

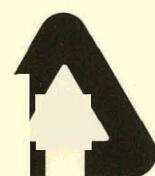
CONF-800334--16

MASTER

STIBINE/ARSINE EMISSIONS FROM LEAD-ACID BATTERIES

by

R. Varma, G. M. Cook and N. P. Yao


DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Prepared for
DOE Environmental Control Symposium:
Energy Storage Systems

Washington, D.C.
March 19-21, 1980

EB
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

U of C-AUA-USDOE

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Operated under Contract W-31-109-Eng-38 for the
U. S. DEPARTMENT OF ENERGY

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) among the U. S. Department of Energy, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona	The University of Kansas	The Ohio State University
Carnegie-Mellon University	Kansas State University	Ohio University
Case Western Reserve University	Loyola University of Chicago	The Pennsylvania State University
The University of Chicago	Marquette University	Purdue University
University of Cincinnati	The University of Michigan	Saint Louis University
Illinois Institute of Technology	Michigan State University	Southern Illinois University
University of Illinois	University of Minnesota	The University of Texas at Austin
Indiana University	University of Missouri	Washington University
The University of Iowa	Northwestern University	Wayne State University
Iowa State University	University of Notre Dame	The University of Wisconsin-Madison

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use or the results of such use of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. Mention of commercial products, their manufacturers, or their suppliers in this publication does not imply or connote approval or disapproval of the product by Argonne National Laboratory or the United States Government.

STIBINE/ARSINE EMISSIONS FROM LEAD-ACID BATTERIES

R. Varma, G. M. Cook, and N. P. Yao
Chemical Engineering Division
Argonne National Laboratory
Argonne, Illinois 60439

INTRODUCTION

Antimonial lead alloys, which also contain some arsenic, have been traditionally used for the fabrication of lead-acid battery electrodes. The addition of antimony and arsenic to the lead is found to improve the metallurgical properties of the grid. Positive grids of lead-acid batteries, currently being developed and evaluated for near term electric vehicle (EV), utility load-leveling, and solar electric applications are expected to be fabricated from antimonial-lead (1.5 to 4.5% Sb plus about 0.0 to 0.3% As) alloys. Negative grids, on the other hand, may well be fabricated from antimony free calcium alloys. However, during cycling of the lead-acid batteries, some of the antimony is solubilized and thereby transferred to the negative electrode.

The lead anode potential may attain levels, more negative, than -0.6V (vs. a Normal Hydrogen Electrode) during charging of lead-acid cells when cell voltages exceed 2.40V. In a theoretical analysis¹, it was reported that lead anode potentials more negative than -.6V vs. NHE may promote stibine generation at the negative electrode of lead-acid cells in which the positive electrode grids are fabricated from antimonial-lead alloys. Thus, stibine and arsine must be considered as possible cell-effluents during charge and equalization of such batteries. This anticipation is confirmed by previous studies by Varma² and Yao, and Holland³. It was shown that, during charging, stibine and arsine gases can be produced in significant amounts from industrial lead-acid cells having both positive and negative electrode grids of antimonial-lead alloy.

Arsine and stibine are colorless gases with garlic-like odours. Unlike arsine⁴, stibine⁵ is thermally unstable, reported to decompose⁶ in air to the extent of about 50% in 6 to 12 minutes. Despite this thermal instability of stibine, both hydrides may accumulate in atmosphere of poorly ventilated enclosed working areas where the emission rates are high.

Stibine and arsine are toxic gases. Possible poisoning of humans from inhalation is a concern which must be assessed for a variety of work situations and scenarios. Fatalities reported⁷ on board a British submarine in 1919 were attributed to poisoning by exposure to stibine in the work-space air. No other injuries from use of lead-acid batteries have been documented in the literature.

Standards have been set for occupational exposure to both stibine and arsine. The Threshold Limit Values - Time Weighted Average (TLV-TWA) represents a limit for average exposure levels experienced by humans in their work places over a period of 8 continuous hours. The National Institute of Occupational Safety and Health (NIOSH) has set these TLV-TWA limits⁸ at 0.1 ppmv (or 0.5 mg/m³) for SbH₃ and 0.05 ppmv (or 0.2 mg/m³) for AsH₃. The American Conference of Government Industrial Hygienists recommends⁹ that Short Term Exposure Limits (STEL) be greater than TLV-TWA by a factor of three, for 15 minute exposures, for AsH₃.

STIBINE/ARSINE GENERATION

The study reported by Holland³ on the generation of stibine and arsine involved experiments on cells of several thousand ampere-hour capacity. The cell-grids were fabricated from alloy compositions containing 8 and 3 percent antimony. Stibine generation was monitored over a 30 month period. A number of conclusions may be drawn from this study: (1) Stibine generation took place at cell voltage greater than 2.45 V, most of the emissions were limited to the overcharge period, (2) Stibine generation rates were observed to be higher with the grids having the higher antimony content and, (3) Stibine generation rates remained substantially unchanged during the entire 2.5 years of testing.

Argonne National Laboratory (ANL) has an on-going program of research on lead-acid batteries. A study² was completed on the generation of stibine and arsine from a large 4.2 kWh industrial lead-acid cell (2250 A-h capacity at 5-h rate) for a utility load-leveling duty cycle. Both positive and negative grids contained antimony and arsenic. The stibine and arsine generated during charging were absorbed in tubes containing 3N H₂SO₄ with kI and I₂ dissolved in it. The antimony and arsenic contents of the absorbate solution were determined by colorimetry and atomic absorption spectrophotometry (AAS) respectively. The total emission of stibine and arsine as well as their generation rate profiles were determined for experiments in which the cell would, each week, undergo, four normal charge-discharge cycles followed by an equalization-type of cycle. A number of conclusions may be drawn from results obtained in the study. The rates of stibine and arsine generation from the lead-acid cell, could be reduced to insignificant amounts if the voltage during charge and equalization charge-cycles were kept below 2.40 V. Generation rates of stibine and arsine were found to be most significant during the overcharge period of the charge cycle and even higher during equalization charging, which was conducted at 2.55 and 2.65 V, no emissions were observed from the lead-acid cell during stand or discharge, (the study by Holland³ supports this finding). A typical stibine/arsine generation profile during a typical charge cycle is shown in Figure 1. A brief summary of hydride emission data obtained on a lead acid cell is given in Table 1.

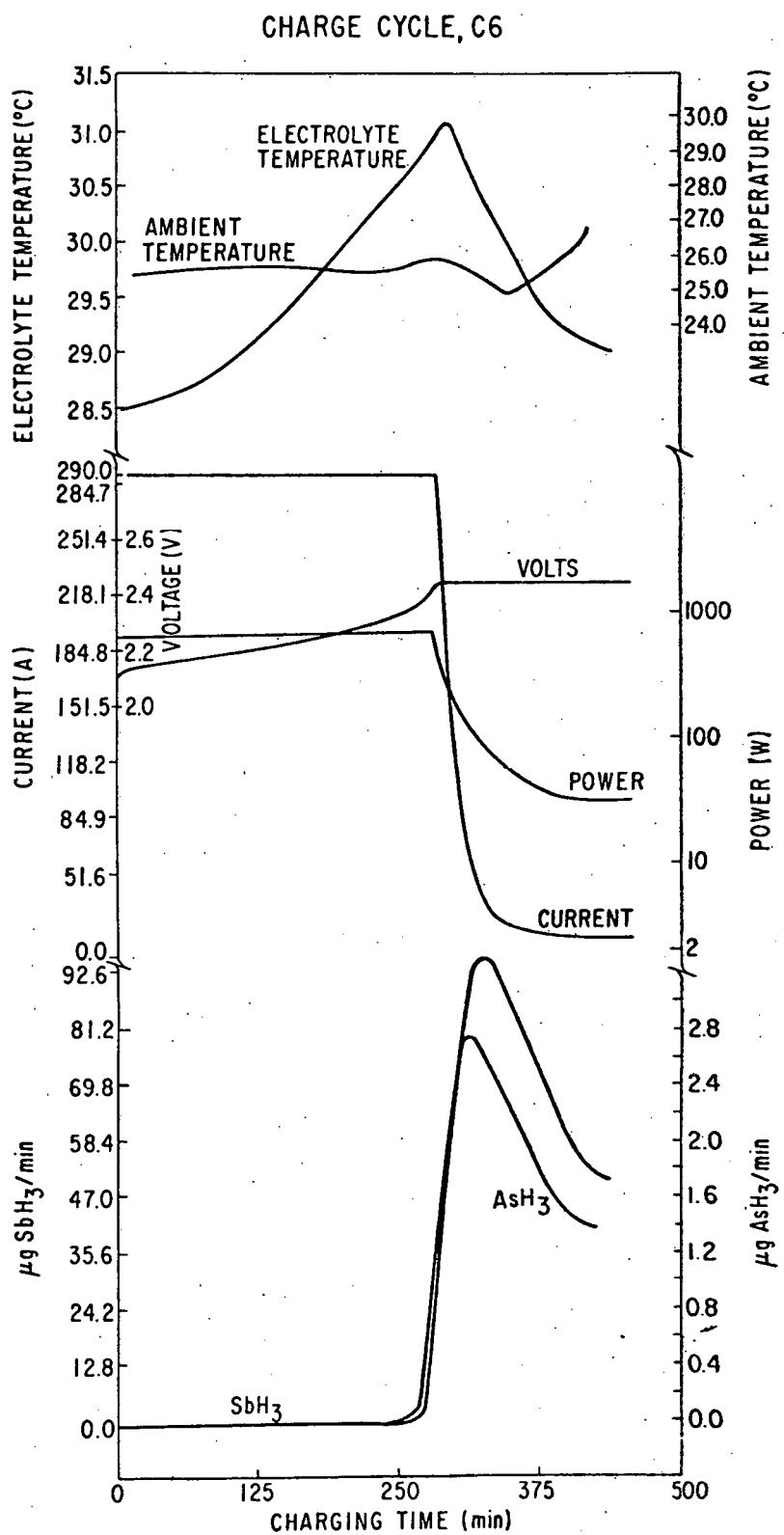


Figure 1. Stibine/Arsine Generation From a Lead-Acid Cell During a Charge Cycle

PUBLISHED ANALYTICAL PROCEDURES FOR DETERMINATIONS OF STIBINE AND ARSINE

The few methods that have been described for the direct determination of stibine and arsine in air are based upon the use of impregnated paper, indicator tubes and absorption in chemically reacting solutions followed by colorimetric or AAS determination of the hydrides.

The production of colored stains is the principle behind commercially available arsine detector tube-kits. The Kitagawa* and Draeger[†] detector kits, claims a detection sensitivity for AsH₃ over levels .05 to 160 ppm in air and the arsine/phosphene electronic monitor*, claims a detection sensitivity of 0.005 to 0.2 ppmv AsH₃ during sampling of 10L of air.

Table 1. Stibine and Arsine Generation From a 4.2 kWh (2250 A-h at 5-hr Rate to 1.75V) Lead-Acid Cell

Experiment	Total Generation ^c mg	
	SbH ₃	AsH ₃
Charge Cycle ^a	12.1 \pm 1.4	0.33 \pm 0.06
Equalization ^b		
2.55 V	25.5 \pm 0.7	0.23 \pm .01
2.65 V	63.1 \pm .05	0.33 \pm .01

- a. The 4.2 kWh (2250 A-hr at 5-hr rate) cell was discharged for 5 hr at constant current to 80% DOD and charged at constant (290A) current for 5-6 hrs to 2.45 V, followed by a current limited constant-voltage (tapering) charge at 2.45 V for 3 hr.
- b. The fully charged cell was given an additional 4-hr charge at constant voltage.
- c. The values given are the average for several cycles.

*Distributed by Matheson Gas Products Co., East Rutherford, N.J.

[†]Distributed by National Draeger Company

Both use the reaction of mercuric halides HgX_2 (X = Br, Cl) with AsH_3 in the presence of moisture, which leads to the formation of colored stains. The reaction products are yellow or brown. This reaction is far less sensitive to stibine than arsine, therefore, it would be more expensive to develop solid-state colorimetric procedures for monitoring stibine based on the reaction.

Stibine in air can be absorbed in a solution of methylfluorone in an aqueous silver sulfate solution to form a colored solution. Short and Wheatly¹⁰ developed instrumentation based on this analytical procedure for monitoring SbH_3 in ambient air on board British Admiralty ships in the 1960's. The disadvantages of the procedure are the chemical instability and carcinogenic property of methylfluorone.

A solution of NaI_3 ($NaI + I_2$) in $HClO_4$ solution was successfully used by Gann¹¹ to collect stibine and arsine from the charge gas of lead-acid batteries. However, the use of $HClO_4$ requires special handling procedures because of the potential fire and explosion hazard.

SAMFK DESIGNS, FUNCTIONS AND TESTING

A Stibine/Arsine Monitoring Field Kit (SAMFK) was developed at ANL for the field collection and evaluation of the extent of SbH_3 and AsH_3 release. It has been used for monitoring these gases from cells under charge and in the ambient air near lead acid batteries.

The kit (See Figure 2) consists of a SbH_3/AsH_3 collection train, a Bendix Model BDX-56 Air Sampler Metering Pump, universal battery cap connectors and a hand held Bausch and Lomb Spectronic mini-20 spectrophotometer. The SAMFK was designed for collection of SbH_3 and AsH_3 gases directly from battery charge gas or ambient air and to permit on-site spectrophotometric determination of antimony in the absorber solution. The absorber solution is 3N H_2SO_4 containing 8% KI and 1% I_2 .

In the Battery Charge Gas Sampling Mode (See Figure 3) an appropriate battery cap connector is affixed to the watering hole of the lead-acid cell with the outlet tube of the cap connected to the gas inlet port of the kit. Air, under the action of the pump, is sucked through the cell-space above the moss plate, carrying with it the charge gases, the contaminated air is then bubbled through a 50 or 100 mL aliquot of absorber solution in the bottle labeled B001.

Ambient air can be sampled by the SAMFK (See Figure 3) at rates of 1 - 2 L per minute. The collecting of SbH_3 and AsH_3 is by a similar operation except that the battery cap is not used and air is admitted directly at the kit inlet port.

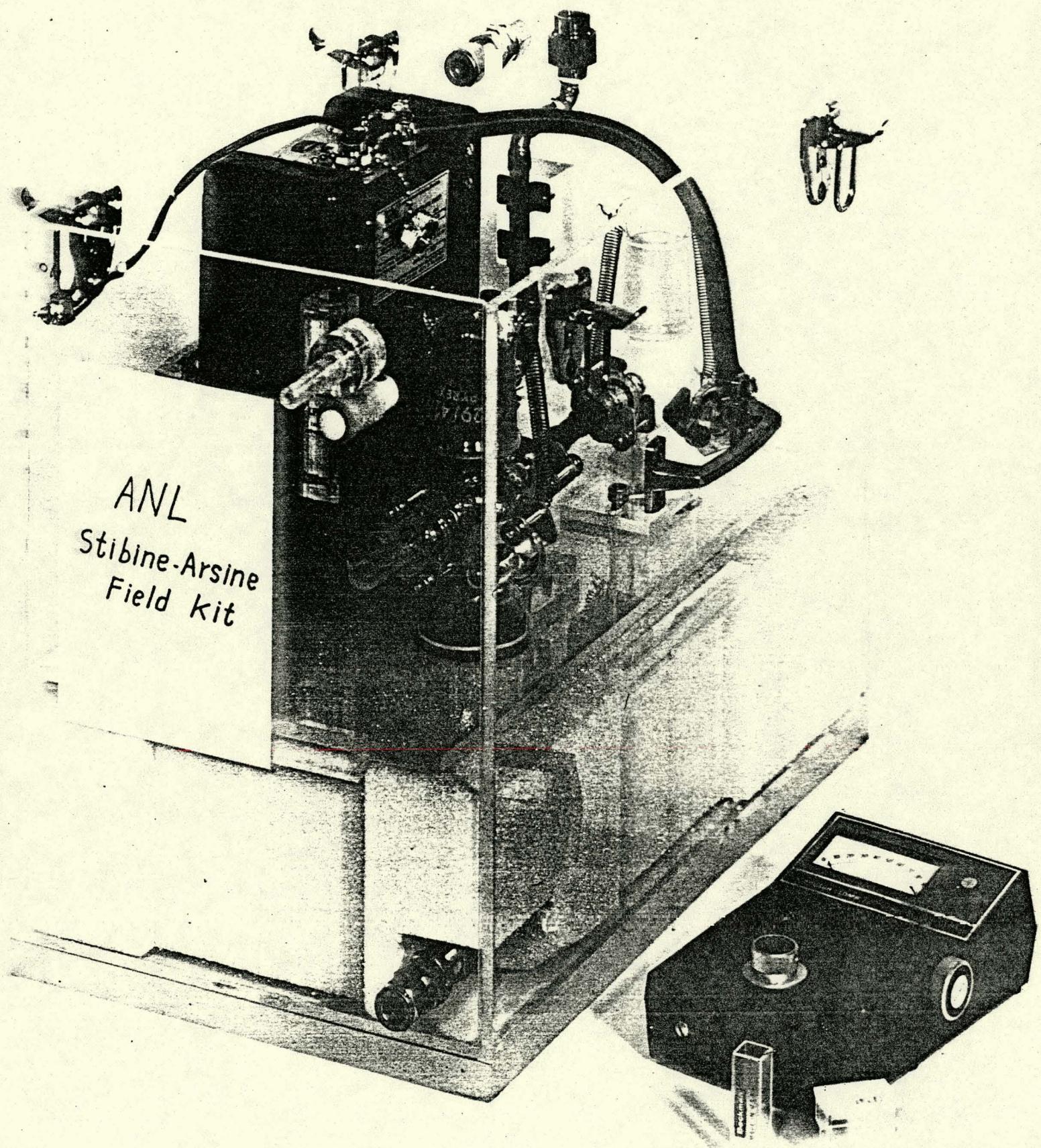


Figure 2. Stibine/Arsine Monitoring Field Kit (SAMFK).

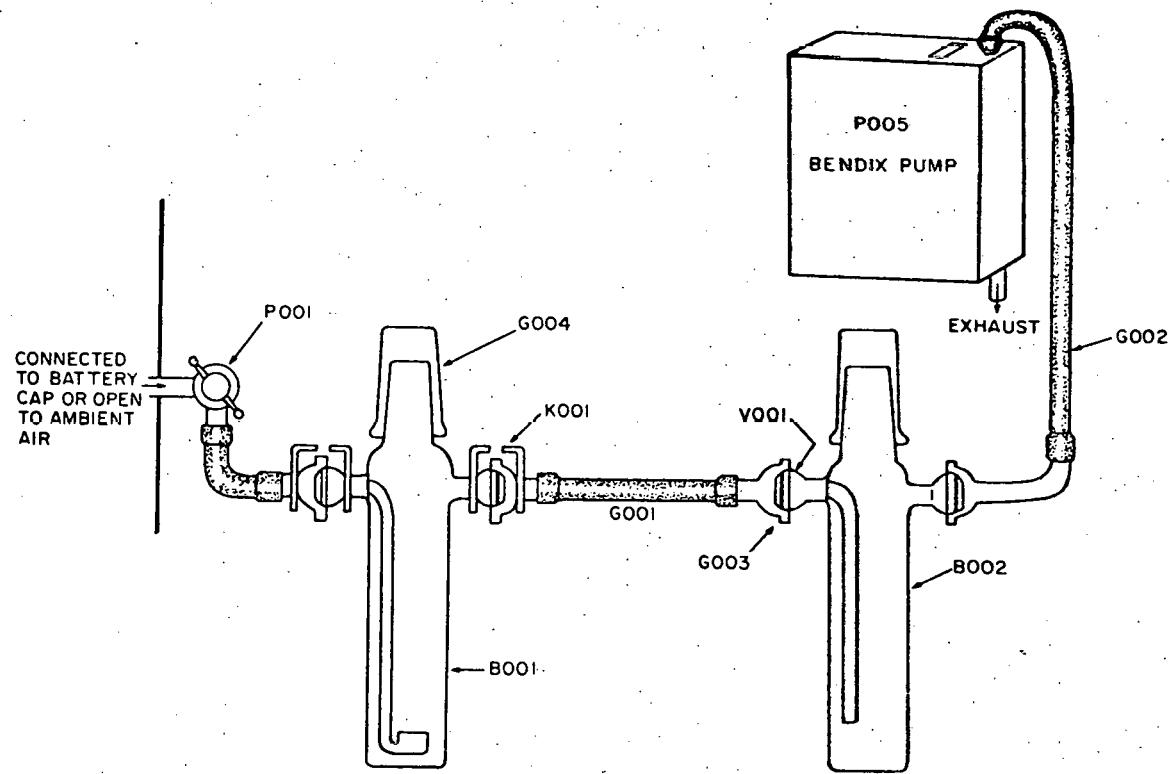


Figure 3. Ambient Air and Battery Charge Gas Sampling Modes of the SAMFK.

For on-site determination of antimony in the absorber solution, an aliquot of the solution is treated with H_3PO_3 and H_2SO_4 . The absorbance of the resulting solution is determined at 425 nm with the hand held spectrophotometer. Precalibration curves are used for converting the observed absorbance values into ppmv of SbH_3 . The arsenic content of the absorber solution is measured by an AAS procedure at an Analytical Chemistry Laboratory.

Two experiments were performed to assess the reliability of the mini-20 spectrophotometer for field measurements. In the first experiment, the absorbances of three absorber solutions containing known amounts of antimony were measured with the mini-20. The calibration curve was used to redetermine the antimony contents of the three solutions. The known and calculated values are shown in Table 2. In the second experiment ten solutions (total antimony of 7.6 to 18.6 $\mu g/ml$) were analyzed by both the mini-20 and a laboratory Cary-16 spectrophotometer. The ratio of the two determinations was $.953 \pm .047$, with one set of measurements responsible for about 90% of the error.

Table 2. Antimony Content of Three Known Solutions

Sample Number	Antimony Content, $\mu g/mL$		
	Known Value	Determined using mini-20 Spectrophotometer	% Difference
1	10.6	10.0	6.4
2	13.5	13.6	1
3	22.8	24.1	5.8

CONTROLLING EMISSIONS: USE OF HYDROGEN-OXYGEN RECOMBINATION DEVICE (HORD)

Design features for Hydrogen-Oxygen Recombination Devices (HORD), for use in conjunction with load leveling lead-acid cells, have been developed by VARTA A.G. under a subcontract with ANL. Further, a 435 W HORD (See Figure 4) has been fabricated and tested. Functionally the HORD can recombine stoichiometric H_2-O_2 with about 97% efficiency while scavenging the charge gas of much of the SbH_3 and AsH_3 content. The activated charcoal cartridge, the scavenging component of the HORD has been tested for its efficiency in removing SbH_3 and AsH_3 from battery off-gases.

Principle of 435W- Recombination Device

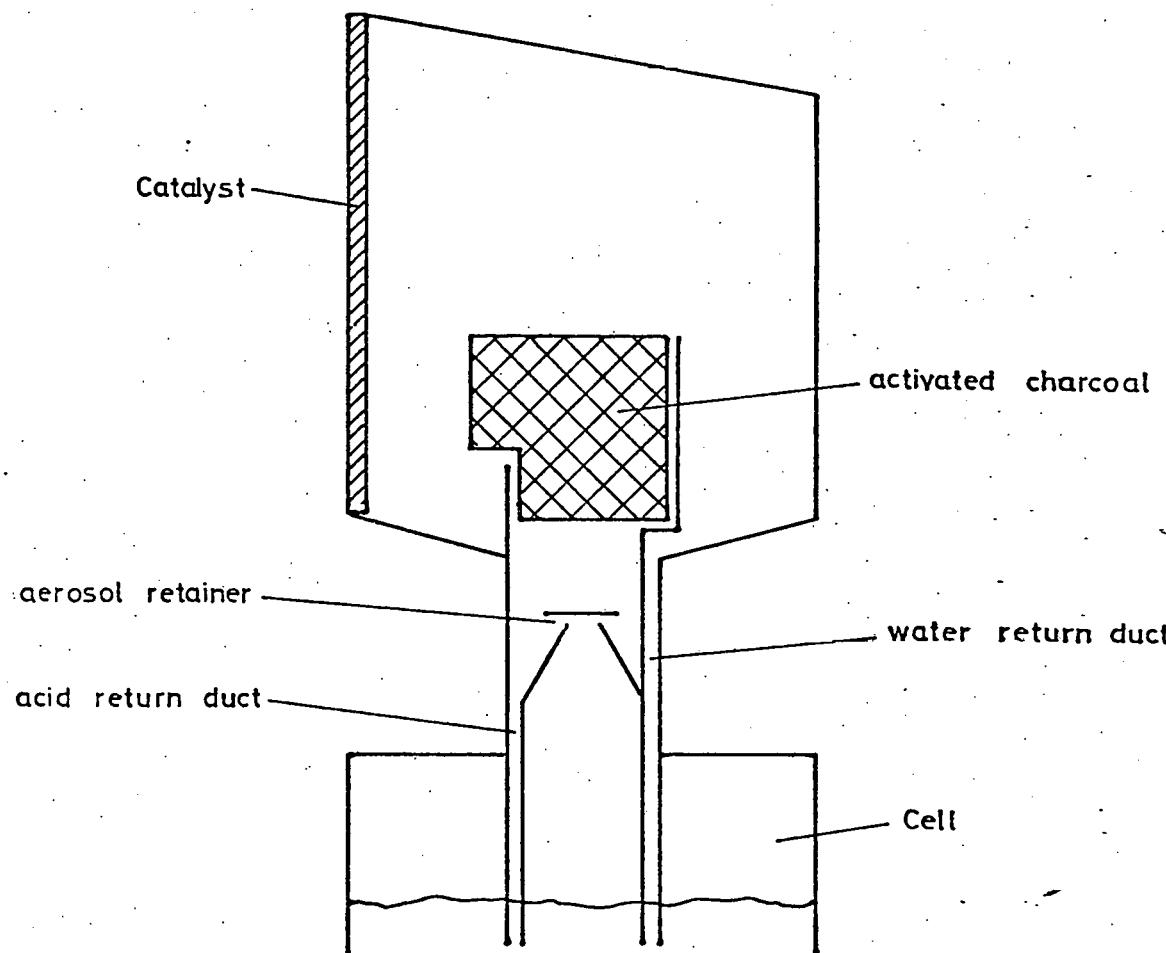


Figure 4.

ON-GOING TESTS FOR ELECTRIC VEHICLE DEMONSTRATION PROGRAM OF THE
DEPARTMENT OF ENERGY

The SAMFK developed at ANL is being used for collecting SbH₃ and AsH₃ from EV battery-off gases and from ambient-air during the charging of lead-acid batteries. Analytical procedures detailed previously² will be used for determination of antimony and arsenic in the absorber solution.

The experiments¹², currently under way, are designed to estimate the driver and maintenance personnel exposures to be expected from batteries used in electric vehicles. Data for in-vehicle, in-garage, and on-the road conditions are being collected. The information is expected to assure the continued safe use of lead-acid batteries in electric vehicles.

ACKNOWLEDGEMENT

This study was conducted for the U.S. Department of ENergy under Contract No. W-31-109-Eng-38.

REFERENCES

1. I. A. Aguf, M. A. Dasoyan, A. I. Rusin and A. P. Batin, "The Electrochemical Mechanism of Stibine Formation When Charging a Lead-Acid Battery", Sbornik Rabot Po Khimicheskim Toka Nauchno-Issledovatel, Skii Akkumulyatorniyi Inst., (6) 10-17, 1971.
2. R. Varma and N. P. Yao, "Stibine and Arsine Generation From Lead-Acid Cell During Charging Modes Under a Utility Load-Leveling Duty Cycle", Report ANL/OEPM-77-5 (1978), Argonne National Laboratory, Argonne, Illinois.
3. R. Holland, "The Evolution of Stibine From Lead-Acid Batteries", Proc. International Sym. Batteries, Christ Church, Hants, England, Oct. 21-23, (1958).
4. Kenzi Tamaru, "The Decomposition of Arsine", Report AD-065553, Defense Documentation Center, Defense Logistic Agency, Cameron Station, Alexandria, Virginia, (1955).
5. Kenzi Tamaru, "The Thermal Decomposition of Stibine", Report AD-065554, Defense Documentation Center, Defense Logistic Agency, Cameron Station, Alexandria, Virginia, (1955).
6. B. F. Dixon and P. R. Kiff, "Decomposition of Stibine", J. Appl. Chem., 8, 631-6, (1958).
7. S. F. Dudley, "Toxic Anemia From Arseniuretted Hydrogen Gas in Submarines", J. Ind. Hyg., 1, 215-32, (1919).

8. "Arsine (Arsenic Hydride) Poisoning in the Workplace", NIOSH Current Intelligence Bulletin 32, U.S. Department of Health, Education and Welfare, August 3, 1979.
9. "Threshold Limit Values for Chemical Substances in Workroom Air", adopted by American Conference of Government Industrial Hygienists, 1979, Cincinnati, Ohio.
10. D. E. W. Short and K. H. Wheatley, "The Determination of Stibine In Air", Ann Occup. Hyg., 5, 15-25, Pergmon Press, (1962).
11. W. Gann, "Bestimmung Von Arsin und Stibin in Permanentgasgemischen bei vorliegen eines Stibinuberschusses", Z. Anal. Chemie, 221, 254-260, (1966).
12. S. J. LaBelle, M. H. Bhattacharya, R. O. Loutfy and R. Varma, "Procedures for Safe Handling of Off Gases From Electric Vehicle Lead-Acid Batteries During Overcharge", Report ANL/CNSV-TM-8, 1980.