from whole-body low-LET radiation exposure and the risk factors for genetic disorders for low-LET radiation include reductions by factors of 2 and 3, respectively, for application at low dose rates. These reductions are not appropriate for the factors for high-LET radiation, which are given separately in the table.

Lastly, the RBE for lung cancer from alpha radiation was stated to range from 8 to 15 by the BEIR III Committee. A value of 10 is used in this report to obtain the high-LET lung cancer risk factor in Table IIa. If a quality factor of 20 is used in a NEPA dose assessment to calculate lung dose, the appropriate risk factor is $50 \times 10^{-6}/\text{rem}$.

2. Second Method. If the exposed population is significantly different from the U.S. population (for example, a group of males of ages 25 to 30 years), the age- and sex-averaged risk factors for cancer given above may not be appropriate. A more detailed risk calculation may be preferable, using age- and sex-specific risk rates if the required demographic information for the exposed population is available. This calculation can be performed with the computer code REPCAL (Risk Estimation Program for CALculating the risk of radiation-induced cancers), which is described in Appendix A and listed in Appendix B. The code requires site-specific population distribution by age

and sex, the proportion dying from all causes in each age interval for each sex, as well as other input data including mortality rates for each cancer of interest (if relative risk is to be used) and dose distribution by year. The required input data are discussed in Appendix A. A sample calculation is presented in Appendix C.

This computer code utilizes the same risk-rate factors used to calculate the lifetime risk factors in Tables IIa and IIb. Except for the risk factors for bone and liver, which were explicitly given in BEIR III, these risk factors are a special case of the application of the code to a population having the same characteristics as the U.S. population.

The algorithms used in the code are discussed in Section IV.D.

As can be seen in Table IIa, the dose for use with the risk factors is the absorbed dose (in rads). Similarly, absorbed dose is used as input to the computer program REPCAL. Absorbed dose, instead of dose equivalent, is used in these calculations to avoid confusion concerning quality factors. [For convenience in Table IIb we have converted the risk factors for use with dose equivalent (in rems) assuming a quality factor of 20.]

In the rest of this section, we will discuss assumptions and specific features of the risk factors and the risk calculational procedure.

B. Dose-Response Model for Low-LET and High-LET Radiation

The linear hypothesis was used to calculate the lifetime risk of cancer mortality and the risk of genetic disorder in offspring for both low-LET and high-LET radiation. This agrees with the procedure used in BEIR III, except for the case of cancer risk from low-LET radiation.

Chapter V of the BEIR III report states that the linear-quadratic model provides the most realistic estimate of the risk of cancer mortality from low-LET radiation (BEIR III 1980). The BEIR Committee was sufficiently uncertain as to the appropriate model that they discussed three models, with the purely linear model and purely quadratic model providing upper and lower bounds on the estimates made with the linear-quadratic model.

Consequently in Chapter V of BEIR III, parameters for all three models are provided for two groups of cancers: (1) leukemia and bone cancer, and (2) all other cancers taken together. The BEIR Committee did not feel that there was sufficient data to present parameters for the linear-quadratic model for specific cancers. Cancers are discussed individually in Appendix A of BEIR III, but only risk factors for the linear model are given. It is, therefore, not possible to calculate the cancer risk using the linear-quadratic model with BEIR III parameters for each cancer type, because these parameters have only been published for two special cases.

TABLE IIB

RISK FACTORS (RISK/DOSE EQUIVALENT) RECOMMENDED FOR USE IN DOE NEPA DOCUMENTS
 ASSUMING A QUALITY FACTOR OF 20
 (If a population-specific calculation is deemed unnecessary)

A. Age-and Sex-Averaged Lifetime Risk of Cancer Mortality per rem

Cancer Type/Organ Receiving Dose	Risk Factor ($\times 10^{-6}/\text{rem}$)	
	Absolute Risk	Relative Risk
All cancers/whole-body radiation	86 (low-LET) ^a 170 (high-LET) ^b	270 (low-LET) ^a 530 (high-LET) ^b
Bone cancer/bone surface		1.4 ^c
Lung cancer/lung	100 (low-LET) 50 (high-LET) ^d	270 (low-LET) 130 (high-LET) ^d
Breast cancer/breast	36	23
Liver cancer/liver	15	56
Thyroid cancer/thyroid	26	170
Leukemia/red marrow		46 ^c
<u>Prenatal Exposure</u>		
Hematopoietic tumors/fetus		280 ^e
Solid tumors/fetus		260 ^e

B. Risk of Genetic Disorder in Offspring per rem

Effects Occurring In	Dose Type	Risk Factor ($\times 10^{-6}/\text{rem}$)	
		Low-LET Radiation	High-LET Radiation
First Generation	Gamete	5- 75	15- 225
All generations subsequent to exposure	Gamete	60-1100	180-3300
First generation	Gonadal	2- 34 ^f	6- 100 ^f
All generations subsequent to exposure	Gonadal	25- 500 ^f	75-1500 ^f

^aIf the dose is greater than or equal to 20 rads from a single exposure, or delivered at a rate greater than or equal to 5 rads/year, these risks should be multiplied by two.

^bThe factor of two reduction for low-dose low-dose-rate low-LET radiation was deleted for high-LET radiation. A quality factor of 10 was used here in calculating the risk from high-LET radiation, because whole-body high-LET radiation would normally involve neutron radiation.

^cNo risk projection is necessary for either leukemia or bone cancer. Both absolute and relative risk calculations give the same result.

^dThe risk factor for lung cancer due to exposure to environmental levels of radon and its decay products is taken to be $100 \times 10^{-6}/\text{WLM}$ (see Section IV.F.7).

^eThe risk factors for prenatal exposure obviously are not age-averaged. An RBE of 10 was used in calculating the risk from high-LET radiation, since high-LET irradiation of the fetus would normally involve neutron radiation. If the quality factor of the neutron radiation is known, this should be used as the RBE instead of 10. Because the cancer expression periods are short (10-12 years), the absolute and relative risk models give the same result.

^fThese risk factors assume that the exposed population has the same age-specific birth rate as the US population (USNCHS 1982), and the same age and sex distribution as the 1981 population (US Bureau of the Census 1982).

On the other hand, linear risk-rate factors are available by cancer site in BEIR III, Appendix A. Therefore, risk factors based on the linear model can be calculated using the BEIR III recommended risk-rate factors from Appendix A.

Several issues were considered in choosing the linear model for carcinogenic risk from low-LET radiation. BEIR III notes that, for breast cancer, the dose-response curve does not require a quadratic term, but is well fit by the linear model. In contrast, the dose-response curve for leukemia at Nagasaki appears to have positive curvature, indicating the need for a quadratic term for leukemia.

An additional complication is that the dosimetry at Hiroshima and Nagasaki is now being revised. Although changes in the estimates of low-LET doses may not be significant, the high-LET neutron doses are expected to be reduced significantly. Several authors have indicated that this will allow the data from Hiroshima and Nagasaki to be combined (Loewe 1981). Whether the leukemia dose-response curve will continue to show positive curvature (especially if the Nagasaki data are pooled with the statistically stronger data at Hiroshima), or whether the breast cancer dose-response curve will continue to be linear, remains uncertain.

These considerations have led us to recommend that the linear model be used to estimate the risk of cancers induced by low-LET radiation. The linear hypothesis will probably overestimate the risk of most cancers, but it will be realistic in estimating the risk of breast cancer. The linear model will provide a conservative estimate of the cancer risk from low-LET radiation, which is appropriate in view of the uncertainties in the dosimetry for the Japanese survivors.

In order to reduce the overestimate in the case of total cancer risk from low-LET whole-body radiation, a DREF, as defined by the NCRP, of two is being recommended. This is a conservative value for the value of the DREF because it is the smallest reduction factor of the range of 2 to 10 recommended by the NCRP. In accordance with the recommendations of the NCRP, this DREF would be applied only to the total cancer risk for a single low-LET whole-body radiation dose less than 20 rads, or any low-LET whole-body dose delivered at a dose rate of less than 5 rad/year. The risk factors for all cancers from low-LET radiation in Table IIa, $86 \times 10^{-6}/\text{rad}$ and $270 \times 10^{-6}/\text{rad}$, have already been divided by this DREF and are for use for low-dose low-dose-rate radiation. If the dose or dose rate exceeds the values given above, these risk factors should be doubled.

C. Absolute Risk vs Relative Risk in Estimating Incremental Probability of Cancer Mortality

Absolute risk rate factors are given in Chapter V and Appendix A to Chapter V of BEIR III. Most of these factors are age-specific and many are sex-specific. The factors used to calculate radiation-induced cancer risks that are recommended for use in NEPA-related documents are presented in Table III. Values from BEIR III for the latent period and expression period of each cancer type are also given.

As noted earlier, the BEIR III report does not present relative risk-rate factors as the BEIR I report did. Instead, relative risk is calculated using the absolute risk-rate factors.* For example, for all cancers except leukemia and bone that result from a single exposure to 10 rads of low-LET radiation in a cohort of 100 000 persons of a given age, the relative risk was estimated by the following procedure:

1. Calculating the number N_{rad} of fatal cancers (other than bone cancer and leukemia) resulting from the radiation exposure that would occur in the cohort during the first 30 years following the exposure. The absolute risk-rate factors and a 10-year latent period were used in the calculation.
2. Estimating the number N_{spon} of fatal cancers (other than bone cancer and leukemia) occurring spontaneously (that is, not induced by radiation) in the cohort from published cancer mortality rates from the 10th to the 30th year following the exposure.
3. Calculating a relative risk-rate factor R by dividing the number of radiation-induced cancer fatalities by the number of spontaneous cancer fatalities, $R = N_{rad}/N_{spon}$.
4. Using this relative risk rate to calculate the expected number of cancers from the 30th year after exposure to the end of the lifetime of the cohort.
5. Adding the number of radiation-induced cancer fatalities occurring during the first 30 years after the exposure (found in No. 1 above) to the number of fatalities occurring after the first 30 years (found in No. 4), to give the total number of cancer fatalities.
6. For this particular example, BEIR III also used age averaging. This simply involved calculating the number of cancer fatalities assuming 100 000

*We have relied to a great extent on the draft paper presented by Mr. Robert Alexander (1982) and on conversations with Dr. Charles Land for a description of the procedure used by the BEIR Committee to calculate relative risk.

TABLE III
PARAMETERS USED FOR CALCULATING LIFETIME RISK FACTORS FOR CANCER
(low-LET radiation)

Cancer Type	Sex	Risk-Rate Factors (Number of fatal cancers/10 ⁶ year-person-rad)					Latent Period (years)	Expression Period (years)	Observation Period ^a (years)
		0-9	10-19	20-34	35-49	50+			
All cancers									
Leukemia/bone cancer component	M	3.977	1.849	2.596	1.921	4.319	3	24	--
	F	2.542	1.192	1.666	1.237	2.760			
All cancers (excluding leukemia/bone component)	M	1.920	1.457	4.327	5.291	8.808	10	Lifetime	30
	F	2.576	1.955	5.807	7.102	11.823			
Bone	M&F	0.05 (all ages)					3	24	--
Breast	M	0 (all ages)							
	F	0.0 ^b	4.1 ^b	2.6 ^b	2.6 ^b	2.6 ^b	10	Lifetime	--
		0.0 ^c	8.7 ^c	3.4 ^c	3.4 ^c	3.4 ^c			
		0.0 ^d	0.4 ^d	0.16 ^d	0.16 ^d	0.16 ^d			
		0.0 ^e	1.1 ^e	0.22 ^e	0.22 ^e	0.22 ^e			
Liver	M&F	0.7 (all ages)					10	Lifetime	45
Thyroid	M	0.40 (all ages)							
	F	1.2 (all ages)					10	Lifetime	30
<u>(Age at Diagnosis)</u>									
Lung	M&F	0	0-14				25		
		0	15-34				17.5	Lifetime	25
		1.5	35-49				10	Lifetime	
		3.0	50-65				10	Lifetime	
		7.0	>65				10	Lifetime	
In utero exposures									
Hematopoietic tumors	M&F	25	(prenatal exposure)				0	12	
Solid tumors	M&F	28	(prenatal exposure)				0	10	

^aFor use in calculating the relative risk.

^bAbsolute risk, no cell killing.

^cAbsolute risk, with cell killing.

^dRelative risk (%/rad), no cell killing.

^eRelative risk, (%/rad) with cell killing.

persons in the cohort were each of age 0 year, then doing a second calculation assuming that all persons were of age 1 year, then another calculation assuming age 2 years, and so on up to age 109 years. The number of cancers calculated for each age was then multiplied by the fraction of the total population that each age group represented, and the resulting numbers were then added.

As a result of this procedure, for a given cancer type each age of exposure will have a different risk-rate factor. Partly, this is because the absolute risk-rate factors change to some extent with age, but mainly it is because the number of spontaneous fatal cancers generally is not the same for different ages.

Cancer risk estimates made with the relative risk projection model are typically several times larger than those made with the absolute risk projection model. This difference has been offset somewhat in BEIR III by using age-specific absolute risk-rate factors, which allows adjustment of risk rates upward or downward for ages of high or low spontaneous cancer mortality. As a result, the absolute and relative risk projection model results have been brought into closer agreement for some cancer types.

D. Calculation of the Risk of Cancer Mortality

We describe in this section the procedure that was used to calculate the incremental risk of dying of cancer as a result of exposure to radiation. In developing this procedure, we relied heavily on the work of Cook, Bunger, and Barrick (Cook 1978, Bunger 1981), who had used a life table approach to calculating risks of mortality from the increased risks of cancer as well as from other hazards. A slightly modified version of their procedure was used by the BEIR Committee (BEIR III 1980, p. 193). The computer program REPCAL, on which many of the risk estimates in this report are based, uses a similar life table calculation as well as risk-rate factors taken from the BEIR III report.

The advantage of a life table approach is that risk estimates are automatically corrected for competing causes of death. The life table method used by Cook, Bunger, and Barrick was an adaptation of a method used by the National Center for Health Statistics (NCHS).* In this method, a hypothetical cohort of 100 000 individuals, all of the same age, is followed throughout its lifetime. The cohort is assumed to have the same age-specific mortality rates as found in a subject population from observations over a short time period.

*The NCHS describes two types of life tables, a generation life table and a current life table. The life table described here corresponds to a current life table.

The proportion of individuals q_x reaching a particular age x that will die before reaching age $x + 1$ is calculated using the mortality rate for that age. This proportion is multiplied by the number of individuals ℓ_x reaching age x to give the expected number of deaths d_x in the cohort at that age, which is then subtracted from ℓ_x to give the number of individuals surviving to the next age group $x+1$, or

$$\ell_{x+1} = \ell_x - \ell_x q_x$$

$$= \ell_x - d_x.$$

The life table can be modified easily to include the risk of cancer mortality resulting from radiation exposure. The radiation cancer mortality risk $R_{rad,x}$, which is estimated for the midpoint of an age interval, needs to be modified to be compatible with q_x , which is estimated for individuals beginning the age interval. Cook et al. describe how this can be done by calculating a reference mortality rate $R_{ref,x}$ from q_x ,

$$R_{ref,x} = \frac{q_x}{1 - 0.5q_x}$$

and calculating a new value q'_x for q_x that includes both the natural mortality risk and the radiation-associated cancer mortality risk

$$q'_x = \frac{R_{ref,x}}{1.0 + 0.5(R_{ref,x} + R_{rad,x})} + \frac{R_{rad,x}}{1.0 + 0.5(R_{ref,x} + R_{rad,x})},$$

$$= q'_{ref,x} + q'_{rad,x}.$$

Multiplying by ℓ_x gives the total number of individuals dying from x to $x + 1$,

$$d_x = q'_x \ell_x = q'_{ref,x} \ell_x + q'_{rad,x} \ell_x$$

$$= d_{ref,x} + d_{rad,x}.$$

The first term ($d_{ref,x}$) gives the number in the group surviving to age x that will die from natural causes during age x ; the second term ($d_{rad,x}$) gives the number dying from radiation-induced cancer during that age. The total number of deaths due to radiation-induced cancer occurring in the cohort is given by summing $d_{rad,x}$ over all the ages x .

The computer code REPCAL is written so that the life table calculation is performed at each age from ages 0 through 109 years. The expected number of cancer fatalities from radiation-induced cancer is calculated for 100 000 individuals exposed at age 0 year, followed by a calculation for 100 000 individuals exposed at age 1 year, and so on to age 109 years. The expected number of radiation-induced cancer deaths in a population of a given age distribution is found by multiplying the number of cancer deaths calculated for each age cohort by the fraction of the population that is in that age group and summing the resulting age-weighted cancer mortality estimates.

REPCAL calculates the risk of cancer to a cohort of individuals all of the same age for each age up to 109 years for both acute and continuous exposure. Different doses may be entered for each year of exposure to account for a varying radiation environment and for increased dose from internal emitters from continuous radionuclide intake.

In contrast to the calculation above for a cohort of individuals all of the same age, the expected number of radiation-induced cancer fatalities in an actual population of individuals of different ages is calculated only for acute exposures, or for exposures lasting less than 1 year, and not for continuous exposure over more than 1 year. The dose to an organ may be over many years, as in the case of the dose to bone resulting from the inhalation of a radionuclide with a long effective half-life in bone. The dose supplied as input to the program is then the annual dose from this radionuclide. But the actual time of exposure to the radionuclide, the time during which the radionuclide is being inhaled, must be 1 year or less. This is because the program treats the population as static and does not take into account new individuals being born into the population, immigration, or emigration (please see Appendix A for a discussion of REPCAL).

The radiation risk rates $R_{rad,x}$ used in the risk calculation are based on the BEIR III report. Absolute risk rates are taken directly from that report and are listed in Table III. Relative risk rates are calculated from the absolute risk rates as described in Section IV.B. Relative risk rates based primarily on the atomic bomb survivor data are estimated using a 30-year period after the initial exposure to calculate the number of radiation-induced and spontaneously occurring cancers. However, for many cancer sites such as the lung, the risk rates were determined from data other than that of the atomic bomb survivors. In those cases we used the time interval that corresponded to the follow-up time of the principal

epidemiological surveys on which the risk rates were based. The time interval used in the relative risk calculation is shown in Table III for each cancer site.

The recommended lifetime risk factors listed in Tables IIa or IIb have been calculated using this method and the demographic statistics of the reference U.S. population. Exceptions are the lifetime risk factors for bone and liver cancer, which, since they were given explicitly in BEIR III, were taken directly from that report.

The reference life table values used in this calculation, which were supplied by NCHS for 1970 (the last year for which life tables that are complete to age 109 years are available) (USNCHS 1975), are given in Table IV. The population age- and sex-distribution for 1981 used in obtaining the age- and sex-averaged lifetime risk factors are in Table V. This distribution was taken from a report by the U.S. Bureau of the Census (1982). Age-specific cancer mortality rates used to calculate relative risk factors are in Table VI. Mortality rates for lung cancer, breast cancer, liver cancer, and thyroid cancer were calculated from the data published by the U.S. National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) Program (USNCI 1981). The age-specific mortality rates for all cancers except leukemia and bone cancer were taken from Alexander (1982), who had obtained these rates from Dr. Charles Land of the National Cancer Institute.

REPCAL contains the risk-rate coefficients shown in Table III. The U.S. population age distribution (1980 census) and 1969-1971 life table values for q_x are contained in the program in DATA statements. Options are provided as input statements for the user to select the type of risk projection model and the desired dose magnitude and time distribution. The user may also choose to supply his own population age distribution and q_x value for the area surrounding the proposed facility.

E. Specification of Dose for Use in the Risk Calculation

The risk factors and risk-rate factors recommended in Table IIa expressed in terms of risk or risk rate per absorbed dose in rads. Doses used to calculate the risk should consequently be absorbed dose in rads. (For convenience, risk factors in terms of risk-per-dose equivalent are presented in Table IIb, so that dose in rems can be used with these factors.)

The dose to bone should be calculated as the dose to the endosteal tissues, rather than as the dose to the entire skeleton (p. 414, BEIR III 1980). This procedure is in accordance with the practice of the BEIR

TABLE IV
PROPORTION DYING IN EACH AGE INTERVAL

male population															
age	tqx	age	tqx	age	tqx	age	tqx	age	tqx	age	tqx	age	tqx	age	tqx
- 1	0 00000	13	00059	27	00199	41	00435	55	01534	69	04665	83	12770	97	30135
0	02245	14	00084	28	00198	42	00473	56	01676	70	04991	84	13663	98	31111
1	00133	15	00114	29	00203	43	00518	57	01827	71	05344	85	14730	99	32017
2	00094	16	00142	30	00210	44	00568	58	01987	72	05740	86	15979	100	32857
3	00078	17	00167	31	00218	45	00623	59	02158	73	06193	87	17281	101	33633
4	00064	18	00185	32	00228	46	00681	60	02339	74	06703	88	18521	102	34347
5	00058	19	00198	33	00239	47	00744	61	02532	75	07264	89	19681	103	35004
6	00054	20	00212	34	00252	48	00812	62	02738	76	07856	90	20839	104	35606
7	00051	21	00226	35	00268	49	00887	63	02960	77	08462	91	22122	105	36157
8	00046	22	00235	36	00288	50	00969	64	03200	78	09070	92	23512	106	36661
9	00041	23	00235	37	00312	51	01059	65	03463	79	09688	93	25023	107	37121
10	00036	24	00228	38	00339	52	01161	66	03746	80	10367	94	26546	108	37540
11	00035	25	00217	39	00369	53	01275	67	04044	81	11125	95	27962	109	37922
12	00042	26	00206	40	00401	54	01400	68	04350	82	11929	96	29090	110	0 00000

female population															
age	tqx	age	tqx	age	tqx	age	tqx	age	tqx	age	tqx	age	tqx	age	tqx
- 1	0 00000	13	00033	27	00086	41	00251	55	00768	69	02407	83	09419	97	26980
0	01746	14	00040	28	00090	42	00273	56	00829	70	02632	84	10275	98	27996
1	00116	15	00049	29	00096	43	00297	57	00894	71	02879	85	11282	99	28949
2	00077	16	00058	30	00102	44	00325	58	00962	72	03165	86	12462	100	29836
3	00060	17	00066	31	00110	45	00354	59	01035	73	03503	87	13685	101	30659
4	00051	18	00069	32	00119	46	00384	60	01113	74	03893	88	14859	102	31420
5	00043	19	00071	33	00129	47	00416	61	01200	75	04325	89	16006	103	32122
6	00038	20	00072	34	00140	48	00449	62	01298	76	04790	90	17264	104	32768
7	00034	21	00073	35	00152	49	00484	63	01411	77	05295	91	18718	105	33361
8	00031	22	00075	36	00165	50	00523	64	01538	78	05840	92	20243	106	33904
9	00028	23	00077	37	00180	51	00565	65	01678	79	06432	93	21750	107	34401
10	00026	24	00079	38	00197	52	00611	66	01832	80	07097	94	23186	108	34855
11	00025	25	00081	39	00215	53	00660	67	02004	81	07834	95	24584	109	35269
12	00027	26	00083	40	00233	54	00712	68	02195	82	08612	96	25854	110	0 00000

TABLE V
POPULATION DISTRIBUTION BY AGE AND SEX

male population															
age	number	age	number	age	number	age	number	age	number	age	number	age	number	age	number
- 1	0	13	1808	27	2013	41	1219	55	1112	69	715	83	174	97	0
0	1839	14	1854	28	1971	42	1170	56	1118	70	679	84	155	98	0
1	1815	15	1916	29	1866	43	1146	57	1094	71	631	85	706	99	0
2	1713	16	2039	30	1898	44	1101	58	1075	72	587	86	0	100	0
3	1645	17	2131	31	1852	45	1097	59	1074	73	549	87	0	101	0
4	1654	18	2143	32	1812	46	1079	60	1045	74	499	88	0	102	0
5	1598	19	2134	33	1799	47	1050	61	999	75	463	89	0	103	0
6	1631	20	2235	34	1914	48	1065	62	953	76	421	90	0	104	0
7	1595	21	2208	35	1418	49	1051	63	914	77	379	91	0	105	0
8	1659	22	2178	36	1436	50	1097	64	872	78	341	92	0	106	0
9	1722	23	2153	37	1426	51	1122	65	848	79	292	93	0	107	0
10	1903	24	2139	38	1502	52	1102	66	834	80	287	94	0	108	0
11	1903	25	2080	39	1304	53	1116	67	793	81	244	95	0	109	0
12	1852	26	2066	40	1259	54	1110	68	757	82	204	96	0	110	0
female population															
age	number	age	number	age	number	age	number	age	number	age	number	age	number	age	number
- 1	0	13	1732	27	2030	41	1268	55	1226	69	929	83	347	97	0
0	1752	14	1778	28	1989	42	1220	56	1242	70	899	84	320	98	0
1	1734	15	1839	29	1886	43	1197	57	1225	71	853	85	1656	99	0
2	1636	16	1962	30	1929	44	1153	58	1213	72	811	86	0	100	0
3	1572	17	2048	31	1884	45	1152	59	1220	73	778	87	0	101	0
4	1579	18	2077	32	1850	46	1134	60	1194	74	727	88	0	102	0
5	1530	19	2090	33	1839	47	1109	61	1149	75	694	89	0	103	0
6	1558	20	2197	34	1962	48	1129	62	1105	76	650	90	0	104	0
7	1524	21	2176	35	1460	49	1118	63	1070	77	605	91	0	105	0
8	1585	22	2155	36	1480	50	1174	64	1035	78	564	92	0	106	0
9	1645	23	2144	37	1474	51	1206	65	1023	79	502	93	0	107	0
10	1817	24	2145	38	1554	52	1191	66	1024	80	510	94	0	108	0
11	1820	25	2090	39	1352	53	1213	67	992	81	451	95	0	109	0
12	1774	26	2077	40	1308	54	1215	68	965	82	392	96	0	110	0

TABLE VI
AGE- AND SEX-SPECIFIC CANCER MORTALITY RATES
(rate per 100 000)

Age	Lung Cancer		Thyroid Cancer		Liver Cancer		Breast Cancer	
	Males	Females	Males	Females	Males	Females	Males	Females
	--	0.0537	--	--	0.258	0.107	--	--
<5	0.0457	0.0237	--	--	0.0457	0.0711	--	--
5-14	--	--	--	--	0.0613	0.0424	--	--
10-19	0.0812	0.0621	--	--	0.0406	0.0207	--	--
15-24	0.0893	0.0883	--	0.0221	0.201	0.177	--	0.177
20-29	0.267	0.242	--	--	0.219	0.0970	--	1.41
25-34	1.70	1.11	--	0.0293	0.209	0.205	--	6.01
30-39	5.72	3.39	0.0364	0.105	0.510	0.420	--	13.3
35-44	18.2	10.3	0.114	0.146	0.760	0.475	--	22.9
40-49	47.4	20.1	0.325	0.414	1.95	0.760	--	42.6
45-54	85.5	30.8	0.499	0.372	3.10	1.49	--	61.3
50-59	144.9	51.5	0.414	0.779	6.46	2.22	--	77.7
55-64	232.5	64.7	1.01	1.47	10.4	4.56	--	91.0
60-69	324.8	74.1	1.54	2.05	14.1	5.25	--	102.2
65-74	403.2	71.3	2.07	3.51	18.2	8.82	--	110.0
70-79	455.4	73.6	3.21	4.38	21.9	10.1	--	128.2
75-84	402.8	69.4	3.80	5.07	24.0	14.5	--	143.2
80-	323.5	74.8	4.99	5.51	24.2	16.5	--	180.9
85+								

Committee as well as the ICRP (ICRP 1977a, p. 10) and UNSCEAR (UNSCEAR 1977, p. 400).

Following the ICRP, we recommend that the lung dose from all radionuclides but radon (which is discussed below) be mass-averaged over the trachea, bronchi, pulmonary region, and pulmonary lymph nodes (ICRP 1977a, p. 11). The BEIR III report based its lung risk estimate largely on studies of underground miners, Japanese atomic bomb survivors, and British spondylitics. The question of the treatment of the relatively large doses received by the pulmonary lymph nodes after inhalation of insoluble radio-aerosols was not an issue in these studies and was not discussed in the BEIR III report. In the absence of specific recommendation concerning the pulmonary lymph nodes, we have elected to follow the ICRP procedure.

The risk factors from Tables IIa or IIb should be multiplied by the 50-year dose commitment to give the total lifetime risk. Since these risk factors have been averaged over age, the age at which the dose is received

would not affect the risk calculation. Caution should be exercised in interpreting this risk, since the life expectancy of an older individual may prevent his receiving the full 50-year dose. Similarly, competing risks of mortality for an older individual that would be accounted for in a life table calculation may significantly reduce the risk of mortality from a radiation-induced cancer.

Doses for the more detailed risk calculation procedure using the computer program REPCAL can be treated in a more realistic manner. The dose can be entered into the program on a year-by-year basis up to age 109. The temporal distribution of the dose used in the calculation can then more closely resemble the actual distribution of the dose in time.

F. Discussion of Risk-Rate Factors

1. All Cancers. The risk-rate factors (Table III) were taken directly from Table V-17 (p. 204) and Table V-20 (p. 207) of the BEIR III report. These factors are used with the linear model to calculate cancer mortality risks. The linear-quadratic and quadratic models were discussed by the BEIR Committee. Until the uncertainty in the dosimetry for the Japanese atomic bomb survivors (see Section IV.J)--on which much of the work in BEIR III has been based--can be resolved, we recommend the more conservative linear model for use in estimating risks for NEPA documents.

2. Bone Cancer. The risk rate of 0.05×10^{-6} sarcoma/year/person-rad for low-LET radiation is taken directly from Table A-27 (p. 417) of BEIR III. To use this risk-rate factor, the absorbed dose should be calculated to the endosteal cells.

The BEIR Committee also discussed use of a dose-response curve in which the incidence risk rate depended on both the square of the dose and an exponential containing the dose. Evidence for the shape of the dose-response curve for alpha radiation was reviewed by the Committee, which reported that out of eleven studies (of both human and animal populations), the shape was linear in seven studies, concave upward in three studies, and concave downward in one study. The Committee concluded that the shape of the dose-response curve was uncertain, although it was difficult to exclude a linear component to the alpha-radiation dose response at low doses.

In order to simplify the calculation of the bone cancer risk factor, only the risk-rate factor for the linear model is given in Table III. This factor is based principally on the studies of the effects of radium-224 in humans. If the dose-squared exponential factor were used, the risk estimated to result from low-level radiation would be considerably less than the risk predicted by this linear risk-rate factor. Thus, because the true dose-response relation is uncertain, we recommend the factor giving the more conservative estimate.

3. Breast Cancer. Four different sets of risk-rate factors were given in BEIR III: absolute risk with and without cell killing, and relative risk with and without cell killing (BEIR III 1980, p. 283). The linear dose-response model was used with all four sets of factors. The factors provide a range of lifetime risk estimates for breast cancer. These factors are incidence risk rates. To obtain mortality risk rates, each incidence risk rate was multiplied by 0.39 (obtained from BEIR III 1980, p. 200, Table V-15). The resulting mortality risk-rate factors are listed in Table III.

The BEIR Committee indicated that the greatest uncertainty concerned the risk due to exposures after menopause. At doses lower than 1 rad, those risks were said to range from 0 (if the risk models did not apply at low doses) to about twice the risk estimated by the relative risk model with cell killing.

The relative risk-rate factors were given explicitly for breast cancer, in contrast to other site-specific cancers discussed in BEIR III. The lifetime risk factors were estimated for this special case by using the quoted relative risk-rate factors directly, rather than by calculating them from the procedure described in Section IV.C.

4. Liver Cancer. The recommended lifetime risk factors (Tables IIa and IIb) and risk-rate factors (Table III) were taken directly from the BEIR III report (BEIR III 1980, pp. 279-280). These factors were based principally on the experience with Thorotrast patients. The BEIR Committee indicated that a linear dose-response relationship was reasonable for alpha-particle radiation, but that for low-LET radiation, the observed relationship has been concave upward. Use of the liver cancer lifetime risk factor and risk-rate factor in Tables IIa or IIb and Table III would then lead to an overestimate of the true risk for low-LET radiation. Because no method of correcting this overestimate was given by the Committee, the factors were taken directly from BEIR III.

5. Thyroid Cancer. Thyroid cancer incidence risk-rate factors were given in Table V-14 of BEIR III (BEIR III 1980, p. 198). Mortality risk-rate factors were not explicitly given in BEIR III (BEIR III 1980, p. 303).

The risk-rate factor for thyroid cancer in males and the factor for thyroid cancer in females have been multiplied by 0.18 and 0.20, respectively, to convert the risks from incidence of thyroid cancer to those of mortality from thyroid cancer. The conversion factors of 0.18 and 0.20 were taken from Table V-15 of BEIR III (BEIR III 1980, p. 200). The resulting risk-rate factors for mortality from thyroid cancer are given in Table III.

The BEIR report discussed the possibility of a lower risk of thyroid cancer from internal radiation from ^{131}I relative to the risk from external radiation, stating that "what little evidence is available from children

treated with iodine-131 for hyperthyroidism does not demonstrate the carcinogenic effect seen with external radiation." (BEIR III 1980, p. 301). However, in giving the risk-rate factors the BEIR report did not distinguish between external radiation and internal radiation from ^{131}I . Consequently, the factors given in BEIR III should be used with both external and internal radiation.

6. Leukemia. Table V-17 of BEIR III (p. 203) gives age- and sex-specific risk-rate factors for leukemia and bone cancer induced by low-LET radiation for use in the linear model. Age-specific risk coefficients for leukemia alone for use in the linear model are not given in BEIR III. Using the risk rate for bone cancer of $0.05 \times 10^{-6}/\text{yr/person-rad}$ for low-LET radiation, we calculate that bone cancer is never more than 5% of the total and is usually approximately 2%. This small contribution of bone cancer to the total leukemia and bone cancers is small compared with the uncertainties in the risk-rate factors. Therefore, we have used the Table V-17 risk-rate factors to calculate the risks of leukemia (ignoring the small contribution from bone cancer) from exposure to low-LET radiation.

7. Lung Cancer. The lung cancer risk-rate factors were taken from the table given on p. 327 of BEIR III. These factors are somewhat different from other factors in BEIR III in that they apply to the age when the cancer is diagnosed, rather than the age at exposure. They also are expressed in the BEIR III report in terms of dose equivalent instead of the more usual (for BEIR III) absorbed dose.

The age-specific risk coefficients increase with age at diagnosis. As a result, the absolute lifetime risk factor resembles the relative lifetime risk factor, because for the relative risk calculation the lung cancer risk increases as the spontaneous lung cancer rate increases with age.

For Tables I, II, and III, the lung cancer risk must be presented in units of $(\text{absorbed dose})^{-1}$. The BEIR III report quotes a range of RBE values for alpha radiation of 8 to 15. The BEIR III report gives a conversion of $1 \text{ WLM}^* = 0.4-0.8 \text{ rad}$ of alpha radiation, which has a central value of $1 \text{ WLM} = 0.6 \text{ rad}$. The report also gives $1 \text{ WLM} = 6 \text{ rem}$ for alpha radiation. This would indicate that the RBE would be approximately 10, which is in the range of 8 to 15 quoted above. In view of the uncertainties in arriving at the value of the RBE, an RBE = 10 was felt to be reasonable, and was used to convert the BEIR III risk-rate factors to units of $(\text{absorbed dose})^{-1}$ for alpha radiation (see Section IV.F.8 below).

*A working level (WL) is any combination of short-lived radon decay product concentrations in one liter of air that will result in the ultimate emission of $1.3 \times 10^5 \text{ MeV}$ of potential alpha energy. A working level month (WLM) is exposure to 1 WL for 1 working month (170 h).

Risk of lung cancer resulting from exposure to environmental levels of radon and radon decay products is treated as a special case. This risk was considered by Evans (1981) who concluded that the lifetime risk of mortality from lung cancer was at most $100 \times 10^{-6}/\text{WLM}$. We recommend as a conservative procedure that the maximum value of $100 \times 10^{-6}/\text{WLM}$ be used in evaluating environmental radon and radon decay product exposures. Since no risk-rate factor was given by Evans *et al.*, a life table calculation is not possible. However, the relatively large uncertainties already associated with these risk estimates suggest that the uncertainties resulting from not performing a life table calculation would not be significant.

8. Risk Factors for High-LET Radiation. Lifetime risk factors from exposure to high-LET radiation can be estimated by first calculating the corresponding lifetime risk factor for low-LET radiation and then multiplying this number by the RBE. Following the recommendations of the ICRP (ICRP 1977a), we recommend that a quality factor (which is assumed to equal an RBE for this report) of 20 be used to make this modification for high-LET radiation. As discussed above (see Section IV.F.7), an RBE of 10 was used for lung cancer.

Recommended values of RBE to use for obtaining high-LET risk factors are given in Table VII.

TABLE VII

RBE VALUE TO USE FOR OBTAINING LIFETIME RISKS
FROM HIGH-LET RADIATION^a

<u>Cancer Type/Organ Exposed</u>	<u>RBE for Alpha Particles, Multiple-Charged Particles</u>
All cancers/total body	
Bone cancer/bone surface	20
Breast cancer/breast	20
Liver cancer/liver	20
Thyroid cancer/thyroid	20
Leukemia/red marrow	20
Lung cancer/lung	10

^aFor neutrons, the RBE is assumed to equal the energy-dependent value for quality factor given in USDOE (1980a).

G. Relating Cancer Incidence to Cancer Mortality

For some types of cancer, cancer mortality may not provide a complete picture of the impact of the radiation exposure. Relatively high survival rates for some cancers, such as thyroid cancer or breast cancer, would reduce the mortality rates, yet even cancers that are cured would still represent an adverse health impact on the population. As a result, it is recommended that both cancer incidence and mortality be reported in NEPA documents.

Several methods of calculating cancer incidence were reviewed by the BEIR III Committee. The Committee concluded that the most reliable approach to estimating incidence of radiation-induced cancers was to first estimate the mortality risk for a given cancer type and then multiply this risk by the ratio of the spontaneous cancer incidence rate to cancer mortality rate for that cancer type. This method was only used by the BEIR Committee to estimate the risk of incidence of all cancers other than leukemia and bone cancer taken together. However, the method is recommended here for use with individual cancer sites.

Table VIII lists values of the mortality-to-incidence ratio for seven different cancer types. The values for all sites except leukemia and bone cancer were taken from Table V-15 of the BEIR III report. The recommended values for leukemia and bone cancer were inferred to be equal to one from the BEIR III report, which treated incidence of and mortality from these two cancers equivalently (see, for example, Table V-16, p. 203, BEIR III 1980).

H. Risk of Genetic Disorders in Offspring

The risk factors for radiation-induced genetic disorders in offspring are presented in Tables IIa and IIb. As noted earlier, the risk factor taken from BEIR III refers to the gamete dose. Usually the gonadal dose is

TABLE VIII
RATIOS OF THE LIFETIME RISK OF CANCER MORTALITY TO THE
LIFETIME RISK OF CANCER INCIDENCE

<u>Cancer Type</u>	<u>Males</u>	<u>Females</u>
All cancers except leukemia and bone cancer	0.65	0.50
Bone	1.00	1.00
Breast	--	0.39
Liver	1.00	1.00
Thyroid	0.18	0.20
Leukemia	1.00	1.00
Lung	0.83	0.75

calculated in dose assessments, so this dose needs to be converted to gamete dose. This can be done using tables published by NCHS giving the average number of children that an individual is expected to have after a given age (USNCHS 1982).

The BEIR III procedure for calculating gamete dose from gonadal dose is to divide the population, by sex, into 5-year age intervals (a finer division is not necessary because the NCHS tables are provided only for 5-year age intervals). The number of each sex in each age interval is then multiplied by the number of children that individuals of each sex in that age interval are expected to have from that age onward. This number, which is the number of gametes that will be passed to the succeeding generation by this group of individuals, is multiplied by the gonadal dose for each age group. This dose is corrected for the relative sensitivities of spermatogonia and immature oocytes by multiplying all doses calculated for males by 0.82 and doses calculated for females by 0.18 (BEIR III 1980, p. 127). The final step is to add the doses that have been calculated for both sexes and all age groups to give the total gamete dose.

This gamete dose is appropriate for use with the risk factors for genetic disorders given in Tables IIa and IIb. For convenience, the conversion from gonadal dose to gamete dose was calculated for a population having the same age-specific birth-rate distribution as given in the NCHS tables. The resulting risk factor, expressed in terms of gonadal dose, is also given in Tables IIa and IIb. If the exposed population has an age-specific birth-rate distribution similar to that in the NCHS tables, this factor may be used directly with the gonadal dose calculated for that population. However, if the population is markedly different, for example, all males 25 to 35 years of age, the gamete dose would have to be calculated from the gonadal dose using the data specific to that population, if available.

We recommend that the risk of serious genetic disorders resulting from a radiation exposure in both the first generation and in all subsequent generations be given in the radiological assessment for a NEPA document. Risk factors from which these risks are calculated are given in Tables IIa or IIb in terms of both gamete dose and gonadal dose.

As noted in Section III.C., the risk of radiation-induced genetic disorders in all subsequent generations from a dose D to a single generation is numerically equal to the genetic risk in a single generation produced by exposing several generations to a dose D per generation until equilibrium has been reached (BEIR III 1980, p. 128). Thus the BEIR III equilibrium genetic risk factor is quoted in Tables IIa and IIb to give the total risk of genetic disorders in all subsequent generations.

The risk factors for genetic disorders from exposure to high-LET radiation are obtained by multiplying those for low-LET radiation by 3 to

remove the reduction for dose-rate effect made for low-LET radiation (Section III.A.1) and by 20 to adjust for the relative biological effectiveness.

I. Risk of Somatic Effects Other Than Cancer

1. Effects from Irradiation in Utero. We have elected to use the BEIR III treatment of teratogenic effects rather than the treatment presented in ICRP Publication 27. Both approaches were described in Section III.B.1. The BEIR III approach was intended as a realistic assessment of the risk of radiation-induced effects from irradiation in utero. The ICRP developed its approach in order to include these effects into an index of harm. This procedure would not necessarily give the best assessment of the risk of these effects.

For NEPA-related documents, doses from any routine operations that may be considered are well within the dose range in which, according to the BEIR Committee, there would be no widespread teratogenic effects. Doses to the public from operations at DOE facilities are limited to 500 mrem/year to whole body, gonads, and bone marrow, and 1500 mrem/year to other organs (US DOE 1980a). Under the DOE regulations of keeping doses to as low a level as reasonably achievable (ALARA), actual doses from DOE operations are considerably lower than these dose limits, usually only a small fraction not only of the dose standards but also of background radiation (see, for example, US DOE 1982b).

Estimated doses resulting from proposed DOE routine operations being evaluated under NEPA would be subject to the same standards. Normally, the DOE dose limits would have to be exceeded before the embryo would receive a dose corresponding to 1-R exposure at an exposure rate greater than 0.01 R/min, the level below which no widespread effects induced by in utero irradiation are expected to appear (BEIR III 1980, p. 492). The ALARA policy would further limit actual doses to levels far below that corresponding to the 1-R level. In addition, the dose resulting from a particular facility's operations is generally distributed over the entire year. The dose received by the embryo during a critical development stage, which is usually during the first trimester of pregnancy, would be proportionately less than the annual dose. Consequently, teratogenic effects would be minimal given the range of doses from routine operations discussed in NEPA documents.

In Section I.D., we noted that assessment in a NEPA document of impacts from a one-time accident may involve consideration of doses above the DOE annual dose limits. These doses could exceed the dose threshold values for teratogenic effects. For these cases, some discussion of these effects in the assessment would be necessary. However, in publications of the national and international advisory bodies reviewed in this report, no recommendations have been made for any dose-response model for these effects, so no procedure to quantify these effects is given here. [The ICRP has proposed a model to

use in developing an index of harm, but not for use with their other risk factors (see Section III.B.1).]

2. Nonstochastic Effects. We recommend using the 1982 UNSCEAR report in evaluating the occurrence of nonstochastic effects in an exposed population. This report presents a comprehensive review of these effects on an organ-by-organ basis.

Routine doses, which are limited by the DOE standards discussed above, from operations of facilities reviewed in NEPA documents are well below the dose thresholds at which nonstochastic effects may begin to occur. Doses calculated for some accident scenarios may slightly exceed the lowest of the thresholds. In particular, the UNSCEAR Committee reports temporary sterility in males at doses as low as 10 rads. While these effects may not be significant, they should be discussed for the sake of completeness using information presented in the 1982 UNSCEAR report (UNSCEAR 1982).

J. Effect of Current Research on Risk Assessment Procedures

Most of the risk factors and risk rate coefficients recommended in this report are the result of ongoing epidemiological studies. As more data become available with time, estimates of these factors will improve so that there will be a need to continually update the factors given here.

The recalculation of the doses at Hiroshima and Nagasaki could result in a significant revision of the risk factors. This recalculation has resulted in larger gamma-dose values at Hiroshima and slightly lower gamma-dose values at Nagasaki, and lower neutron doses calculated for both cities. Preliminary results suggest the new dosimetry may show that the neutron component at both cities was not significant, and the data from both cities may be combined to yield pooled estimates of risk and risk-rate factors (Loewe 1981). However, although the free-in-air doses have been recalculated, the impact on the epidemiological results of the atomic bomb survivor study cannot be entirely gauged until several issues have been resolved. In a recent review of the atomic bomb survivor dosimetry, Kerr (1982) concluded that these epidemiological results should be considered tentative until organ dose factors, house-shielding factors, and the energy yield and neutron output of the weapons are revised.

Future epidemiological surveys and the revised dose estimates at Hiroshima and Nagasaki would give improved estimates of the risk and risk-rate factors. In addition, with improved statistical accuracy, the shape of the dose-response curve may become better defined. This would improve risk estimation by more clearly identifying models that correlate closely with the epidemiological data.

V. SUMMARY

Factors are recommended that give the risk of genetic disorders in offspring and lifetime risk of cancer mortality averaged over a population with the age and sex distribution of the U.S. population. These recommendations are for populations of similar demographic composition where a detailed risk calculation would not be necessary. This could apply to ADMs, EAs, and even EISs. These recommended risk factors are listed in Tables IIa or IIb.

If demographic data are available, the mutagenic risk and lifetime tumorigenic risk may be calculated individually for situations where the population is significantly different from the U.S. population. Recommended risk-rate factors and genetic risk factors are provided for the cancer mortality and genetic disorder calculations, respectively. These factors are given in Table III. A computer program was written that calculates lifetime risk of mortality from radiation-induced cancer by use of site-specific demographic and population health data. A program listing, description of the required input data, and a sample problem are given in the appendixes.

VI. ACKNOWLEDGMENTS

We have called upon the kind assistance of many scientists in preparing this report. We would like to particularly thank Jacob Fabrikant of the Donner Laboratory of the University of California, Charles Land of the National Cancer Institute, Charles Mays of the University of Utah, and Edward Radford of the University of Pittsburgh for their help in clarifying technical points and answering questions over the static-plagued telephone lines. We gratefully appreciate the painstaking efforts of John Healy, Alan Stoker, and George Voelz of Los Alamos National Laboratory in reviewing the report. Special thanks also go to Kathy Derouin, Mary Lou Keigher, and Lois Schneider for typing the manuscript, and to Sharon Crane for editing the report. We appreciate the effort by Colleen Olinger to prepare the short description of the documentation required to satisfy the National Environmental Policy Act.

REFERENCES

Alexander 1982: R. E. Alexander, "Instructions in Radiation Risk Calculations," notes prepared for the continuing education course offered by the Health Physics Society at its 1982 annual meeting, Las Vegas, Nevada (June 1982).

BEIR I 1972: National Research Council, National Academy of Sciences, Advisory Committee on the Biological Effects of Ionizing Radiations, "The Effects on Populations of Exposure to Low Levels of Ionizing Radiation," Washington, D.C. (1972).

BEIR III 1980: National Research Council, National Academy of Sciences, Committee on the Biological Effects of Ionizing Radiations, "The Effects on Populations of Exposure to Low Levels of Ionizing Radiation: 1980," National Academy Press, Washington, D.C. (1980).

Bunger 1981: Byron M. Bunger, John R. Cook, and Mary K. Barrick, "Life Table Methodology for Evaluating Radiation Risk: An Application Based on Occupational Exposures," *Health Physics* 40, 439-455 (April 1981).

Cook 1978: John R. Cook, Byron M. Bunger, and Mary K. Barrick, "A Computer Code for Cohort Analysis of Increased Risks of Death (CAIRD)," U.S. Environmental Protection Agency report EPA 520/4-78-012 (June 1978).

Council on Environmental Quality 1978: "National Environmental Policy Act - Regulations," 40 Code of Federal Regulations Parts 1500-1508, *Federal Register*, Vol. 43, No. 230 (November 29, 1978).

Evans 1981: R. D. Evans, J. H. Harley, W. Jacobi, A. S. McLean, W. A. Mills, and C. G. Stewart, "Estimate of Risk from Environmental Exposure to Radon-222 and Its Decay Products," *Nature* 290, 98-100 (March 1981).

ICRP 1977a: "Recommendations of the International Commission on Radiological Protection," International Commission on Radiological Protection Publication 26, *Annals of the ICRP*, 1, No. 3 (1977).

ICRP 1977b: "Problems Involved in Developing an Index of Harm," International Commission on Radiological Protection Publication 27, *Annals of the ICRP*, 1, No. 4 (1977).

Kerr 1982: G. D. Kerr, "Review of Dosimetry for the Atomic Bomb Survivors," *Nuclear Safety*, 23, No. 5 (September-October 1982).

Land 1983: Charles E. Land and Don A. Pierce, "Some Statistical Considerations Related to the Estimation of Cancer Risk Following Exposure to Ionizing Radiation," Sixteenth Midyear Topical Meeting of the Health Physics Society, "Epidemiology Applied to Health Physics," U.S. Department of Energy report CONF-830101 (January 1983).

Loewe 1981: W. E. Loewe and E. Mendelsohn, "Revised Dose Estimates at Hiroshima and Nagasaki," *Health Phys.* 41, 663-666 (October 1981).

NCRP 1980: "Influence of Dose and its Distribution in Time on Dose-Response Relationships for Low-LET Radiation," National Council on Radiation Protection and Measurements report No. 64 (1980).

UNSCEAR 1977: "Sources and Effects of Ionizing Radiation," United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations (1977).

UNSCEAR 1982: "Ionizing Radiation: Sources and Biological Effects," United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations (1982).

U.S. Bureau of the Census 1982: "Preliminary Estimates of the Population of the United States, by Age, Sex, and Race: 1970 to 1981," U.S. Bureau of the Census, Current Population Reports, Series P-25, No. 917, U.S. Government Printing Office, Washington, D.C. (1982).

USDOE 1980a: "Environmental Protection, Safety, and Health Protection Program for DOE Operations," U.S. Department of Energy Order 5480.1 (1980).

USDOE 1980b: "Compliance with the National Environmental Policy Act," Department of Energy Guidelines, 10 Code of Federal Regulations Part 1021, Federal Register, Vol. 45, No. 62 (March 1980).

USDOE 1981a: "Environmental Compliance Guide," DOE/EV-0132, Department of Energy, Office of Environmental Compliance and Overview, NEPA Affairs Division, Washington, DC (February 1981).

USDOE 1981b: "General Design Criteria Manual," U.S. Department of Energy Order 6430 draft only (June 1981).

USDOE 1982a: "Implementation of the National Environmental Policy Act (NEPA)," Department of Energy Order 5440.1B, Washington, D.C. (May 1982).

USDOE 1982b: "Summary of Annual Environmental Reports for CY 1981: Department of Energy Nuclear Sites," U.S. Department of Energy report DOE/EP-0038/1 (September 1982).

USNCI 1981: "Cancer Incidence and Mortality in the United States 1973-1977," U.S. National Cancer Institute Monograph No. 57, U.S. Government Printing Office, Washington, D.C. (1981).

USNCHS 1975: "United States Life Tables: 1969-71 Volume 1, Number 1," U.S. National Center for Health Statistics, U.S. Department of Health, Education, and Welfare Publication No. (HRA) 75-1150 (May 1975).

USNCHS 1982: "Vital Statistics of the United States, 1978," Vol. I, U.S. National Center for Health Statistics, U.S. Department of Health and Human Services Publication No. (PHS) 82-1100 (1982).

APPENDIX A
THE COMPUTER PROGRAM REPCAL

I. GENERAL INFORMATION

The computer code REPCAL has been written in FORTRAN IV. It currently runs on a Control Data 7600 computer. A simple problem, such as the calculation of the relative risk coefficients for total cancer (running NORGAN = 2, KORGAN = 22,23) will use approximately 14 seconds CPU time and 100 000 octal words of memory. The CDC 7600 has a 60-bit word size; if the program is to be run on another type of computer, some consideration may have to be given to using double precision variables to reach comparable precision. A listing of the program is provided in Appendix B.

II. INPUT REQUIREMENTS

The structure of the input file is described below in Table A-I. Input variables and parameters appearing in this input file are defined in Table A-II.

TABLE A-I
STRUCTURE OF INPUT FILE

Parameter	Number of Cards	Format
Title	1	10A8
IFLAG(I),I=1,4	1	4I1
IWRITE(I),I=1,4	1	4I1
[(TQX[I,J],I=1,120), J=1,2]*	48	5F12.9
[(AGEDIS[I,J],I=1,120),J=1,2]*	40	6F10.0
NUM(I),I=1,2	1	2F10.0
NORGAN	1	I5
KORGAN,LET,MODEL,NFOLLW	1	4I5
NORGAN [(CAN5Y[I,J],I=1,28)J=1,2]	8	7F10.4
TIMES NINV	1	I5
TIME(I),DOSINV(I),I=1,NINV	NINV	2F10.2
NTABLE	1	I3
NYEAR(I),I=1,NTABLE	1	14I5

*Array included in the input deck only if the corresponding value of IFLAG=1.

TABLE A-II
DEFINITION OF INPUT PARAMETERS

<u>Variable</u>	<u>Definition</u>
Title	Any descriptive title up to 80 characters in length.
IFLAG(I)	Parameter indicating which set of input data should be used by the program for I=1 and 2. IFLAG=0 means use the input data given in DATA statements in SUBROUTINE START. IFLAG=1 means use data sets supplied by the user. I=1 proportion dying in each age interval for reference life table I=2 population age distribution
TQX(I,J)	Proportion dying in each age interval i[from age i=-1 (prenatal) to age i=109] for males (j=1) and females (j=2).
AGEDIS(I,J)	Population distribution by age [from age i=-1 (prenatal) to age i=109] and sex [for males (j=1) and females (j=2)]. The entries for AGEDIS do not have to be normalized; the program adds up to entries for both males and females and normalizes AGEDIS automatically.
KORGAN	The number identifying the organ at risk.

<u>KORGAN</u>	<u>Organ/Cancer Type</u>	<u>KORGAN</u>	<u>Organ/Cancer Type</u>
1	Breast	15	
2	Thyroid	16	Bone
3	Lung	17	
4	Leukemia	18	
5		19	
6		20	Hematopoietic cancer from prenatal exposure
7		21	Solid cancer from prenatal exposure
8	Liver	22	All cancers except leukemia and bone cancer, linear model
9		23	Leukemia and bone cancer, linear model
10		24	

TABLE A-II (cont)

<u>Variable</u>	<u>Definition</u>			
KORGAN (cont)	KORGAN	Organ/Cancer Type	KORGAN	Organ/Cancer Type
	11		25	Leukemia risk from BEIR I
	12		26	All cancers except leukemia and bone cancer, linear-quadratic model
	13		27	Leukemia and bone cancer, linear-quadratic model
	14		28	
LET		Radiation type, low linear-energy-transfer (LET=1) or high linear-energy-transfer (LET=2).		
MODEL		Risk projection model, absolute risk model (MODEL=1) or relative risk model (MODEL=2).		
NFOLLOW		Number of years for which there has been adequate epidemiological followup. Used to calculate the relative risk-rate coefficients.		
NINV		Number of dose intervals.		
CAN5Y(I,J)		Cancer mortality rates in 5-year intervals for age intervals i=1 (0-4 years) up to i=22 (105-109 years) for males (j=1) and females (j=2). This array must be supplied for all relative risk calculations. Units are deaths per million individuals.		
XNUM(I)		Number of males (j=1) and females (j=2) in population receiving the dose.		
NORGAN		Number of organs for which cancer risk is calculated.		
TIME(I)		Number of years in dose interval i.		
DOSINV(I)		Dose in rads received in dose interval i.		
NTABLE		Number of ages for which life tables are to be printed.		
NYEAR(I)		Starting age for the printing of life table i.		

A listing of the input file for the first example problem discussed in Appendix C is presented in Table A-III. This problem calculates the total risk of dying of cancer as a result of 10 rads of whole body, low-LET radiation (a calculation also performed in BEIR III, p. 204 and p. 207). We have used the linear dose-response model and a relative risk projection model for all cancers except leukemia and bone.

TABLE A-III

INPUT FILES FOR A SAMPLE PROBLEM: CALCULATING THE TOTAL NUMBER OF CANCER DEATHS INDUCED BY A DOSE OF 10 RADS OF LOW-LET RADIATION

single dose of 10 rads using relative risk (except for leukemia/bone)					
2	1110				
3	1110				
4	0.000000000	.022450000	.001330000	.000940000	.000780000
5	.000640000	.000580000	.000540000	.000510000	.000460000
6	.000410000	.000360000	.000350000	.000420000	.000590000
7	.000840000	.001140000	.001420000	.001670000	.001850000
8	.001980000	.002120000	.002260000	.002350000	.002350000
9	.002280000	.002170000	.002060000	.001990000	.001980000
10	.002030000	.002100000	.002180000	.002280000	.002390000
11	.002520000	.002680000	.002880000	.003120000	.003390000
12	.003690000	.004010000	.004350000	.004730000	.005180000
13	.005680000	.006230000	.006810000	.007440000	.008120000
14	.008870000	.009690000	.010590000	.011610000	.012750000
15	.014000000	.015340000	.016760000	.018270000	.019870000
16	.021580000	.023390000	.025320000	.027380000	.029600000
17	.032000000	.034630000	.037460000	.040440000	.043500000
18	.046650000	.049910000	.053440000	.057400000	.061930000
19	.067030000	.072640000	.078560000	.084620000	.090700000
20	.096880000	.103670000	.111250000	.119290000	.127700000
21	.136630000	.147300000	.159790000	.172810000	.185210000
22	.196810000	.208390000	.221220000	.235120000	.250230000
23	.265460000	.279620000	.290900000	.301350000	.311110000
24	.320170000	.328570000	.336330000	.343470000	.350040000
25	.356060000	.361570000	.366610000	.371210000	.375400000
26	.379220000	0.000000000	0.000000000	0.000000000	0.000000000
27	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
28	0.000000000	.017460000	.001160000	.000770000	.000600000
29	.000510000	.000430000	.000380000	.000340000	.000310000
30	.000280000	.000260000	.000250000	.000270000	.000330000
31	.000400000	.000490000	.000580000	.000660000	.000690000
32	.000710000	.000720000	.000730000	.000750000	.000770000
33	.000790000	.000810000	.000830000	.000860000	.000900000
34	.000960000	.001020000	.001100000	.001190000	.001290000
35	.001400000	.001520000	.001650000	.001800000	.001970000
36	.002150000	.002330000	.002510000	.002730000	.002970000
37	.003250000	.003540000	.003840000	.004160000	.004490000
38	.004840000	.005230000	.005650000	.006110000	.006600000
39	.007120000	.007680000	.008290000	.008940000	.009620000
40	.010350000	.011130000	.012000000	.012980000	.014110000
41	.015380000	.016780000	.018320000	.020040000	.021950000
42	.024070000	.026320000	.028790000	.031650000	.035030000
43	.038930000	.043250000	.047900000	.052950000	.058400000
44	.064320000	.070970000	.078340000	.086120000	.094190000
45	.102750000	.112820000	.124620000	.136850000	.148590000
46	.160060000	.172640000	.187180000	.202430000	.217500000
47	.231860000	.245840000	.258540000	.269800000	.279960000
48	.289490000	.298360000	.306590000	.314200000	.321220000
49	.327680000	.333610000	.339040000	.344010000	.348550000
50	.352690000	0.000000000	0.000000000	0.000000000	0.000000000
51	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
52	0.00000	.01463	.01457	.01455	.01454
53	.01452	.01451	.01451	.01450	.01449
54	.01448	.01448	.01447	.01446	.01445
55	.01440	.01438	.01435	.01432	.01429
56	.01422	.01419	.01416	.01413	.01410
57	.01405	.01402	.01399	.01396	.01392
58	.01385	.01381	.01377	.01373	.01368
59	.01357	.01351	.01344	.01337	.01329
60	.01311	.01301	.01290	.01277	.01265
61	.01235	.01218	.01201	.01182	.01161
62	.01115	.01090	.01064	.01036	.01006
63	.00943	.00909	.00873	.00838	.00799
64	.00721	.00681	.00641	.00599	.00558

TABLE A-III (cont).

65	.00474	.00432	.00392	.00352	.00315	.00278	
66	.00244	.00212	.00182	.00154	.00129	.00106	
67	.00086	.00068	.00054	.00041	.00031	.00023	
68	.00017	.00012	.00009	.00006	.00004	.00003	
69	.00002	.00001	.00001	.00001	.00000	.00000	
70	.00000	.00000	.00000	0.00000	0.00000	0.00000	
71	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
72	0.00000	.01320	.01316	.01314	.01313	.01313	
73	.01312	.01311	.01311	.01310	.01310	.01310	
74	.01309	.01309	.01309	.01308	.01308	.01307	
75	.01306	.01305	.01304	.01304	.01303	.01301	
76	.01300	.01299	.01299	.01297	.01296	.01295	
77	.01294	.01293	.01291	.01290	.01288	.01287	
78	.01285	.01283	.01280	.01278	.01275	.01273	
79	.01269	.01266	.01263	.01259	.01254	.01250	
80	.01245	.01239	.01234	.01227	.01221	.01214	
81	.01206	.01197	.01189	.01179	.01169	.01158	
82	.01147	.01134	.01121	.01107	.01092	.01076	
83	.01059	.01040	.01020	.00999	.00976	.00951	
84	.00925	.00897	.00867	.00835	.00800	.00764	
85	.00726	.00686	.00644	.00600	.00555	.00510	
86	.00464	.00418	.00373	.00329	.00286	.00246	
87	.00208	.00173	.00142	.00115	.00091	.00070	
88	.00054	.00040	.00030	.00021	.00015	.00011	
89	.00008	.00005	.00004	.00002	.00002	.00001	
90	.00001	.00001	.00000	0.00000	0.00000	0.00000	
91	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
92	1000000.	1000000.					
93	2						
94	22	1	2	30			
95	33.87205	28.82773	24.16823	40.09863	61.77780	90.26943	140.0339
96	260.7323	570.3040	1229.845	2237.891	3669.446	5817.599	8173.591
97	10481.97	13112.09	13112.09	14115.99	14115.99	14115.99	14115.99
98	14115.99						
99	26.55585	21.89922	18.58769	28.64152	39.20196	80.95097	170.5309
100	355.5241	732.9593	1328.616	2046.024	2973.764	3954.441	4858.459
101	6190.020	8392.462	8392.462	10608.92	10608.92	10608.92	10608.92
102	10608.92						
103	2						
104	1.0		10.0				
105	110.0		0.0				
106	23	1	1	30			
107	2						
108	1.0		10.0				
109	110.0		0.0				
110	2						
111	0	10					

In line 2 of the example, IFLAG(1) = 1 and IFLAG(2) = 1. This signals the program to look for the arrays TQX and AGEDIS in the input file. From line 3, IWRITE(1) = 1 and IWRITE(2) = 1, signifying that these arrays should be printed. TQX appears as lines 4-51, and AGEDIS as lines 52-91, in the Input File.

Line 92 tells the program that there are one million males and one million females in the population at risk. These individuals are distributed in age according to the proportions given in AGEDIS.

Line 93 indicates that two cancer types are being considered in this calculation. These are all cancers except leukemia and bone cancer ($K = 22$) and leukemia and bone cancer ($K = 23$). Lines 94 and 106 identify these two cancer types and indicate that the risks are to be calculated for low-LET radiation ($LET = 1$) using the relative risk model ($MODEL = 2$) for $K = 22$ and the absolute risk model ($MODEL = 1$) for $K = 23$. Age- and sex-specific cancer mortality rates for $K = 22$ are in lines 95-102.

For $K = 22$, two dose intervals are to be considered (line 103). They are a 1-year dose of 10 rads (line 104) and a 110-year dose of 0 rad (line 105). Similar dose distribution in time is indicated for $K = 23$ in lines 107, 108, and 109.

Two life tables are to be printed (line 110), for beginning ages 0 and 10 (line 111).

III. INTERPRETATION OF CALCULATED RESULTS

The computer program REPCAL estimates the lifetime risk of radiation-induced cancer mortality by sex for each age of exposure up to age 109. This is the lifetime risk that a hypothetical cohort of individuals all of the same age would incur if they all simultaneously received the stated radiation dose.

The program also calculates the total number of fatal cancers for all age groups for each sex in a given population resulting from exposure to ionizing radiation. Dividing this estimate by the number of individuals in each population gives the age-averaged lifetime risk of cancer mortality for males and for females. Taking the weighted average by sex of these two risks will then give the age- and sex-averaged lifetime risk of cancer mortality.

Caution should be exercised in interpreting the age-averaged risk calculated by REPCAL. This risk estimate should only apply to 1-year exposures. For external radiation the 1-year exposure also corresponds to a 1-year dose. For internal radiation, the 1-year exposure to radioactive material could result in doses occurring beyond 1 year. For example, inhalation of a radioactive material of class Y lung solubility would result

in a lung dose for several years after inhalation. These doses are properly accounted for by entering the dose for each year in DOSINV(I). But the exposure time during which the material was inhaled should not exceed 1 year.

The reason for this limitation is that the changing age structure of the population at risk may invalidate the age-averaging procedure. It is assumed that changes in the population for periods shorter than a year would not be significant. For longer periods, the population would be aging and new members would be born. Immigration and emigration could also change the age distribution. These population dynamics are not taken into account in the program. Consequently, the period when the individual receives the external radiation or is exposed to radioactive material is limited to 1 year for the calculation of the age-averaged risk.

This limitation applies only to the age-averaged risk. The lifetime risk to a cohort of individuals all of the same age can be estimated for exposure periods larger than 1 year. This is the age-specific risk, estimated for each age from birth to the age of 109. It is in contrast to the age-averaged risk, which is the age-weighted average of these age-specific risks. See the two sample problems in Appendix C for an illustration.

APPENDIX B
LISTING OF THE COMPUTER PROGRAM REPCAL

```

program recal (input,output,tape50=input,tape55=output)
real latent,iat(7,27)
dimension surviv(120,2),radxr(120,2),tqxprm(120,2),
> drisk(120),rskpop(120,2),totmor(27),plt(7,27),rsk(7,27),
> ageint(7),drad(27),hleff(120,27),radrsk(27)
dimension dtot(120),dref(120),tx(120),ex(120),tx(120)
dimension dplat(120),dlat(120),dhaz(120)
common/acom/ xrad(120),xnat(120),r(120,27)
common/wind/age(120)
common/sea/rskrad,latent,plateau,nfoliw(27)
common/indata/agedis(120,2),tqx(120,2),canrte(120,2,27),
> alet(2),amodel(2),aname(27),gender(2),let(30),korgan(30),
> model(30),xnum(2),dose(120,27),norgan
common/liftab/ntable,nage(27),nyear(120)
data itable/0/
data (gender(1),i=1,2)/8hmale ,8hfemale /
data (ageint(i),i=1,7)/8h <0 ,8h 0 - 9 ,8h10 - 19 ,8h20 - 34
> ,8h35 - 49 ,8h50 - 65 ,8h >65 /
data (aname(i),i=1,27)/8hbreast ,8hthyroid ,8hlung ,8hleukemia
> ,8hesophag ,
>8hstomach ,8hintestin,8hliver ,8hpancreas,8hpharynx ,8hsal gland,
>8hparathy,8hurin org,8hovary ,8huterus ,8hbone ,8hsinucess ,
>8hbrain ,8hskin ,8hiu-hema ,8hiu-solid,8hother ,8hleu/bone/
>8hlymphoma,8hbear i ,8hother ,8hleu/bone/
call start
do 950 i=1,120
iage(i)=i-2
950 continue
do 502 ngendr=1,2
write(55,360)
write(55,305)
write(55,350) gender(ngendr)
350 format(1h0,t34,"calculation of cancer risks for ",a8,"population")
write(55,305)
do 805 iexps=1,111
do 240 k=1,27
hleff(iexps,k)=0.0
totmor(k)=0.0
240 continue
805 continue
c calculate the risk rate factors for the relative risk model
do 770 iorg=1,norgan
k=korgan(iorg)
if (model(iorg).eq.1) go to 770
if (iexps.ne.1) go to 1000
if (k.ne.20.and.k.ne.21) go to 770
call relfac(iorg,k,ngendr)
go to 770
1000 continue
call relfac(iorg,k,ngendr)
770 continue
c loop over iexps, the age when the radiation exposure begins
do 800 iexps=1,111
cdb if (iexps.ge.4) stop
rskcon=0.0
surviv(iexps,ngendr)=100000.
do 210 j=iexps,111
jage=j-2
radtot=0.0
do 201 iorg=1,norgan
k=korgan(iorg)
radrsk(k)=0.0
201 continue
do 220 iorg=1,norgan

```

```

k=korgan(10rg)
if (1exps ne 1.and.k eq.20) go to 220
if (1exps ne 1 and.k.eq 21) go to 220
if (model(10rg) eq 2) go to 701
c-----
c
c      start calculations for the absolute risk model
c
c-----
do 200 i=1exps,j
if (1exps.eq.1.and.k.eq.20) go to 1020
if (1exps.eq 1.and.k.eq.21) go to 1020
if (1exps.eq.1) go to 200
1020 continue
idjust=i-1exps+1
call getrsk(rc,1age(1),jage,k,1et(10rg),model(10rg),ngendr,
> dose(idjust,k))
radrsk(k)=radrsk(k)+dose(idjust,k)*rc
radtot=radtot+dose(idjust,k)*rc
200 continue
go to 220
701 continue
c-----
c
c      start calculations for the relative risk model
c
c-----
do 725 i=1exps,j
if (1exps.eq.1.and.k.eq.20) go to 1030
if (1exps.eq.1.and.k.eq.21) go to 1030
if (1exps.eq.1) go to 725
1030 continue
idjust=i-1exps+1
if (k.ne.1) go to 760
riske6=r(1,k)*canrte(j,ngendr,k)*dose(idjust,k)
if (1 le.9) latent=20.0
if (1 ge.10.and.1.le.14) latent=20.0
if (1.ge.15.and.1.le.19) latent=15.0
if (1.ge.20) latent=10.0
delta=j-1
if (delta.lt.latent) riske6=0.0
if (delta.eq.latent) riske6=riske6/2.0
go to 735
760 continue
jdif=j-i
if(jdif.lt.nfol1w(10rg)) go to 730
if (jdif.eq.nfol1w(10rg)) go to 850
riske6=r(1,k)*canrte(j,ngendr,k)*dose(idjust,k)
go to 735
850 continue
call getrsk(rc,1age(1),jage,k,1et(10rg),model(10rg),ngendr,
> dose(idjust,k))
riske6=(dose(idjust,k)*rc/2.0)+(r(1,k)*canrte(j,ngendr,k)
> *dose(idjust,k)/2.0)
go to 735
730 continue
call getrsk(rc,1age(1),jage,k,1et(10rg),model(10rg),ngendr,
> dose(idjust,k))
riske6=dose(idjust,k)*rc
735 continue
radrsk(k)=radrsk(k)+riske6
radtot=radtot+riske6
725 continue
220 continue

```

```

c-----
c
c      use the calculated risks to generate a new life table
c
c-----
c
c      agemor=tqx(j,ngendr)/(1.0-0.5*tqx(j,ngendr))
c      tqxprm(j,ngendr)=agemor/(1.0+0.5*(agemor+radtot))
c      dref(j)=tqxprm(j,ngendr)*surviv(j,ngendr)
c      dtot(j)=dref(j)
c      do 230 iorg=1,norgan
c      k=korgan(iorg)
c      radxr(j,ngendr)=radrsk(k)/(1.0+0.5*(agemor+radtot))
c      drad(k)=radxr(j,ngendr)*surviv(j,ngendr)
c      dtot(j)=dtot(j)+drad(k)
c      hleff(iexps,k)=hleff(iexps,k)+drad(k)
230  continue
      j1=j+1
      surviv(j1,ngendr)=surviv(j,ngendr)-dtot(j)
      t1x(j)=(surviv(j1,ngendr)+surviv(j,ngendr))/2.
905  format(/t33,27("-"),
      >"/      age ",t15,"tqx",t26,"1x",t36,"tdx",t45,"drad",t55,
      >"dref",t65,"t1x",t75,"tx",t85,"ex")
902  format(1x,214,f10.8,f10.0,3f10.3,2f10.0,f10.2)
c      jage=j-2
cdb      jage1=jage+1
cdb      write(55,911)jage,jage1,tqxprm(j,ngendr),surviv(j,ngendr),dtot(j),cdb
cdb      > dref(j),drad(22),drad(23),agemor,radtot,radrsk(22),radrsk(23)      cdb
c 911 format(1x,214,f10.8,f10.0,4f10.3,4(1x,e11.3))      cdb
      210 continue
c-----
c
c      print out the life tables if requested...
c
c-----
c
c      do 650 itable=1,ntable
c      if (iage(iexps).ne.nyear(itable)) go to 650
c      if (itable.gt.1) write(55,360)
c      write(55,900)iage(iexps),gender(ngendr)
900  format(1h0,"life table calculation",//t10,"starting age",t40,13,
      > //t10,"population",t40,a8,/)
      write(55,901)(aname(korgan(iorg)),iorg=1,norgan)
901  format(t10,"cancer types",t40,a8,/)
      write(55,905)
      tx(111)=t1x(111)
      do 652 i=iexps,110
      l1nv=111-i
      l1nv1=l1nv+1
      tx(l1nv)=t1x(l1nv)+tx(l1nv1)
      ex(l1nv)=tx(l1nv)/surviv(l1nv,ngendr)
652  continue
      do 654 j=iexps,111
      dradt=dtot(j)-dref(j)
      jage=j-2
      jage1=jage+1
      write(55,902)jage,jage1,tqxprm(j,ngendr),surviv(j,ngendr),dtot(j),
      > dradt,dref(j),t1x(j),tx(j),ex(j)
654  continue
650  continue
800  continue
      do 810 iexps=1,111
      do 235 iorg=1,norgan
      k=korgan(iorg)
      hleff(iexps,k)=hleff(iexps,k)/100000.
235  continue

```

```

810 continue
305 format(//1x,120("-"),//)
  do 250 iorg=1,norgan
    k=korgan(iorg)
    write(55,360)
360 format(1h1)
  write(55,305)
  write(55,361)aname(k),gender(ngendr)
361 format(1x,"cancer type",t20,a8,//1x,"population",t20,a8)
  write(55,340)((iage(1exps),hleff(1exps,k),1exps=j,112,14),j=1,14)
340 format(//1h0,"lifetime risk to individual from exposure by age",
  > //8(" age lifetime"),/8(" group risk ").
  > 14(/8(1x,1x,e10.4)))
  do 815 1exps=1,111
    hleff(1exps,k)=hleff(1exps,k)*agedis(1exps,ngendr)*xnum(ngendr)
    totmor(k)=totmor(k)+hleff(1exps,k)
815 continue
  write(55,306)gender(ngendr),alet(let(iorg))
306 format(//1x,"number of health effects in ",a8,"population "
  >"distributed by age (",a4,"let radiation)")
  write(55,307)
307 format(//1x,8(" age health"),/8(" group effects"))
  write(55,330)((iage(1),hleff(1,k),i=j,112,14),j=1,14)
330 format(14(1x,/8(15,e10.3)))
  write(55,308)
308 format(t112,9("_"))
  write(55,320)gender(ngendr),totmor(k)
320 format(1x,/t53,"total number of health effects to the ",a8,
  >"population",e12.4)
  write(55,305)
250 continue
502 continue
end
subroutine start
dimension time(120),dosinv(120)
common/indata/agedis(120,2),tqx(120,2),canrte(120,2,27),
> alet(2),amodel(2),aname(27),gender(2),let(30),korgan(30),
> model(30),xnum(2),dose(120,27),norgan
common/liftab/ntable,nage(27),nyear(120)
common/sea/rskrad,latent,plateau,nfol1w(27)
dimension pop(2),iflag(4),iwrite(4),title(8),disnam(2),ipr(4)
dimension can5y(28,2)
data ((agedis(1,j),i=1,120),j=1,2)/
> 0.,1839.,1815.,1713.,1645.,1654.,1598.,1631.,1595.,1659.,
> 1722.,1903.,1903.,1852.,1808.,1854.,1916.,2039.,2131.,2143.,
> 2134.,2235.,2208.,2178.,2153.,2139.,2080.,2066.,2013.,1971.,
> 1866.,1898.,1852.,1812.,1799.,1914.,1418.,1436.,1426.,1502.,
> 1304.,1259.,1219.,1170.,1146.,1101.,1097.,1079.,1050.,1065.,
> 1051.,1097.,1122.,1102.,1116.,1110.,1112.,1118.,1094.,1075.,
> 1074.,1045.,999.,953.,914.,872.,848.,834.,793.,757.,
> 715.,679.,631.,587.,549.,499.,463.,421.,379.,341.,
> 292.,287.,244.,204.,174.,155.,706.,0.,0.,0.,
> 0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
> 0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
> 0.,1752.,1734.,1636.,1572.,1579.,1530.,1558.,1524.,1585.,
> 1645.,1817.,1820.,1774.,1732.,1778.,1839.,1962.,2048.,2077.,
> 2090.,2197.,2176.,2155.,2144.,2145.,2090.,2077.,2030.,1989.,
> 1886.,1929.,1884.,1850.,1839.,1962.,1460.,1480.,1474.,1554.,
> 1352.,1308.,1268.,1220.,1197.,1153.,1152.,1134.,1109.,1129.,
> 1118.,1174.,1206.,1191.,1213.,1215.,1226.,1242.,1225.,1213.,
> 1220.,1194.,1149.,1105.,1070.,1035.,1023.,1024.,992.,965.,
> 929.,899.,853.,811.,778.,727.,694.,650.,605.,564.,
> 502.,510.,451.,392.,347.,320.,1656.,0.,0.,0.

```

```

> 0 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .
> 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .
> 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .
> 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .
> 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .
> data (alet(i),i=1,2)/4hlow .4hhigh/
data (amodel(i), i=1,2)/8habolute,8hrelative/
data (disnam(i),i=1,2)/8hprogram ,8huser    /
data (tqx(1,1),i=1,120)/
> 00000, 02245, 00133, 00094, 00078,
> 00064, 00058, 00054, 00051, 00046,
> 00041, 00036, 00035, 00042, 00059,
> 00084, 00114, 00142, 00167, 00185,
> 00198, 00212, 00226, 00235, 00235,
> 00228, 00217, 00206, 00199, 00198,
> 00203, 00210, 00218, 00228, 00239,
> 00252, 00268, 00288, 00312, 00339,
> 00369, 00401, 00435, 00473, 00518,
> 00568, 00623, 00681, 00744, 00812,
> 00887, 00969, 01059, 01161, 01275,
> 01400, 01534, 01676, 01827, 01987,
> 02158, 02339, 02532, 02738, 02960,
> 03200, 03463, 03746, 04044, 04350,
> 04665, 04991, 05344, 05740, 06193,
> 06703, 07264, 07856, 08462, 09070,
> 09688, 10367, 11125, 11929, 12770,
> 13663, 14730, 15979, 17281, 18521,
> 19681, 20839, 22122, 23512, 25023,
> 26546, 27962, 29090, 30135, 31111,
> 32017, 32857, 33633, 34347, 35004,
> 35606, 36157, 36661, 37121, 37540,
> 37922, 0 00000, 0 00000, 0 00000, 0 00000,
> 0 00000, 0 00000, 0 00000, 0 00000, 0 00000/
data (tqx(1,2),i=1,120)/
> 0 00000, 01746, 00116, 00077, 00060,
> 00051, 00043, 00038, 00034, 00031,
> 00028, 00026, 00025, 00027, 00033,
> 00040, 00049, 00058, 00066, 00069,
> 00071, 00072, 00073, 00075, 00077,
> 00079, 00081, 00083, 00086, 00090,
> 00096, 00102, 00110, 00119, 00129,
> 00140, 00152, 00165, 00180, 00197,
> 00215, 00233, 00251, 00273, 00297,
> 00325, 00354, 00384, 00416, 00449,
> 00484, 00523, 00565, 00611, 00660,
> 00712, 00768, 00829, 00894, 00962,
> 01035, 01113, 01200, 01298, 01411,
> 01538, 01678, 01832, 02004, 02195,
> 02407, 02632, 02879, 03165, 03503,
> 03893, 04325, 04790, 05295, 05840,
> 06432, 07097, 07834, 08612, 09419,
> 10275, 11282, 12462, 13685, 14859,
> 16006, 17264, 18718, 20243, 21750,
> 23186, 24584, 25854, 26980, 27996,
> 28949, 29836, 30659, 31420, 32122,
> 32768, 33361, 33904, 34401, 34855,
> 35269, 0 00000, 0 00000, 0 00000, 0 00000,
> 0 00000, 0 00000, 0 00000, 0 00000, 0 00000/
data (((canrite(i,j,k),i=1,120),j=1,2),k=1,27)/
> 6480*0 0/
data (pop(i),i=1,2)/ 0 0 0 0/
read(50,9)(title(i),i=1,8)
write(55,9)(title(i),i=1,8)
9 format(10a8)
c
c set up of the input deck

```

```

c      number of cards      parameter      format
c
c      1                  iflag          41
c      1                  iwrite         41
c      (48)               tqx           5f12 9
c      (40)               agedis        6f10 0
c      1                  xnum          2f10 0
c      1                  norgan        15
c      1                  korgan,let,model,nfollw 415
c      1                  xnum          2f10 0
c      (8)                can5y         7f10.4
c      1                  ninv          15
c      ninv               time,dosinv   2f10.2
c      1                  ntable        13
c      1                  nyear         1415
c
c the array iflag is used to insert user-supplied data to the arrays
c tqx and agedis.  if iflag.ne 1, default values based
c on united states national average statistics will be used.  the index
c 1 for iflag corresponds to
c   tqx (proportion dying in each age interval)      for      i=1
c   agedis (population age distribution)            for      i=2
      read(50,10)(iflag(1),i=1,4)
      10 format(411)
c if iwrite(i)=1, the array corresponding to the value of i
c (defined above) will be printed.  if iwrite(i) ne.1, no printout
c will be provided
      read(50,10)(iwrite(1),i=1,4)
      if(iflag(1).ne 1) go to 20
      read(50,15)((tqx(i,j),i=1,120),j=1,2)
20  if(iwrite(1) eq.1) write(55,115)((tqx(i,j),i=1,120),j=1,2)
      15 format(5f12.9)
115 format(/t5,"proportion dying in each age interval",
      > //t5,"male",/12(t5,10f11 9/),//t5,"female",/12(t5,10f11 9/))
      if (iflag(2).ne.1) go to 30
      read(50,16)((agedis(i,j),i=1,120),j=1,2)
30  if (iwrite(2) eq.1) write(55,116)((agedis(i,j),i=1,120),j=1,2)
      16 format(6f10.0)
116 format(/t5,"age distribution by sex",
      > //t5,"male",/12(t5,10f11.5/),//t5,"female",/12(t5,10f11.5/))
      do 3 i=1,2
      do 4 j=1,120
      pop(i)=pop(i)+agedis(j,i)
4  continue
3  continue
      do 1 i=1,2
      do 2 j=1,120
      agedis(j,i)=agedis(j,i)/pop(i)
2  continue
1  continue
      if (iwrite(2).eq 1) write(55,600)(pop(i),i=1,2)
600 format(/t15,"population totals used to normalize age distribution
      >tables",/t40,"males",t55,f10 2,/t40,"females",t55,f10.2)
c read in input information, where
c
c      dose is the dose in rads,
c      let = 1  for low let radiation
c            = 2  for high let radiation
c      korgan = cancer type (see subroutine getrsk for listing
c                  of cancer types)
c      model = 1 for absolute risk model
c            2 for relative risk model
c      xnum(1) = number of males in population at risk

```

```

c           xnum(2) = number of females in population at risk
c
c           write(55,402)
402 format(//120("-"),//120("-"),//)
read(50,501)(xnum(1),i=1,2)
501 format(2f10.0)
read(50,602) norgan
write(55,25)
25 format(1x,/t5,"health effects calculated for . ")
write(55,502) norgan
502 format(1x,/t15,"number of target organs",t55,12/)
do 606 iorg=1,norgan
read(50,19) korgan(iorg),let(iorg),model(iorg),nfollow(iorg)
19 format(415)
write(55,22) iorg,alet(let(iorg)),aname(korgan(iorg)),
> amodel(model(iorg))
22 format(11x,15,".",t20,"let",t55,a4,/t20,"cancer type",t55,a8,
> /t20,"risk model",t55,a8/)
if (model(iorg) ne 2) go to 750
read(50,17)((can5y(1,j),i=1,28),j=1,2)
17 format(7f10.4)
do 700 j=1,2
  canrte(1,j,korgan(iorg))=0.0
do 701 i=1,22
  k1=5*(i-1)+2
  k2=5*i+1
  do 702 k=k1,k2
    canrte(k,j,korgan(iorg))=can5y(i,j)*0.000001
702 continue
701 continue
700 continue
750 continue
read(50,602)ninv
602 format(15)
read(50,603)(time(1),dosinv(1),i=1,ninv)
603 format(2f10.2)
nstart=1
do 604 i=1,ninv
  ntime=time(i)
  nstop=nstart+ntime-1
  do 605 ij=nstart,nstop
    dose(ij,korgan(iorg))=dosinv(i)
605 continue
nstart=nstart+ntime
604 continue
write(55,35)
35 format(1x,t20,"dose by time interval ")
write(55,21)(dosinv(1),time(1),i=1,ninv)
21 format(1x,t55,f8.5," rads for ",f5.1," years")
40 if (model(iorg).eq.2.and.iwrite(3).eq.1) write(55,117)
  > ((canrte(i,j,korgan(iorg)),i=1,120),j=1,2)
117 format(/t5,"cancer mortality rates",
  > //t5,"male",/12(t5,10f11.8),/t5,"female",/12(t5,10f11.8/))
cdb  write(55,610)(1,korgan(iorg),dose(1,korgan(iorg)),i=1,120)      cdb
cd610 format(/1x,"listing of dose"//,120(215,f10.4/))      cdb
606 continue
do 5 i=1,4
  ipr(i)=iflag(i)+1
5 continue
write(55,400)
400 format(/t5,"summary of population characteristics ..",/)
write(55,401)xnum(1),xnum(2),dismam(ipr(1)),dismam(ipr(2))
401 format(/t15,"number of persons in population ",/t40,"males",t55,
> f8.0,/t40,"females",t55,f8.0,/t15,"population table.",t45,"supplie

```

```

>d by "./t30,"life table",t55,a8./t30,"age distribution",t55,a8)
c read the number of life tables to be printed and the beginning age for each table.
c a maximum of 25 life tables can be printed.
      read(50,601) ntable
601 format(i3)
      read(50,608)(nyear(iyear),iyear=1,ntable)
608 format(14i5)
      return
      end
      subroutine getrsk(rc,i,j,k,let,m,n,dose)
      real latent
      common/sea/rskrad,latent,plateau,nfollw(27)
c this subroutine calculates the risk rate at age "j" for cancer type "k"
c due to exposure at age "i" to low let radiation (l=1) or high let radiation
c (l=2), for the absolute risk model (m=1) or relative risk model (m=2),
c for males (n=1) or females (n=2)   the cancer types are
c
c          k      cancer type          k      cancer type
c
c          1      breast            13     urinary organs
c          2      thyroid           14     ovary
c          3      lung              15     uterus and cervix uteri
c          4      leukemia          16     bone
c          5      esophagus         17     paranasal sinuses
c                                and mastoid air cells
c          6      stomach           18     brain
c          7      intestine
c                  and rectum       19     skin
c          8      liver
c          9      pancreas          20     hematopoietic cancer from
c                                prenatal exposure
c          10     pharynx, hypo-
c                  pharynx, larynx   21     solid tumors from
c          11     salivary glands     22     prenatal exposure
c          12     parathyroid         23     all cancers except leukemia
c                                and bone cancer, 1-1 model
c                                24     leukemia and bone, 1-1 model
c                                lymphoma
c
c other risk coefficients presented for convenience. .
c
c          25     leukemia risk from beir i
c          26     all cancers except leukemia and bone cancer,
c                  1q-1 model
c          27     leukemia and bone cancer, 1q-1 model
rskrad=0.0
if (k.eq.1) go to 1
if (k.eq.2) go to 2
if (k.eq.3) go to 3
if (k.eq.16) go to 16
if (k.eq.8) go to 8
if (k.eq.20) go to 20
if (k.eq.21) go to 21
if (k.eq.23) go to 23
if (k.eq.22) go to 22
if (k.eq.25) go to 25
if (k.eq.26) go to 26
if (k.eq.27) go to 27
rc=0.0
return
1 continue
c breast cancer .      (p 283, beir iii)
c only uses the model for linear risk with no cell killing to use the
c model with cell killing, just substitute the appropriate values of
c rskrad from page 283 of beir iii all risk rate factors have been
c multiplied by 0.39 (table v-15, beir iii) to give the mortality risk rate

```

```

      if (let.ne.1) write(55,902) let
902 format(1x,"value for let incorrect",15)
      if (let.ne.1) stop
      if (n.eq.1) rskrad=0.0
      if (n.eq.1) go to 100
      if (m.eq.2) go to 101
      if (1.le.9) rskrad=0.0
      if (1.ge.10.and.1.le.19) rskrad=4.1e-06
      if (1.ge.20) rskrad=2.6e-06
      if (1.le.9) latent=20.0
      if (1.ge.10.and.1.le.14) latent=20.0
      if (1.ge.15.and.1.le.19) latent=15.0
      if (1.ge.20) latent=10.0
      plteau=200.0
      go to 100
100 continue
c this section supplies the relative risk coefficients given in beir 111
c (p. 283) directly to subroutine relfac
      if (1.le.9) rskrad=0.0
      if (1.ge.10.and.1.le.19) rskrad=0.4e-02
      if (1.ge.20) rskrad=0.16e-02
      rc=rskrad
      return
2 continue
c thyroid cancer... (pp. 303-304, beir 111)
      if (let.ne.1) write(55,902) let
      if (let.ne.1) stop
      if (n.eq.1) rskrad=0.4e-06
      if (n.eq.2) rskrad=1.2e-06
      latent=10.0
      plteau=200.0
      go to 100
3 continue
c lung cancer... (p. 327, beir 111)
c cancer risk is referenced to the age at diagnosis, here taken to be j.
      if (j.lt.35) rskrad=0.0
      if (j.ge.35.and.j.le.49) rskrad=1.5e-06
      if (j.ge.50.and.j.le.65) rskrad=3.0e-06
      if (j.gt.65) rskrad=7.0e-06
      plteau=200.0
      if (j.lt.15) latent=25.0
      if (j.ge.15.and.j.le.34) latent=17.5
      if (j.ge.35) latent=10.0
      go to 100
20 continue
c hematopoietic cancers from intrauterine exposure(p.452, beir 111)
      latent=0.0
      plteau=12.0
      if (i.ne.-1) rskrad=0.0
      if (i.ne.-1) go to 100
      if (let.eq.1) rskrad=25.0e-06
      if (let.eq.2) rskrad=500.0e-06
      go to 100
21 continue
c solid cancers from intrauterine exposure (p.452, beir 111)
      latent=0.0
      plteau=10.0
      if (i.ne.-1) rskrad=0.0
      if (i.ne.-1) go to 100
      if (let.eq.1) rskrad=28.0e-06
      if (let.eq.2) rskrad=560.0e-06
      go to 100
16 continue
c bone cancer... (p. 417, beir 111)

```

```

if (1et eq 1) rskrad=0 05e-06
if (1et eq 2) rskrad=1 0e-06
latent=4 0
plateau=27 0
go to 100
8 continue
c liver cancer (pp 379-380,beir 11i)
if (1et eq 1) rskrad=0 7e-06
if (1et eq 2) rskrad=13 0e-06
latent=10 0
plateau=200 0
go to 100
27 continue
c calculate the combined risk from leukemia and bone cancer using
c the linear-quadratic model (low let radiation and absolute risk model
c only )
if (1et ne 1) write(55,900) let
900 format(/1x,"the linear-quadratic model has been called for non-low
> let radiation ",/1x,"let = ",i5," program stopped ")
if (1et ne 1) stop
cdb if (m ne 1) write(55,901) m
cd901 format(/1x,"the leukemia/bone cancer risk model has been called fo
cdb >r non-absolute risk ",/1x,"model = ",i5, 'program stopped ')
cdb if (m ne 1) stop
latent=3 0
plateau=24 0
if(n eq 2) go to 600
if (1 le 9) a=1 829
if (1 le 9) b=0 01575
if (1 ge 10 and 1 le 19) a=0 7855
if (1 ge 10 and 1 le 19) b=0 006766
if (1 ge 20 and 1 le 34) a=1 1380
if (1 ge 20 and 1 le 34) b=0 009798
if (1 ge 35 and 1 le 49) a=0 8511
if (1 ge 35 and 1 le 49) b=0 007331
if (1 ge 50) a=1 937
if (1 ge 50) b=0 01669
if (dose lt 1 1) b=0 0
rskrad=a*dose + b*(dose**2)
if (dose lt 0 000000001) rskrad=0 0
if (dose lt 0 000000001) go to 215
rskrad=rskrad/dose
215 continue
rskrad=rskrad*1 0e-06
go to 100
600 continue
if (1 le 9) a=1 169
if (1 le 9) b=0 01007
if (1 ge 10 and 1 le 19) a=0 5067
if (1 ge 10 and 1 le 19) b=0 004364
if (1 ge 20 and 1 le 34) a=0 7301
if (1 ge 20 and 1 le 34) b=0 006289
if (1 ge 35 and 1 le 49) a=0 5483
if (1 ge 35 and 1 le 49) b=0 004723
if (1 ge 50) a=1 238
if (1 ge 50) b=0 01047
if (dose lt 1 1) b=0 0
rskrad=a*dose + b*(dose**2)
if (dose lt 0 000000001) rskrad=0 0
if (dose lt 0 000000001) go to 210
rskrad=rskrad/dose
210 continue
rskrad=rskrad*1 0e-06
go to 100

```

```

26 continue
c calculate the risk of all cancers except leukemia and bone cancer
c using the linear-quadratic model. low let radiation only.
    latent=10
    plteau=200.
    if (n eq 2) go to 601
    if (1 le.9) a=0 89720
    if (1.le.9) b=0 007728
    if (1.ge 10.and 1.le.19) a=0.6095
    if (1.ge.10.and.1.le.19) b=0.005250
    if (1.ge.20.and.1.le.34) a=1.774
    if (1.ge.20.and.1.le.34) b=0.01528
    if (1.ge.35.and.1.le.49) a=2.278
    if (1.ge.35.and.1.le.49) b=0.01962
    if (1.ge.50) a=3.446
    if (1.ge.50) b=0 02968
    if (dose lt 1.1) b=0.0
    rskrad=a*dose + b*(dose**2)
    if (dose lt 0.000000001) rskrad=0.0
    if (dose.lt.0.000000001) go to 205
    rskrad=rskrad/dose
205 continue
    rskrad=rskrad*1.0e-06
    go to 100
601 continue
    if (1.le.9) a=1.1690
    if (1.le.9) b=0.01007
    if (1.ge.10.and.1.le.19) a=0.7940
    if (1.ge.10.and.1.le.19) b=0.006839
    if (1.ge.20.and.1.le.34) a=2.311
    if (1.ge.20.and.1.le.34) b=0.01990
    if (1.ge.35.and.1.le.49) a=2.968
    if (1.ge.35.and.1.le.49) b=0.02556
    if (1.ge.50) a=4.489
    if (1.ge.50) b=0.03867
    if (dose.lt.1.1) b=0.0
    rskrad=a*dose + b*(dose**2)
    if (dose.lt.0.000000001) rskrad=0.0
    if (dose.lt.0.000000001) go to 200
    rskrad=rskrad/dose
200 continue
    rskrad=rskrad*1.0e-06
    go to 100
25 continue
c this section gives the leukemia risk as calculated from beir i. it is
c used for comparing program results with those of other authors.
    latent=2.0
    plteau=25.0
    if (1.ge.10) rskrad=1.0e-06
    if (1.le.9) rskrad=2.0e-06
    go to 100
22 continue
c calculate the risk of all cancers except leukemia and bone cancer
c using the linear model. low let radiation only. (beir 111, p. 207)
    latent=10.0
    plteau=200.0
    if (n.eq.2) go to 605
    if (1.le.9) a=1.92000
    if (1.ge.10.and.1.le.19) a=1.4570
    if (1.ge.20.and.1.le.34) a=4.327
    if (1.ge.35.and.1.le.49) a=5.291
    if (1.ge.50) a=8.808
    rskrad=a
    rskrad=rskrad*1.0e-06

```

```

        go to 100
605 continue
        if (i.le.9) a=2.57600
        if (i.ge.10.and.i.le.19) a=1.9550
        if (i.ge.20.and.i.le.34) a=5.807
        if (i.ge.35.and.i.le.49) a=7.102
        if (i.ge.50) a=11.823
        rskrad=a
        rskrad=rskrad*1.0e-06
        go to 100
23 continue
c calculate the risk of leukemia and bone cancer
c using the linear model.  low let radiation only. (beir iii, p. 204)
        latent=3.0
        p1teau=24.0
        if (n.eq.2) go to 606
        if (i.le.9) a=3.97700
        if (i.ge.10.and.i.le.19) a=1.8490
        if (i.ge.20.and.i.le.34) a=2.596
        if (i.ge.35.and.i.le.49) a=1.921
        if (i.ge.50) a=4.319
        rskrad=a
        rskrad=rskrad*1.0e-06
        go to 100
606 continue
        if (i.le.9) a=2.54200
        if (i.ge.10.and.i.le.19) a=1.1920
        if (i.ge.20.and.i.le.34) a=1.666
        if (i.ge.35.and.i.le.49) a=1.237
        if (i.ge.50) a=2.7600
        rskrad=a
        rskrad=rskrad*1.0e-06
        go to 100
100 continue
        delta=j-i
        if (delta.lt.latent) rc=0.0
        if (delta.eq.latent) rc=rskrad/2.0
c we have to fake this for intrauterine exposures since
c no fatal cancers are expected to occur before birth...
        if (k.eq.20.and.delta.eq.latent) rc=0.0
        if (k.eq.21.and.delta.eq.latent) rc=0.0
        if (delta.gt.latent) rc=rskrad
        span=latent + p1teau
        if (delta.eq.span) rc=rskrad/2.0
        if (delta.gt.span) rc=0.0
        return
        end
        subroutine relfac(iorg,k,ngendr)
        real latent
        common/sea/rskrad,latent,p1teau,nfollw(27)
        common/acm/xrad(120),xnat(120),r(120,27)
        common/wind/iage(120)
        common/indata/agedis(120,2),tqx(120,2),canrte(120,2,27),
        > alet(2),amodel(2),aname(27),gender(2),let(30),korgan(30),
        > model(30),xnum(2),dose(120,27),norgan
c do initial calculations for the relative risk model
c first generate the relative risk factors as a function of age. calculate
c xrad(i), the number of cancer deaths in the fraction of the expression period
c that has been observed following
c exposure to "dose" rads of radiation at age i. then calculate xnat(i), the number
c of cancer deaths in the nfollw(iorg) years between i+latent
c and i+nfollw(iorg) years from natural causes.
c the risk factor r(i) is the ratio of these two numbers, i.e., r(i)=xrad(i)/xnat(i).
        do 710 i=1,111

```

```

xrad(1)=0.0
xnat(1)=0.0
r(i,k)=0.0
710 continue
dosx=1.0
c treat breast cancer as a special case since the relative risk factors
c are explicitly given in beir 111 (p 283).
  if (k eq 1) go to 100
  do 700 i=1,111
  i30=i+nfollw(iorg)
  if (i30 gt 111) i30=111
  do 705 j=1,i30
  jage=j-2
  call getrisk(rc,age(1),jage,k,let(iorg),model(iorg),ngendr,
> dosx)
  idif=j-1
  if(idif.lt.latent) go to 705
  if (idif.eq.latent) go to 500
  if (idif.eq.nfollw(iorg)) go to 500
  xrad(1)=xrad(1)+rc*dosx
  xnat(1)=xnat(1)+canrte(j,ngendr,k)
  go to 705
500 continue
xrad(1)=xrad(1)+(rc*dosx)/2.0
xnat(1)=xnat(1)+canrte(j,ngendr,k)/2.0
705 continue
if (i.ge.101) go to 772
if(xnat(1).lt.1.0e-09) write(55,771)i,xnat(1),xrad(1)
771 format(/1x,"check value of xnat",i5,2f20.10)
if (xnat(1).lt.0.00001) go to 772
r(i,k)=xrad(1)/xnat(1)
772 continue
700 continue
c the risk factors for ages 0-9 next are set equal to the average
c risk factor for 10-19 (beir 111, p.195)
  riskave=0.0
  do 773 ij=12,21
  riskave=riskave+r(ij,k)
773 continue
riskave=riskave/10.
do 774 ij=1,11
r(ij,k)=riskave
774 continue
write(55,942)gender(ngendr),aname(k),(age(1),r(i,k),xrad(1),
> xnat(1),i=1,120)
942 format(/1x,"risk factors for relative risk model, ",
> a8,"population",/t10,"for exposure to ",a8,/," age ",
> "risk xrad xnat",/
> 120(i5,3f20.8/))
return
100 continue
do 110 i=1,111
jage=200.
dosx=1.0
call getrisk(rc,age(1),jage,k,let(iorg),model(iorg),
> ngendr,dosx)
r(i,k)=rc
110 continue
end

```

APPENDIX C

SAMPLE PROBLEMS AND COMPARISON OF REPCAL RISK ESTIMATES WITH THOSE OF BEIR III

The program REPCAL was used to calculate risk estimates for several dose scenarios that were also presented in the BEIR III report. The REPCAL input and output files for two of these scenarios are presented here. These two scenarios are

- the calculation of the total number of cancer mortalities from a single exposure of 10 rads using the relative risk model for all cancers except leukemia and bone cancer, and
- the calculation of the total number of cancer mortalities from continuous exposure from birth to 1 rad/year using the absolute risk model for all cancers except leukemia and bone cancer.

The linear no-threshold model was used for both calculations. We followed the BEIR III Committee in using age averaging in the first calculation and in estimating the cancer mortality risk in a cohort of individuals all of the same age in the second calculation.

The input file for the first calculation has been presented in Table A-III. The U.S. age distribution used by the BEIR Committee has been taken from Alexander (1982). The REPCAL output file is shown in Table C-I. The calculated number of cancer deaths (and the line in the output file where this average is found) for a population of 1 000 000 males is

3910 cancers other than leukemia and bone cancer (line 450), and
535 leukemia and bone cancer (line 508),

and for a population of 1 000 000 females

4560 cancers other than leukemia and bone cancer (line 821), and
and 363 leukemia and bone cancer (line 879).

The input file for the second calculation is given in Table C-II, and the output file in Table C-III. For this problem the lifetime risk of cancer mortality for a 1-rad/year exposure from birth is calculated. These risks are the entries for age 0 in the table labeled "lifetime risks to individuals from exposure by age" in the output file. The risks expressed as cancer deaths per million individuals and the lines in the output file on which these risks are found are for males

6126 cancers other than leukemia and bone cancer (line 380), and
3587 leukemia and bone cancer (line 438),
and for females,

10 920 cancers other than leukemia and bone cancer (line 751), and
2706 leukemia and bone cancer (line 809).

The other entries in these tables in the output file are the lifetime risks of cancer mortality for the other age cohorts. As noted earlier, the age-averaged risk factors given here (lines 416, 474, 787, and 845) should not be used if age-averaged risk factors involve exposure times greater than 1 year, because population dynamics have not been accounted for in the program.

In addition to these two calculations, two other calculations were performed using REPCAL that were also presented in BEIR III. The results of these calculations are in Table C-IV for comparison with the BEIR III results. As can be seen in the table, the two sets of calculations are in good agreement and are well within the uncertainty associated with these estimates.

TABLE C-I

OUTPUT FILE FOR THE FIRST SAMPLE PROBLEM

1 single dose of 10 rads using relative risk (except for leukemia)
 2
 3 proportion dying in each age interval
 4
 5 male
 6 0 000000000 022450000 001330000 000940000 000780000 000640000 000580000 000540000 000510000 000460000
 7 000410000 000360000 000350000 000420000 000590000 000840000 001140000 001420000 001670000 001850000
 8 001980000 002120000 002260000 002350000 002350000 002280000 002170000 002060000 001990000 001980000
 9 002030000 002100000 002180000 002280000 002390000 002520000 002680000 002880000 003120000 003390000
 10 003690000 004010000 004350000 004730000 005180000 005680000 006230000 006810000 007440000 008120000
 11 008870000 009690000 010590000 011610000 012750000 014000000 015340000 016760000 018270000 019870000
 12 021580000 023390000 025320000 027380000 029600000 032000000 034630000 037460000 040440000 043500000
 13 046650000 049910000 053440000 057400000 061930000 067030000 072640000 078560000 084620000 090700000
 14 096880000 103670000 111250000 119290000 127700000 136630000 147300000 159790000 172810000 185210000
 15 196810000 208390000 221220000 235120000 250230000 265460000 279620000 290900000 301350000 311110000
 16 320170000 328570000 336330000 343470000 350040000 356060000 361570000 366610000 371210000 375400000
 17 3*92200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
 18
 19
 20 female
 21 0 000000000 017460000 001160000 000770000 000600000 000510000 000430000 000380000 000340000 000310000
 22 000280000 000260000 000250000 000270000 000330000 000400000 000490000 000580000 000660000 000690000
 23 000710000 000720000 000730000 000750000 000770000 000790000 000810000 000830000 000860000 000900000
 24 000960000 001020000 001100000 001190000 001290000 001400000 001520000 001650000 001800000 001970000
 25 002150000 002330000 002510000 002730000 002970000 003250000 003540000 003840000 004160000 004490000
 26 004840000 005230000 005650000 006110000 006600000 007120000 007680000 008290000 008940000 009620000
 27 010350000 011130000 012000000 012980000 014110000 015380000 016780000 018320000 020040000 021950000
 28 024070000 026320000 028790000 031650000 035030000 038930000 043250000 047900000 052950000 058400000
 29 064320000 070970000 078340000 086120000 094190000 102750000 112820000 124620000 136850000 148590000
 30 160060000 172640000 187180000 202430000 217500000 231860000 245840000 258540000 269800000 279960000
 31 289490000 298360000 306590000 314200000 321220000 327680000 333610000 339040000 344010000 348550000
 32 3526900000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
 33
 34
 35
 36 age distribution by sex
 37
 38 male
 39 0 00000 01463 01457 01455 01454 01453 01452 01451 01451 01450
 40 01449 01449 01448 01448 01447 01446 01445 01443 01440 01438
 41 01435 01432 01429 01426 01422 01419 01416 01413 01410 01407
 42 01405 01402 01399 01396 01392 01389 01385 01381 01377 01373
 43 01368 01363 01357 01351 01344 01337 01329 01320 01311 01301
 44 01290 01277 01265 01251 01235 01218 01201 01182 01161 01139
 45 01115 01090 01064 01036 01006 00975 00943 00909 00873 00838
 46 00799 00760 00721 00681 00641 00599 00558 00516 00474 00432
 47 00392 00352 00315 00278 00244 00212 00182 00154 00129 00106
 48 00086 00068 00054 00041 00031 00023 00017 00012 00009 00006
 49 00004 00003 00002 00001 00001 00001 0 00000 0 00000 0 00000
 50 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000
 51
 52
 53 female
 54 0 00000 01320 01316 01314 01313 01313 01312 01311 01311 01310
 55 01310 01310 01309 01309 01309 01308 01308 01307 01306 01305
 56 01304 01304 01303 01301 01300 01299 01299 01297 01296 01295
 57 01294 01293 01291 01290 01288 01287 01285 01283 01280 01278
 58 01275 01273 01269 01266 01263 01259 01254 01250 01245 01239
 59 01234 01227 01221 01214 01206 01197 01189 01179 01169 01158
 60 01147 01134 01121 01107 01092 01076 01059 01040 01020 00999
 61 00976 00951 00925 00897 00867 00835 00800 00764 00726 00686
 62 00644 00600 00555 00510 00464 00418 00373 00329 00286 00246
 63 00208 00173 00142 00115 00091 00070 00054 00040 00030 00021
 64 00015 00011 00008 00005 00004 00002 00002 00001 00001 00001

TABLE C-I (cont)

```

65      0 000000 0 000000 0 000000 0 000000 0 000000 0 000000 0 000000 0 000000 0 000000 0 000000
66
67
68      population totals used to normalize age distribution tables
69          males      1 00
70          females    1 00
71
72

73 -----
74
75
76

77 -----
78
79
80
81      health effects calculated for
82          number of target organs      2
83
84
85
86          1 ) let
87          cancer type      low
88          risk model      other
89
90          dose by time interval
91          10 00000 rads for 1 0 years
92          0 00000 rads for 110 0 years
93
94      cancer mortality rates
95
96      male
97      0 00000000 00003387 00003387 00003387 00003387 00003387 00002883 00002883 00002883 00002883
98      00002883 00002417 00002417 00002417 00002417 00002417 00004010 00004010 00004010 00004010
99      00004010 00006178 00006178 00006178 00006178 00006178 00009027 00009027 00009027 00009027
100     00009027 00014003 00014003 00014003 00014003 00014003 00026073 00026073 00026073 00026073
101     00026073 00057030 00057030 00057030 00057030 00057030 00122985 00122985 00122985 00122985
102     00122985 00223789 00223789 00223789 00223789 00223789 00366945 00366945 00366945 00366945
103     00366945 00581760 00581760 00581760 00581760 00581760 00817359 00817359 00817359 00817359
104     00817359 01048197 01048197 01048197 01048197 01048197 01311209 01311209 01311209 01311209
105     01311209 01311209 01311209 01311209 01311209 01311209 01411599 01411599 01411599 01411599
106     01411599 01411599 01411599 01411599 01411599 01411599 01411599 01411599 01411599 01411599
107     01411599 01411599 01411599 01411599 01411599 01411599 01411599 01411599 01411599 01411599
108     01411599 0 00000000 0 00000000 0 00000000 0 00000000 0 00000000 0 00000000 0 00000000 0 00000000
109
110
111      female
112      0 00000000 00002656 00002656 00002656 00002656 00002656 00002190 00002190 00002190 00002190
113      00002190 00001859 00001859 00001859 00001859 00001859 00002864 00002864 00002864 00002864
114      00002864 00003920 00003920 00003920 00003920 00003920 00008095 00008095 00008095 00008095
115      00008095 00017053 00017053 00017053 00017053 00017053 00035552 00035552 00035552 00035552
116      00035552 00073296 00073296 00073296 00073296 00073296 00132862 00132862 00132862 00132862
117      00132862 00204602 00204602 00204602 00204602 00204602 00297376 00297376 00297376 00297376
118      00297376 00395444 00395444 00395444 00395444 00395444 00485846 00485846 00485846 00485846
119      00485846 00619002 00619002 00619002 00619002 00619002 00839246 00839246 00839246 00839246
120      00839246 00839246 00839246 00839246 00839246 00839246 01060892 01060892 01060892 01060892
121      01060892 01060892 01060892 01060892 01060892 01060892 01060892 01060892 01060892 01060892
122      01060892 01060892 01060892 01060892 01060892 01060892 01060892 01060892 01060892 01060892
123      01060892 0 00000000 0 00000000 0 00000000 0 00000000 0 00000000 0 00000000 0 00000000 0 00000000
124

```

TABLE C-I (cont)

```
125
126      2 ) let
127          cancer type
128          risk model
129
130          dose by time interval
131          10 00000 rads for 1 0 years
132          0 00000 rads for 110 0 years
133
134      summary of population characteristics
135
136
137      number of persons in population
138          males          1000000
139          females        1000000
140      population table    supplied by
141          life table      user
142          age distribution user
```

TABLE C-I (cont)

```

143
144
145
146
147
148
149           calculation of cancer risks for male population
150
151
152
153
154
155 life table calculation
156
157     starting age          0
158
159     population           male
160
161
162     cancer types         other
163
164
165           leu/bone
166
167
168
169
170   age    tpx     lx     tdx    drad    dref    tlx     tx     ex
171   0     1  02245000  100000  2245 000  0 000  2245 000  98878  6688551  66 89
172   1     2  00133000  97755.  130 014  0 000  130 014  97690  6589673  67 41
173   2     3  00094000  97625   91 767  0 000  91 767  97579  6491983  66 50
174   3     4  00077999  97533   78 014  1 939  76 075  97494  6394404  65 56
175   4     5  00063999  97455   66 245  3 874  62 370  97422  6296910  64 61
176   5     6  00057999  97389   60 356  3 872  56 484  97359  6199488  63 66
177   6     7  00053999  97329   56 426  3 870  52 556  97300  6102129.  62 70
178   7     8  00050999  97272   53 475  3 867  49 608  97245  6004829  61 73
179   8     9  .00045999  97219   48 585  3 865  44 720  97194  5907583.  60 77
180   9    10  00040999  97170   43 703  3 864  39 839  97148  5810389  59 80
181  10    11  00035999  97126   39 759  4 794  34 965  97107  5713241  58 82
182  11    12  00034999  97087   39 703  5 724  33 979  97067  5616134  57 85
183  12    13  00041999  97047   46 480  5 721  40 759  97024  5519067  56 87
184  13    14  00058998  97000   62 947  5 718  57 229  96969  5422043  55 90
185  14    15  00083998  96938   87 139  5 714  81 425  96894  5325074  54 93
186  15    16  00113997  96850   116 114  5 708  110 406  96792  5228181  53 98
187  16    17  00141996  96734   143 059  5 700  137 359  96663  5131388  53 05
188  17    18  00166995  96591   166 994  5 691  161 303  96508  5034725  52 12
189  18    19  00184995  96424   184 060  5 681  178 380  96332  4938218  51 21
190  19    20  00197994  96240   196 219  5 669  190 550  96142  4841886  50 31
191  20    21  00211994  96044   209 265  5 658  203 607  95939  4745743  49 41
192  21    22  00225993  95835.  222 225  5 645  216 580  95724  4649804  48 52
193  22    23  00234993  95612   230 314  5 631  224 683  95497  4554081  47 63
194  23    24  .00234993  95382   229 759  5 618  224 141  95267  4458583  46 74
195  24    25  00227993  95152   222 546  5 605  216 941  95041  4363316  45 86
196  25    26  00216994  94930   211 583  5 592  205 992  94824  4268275  44 96
197  26    27  00205994  94718   200 693  5 580  195 114  94618  4173451  44 06
198  27    28  00198996  94518   191 777  5 569  188 086  94422  4078833  43 15
199  28    29  00197998  94326   188 572  5 560  186 763  94231  3984411  42 24
200  29    30  00202998  94137   192 902  5 551  184 097  94041  3890180  41 32
201  30    31  00209999  93944   198 546  5 541  197 282  93845  3796139  40 41
202  31    32  00217999  93746   205 089  5 531  204 365  93643  3702294  39 49
203  32    33  00227999  93541   213 995  5 521  213 272  93434  3608651  38 58
204  33    34  00238999  93327   223 771  5 511  223 050  93215  3515217  37 67

```

TABLE C-I (cont)

205	34	35	00251999	93103	235	338	719	234	618	92985	3422002	36	76
206	35	36	00267998	92868	250	219	1 336	248	883	92742	3329017	35	85
207	36	37	00287998	92617	268	068	1 332	266	736	92483	3236275	34	94
208	37	38	00311998	92349	289	455	1 328	288	128	92205	3143791	34	04
209	38	39	00338998	92060	313	404	1 323	312	081	91903	3051587	33	15
210	39	40	00368997	91746	339	861	1 319	338	542	91576	2959684	32	26
211	40	41	00400994	91407	369	408	2 873	366	535	91222	2868107	31	38
212	41	42	00434993	91037	398	867	2 861	396	005	90838	2776885	30	50
213	42	43	00472993	90638	431	561	2 848	428	712	90423	2686048	29	63
214	43	44	00517992	90207	470	097	2 834	467	263	89972	2595625	28	77
215	44	45	00567991	89737	512	515	2 819	509	696	89480	2505653	27	92
216	45	46	00622979	89224	561	889	6 042	555	847	88943	2416173	27	08
217	46	47	00680977	88662	609	771	6 002	603	769	88357	2327230	26	25
218	47	48	00743975	88052	661	047	5 959	655	088	87722	2238873	25	43
219	48	49	00811973	87391	715	506	5 912	709	594	87034	2151151	24	62
220	49	50	00886970	86676	774	651	5 861	768	789	86289	2064117	23	81
221	50	51	009668940	85901	842	897	10 566	832	332	85480	1977828	23	02
222	51	52	01058935	85058	911	170	10 457	900	713	84603	1892349	22	25
223	52	53	01160929	84147	987	229	10 340	976	889	83654	1807746	21	48
224	53	54	01274922	83160	1070	437	10 213	1060	224	82625	1724092	20	73
225	54	55	01399914	82090	1159	258	10 075	1149	183	81510	1641468	20	00
226	55	56	01533846	80930	1257	620	16 275	1241	345	80301	1559958	19	28
227	56	57	01675832	79673	1351	190	16 010	1335	179	78997	1479656	18	57
228	57	58	01826817	78321	1446	516	15 727	1430	789	77598	1400659	17	88
229	58	59	01986801	76875	1542	776	15 424	1527	352	76104	1323061	17	21
230	59	60	02157784	75332	1640	606	15 101	1625	505	74512	1246957	16	55
231	60	61	02338629	73692	1746	769	23 398	1723	372	72818	1172446	15	91
232	61	62	02531598	71945	1844	174	22 821	1821	353	71023	1099627	15	28
233	62	63	02737566	70101	1941	263	22 213	1919	051	69130	1028605	14	67
234	63	64	02959532	68159	2038	770	21 573	2017	197	67140	959475	14	08
235	64	65	03199494	66121	2136	426	20 902	2115	524	65052	892335	13	50
236	65	66	03462232	63984	2243	658	28 379	2215	280	62862	827282	12	93
237	66	67	03745170	61740	2339	631	27 344	2312	287	60571	764420	12	38
238	67	68	04043106	59401	2472	908	26 268	2401	640	58187	703849	11	85
239	68	69	04349040	56973	2502	931	25 155	2477	776	55721	645663	11	33
240	69	70	04663972	54470	2564	478	24 011	2540	466	53188	589941	10	83
241	70	71	04989592	51906	2619	167	29 292	2589	875	50596	536753	10	34
242	71	72	05342495	49286	2660	886	27 763	2633	122	47956	486157	9	86
243	72	73	05738387	46625	2701	762	26 211	2675	551	45275	438201	9	40
244	73	74	06191263	43924	2744	068	24 635	2719	434	42552	392927	8	95
245	74	75	06701125	41180	2782	536	23 035	2759	501	39788	350375	8	51
246	75	76	07261466	38397	2814	982	26 788	2788	194	36990	310587	8	09
247	76	77	07853268	35582	2819	109	24 748	2794	361	34173	273597	7	69
248	77	78	08459067	32763	2794	162	22 715	2771	447	31366	239424	7	31
249	78	79	09066866	29969	2737	949	20 712	2717	237	28600	208059	6	94
250	79	80	09684663	27231	2655	982	18 759	2637	223	25903	179459	6	59
251	80	81	10363442	24575	2563	679	16 869	2546	810	23293	153556	6	25
252	81	82	11121197	22011	2462	964	15 049	2447	916	20780	130263	5	92
253	82	83	11924940	19548	2344	431	13 308	2331	123	18376	109483	5	60
254	83	84	12765673	17204	2207	849	11 660	2196	189	16100	91107	5	30
255	84	85	13658392	14996	2058	330	10 115	2048	215	13967	75007	5	00
256	85	86	14724683	12938	1914	374	9 341	1905	033	11981	61040	4	72
257	86	87	15973271	11023	1768	689	7 905	1760	784	10139	49059	4	45
258	87	88	17274848	9255	1605	312	6 590	1598	722	8452	38920	4	21
259	88	89	18514451	7649	1421	638	5 410	1416	228	6938	30469	3	98
260	89	90	19674085	6228	1229	614	4 376	1225	238	5613	23530	3	78
261	90	91	20831725	4998	1044	672	3 490	1041	182	4476	17917	3	58
262	91	92	22114333	3953	877	006	2 740	874	266	3515	13441	3	40
263	92	93	23503915	3076	725	186	2 116	723	070	2714	9927	3	23
264	93	94	25014469	2351	589	743	1 603	588	139	2056	7213	3	07
265	94	95	26537028	1761	468	628	1 191	467	438	1527	5156	2	93
266	95	96	27952627	1293	362	246	867	361	379	1112	3629	2	81
267	96	97	29080313	931	271	235	620	270	616	795	2518	2	71
268	97	98	30125026	659	199	064	436	198	628	560	1723	2	61

TABLE C-I (cont)

269	98	99	31100762	460	143	454	303	143	151	389	1163	2 53
270	99	100	32006520	317.	101	613	207	101	405	266	774	2 44
271	100	101	32846299	215	70	830	140	70	690	180	508	2 36
272	101	102	33622097	144	48	639	094	48	545	120	328	2 27
273	102	103	34335914	96	32	937	062	32	875	79	208	2 18
274	103	104	34992746	63	22	019	040	21	978	52	129	2 06
275	104	105	35594595	41	14	545	026	14	519	34	77	1 90
276	105	106	36145457	26	9	503	017	9	486	21	44	1 67
277	106	107	36649332	17	6	146	011	6	136	14	22	1 33
278	107	108	37109219	11	3	939	007	3	932	9	9	81
279	108	109	37528117	7	2	502	004	2	498	5	0	0 00
280	109	110	37910024	4	1	578	003	1	575	3	3	0 00

TABLE C-I (cont)

281	282	life table calculation								
283	284	starting age								
285	286	population								
287	288	male								
289	290	cancer types								
291	292	other								
293	294	1eu/bone								
295	296									
297	age	tax	lx	tdx	drad	dref	tx	ex		
298	10	11	00036000	100000	36 000	0 000	36 000	99982	5878019	58 78
299	11	12	00035000	99964	34 987	0 000	34 987	99947	5778037	57 80
300	12	13	00042000	99929	41 970	0 000	41 970	99908	5678091	56 82
301	13	14	00059000	99887	59 856	923	58 933	99857	5578183	55 84
302	14	15	00083999	99827	85 699	1 845	83 854	99784	5478326	54 88
303	15	16	00113999	99741	115 547	1 843	113 704	99684	5378541	53 92
304	16	17	00141999	99626	143 308	1 841	141 468	99554	5278858	52 99
305	17	18	00166998	99483	167 972	1 838	166 134	99399	5179303	52 06
306	18	19	00184998	99315	185 565	1 835	183 730	99222	5079905	51 15
307	19	20	00197998	99129	198 105	1 831	196 274	99030	4980683	50 24
308	20	21	00211997	98931	212 278	2 547	209 731	98825	4881653	49 34
309	21	22	00225996	98719	226 361	3 260	223 101	98606	4782828	48 45
310	22	23	00234996	98492	234 705	3 252	231 453	98375	4684222	47 56
311	23	24	00234996	98258	234 146	3 245	230 902	98141	4585847	46 67
312	24	25	00227996	98023	226 727	3 237	223 490	97910	4487707	45 78
313	25	26	00216996	97779	215 445	3 230	212 215	97689	4389797	44 89
314	26	27	00205997	97581	204 237	3 223	201 014	97479	4292108	43 98
315	27	28	00198997	97377	196 993	3 216	193 777	97279	4194628	43 08
316	28	29	00197997	97180	195 623	3 210	192 413	97082	4097350	42 16
317	29	30	00202997	96984	200 078	3 203	196 875	96884	4000268	41 25
318	30	31	00209997	96784	206 440	3 196	203 244	96681	3903383	40 33
319	31	32	00217996	96578	213 726	3 189	210 536	96471	3806702	39 42
320	32	33	00227996	96364	222 889	3 182	219 707	96253	3710231	38 50
321	33	34	00238996	96141	232 949	3 175	229 774	96025	3613978	37 59
322	34	35	00251996	95908	244 852	3 167	241 685	95786	3517953	36 68
323	35	36	00267996	95664	259 532	3 158	256 374	95534	3422167	35 77
324	36	37	00287995	95404	277 908	3 149	274 759	95265	3326633	34 87
325	37	38	00311996	95126	299 052	2 262	296 790	94977	3231368	33 97
326	38	39	00338998	94827	322 841	1 379	321 461	94666	3136392	33 07
327	39	40	00368997	94504	350 092	1 374	348 718	94329	3041726	32 19
328	40	41	00400993	94154	380 790	3 239	377 552	93964	2947397	31 30
329	41	42	00434988	93773	412 990	5 087	407 903	93567	2853433	30 43
330	42	43	00472987	93360	446 646	5 064	441 582	93137	2759867	29 56
331	43	44	00517986	92914	486 318	5 039	481 280	92671	2666730	28 70
332	44	45	00567985	92427	529 984	5 011	524 973	92162	2574059	27 85
333	45	46	00622964	91897	583 228	10 741	572 487	91606	2481897	27 01
334	46	47	00680960	91314	632 483	10 669	621 813	90998	2390291	26 18
335	47	48	00743957	90682	685 224	10 592	674 632	90339	2299293	25 36
336	48	49	00811953	89996	741 237	10 509	730 729	89626	2208954	24 54
337	49	50	00866948	89255	802 066	10 418	791 648	88854	2119328	23 74
338	50	51	00968897	88453	875 798	18 778	857 020	88015	2030474	22 96
339	51	52	01058888	87577	945 930	18 584	927 346	87104	1942459	22 18
340	52	53	01160877	86631	1024 058	18 374	1005 684	86119	1855354	21 42
341	53	54	01274865	85607	1109 524	18 146	1091 378	85053	1769235	20 67
342	54	55	01399852	84498	1200 744	17 900	1182 844	83897	1684182	19 93
343	55	56	01533734	83297	1306 467	28 912	1277 556	82644	1600285	19 21

TABLE C-I (cont)

344	56	57	01675709	81991	1402	362	28	438	1373	925	81289	1517641	18	51	
345	57	58	01826683	80588	1500	022	27	930	1472	092	79838	1436351	17	82	
346	58	59	01986656	79088	1598	599	27	388	1571	211	78289	1356513	17	15	
347	59	60	02157627	77490	1698	748	26	811	1671	937	76640	1278224	16	50	
348	60	61	02338359	75791	1813	796	41	533	1772	263	74884	1201584	15	85	
349	61	62	02531307	73977	1913	087	40	499	1872	587	73021	1126700	15	23	
350	62	63	02737251	72064	2011	984	39	411	1972	573	71058	1053679	14	62	
351	63	64	02959192	70052	2111	241	38	268	2072	974	68996	982621	14	03	
352	64	65	03199127	67941	2210	581	37	069	2173	512	66835	913625	13	45	
353	65	66	03461675	65730	2325	679	50	314	2275	366	64567	846790	12	88	
354	66	67	03744568	63405	2422	689	48	464	2374	226	62193	782222	12	34	
355	67	68	04042457	60982	2511	705	46	541	2465	164	59726	720029	11	81	
356	68	69	04348343	58470	2587	036	44	554	2542	482	57177	660303	11	29	
357	69	70	04663225	55883	2648	469	42	515	2605	955	54559	603126	10	79	
358	70	71	04988570	53235	2	07	492	51	845	2655	646	51881	548568	10	30
359	71	72	05341402	50527	47	977	49	120	2698	858	49153	496687	9	83	
360	72	73	05737216	47779	2787	547	46	354	2741	193	46385	447534	9	37	
361	73	74	06190003	44992	2828	529	43	548	2784	982	43577	401148	8	92	
362	74	75	06699765	42163	2865	530	40	702	2824	827	40730	357571	8	48	
363	75	76	07259627	39298	2900	167	47	312	2852	856	37847	316840	8	06	
364	76	77	07851285	36397	2901	348	43	686	2857	662	34947	278993	7	67	
365	77	78	08456938	33496	2872	815	40	077	2832	739	32060	244046	7	29	
366	78	79	09064591	30623	2812	393	36	523	2775	870	29217	211987	6	92	
367	79	80	09682241	27811	2725	773	33	062	2692	711	26448	182770	6	57	
368	80	81	10360860	25085	2628	742	29	715	2599	027	23771	156322	6	23	
369	81	82	11118437	22456	2523	286	26	495	2496	791	21195	132551	5	90	
370	82	83	11921993	19933	2399	831	23	418	2376	414	18733	111356	5	59	
371	83	84	12762532	17533	2258	186	20	506	2237	680	16404	92623	5	28	
372	84	85	13655048	15275	2103	590	17	780	2085	810	14223	76219	4	99	
373	85	86	14720824	13171	1955	351	16	410	1938	941	12194	61996	4	71	
374	86	87	15969113	11216	1804	986	13	880	1791	107	10314	49802	4	44	
375	87	88	17270383	9411	1636	894	11	564	1625	330	8593	39489	4	20	
376	88	89	18509698	7774	1448	466	9	488	1438	979	7050	30896	3	97	
377	89	90	19669067	6326	1251	881	7	671	1244	210	5700	23846	3	77	
378	90	91	20826446	5074	1062	814	6	113	1056	701	4542	18146	3	58	
379	91	92	22108769	4011	891	587	4	798	886	789	3565	13604	3	39	
380	92	93	23498047	3119	736	710	3	702	733	008	2751	10039	3	22	
381	93	94	25008278	2383	598	684	2	804	595	880	2083	7287	3	06	
382	94	95	26539517	1784	475	398	2	081	473	317	1546	5204	2	92	
383	95	96	27945825	1309	367	227	1	514	365	713	1125	3658	2	80	
384	96	97	29073282	941	274	784	1	082	273	702	804	2533	2	69	
385	97	98	30117788	667	201	538	762	200	777	566	1729	2	59		
386	98	99	31093332	465	145	143	528	144	615	393	1163	2	53		
387	99	100	31998915	320	102	744	361	102	383	269	774	2	44		
388	100	101	32838534	217	71	574	244	71	329	181	508	2	36		
389	101	102	33614185	146	49	118	163	48	955	121	328	2	27		
390	102	103	34327868	97	33	241	108	33	133	80	208	2	18		
391	103	104	34984579	63	22	208	070	22	138	52	129	2	06		
392	104	105	35586318	41	14	661	045	14	616	34	77	1	90		
393	105	106	36137080	26	9	573	029	9	544	22	44	1	67		
394	106	107	36640864	17	6	188	018	6	169	14	22	1	33		
395	107	108	37100669	11	3	963	012	3	951	9	9	81			
396	108	109	37519492	7	2	516	007	2	509	5	0	0	00		
397	109	110	37901332	4	1	585	005	1	581	3	3	0	00		

TABLE C-I (cont)

398
 399
 400
 401 -----
 402
 403
 404 cancer type other
 405
 406 population male
 407
 408
 409 lifetime risk to individual from exposure by age
 410
 411 age lifetime
 412 group risk
 413 -1 0 13 9323e-02 27 4295e-02 41 1401e-02 55 8855e-03 69 2718e-03 83 3201e-04 97 1763e-05
 414 0 8222e-02 14 8393e-02 28 3864e-02 42 1297e-02 56 8266e-03 70 2431e-03 84 2610e-04 98 1171e-05
 415 1 8403e-02 15 7227e-02 29 3512e-02 43 1206e-02 57 7706e-03 71 2163e-03 85 2119e-04 99 4717e-06
 416 2 8406e-02 16 6064e-02 30 3147e-02 44 1125e-02 58 7172e-03 72 1913e-03 86 1717e-04 100 0
 417 3 8406e-02 17 5226e-02 31 2795e-02 45 1047e-02 59 6663e-03 73 1682e-03 87 1395e-04 101 0
 418 4 8404e-02 18 4594e-02 32 2514e-02 46 9724e-03 60 6177e-03 74 1469e-03 88 1136e-04 102 0
 419 5 8398e-02 19 4100e-02 33 2284e-02 47 9054e-03 61 5714e-03 75 1275e-03 89 9281e-05 103 0
 420 6 8389e-02 20 1050e-01 34 2093e-02 48 8447e-03 62 5270e-03 76 1100e-03 90 7598e-05 104 0
 421 7 .8379e-02 21 8973e-02 35 2330e-02 49 7892e-03 63 4846e-03 77 9420e-04 91 6234e-05 105 0
 422 8 8369e-02 22 7838e-02 36 2112e-02 50 1229e-02 64 4442e-03 78 8015e-04 92 5130e-05 106 0
 423 9 8358e-02 23 6961e-02 37 .1931e-02 51 1152e-02 65 4057e-03 79 6771e-04 93 4234e-05 107 0
 424 10 1398e-01 24 6262e-02 38 1778e-02 52 1080e-02 66 3693e-03 80 5677e-04 94 3498e-05 108 0
 425 11 1198e-01 25 5533e-02 39 1646e-02 53 1011e-02 67 3348e-03 81 4724e-04 95 2875e-05 109 0
 426 12 1049e-01 26 4836e-02 40 1520e-02 54 9470e-03 68 3023e-03 82 3902e-04 96 2314e-05 110 0
 427
 428
 429 number of health effects in male population distributed by age (low let radiation)
 430
 431 age health age health age health age health age health age health
 432 group effects
 433
 434 -1 0 13 135e+03 27 606e+02 41 190e+02 55 106e+02 69 217e+01 83 781e-01 97 159e 03
 435 0 120e+03 14 .121e+03 28 544e+02 42 175e+02 56 977e+01 70 185e+01 84 553e-01 98 703e-04
 436 1 122e+03 15 104e+03 29 493e+02 43 162e+02 57 895e+01 71 156e+01 85 386e-01 99 189e 04
 437 2 122e+03 16 875e+02 30 441e+02 44 150e+02 58 817e+01 72 130e+01 86 264e-01 100 0
 438 3 122e+03 17 .753e+02 31 391e+02 45 139e+02 59 743e+01 73 108e+01 87 180e-01 101 0
 439 4 122e+03 18 .661e+02 32 351e+02 46 128e+02 60 673e+01 74 880e+00 88 120e-01 102 0
 440 5 122e+03 19 588e+02 33 318e+02 47 119e+02 61 608e+01 75 712e+00 89 798e-02 103 0
 441 6 122e+03 20 .150e+03 34 291e+02 48 110e+02 62 546e+01 76 567e+00 90 517e-02 104 0
 442 7 122e+03 21 128e+03 35 323e+02 49 102e+02 63 .488e+01 77 447e+00 91 337e-02 105 0
 443 8 121e+03 22 112e+03 36 292e+02 50 157e+02 64 433e+01 78 346e+00 92 210e-02 106 0
 444 9 121e+03 23 .990e+02 37 266e+02 51 146e+02 65 383e+01 79 265e+00 93 131e-02 107 0
 445 10 203e+03 24 889e+02 38 244e+02 52 135e+02 66 336e+01 80 200e+00 94 805e-03 108 0
 446 11 174e+03 25 783e+02 39 225e+02 53 125e+02 67 292e+01 81 149e+00 95 489e-03 109 0
 447 12 152e+03 26 683e+02 40 207e+02 54 115e+02 68 253e+01 82 108e+00 96 278e-03 110 0
 448
 449
 450 total number of health effects to the male population 3910e+04
 451
 452
 453 -----
 454
 455

TABLE C-I (cont)

```

456
457
458
459 -----
460
461
462 cancer type      leu/bone
463
464 population      male
465
466

467 lifetime risk to individual from exposure by age
468
469 age lifetime age lifetime
470 group risk group risk
471 -1 0      13 4311e-03 27 5900e-03 41 3894e-03 55 6346e-03 69 3298e-03 83 1110e-03 97 2810e 04
472 0      9203e-03 14 4303e 03 28 5877e-03 42 3838e-03 56 6132e 03 70 3099e-03 84 1005e 03 98 2612e 04
473 1      9402e-03 15 4296e 03 29 5850e-03 43 3778e 03 57 5914e 03 71 2905e 03 85 9063e-04 99 2430e 04
474 2      9402e-03 16 4289e-03 30 5821e 03 44 3716e-03 58 5694e-03 72 2716e 03 86 8164e-04 100 2256e 04
475 3      9397e-03 17 4283e-03 31 5789e-03 45 3650e 03 59 5472e 03 73 2533e-03 87 7358e 04 101 2082e 04
476 4      9391e-03 18 4278e-03 32 5753e-03 46 3581e 03 60 5249e-03 74 2358e-03 88 6634e 04 102 1893e-04
477 5      9382e-03 19 4273e 03 33 5714e-03 47 3509e-03 61 5025e 03 75 2191e-03 89 5978e 04 103 1672e 04
478 6      9372e-03 20 5989e-03 34 5671e 03 48 3433e-03 62 4800e-03 76 2032e 03 90 5377e-04 104 1390e 04
479 7      9361e-03 21 5981e 03 35 4163e-03 49 3354e 03 63 4577e 03 77 1881e-03 91 4831e-04 105 1002e 04
480 8      9349e-03 22 5973e-03 36 4125e-03 50 7355e 03 64 4355e-03 78 1737e 03 92 4347e-04 106 4353e 05
481 9      9336e-03 23 5963e-03 37 4085e 03 51 7164e-03 65 4136e-03 79 1599e 03 93 3928e-04 107 0
482 10     4335e-03 24 5951e 03 38 4042e 03 52 6967e-03 66 3920e-03 80 1468e-03 94 3575e 04 108 0
483 11     4327e-03 25 5937e 03 39 3996e 03 53 6764e-03 67 3708e-03 81 1342e-03 95 3280e-04 109 0
484 12     4319e-03 26 5920e-03 40 3946e-03 54 6557e-03 68 3501e 03 82 1223e-03 96 3030e 04 110 0
485
486
487 number of health effects in male      population distributed by age (low let radiation)
488
489 age health age health age health age health age health age health age health
490 group effects group effects
491
492 -1 0      13 624e+01 27 832e+01 41 528e+01 55 762e+01 69 263e+01 83 271e+00 97 253e 02
493 0      135e+02 14 622e+01 28 827e+01 42 518e+01 56 725e+01 70 236e+01 84 213e+00 98 157e-02
494 1      137e+02 15 621e+01 29 822e+01 43 508e+01 57 687e+01 71 209e+01 85 165e+00 99 972e 03
495 2      137e+02 16 619e+01 30 816e+01 44 497e+01 58 649e+01 72 185e+01 86 126e+00 100 677e 03
496 3      137e+02 17 617e+01 31 810e+01 45 485e+01 59 610e+01 73 162e+01 87 949e 01 101 416e 03
497 4      136e+02 18 615e+01 32 803e+01 46 473e+01 60 572e+01 74 141e+01 88 703e 01 102 189e 03
498 5      136e+02 19 613e+01 33 795e+01 47 460e+01 61 535e+01 75 122e+01 89 514e 01 103 167e 03
499 6      136e+02 20 858e+01 34 788e+01 48 447e+01 62 497e+01 76 105e+01 90 366e 01 104 139e 03
500 7      136e+02 21 855e+01 35 577e+01 49 433e+01 63 460e+01 77 891e+00 91 261e 01 105 0
501 8      136e+02 22 852e+01 36 570e+01 50 939e+01 64 425e+01 78 750e+00 92 178e 01 106 0
502 9      135e+02 23 848e+01 37 563e+01 51 906e+01 65 390e+01 79 627e+00 93 122e 01 107 0
503 10     628e+01 24 844e+01 38 555e+01 52 872e+01 66 356e+01 80 517e+00 94 822e 02 108 0
504 11     627e+01 25 841e+01 39 547e+01 53 835e+01 67 324e+01 81 423e+00 95 558e 02 109 0
505 12     625e+01 26 837e+01 40 538e+01 54 799e+01 68 293e+01 82 340e+00 96 364e 02 110 0
506
507
508      total number of health effects to the male      population      5346e+03
509
510
511      -      -
512
513

```

TABLE C-I (cont)

```

514
515
516
517 -----
518
519
520           calculation of cancer risks for female population
521
522
523
524
525 -----
526 life table calculation
527
528     starting age          0
529
530     population           female
531
532
533     cancer types         other
534
535
536     1eu/bone
537
538
539
540
541     age    tqx      1x      tdx      drad      dref      t1x      tx      ex
542     0     1 01746000 100000  1746 000  0 000  1746 000  99127 744506 74 45
543     1     2 00116000 98254   113 975  0 000  113 975  98197 7346279 74 77
544     2     3 00077000 98140   75 568  0 000  75 568  98102 7248082 73 85
545     3     4 00060000 98064   60 084  1 246  58 838  98034 7149980 72 91
546     4     5 00050999 98004   52 472  2 491  49 982  97978 7051945 71 96
547     5     6 00042999 97952   44 608  2 489  42 119  97930 6953967 70 99
548     6     7 00038000 97907   39 693  2 488  37 204  97887 6856038 70 03
549     7     8 00034000 97868   35 762  2 487  33 275  97850 6758150 69 05
550     8     9 00031000 97832   32 814  2 486  30 327  97815 6660301 68 08
551     9    10 00028000 97799   29 869  2 486  27 383  97784 6562485 67 10
552    10    11 00026000 97769   29 163  3 744  25 419  97755 6464701 66 12
553    11    12 00024999 97740   29 436  5 002  24 434  97725 6366946 65 14
554    12    13 00026999 97711   31 381  5 000  26 381  97695 6269221 64 16
555    13    14 00032999 97679   37 232  4 998  32 233  97661 6171526 63 18
556    14    15 00039999 97642   44 052  4 996  39 056  97620 6073866 62 21
557    15    16 00048999 97598   52 815  4 994  47 822  97571 5976246 61 23
558    16    17 00057999 97545   61 565  4 991  56 575  97514 5878674 60 27
559    17    18 00065998 97484   69 325  4 987  64 091  97449 5781160 59 30
560    18    19 00068998 97414   72 198  4 984  67 214  97378 5683711 58 35
561    19    20 00070998 97342   74 091  4 980  69 111  97305 5586333 57 39
562    20    21 00071998 97268   75 007  4 976  70 031  97230 5489028 56 43
563    21    22 00072998 97193   75 921  4 972  70 949  97155 5391798 55 48
564    22    23 00074998 97117   77 804  4 968  72 836  97078 5294643 54 52
565    23    24 00076998 97039   79 683  4 964  74 718  96999 5197565 53 56
566    24    25 00078998 96959   81 556  4 960  76 596  96919 5100565 52 61
567    25    26 00080998 96878   83 425  4 956  78 469  96836 5003647 51 65
568    26    27 00082998 96794   85 289  4 952  80 337  96752 4906811 50 69
569    27    28 00085998 96709   86 887  3 719  83 168  96666 4810059 49 74
570    28    29 00089998 96622   89 447  2 488  86 959  96578 4713393 48 78
571    29    30 00095999 96533   95 156  2 485  92 670  96485 4616815 47 83
572    30    31 00101999 96438   100 107  1 741  98 366  96388 4520330 46 87
573    31    32 00109999 96338   106 970  999  105 971  96284 4423942 45 92
574    32    33 00118999 96231   115 512  998  114 514  96173 4327658 44 97
575    33    34 00128999 96115   124 984  997  123 988  96053 4231485 44 03

```

TABLE C-I (cont)

576	34	35	00139999	95990	135	381	995	134	386	95922	4135433	43	08
577	35	36	00151998	95855	147	769	2 072	145	698	95781	4039510	42	14
578	36	37	00164998	95707	159	983	2 068	157	915	95627	3943729	41	21
579	37	38	00179998	95547	174	048	2 065	171	983	95460	3848102	40	27
580	38	39	00196998	95373	189	944	2 061	187	883	95278	3752642	39	35
581	39	40	00214998	95183	206	698	2 057	204	641	95080	3657364	38	42
582	40	41	00232995	94976	225	520	4 230	221	290	94864	3562285	37	51
583	41	42	00250994	94751	242	039	4 220	237	819	94630	3467421	36	60
584	42	43	00272994	94509	262	212	4 209	258	003	94378	3372791	35	69
585	43	44	00296993	94247	284	102	4 196	279	906	94105	3278414	34	79
586	44	45	00324993	93962	309	554	4 183	305	371	93808	3184309	33	89
587	45	46	00353986	93653	339	074	7 557	331	518	93483	3090502	33	00
588	46	47	00383985	93314	365	839	7 528	358	311	93131	2997018	32	12
589	47	48	00415983	92948	394	145	7 497	386	648	92751	2903887	31	24
590	48	49	00448982	92554	423	014	7 464	415	550	92342	2811136	30	37
591	49	50	00483980	92131	453	324	7 429	445	895	91904	2718794	29	51
592	50	51	00522968	91677	490	825	11 382	479	444	91432	2626890	28	65
593	51	52	00564965	91187	526	491	11 318	515	173	90923	2535458	27	81
594	52	53	00610962	90660	565	150	11 250	553	899	90378	2444534	26	96
595	53	54	00659959	90095	605	768	11 177	594	590	89792	2354157	26	13
596	54	55	00711956	89489	648	223	11 099	637	124	89165	2264365	25	30
597	55	56	00767931	88841	698	248	16 010	682	238	88492	2175199	24	48
598	56	57	00828925	88143	746	518	15 880	730	638	87770	2086708	23	67
599	57	58	00893919	87396	796	992	15 740	781	252	86998	1998938	22	87
600	58	59	00961913	86599	848	601	15 591	833	010	86175	1911940	22	08
601	59	60	01034907	85751	902	872	15 433	887	440	85299	1825765	21	29
602	60	61	01112867	84848	964	541	20 298	944	243	84366	1740466	20	51
603	61	62	01199857	83883	1026	537	20 058	1006	479	83370	1656100	19	74
604	62	63	01297845	82857	1095	155	19 803	1075	352	82309	1572730	18	98
605	63	64	01410831	81762	1173	048	19 530	1153	518	81175	1490421	18	23
606	64	65	01537816	80589	1258	541	19 237	1239	304	79959	1409246	17	49
607	65	66	01677754	79330	1354	211	23 249	1330	962	78653	1329287	16	76
608	66	67	01831732	77976	1451	142	22 834	1428	307	77250	1250634	16	04
609	67	68	02003707	76525	1555	719	22 390	1533	329	75747	1173384	15	33
610	68	69	02194679	74969	1667	241	21 914	1645	327	74135	1097637	14	64
611	69	70	02406649	73302	1785	517	21 403	1764	114	72409	1023502	13	96
612	70	71	02631511	71516	1908	529	26 574	1881	956	70562	951093	13	30
613	71	72	02878466	69608	2029	464	25 832	2003	632	68593	880531	12	65
614	72	73	03164414	67578	2163	495	25 043	2138	453	66496	811938	12	01
615	73	74	03502352	65415	2315	251	24 199	2291	052	64257	745442	11	40
616	74	75	03892281	63099	2479	304	23 297	2456	007	61860	681185	10	80
617	75	76	04323920	60620	2651	441	30 276	2621	165	59294	619325	10	22
618	76	77	04788807	57969	2804	891	28 883	2776	008	56566	560030	9	66
619	77	78	05293684	55164	2947	611	27 414	2920	197	53690	503464	9	13
620	78	79	05838553	52216	3074	546	25 877	3048	669	50679	449774	8	61
621	79	80	06430411	49142	3184	287	24 279	3160	009	47549	399095	8	12
622	80	81	07095253	45957	3283	417	22 628	3260	789	44316	351546	7	65
623	81	82	07832079	42674	3363	186	20 931	3342	255	40992	307230	7	20
624	82	83	08609897	39311	3403	817	19 203	3384	614	37609	266238	6	77
625	83	84	09416709	35907	3398	717	17 466	3381	250	34208	228629	6	37
626	84	85	10272512	32508	3355	151	15 742	3339	409	30831	194422	5	98
627	85	86	11278565	29153	3305	796	17 750	3288	046	27500	163591	5	61
628	86	87	12458230	25847	3235	749	15 639	3220	111	24229	136091	5	27
629	87	88	13680887	22612	3107	047	13 592	3093	455	21058	111861	4	95
630	88	89	14854562	19504	2908	953	11 650	2897	302	18050	90803	4	66
631	89	90	16001249	16596	2665	340	9 851	2655	488	15263	72753	4	38
632	90	91	17258911	13930	2412	408	8 213	2404	195	12724	57491	4	13
633	91	92	18712526	11518	2162	000	6 736	2155	264	10437	44767	3	89
634	92	93	20237130	9356	1898	763	5 426	1893	337	8406	34330	3	67
635	93	94	21743746	7457	1625	719	4 288	1621	430	6644	25923	3	48
636	94	95	23179387	5831	1354	981	3 327	1351	654	5154	19279	3	31
637	95	96	24577043	4476	1102	675	2 533	1100	141	3925	14126	3	16
638	96	97	258465737	3374	873	867	1 895	871	971	2937	10201	3	02
639	97	98	26972470	2500	675	641	1 395	674	246	2162	7264	2	91

TABLE C-I (cont)

640	98	99	27988232	1824	511	550	1	012	510	537	1568	5102	2	80
641	99	100	28941012	1313	380	594	724	379	869	1122	3534	2	69	
642	100	101	29827810	932	278	498	512	277	986	793	2411	2	59	
643	101	102	30650625	653	200	650	357	200	293	553	1619	2	48	
644	102	103	31411455	453	142	484	246	142	238	382	1065	2	35	
645	103	104	32113301	310	99	828	168	99	660	260	684	2	20	
646	104	105	32759160	211	69	075	114	68	961	176	423	2	01	
647	105	106	33352032	141	47	248	076	47	171	118	248	1	75	
648	106	107	33894916	94	31	975	050	31	925	78	130	1	38	
649	107	108	34391810	62	21	429	033	21	396	51	51		83	
650	108	109	34845714	41	14	233	022	14	211	34	0	0	00	
651	109	110	35259627	27	9	376	014	9	362	22	22		00	

TABLE C-I (cont)

652
 653 life table calculation
 654
 655 starting age 10
 656
 657 population female
 658
 659
 660 cancer types other
 661
 662
 663 leu/bone
 664
 665
 666
 667

age	tqx	tx	tdx	drad	dref	t1x	tx	ex
10	11	00026000	100000	26 000	0 000	26 000	99987	6605273
11	12	00025000	99974	24 994	0 000	24 994	99962	6505286
12	13	00027000	99949	26 986	0 000	26 986	99936	6405324
13	14	00033000	99922	33 570	595	32 974	99905	6305389
14	15	00040000	99888	41 146	1 190	39 955	99868	6205484
15	16	00049000	99847	50 115	1 190	48 925	99822	6105616
16	17	00058000	99797	59 071	1 189	57 882	99768	6005793
17	18	00066000	99738	67 015	1 188	65 827	99705	5906026
18	19	00069000	99671	69 960	1 188	68 773	99636	5806321
19	20	00071000	99601	71 903	1 187	70 716	99565	5706685
20	21	00071999	99529	73 819	2 158	71 660	99492	5607120
21	22	00072999	99455	75 730	3 129	72 601	99418	5507627
22	23	00074999	99380	77 660	3 126	74 534	99341	5408210
23	24	00076999	99302	79 585	3 124	76 461	99262	5308869
24	25	00078999	99222	81 506	3 121	78 384	99182	5209607
25	26	00080999	99141	83 422	3 119	80 303	99099	5110425
26	27	00082999	99058	85 332	3 116	82 216	99015	5011326
27	28	00085999	98972	88 228	3 113	85 115	98928	4912311
28	29	00088999	98884	92 105	3 110	88 994	98838	4813383
29	30	00095998	98792	97 946	3 107	94 839	98743	4714545
30	31	00101998	98694	103 770	3 104	100 666	98642	4615802
31	32	00109998	98590	111 548	3 101	108 447	98534	4517160
32	33	00118998	98479	120 285	3 097	117 188	98418	4418626
33	34	00128998	98358	129 974	3 093	126 880	98293	4320207
34	35	00139998	98228	140 607	3 089	137 518	98158	4221914
35	36	00151998	98088	152 175	3 084	149 091	98012	4123756
36	37	00164997	97936	164 671	3 079	161 591	97853	4025744
37	38	00179998	97771	178 477	2 492	175 985	97682	3927891
38	39	00196998	97592	194 161	1 906	192 255	97495	3830210
39	40	00214998	97398	211 306	1 902	209 404	97293	3732714
40	41	00232994	97187	231 228	4 788	226 440	97071	3635422
41	42	00250990	96956	251 008	7 659	243 349	96830	3538350
42	43	.00272989	96705	271 632	7 638	263 993	96569	3441520
43	44	00296988	96433	294 011	7 616	286 395	96286	3344951
44	45	00324987	96139	320 031	7 592	312 440	95979	3248665
45	46	00353975	95819	352 888	13 713	339 175	95643	3152686
46	47	00383973	95466	380 224	13 660	366 564	95276	3057044
47	48	00415970	95086	409 133	13 604	395 529	94881	2961767
48	49	00448968	94677	438 611	13 543	425 068	94457	2866886
49	50	00483965	94238	469 558	13 478	456 080	94003	2772429
50	51	00522942	93769	511 003	20 647	490 356	93513	2678425
51	52	00564938	93258	547 378	20 531	526 847	92984	2584912
52	53	00610933	92710	586 803	20 405	566 397	92417	2491928
53	54	00659927	92123	628 219	20 271	607 948	91809	2399511
54	55	00711922	91495	671 502	20 128	651 374	91159	2307702
55	56	00767877	90824	726 445	29 030	697 415	90460	2216543

TABLE C-I (cont)

715	56	57	00828868	90097	775	576	28	789	746	787	89709	2126082	23	60
716	57	58	00893857	89322	826	940	28	532	798	408	88908	2036373	22	80
717	58	59	00961846	88495	879	442	28	258	851	184	88055	1947465	22	01
718	59	60	01034835	87615	934	641	27	967	906	674	87148	1859409	21	22
719	60	61	01112764	86681	1001	328	36	777	964	551	86180	1772261	20	45
720	61	62	01199746	85679	1064	270	36	336	1027	934	85147	1686082	19	68
721	62	63	01297725	84615	1133	938	35	867	1098	071	84048	1600934	18	92
722	63	64	01410701	83481	1213	035	35	366	1177	669	82875	1516886	18	17
723	64	65	01537674	82268	1299	846	34	830	1265	015	81618	1434012	17	43
724	65	66	01677564	80968	1400	379	42	085	1358	294	80268	1352393	16	70
725	66	67	01831524	79568	1498	630	41	325	1457	305	78819	1272125	15	99
726	67	68	02003480	78069	1604	613	40	511	1564	102	77267	1193307	15	29
727	68	69	02194431	76465	1717	604	39	640	1677	963	75606	1116040	14	60
728	69	70	02406377	74747	1837	403	38	708	1798	695	73828	1040434	13	92
729	70	71	02631133	72910	1966	396	48	047	1918	349	71926	966606	13	26
730	71	72	02878053	70943	2088	476	46	692	2041	783	69899	894679	12	61
731	72	73	03163960	68855	2223	789	45	252	2178	537	67743	824780	11	98
732	73	74	03501851	66631	2377	032	43	715	2333	317	65442	757038	11	36
733	74	75	03891725	64254	2542	659	42	072	2500	586	62983	691595	10	76
734	75	76	04323085	61711	2722	488	54	658	2667	830	60350	628612	10	19
735	76	77	04787884	58989	2876	436	52	122	2824	314	57551	568262	9	63
736	77	78	05292667	56112	3019	292	49	452	2969	839	54603	510712	9	10
737	78	79	05837434	53093	3145	932	46	660	3099	272	51520	456109	8	59
738	79	80	06429182	49947	3254	953	43	762	3211	191	48320	404589	8	10
739	80	81	07093902	46692	3353	066	40	770	3312	296	45016	356269	7	63
740	81	82	07830593	43339	3431	406	37	697	3393	708	41623	311254	7	18
741	82	83	08608270	39908	3469	934	34	572	3435	362	38173	269630	6	76
742	83	84	09414937	36438	3462	025	31	433	3430	592	34707	231458	6	35
743	84	85	10270588	32976	3415	121	28	319	3386	802	31268	196751	5	97
744	85	86	11275909	29561	3365	145	31	917	3333	228	27878	165483	5	60
745	86	87	12455314	26195	3290	834	28	107	3262	728	24550	137605	5	25
746	87	88	13677706	22905	3157	244	24	415	3132	829	21326	113055	4	94
747	88	89	14851130	19747	2953	628	20	917	2932	711	18271	91729	4	65
748	89	90	15997575	16794	2704	273	17	679	2686	595	15442	73458	4	37
749	90	91	17254975	14089	2445	868	14	730	2431	138	12867	58017	4	12
750	91	92	18708293	11644	2190	399	12	077	2178	323	10548	45150	3	88
751	92	93	20232590	9453	1922	354	9	722	1912	632	8492	34602	3	66
752	93	94	21738909	7531	1644	809	7	680	1637	128	6708	26109	3	47
753	94	95	23174272	5886	1370	006	5	955	1364	051	5201	19401	3	30
754	95	96	24571163	4516	1114	202	4	532	1109	669	3959	14200	3	14
755	96	97	25841120	3402	882	466	3	390	879	076	2961	10241	3	01
756	97	98	26966646	2519	681	888	2	494	679	394	2178	7280	2	89
757	98	99	27982224	1837	515	981	1	808	514	173	1580	5102	2	80
758	99	100	28934834	1322	383	672	1	293	382	379	1130	3534	2	69
759	100	101	29821476	938	280	592	913	279	679	798	2411	2	59	
760	101	102	30644147	657	202	046	637	201	409	556	1619	2	48	
761	102	103	31404847	455	143	396	439	142	957	384	1065	2	35	
762	103	104	32106573	312	100	411	300	100	112	262	684	2	20	
763	104	105	32752323	211	69	440	202	69	238	177	423	2	01	
764	105	106	33345096	142	47	472	135	47	336	118	248	1	75	
765	106	107	33887890	94	32	109	080	32	020	78	130	1	38	
766	107	108	34384703	62	21	507	059	21	448	52	51	83		
767	108	109	34838533	41	14	277	039	14	239	34	0	0	00	
768	109	110	35252379	27	9	400	025	9	375	22	22	0	00	

TABLE C-I (cont)

769
 770
 771
 772 -----
 773
 774
 775 cancer type other
 776 population female
 777
 778
 779
 780 lifetime risk to individual from exposure by age
 781
 782 age lifetime
 783 group risk
 784 -1 0 13 1017e-01 27 5934e-02 41 .2611e-02 55 1820e-02 69 6097e-03 83 7519e-04 97 3872e-05
 785 0 9323e-02 14 9068e-02 28 5436e-02 42 2451e-02 56 1704e-02 70 5485e-03 84 6143e-04 98 2526e-05
 786 1 9478e-02 15 7873e-02 29 5015e-02 43 2306e-02 57 1594e-02 71 4905e-03 85 4995e-04 99 9913e-06
 787 2 9478e-02 16 6734e-02 30 4612e-02 44 2174e-02 58 1491e-02 72 4360e-03 86 4052e-04 100 0
 788 3 9475e-02 17 5883e-02 31 4231e-02 45 2038e-02 59 1393e-02 73 3851e-03 87 3288e-04 101 0
 789 4 9470e-02 18 5224e-02 32 3906e-02 46 1899e-02 60 1300e-02 74 3379e-03 88 2672e-04 102 0
 790 5 9459e-02 19 4698e-02 33 3626e-02 47 1775e-02 61 1211e-02 75 2945e-03 89 2174e-04 103 0
 791 6 9442e-02 20 1232e-01 34 3383e-02 48 1663e-02 62 1125e-02 76 2548e-03 90 1771e-04 104 0
 792 7 9424e-02 21 1086e-01 35 3856e-02 49 1561e-02 63 1042e-02 77 2189e-03 91 1446e-04 105 0
 793 8 9406e-02 22 9715e-02 36 3594e-02 50 2444e-02 64 9626e-03 78 1867e-03 92 1185e-04 106 0
 794 9 9387e-02 23 8786e-02 37 3363e-02 51 2305e-02 65 8861e-03 79 1580e-03 93 9734e-05 107 0
 795 10 1602e-01 24 8019e-02 38 3157e-02 52 2175e-02 66 8125e-03 80 1327e-03 94 7989e-05 108 0
 796 11 1344e-01 25 7256e-02 39 2973e-02 53 2053e-02 67 7419e-03 81 1106e-03 95 6497e-05 109 0
 797 12 1158e-01 26 6529e-02 40 2790e-02 54 1937e-02 68 6742e-03 82 9148e-04 96 5159e-05 110 0
 798
 799
 800 number of health effects in female population distributed by age (low let radiation)
 801
 802 age health
 803 group effects
 804
 805 -1 0 13 133e+03 27 769e+02 41 331e+02 55 216e+02 69 595e+01 83 349e+00 97 116e-02
 806 0 123e+03 14 119e+03 28 704e+02 42 310e+02 56 201e+02 70 522e+01 84 257e+00 98 530e-03
 807 1 125e+03 15 103e+03 29 649e+02 43 291e+02 57 186e+02 71 454e+01 85 186e+00 99 149e-03
 808 2 125e+03 16 880e+02 30 596e+02 44 274e+02 58 173e+02 72 391e+01 86 133e+00 100 0
 809 3 124e+03 17 768e+02 31 546e+02 45 256e+02 59 160e+02 73 334e+01 87 940e-01 101 0
 810 4 124e+03 18 682e+02 32 504e+02 46 237e+02 60 147e+02 74 282e+01 88 657e-01 102 0
 811 5 124e+03 19 613e+02 33 467e+02 47 221e+02 61 136e+02 75 236e+01 89 452e-01 103 0
 812 6 124e+03 20 161e+03 34 435e+02 48 206e+02 62 125e+02 76 195e+01 90 306e-01 104 0
 813 7 124e+03 21 142e+03 35 495e+02 49 193e+02 63 114e+02 77 159e+01 91 205e-01 105 0
 814 8 123e+03 22 126e+03 36 461e+02 50 300e+02 64 104e+02 78 128e+01 92 136e-01 106 0
 815 9 123e+03 23 114e+03 37 430e+02 51 281e+02 65 938e+01 79 102e+01 93 886e-02 107 0
 816 10 210e+03 24 104e+03 38 404e+02 52 264e+02 66 845e+01 80 796e+00 94 559e-02 108 0
 817 11 176e+03 25 943e+02 39 379e+02 53 248e+02 67 757e+01 81 614e+00 95 351e-02 109 0
 818 12 152e+03 26 847e+02 40 355e+02 54 232e+02 68 674e+01 82 467e+00 96 206e-02 110 0
 819
 820
 821 total number of health effects to the female population 4560e+04
 822
 823
 824 -----
 825
 826

TABLE C-I (cont)

827
 828
 829
 830 -----
 831
 832
 833 cancer type leu/bone
 834
 835 population female
 836
 837
 838 lifetime risk to individual from exposure by age
 839
 840 age lifetime
 841 group risk
 842 -1 0 13 2826e-03 27 3880e-03 41 2714e-03 55 5051e-03 69 2912e-03 83 9576e-04 97 2295e-04
 843 0 5946e-03 14 2824e-03 28 3871e-03 42 2695e-03 56 4936e-03 70 2741e-03 84 8647e-04 98 2122e-04
 844 1 6049e-03 15 2822e-03 29 3860e-03 43 2674e-03 57 4813e-03 71 2573e-03 85 7782e-04 99 1963e-04
 845 2 6052e-03 16 2819e-03 30 3849e-03 44 2652e-03 58 4683e-03 72 2407e-03 86 6990e-04 100 1810e-04
 846 3 6053e-03 17 2817e-03 31 3837e-03 45 2628e-03 59 4546e-03 73 2245e-03 87 6275e-04 101 1657e-04
 847 4 6053e-03 18 2815e-03 32 3824e-03 46 2602e-03 60 4402e-03 74 2089e-03 88 5628e-04 102 1493e-04
 848 5 6053e-03 19 2812e-03 33 3810e-03 47 2575e-03 61 4252e-03 75 1938e-03 89 5040e-04 103 1304e-04
 849 6 6051e-03 20 3925e-03 34 3795e-03 48 2545e-03 62 4095e-03 76 1793e-03 90 4507e-04 104 1069e-04
 850 7 6049e-03 21 3920e-03 35 2806e-03 49 2513e-03 63 3934e-03 77 1654e-03 91 4032e-04 105 7571e-05
 851 8 6046e-03 22 3915e-03 36 2793e-03 50 5528e-03 64 3768e-03 78 1521e-03 92 3619e-04 106 3211e-05
 852 9 6043e-03 23 3910e-03 37 2780e-03 51 5446e-03 65 3600e-03 79 1395e-03 93 3265e-04 107 0
 853 10 2833e-03 24 3903e-03 38 2765e-03 52 5357e-03 66 3429e-03 80 1276e-03 94 2964e-04 108 0
 854 11 2831e-03 25 3896e-03 39 2749e-03 53 5262e-03 67 3257e-03 81 1163e-03 95 2707e-04 109 0
 855 12 2829e-03 26 3888e-03 40 2732e-03 54 5160e-03 68 3084e-03 82 1057e-03 96 2487e-04 110 0
 856
 857
 858 number of health effects in female population distributed by age (low let radiation)
 859
 860 age health
 861 group effects
 862
 863 -1 0 13 370e+01 27 503e+01 41 344e+01 55 601e+01 69 .284e+01 83 444e+00 97 688e-02
 864 0 785e+01 14 369e+01 28 501e+01 42 341e+01 56 582e+01 70 261e+01 84 361e+00 98 446e-02
 865 1 796e+01 15 369e+01 29 500e+01 43 338e+01 57 563e+01 71 238e+01 85 290e+00 99 294e-02
 866 2 795e+01 16 369e+01 30 498e+01 44 334e+01 58 542e+01 72 216e+01 86 230e+00 100 199e-02
 867 3 795e+01 17 368e+01 31 495e+01 45 330e+01 59 521e+01 73 195e+01 87 179e+00 101 133e-02
 868 4 795e+01 18 367e+01 32 493e+01 46 325e+01 60 499e+01 74 174e+01 88 138e+00 102 746e-03
 869 5 794e+01 19 367e+01 33 491e+01 47 321e+01 61 477e+01 75 155e+01 89 105e+00 103 521e-03
 870 6 793e+01 20 512e+01 34 488e+01 48 315e+01 62 453e+01 76 137e+01 90 780e-01 104 214e-03
 871 7 793e+01 21 511e+01 35 361e+01 49 310e+01 63 430e+01 77 120e+01 91 573e-01 105 151e-03
 872 8 792e+01 22 509e+01 36 358e+01 50 678e+01 64 405e+01 78 104e+01 92 416e-01 106 321e-04
 873 9 792e+01 23 508e+01 37 356e+01 51 665e+01 65 381e+01 79 899e+00 93 297e-01 107 0
 874 10 371e+01 24 507e+01 38 353e+01 52 650e+01 66 357e+01 80 766e+00 94 207e-01 108 0
 875 11 371e+01 25 506e+01 39 351e+01 53 635e+01 67 332e+01 81 645e+00 95 146e-01 109 0
 876 12 370e+01 26 504e+01 40 348e+01 54 618e+01 68 308e+01 82 539e+00 96 995e-02 110 0
 877
 878
 879 total number of health effects to the female population 3630e+03
 880
 881
 882 -----
 883
 884

TABLE C-II

INPUT FILE FOR THE SECOND SAMPLE PROBLEM: CALCULATION OF THE
 TOTAL NUMBER OF CANCER DEATHS INDUCED BY CONTINUOUS EXPOSURE
 OF 1 Rad/Year OF LOW-LET RADIATION

```

1  calculation of total cancer risk for 1 rad/year using absolute risk
2 1100
3 1100
4 0.000000000 .022450000 .001330000 .000940000 .000780000
5 .000640000 .000580000 .000540000 .000510000 .000460000
6 .000410000 .000360000 .000350000 .000420000 .000590000
7 .000840000 .001140000 .001420000 .001670000 .001850000
8 .001980000 .002120000 .002260000 .002350000 .002350000
9 .002280000 .002170000 .002060000 .001990000 .001980000
10 .002030000 .002100000 .002180000 .002280000 .002390000
11 .002520000 .002680000 .002880000 .003120000 .003390000
12 .003690000 .004010000 .004350000 .004730000 .005180000
13 .005680000 .006230000 .006810000 .007440000 .008120000
14 .008870000 .009690000 .010590000 .011610000 .012750000
15 .014000000 .015340000 .016760000 .018270000 .019870000
16 .021580000 .023390000 .025320000 .027380000 .029600000
17 .032000000 .034630000 .037460000 .040440000 .043500000
18 .046650000 .049910000 .053440000 .057400000 .061930000
19 .067030000 .072640000 .078560000 .084620000 .090700000
20 .096880000 .103670000 .111250000 .119290000 .127700000
21 .136630000 .147300000 .159790000 .172810000 .185210000
22 .196810000 .208390000 .221220000 .235120000 .250230000
23 .265460000 .279620000 .290900000 .301350000 .311110000
24 .320170000 .328570000 .336330000 .343470000 .350040000
25 .356060000 .361570000 .366610000 .371210000 .375400000
26 .379220000 0.000000000 0.000000000 0.000000000 0.000000000
27 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
28 0.000000000 .017460000 .001160000 .000770000 .000600000
29 .000510000 .000430000 .000380000 .000340000 .000310000
30 .000280000 .000260000 .000250000 .000270000 .000330000
31 .000400000 .000490000 .000580000 .000660000 .000690000
32 .000710000 .000720000 .000730000 .000750000 .000770000
33 .000790000 .000810000 .000830000 .000860000 .000900000
34 .000960000 .001020000 .001100000 .001190000 .001290000
35 .001400000 .001520000 .001650000 .001800000 .001970000
36 .002150000 .002330000 .002510000 .002730000 .002970000
37 .003250000 .003540000 .003840000 .004160000 .004490000
38 .004840000 .005230000 .005650000 .006110000 .006600000
39 .007120000 .007680000 .008290000 .008940000 .009620000
40 .010350000 .011130000 .012000000 .012980000 .014110000
41 .015380000 .016780000 .018320000 .020040000 .021950000
42 .024070000 .026320000 .028790000 .031650000 .035030000
43 .038930000 .043250000 .047900000 .052950000 .058400000
44 .064320000 .070970000 .078340000 .086120000 .094190000
45 .102750000 .112820000 .124620000 .136850000 .148590000
46 .160060000 .172640000 .187180000 .202430000 .217500000
47 .231860000 .245840000 .258540000 .269800000 .279960000
48 .289490000 .298360000 .306590000 .314200000 .321220000
49 .327680000 .333610000 .339040000 .344010000 .348550000
50 .352690000 0.000000000 0.000000000 0.000000000 0.000000000
51 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
52 0.00000 .01463 .01457 .01455 .01454 .01453
53 .01452 .01451 .01451 .01450 .01449 .01449
54 .01448 .01448 .01447 .01446 .01445 .01443
55 .01440 .01438 .01435 .01432 .01429 .01426
56 .01422 .01419 .01416 .01413 .01410 .01407
57 .01405 .01402 .01399 .01396 .01392 .01389
58 .01385 .01381 .01377 .01373 .01368 .01363
59 .01357 .01351 .01344 .01337 .01329 .01320
60 .01311 .01301 .01290 .01277 .01265 .01251
61 .01235 .01218 .01201 .01182 .01161 .01139
62 .01115 .01090 .01064 .01036 .01006 .00975
63 .00943 .00909 .00873 .00838 .00799 .00760
64 .00721 .00681 .00641 .00599 .00558 .00516

```

TABLE C-II (cont)

65	.00474	.00432	.00392	.00352	.00315	.00278
66	.00244	.00212	.00182	.00154	.00129	.00106
67	.00086	.00068	.00054	.00041	.00031	.00023
68	.00017	.00012	.00009	.00006	.00004	.00003
69	.00002	.00001	.00001	.00001	.00000	.00000
70	.00000	.00000	.00000	.00000	.00000	.00000
71	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
72	0.00000	.01320	.01316	.01314	.01313	.01313
73	.01312	.01311	.01311	.01310	.01310	.01310
74	.01309	.01309	.01309	.01308	.01308	.01307
75	.01306	.01305	.01304	.01304	.01303	.01301
76	.01300	.01299	.01299	.01297	.01296	.01295
77	.01294	.01293	.01291	.01290	.01288	.01287
78	.01285	.01283	.01280	.01278	.01275	.01273
79	.01269	.01266	.01263	.01259	.01254	.01250
80	.01245	.01239	.01234	.01227	.01221	.01214
81	.01206	.01197	.01189	.01179	.01169	.01158
82	.01147	.01134	.01121	.01107	.01092	.01076
83	.01059	.01040	.01020	.00999	.00976	.00951
84	.00925	.00897	.00867	.00835	.00800	.00764
85	.00726	.00686	.00644	.00600	.00555	.00510
86	.00464	.00418	.00373	.00329	.00286	.00246
87	.00208	.00173	.00142	.00115	.00091	.00070
88	.00054	.00040	.00030	.00021	.00015	.00011
89	.00008	.00005	.00004	.00002	.00002	.00001
90	.00001	.00001	.00000	0.00000	0.00000	0.00000
91	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
92	1000000.	1000000.				
93	2					
94	22	1	1	30		
95	1					
96	110.0		1.0			
97	23	1	1	30		
98	1					
99	110.0		1.0			
100	2					
101	0	10				

TABLE C-III
OUTPUT FILE FOR THE SECOND SAMPLE PROBLEM

```

1 calculation of total cancer risk for 1 rad/year using absolute
2
3 proportion dying in each age interval
4
5 male
6 0 000000000 022450000 001330000 000940000 000780000 000640000 000580000 000540000 000510000 000460000
7 000410000 000160000 000350000 000420000 000590000 000840000 001140000 001420000 001670000 001850000
8 001980000 002120000 002260000 002350000 002280000 002170000 002060000 001990000 001980000
9 0002030000 002100000 002180000 002280000 002390000 002520000 002680000 002880000 003120000 003390000
10 003690000 004010000 004350000 004730000 005180000 005680000 006230000 006810000 007440000 008120000
11 008870000 009690000 010590000 011610000 012750000 014000000 015340000 016760000 018270000 019870000
12 021580000 023390000 025320000 027380000 029600000 032000000 034630000 037460000 040440000 043500000
13 046650000 049910000 053440000 057400000 061930000 067030000 072640000 078560000 084620000 090700000
14 096880000 103670000 111250000 113290000 127700000 136630000 147300000 159790000 172810000 185210000
15 196810000 208390000 221220000 235120000 250230000 265460000 279620000 290900000 301350000 311110000
16 320170000 328570000 336330000 343470000 350040000 356060000 361570000 366610000 371210000 375400000
17 379220000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
18
19
20 female
21 0 000000000 017460000 001160000 000770000 000600000 000510000 000430000 000380000 000340000 000310000
22 000280000 000260000 000250000 000270000 000330000 000400000 000490000 000580000 000660000 000690000
23 000710000 000720000 000730000 000750000 000770000 000790000 000810000 000830000 000860000 000900000
24 000960000 001020000 001100000 001190000 001290000 001400000 001520000 001650000 001800000 001970000
25 002150000 002330000 002510000 002730000 002970000 003250000 003540000 003840000 004160000 004490000
26 004840000 005230000 005650000 006110000 006600000 007120000 007680000 008290000 008940000 009620000
27 010350000 011130000 012000000 012980000 014110000 015380000 016780000 018320000 020040000 021950000
28 024070000 026320000 028790000 031650000 035030000 038930000 043250000 047900000 052950000 058400000
29 064320000 070970000 078340000 086120000 094190000 102750000 112820000 124620000 136850000 148590000
30 160060000 172640000 187180000 202430000 217500000 231860000 245840000 258540000 269800000 279960000
31 289490000 298360000 306590000 314200000 321220000 327680000 333610000 339040000 344010000 348550000
32 352690000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000
33
34
35
36 age distribution by sex
37
38 male
39 0 00000 01463 01457 01455 01454 01453 01452 01451 01451 01450
40 01449 01449 01448 01448 01447 01446 01445 01443 01440 01438
41 01435 01432 01429 01426 01422 01419 01416 01413 01410 01407
42 01405 01402 01399 01396 01392 01389 01385 01381 01377 01373
43 01368 01363 01357 01351 01344 01337 01329 01320 01311 01301
44 01290 01277 01265 01251 01235 01218 01201 01182 01161 01139
45 01115 01090 01064 01036 01006 00975 00943 00909 00873 00838
46 00799 00760 00721 00681 00641 00599 00558 00516 00474 00432
47 00392 00352 00315 00278 00244 00212 00182 00154 00129 00106
48 00086 00068 00054 00041 00031 00023 00017 00012 00009 00006
49 00004 00003 00002 00001 00001 00001 0 00000 0 00000 0 00000
50 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000
51
52
53 female
54 0 00000 01320 01316 01314 01313 01313 01312 01311 01311 01310
55 01310 01310 01309 01309 01309 01308 01308 01307 01306 01305
56 01304 01304 01303 01301 01300 01299 01299 01297 01296 01295
57 01294 01293 01291 01290 01288 01287 01285 01283 01280 01278
58 01275 01273 01269 01266 01263 01259 01254 01250 01245 01239
59 01234 01227 01221 01214 01206 01197 01189 01179 01169 01158
60 01147 01134 01121 01107 01092 01076 01059 01040 01020 00999
61 00976 00951 00925 00897 00867 00835 00800 00764 00726 00686
62 00644 00600 00555 00510 00464 00418 00373 00129 00286 00246
63 00208 00173 00142 00115 00091 00070 00054 00040 00030 00021
64 00015 00011 00008 00005 00004 00002 00002 00001 00001 00001

```

TABLE C-III (cont)

```
65      0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000
66
67
68      population totals used to normalize age distribution tables
69      males          1.00
70      females        1.00
71
72
73 -----
74
75
76
77 -----
78
79
80
81      health effects calculated for...
82      number of target organs          2
83
84
85
86      1.) let
87      cancer type                  low
88      risk model                   other
89      absolute
90      dose by time interval:      1.00000 rads for 110.0 years
91
92
93      2.) let
94      cancer type                  low
95      risk model                   leu/bone
96      absolute
97      dose by time interval:      1.00000 rads for 110.0 years
98
99
100     summary of population characteristics...
101
102
103     number of persons in population:
104     males          1000000.
105     females        1000000.
106     population table: supplied by:
107     life table      user
108     age distribution  user
```

TABLE C-III (cont)

```

109
110
111
112 -----
113
114
115           calculation of cancer risks for male    population
116
117
118 -----
119
120
121 life table calculation
122
123     starting age          0
124
125     population          male
126
127
128     cancer types        other
129
130
131           leu/bone
132
133
134
135
136     age      tqx      tx      tdx      drad      dref      tlx      tx      ex
137     0       1 02245000 100000  2245 000  0 000  2245 000  98878  6683193  66 83
138     1       2 00133000 97755   130 014  0 000  130 014  97690  6584315  67 36
139     2       3 00094000 97625   91 767  0 000  91 767  97579  6486625  66 44
140     3       4 00078000 97533   76 270  194      76 076  97495  6389046  65 51
141     4       5 00064000 97457   62 953  581      62 372  97425  6291551  64 56
142     5       6 00058000 97394   57 456  968      56 488  97365  6194125  63 60
143     6       7 00054000 97337   53 916  1 355      52 561  97310  6096760  62 64
144     7       8 00051000 97283   51 354  1 741      49 614  97257  5999451  61 67
145     8       9 00045999 97231   46 852  2 126      44 726  97208  5902194  60 70
146     9      10 00040999 97184   42 357  2 512      39 845  97163  5804986  59 73
147    10      11 00035999 97142   37 961  2 990      34 971  97123  5707823  58 76
148    11      12 00034999 97104   37 547  3 562      33 986  97085  5610699  57 78
149    12      13 00041999 97067   44 899  4 132      40 767  97044  5513614  56 80
150    13      14 00058999 97022   61 840  4 599      57 241  96991  5416570  55 83
151    14      15 00083998 96960   86 405  4 961      81 444  96917  5319579  54 86
152    15      16 00113997 96873   115 753  5 320      110 433  96816  5222663  53 91
153    16      17 00141996 96758   143 069  5 678      137 392  96686  5125847  52 98
154    17      18 00166995 96615   167 374  6 032      161 341  96531  5029161  52 05
155    18      19 00184994 96447   184 806  6 384      178 421  96355  4932630  51 14
156    19      20 00197993 96262   197 327  6 734      190 593  96164  4836275  50 24
157    20      21 00211992 96065   210 710  7 059      203 650  95960  4740112  49 34
158    21      22 00225991 95854   223 982  7 360      216 623  95742  4644152  48 45
159    22      23 00234991 95630   232 381  7 658      224 722  95514  4548410  47 56
160    23      24 00234990 95398   232 166  7 990      224 176  95282  4452895  46 68
161    24      25 00227990 95166   225 325  8 356      216 969  95053  4357613  45 79
162    25      26 00216990 94941   214 733  8 721      206 011  94833  4262560  44 90
163    26      27 00205990 94726   204 211  9 085      195 126  94624  4167727  44 00
164    27      28 00198990 94522   197 350  9 261      188 089  94423  4073103  43 09
165    28      29 00197990 94324   196 002  9 249      186 753  94226  3978681  42 18
166    29      30 00202990 94128   200 308  9 237      191 071  94028  3884454  41 27
167    30      31 00209990 93928   206 597  9 358      197 239  93825  3790426  40 35
168    31      32 00217989 93721   213 915  9 613      204 302  93614  3696602  39 44
169    32      33 00227988 93507   223 052  9 866      213 186  93396  3602987  38 53
170    33      34 00238987 93284   233 054  10 116     222 938  93168  3509591  37 62

```

TABLE C-III (cont)

171	34	35	00251986	93051	244	840	10	364	234	476	92929	3416424	36	72
172	35	36	00267985	92806	259	316	10	609	248	707	92677	3321495	35	81
173	36	37	00287983	92547	277	371	10	851	266	520	92408	3230818	34	91
174	37	38	00311981	92270	299	050	11	186	287	864	92120	3138409	34	01
175	38	39	00338979	91971	323	344	11	583	311	761	91809	3046289	33	12
176	39	40	00368976	91647	350	100	11	943	338	157	91472	2954480	32	24
177	40	41	00400973	91297	378	374	12	296	366	077	91108	2863008	31	36
178	41	42	00434970	90919	408	112	12	642	395	470	90715	2771900	30	49
179	42	43	00472966	90511	441	066	12	980	428	085	90290	2681185	29	62
180	43	44	00517962	90070	479	836	13	309	466	527	89830	2590895	28	77
181	44	45	00567957	89590	522	460	13	628	508	832	89329	2501065	27	92
182	45	46	00622951	89067	568	825	13	978	554	847	88783	2411736	27	08
183	46	47	00680945	88499	616	984	14	358	602	627	88190	2322953	26	25
184	47	48	00743938	87882	668	475	14	690	653	785	87547	2234763	25	43
185	48	49	00811930	87213	723	084	14	974	708	110	86852	2147216	24	62
186	49	50	00886922	86490	782	341	15	242	767	099	86099	2060364	23	82
187	50	51	00968912	85708	845	924	15	491	830	433	85285	1974265	23	03
188	51	52	01058902	84862	914	324	15	721	898	603	84405	1888980	22	26
189	52	53	01160890	83947	990	467	15	929	974	538	83452	1804576	21	50
190	53	54	01274875	82957	1073	810	16	211	1057	598	82420	1721124	20	75
191	54	55	01399858	81883	1162	810	16	561	1146	249	81302	1638703	20	01
192	55	56	015333840	80720	1254	998	16	877	1238	121	80093	1557402	19	29
193	56	57	01675819	79465	1348	851	17	155	1331	696	78791	1477309	18	59
194	57	58	01826797	78117	1444	424	17	394	1427	030	77394	1398518	17	90
195	58	59	01986772	76672	1540	891	17	591	1523	300	75902	1321124	17	23
196	59	60	02157745	75131	1638	884	17	744	1621	140	74312	124522	16	57
197	60	61	02338714	73492	1736	753	17	978	1718	775	72624	1170910	15	93
198	61	62	02531677	71756	1834	902	18	282	1816	620	70838	1098286	15	31
199	62	63	02737637	69921	1932	719	18	545	1914	174	68954	1027448	14	69
200	63	64	02959592	67988	2030	928	18	762	2012	166	66972	958494	14	10
201	64	65	03199541	65957	2129	229	18	907	2110	322	64892	891521	13	52
202	65	66	03462485	63828	2229	003	18	975	2210	028	62713	826629	12	95
203	66	67	03745423	61599	2326	099	18	963	2307	136	60436	763915	12	40
204	67	68	04043356	59273	2415	476	18	870	2396	606	58065	703480	11	87
205	68	69	04349285	56857	2491	578	18	696	2472	883	55611	645415	11	35
206	69	70	04664209	54366	2554	170	18	442	2535	727	53089	589803	10	85
207	70	71	04990128	51811	2603	571	18	112	2585	459	50510	536715	10	36
208	71	72	05343038	49208	2646	905	17	708	2629	197	47884	486205	9	88
209	72	73	05738938	46561	2689	335	17	228	2672	107	45216	438321	9	41
210	73	74	06191823	43872	2733	127	16	671	2716	456	42505	393104	8	96
211	74	75	06701694	41139	2773	015	16	037	2756	979	39752	350599	8	52
212	75	76	07262549	38366	2801	641	15	326	2786	315	36965	310847	8	10
213	76	77	07854393	35564	2807	873	14	546	2793	327	34160	273882	7	70
214	77	78	08460234	32756	2784	904	13	669	2771	235	31364	239723	7	32
215	78	79	09068075	29971	2730	522	12	719	2717	802	28606	208359	6	95
216	79	80	09685910	27241	2650	250	11	751	2638	498	25915	179753	6	60
217	80	81	10364729	24590	2559	497	10	776	2548	721	23311	153838	6	26
218	81	82	11122526	22031	2460	184	9	799	2450	385	20801	130527	5	92
219	82	83	11926309	19571	2342	886	8	829	2334	056	18399	109726	5	61
220	83	84	12767080	17228	2207	362	7	880	2199	483	16124	91327	5	30
221	84	85	13659834	15020	2058	723	6	960	2051	762	13991	75203	5	01
222	85	86	14726547	12962	1914	886	6	078	1908	808	12004	61212	4	72
223	86	87	15975214	11047	1769	984	5	234	1764	749	10162	49208	4	45
224	87	88	17276865	9277	1607	182	4	439	1602	742	8473	39046	4	21
225	88	89	18516525	7670	1423	855	3	707	1420	149	6958	30573	3	99
226	89	90	19676197	6246	1231	980	3	049	1228	931	5630	23615	3	78
227	90	91	20833864	5014	1047	038	2	471	1044	567	4490	17995	3	59
228	91	92	22116501	3967	879	280	1	972	877	308	3527	13495	3	40
229	92	93	23506110	3087	727	293	1	547	725	746	2724	9968	3	23
230	93	94	25016688	2360	591	631	1	191	590	440	2064	724	3	07
231	94	95	26579261	1769	470	259	898	469	361	1533	5180	2	93	
232	95	96	27954854	1298	363	600	664	362	936	1116	2646	2	81	
233	96	97	29082505	935	272	314	482	271	833	799	2530	2	71	
234	97	98	30127170	662	199	901	344	199	556	562	1731	2	61	

TABLE C-III (cont)

235	98	99	31102847	462	144	087	242	143	844	390	1169	2	53
236	99	100	32008537	318	102	081	168	101	913	267	778	2	44
237	100	101	32848237	216	71	170	115	71	055	181	511	2	36
238	101	102	33623949	145	48	881	078	48	802	121	330	2	28
239	102	103	34337671	96	33	106	052	33	054	80	210	2	18
240	103	104	34994403	63	22	135	035	22	101	52	130	2	06
241	104	105	35596145	41	14	624	023	14	601	34	78	1	90
242	105	106	36146895	26	9	556	015	9	541	22	44	1	67
243	106	107	36650654	17	6	181	010	6	172	14	22	1	33
244	107	108	37110421	11	3	961	006	3	955	9	9		81
245	108	109	37529195	7	2	517	004	2	513	5	0	0	00
246	109	110	37910975	4	1	587	002	1	585	3	3	0	00

TABLE C-III (cont)

247

248 life table calculation

249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	age	tx	tx	tdx	drad	dref	tx	tx	ex						
264	10	11	00036000	100000	36	000	0	000	36	000	99982	5882813	58	83	265	11	12	00035000	99964	34	987	0	000	34	987	99947	5782831	57	85
266	12	13	00042000	99929	41	970	0	000	41	970	99908	5682884	56	87	267	13	14	00059000	99887	59	026	092	58	933	99858	5582976	55	89	
268	14	15	00084000	99828	84	132	277	83	855	99786	5483118	54	93	269	15	16	00114000	99744	114	169	461	113	708	99687	5383333	53	97		
270	16	17	00142000	99630	142	118	644	141	474	99559	5283646	53	03	271	17	18	00166999	99488	166	971	827	166	144	99404	5184087	52	11		
272	18	19	00184999	99321	184	751	1	009	183	742	99228	5084683	51	19	273	19	20	00197999	99136	197	478	1	190	196	288	99037	4985455	50	29
274	20	21	00211998	98938	211	190	1	443	209	748	98833	4886418	49	39	275	21	22	00225998	98727	224	887	1	765	223	121	98615	4787585	48	49
276	22	23	00234998	98502	233	565	2	087	231	478	98386	4688970	47	60	277	23	24	00234997	98269	233	371	2	443	230	929	98152	4590584	46	71
278	24	25	00227997	98035	226	351	2	834	223	517	97922	4492432	45	82	279	25	26	00216996	97809	215	466	3	224	212	242	97701	4394510	44	93
280	26	27	00205996	97594	204	651	3	612	201	039	97491	4296809	44	03	281	27	28	00198996	97389	197	799	3	999	193	800	97290	4199318	43	12
282	28	29	00197996	97191	196	818	4	384	192	434	97093	4102028	42	21	283	29	30	00202995	96994	201	661	4	768	196	894	96893	4004935	41	29
284	30	31	00209994	96793	208	547	5	288	203	259	96688	3908041	40	38	285	31	32	00217993	96584	216	491	5	945	210	547	96476	3811353	39	46
286	32	33	00227992	96368	226	308	6	597	219	711	96254	3714877	38	55	287	33	34	00238991	96141	237	015	7	246	229	769	96023	3618623	37	64
288	34	35	00251990	95904	249	560	7	891	241	669	95779	3522600	36	73	289	35	36	00267988	95655	264	874	8	531	256	343	95522	3426820	35	82
290	36	37	00287986	95390	283	875	9	166	274	710	95248	3331298	34	92	291	37	38	00311984	95106	306	422	9	707	296	715	94953	3236050	34	03
292	38	39	00338982	94800	331	476	10	123	321	353	94634	3141098	33	13	293	39	40	00368979	94468	359	068	10	500	348	568	94289	3046464	32	25
294	40	41	00400977	94109	388	227	10	872	377	355	93915	2952175	31	37	295	41	42	00434974	93721	418	898	11	237	407	661	93511	2858260	30	50
296	42	43	00472971	93302	452	884	11	594	441	290	93075	2764749	29	63	297	43	44	00517967	92849	492	869	11	942	480	927	92603	2671674	28	77
298	44	45	00567962	92356	536	829	12	281	524	548	92088	2579071	27	93	299	45	46	00622957	91819	584	648	12	653	571	995	91527	2486983	27	09
300	46	47	00680951	91235	634	320	13	056	621	263	90917	2395456	26	26	301	47	48	00743945	90600	687	428	13	412	674	017	90257	2304539	25	44
302	48	49	00811938	89913	743	756	13	719	730	037	89541	2214282	24	63	303	49	50	00886930	89169	804	878	14	010	790	868	88767	2124741	23	83
304	50	51	00968922	88364	870	464	14	283	856	181	87929	2035974	23	04	305	51	52	01058912	87494	941	020	14	538	926	482	87023	1948045	22	26
306	52	53	01160901	86553	1019	563	14	771	1004	792	86043	1861022	21	50	307	53	54	01274888	85533	1105	535	15	083	1090	452	84980	1774979	20	75
308	54	55	01399872	84428	1197	346	15	467	1181	879	83829	1689999	20	02	309	55	56	01533854	83230	1292	448	15	816	1276	632	82584	1606170	19	30

TABLE C-III (cont)

310	56	57	01675835	81938	1389	273	16	129	1373	144	81243	1523586	18	59
311	57	58	01826814	80549	1487	877	16	403	1471	473	79805	1442342	17	91
312	58	59	01986791	79061	1587	408	16	636	1570	772	78267	1362538	17	23
313	59	60	02157766	77473	1688	519	16	826	1671	693	76629	1284271	16	58
314	60	61	02338736	75785	1789	508	17	101	1772	407	74890	1207642	15	94
315	61	62	02531701	73995	1890	790	17	450	1873	340	73050	1132752	15	31
316	62	63	02737663	72105	1991	738	17	759	1973	978	71109	1059702	14	70
317	63	64	02959620	70113	2093	094	18	023	2075	071	69066	988593	14	10
318	64	65	03199572	68020	2194	552	18	213	2176	338	66922	919527	13	52
319	65	66	03462518	65825	2297	534	18	327	2279	207	64676	852604	12	95
320	66	67	03745459	63528	2397	760	18	360	2379	400	62329	787928	12	40
321	67	68	04043394	61130	2490	032	18	311	2471	720	59885	725599	11	87
322	68	69	04349326	58640	2568	617	18	181	2550	436	57355	665714	11	35
323	69	70	04664252	56071	2633	272	17	970	2615	302	54755	608359	10	85
324	70	71	04990174	53438	2684	326	17	681	2666	645	52096	553604	10	36
325	71	72	05343088	50754	2729	125	17	316	2711	809	49389	501509	9	88
326	72	73	05738992	48024	2772	994	16	874	2756	120	46638	452120	9	41
327	73	74	06191881	45251	2818	271	16	354	2801	917	43842	405482	8	96
328	74	75	06701756	42433	2859	524	15	754	2843	769	41003	361639	8	52
329	75	76	07262616	39574	2889	161	15	077	2874	084	38129	320636	8	10
330	76	77	07854466	36685	2895	701	14	328	2881	373	35237	282507	7	70
331	77	78	08460312	33789	2872	119	13	479	2858	639	32353	247270	7	32
332	78	79	09068158	30917	2816	129	12	554	2803	575	29509	214917	6	95
333	79	80	09685999	28101	2733	430	11	609	2721	821	26734	185409	6	60
334	80	81	10364823	25367	2639	913	10	654	2629	259	24047	158675	6	26
335	81	82	11122627	22727	2537	561	9	696	2527	864	21458	134628	5	92
336	82	83	11926417	20190	2416	648	8	744	2407	903	18981	113169	5	61
337	83	84	12767194	17773	2276	925	7	810	2269	115	16635	94188	5	30
338	84	85	13659956	15496	2123	663	6	904	2116	759	14434	77553	5	00
339	85	86	14726677	13372	1975	347	6	033	1969	314	12385	6211	4	72
340	86	87	15975355	11397	1825	923	5	199	1820	724	10484	50734	4	45
341	87	88	17277017	9571	1658	023	4	412	1653	610	8742	40250	4	21
342	88	89	18516686	7913	1468	937	3	686	1465	250	7179	31508	3	98
343	89	90	19676367	6444	1271	018	3	034	1267	984	5809	24329	3	78
344	90	91	20834044	5173	1080	243	2	461	1077	783	4633	18521	3	58
345	91	92	22116690	4093	907	187	1	965	905	222	3639	13888	3	39
346	92	93	23506309	3186	750	394	1	542	748	852	2811	10248	3	22
347	93	94	25016898	2435	610	438	1	188	609	250	2130	7438	3	05
348	94	95	26539482	1825	485	220	896	484	324	1582	5308	2	91	
349	95	96	27955084	1340	375	176	663	374	514	1152	3725	2	78	
350	96	97	29082743	965	280	990	481	280	509	824	2573	2	67	
351	97	98	30127416	684	206	274	344	205	930	580	1749	2	56	
352	98	99	31103099	477	148	684	242	148	442	403	1169	2	53	
353	99	100	32008795	329	105	341	168	105	172	276	778	2	44	
354	100	101	32848501	223	73	444	115	73	328	187	511	2	36	
355	101	102	33624217	150	50	443	078	50	365	125	330	2	28	
356	102	103	34337944	99	34	165	052	34	113	82	210	2	18	
357	103	104	34994680	65	22	844	035	22	809	54	130	2	06	
358	104	105	35596426	42	15	093	023	15	070	35	78	1	90	
359	105	106	36147180	27	9	862	015	9	847	22	44	1	67	
360	106	107	36650942	17	6	380	010	6	370	14	22	1	33	
361	107	108	37110711	11	4	089	006	4	082	9	9	8	81	
362	108	109	37529487	7	2	598	004	2	594	6	0	0	00	
363	109	110	37911270	4	1	638	002	1	636	3	3	0	00	

TABLE C-III (cont)

364
 365
 366
 367 -----
 368
 369
 370 cancer type other
 371
 372 population male
 373
 374

375 lifetime risk to individual from exposure by age
 376
 377 age lifetime
 378 group risk
 379 -1 0 13 5084e-02 27 3665e-02 41 2002e-02 55 8081e-03 69 1501e-03 83 1037e-04 97 2809e 06
 380 0 6126e-02 14 5021e-02 28 3531e-02 42 1902e-02 56 7323e-03 70 1289e-03 84 8222e 05 98 1496e 06
 381 1 6157e-02 15 4961e-02 29 3400e-02 43 1808e-02 57 6618e-03 71 1101e-03 85 6499e-05 99 4718e-07
 382 2 6057e-02 16 4903e-02 30 3273e-02 44 1718e-02 58 5964e-03 72 9345e-04 86 5137e-05 100 0
 383 3 5956e-02 17 4848e-02 31 3150e-02 45 1632e-02 59 5359e-03 73 7885e-04 87 4069e-05 101 0
 384 4 5856e-02 18 4796e-02 32 3031e-02 46 1552e-02 60 4799e-03 74 6612e-04 88 3233e-05 102 0
 385 5 5757e-02 19 4746e-02 33 2916e-02 47 1476e-02 61 4284e-03 75 5513e-04 89 2574e-05 103 0
 386 6 5659e-02 20 4697e-02 34 2805e-02 48 1404e-02 62 3811e-03 76 4569e-04 90 2049e-05 104 0
 387 7 5563e-02 21 4539e-02 35 2698e-02 49 1337e-02 63 3377e-03 77 3765e-04 91 1628e-05 105 0
 388 8 5468e-02 22 4385e-02 36 2570e-02 50 1274e-02 64 2982e-03 78 3084e-04 92 1290e-05 106 0
 389 9 5375e-02 23 4234e-02 37 2446e-02 51 1169e-02 65 2622e-03 79 2510e-04 93 1015e 05 107 0
 390 10 5283e-02 24 4087e-02 38 2328e-02 52 1070e-02 66 2296e-03 80 2030e-04 94 7890e-06 108 0
 391 11 5215e-02 25 3943e-02 39 2214e-02 53 9766e-03 67 2002e-03 81 1631e-04 95 5978e-06 109 0
 392 12 5149e-02 26 3803e-02 40 2106e-02 54 8895e-03 68 1737e-03 82 1304e-04 96 4307e-06 110 0
 393
 394
 395 number of health effects in male population distributed by age (low let radiation)
 396
 397 age health
 398 group effects
 399
 400 -1 0 13 736e+02 27 517e+02 41 272e+02 55 971e+01 69 120e+01 83 253e-01 97 253e 04
 401 0 896e+02 14 726e+02 28 497e+02 42 257e+02 56 866e+01 70 980e+00 84 174e 01 98 898e 05
 402 1 897e+02 15 717e+02 29 478e+02 43 243e+02 57 768e+01 71 794e+00 85 118e 01 99 189e 05
 403 2 881e+02 16 708e+02 30 459e+02 44 230e+02 58 679e+01 72 636e+00 86 791e 02 100 0
 404 3 866e+02 17 698e+02 31 441e+02 45 217e+02 59 598e+01 73 505e+00 87 525e-02 101 0
 405 4 851e+02 18 690e+02 32 423e+02 46 205e+02 60 523e+01 74 396e+00 88 343e 02 102 0
 406 5 836e+02 19 681e+02 33 406e+02 47 193e+02 61 456e+01 75 308e+00 89 221e 02 103 0
 407 6 821e+02 20 673e+02 34 390e+02 48 183e+02 62 395e+01 76 236e+00 90 139e 02 104 0
 408 7 807e+02 21 649e+02 35 374e+02 49 172e+02 63 340e+01 77 178e+00 91 879e-03 105 0
 409 8 793e+02 22 625e+02 36 355e+02 50 163e+02 64 291e+01 78 133e+00 92 529e 03 106 0
 410 9 779e+02 23 .602e+02 37 337e+02 51 148e+02 65 247e+01 79 984e 01 93 315e-03 107 0
 411 10 766e+02 24 580e+02 38 320e+02 52 134e+02 66 209e+01 80 715e-01 94 181e 03 108 0
 412 11 755e+02 25 558e+02 39 303e+02 53 121e+02 67 175e+01 81 514e-01 95 102e 03 109 0
 413 12 746e+02 26 537e+02 40 287e+02 54 108e+02 68 146e+01 82 362e 01 96 517e-04 110 0
 414
 415
 416 total number of health effects to the male population 2883e+04
 417
 418
 419 -----
 420
 421

TABLE C-III (cont)

```

422
423
424
425 -----
426
427
428 cancer type      leu/bone
429
430 population      male
431
432

433 lifetime risk to individual from exposure by age
434
435 age lifetime age lifetime age lifetime age lifetime age lifetime age lifetime age lifetime
436 group risk group risk
437 -1 0          13 2630e-02 27 1973e-02 41 1327e-02 55 7709e-03 69 2395e-03 83 4613e-04 97 7574e-05
438 0          3587e-02 14 2589e-02 28 1918e-02 42 1294e-02 56 7185e-03 70 2167e-03 84 4015e-04 98 6819e-05
439 1          3576e-02 15 2548e-02 29 1863e-02 43 1261e-02 57 6685e-03 71 1954e-03 85 3487e-04 99 6107e-05
440 2          3487e-02 16 2508e-02 30 1809e-02 44 1230e-02 58 6208e-03 72 1758e-03 86 3027e-04 100 5409e-05
441 3          3397e-02 17 2469e-02 31 1755e-02 45 1200e-02 59 5753e-03 73 1577e-03 87 2631e-04 101 4695e-05
442 4          3306e-02 18 2430e-02 32 1701e-02 46 1171e-02 60 5321e-03 74 1411e-03 88 2291e-04 102 3937e-05
443 5          3215e-02 19 2392e-02 33 1647e-02 47 1143e-02 61 4912e-03 75 1260e-03 89 1997e-04 103 3112e-05
444 6          3123e-02 20 2354e-02 34 1594e-02 48 1116e-02 62 4525e-03 76 1122e-03 90 1742e-04 104 2214e-05
445 7          3032e-02 21 2300e-02 35 1541e-02 49 1091e-02 63 4159e-03 77 9974e-04 91 1521e-04 105 1280e-05
446 8          2940e-02 22 2245e-02 36 1504e-02 50 1067e-02 64 3814e-03 78 8842e-04 92 1333e-04 106 4353e-06
447 9          2848e-02 23 2191e-02 37 1467e-02 51 1003e-02 65 3491e-03 79 7814e-04 93 1175e-04 107 0
448 10         2756e-02 24 2137e-02 38 1431e-02 52 9418e-02 66 3188e-03 80 6881e-04 94 1043e-04 108 0
449 11         2714e-02 25 2083e-02 39 1396e-02 53 8825e-03 67 2905e-03 81 6039e-04 95 9332e-05 109 0
450 12         2672e-02 26 2028e-02 40 1361e-02 54 8255e-03 68 2641e-03 82 5286e-04 96 8401e-05 110 0
451
452
453 number of health effects in male      population distributed by age (low let radiation)
454
455 age health age health age health age health age health age health age health
456 group effects group effects group effects group effects group effects group effects group effects
457
458 -1 0          13 381e+02 27 278e+02 41 180e+02 55 926e+01 69 191e+01 83 113e+00 97 682e-03
459 0          525e+02 14 374e+02 28 270e+02 42 175e+02 56 849e+01 70 165e+01 84 851e+01 98 409e-03
460 1          521e+02 15 368e+02 29 262e+02 43 170e+02 57 776e+01 71 141e+01 85 635e+01 99 244e-03
461 2          507e+02 16 362e+02 30 254e+02 44 164e+02 58 707e+01 72 120e+01 86 466e+01 100 162e-03
462 3          494e+02 17 356e+02 31 245e+02 45 159e+02 59 641e+01 73 101e+01 87 339e+01 101 939e-04
463 4          480e+02 18 349e+02 32 237e+02 46 155e+02 60 580e+01 74 845e+00 88 243e+01 102 394e-04
464 5          467e+02 19 343e+02 33 229e+02 47 150e+02 61 523e+01 75 703e+00 89 172e+01 103 311e-04
465 6          453e+02 20 337e+02 34 221e+02 48 145e+02 62 469e+01 76 579e+00 90 118e+01 104 221e-04
466 7          440e+02 21 329e+02 35 213e+02 49 141e+02 63 418e+01 77 473e+00 91 822e-02 105 0
467 8          426e+02 22 320e+02 36 208e+02 50 136e+02 64 372e+01 78 382e+00 92 547e-02 106 0
468 9          413e+02 23 312e+02 37 202e+02 51 127e+02 65 329e+01 79 306e+00 93 364e+02 107 0
469 10         399e+02 24 303e+02 38 196e+02 52 118e+02 66 290e+01 80 242e+00 94 240e-02 108 0
470 11         393e+02 25 295e+02 39 191e+02 53 109e+02 67 254e+01 81 190e+00 95 159e-02 109 0
471 12         387e+02 26 287e+02 40 185e+02 54 101e+02 68 221e+01 82 147e+00 96 101e-02 110 0
472
473
474
475
476
477 -----
478
479

```

total number of health effects to the male population 1669e+04

TABLE C-III (cont)

480											
481											
482											
483	-----										
484											
485											
486											
487											
488											
489	-----										
490											
491											
492	life table calculation										
493											
494	starting age		0								
495											
496	population		female								
497											
498											
499	cancer types		other								
500											
501											
502			1eu/bone								
503											
504											
505											
506											
507	age	tx	1x	tdx	drad	dref	t1x	tx	ex		
508	0 1	01746000	100000	1746 000	0 000	1746 000	99127	7434906	74 35		
509	1 2	00116000	98254	113 975	0 000	113 975	98197	7335779	74 66		
510	2 3	00077000	98140	75 568	0 000	75 568	98102	7237582	73 75		
511	3 4	00060000	98064	58 963	125	58 839	98035	7139479	72 80		
512	4 5	00051000	98005	50 356	374	49 983	97980	7041444	71 85		
513	5 6	00043000	97955	42 743	622	42 121	97934	6943464	70 88		
514	6 7	00038000	97912	38 078	871	37 207	97893	6845530	69 91		
515	7 8	00034000	97874	34 396	1 119	33 277	97857	6747637	68 94		
516	8 9	00031000	97840	31 698	1 368	30 330	97824	6649780	67 97		
517	9 10	00028000	97808	29 002	1 616	27 386	97794	6551956	66 99		
518	10 11	00026000	97779	27 412	1 990	25 422	97766	6454162	66 01		
519	11 12	00025000	97752	26 927	2 489	24 438	97738	6356397	65 03		
520	12 13	00027000	97725	29 374	2 989	26 385	97710	6258658	64 04		
521	13 14	00032999	97696	35 661	3 422	32 239	97678	6160948	63 06		
522	14 15	00039999	97660	42 852	3 788	39 063	97638	6063270	62 09		
523	15 16	00048999	97617	51 986	4 154	47 831	97591	5965632	61 11		
524	16 17	00057999	97565	61 106	4 519	56 586	97534	5868041	60 14		
525	17 18	00065998	97504	69 235	4 884	64 351	97469	5770506	59 18		
526	18 19	00068998	97435	72 475	5 247	67 228	97398	5673017	58 22		
527	19 20	00070998	97362	74 735	5 610	69 125	97325	5575639	57 27		
528	20 21	00071998	97287	75 987	5 942	70 045	97249	5478314	56 31		
529	21 22	00072998	97211	77 205	6 243	70 962	97173	5381064	55 35		
530	22 23	00074997	97134	79 392	6 543	72 848	97095	5283892	54 40		
531	23 24	00076997	97055	81 596	6 866	74 730	97014	5186797	53 44		
532	24 25	00078997	96973	83 817	7 211	76 606	96931	5089783	52 49		
533	25 26	00080997	96889	86 033	7 556	78 477	96846	4992852	51 53		
534	26 27	00082997	96803	88 243	7 899	80 344	96759	4896005	50 58		
535	27 28	00085996	96715	91 291	8 119	83 172	96670	4799246	49 62		
536	28 29	00089996	96624	95 173	8 216	86 958	96576	4702576	48 67		
537	29 30	00095996	96529	100 975	8 311	92 664	96478	4606000	47 72		
538	30 31	00101995	96428	106 944	8 592	98 352	96374	4509522	46 77		
539	31 32	00109995	96321	115 005	9 057	105 948	96263	4413147	45 82		
540	32 33	00118994	96206	123 999	9 520	114 479	96144	4346894	44 87		
541	33 34	00128993	96082	133 919	9 980	123 939	96015	4220740	43 93		

TABLE C-III (cont)

542	34	35	00139992	95948	144	758	10	438	134	320	95876	4124726	42	99
543	35	36	00151991	95803	156	507	10	894	145	612	95725	4028850	42	05
544	36	37	00164990	95647	169	154	11	347	157	808	95562	3933125	41	12
545	37	38	00179989	95477	183	709	11	861	171	849	95386	3837563	40	19
546	38	39	00196987	95294	200	131	12	414	187	716	95194	3742177	39	27
547	39	40	00214985	95094	217	380	12	943	204	437	94985	3646984	38	35
548	40	41	00232983	94876	234	513	13	467	221	046	94759	3551999	37	44
549	41	42	00250981	94642	251	518	13	985	237	533	94516	3457240	36	53
550	42	43	00272979	94390	272	163	14	498	257	665	94254	3362724	35	63
551	43	44	00296976	94118	294	513	15	004	279	508	93971	3268470	34	73
552	44	45	00324973	93824	320	405	15	503	304	901	93663	3174499	33	83
553	45	46	00353970	93503	347	027	16	055	330	973	93330	3080836	32	95
554	46	47	00383966	93156	374	345	16	657	357	687	92969	2987506	32	07
555	47	48	00415961	92782	403	163	17	227	385	936	92580	2894537	31	20
556	48	49	00448957	92379	432	504	17	764	414	740	92162	2801957	30	33
557	49	50	00483952	91946	463	265	18	290	444	975	91714	2709795	29	47
558	50	51	00522946	91483	497	209	18	803	478	406	91234	2618080	28	62
559	51	52	00564940	90986	533	317	19	302	514	014	90719	2526846	27	77
560	52	53	00610933	90452	572	389	19	786	552	603	90166	2436127	26	93
561	53	54	00659325	89880	613	463	20	322	593	140	89573	2345961	26	10
562	54	55	00711917	89266	656	410	20	907	635	503	88938	2256388	25	28
563	55	56	00767907	88610	701	913	21	471	680	443	88259	2167449	24	46
564	56	57	00828896	87908	750	679	22	012	728	667	87533	2079190	23	65
565	57	58	00893884	87157	801	614	22	527	779	087	86757	1991658	22	85
566	58	59	00961872	86356	853	649	23	017	830	632	85929	1904901	22	06
567	59	60	01034858	85502	908	304	23	478	884	826	85048	1818972	21	27
568	60	61	01112841	84594	965	503	24	107	941	396	84111	1733924	20	50
569	61	62	01199821	83628	1028	286	24	895	1003	391	83114	1649813	19	73
570	62	63	01297798	82600	1097	637	25	654	1071	983	82051	1566699	18	97
571	63	64	01410772	81502	1176	192	26	378	1149	814	80914	1484647	18	22
572	64	65	01537741	80326	1262	255	27	045	1235	210	79695	1403733	17	48
573	65	66	01677707	79064	1354	109	27	647	1326	462	78387	1324038	16	75
574	66	67	01831668	77710	1451	567	28	179	1423	387	76984	1245651	16	03
575	67	68	02003624	76258	1556	566	28	636	1527	930	75480	1168667	15	33
576	68	69	02194574	74702	1668	396	29	010	1639	385	73868	1093187	14	63
577	69	70	02406517	73033	1786	855	29	295	1757	561	72140	1019319	13	96
578	70	71	02631455	71247	1904	304	29	483	1874	820	70294	947179	13	29
579	71	72	02878386	69342	2025	508	29	571	1995	937	68329	876885	12	65
580	72	73	03164305	67317	2159	656	29	550	2130	106	66237	808555	12	01
581	73	74	03502210	65157	2311	343	29	406	2281	936	64001	742318	11	39
582	74	75	03892098	62846	2475	145	29	129	2446	016	61608	678317	10	79
583	75	76	04323972	60371	2639	114	28	708	2610	406	59051	616709	10	22
584	76	77	04788813	57731	2792	802	28	140	2764	662	56335	557658	9	66
585	77	78	05293680	54939	2935	658	27	382	2908	276	53471	501323	9	13
586	78	79	05838515	52003	3062	645	26	443	3036	202	50472	447852	8	61
587	79	80	06430333	48940	3172	396	25	369	3147	027	47354	397380	8	12
588	80	81	07095126	45768	3271	458	24	165	3247	294	44132	350026	7	65
589	81	82	07831895	42496	3351	115	22	834	3328	280	40821	305894	7	20
590	82	83	08609647	39145	339	670	21	391	3370	278	37450	265073	6	77
591	83	84	09416384	35754	3386	564	19	858	3366	706	34060	227624	6	37
592	84	85	10272102	32367	3343	045	18	259	3324	785	30696	193563	5	98
593	85	86	11278772	29024	3290	171	16	610	3273	561	27379	162868	5	61
594	86	87	12458387	25734	3220	952	14	920	3206	032	24123	135489	5	26
595	87	88	13680983	22513	3093	211	13	215	3079	996	20966	111365	4	95
596	88	89	14854585	19420	2896	265	11	540	2884	725	17972	90399	4	65
597	89	90	16001187	16523	2653	893	9	938	2643	955	15197	72427	4	38
598	90	91	17258751	13870	2402	154	8	435	2393	720	12669	57231	4	13
599	91	92	18712254	11467	2152	859	7	041	2145	818	10391	44562	3	89
600	92	93	20236730	9315	1890	738	5	770	1884	968	8369	34171	3	67
601	93	94	21743205	7424	1618	821	4	638	1614	183	6614	25802	3	48
602	94	95	23178694	5805	1349	188	3	658	1345	530	5130	19187	3	31
603	95	96	24576187	4456	1097	908	2	832	1095	076	3907	14057	3	15
604	96	97	25845710	3358	870	035	2	153	867	882	2923	10150	3	02
605	97	98	26971267	2488	672	628	1	611	671	018	2152	7227	2	90

TABLE C-III (cont)

606	98	99	27986849	1815	509	223	1	187	508	037	1561	5076	2	80
607	99	100	28939444	1306	378	825	862	377	962	1117	3515	2	69	
608	100	101	29826052	927	277	172	618	276	554	789	2398	2	59	
609	101	102	30648674	650	199	669	438	199	232	550	1610	2	48	
610	102	103	31409309	450	141	768	307	141	461	379	1059	2	35	
611	103	104	32110956	309	99	311	212	99	098	259	680	2	20	
612	104	105	32756615	209	68	706	145	68	560	175	421	2	01	
613	105	106	33349286	141	46	987	099	46	888	117	246	1	75	
614	106	107	33891968	94	31	793	066	31	726	78	129	1	38	
615	107	108	34388660	62	21	302	044	21	258	51	51		83	
616	108	109	34842361	41	14	146	029	14	116	33	0	0	00	
617	109	110	35256072	26	9	316	019	9	297	22	22	0	00	

TABLE C-III (cont)

```

618
619 life table calculation
620
621      starting age          10
622      population           female
623
624
625
626      cancer types         other
627
628
629      leu/bone
630
631
632
633
634      age     tqx      lx      tdx      drad      dref      t1x      tx      ex
635      10    11  00026000  100000  26 000  0 000  26 000  99987  6608713  66 09
636      11    12  00025000  99974  24 994  0 000  24 994  99962  6508726  65 10
637      12    13  00027000  99949  26 986  0 000  26 986  99936  6408765  64 12
638      13    14  00033000  99922  33 034  060  32 974  99906  6308829  63 14
639      14    15  00040000  99889  40 134  179  39 956  99869  6208924  62 16
640      15    16  00049000  99849  49 223  297  48 926  99824  6109055  61 18
641      16    17  00058000  99800  58 300  416  57 884  99770  6009230  60 21
642      17    18  00066000  99741  66 364  535  65 829  99708  5909460  59 25
643      18    19  00069000  99675  69 429  653  68 776  99640  5809752  58 29
644      19    20  00071000  99606  71 491  771  70 720  99570  5710112  57 33
645      20    21  00072000  99534  72 651  987  71 664  99498  5610542  56 37
646      21    22  00073000  99461  73 905  1 299  72 606  99424  5511044  55 41
647      22    23  00074999  99387  76 151  1 611  74 540  99349  5411620  54 45
648      23    24  00076999  99311  78 414  1 945  76 469  99272  5312270  53 49
649      24    25  00078999  99233  80 696  2 303  78 393  99193  5212998  52 53
650      25    26  00080999  99152  82 972  2 660  80 312  99111  5113806  51 58
651      26    27  00082999  99069  85 242  3 016  82 226  99027  5014695  50 62
652      27    28  00085999  98984  88 497  3 372  85 125  98940  4915668  49 66
653      28    29  00089998  98896  92 731  3 727  89 004  98849  4816728  48 71
654      29    30  00095998  98803  98 929  4 081  94 849  98753  4717879  47 75
655      30    31  00101998  98704  105 299  4 624  100 676  98651  4619126  46 80
656      31    32  00109997  98599  113 810  5 355  108 455  98542  4520475  45 85
657      32    33  00118996  98485  123 277  6 084  117 193  98423  4421933  44 90
658      33    34  00128996  98361  133 692  6 811  126 882  98295  4323510  43 96
659      34    35  00139995  98278  145 048  7 534  137 514  98155  4225215  43 01
660      35    36  00151994  98083  157 335  8 255  149 079  98004  4127060  42 08
661      36    37  00164992  97925  170 542  8 973  161 569  97840  4029056  41 14
662      37    38  00179991  97755  185 578  9 628  175 950  97662  3931216  40 22
663      38    39  00196990  97569  202 401  10 200  192 201  97468  3833554  39 29
664      39    40  00214988  97367  220 074  10 747  209 327  97257  3736086  38 37
665      40    41  00232986  97147  237 628  11 290  226 339  97028  3638829  37 46
666      41    42  00250985  96909  255 054  11 827  243 227  96782  3541801  36 55
667      42    43  00272983  96654  276 209  12 360  263 849  96516  3445019  35 64
668      43    44  00296980  96378  299 109  12 886  286 223  96228  3348503  34 74
669      44    45  00324977  96079  325 640  13 405  312 234  95916  3252275  33 85
670      45    46  00353974  95753  352 921  13 979  338 941  95577  3156359  32 96
671      46    47  00383971  95400  380 915  14 606  366 309  95210  3060782  32 08
672      47    48  00415967  95019  410 449  15 200  395 249  94814  2965572  31 21
673      48    49  00448963  94609  440 521  15 762  424 758  94389  2870758  30 34
674      49    50  00482958  94168  472 048  16 313  455 735  93932  2776370  29 48
675      50    51  00522953  93696  506 839  16 851  489 988  93443  2682437  28 63
676      51    52  00564947  93189  543 848  17 377  526 471  92918  2588995  27 78
677      52    53  00610941  92646  583 897  17 887  566 010  92354  2490077  26 94
678      53    54  00659934  92062  625 999  18 452  607 546  91749  2407723  26 11
679      54    55  00711926  91436  670 023  19 069  650 954  91101  2311975  25 29
680      55    56  00767917  90766  716 670  19 665  697 005  90407  2220874  24 47

```

TABLE C-III (cont)

681	56	57	00828907	90049	766	661	20	238	746	423	89666	2130467	23	66
682	57	58	00893896	89282	818	879	20	788	798	091	88873	2040801	22	86
683	58	59	00961884	88463	872	228	21	311	850	916	88027	1951928	22	06
684	59	60	01034871	87591	928	264	21	807	906	457	87127	1863901	21	28
685	60	61	01112856	86663	986	911	22	477	964	434	86170	1776773	20	50
686	61	62	01199837	85676	1051	285	23	311	1027	973	85150	1690604	19	73
687	62	63	01297815	84625	1122	391	24	118	1098	273	84064	1605453	18	97
688	63	64	01410790	83502	1202	934	24	891	1178	043	82901	1521390	18	22
689	64	65	01537761	82299	1291	175	25	606	1265	569	81654	1438489	17	48
690	65	66	01677728	81008	1385	357	26	258	1359	099	80316	1356835	16	75
691	66	67	01831691	79623	1485	288	26	842	1458	446	78880	1276519	16	03
692	67	68	02003649	78138	1592	955	27	350	1565	605	77341	1197639	15	33
693	68	69	02194602	76545	1707	628	27	777	1679	851	75691	1120298	14	64
694	69	70	02406548	74837	1829	104	28	114	1800	990	73923	1044607	13	96
695	70	71	02631489	73008	1949	554	28	357	1921	197	72033	970684	13	30
696	71	72	02878423	71058	2073	861	28	500	2045	362	70021	898651	12	65
697	72	73	03164345	68985	2211	443	28	533	2182	910	67879	828630	12	01
698	73	74	03502254	66773	2367	010	28	447	2338	564	65590	760751	11	39
699	74	75	03892147	64406	2535	006	28	226	2506	780	63139	695161	10	79
700	75	76	04324026	61871	2703	185	2'	863	2675	322	60520	632023	10	22
701	76	77	04788893	59168	2860	841	27	353	2833	488	57737	571503	9	66
702	77	78	05293747	56307	3007	406	26	652	2980	754	54803	513766	9	12
703	78	79	05838588	53300	3137	718	25	770	3111	948	51731	458962	8	61
704	79	80	06430413	50162	3250	373	24	752	3225	620	48537	407232	8	12
705	80	81	07095215	46912	3352	080	23	604	3328	477	45236	358695	7	65
706	81	82	07831992	43559	3433	904	22	328	3411	576	41843	313459	7	20
707	82	83	08609753	40126	3475	652	20	938	3454	714	38388	271617	6	77
708	83	84	09416500	36650	3470	598	19	457	3451	141	34915	233229	6	36
709	84	85	10272227	33179	3426	164	17	907	3408	257	31466	198314	5	98
710	85	86	11278909	29753	3372	138	16	305	3355	833	28067	166848	5	61
711	86	87	12458538	26381	3301	350	14	659	3286	691	24730	138781	5	26
712	87	88	13681147	23080	3170	561	12	995	3157	566	21494	114051	4	94
713	88	89	14854762	19909	2968	810	11	357	2957	453	18425	92556	4	65
714	89	90	16001376	16940	2720	471	9	787	2710	684	15580	74131	4	38
715	90	91	17258954	14220	2462	509	8	313	2454	196	12989	58551	4	12
716	91	92	18712472	11757	2207	033	6	945	2200	088	10654	45563	3	88
717	92	93	20236964	9550	1938	386	5	695	1932	691	8581	34909	3	66
718	93	94	21743455	7612	1659	675	4	581	1655	094	6782	26328	3	46
719	94	95	23178958	5952	1383	283	3	616	1379	668	5261	19546	3	28
720	95	96	24576465	4569	1125	689	2	801	1122	888	4006	14285	3	13
721	96	97	25846000	3443	892	078	2	131	889	947	2997	10279	2	99
722	97	98	26971568	2551	689	691	1	595	688	096	2206	7282	2	85
723	98	99	27987159	1861	522	157	1	176	520	981	1600	5076	2	80
724	99	100	28939763	1339	388	458		855	387	603	1145	3515	2	69
725	100	101	29826379	951	284	228		613	283	615	809	2398	2	59
726	101	102	30649008	667	204	759		435	204	324	564	1610	2	48
727	102	103	31409649	462	145	385		304	145	081	389	1059	2	35
728	103	104	32111303	317	101	848		211	101	637	266	680	2	20
729	104	105	32756968	215	70	463		145	70	318	179	421	2	01
730	105	106	33349644	144	48	190		098	48	091	120	246	1	75
731	106	107	33892330	96	32	608		066	32	541	80	129	1	38
732	107	108	34389026	63	21	849		044	21	805	52	51	83	
733	108	109	34842732	42	14	509		029	14	480	34	0	0	00
734	109	110	35256445	27	9	556		019	9	536	22	22	0	00

TABLE C-III (cont)

735																
736																
737																
738																
739																
740																
741	cancer type	other														
742																
743	population	female														
744																
745																
746	lifetime risk to individual from exposure by age															
747																
748	age	lifetime	age	lifetime	age	lifetime	age	lifetime	age	lifetime	age	lifetime	age	lifetime	age	lifetime
749	group	risk	group	risk	group	risk	group	risk	group	risk	group	risk	group	risk	group	risk
750	-1	0	13	9300e-02	27	6962e 02	41	4152e 02	55	1870e-02	69	3828e-03	83	2658e-04	97	6239e 06
751	0	1092e-01	14	9201e-02	28	6741e-02	42	3976e-02	56	1711e-02	70	3298e-03	84	2104e-04	98	3240e-06
752	1	1094e-01	15	9104e 02	29	6526e-02	43	3806e-02	57	1561e-02	71	2824e-03	85	1661e 04	99	9914e 07
753	2	1079e-01	16	9011e 02	30	6316e 02	44	3643e-02	58	1420e-02	72	2403e-03	86	1309e 04	100	0
754	3	1064e 01	17	8920e-02	31	6112e-02	45	3487e-02	59	1287e-02	73	2031e-03	87	1032e-04	101	0
755	4	1049e-01	18	8831e-02	32	5913e 02	46	3337e-02	60	1162e-02	74	1706e-03	88	8149e-05	102	0
756	5	1034e-01	19	8744e-02	33	5720e-02	47	3194e-02	61	1046e 02	75	1424e-03	89	6433e-05	103	0
757	6	1019e-01	20	8660e-02	34	5533e-02	48	3057e 02	62	9371e 03	76	1180e-03	90	5070e-05	104	0
758	7	1004e-01	21	8401e-02	35	5352e-02	49	2927e 02	63	8363e-03	77	9720e-04	91	3986e-05	105	0
759	8	9894e 02	22	8148e-02	36	5135e 02	50	2803e-02	64	7432e-03	78	7951e-04	92	3125e-05	106	0
760	9	9751e-02	23	7900e-02	37	4925e 02	51	2598e 02	65	6574e-03	79	6462e-04	93	2433e-05	107	0
761	10	9610e-02	24	7657e-02	38	4721e-02	52	2402e-02	66	5787e-03	80	5218e-04	94	1865e-05	108	0
762	11	9505e 02	25	7420e-02	39	4525e 02	53	2215e-02	67	5069e-03	81	4188e-04	95	1388e-05	109	0
763	12	9401e-02	26	7188e-02	40	4335e-02	54	2038e-02	68	4417e-03	82	3344e-04	96	9786e-06	110	0
764																
765																
766	number of health effects in female population distributed by age (low let radiation)															
767																
768	age	health	age	health	age	health	age	health	age	health	age	health	age	health	age	health
769	group	effects	group	effects	group	effects	group	effects	group	effects	group	effects	group	effects	group	effects
770																
771	-1	0	13	122e+03	27	902e+02	41	527e+02	55	222e+02	69	374e+01	83	123e+00	97	187e-03
772	0	144e+03	14	120e+03	28	873e+02	42	503e+02	56	202e+02	70	314e+01	84	880e 01	98	680e 04
773	1	144e+03	15	119e+03	29	844e+02	43	481e+02	57	182e+02	71	261e+01	85	619e-01	99	149e 04
774	2	142e+03	16	118e+03	30	817e+02	44	459e+02	58	164e+02	72	216e+01	86	431e 01	100	0
775	3	140e+03	17	116e+03	31	789e+02	45	437e+02	59	148e+02	73	176e+01	87	295e 01	101	0
776	4	138e+03	18	115e+03	32	763e+02	46	417e+02	60	132e+02	74	142e+01	88	200e 01	102	0
777	5	136e+03	19	114e+03	33	737e+02	47	398e+02	61	117e+02	75	114e+01	89	134e 01	103	0
778	6	134e+03	20	113e+03	34	712e+02	48	379e+02	62	104e+02	76	902e+00	90	877e 02	104	0
779	7	132e+03	21	109e+03	35	688e+02	49	361e+02	63	913e+01	77	706e+00	91	566e 02	105	0
780	8	130e+03	22	106e+03	36	659e+02	50	344e+02	64	800e+01	78	545e+00	92	359e 02	106	0
781	9	128e+03	23	103e+03	37	630e+02	51	317e+02	65	696e+01	79	416e+00	93	221e-02	107	0
782	10	126e+03	24	995e+02	38	603e+02	52	292e+02	66	602e+01	80	313e+00	94	131e 02	108	0
783	11	124e+03	25	964e+02	39	57e+02	53	267e+02	67	517e+01	81	232e+00	95	749e 03	109	0
784	12	123e+03	26	932e+02	40	552e+02	54	244e+02	68	441e+01	82	171e+00	96	391e 03	110	0
785																
786																
787	total number of health effects to the female population												5028e+04			
788																
789																
790																
791																
792																

TABLE C-III (cont)

793
794
795
796
797
798
799 cancer type leu/bone
800
801 population female
802
803
804 lifetime risk to individual from exposure by age
805
806 age lifetime
807 group risk
808 -1 0 13 2082e-02 27 1631e-02 41 1188e-02 55 7469e-03 69 2460e-03 83 4435e-04 97 6567e-05
809 0 2706e-02 14 2054e-02 28 1594e-02 42 1164e-02 56 7019e-03 70 2222e-03 84 3839e-04 98 5851e-05
810 1 2694e-02 15 2027e-02 29 1557e-02 43 1141e-02 57 6581e-03 71 2001e-03 85 3314e-04 99 5178e-05
811 2 2637e-02 16 2000e-02 30 1520e-02 44 1117e-02 58 6156e-03 72 1795e-03 86 2859e-04 100 4525e-05
812 3 2579e-02 17 1973e-02 31 1484e-02 45 1095e-02 59 5744e-03 73 1606e-03 87 2467e-04 101 3868e-05
813 4 2520e-02 18 1946e-02 32 1447e-02 46 1072e-02 60 5345e-03 74 1431e-03 88 2131e-04 102 3188e-05
814 5 2461e-02 19 1920e-02 33 1411e-02 47 1050e-02 61 4961e-03 75 1272e-03 89 1842e-04 103 2472e-05
815 6 2402e-02 20 1893e-02 34 1375e-02 48 1029e-02 62 4591e-03 76 1127e-03 90 1593e-04 104 1722e-05
816 7 2343e-02 21 1856e-02 35 1339e-02 49 1008e-02 63 4237e-03 77 9955e-04 91 1381e-04 105 9711e-06
817 8 2283e-02 22 1818e-02 36 1313e-02 50 9880e-03 64 3899e-03 78 8765e-04 92 1203e-04 106 3211e-06
818 9 2224e-02 23 1781e-02 37 1288e-02 51 9379e-03 65 3578e-03 79 7693e-04 93 1055e-04 107 0
819 10 2164e-02 24 1743e-02 38 1262e-02 52 9886e-03 66 3273e-03 80 6731e-04 94 9305e-05 108 0
820 11 2137e-02 25 1706e-02 39 1237e-02 53 8403e-03 67 2985e-03 81 5872e-04 95 8254e-05 109 0
821 12 2109e-02 26 1669e-02 40 1213e-02 54 7931e-03 68 2714e-03 82 5110e-04 96 7356e-05 110 0
822
823
824 number of health effects in female population distributed by age (low let radiation)
825
826 age health
827 group effects
828
829 -1 0 13 272e+02 27 211e+02 41 151e+02 55 888e+01 69 240e+01 83 206e+00 97 197e-02
830 0 357e+02 14 269e+02 28 206e+02 42 147e+02 56 828e+01 70 211e+01 84 160e+00 98 123e-02
831 1 355e+02 15 265e+02 29 202e+02 43 144e+02 57 769e+01 71 185e+01 85 124e+00 99 777e-03
832 2 346e+02 16 261e+02 30 197e+02 44 141e+02 58 713e+01 72 161e+01 86 941e-01 100 498e-03
833 3 339e+02 17 258e+02 31 192e+02 45 137e+02 59 659e+01 73 139e+01 87 706e-01 101 309e-03
834 4 331e+02 18 254e+02 32 187e+02 46 134e+02 60 606e+01 74 120e+01 88 524e-01 102 159e-03
835 5 323e+02 19 250e+02 33 182e+02 47 131e+02 61 556e+01 75 102e+01 89 383e-01 103 989e-04
836 6 315e+02 20 247e+02 34 177e+02 48 128e+02 62 508e+01 76 861e+00 90 276e-01 104 344e-04
837 7 307e+02 21 242e+02 35 172e+02 49 124e+02 63 463e+01 77 723e+00 91 196e-01 105 194e-04
838 8 299e+02 22 237e+02 36 168e+02 50 121e+02 64 420e+01 78 601e+00 92 138e-01 106 321e-05
839 9 291e+02 23 231e+02 37 165e+02 51 115e+02 65 379e+01 79 495e+00 93 960e-02 107 0
840 10 284e+02 24 226e+02 38 161e+02 52 108e+02 66 340e+01 80 404e+00 94 651e-02 108 0
841 11 280e+02 25 222e+02 39 158e+02 53 101e+02 67 304e+01 81 326e+00 95 446e-02 109 0
842 12 276e+02 26 216e+02 40 154e+02 54 949e+01 68 271e+01 82 261e+00 96 294e-02 110 0
843
844
845 total number of health effects to the female population 1279e+04
846
847
848
849
850

TABLE C-IV
 COMPARISON OF REPCAL AND BEIR III ESTIMATES USING THE
 LINEAR DOSE-RESPONSE MODEL:
 CANCERS PER ONE MILLION PERSONS

	Male		Female	
	REPCAL	BEIR III	REPCAL	BEIR III
I. 10 rad, single exposure				
A. Leukemia/Bone Cancer	535	566	363	384
B. All Other Cancers				
Absolute risk	917	919	1472	1473
Relative risk	3910	4226	4560	4852
II. 1 Rad/Year Continuous Exposure				
A. Leukemia/Bone Cancer	3587	3568	2706	2709
B. All Other Cancers				
Absolute risk	6126	5827	10920	10400
Relative risk	25760	22080	33390	29030