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STATISTICAL THEORY OF NEUTRON NUCLEAR REACTIONS*

by

P. A. Moldauer

Argonne National Laboratory
Argonne, 111. 60439

U.S.A.

ABSTRACT

The statistical theory of average neutron nucleus
reaction cross sections Is reviewed with emphasis on the
justification of the Hauser Feshbach formula and Its
modifications for situations including Isolated compound
nucleus resonances, overlapping and interfering resonances,
the competition of compound and direct reactions, and
continuous treatment of residual nuclear states.

*This work supported by the U. S. Department of Energy.



I. STATISTICS

We shall review theories of certain statistical properties of neutron
reaction cross section data. Statistics is a method for the partial de-
scription of sets of data. Specifically it relies on averages of the data
and of functions of the data. If {o.|l, 1, 2, ... N 1s a set of cross sec-
tion data, then one familiar set of statistics is the average {o^ = E^./N
and the central moments m.^q) = z^[a^ - <q^) v/N where m2(o) 1s the
square of variance s of {o..}. For two sets of data {a^}t {T^} one has a
matrix of central moments m v(o,x) = E . . ^ - ^o^J^-Cj - ^ T > ) V / N where
m ^ is the covariance of a and x and the correlation of a and T is
p = mi-j(o,T)/(s(o)s(T)). One obtains the autocovariance and the autocor-
relation p for a single set of data {a} by substituting in the above
expression o*+ for T^. These statistics are, of course, also applied to
continuous variables by substituting integrals for the summations.

The basic statistics that we will be interested in will be the en-
ergy averages of fluctuating neutron cross sections. Fig. 1 shows an
example of such a cross section and its energy average. Clearly, the
value of an energy averaged cross section depends upon the averaging in-
terval, both its size and its location. Each point in the average cross
section curve in Fig. 1 represents the average obtained over an interval
of 200 keV which is centered on the point in question. This is how we
interpret an energy dependent average cross section. Clearly one can dis-
cuss also the variance of such a cross section curve, its autocorrelation,
or other statistics which describe the fluctuations about the average. In
addition one can discuss the correlation between different cross sections,
such as the elastic and inelastic cross section, or the cross sections for
scattering at different angles, etc. These fluctuation statistics are,
however, of minor interest in applications.

Reaction theory describes the complicated energy fluctuations of
cross sections in terms of discrete sets of parameters, the "resonance"
or "pole" parameters. The aims of statistical theory are to relate the
average cross sections and their fluctuations to the statistics of reso-
nance or pole parameters, and to further relate the latter to physical
models and to basic principles. Some of these basic principles on the
distributions and correlations of resonance spacing and the distributions



1. High Resolution Neutron Total Cross Section
of Iron from 0.5 to 1.0 MeV, together with
a Running 200 keV Energy Average. (Data and
average courtesy of Dr. A. B. Smith).



of partial resonance widths were already discussed In the lectures of
Sec. II.6. And the relations of resonance statistics to physical models
were discussed in Sec. Ill on the optical model. We will briefly review
these matters as we need to.

II. NOTATION

A neutron nuclear reaction proceeds by the interaction of an Incident
neutron of a certain energy with a target nucleus (Z,A) which together
comprise a compound system (Z.A+1). Following the interaction the system
breaks up into one of several possible reaction channels consisting of
one, two, or more nuclei or nuclides having various internal and relative
states. A Roman lower case subscript a,b,c, etc. will be used to label a
specific such channel, that is the fragments present, their internal
states, and their relative states. In the case of a two product channel,
e.g., neutron scattering, the channel index incorporates the relative or-
bital angular momentum z of the fragments, the total angular momentum
j = i + s of one (usually the lighter) fragment, where s is that frag-
ment's spin angular momentum and the sum is, of course, the quantitized
vector sum, and the total angular momentum J = j + I where I is the spin
angular momentum of the heavier fragment. The relative energy of frag-
ments is not Included in the channel index as it will usually be the pa-
rameter to be averaged over. The Greek subscript y will be reserved for
gamma ray channels in which all possible gamma rays are lumped together.
The Greek subscripts a,3 will be reserved to indicate the alternatives
specifying only the fragments and their internal states.

States of the compound system (Z.A+1) will be labeled by lower case
Greek subscripts y,v, etc. These incorporate all internal quantum numbers
including the total angular momentum J and parity it.

III. ISOLATED RESONANCES [1]

When a low energy neutron interacts with a nucleus, one of two types
of things can happen. Either the neutron is scattered elastically with-
out involving the internal degrees of freedom of the target nucleus. This
1s potential scattering. Or the neutron Is absorbed by the target, form-
ing a compound system in one of a number of metastable resonance states.
These are states consisting primarily of bound single particle



configurations whose total energy is above the neutron threshold at the

energy of the scattering system. However, because of i t s coupling to the

neutron scattering channel and possible other open channels, having posi-

t ive channel energies, these resonance states do decay with a mean l i f e -

time which is T for the yth such state. The inverse of this l i fet ime

1/T = 2irr /h is the probability of decay of the state per unit time.

Here h is Planck's constant. The width r is the energy uncertainty of

the yth state in accordance with Heisenberg's uncertainty principle and

i t is proportional to the decay probabil ity per unit time of the yth state.

I f this state can decay into any one of several channels a,b,c, e tc . , then

there w i l l be decay probabil i t ies proportional to part ia l widths r g , r b ,

r c , etc. for each of these channels so that r = r
a
 + r b + r u c + ' * '

By reciprocity, the probabil i ty of formation of the compound state y

by absorption of an incident neutron i n , say, channel a is also propor-

tional to r „ , and the relat ive probabil i ty for decay of into channel b Is
pa

clearly r b / r . The cross section for the reaction proceeding from i n c i -

dent channel a to ex i t channel b through the compound state v is then pro-

portional to the product of r and r . / r and is in units of TT/IC
p yD el

From this i t is clear that the average compound nuclear cross section for

the reaction a,b within the energy interval A is

(3.2)
yeA*

Where D is the mean energy spacing of compound states with correct J and ir

in A and the bracket signif ies the average over compound states within A.

The average absorption cross section into the compound system from chan-

nel a is called the transmission coefficient Ta«
a

°a " Vab "!T\rya/y = V (3.3)

These transmission coefficients are specified by various physical

models for di f ferent types of channels, the optical model for neutron,



proton and other nuclear channels* and corresponding models for fission
and capture channels. These models are discussed elsewhere In these lec-
tures. We shall return to the optical model later.

With the definition (3 .3) , Eq. (3.2) can be rewritten as

-c .n . rtH.F.u /3 »\
°ab °ab wab l 3 » 4 ;

where the well-known Hauser-Feshbach formula

°5bF* * W V c (3'5)

1s completely specified by the transmission coefficients of all open chan-
nels, and hence by the physical models for these channels. The second
factor In (3.4) Is the width fluctuation correction

This factor depends upon the distributions and correlations of the
partial widths and we shall discuss I t further In the next section.

The total average reaction cross section consists of the sum of the
potential or direct scattering cross section and the average compound
cross section. In the absence of direct reactions, which wil l be treated
later , the only potential cross section Is the shape elastic contribution

Here <xf'e* = a j ! r * 1s also determined by the optical model, as wil l be
a oa

seen below.
IV. WIDTH FLUCTUATION CORRECTION

I t has become well established that the distribution of partial
widths for a channel as defined In Sec. 2 Is given by the Porter-Thomas
distribution law. According to I t the probability that for some state j
the quantity r a / ^ N has a value between x and x + dx 1s



Fp.T.(x)dx • (2wx)"V^cdx. (4.1)

This Porter-Thomas distribution belongs to the class of ch1-squared dis-
tributions with v degrees of freedom

where Fp T (x) = F-j(x) is the chi-squared distribution with one degree of
freedom. In Eq. (4.2) v can have any real positive value. I f the states
of a given 0, IT can decay into n channels, al l having the same Sv J^y ,

then we can consider the partial widths for decay into the alternative o
consisting of any one of these n channels. Clearly / r \ - n / r

and the r Q are distributed according to the chi-squared distribution with
n degrees of freedom F . For example, i f neutrons are scattered by a %*
target nucleus, then compound states of total angular momentum and parity
1- can be formed by the absorption of either a pj, or a p3»2 neutron. I f
the average partial widths for these two channels were the same, then the
total neutron widths for these 1- states would be distributed according
to the chi-squared distribution with two degrees of freedom F2(x) = %e"zX.
I f the transmission coefficients for Pj, and p^/9 n e u t r o n s w e r e n o* equal*
the neutron widths of 1- states would not have exactly any chi-squared
distribution but could s t i l l be well approximated by Fv(x) with v some-
where between 1 and 2.

Analyses of fission widths have shown that their distributions can
be approximated by chi-squared distributions with between one and four
degrees of freedom, depending on isotope and J. The gamma ray radiation
alternative consists generally of a large number of possible gamma ray
transition channels and is therefore best represented by a chi-squared
distribution of perhaps 10 or 20 or more. Since such distributions in -
volve only very small fluctuations about the average value, the total
radiation width is often assumed not to be fluctuating at a l l .
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From Eq. (4.2) 1t follows that 1f x 1s distributed according to Fv(x)
then

/ * > r<fc* fr) (4.3)

and the variance of x Is (2/v)%

I t Is useful to factor the width fluctuation correction into

Mab " 6abcab»

where

- (4.5)

and

P * ^ * (4.6)

Here Gab arises from the correlation between r a r b and r" which 1s due

to the fact that both contain r a and r, b . I t 1s easily shown that I f the

r are distributed according to the chi-squared distribution with vc de-

grees of freedom, then Gab can be expressed as the following single

Integral

-(%vc+6ac+6bc)
. (4.7)

A capture channel which Is assumed to have a non-fluctuating partial width

r wi l l contribute a factor exp(-tr Y ^ r ^ to the Integral of Eq. (4.7).

Some-examples of numerical values are shown In Fig. 2. The factor Cab

arises from correlations between the partial widths of channels a and b

for ch1-squared distributions can be expressed 1n terms of the partial

widths correlation coefficient pab

( 4 - 8 )
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In the absence of a direct reaction between channels a and b, pab 1s ex-

pected to vanish for a / b and of course pa » 1. Therefore
as

Cab a 1 + 26ab^va ^no d > l r e c t reactions.) (4.9)

The case of direct reactions will be discussed in greater detail later.

The factor Cab 1s seen to enhance the average elastic compound cross

section by a factor of 3 for the case of the Porter-Thomas distribution

and by a factor of 2 for the case of the v = 2 exponential distribution.

This enhancement Is compensated by a reduction of all cross sections due

to the factor G b of Eq. (4.7) so that the sum (3.3) 1s preserved.

I t i s , however, also possible for Ggb to be greater than unity [2].

This will occur where the transmission factors for channels a and b are

both very small (weak cross section) and when the total width 1s dominated

by one of a very few competing channels. In that case i t 1s useful to

factor Gab once more into

G = > W u ^ / r -Vr S (4

Here the f i rst factor is close to unity because r a and r i b do not con-
tribute appreciably to the magnitude to r . The second factor can be
evaluated

where r 1s distributed according to F . When v+ < 2 this factor ac-

diverges, though of course Gab will always be f inite. I t can be seen that

large enhancements of small cross sections are possible in this way. Ex-

amples of calculations of this effect are shown in Fig. 3.

V. S-MATRIX THEORY

The discussion of Sec. 3 is reliable only in the case of yery low

neutron energies, typically up to several tens of keV. With Increasing

energy, neutron partial widths increase and the number of open channels

also Increases, while the level spacing decreases. As a result at higher

energies the total widths become comparable to the spacings and the
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different resonances begin to Interfere with one another. A neutron can
then be absorbed coherently by two or more resonance states and this situ-
ation must be discussed quantum mechanically.

In quantum mechanics, the scattering system Is described by the
Schrodinger equation

( H - E ) f - O (5.1)

where H 1s the hermitean hamiltonian describing the interactions of the

system, E is the energy, and the wave function v describes all properties.

We are interested in scattering solutions of the Schrbdinger equation with

boundary conditions at infinity which specify an incoming spherical wave

of unit flux I a in channel a only and outgoing waves of unit flux 0,. in

all open channels c. The asymptotic wave function for this boundary con-

dition has the form

where the S-matrix components Sa. give the amplitude for transitions from

channel a to channel c. From time reversal invariance of H 1t follows that

S is symmetric

Sab " Sba« S " S" ( 5 ' 3 )

where S is the transpose of S.

For a general asymptotic wave <ras* = sax.v?s* the incident flux is

x |x | . The total outgoing flux is 2
abxaS2a

s
cbx5 which must equal the

Incident flux i f no flux is absorbed or created. This leads to the uni-

tarity property of S

A third property of the S-matrix follows from the causality principle.

According to i t the S-matrix considered as a function of energy has an

analytic continuation without singularities in the upper half plane. This

requirement can be understood by remembering that the time dependence of

the wave function has the form exp(-iEt/fr) where E is the energy of the

system. A complex energy state at a singularity of the S-matrix will have
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an exponentially growing time dependence for a singularity In the upper
half plane and an exponentially decaying behavior in the lower half
plane. The causality principle requires us to exclude exponentially grow-
ing states.

In the absence of any scattering S._ = 6__ and yts" = I . » 0_. Then
at ac a a a

we can write (5.2) in the general case as

\jras* = ( i « o ) - I (S - 6 )0
a v a a ; cv ac ac' c

*.,nere the f i rs t parentheses represent the unscattered wave and the sum
represents the scattered wave. The cross section for the process a -*• b
is now just the scattered flux in channel b for incident unit flux in
channel a which in our units is

I wi l l generally discuss this cross section (5.5) because 1t 1s the
simplest example of the kind of bilinear expression in the S-matrix ele-
ments that occurs in al l observable cross sections. On the other hand. I t
is important to remember that the expression (5.5) which represents a re-
action proceeding from one particular partial wave to another Is seldom
of practical interest. The quantities that are of practical Interest are
the following.

The differential cross section for the process originating with an
incident wave in the alternative o and a scattered wave in the differential
solid angle da at scattering angle e in the alternative g is given by

do e(e) ,

- S — h W L < C O S e> <5-6a>
where the P, are the Legendre polynomials of integer order L. For the case
where the projectile in both alternatives a or p has either spin 0 or
spin h* \ can be written

BL f j V P A l 3 j

Va»Vs
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and

and the karet means k = (2k + I)3*. The round bracket In (5.6c) is a Wigner
3j coefficient, the curly bracket is a 6j coefficient, and the sum in (5.6b)
is over total angular momenta J,J* and parities ir,n' as well as over all
four orbital angular momenta % and al l four projectile angular momenta j ,
primed, unprimed, a, and g. sa and I a are the projectile and target spins
in a.

Integrating Eq. (5.6) over al l solid angles, we obtain the Integrated
cross section

o = s, . . gJfi 8. . - SJ>1I . | 2 (5.7)

which 1s a sum over terms (5.5) with coefficients

9j - (5 / f a s o ) 2 . . (5.7)

Summing (5.7) over all p yields to total cross section

°a ~ J,n,£ ,j 9J *• ^J«»a™»J™
OS OE Gt U Ot Ot

which depends linearly on the real part of the diagonal S-matrix elements.

VI . S-MATRIX PARAMETERS AND THE OPTICAL MODEL

The energy variations of the S-matrix elements arise from two types
of singularities in the f ini te energy plane. Branch points at the thresh-
olds of channels and poles or other singularities in the lower half plane.
The threshold branch points won't concern us here. We can always arrange
al l branch cuts so that they do not fa l l along our averaging Interval.
Also the energy dependences produced by these branch points are generally
yery weak. Only in the immediate vicinity of an s or p-wave neutron
threshold Is i t generally necessary to be cautious. Similar statements
apply to the contribution of entire functions to the S-matrix elements.
Among singularities in the lower half plane, single poles are of greatest
Interest to us because, as we shall see, they correspond to the compound
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state resonances of Sec. 3. Accordingly we write the S-matrix for a given
J, n in the foniiof the pole expansion

1, • -• I,
This formula requires some discussion. The justification for the factor-
ized form of the pole residues will emerge later. The backbackground term
S t is smoothly varying in the energy interval of interest and arises from
distant singularities as well as the contribution of entire functions.
Generally we shall assume that S can be approximated by an energy Inde-
pendent constant matrix in our energy interval. For purposes of statisti-
cal analysis it will be useful to be able to consider the poles of S to
consist of an infinite ergodic sequence extending from ReE s -» to +• with
constant statistical properties, i.e. constant averages, distributions and
correlations of the pole parameters E , r and g . This can be done by

V V 'PC

defining a region in the energy plane such that poles within that region
(near poles) contribute to the energy variation in our interval, but singu-
larit ies outside that region (distant poles) do not contribute s igni f i -
cantly to that energy variation. Then we define a statistical S-matrix
which has the form (6.1), where the pole parameters form an inf inite
ergodic extension of the actual parameters of the near poles. Then S
contains the contribution within the energy interval of interest of the
difference between the actual distant poles and the distant poles belonging
to the ergodic sequence. In what follows I shall always assume such a
statistical S-matrix [3].

We f i r s t confirm that the S-matrix (6.1) yields isolated resonances
D

as in Sec. 3. Considering only the simplest situation where S°b = « a b, we
obtain from Eqs. (5.5) and (6.1) for the nth isolated resonance

>(E)

and integrating this over energy the total contribution of the nth reso-
nance to the cross section is
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which by comparison with Eq. f3.1) yields

r „ = |g I , r k = |g Kl .ya ya yt) yD

It i s also eas i ly verif ied that this identif ication with r = r
a
 + r b +

. . . guarantees the unitarfty of the S-matrix when only a single resonance
term 1s Included.

When more than one resonance term Is Included in the sum of Eq. ( 6 . 1 ) ,
and in particular when the widths of such resonances are comparable or
greater than their spacing, the conditions which unitarity of S Imposes
on a l l the resonance parameters become exceedingly complex. Me return to
that problem later . Of course the S-matrix of Eq 6.1 i s symmetric pro-

D

vided S is symmetric and i t is causal i f all r are non-negative.

In order to calculate the average cross sections from the S-matrix
(6.1) we write

S = S + Sf* (6.2)
B

where S is the energy averaged S-matrix and since we regard S as constant
we have

• ^ - D ^̂ B

(6.3)

and averaging Eq. (5.5) we have

°T- * -2 «•«
where

dir. _°ab

°ab

(6.5)

(6.6)

The problem has evidently been split Into two parts, finding the average
S-matrix for Eq. (6.5) and finding the average absolute square of Sfl for
Eq. (6.6).
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Considering first the problem of the average S-matrix we have from
Eqs. (6.3) and (6.1)

> ( 6-7 )

where now D is the mean spacing of the E and the bracket ^ / indicates
an average with respect to y. We now demonstrate a result [4] about ^ by
means of integration around the two contours in Fig. 4. The contour in
Fig. 4a encloses no singularities and therefore the Integral of S(E) around
this contour vanishes. If we assume that on the average the contributions
from the two vertical members of the contour cancel and that S(E + 1W) on
the upper horizontal member is sufficiently constant for sufficiently
large W, then we have

5"= S(E+ iW) (6.8)

where in fact W is of order of the averaging interval for 5". The contour
of Fig. 4b encloses the poles in the interval AE. Assuming again that the
contributions from the vertical members cancel, we have

^ A a V ) = A E I S a b < E " i w > - S a b ( E + i W ) ] >

which together with the analytic continuation of the unitarity relation

S(E*) = S*- ](E),

gives using Eq. (6.7)

(6.9a)

from which

SB = ^ r + S*"1). (6.9b)

This allows us to express each part of 5" in Eq. (6.7) in terms of S" itself .

Next we note that Eq. (6.5) looks just like the cross section formula
(5.5). We may suppose therefore that there exists an interaction hamil-
tonian H°*M* that gives rise to 5" in the same way that H of Eq. (5.1) gives

O M

rise to S. This optical model hami 1tonian H produces then the direct
cross section a in the same way that H produces a. Provided the flue-
tuation cross section a does not vanish, 3" cannot exhaust the incident



4. Integration Contours Used in Deriving Eqs. (6.8) and (6.9).
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flux and is therefore non-unitary and hence H must be non-hermitean,
causing absorption of flux. Subtracting

j 2(1 - ReS^) (6.10)

from the sum over b of Eq. (6.6) we find that the unitarity defect of 5"
gi ves

1 - zbl*abl2 = V lb -= V ( 6 J 1 )

By the unitarity of S, the optical model transmission coefficients Ta

cannot exceed unity

Ta < 1 (unitarity). (6.12a)

Similarly causality, which limits absorption into decaying states only,
requires that !T be absorptive rather than emissive, thus limiting Ta to be
positive

T > 0 (causality). (6.12b)

For the present we wi l l restrict ourselves to the case where IT is d i -
agonal. Then the optical model is a separate scattering model in each chan-
nel a with an absorptive complex potential. Then there are also no direct
reactions o°l only an elastic potential scattering cross section

o 0?
act a

T
a = 1 - |5"«l2 . (T diagonal). (6.13)
a ad

From this and Eqs. (6.7) and (6.8) we have [4]

Another relationship valid for diagonal 5" is

" Ta). (6

For the isolated resonance l imit Eqs. (6.14) and (6.15) reduce to

•• T a , (T « 1) (6.16)

which verifies Eq. (3.3).
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We give the proof of Eq. (6.15) in the form given by Simonius [5] .
Since S 1s unitary, det S 1s unimodular and since 1t 1s assumed to have
only simple poles and the pole residues factor, forming a rank 1 matrix,
we can write It In the form

then to f irst order in the inverse averaging interval W"

In d e t ^ s ) = In det S(E + iW) = s r . e v
+ JU + 21*

~w
The last sum vanishes for the case of the statistical S-matrix because the
terms are odd in (E - E ) and from the real part of this equation the
channel sum of Eq. (6.15) follows.

Eqs. (6.11), (6.14) and (6.15) relate averages of S-matrix param-
eters to the optical model. To evaluate the fluctuation cross section re-
quires also knowledge about the distributions of these parameters. We now
turn to this question.

VII, R-MATRIX THEORY

The unitarity condition Imposes severe restrictions on the S-matrix
parameters. This can be seen from the fact that a unitary symmetric matrix
has only half as many Independent components as a general complex symmetric
matrix. Since S(E) must be unitary for each value of the energy E and since
some r/D resonance terms contribute to S at each energy, i t 1s clear that
unitarity must Impose complicated correlations upon the resonance parameters.
One way of avoiding this difficulty i s by defining the S-matrix in terms of
R-matrix states. The R-matrix states are solutions of the Schrodinger equa-
tion (5 .1) , subject to a boundary condition at the nuclear surface so that
the solutions are stationary, real states <t> with real energies E . The
real symmetric R-matrix formed with these states is

R . = RB
U + E foV (7.1)

ab ab y c - t



21

where

is the real overlap on the nuclear surface of the solution <|> with the
B

channel wave function 1(1,. The background R-matrix R is assumed to be
Bconstant in a stat ist ical R-matrix in the same way that S was constant

in the stat ist ical S-matrix.

I t is generally expected that the statist ical distributions of the E

and the y . are represented by the distributions of the eigenvalues and

the eigenvectors of the orthogonal matrix ensemble as discussed in

Sec. I I . 6 . Therefore the spacings of the E follow the Wigner distr ibu-

tion and the y are normally distributed with zero mean for varying

state index u and given channel a. The Y - for different channels are ex-pa
pected to be stat ist ical ly independent.

A relation between the R and the S-matrices is obtained by expanding

the solution of the Schrodinger equation with scattering boundary condi-

tions (5.2) in terms of the R-matrix states with boundary conditions at

the nuclear surface. This expansion inside the nuclear surface 1s then

f i t ted to the known channel wave functions in the exterior. In this

procedure the channel wave functions are described by channel phase shif t

X- and by channel sh i f t and penetration factors Ŝ  and P . These make up

the two complex diagonal channel matrices

& = e"1*, L° = S° + IP. (7.2)

With the help of these the relationship between R and S is expressed by
the following channel matrix equation

S = aP*(l - RL 0)" 1*! - RL°*)P"^ (7.3)

we can establish the connection between the R-matrix parameter statist ics

and the optical model by evaluating Eq. (7.3) at the energy E + iW and

assuming n and L to be constant within the averaging interval W. Then

we get for diagonal 5"
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1 LcRcc

where

*cc s Rcc ( E + iW) * R?c + ** ^ H ¥ (7*5)

and where D is the mean spacing of R-matrix states E . Since xc and L|! are
known functions of the energy in channel c, Eqs. (7.4) and (7.5) uniquely
determine the two statistical R-matrix parameters RJ!C and ^ Y C 2 ^ / ° ^
terms of the real and imaginary parts of the optical model S-matr1x 3"cc.
This, together with the statistical assumptions discussed above, and an
appropriate choice of the level density D makes i t possible to construct
a unitary statistical S-matrix and cross sections from the optical models
for any number of competing channels with arbitrarily large values of r/D.

The steps 1n such a procedure are outlined in Fig. 5. First the
Schrodinger equations with the optical model potentials are integrated to
give the optical model S-matrices. !T in all channels. Then Eqs..(7.4)

Rand (7.5) are solved for R° and \y _2>/D for all channels. Then
R-matrix parameters E and y c are selected by a random number generator,
so as to agree with the above value of ^ y -2^/D and to yield the appro-
priate level density and distribution laws. From this parameters and
energy dependent R-matrix is constructed, using Eq. (7.1) from which our
energy dependent S-matrix is calculated using Eq. (7.3). Energy dependent
cross sections are then calculated using Eqs. (5.5) to (5.9). These en-
ergy dependent cross sections can then be compared with experimental high
energy resolution measurements, or they can be averaged and statistically
analyzed to compare with theoretical predictions. A computer program
STASIG has been written to perform such calculations [6]. Fig. 6 shows
an example of differing cross section fluctuations obtained wi#h two
optical models which yield equivalent average total cross sections.

With the help of the R-matrix formalism i t is also possible to deter-
mine numerically the pole parameters Ê  and g â of a unitary S-matrix.
This is done with the aid of the level matrix L with components
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OPTICAL MODkL: Vc+iWc (Vc<, +iWcd)

i
AVERAGE S-MATRIX: S

Shape elastic, total
( direct )

cross sections

Level density,
spacing and gamma

distributions
R-MATRIX: R

.1...
S-MATRIX: S

Cross sections
Averages
Fluctuations

5. Method Used in STASIG to Generate Statistical Cross Sections.
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6a. Example of STASI6 Generated Cross Total Neutron Sec-

tions for Titanium. The top curve is the experimental
result. The middle curve was generated from a coupled
channels optical model, the bottom for a single chan-
nel optical model.
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whose eigenvalues are the S-matrix poles E - %1r and whose eigenvectors

r y * specify the S-matr1x pole amplitudes by

One Important parameter that arises in the level matrix formalism Is

the level normalization

N = z | T ( I J ) | 2 > 1 (7.8)

which enters Into a relationship between the pole width r and the pole

amplitudes g _
via

rp = £a |gy a l2 /Nu (7.9)

for every pole u. This formula permits n definition of partial widths

which add up to the total width.

The difficulty encountered In using this level matrix formalism nu-

merically arises from the fact that i t cannot be applied to a statistical

S-matrix, but only to or* with a finite set of poles. Here one encounters

systematic end effects and large level matrices must be constructed In

order to yield a satisfactory sample of poles In the middle of the energy

Interval where they are not disturbed by end effects [7]. However the

method has been successfully applied 1n the computer program MATDIAG to

confirm the relations (6.14) and (6.15) over a wide range of parameters

[8] . I t has also been learned from such studies that for large r/D, the

level correlations of the Wigner distribution tend to disappear and the E

tend to be distributed only with an exponential spacing distribution
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(see Fig. 7). On the other hand the widths in such cases tend to have a
broader distribution than would be expected from sums of partial widths,
each having the Porter-Thomas distribution law (see Fig. 8) . It was also
found that the average of N Increases with Increasing r/D. We shall re-
turn to further applications of this method 1n the next section.

VIII. THE FLUCTUATION CROSS SECTION

Our aim here Is to evaluate the average reaction cross section 1n
terms of optical model transmission coefficients and general stat ist ical
laws. Since the direct cross section (6.5) 1s , for diagonal 3", already
given by the optical model, we turn to the fluctuation cross section (6.6) .
By Eqs. (6 .1) , (6.3) and (6.7) we find that [3]

with the definition

where N Is the normalization parameter of Eq. (7 .8) , we can rewrite (8.1)

Ta + h Mab

where

and

The similarity of the first term In Eq. (8.3) with Eq. (3.2) suggests
that we use the notation of Sec. 4 to write

^ - V (8-6)



28

i
ID

8
I

O

2

id
CD

WIGNER DISTRIBUTION

EXPONENTIAL DISTRIBUTION

HISTOGRAMS: DISTRIBUTIONS OF 245 S-MATRIX POLE
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7. MATDIAG Generated Changes in the Level Spacing Distribution
with Increasing Numbers of Competing Strongly Absorbed
Channels (histograms).
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CURVES

HISTOGRAMS

PORTER-THOMAS DISTRIBUTION

TOP, DISTRIBUTION Of 290 R-MATRIX

PARAMETERS y *

BOTTOM. DISTRIBUTION OF 250 WIDTHS
SINGLE CHANNEL WITH T»0.89
5 SETS OF 90 RESONANCES

8a. MATDIAG Generated Changes in the Total Width Dis-
tribution with Increasing Numbers of Competing
Strongly Absorbed Channels, (histograms). The
curves are the distributions that would be expected
from independently Porter-Thomas distributed partial
widths.
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8b. MATDIAG Generated Changes in the Total Width Dis-

tribution with Increasing Numbers of Competing
Strongly Absorbed Channels, (histograms). The
curves are the distributions that would be expected
from independently Porter-Thomas distributed partial
widths.
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with

(8.8)

where we have assumed that the distribution of e a can be described by the

chi-squared distribution with vg degrees of freedom and where the channel

correlation coefficient p ^ is given by

(8.9)

At this point one might hope that the term Mab might vanish at least

in the limit of large r/D, leaving again a simple Hauser-Feshbach formula.

Unfortunately, as was pointed out by Ueidenmuller [9 ] , this 1s not pos-

sible. For, comparing the average of (8.2) with Eq. (6.14) and substitut-

ing this with Eq, (8.4) , we find that

Z.M. > T ( - = = : - 1 ) (8.10)
b"ab - a U"l - V /

which diverges as Tfl approaches unity.

To make further progress i t is useful to analyze a simple case which

is described by a limited number of parameters and yet has arbitrarily

large r/D. This is the case of n statistically equivalent channels [10].

By this we mean that

Tc = T, vc = v for all c = 1,2,3, . . . n

(8.11)
pcd ~ p for a1^ c ?* d.

Then also for al l distinct c and d from 1 to n

Ccc
ccd
Mcc
M .
c

= 1
= 1

= M
5 P

= G.

+
+

2/v =
2p/v

-

s

C
= D -

n

(8.12)

C + \n -
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Upon substitution Into Eqs. (8.7) and (8.8) we find that

•2 • T T ^ r J L j : J-f M - fr) <8-13a>•2 • T T ^ rJLj:J-fM - fr)

"2 • n - 1 •£ + n -

The actual behavior of these parameters was studied by means of
MATDIAG calculations using channel numbers which varied from 5 up to 15 and
using various values of channel transmission coefficients T distributed be-
tween 0 and 1. In all cases the results Indicated the relationship 110]

C'=§-{} (8.14)

which makes the second terms in Eqs. (8.13) vanish and leaves

ft.
] + > < c > - ]> T , 8 1 5 )

acd " C + n - 1 — T (8*15)

which is precisely the width fluctuation corrected Hauser-Feshbach formula

for n equivalent channels each having transmission coefficient T and par-

t ial widths that are uncorrelated between different channels and are dis-

tributed according to a chi-squared distribution with v1 degrees of freedom

where

C - 1 + 2 / v \ (8.16)

Furthermore, the values of v1 deduced from the MATDIAG calculations showed

that v1 varied from a value of 1 for small values of T to a value of 2 for

values of T near unity. Tepel, Hofmann and Weidenmuller [11] have given

the following empirical formula for the dependence of v' on T.

c c

v1 = 1 + •yT. (8.17)
Another slightly different graphical relationship is shown in Fig. 9.

The Porter-Thomas distribution v1 = 1 characterizes a random variable

which is the square of a real normally distributed variable with zero mean.

The exponential v' - 2 distribution characterizes a variable that 1s the

sum of squares of two such real normally distributed variables with equal
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dispersions, or in other words the absolute square of a complex number
with normal real and imaginary parts, isotropically distributed 1n the
complex plane about the origin. This suggests that we consider a complex
random variable t a for every channel a, having normally distributed real
and imaginary parts with zero means such that

Ta

and

I f we now require

( 1 + x a ) 2 , ,f— = v« (8.20)
3

then | t a | has the same dispersion as the chi-squared distribution with
vi degrees of freedom, and is in fact quite close to i t .

a

We can now summarize the development which started with the considera-
tion of n competing equivalent channels in Eq. (3.11) by saying that

y

with the specifications (8.18) through (8.20) and with va given by (8.17).
The final calculation of Eq. (8.21) proceeds then exactly in the way dis-
cussed in Sec. 4 for the Hauser-Feshbach formula with width fluctuation
correction. Analogously we can evaluate other averages, such as

t2 t*2
_fo«.fo* ua ub
S S j . I L =

 Q

(8.22)

-. - 1) *fL
\w I - a h *

while for the case where F Is diagonal, al l averages such as \ s a 5 S a c * /
which involve indices that are not repeated vanish.
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These results have been found consistent with MATDIAG calculated
samples also in cases of tnequivalent competing channels. They will be
referred to as the M-cancellation formulas because they depend crucially
on the cancellation of the M term in Eq. (8.6) by the channel-channel cor-
relation effect as expressed in Eq. (8.14).

In evaluating average differential cross sections, we average
Eqs. (5.6) which requires the evaluation of averages of the type

ab S a V

According to the above we have three types of nonvanishing contributions
from (8.23). The first comes from terms of the type of Eq. (8.21).

n7abab
,ir C

The second contribution comes from terms of the type of Eq. (8.22)

TTGaa<Caa' <8*25)l " 1) < !• " I) rTTGaa<Caa
a a C C

The third contribution occurs for compound elastic scattering of neutrons
from odd-A targets and arises from spin-flip elastic scattering

JJ\*abVrrababc c

Besides the M-cancellation formula of Hauser-Feshbach times width
fluctuation correction, there exists an empirically derived formula, based
on calculation of the STASIG type which in many instances gives results
very similar to the M-cancellation formula. According to Tepel, Hofmann
and Weidenmuller [11]

"ab • V b
(8.27)
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This formula also depends only on the channel transmission coefficients

and the channel parameters vc which have essentially the same numerical

values as In the width fluctuation correction. Instead of evaluating the

integrals (4.7) of the width fluctuation correction, Eq. (8.27) requires

the solutions of the coupled equations for Xa in terms of the transmission

coefficients which are then used to evaluate the fluctuation cross sec-

t ion. Numerically there appears to be l i t t l e advantage of either pro-

cedure. The major difference arises in cases such as discussed in

Eqs. (4.10) and (4.11) which give rise to enhanced nonelastic cross sec-

t ions. This effect is not predicted by Eqs. (8.27). In the l im i t of

large r/D when va = 2 for a l l channels, Eq. (8.27) becomes identical to a

formula proposed by Kawai, Kerman, and McVoy [12].

IX. DIRECT REACTION EFFECTS

We now give up the assumption that 5* is diagonal. Then the optical

model becomes a coupled channels model in which, in addition to the com-

plex potential for each channel there are coupling potentials between chan-

nels. Such a generalization is part icularly important in the excitation

by neutron inelast ic scattering of vibrational or rotational collective

states of the target nucleus.

One immediate effect of a nonvanfshing !T k is suggested by Eq. (6.7).
B

Unless only S_\ contributes to 5" • - there w i l l also be contributions from

s\ - - i r ^g g k \ / D and hence the pole amplitudes g a and g b for the two

channels a and b w i l l be correlated. In the isolated resonance l i m i t this

produces a nonvanishing correlation p.k between the part ial widths
? 2 oD

r = |g a | a n d r h = l g b' ' w n i c n » b v t n e width fluctuation correction

factor C b of Eq. (4.8) causes an enhancement of the average compound cross

section between channels a and b. In the isolated resonance l im i t this

enhancement can be calculated from the coupled channels optical model value

of 5". But for appreciable r/D we must again turn to S-matrix theory.

The crucial technique for treating such cases is the Engelbrecht-

Weidenmuller transformation [13] which permits one to transform to the

case of a diagonal 3", calculate a for that diagonalized 5" in the manner

of Sec. 8, and then transform the result back to the non-diagonal case.

This transformation is best described in terms of Satchler's hermitean
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penetration matrix P which is a generalization of the optical model trans-
mission coefficient for non-diagonal T 114]

P.b " «ab - scVfcc' P-l-551". (9.D

The transmission coefficients (6.11) are then just the diagonal elements of
the P-matrix. Unitarity s t i l l requires these transmission coefficients to
be no greater than unity

T = Pa < 1 (unitarity) (9.2)

a act •"

It can also be shown that causality now requires that

P is positive semidefinite (causality) (9.3)

which means that all eigenvalues of P are non-negative. I shall refer to
the case where P is a singular matrix, i .e . , has a vanishing eigenvalue
as the causality l imit .

The Engelbrecht-Weidenmiiller transformation is the unitary transforma-
tion U that diagonalizes P

UPU'1 = P1 is diagonal. (9.4)

I t follows that

USU = S1 is unitary i f S is (9.5)

and that

USU = 71 is diagonal. (9.6)

In the case of two coupled channels we can write

f3e ie3

and

- {«**U - [ c o s p " s i n t i W e
 A } (9.8)

cosp/ I 0 «
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and find that

f2sine2 3

f2cos023

2f3
ta" 2 $ =

2 2 3 - a ) - ^ C O S { 0 2 3 - a )

where

For three or more coupled channels the direct effect wi l l in general not
be very significant as we shall see. In such cases numerical diagonaliza-
tion of P is required.

Using Eq. (9.5) the fluctuation cross section ol£ can be written in
terms of the elements of S1. In this expression averages of the form

V*ab cd * / o c c u r * ^rom t n e discussion in Sec. 8 we know that the only
non-vanishing such averages are of this form

(9.10)

which is evaluated in terms of the elements T1 of P1 by means of the width
fluctuation corrected Hauser-Feshbach formula as in Eq. (8.21), or they
are of the form

by Eq. (8.22). With these results we get [15]

Hofmann et a l . [16] have evaluated a very similar formula differing
only in the evaluation of the matrix elements (9.11) and employing the



39

Tepel formula (8.27) for the evaluation of a ' ^ instead of the width

fluctuation corrected Hauser-Feshbach formula. Kawai et a l . [12] have

given the following formula which gives equivalent results only in the

l im i t when a l l v ' = 2

°ab = XaaXbb + XabXba
(9.13)

Pab " =c<
xabxcc + XacXcb'

In addition to the fluctuation cross section (9.12) we w i l l in general

also have a direct contribution to the average reaction cross section due

to Eq. (6.5).

For a f b the cross section (9.12) can be enhanced over the value one

would obtain with the ordinary width f luctuation corrected Hauser-Feshbach

formula. This is because of the occurrence of the correlation enhanced

elast ic fluctuation cross section ayj1 in the primed channels in the f i r s t

sum of Eq. (9.12). The enhancement of ay w i l l be greatest when the rela-
cc

t ive contribution of this f i r s t term is greatest. The maximum effect w i l l
occur when P has only one non-vanishing eigenvalue, for then only one

f j
diagonal primed cross section a ' ' can contribute, a l l others vanishing.

In this case, c lear ly, the direct enhancement 1s of the order of the

elast ic enhancement, namely 1 + 2/v. The above situation where eigenvalues

of P vanish is what we have called the causality l i m i t . I t 1s l i ke ly to

be achieved only 1n the case of two strongly coupled channels.

We have investigated the behavior of the direct enhancement for two

classes of average S-matrices involving only pairs of coupled channels

V 5 ® A, A- (fD ™)
(9.14)

V 5 ®B ' B=
D - F )

Here 5 g> A means that 3"A is a 10 x 10 matrix consisting of f ive ident i -

cal 2 * 2 blocks A along the diagonal. Both ^ and ?B represent two

parameter families of average S-matrices depending on F and D. The non-

t r i v i a l submatrices of the P matrix in the two cases are
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'• • (Iz
* ' l -21FD T > (9.16)

>."(oT?)
with T • 1 - F - D 1 n both cases. In case B the causality limit
det PB - 0 coincides with the usual limit T * 0 and imposes no separate
restriction beyond F + D <, 1. However 1n case A, the causality condi-
tion requires

F + D <. 1 (case A) (9.16)

and we expect a maximum enhancement of the non-elastic cross sections be-
tween any two directly coupled channels. Fig. 10 shows the parameter space
of the two average S-matrices of Eq. (9.14) and the calculated compound
enhancements over the Hauser-Feshbach formula according to Eq. (9.12). As
expected the enhancements are largest and comparable to elastic enhance-
ments along the causality l imit (9.16) and the enhancements quickly drop
off as one moves away from this l imit . In the case of 3j> where the caus-
a l i ty l imit Imposes no restriction on the available parameter space, there
are no appreciable enhancements except along the line F = 0 which case B
shares with case A.

The predictions of the direct enhancement 1n these and other cases
have been confirmed by computer studies with randomly generated unitary
S-matr1ces. In Fig. 10 the parameters of such computer studies are Indi-
cated by black dots.

X. CONTINUOUS CHANNELS

With Increasing neutron energy the number of open exit channels In-
creases rapidly until I t Is either impossible or undesirable to enumerate
a l l such channels and discuss their cross sections in detai l . I t then
becomes necessary to discuss the differential cross section for leaving
the residual nucleus with an excitation energy within a differential
Interval at E .̂

d f* , (cont.) f , ,
P A ( E J (10.1)
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10. Distribution of Enhancements of Average Compound Cross
Sections Due To Competing Direct Reactions for Two
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where o£d(d1scr.) is the cross section for excitation of a discrete
channel with residual nuclear excitation Ed, and Pd(Ed) Is the level den-
sity at excitation Ed of the residual nucleus in channel d for states
having spin and parity specified by the channel index d.

I f the dependence of pd upon the relevant residual spins I d is given
by the factor (2Id + 1), then i t can be shown that the fluctuation cross
section (10.1) summed over I d is isotropic. Though this spin dependence
of pd is not correct, the anisotropies of fluctuation cross sections at
such high energies are expected to be small and can often be ignored.

Also, in the presence of large numbers of competing channels, the
width fluctuation correction and direct effect upon non-elastic fluctuation
cross sections becomes negligible. On the other hand for r »D we expect
an elastic width fluctuation correction factor of 2, so that tn the present
domain we expect that

<Jcd(discr.) = 0 + ficd)^d
F'- (10.2)

The transmission factor sum s^T^ which occurs in the denominator of
Jcd '
H F- ' , Eq. (3.5), must also be evaluated statist ical ly

EQ(max)
-ee "e I dET

e(Ee ) /De (Ee ) ( 1 0*3 )1
which involves the level spacings Dg for the residual nuclei in al l com-
peting channels. Again, i f Da depends on the residual nucleus spin

-1through a factor (2Ie + 1)~ , then the transmission sum (10.3) is given by

V e " *2J + ^G/lT

where J is the total angular momentum and G depends only upon excitation
energy of the compound nucleus.

Another empirical method for determining the transmission factor sum
makes use of the relation

Ve 00.4)

where rcor r is the correlation width and p is the compound nucleus level
spacing for states of the same total angular momentum and parity as the
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channels e that are summed over. The correlation width can under some
circumstances be estimated from fluctuation experiments [17], The validity
of the relation (10.4) was recently confirmed by numerical studies [10].
Comparison of Eqs. (6.15) and (10.4) shows that the correlation width is
not the same as the average of the widths r

Difficulties remain the reliable treatment of compound nucleus cross
sections at high energies. These are caused by a number of different
circumstances. First, there is the uncertainty regarding the effects of
gamma ray transitions between highly excited compound nuclear states in
softening the spectrum of emitted neutrons and protons. Secondly, there
are empirical results which disagree with the shapes of the particle
spectra predicted by the above statistical picture. This indicates a
breakdown of our basic statistical assumptions which is dealt with in the
lectures on preequilibrium decay.

Finally, at neutron energies exceeding 10 to 20 MeV, residual nuclear
levels become unstable and emit secondary particles which further add to
the particle flux generated by the reaction. From a theoretical viewpoint,
such physically continuous channels pose a three or more body problem in
the channel portion of configuration space, not just in the compound
nucleus. While theoretical methods exist now for treating three-body
problems [18], they are complicated and time-consuming and have not yet
been applied to neutron induced reactions in heavy nuclei. I t is therefore
generally assumed that above the threshold for three body breakup, the
breakup proceeds sequentially. That i s , in addition to the particle spec-
trum produced according to Eq. (10.1), there are additional particles pro-
duced by the breakup of the residual nuclei in each channel d which is
given by

J> dEdcJ$(discr.)pd(Ed)Td,pd,(Ed,)/ZelTe,

0

where the channels d1 are decay channels of the residual nucleus of chan-
nel d, considered as a new compound system, etc.
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