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NUCLEAR DATA -AND MEASUREMENTS SERIES

The Nuclear Data and Measurements Series presents results of studies in
the fleld of microscopic nuclear data. The primary objective is the dissem-
ination of information in the comprehensive form required for nuclear tech-
nology applications. This Series is devoted to: a) measured microscopic
nuclear parameters, b) experimental techniques and facilities employed in
measurements, ¢} the analysis, correlation and interpretation of nuclear
data, and d) the evaluation of nuclear data. Contributions to this Series
are reviewed to assure technical competence and, unless otherwise stated,
the contents can be formally referenced. This Series does not supplant
formal journal publication but it does provide the more extensive informa-
tion required for technological applications (e.g., tabulated numerical data)

in a timely manner.
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STATISTICAL THEORY OF NEUTRON NUCLEAR REACTIONS*

by
P. A. Moldauer
Argonne National Laboratory

Argonne, I11. 60439
U.S.A.

ABSTRACT

The statistical theory of average neutron nucleus
reaction cross sections is reviewed with emphasis on the
justification of the Hauser Feshbach formula and its
modi fications for situations including isolated compound
nucleus resonances, overlapping and interfering resonances,
the competition of compound and direct reactions, and
continuous treatment of residual nuclear states.

*This work supported by the U. S. Department of Energy.
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I.. STATISTICS

We shall review theories of certain statistical properties of neutron
reaction cross section data. Statistics is a method for the partial de-
scription of sets of data. Specifically it relies on averages of the data
and of functions of the data. If'{c1}, 1, 2, ... N is a set of cross sec-
tion data, then oie familiar set of statistics is the average {o)= L;04/N
and the central moments m (o) = £;(o; - o> )"/N where my{c) is the
square of variance s of'{ci}. For two sets of data'{ai},'{r1} one has a
matrix of central moments m (o,7) = £;(o; - LoD W (ry = LD )V/N where
my is the covariance of ¢ and 7 and the correlation of ¢ and < is
p = m11(u,1)/(s(c)s(r)). One obtains }he autocovariance and the autocor-
relation Pn for a single set of data'ﬂa} by stubstituting in the above
expression %4n for Ty These statistics are, of course, also applied to
continuous variables by substituting integrals for the summations.

The basic statistics that we will be interested in will be the en-
ergy averages of fluctuating neutron cross sections. Fig. 1 shows an
_example of such a cross section and its energy average. Clearly, the
value of an energy averaged cross section depends upon the averaging in-
terval, both its size and its location. Each point in the average cross
section curve in Fig. 1 represents the average obtained over an interval
of 200 keV which is centered on the point in question. This is how we
interpret an energy dependent average cross section. Clearly one can dis-
cuss also the variance of such a cross section curve, its autocorrelation,
or other statistics which describe the fluctuations about the average. In
addition one can discuss the correlation between different cross sections,
such as the elastic and inelastic cross section, or the cross sections for
scattering at different angles, etc. These fluctuation statistics are,
however, of minor interest in applications.

Reaction theory describes the complicated energy fluctuations of
cross sections in terms of discrete sets of parameters, the "resonance"
or "pole" parameters. The aims of statistical theory are to relate the
- average cross sections and their fluctuations to the statistics of reso-
nance or pole parameters, and to further relate the latter to physical
models and to basic principles. Some of these basic principles on the
distributions and correlations of resonance spacing and the distributions
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of parttal resonance widths were already discussed in the lectures of
Sec. 11.6. And the relations of resonance statistics to physical models
were discussed in Sec. III on the optical model. We will briefly review

these matters as we need to.
I1. NOTATION

A neutron nuclear reaction proceeds by the interaction of an incident
neutron of a certain energy with a target nucleus {Z,A) which together
comprise a compound system {Z,A+1). Following the interaction the system
breaks up into one of several possible reaction channels consisting of
one, two, or more nuclei or nuclides having various internal and relative
states. A Roman lower case subscript a,b,c, etc. will be used to label a
specific such channel, that is the fragments present, their internal
states, and their relative states. In the case of a two product channel,
e.g., neutron scattering, the channel index incorporates the relative or-
bital angular momentum 2 of the fragments, the total angular momentum
j =2+ s of one (usually the lighter) fragment, where s is that frag-
ment's spin angular momentum and the sum is, of course, the quantitized
vector sum, and the total angular momentum J = j + I where I is the spin
angular momentum of the heavier fragment. The relative energy of frag-
ments is not included in the channel index as it wiil usually be the pa-
raneter to be averaged over. The Greek subscript y will be reserved for
gamma ray channels in which all possible gamma rays are lumped together.
The Greek subscripts «,8 will be reserved to indicate the alternatives
specifying only the fragments and their internal states.

States of the compound system (Z,A+1) will be labeled by lower case
Greek subscripts u,v, etc. These incorporate all internal quantum numbers
including the total angular momentum J and parity I.

III. ISOLATED RESONANCES [1]

When a low energy neutron interacts with a nucleus, one of two types
of things can happen. Either the neutron is scattered elastically with-
out involving the internal degrees of freedom of the target nucleus. This
is potential scattering. Or the neutron is absorbed by the target, form-
ing a compound system in one of a number of metastable resonance states.
These are states consisting primarily of bound single particle



configurations whose total energy is above the neutron threshold at the
energy of the scattering system. However, because of its coupling to the
neutron scattering channel and possible other open channels, having posi-
tive channel energies, these resonance states do decay with a mean 1ife-
time which is T, for the pth such state. The inverse of this 1ifetime
1/Tu = anu/h is the probability of decay of the state per unit time.

Here h is Planck's constant. The width T is the energy uncertainty of
the uth state in accordance with Heisenberg's uncertainty principie and
it is proportional to the decay probability per unit time of the uth state.
If this state can decay into any one of several channels a,b,c, etc., then
there will be decay probabilities proportional to partial widths rua, rub’
ruc, etc. for each of these channels so that P“ = r“a + r“b + ruc + ...

By reciprocity, the probability of formation of the compound state u
by absorption of an incident neutron in, say, channel a is also propor-
tional to rua, and the relative probability for decay of into channel b is
clearly rub/ru' The cross sectien for the reaction proceeding from inci-
dent channel a to exit channel b through the compound state n is then pro-
portional to the product of rﬁ and rub/r and is in units of w/kg

g'ﬁ) 2T T/ Ty | (3.1)

From this it is clear that the average compound nuclear cross section for
the reaction a,b within the cnergy interval a is

r
< ua "b (3.2)
ueA'

Where D is the mean eneray spacing of compound states with correct J and «
in A and the bracket signifies the average over compound states within A.
The average absorption cross section into the compound system from chan-
nel a is called the transmission coefficient Ta‘

=C.N. _ M. _ 21
%a Z%ab < ua> (3.3)

These transmission coefficients are specified by various physical
models for different types of channels, the optical model for neutron,



proton and other nuclear channels, and corresponding models for fission
and capture channels. These models are discussed elsewhere in these lec-
tures. We shall return to the optical model later.

With the definition (3.3), Eq. (3.2) can be rewritten as

: -C.n. = Ho Fc
b = %ab Wab (3.4)
where the well-known Hauser-Feshbach formula
H.F. _
% ToTy/2 T, (3.5)

is completely specified by the transmission coefficients of all open chan-
nels, and hence by the physical models for these channels. The second
factor in (3.4) is the width fluctuation correction

" = <rﬂarul>/ a% b> | (3 6)
ab T, JZI'HS _ '

This factor depends upon the distributions and correlations of the
partial widths and we shall discuss it further in the next section.

The total average reaction cross section consists of the sum of the
potential or direct scattering cross section and the average compound
cross section. In the absence of direct reactions, which will be treated
later, the only potential cross section is the shape elastic contribution

— - S.e. -cpn.

ﬂab = Gaboa + Uab . (3.6)
Here o:.e. = ogir. is also determined by the optical model, as will be
seen below.

IV. WIDTH FLUCTUATION CORRECTION

It has become well established that the distribution of partial
widths for a channel as defined in Sec. 2 is given by the Porter-Thomas
distribution law. According to it the probability that for some state i
the quantity rua/<?u;7§ has a value between x and x + dx 1is




Fp7. (X)dx = (2nx) % % ax. (4.1)

This Porter-Thomas distribution belongs to the class of chi-squared dis-
tributions with v degrees of freedom

Fl = LRI o1 o (4.2)

where Fp o (x) = F](x) is the chi-squared distribution with one degree of
freedom. In Eq. (4.2) v can have any real positive value. If the states
of a given J, = can decay into n channels, all having the same <:rua;:7’

then we can consider the partial widths for decay into the alternative o
consisting of any one of these n channels. Clearly <<fua>> = ntipua1:7

and the rua are distributed according to the chi-~squared distribution with
n degrees of freedom Fn' For example, if neutrons are scattered by a %+
target nucleus, then compound states of total anguiar momentum and parity
1~ can be formed by the absorption of either a p35 or a p3/2 neutron, If
the average partial widths for these two channels were the same, then the
total neutron widths for these 1- states would be distributed according
to the chi-squared distribution with two degrees of freedom F,(x) = lae'%x.
If the transmission coefficients for Py, and P3/2 neutrons were not equal,
the neutron widths of 1- states would not have exactly any chi-squared
distribution but could still be well approximated by Fv(x) with v some-
where between 1 and 2.

Analyses of fission widths have shown that their distributions can
be approximated by chi-squared distributions with between one and four
degrees of freedom, depending on isotope and J. The gamma ray radiation
alternative consists generally of a large number of possible gamma ray
transition channels and is therefore best represented by a chi-squared
distribution of perhaps 10 or 20 or more. Since such distributions in-
volve only very small fiuctuations about the average valua, the total
radiation width is often assumed not to be fluctuating at all.



From Eq. (4.2) 1t follows that i1f x is distributed according to Fv(x)
then

k r{k +
X (4.3)
) (359)r(igv)
and the variance of x is (,Zlv);’.
It is useful to factor the width fluctuation correction into

"ab = GypCap? (4.4)

where

/I'
b
Gap (‘r—Lr"*$7"z—- (4.5)

and

L rp>
Cp = . 4.6
ab <rua*ub$ (4.6)

Here G, arises from the correlation between r .r , and r;1 which is due
to the fact that both contain Ta and T b It is easily shown that if the
ruc are distributed according to the chi-squared distribution with v de-
grees of freedom, then Gab can be expressed as the following single

integral
(%“c""sac"'sbc)
atll [+ & . (2.7
5 T ccu) ) )

A capture channel which is assumed to have a non-fluctuating partial width
r, will contribute a factor exp(-trT./<r'>) to the integral of Eq. (4.7).
Some-examples of numerical values are shown in Fig. 2. The factor C ab
arises from correlations between the partial widths of channels a and b
for chi-squared distributions can be expr'essed in terms of the partial
widths correlation coefficient p ab

2

(4.8)

C,.=1+
ab ("a"b)
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In the absence of a direct reaction between channels a and b, Pab {s ex-
pected to vanish for a # b and of course Paa = 1. Therefore

cab =1+ Zsab/va (no direct reactions.) (4.9)

The case of direct reactions will be discussed in greater detail later,

The factor Cab is seen to enhance the average elastic compound cross
section by a factor of 3 for the case of the Porter-Thomas distribution
and by a factor of 2 for the case of the v = 2 exponential distribution.
This enhancement is compensated by a reduction of all cross sections due
to the factor G, of Eq. (4.7) so that the sum (3.3) is preserved.

It is, however, also possible for Gab to be greater than unity [2].
This will occur where the transmission factors for channels a and b are
both very small (weak cross section) and when the total width is dominated
by one of a very few competing channels. In that case it is useful to
factor G ap ONCe more into

{ryr i
& a;:b;bzruB )& (5.10)
u

Here the first factor is close to unity because rua and rub do not con-
tribute appreciably to the magnitude to r;]. The second factor can be

evaluated

<I';]7<I'u> = 1—_1-27-"—1:- for vt > 2 (4.")

where r is distributed according to F . When Vi £ 2 this factor ac-
diverges though of course Gab will a]w&ys be finite. It can be seen that
large enhancements of small cross sections are possible in this way. Ex-
amples of calculations of this effect are shown in Fig. 3.

V. S-MATRIX THEORY

The discussion of Sec. 3 is reliable only in the case of very low
neutron energies, typically up to several tens of keV. With increasing
energy, neutron partial widths increase and the number of open channels
also increases, while ‘the level spacing decreases. As a result at higher
energies the total widths become comparable to the spacings and the
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different resonances begin to interfere with one another. A neutron can
then be absorbed coherently by two or more resonance states and this situ-
ation must be discussed quantum mechanically.

In quantum mechanics, the scattering system is described by the
Schrodinger equation

(H-E)¥=0 - (5.1)

where H is the hermitean hamiltonian describing the interactions of the
system, E is the energy, and the wave function ¥ describes all properties.
We are interested in scattering solutions of the Schrﬁdingervequation with
boundary conditions at infinity which specify an incoming spherical wave
of unit flux Ia in channel a only and outgoing waves of unit flux 0c in
all open channels c. The asymptotic wave function for this boundary con-
dition has the form

as. _ .
Y =1, zcsacoc (5.2)

where the S-matrix components sac give the amplitude for transitions from
channel a to channel c. From time reversal invariance of H it follows that

S is symmetric

"
Spp = Spar S = S (5.3)

where g‘is the transpose of S.

For a general asymptotic wave y3Se = zaxawgs‘ the incident flux is

za[xalz. The total outgoing flux is zabxgséascbxb which must equal the

1ncid¢nt flux if no flux is absorbed or created. This leads to the uni-
tarity property of S

= te =
StaSch = Sab? $§=1 (5.4)

A third property of the S-matrix follows from the causality principle.
According to it the S-matrix considered as a function of energy has an
analytic continuation without singularities in the upper half plane. This
requirement can be understood by remembering that the time dependence of
the wave function has the form exp(~iEt/fr) where E is the energy of the
system. A complex energy state at a singularity of the S-matrix will have



an exponentially growing time dependence for a singularity in the upper
half plane and an exponentially decaying behavior in the 1lower half
plane. The causality principle requires us to exclude exponentially grow-

ing states.

_ as. _ .
In the absence of any scattering Sac = Gac and Yy Ia Oa. Then

we can write (5.2) in the general case as

5.0

as. _ . . -
Ya o T (Ia - oa) zc(sac ac’’c

a

wnere the first parentheses represent the unscattered wave and the sum
represents the scattered wave. The cross section for the process a - b
is now just the scattered flux in channel b for incident unit flux in
channel a which in our units is

ogp = 165 = Syl (5.5)

I will generally discuss this cross section (5.5) because it is the
simplest example of the kind of bilinear expression in the S-matrix ele-
ments that occurs in all observable cross sections. On the other hand, it
is important to remember that the expression (5.5) which represents a re-
action proceeding from one particular partial wave to another is seldom
of practical interest. The quantities that are of practical interest are

the following.

The differential cross section for the process originating with an
incident wave in the alternative a and a scattered wave in the differential
solid angle dq at scattering angle 6 in the alternative g is given by

dUaB(e) -'
-—a'h-—— = y. ELBLPL(COS ) (5.6a)

where the PL are the Legendre polynomials of integer order L. For the case
where the projectile in both alternatives « or g has either spin 0 or
spin %, BL can be written

": 2 “2” 2 Jn
By = { == J€3'éA(a,L)A(8,L) (8, , 6. & - Sy . )
L (Iasa) Z ’ %ats Jolg 2&"0:’2’8‘13
Jlnl*
(809185141 = Spig ) 5.6b
Yalp Jodp  tedystgdy ( . )

13



14

and

ity Jodot
A(o,L) = (-1) a a * aj ' -S 0 {JJ'I} (5.6¢)

and the karet means k = (2k + 1)%. The round bracket in (5.6¢) 1s a Wigner
3j coefficient, the curly bracket is a 6j coefficient, and the sum in (5.6b)
is over total angular momenta J,J' and parities n,n' as well as over all
four orbital angular momenta £ and all four projectile angular momenta j,
primed, unprimed, «, and 8. Sq and Ia are the projectile and target spins
in a.

Integrating Eq. (5.6) over all solid angles, we obtain the integrated
cross section

= J,I 2
EJ.H.EG.JQ.EB.:}BQJ’ .Q,GR,B JGjB Sza\]a’ BJBI (5.7)

which is a sum over terms (5.5) with coefficients

L - 2

= (J1s)% (5.7)
Summing (5.7) over all B yieids to total cross section

tot 1 - Res', (5.9)

ca = }:J.H,Qa,ja ng ( 2’ J ’2' 'J )

a'oa” a" o
which depends linearly on the real part of the diagonal S-matrix elements.

VI. S-MATRIX PARAMETERS AND THE OPTICAL MODEL

The energy variations of the S-matrix elements arise from two types
of singularities in the finite energy plane. Branch points at the thresh-
olds of channels and poles or other singularities in the Tower half plane.
The threshold branch points wor't concern us here. We can always arrange
all branch cuts so that they do not fall along our averaging interval.
Also the energy dependences produced by these branch points are generally
very weak. Only in the immediate vicinity of an s. or p-wave neutron ‘
threshold is it generally necessary to be cautious. Similar statements
apply to the contribution of entire functions to the S-matrix elements.
Among singularities in the lower half plane, single poles are of greatest
interest to us because, as we shall see, they correspond to the compound




y
%
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state resonancg§ of Sec. 3. Accordingly we write the S-matrix for a given
J, I in the fbrm;of the pole expansion

_ B P
Sab - Sab t “ab
P _ uayb
Sab = - ‘ZuE- FRT (6.1)

This formula requires some discussion. The justification for the factor-
ized form of the pole residues will emerge later. The backbackground term
Sgb is smoothly varying in the energy interval of interest and arises from
distant singularities as well as the contribution of entire functions.,
Generally we shall assume that SB can be approximated by an energy inde-
pendent constant matrix in our energy interval. For purposes of statisti~
cal analysis it will be useful to be able to consider the poles of SP to
consist of an infinite ergodic sequence extending from ReE = -= to +» with
constant statistical properties, i.e. constant averages, distributions and
correlations of the pole parameters Eu’ ru and 9c This can be done by
defining a region in the energy plane such that poles within that region
(near poles) contribute to the energy variation in our interval, but singu-
larities outside that region (distant poles) do not contribute signifi-
cantly to that energy variation. Then we define a statistical S-matrix
which has the form (6.1), where the pole parameters form an infinite
ergodic extension of the actual parameters of the near poles. Then SB
contains the contribution within the energy interval of interest of the
difference between the actual distant poles and the distant poles belonging
to the ergodic sequence. In what follows I shall always assume such a
statistical S-matrix [3].

We first confirm that the S-matrix (6.1) yields isolated resonances
as in Sec. 3. Considering only the simplest situation where Sgb = 831 W
obtain from Eqs. (5.5) and (6.1) for the uth isolated resonance

2 2
520/ 15)
2
(E - Eu) + 5ru

o{8) (k) = a#b

and i.tegrating this over energy the total contribution of the uth reso-
nance to the cross section is

15



16

2, 2
og';) = 2n]g ,1%lg,,|%/r,

which by comparison with Eq. {3.1) yields

2

- _ 2
Fa = lgal% Tp = lg,l%

It is also easily verified that this identification with ru = rua + rub +
..+ guarantees the unitarity of the S-matrix when only a single resonance
term is included.

When more than one resonance term is included in the sum of Eq. (6.1),
and in particular when the widths of such resonances are comparable or
greater than their spacing, the conditions which unitarity of S imposes
on all the resonance parameters become exceedingly complex. We return to
that problem later. Of course the S-matrix of Eq 6.1 is symmetric pro-
vided SB 1s symmetric and it is causal if all Pu are non-negative.

In order to calculate the average cross sections from the S-matrix
(6.1) we write

s=F+sM (6.2)

where § is the energy averaged S-matrix and since we regard SB as constant
we have '

T=sB+7
(6.3)
sft = sP _ 3P
and averaging Eq. (5.5) we have
T = oy T (6.4)
where
. 2
o = 163 = Sl (6.5)
oit = IsIZ. (6.6)

The problem has evidently been split into two parts, finding the average
S-matrix for Eq. (6.5) and finding the average absolute square of Sf“ for

Eq. (6.6).
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Considering first the problem of the average S-matrix we have from
Eqs. (6.3) and (6.1)

75an = -5 <9ua9,,b>u (6.7)

where now D is the mean spacing of the Eu and the bracket <f :E indicates
an average with respect to u. We now demonstrate a result [4] about §P by
means of integration around the two contours in Fig. 4. The contour in
Fig. 4a encloses no singularities and therefore the integral of S(E) around
this contour vanishes. If we assume that on the average the contributions
from the two vertical members of the contour cancel and that S(E + iW) on
the upper horizontal member is sufficiently constant for sufficiently

large W, then we have

§ = S(E + iW) (6.8)

where in fact W is of order of the averaging interval for S. The contour
of Fig. 4b encloses the poles in the interval AE. Assuming again that the
contributions from the vertical members cancel, we have

2-rrzuguagub = AE[Sab(E - iW) - Sab(E + W),
which together with the analytic continuation of the unitarity relation

S(E*) = $*71(E),
gives using Eq. (6.7)

=y (T, (6.9a)
from which
sB - (T + T, (6.9b)

This allows us to express each part of § in Eq. (6.7) in terms of S itself.

Next we note that Eq. (6.5) looks just 1ike the cross section formula
(5.5). We may suppose therefore that there exists an interaction hamil-
tonian #0°M that gives rise to ¥ in the same way that H of Eq. (5.1) gives
rise to S. This optical model hamiltonian HO'M' produces then the direct
. cross section o9 in the same way that H produces o. Provided the fluc-
tuation cross section cf“ does not vanish, § cannot exhaust the incident
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Integration Contours Used in Deriving Eqs. (6.8) and (6.9).
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flux and is therefore non-unitary and hence HO'M' must be non-hermitean,
causing absorption of flux. Subtracting

3§°t = 2(1 - ReS, ) (6.10)

from the sum over b of Eq. (6.6) we find that the unitarity defect of §
gives

2 _ fe _
‘l - Zbls-abl = Zboab = a. . (6.1])

By the unitarity of S, the optical model transmission coefficients Ta
cannot exceed unity

T, <1 (unitarity). (6.12a)

Similarly causality, which 1imits absorption into decaying states only,
requires that S be absorptive rather than emissive, thus 1imiting Ta to be
positive

T, 20 (causality). (6.12b)

For the present we will restrict ourselves to the case where S is di-
agonal. Then the optical model is a separate scattering model in each chan-
nel a with an absorptive complex potential. Then there are also no direct

reactions Udgr. only an elastic potential scattering cross section
d'i r. - s.ga d
Oqa = Oy -@n

_ 2
T, = 1- 15,

. (S diagonal). (6.13)

From this and Egs. (6.7) and (6.8) we have [4]

23,1 = U 2 )1 = Ty 1 T, (6.14)

Another relationship valid for diagonal S is

Zedr = -1 (6.15)
For the isolated resonance limit Eqs. (6.14) and (6.15) reduce to
» .
2r{L g | _e2ndr
< Dya> = 40 pa> - Ta’ (T << 1) (6.16)

which verifies Eq. (3.3).
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We give the proof of Eq. (6.15) in the form given by Simonius [5].
Since S is unitary, det S is unimodular and since it is assumed to have
only simple poles and the poie residues factor, forming a rank 1 matrix,
we can write it in the form

E-E -X4r
= o21¢ u u

then to first order in the inverse averaging interval W"

n det{s)

-ir

Tn det S(E + 'i“) = Zu F—-._E;:Hi'—'lwi. 21¢

i ) r(E~E)
-U<PN> -1 (zu (Eu_ Eu)2u+ wZ - 2¢)'

The last sum vanishes for the case of the statistical S-matrix because the
terms are odd in (E - Eﬁ) and from the real part of this equation the

charnel sum of Eq. (6.15) follows.
Eas. (6.11), (6.14) and (6.15) relate averages of S-matrix param-

eters to the optical model. To evaluate the fluctuation cross section re-
quires also knowledge about the distributions of these parameters. We now

turn to this question.

VIL, R-MATRIX THEORY

The unitarity condition ini:oses severe restrictions on the S-matrix
parameters. This can be seen from the fact that a unitary symmetric matrix
has only half as many independent components as a general complex symmetric
matrix. Since S(E) must be unitary for each value of the energy E and since
some T/l resonance terms contribute to S at each energy, it is clear that
unitarity must impose complicated correlations upon the resonance parameters.
One way of avoiding this difficulty is by defining the S-matrix in terms of
R-matrix states. The R-matrix states are solutions of the Schrodinger equa-
tion (5.1), subject to a boundary condition at the nuclear surface so that
the solutions are stationary, real states ¢, with real energles £ . The
real symmetric R-matrix formed with these states is

_oB Yya¥ub - ’

u



where
x
‘g dswaqsu

is the real overlap on the nuclear surface of the solution ¢ with the
channel wave function Ve The background R-matrix RB is assumed to be
constant in a statistica] R-matrix in the same way that SB was constant

in the statistical S-matrix.

It is generally expected that the statistical distributions of the Eﬁ
and the Y,q are represented by the distributions of the eigenvalues and
the eigenvectors of the orthogonal matrix ensemble as discussed in
Sec. II.6. Therefore the spacings of the Eu follow the Wigner distribu-
tion and the Ya are normally distributed with zero mean for varying
state index u and given channel a. The Tua for different channels are ex-
pected to be statistically independent.

A relation between the R and the S-matrices is obtained by expanding
the solution of the Schrodinger equation with scattering boundary condi-
tions (5.2) in terms of the R-matrix states with boundary conditions at
the nuclear surface. This expansion inside the nuclear surface is then
fitted to the known channel wave functions in the exterior. In this
procedure the channel wave functions are described by channel phase shift
Xe and by channel shift and penetration factors Sg and Pc‘ These make up
the two complex diagonal channel matrices

q=eix, 19 = s0 + ip, (7.2)
With the help of these the relationship between R and S is expressed by
the following channel matrix equation '

s = op%(1 - RO - RO (7.3)

we can establish the connection between the R-matrix parameter statistics
and the optical model by evaluating Eq. (7.3) at the energy E + iW and
assuming @ and L0 to be constant within the averaging interval W. Then
we get for diagonal 5
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Qv
-21X 1L R
=@ L. (7.4)
ce 1-LR
ccc
where
N . B , . 72577
Rcc = Rcc(E + iW) = Rcc + ir S:Jﬁy—li (7.5)

and where D is the mean spacing of R-matrix states £ . Since Xe and Lg are

known functions of the energy in channel c, Eqs. (7.4) and (7.5) uniquely
determine the two statistical R-matrix parameters Rgc and <:yuc2;>/D in
terms of the real and imaginary parts of the optical model S-matrix Séc.
This, together with the statistical assumptions discussed above, and an
appropriate choice of the level density D makes it possible to construct
a unitary statistical S-matrix and cross sections from the optical models
for any number of competing channels with arbitrarily large values of r/D.

The steps in such a procedure are outlined in Fig. 5. First the
Schrodinger equations with the optical model potentials are integrated to
give the optical model S-matrices. Séc in all channels. Then Egs..(7.4)
and (7.5) are solved for RB and <:yuc2:>/D for all channels. Then
R-matrix parameters E and y are selected by a random number generator,
so as to agree with the above va]ue of (ky 2;>/D and to yield the appro-
priate level density and distribution 1aws. From this parameters and
energy dependent R-matrix is constructed, using Eq. (7.1} from which our
energy dependent S-matrix is calculated using Eq. (7.3). Energy dependent
cross sections are then calculated using Eqs. (5.5) to (5.9). These en-
ergy dependent cross sections can then be compared with experimental high
energy resolution measurements, or they can be averaged and statistically
analyzed to compare with theoretical predictions. A computer program
STASIG has been written to perform such calculations [6]. Fig. 6 shows
an example of differing eross section fluctuations obtained uﬂ&h two
optical models which yield equivalent average total cross sections.

‘With the help of the R-matrix formalism it is also possible to deter-
mine numerically the pole parameters E and g ha of a un1tany S-matrix.
This is done with the aid of the Tevel matr1x L with components
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- , 0 B, 0 -1]
Ly = B8, = Taptug L2001 = ROy (7.6)

whose eigenvalues are the S-matrix poles E - kﬂru and whose eigenvectors
T(") specify the S-matrix pole amplitudes by

=X

e @ (u) B, 0y-1
9,5 = € 2P, Zy b7y [(1 - R°LY) ]abY\,b . (7.7)

One important parameter that arises in the level matrix formalism is
the level normalization

= 2, ITM 17 2 1 (7.8)

which enters into a relationship between the pole width ru and the pb]e
amp11 tudes 9.a

|2 (7.9)

r, = zalgua /Nu

for every pole y. This formula permits - > definition of partial widths
- 2
Ta = 19,18, (7.10)
which add up to the total width.

" The diff1culty encountered in using this level matrix formalism nu-
merically arises from the fact that it cannot be applied to a statistical
S-matrix, but only to or> with a finite set of poles. Here one encounters
systematic end effects and large level matrices must be constructed in
order to yield a satisfactory sample of poles in the middle of the energy
interval where they are not disturbed by end effects [7]. However the
method has been successfully applied in the computer program MATDIAG to
confirm the reiations (6.14) and (6.15) over a wide range of parameters

" [8]. It has also been learned from such studies that for large r/D, the

Tevel correlations of . the Wigner distribution tend to disappear and the E

. tend to be distributed only with an exponentia] spac1ng d1str1but10n



(see Fig. 7). On the other hand the widths in such cases tend to have a
broader distribution than would be expected from sums of partial widths,
each having the Porter-Thomas distribution law (see Fig. 8). It was also
found that the average of Nu increases with increasing r/D. We shall re-
turn to further applications of this method in the next section.

VIII. THE FLUCTUATION CROSS SECTION

Our aim here is to evaluate the average reaction cross section in
terms of optical model transmission coefficients and general statistical
laws. Since the direct cross section (6.5) is, for diagonal 5, aiready
given by the optical model, we turn to the fluctuation cross section (6.6).
By Egs. (6.1), (6.3) and (6.7) we find that [3)

fo_ 2nd 19l l9lPN
%b " D T " Tab

u
2 2wl gvagvbg:ag*b
M, = ZI‘SP I - (TE—:-E—)——;’T(L———" (8.1)
ab ab e . N 1‘1'l *T, ufv
with the definition
o 27 2
where N‘J is the normalization parameter of Eq. (7.8), we can rewrite (8.1)
6 .0
fz pa ub
Tab " < o, >' Mab - (83)
where
<°ua> =Tk My (8.4)

and

<e> zc<euc>.  (8.5)

The similarity of the first term in Eq. (8.3) with Eq. (3 2) suggests
that we use the notation of Sec. 4 to write

of? « <°" ><0Hb>

%ab <e > SabCab ~ Mob

(8.6)
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with : '
G, = <-1‘---J‘--.e"f".e b> <—”—-Le a® ‘> (8.7)
b (0] 0u>
<O£b> =142 —22b (8.8)

ab < eua> <eub> . Ya¥b

vhere we have assumed that the distribution of eua can be described by the
chi-squared distribution with Va degrees of freedom and where the channel
correlation coefficient Pab is given by
C,.~-1
(Cha - NGy - 1)

At this point one might hope that the term Mab might vanish at least
in the 1imit of large r/D, leaving again a simple Hauser-Feshbach formula.
Unfortunately, as was pointed out by Weidenmiller [9], this is not pos~
sible. For, comparing the average of (8.2) with Eq. (6.14) and substitut-
ing this with Eq. (8.4), we find that

S .
I ML >T - -1 (8.10)

which diverges as Té approaches unity.

To make further progress it is useful to analyze a simple case which
is described by a limited number of parameters and yet has arbitrarily
large T/D. This is the case of n statistically equivalent channels [10].

By this we mean that

Tc =T, ve EV - for all c=1,2,3, ... n
(8.11)
Ped P for all c#d
Then also for all distinct c and d from 1 to n
ccc =1+2/v=C_C
Cog= 14 2/v =D
Mec =M .‘ : f ";“- : (8.12)
Mcd E ‘P- ‘ '
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Upon substitution into Eqs. (8.7) and (8.8) we find that

c

T |
fo__ D S h=1 fy ¢ 8.13
Pec .g-+n-1 %"‘"'1( BP) : (8.13a)
oft = ot +F1 (M-%). (8.13b)

T +n-1 '15'+ n-1

The actual behavior of these parameters was studied by means of
MATDIAG calculations using channel numbers which varied from 5 up to 15 and
using various values of channel transmission coefficients T distributed be-
tween 0 and 1. In all cases the results indicated the relationship [10]

c=g=4 (8.14)
which makes the second terms in Eqs. (8.13) vanish and leaves

1% gglC - 1)
cd C+n-1
which is precisely the width fluctuation corrected Hauser-Feshbach formula
for n equivalent channels each having transmission coefficient T and par-
tial widths that are uncorrelated between different channels and are dis-
tributed according to a chi-squared distribution with v' degrees of freedom
where

C'=1+2/. (8.16)

(8.15)

Furthermore, the values of v' deduced from the MATDIAG calculations showed
that v' varied from a value of 1 for small values of T to a value of 2 for
values of T near unity. Tepel, Hofmann and Weidenmuller [11] have given
the following empirical formula for the dependence of vé on Tc

vi=1+ T. _ (8.17)
Another slightly different graphical relationship is shown in Fig. 9.

The Porter-Thomas distribution v' = 1 characterizes a random variable
which is the square of a real normally distributed variable with zero mean.
The exponential v' = 2 distribution characterizes a variable that is the
sum of squares of two such real normally distributed variables with equal
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dispersions, or in other words the absolute square of a complex number
with normal real and imaginary parts, isotropically distributed in the
complex plane about the origin. This suggests that we consider a complex
random variable tua for eveny channel a, having normally distributed real
and imaginary parts with zZero means such that

Ta = <'tua|2>u | (8.18)
{ (g )7 ), /<(Ret a)2>u. (8.19)

and

If we now require

(1+ xa)2
_.1._+._2._ = vé . (8020)
X3 :
then |tua|2 has the same dispersion as the chi-squared distribution with

v; degrees of freedom, and is in fact quite close to it.

We can now summarize the development which started with the considera-
tion of n competing equivalent channels in Eq. (3.11) by saying that

2
t
|2 < al i bl) (8.21)

with the specifications}(B.]B) through (8.20) and with vé given by (8.17).
The final calculation of Eq. (8.21) proceeds then exactly in the way dis-
cussed in Sec. 4 for the Hauser-Feshbach formula with width fluctuation

correction. Analogously we can evaluate other averages, such as

. 2 .2
foofe* t tub

S S
“c' e

(8.22)

V( £ - v. -1 o2,

while for the case where Sfis diggonal, all avehages such as'<Lsf“sf“*:>
which,invo1ye indices that are'not;kgpeated-vanish. ,

ab~ac
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These results have been found consistent with MATDIAG calculated
samples also in cases of inequivalent competing channels. They will be
referred to as the M-cancellation formulas because they depend crucially
on the cancellation of the M term in Eq. (8.6) by the channel-channel cor-
relation effect as expressed in Eq. (8.14).

In evaluating average differential cross sections, we average
Eqs. (5.6) which requires the evaluation of averages of the type

Jnfa J'w'fz*>
<{Sab Sa'b' . (8.23)
According to the above we have three types of nonvanishing contributions

from (8.23). The first comes from terms of the type of Eq. (8.21).
TaTb

830" 8mntSaa bt T T BanCab- (8.24)
ced,T'C
The second contribution comes from terms of the type of Eq. (8.22)
T.T
2 2 Yo fa'al
SJJ'Gﬂﬂ'SabGa'b.{(-\;a - 1) (;‘; - ]) .E-;Tc_-eaalcaa' (8.25)

The third contribution occurs for compound elastic scattering of neutrons
from odd-A targets and arises from spin-flip elastic scattering
TaTb

539" 6xn' b ®ba’ T T GapCab (8.26)

Besides the M-cancellation formula of Hauser-Feshbach times width
fluctuation correction, there exists an embirica]ly derived formula. based
on calculation of the STASIG type which in many instances gives results
very similar to the M-cancellation formula. According to Tepel, Hofmann
and Weidenmuller [11]

fo _ 2
9ab = XXy * 285X p/ v
(8.27)

- 2
Ta = Xatke + /v,



This formula also depends only on the channel transmission coefficients
and the channel parameters Ve which have essentially the same numerical
values as in the width fluctuation correction. Instead of evaluating the
integrals (4.7) of the width fluctuation correction, Eq. (8.27) requires
the solutions of the coupled equations for X, in terms of the transmission
coefficients which are then used to evaluate the fluctuation cross sec-
tion. Numerically there appears to be little advantage of either pro-
cedure. The major difference arises in cases such as discussed in

Egqs. (4.10) and (4.11) which give rise to enhanced nonelastic cross sec-
tions. This effect is not predicted by .Eqs. (8.27). In the limit of
large 1/D when vy = 2 for all channels, Eq. (8.27) becomes identical to a
formula proposed by Kawai, Kerman, and McVoy [12].

IX. DIRECT REACTION EFFECTS

We now give up the assumption that 3 is diagonal. Then the optical
model becomes a coupled channels model in which, in addition to the com-
plex potential for each channel there are coupling potentials between chan-
nels. Such a generalization is particularly important in the excitation
by neutron inelastic scattering of vibrational or rotational collective

states of the target nucleus.

One immediate effect of a nonvan1sh1ng 3' is suggested by Eq. (6.7).
Unless only SBb contributes to S'b, there w111 also be contributions from
Sgb 1'Z§uagu5:>/o and hence the pole amplitudes gua and gub for the two
channels a and b will be correlated. In the isolated resonance 1imit this
produces a nonvanishing corre]at1on Pab between the partial widths

= |g |2 and I, = lg b| s Which, by the width fluctuation correction
factor C ab Of EG. (4.8) causes an enhancement of the average compound cross
section between channels a and b. In the isolated resonance limit this
enhancement can be calculated from the coupled channels optical model value

of 5. But for appreciable r/D we must again turn to S-matrix theony;

The crucial technique for treating such cases is the Engelbrecht-
Weidenmuller transformation [13] which permits one to transform to the
case of a diagonal 3, calculate o ¥ for that diagonalized 5 in the manner
of Sec. 8, and then transform the result back to the non-diagonal case.
This transformation is best described in terms of Satchler's hermitean



penctration matrix P which is a generalization of the optical model trans-
mission coefficient for non-diagonal S [14]

Pip = Oap = 2 SaStcr P=1-337, (9.1)

The transmission coefficients (6.11) are then just the diagonal elements of
the P-matrix. Unitarity still requires these transmission coefficients to

be no greater than unity

T, =Pas1  (unitarity) | (9.2)

It can also be shown that causality now requires that
P-is positive semidefinite  (causality) (9.3)

which means that all eigenvalues of P are non-negative. I :hall refer to
the case where P is a singular matrix, i.e., has a vanishing eigenvalue
as the causality limit.

The Engelbrecht-Weidenmuller transformation is the unitary transforma-
tion U that diagonalizes P

U~ = Pt is diagonal. | (9.4)
It follows that |

USU = S' is unitary if S is (9.5)
and that |

USU = S is diagonal. (9.6)

In the case of two coupled channels we can write

f]eiol f3eie3 -
T = : (9.7)

f3e193 f2ei92

and

. ja O
g = (Tcoss -s1n6) e _ (9.8)

sing coskfl 0 e~ ie

PURE——
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and find that

tan 20 = T,C050,4 * 110050, 5
tan 28 = k| . (9.9)
' focos(0yg - o) - f1cos(o23 - a)
where

937 9% " %> O3% % - %
For three or more coupled channels the direct effect will in general not
be very significant as we shall see. In such cases numerical diagonaliza-
tion of P is required.

Using Eq. (9.5) the fluctuation cross section uzg can be written in

terms of the elements of S'. In this expression averages of the form
<<§;;£Sé§£* occur. From the discussion in Sec. 8 we know that the only
non~-vanishing such averages are of this form

<{|s'f“ :> (9.10)

which is evaluated in terms of the elements T' of P' by means of the width
fluctuation corrected Hauser-Feshbach formula as in Eq. (8.21), or they
are of the form

<s|fﬂ.s > ]);é (%_il) -1 ) égﬂ, (9.11)
by Eq. (8.22). With these results we get [15]

f.?, = 2 |fR.
E 'Ucal U | “og

+ zd#cz:uéauab(ucaudb + Udaucb)
C

2 L 2 35 fe

Hofmann et al. [16] have evaluated a very similar formula differing
only in the evaluation of the matrix elements (9.11) and employing the




Tepel formula (8.27) for the evaluation of céS% instead of the width
fluctuation corrected Hauser-Feshbach formula. Kawai et al. [12] have
given the following formula which gives equivalent results only in the
Timit when all v' = 2

fe
%ab

P

xaaxbb + xabxba
(9.13)

ab zc(xabxcc * xacxcb'

In addition to the fluctuation cross section (9.12) we will in general
also have a direct contribution to the average reaction cross section due
to Eq. (6.5).

For a # b the cross section (9.12) can be enhanced over the value one
would obtain with the ordinary width fluctuation :surrected Hauser-Feshbach
formula. This is because of the occurrence of the correlation enhanced
elastic fluctuation cross section aézz in the primed channels in the first
sum of Eq. (9.12). The enhancement of aézz will be greatest when the rela-
tive contribution of this first term is greatest. The maximum effect will
occur when P has only one non-vanishing eigenvalue, for then only one
diagonal primed cross section oézz can contribute, all others vanishing.

In this case, clearly, the direct enhancement is of the order of the
elastic enhancement, namely 1 + 2/v. The above situation where eigenvalues
of P vanish is what we have called the causality limit. It 1s likely to

be achieved only in the case of two strongly coupled channels.

We have investigated the behavior of the direct enhancement for two
classes of average S-matrices involving only pairs of coupled channels
g,

F 'iD)
A iD -F

- - [F D
'S'B-5 ®Bs B"(D -F)

Here 5 ® A means that §h is a 10 x 10 matrix consisting of five identi-
cal 2 x 2 blocks A along the diagonal. Both EA and §b represent two
parameter families of average S-matrices depending on F and D, The non-
trivial submatrices of the P matrix in the two cases are

=5 @ A, A

(9.14)
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with T=1 - F2 - 02 in both cases. In case B the causality 1imit
det P8 = 0 coincides with the usual 1imit T = 0 and imposes no separate
restriction beyond F2 + 02 < 1. However in case A, the causality condi-

tion requires
F+D<1 (case A) (9.16)

(9.15)

and we expect a maximum enhancement of the non-elastic cross sections be-
tween any two directly coupled channels. Fig. 10 shows the parameter space
of the two average S-matrices of Eq. (9.14) and the calculated compound
enhancements over the Hauser-Feshbach formula according to Eq. (9.12). As
expected the enhancements are largest and comparable to elastic enhance-
ments along the causality 1imit (9.16) and the enhancements quickly drop
off as one moves away from this 1imit. In the case of Sb where the caus-
ality 1imit imposes no restriction on the available parameter space, there
are no appreciable enhancements except along the 1ine F = 0 which case B
shares with case A.

The predictions of the direct enhancement in these and other cases
have been confirmed by computer studies with randomly generated unitary
S-matrices. In Fig. 10 the parameters of such computer studies are indi-
cated by black dots.

X. CONTINUOUS CHANNELS

With increasing neutron energy the number of open exit channels in-
creases rapidly until it 1is efther impossible or undesirable to enumerate
all such channels and discuss their cross sections in detail. It then
becomes necessary to discuss the differential cross section for leaving
the residual nucleus with an excitation energy within a differential

interval at Ed’

f2
d cd(cont.)

- = ozﬁ(discr.)pd(Ed) (10.1)
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where azg(discr.) is the cross section for excitation of a discrete
channel with residual nuclear excitation E;, and pd(Ed) is the level den-
sity at excitation Ed of the residual nucleus in channel d for states
having spin and parity specified by the channel index d.

If the dependence of pg UpON the relevant residual spins Id is given
by the factor (21d + 1), then it can be shown that the fluctuation cross
section (10.1) summed over Id is isotropic. Though this spin dependence
of Py is not correct, the anisotropies of fluctuation cross sections at
such high energies are expected to be small and can often be ignored.

Also, in the presence of large numbers of competing channels, the
width fluctuation correction and direct effect upon non-elastic fluctuation
cross sections becomes negligible. On the other hand for r >>D we expect
an elastic width fluctuation correction factor of 2, so that in the present
domain we expect that

o qldiscr.) ¥ (1+ ch)agaF'. (10.2)

The transmission factor sum I T, which occurs in the denominator of
°E&F'= Eq. (3.5), must also be evaluated statistically

E_(max)
2T, = I, f e dET, (E,)/D, (E,) (10.3)
0

which involves the level spacings De for the residual nuclei in all com-
peting channels. Again, if De depends on the residual nucleus spin
through a factor (21, + 1)'], then the transmission sum (10.3) is given by

ZeTé = (20 + 1)6/x

where J is the total angular momentum and G depends only upon excitation

energy of the compound nucleus.

Another empirical method for determining the transmission factor sum
makes use of the relation

I T, ¥ 27r0"/p (10.4)

where r0"" is the correlation width and p is the compound nucleus level
spacing for states of the same total angular momentum and parity as the
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channels e that are summed over. The correlation width can under some
circumstances be estimated from fluctuation experiments [17]. The validity
of the relation (10.4) was recently confirmed by numerical studies [10].
Comparison of Eqs. (6.15) and (10.4) shows that the correlation width is

not the same as the average of the widths I‘u i

Difficulties remain the reliable treatment of compound nucleus cross
sections at high energies. These are caused by a number of different
circumstances. First, there is the uncertainty regarding the;effécts of
gamma ray transitions between highly excited compound nuclear states in
softening the spectrum of emitted neutrons and protons. Secondly, there
are empirical results which disagree with the shapes of the particle
spectra predicted by the above statistical picture. This indicates a
breakdown of our basic statistical assumptions which is dealt with in the
lectures on preequilibrium decay.

Finally, at neutron energies exceeding 10 to 20 MeV, residual nuclear
Tevels become unstable and emit secondary particles which further add to
the particle flux generated by the reaction. From a theoretical viewpoint,
such physically continuous channels pose a three or more body problem in
the channel portion of configuration space, not just in the compound
nucleus. While theoretical methods exist now for treating three-body
problems {18], they are complicated and time-consuming and have not yet
been applied to neutron induced reactions in heavy nuclei. It is therefore
generally assumed that above the threshold for three body breakup, the
breakup proceeds sequentially. That is, in addition to the particle spec-
trum produced according to Eq. (10.1), there are additional particles pro-
duced by the breakup of the residual nuclei in each channel d which is
given by

Ed(max)
f dE ol (discr.)eg(EQ)T g0 gs (Eqi)/5g Ty (10.5)
0

where the channels d' are decay channels of the residual nucleus of chan-
nel d, considered as a new compound system, etc.
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