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HAMILTONIAN THEORY OF THE E778 NONLINEAR DYNAMICS EXPERIMENT

S.G. Peggs
SSC Central Design Group, 1 Cyclotron Road, Berkeley, CA 94720, USA

ABSTRACT

Short, medium, and long time scale Hamiltonians describing the E778 experiment are 
• presented, corresponding to smear, capture fraction, and tune modulation types of

measurements. A one-tum "discrete" Hamiltonian representing motion in the presence 
of thin multipoles is derived from nonlinear projection maps, leading to expressions 
for distortion functions, Fourier spectra, normalized covariances, and smear. An N- 
turn Hamiltonian is derived representing motion at a tune near a rational fraction I/N, 

® leading to expressions for detuning, resonance island width, resonance island tune,

and persistent capture fraction. Generating functions appropriate to slow and fast tune 

modulation are presented, leading to four conditions which partition the tune 
modulation plane into four distinct "phases" of dynamical behavior.

1. INTRODUCTION

E778 is an accelerator physics experiment that has been perfonned in the Tevatron proton-antiproton collider, 
at Fermilab. The original motivation for the experiment was to check that tracking programs and reality agree on the 
variation of smear and tune shift with amplitude, and to ensure that a real storage ring performs well enough even 
when these quantities reach the maximum tolerances specified for the "linear aperture" in the Conceptual Design 
Report of the SSC[1]. Results from the analysis of data taken in May 1987, and preliminary results from the 

February 1988 data, are presented elsewhere in these proceedings[2], and in other publications^]. The experiment 

# investigated the behavior of the Tevatron in the presence of strong nonlinearities introduced by 16 special

sextupoles. Most of these investigations focussed on the information provided by two neighboring beam position 

monitors (BPMs), after horizontal betatron oscillations with amplitudes of 2 to 6 millimeters were excited by a one 

turn kicker. Turn-by-tum information was read out, digitized, and written to magnetic tape, on each of (typically) 

64k successive turns - about 1.4 seconds. Data analysis falls naturally into three different time scales - about 50 
® turns, about 500 turns, and about 50,000 turns. Fifty turns of data are usually sufficient to adequately measure the

smear (defined below), and the tune at the amplitude of the kick. These measurements have been successfully 
completed.

^ The focus of E778 analysis has now turned to the phenomenon of resonance trapping, in which a persistent
signal is seen on the BPM data, due to some fraction of the kicked beam being trapped on resonance islands. These 
signals often lasted from kick time until the Tevatron ended its two minute cycle. Untrapped beam decoheres in a 

time corresponding to the inverse of the tune spread - approximately 100 turns, as shown in Figure 1. Five 

hundred turns of data are sufficient to accurately measure the "capture fraction" - the ratio of persistent amplitude to 

initial amplitude - and to measure the size and locations of the resonance islands. The analysis of long time scale (1 

second) behavior will examine how the persistent response depends on tune modulation of the form

Q = Qq + qsin(27tQMt) (1)
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where t is the turn number. Tune modulation was externally introduced into the Tevatron by exciting fast response 

quadruples which are normally used to feedback on the tune during slow extraction. Different kinds of behavior 
are expected in different regions of the (q,QM) plane.
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Figure 1. Raw BPM output, (a) for 4000 turns, and (b) for 500 turns after the kick, showing decoherence 

and a persistent signal. The smooth curve is a Gaussian fit, as expected theoretically

2. SHORT TIME SCALE - NONLINEAR DISTORTIONS

2.1 Projection maps, and the discrete one turn Hamiltonian Hj

Consider the general problem of transverse motion around an accelerator with many thin multipole 

nonlinearities. Although it is convenient (and appropriate for E778) to concentrate on normal sextupoles in what 

follows, it is straightforward to extend the results to include any and all multipoles, normal or skew. The angular 

impulse on a particle passing through a thin sextupole is

AX' = g(X2-Z2), A Z = - 2 g XZ (2)

where X and Z are horizontal and vertical displacements, a prime denotes differentiation with respect to the 

azimuthal coordinate, and g is the sextupole strength. In normalized coordinates, x and z, the perturbation is

A x' = gxx x2 - g7Z z2, A z' = gxz xz

where (3)
gxx s g Px3/2, gzz = g Px1/2Pz, gxz 3 - 2 g Px1/2Pz = - 2 gxz

Linear motion from a fixed reference point at the origin of accelerator phases, \|/x = V|/z = 0, to a given 

sextupole, is given in this coordinate system by a rotation matrix,
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R(Vx.Vz) = (4)

f Cx sx 0 0 \

-Sx cx 0 0

0 0 cz Sz

V 0 0 “SZ Cz J

where
cx = cos(v(/x), sx = sin(\|/x), et cetera.

The "projection" map P is defined as linear motion R from the reference point to a given sextupole, followed by 
the nonlinear kick, finally followed by inverse linear motion R” ^ back to the reference point.

The net effect of a projection map P is found by combining equations (3) and (4), to give

^ Ax^\ f-Sx[g*x(CxX+sxx')2-gxx(CxX+sxx')2]

Ax' cx[gxx(cxx+sxx’)2 - gxx(CxX+Sxx')2l

Az -sz gx7.(CxX+Sxx')(CzZ+Szz')

\Az'J V cz gxz(cxx+sxx’)(czz+szz') J

(5)

which has the remarkable property of leading directly to a "discrete projection Hamiltonian"

Hp = - ^ (cxx+sxx')3 + gzz (cxx+sxx')(czz+szz,)2

that exactly reproduces the map (5) under partial differentiation

(6)

(Ax^ ( dllp ^ 
dx'

Ax' 9HP
dx

Az

V Az'v
dHp

)

(7)

It is important to note that these are DIFFERENCE, and NOT DIFFERENTIAL, equations - explaining what is 

meant by a "discrete" Hamiltonian. If it is assumed that the difference vector is small, and if action-angle variables 
J and <t> are introduced through

(8)

/ (2Jx)1/2sin(<t>x)\

x' (2JX)1^2 cos(<t>x)

z (2Jz)’^2 sin(())z)

^ ZV ^ (2Jz)V2Cos(<|)z)y
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then the projection Hamiltonian becomes

Hp = 3^1/2 Jx3/2 [sin(3ax)“3 sin(ax)] + ^Jx1/2JZ [2 sin(az)-sin(ax+2az)-sin(ax-2az)] (9)

where
= Vx + <t>x, az = \)/z + <\>z (10)

and powers of trigonometric functions have been expanded into multiple angle form.One-turn motion around the 

Tevatron is given by following map Pi with P2, et cetera, up to P)6, and finally by applying R(2jiQxo, 27tQzo), 
where Qxo and Qzq are the small amplitude linear tunes. The nonlinear part of the motion is described to first 

order in sextupole strengths - and not at all to higher order - by summing Hp for each sextupole, so that the 
discrete one-tum Hamiltonian is

Hi = 2rc Qxo Jx + 27tQzoJz + X Up
sextupoles

(ID

Hj is shorthand for a set of difference equations, NOT differential equations, which are

/ dHi \
\ 

<t>x 

Jz

v> y
t+i

yjx ^

<t>x 

Jz

y
t

3<t>x 
dill

dH\ 
d<Pz 
dHl

v y t

(12)

The linear contribution on the right hand side - A<j>x = 271 Qxo, A({)z = 2?: Qzo - is constant and (usually) large. 
Consequently, the value of Hi is not a constant of the motion, and the motion cannot be graphically understood, 
(in one dimension) by plotting its contours. Projection maps appear to have been first used in nonlinear accelerator 

applications by Kobayashi in 1970[4], although they were also independently developed for application to linear 

coupling problems[5]. It remains to be shown that this formal structure is more than just academically interesting.

2.2 Distortion functions

It is conceptually natural and practically straightforward to rewrite the one-turn Hamiltonian (11) as

Hi

where the sum is over

2k Qx0Jx + 2tc Qzo Jz + X vijkl Jx^2 JZ^2 sin(k(t)x-i-l(t)z+())ijki)
{ijkl}

{ijkl) = (3030, 3010, 1210, 1212, 121-2)

(13)

The first two indices of the constants Vjjiq and (fojiq refer to the powers of Jx'^2 and Jz*/2, while the last two 

identify a particular hannonic. It is trivial to solve for the phase space "distortion functions", Jx(<t>x, <)>z) and 

Jz(4>x, ^z). after substituting (13) into the equations
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and

Jx(<t>x+27tQxo, <t>z+27iQzo) - Jx(<t>x, <t>z)
9Hi
54>x

J7.(<t)X+27tQxO, <t)Z+27lQzo) — JzC^X. 4*7.)
9Hi

9<t>z

(14)

This gives, to lowest order in sextupole strength,

•IxOtho ^z) — JxO - k V'ik!—- JxOl/2 •Izoi/2 sin(k<J)x + l<t>z + ())ijk] _ nQk|) 
2 sin[jtQki]

■IzC^X) <l>z) — JzO ^ 1 ~ JxOl/2 Jz()i/2 sin(k(J)x + l(t)z + <t>ijki _ jtQki)
2 sin[jtQki]

(15)

where it is convenient to define the harmonic tune

Qkl = kQxO IQzO (1^)

Note that the vertical sum in (15) only includes the three terms with 1 non-zero, {ijkl} = { 1210, 1212, 121-2), 
while the horizontal sum continues to include all five terms. Note also the presence of Qki in the resonance 

denominators. Although expressions for distortion functions have already been found by many other authorslG], 

their derivation in the formalism of discrete Hamiltonians is especially economical and conceptually clear. The 
extension of this description to include other multipoles is straightforward, and is left as an exercise for the reader.

2.3 Fourier spectra, normalized covariances, and smear

The lowest order solution for Jx(t) and Jz(t) on turn t is given by substituting

into equation (15), giving 

Jx(0

= 4>x0 + 27t QxO t, <(>z = <J>Z0 + 27t Qzq t

= Jx0 - Y . k ^ , JxOi/2 Jz(>j/2 sin(27tQk| t + (t>0ijki) 
X-f 2 stn[7tQki]
{ijkl}

and

with

Jz(0 = JzO - Y ....‘yiiKL - JxOi/2 JzQj/2 sin(27tQk| t + (jTQijkl)
jLj 2 sin[7tQk|]
{ijkl}

4>0ijkl s k(f)x0 + l<t>z0 + ‘f’ijkl “ It Qkl

Rewriting (18) in terms of amplitudes, rather than actions, gives

(17)

(18)
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and

ax(0 — axO

az(0 — azO

I
{ijkl}

S
{ijkl}

k Viikl
2(i+j+2)/2 sinfnQki]

axO1'1 azOj sin(2nQkit + ())oijkl)

1 Viikl
(19)

2(i+j+2)/2 sintnQki}
axO’ azO1'1 sin(27tQkit + (JtQijkl)

Each term in the horizontal or vertical sum in (19) corresponds to one line in a discrete Fourier analysis of the 

amplitudes (not the displacements). While the lines are ideally narrow, in practice their width is proportional to the 

tune spread of the beam. It is nonetheless possible to reconstruct the single particle motion by properly summing 
the power and the phase of the bins under the broadened peaks - assuming that the peaks can be resolved. This 
summarizes the situation in terms of a small set {ijkl} of physically important and theoretically predictable 

parameters, Vjjki and <)>ojjkl.

The motion is further summarized by calculating three statistics, the "normalized covariances",

= <axax> _ , _
°xx ~ <ax><ax> 1 ~ I

{ijkl}

k2 Viikl2

2('+j+3) sin2[7tQkl] ax02i-4 az02i

O/z = 1 =<azxaz>

= _<axa^__ j _ 
CTxz “ <axxaz> 1 ~

l2 Viikl2
2(‘+j+3) sin2[nQki]I

{ijkl}

V -------kl Viik[2-------  ax02i-2 az02j"2

20+1+3) sin2[JIQki]

(20)

where angle brackets <> imply a time average. (These equations are incorrect if two members of {ijkl} have 

identical kl values.) The covariances are "normalized" in the sense that they are dimensionless, and are zero for 
linear motion. Two of them, gxx and ozz, are positive-definite, but the cross term ctxz can be negative, with

oxz2 oxx Czz (21)

If one of the harmonics in the sum dominates - if Vyki is very large or Qki is very close to an integer for some 
ijkl - then there is a simple invariant of the motion,

1 ax - k az = constant (22)

and the equality holds in (21). In the most common E778 experimental conditions, motion was induced in the 

horizontal plane, with the tune Qxq in the range from 19.37 to 19.42. The horizontal rms "smear" is then just

Oxx 1/2 = 3 V3W02 V30I02
1

26 sin2(37tQx0) 26 sin2(nQx0)
axO (23)

and is linear in the initial amplitude. Notice that sin(3nQxo) = 0.729 at the upper end of the tune range, and the

6



resonance denominator in the first term in (23) is not small, showing that the E778 smear was not (necessarily) 

dominated by the 3QxO harmonic.

3.0 MEDIUM TIME SCALE - PERSISTENT SIGNALS

3.1 The N-tum Hamiltonian Hni

If the base tune of an accelerator is near a rational fraction, Qo ~ I/N, then the net phase space motion after 

N turns is comparatively small. For example, the E778 fractional tune was between 2/5 — 0.03 and 2/5 + 0.02, 
so the magnitude of the net phase advance was typically less than one tenth of 2k . It could also be argued that the 
E778 tune was close to 1/3, although it remains to be seen how close is close enough. Consider, then, the general 
N-tum case, where the motion is described to lowest order by the N-turn Hamiltonian

Hn = 2k (Qq -jq-) J +
N-!

5TŜ £VikJi/2sin[k(<|>+n27tQo) + <t>iic]
n=0 M

(24)

# All subscripts x are dropped from here on, and the set of indices {ijkl) is contracted to (ik),
horizontal motion is treated. The N-turn difference equations of motion are now

since only

f1 )

t+N

fJ )

t

N

f 9HN ^ 

5<() 

3Hn 
V

(25)

The crucial difference between Hn and Hi - see equation (13) - is that now the difference step is small. To a 

reasonable approximation, Hn is a constant of the motion, and the difference equations can be replaced by the 
more common Hamiltonian differential equations,

/ d J N
dt

d(()
V dT y

^ d Hn ^
0<j)

0Hn

V dJ J
(26)

Stricdy speaking, the motion obtained by "integrating" (26) is only correct for values of t which are exact multiples 
of N . The outer sum in (24) is easily removed by using the trigonometric identity

so that

where

N-lv , r,. _ sin(NB/2) . .. N-l
n?0Sin A B ~ sin(B/2) sln(A + 2 B)

Hn = 27t (Qq - jq") J + X vNik J1^2 sin(k(J) +())Nik)
(ik)

,, sin(NkQoTt) ,,VNik s ' Vik, <t>Nik = «))ik + (N-l)kTtQo
N sin(kQoTt)

(27)

(28)

(29)
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A remarkable and important property of Vnuc is that

provided that

VNik = Vik if mod(k,N) = 0
VNik « Vik if mod(k,N) ^ 0

iQo-r «
kn

(30)

This defines when the tune is "close enough" - when most of the VNik terms are negligible. For example, if the 

maximum value of k is 3, then it reasonable to drop most of the (ik) terms in (28) if the base tune is within, 
say, 0.03 of I/N . This shows that E778 conditions were "close" to the 2/5 resonance, but not to the 1/3 .

3.2 The three turn motion, and octupolar detuning

Suppose that the tune is between 0.33 and 0.36 (not true for E778), and that (ik) is (33,31,44,42, 
40), including both sextupolar and octupolar terms. If the extra terms come from true octupoles, their and 

<()jk values are easily calculated. However, if, as in the E778 case, they come from cross terms between 
sextupoles, they are not calculable without resorting to second order perturbation theory. Combining (28) and (30),

H3 = 2n (Qq _ j) J + V33J3/2sin(3<t> + <t>33) +V40J2 (31)

Since H3 is a constant of the motion in this approximation, the distortion function is just

J(<f) = Jo- - - - - - - - - - - - - - - - - 5—(V33Jo3/2sin(3<|>+<t>33) + V40J02) (32)
2tc (Qo - j )

in agreement with (15), if the constant term proportional to V40 is (legitimately) dropped. Equation (32) describes 
the classic (nonnalized phase space) topology, of small amplitude circles becoming more and more distorted at 
larger and larger amplitudes, out to a separatrix in the shape of an equilateral triangle. This description is accurately 

confirmed by tracking. The perturbed tune at an average action of Jq is given by

where, using (26),

(33)

(34)

After equation (31) is differentiated and substituted into (34), the integrand depends explicitly on J and <|). Next, 
the integrand is expanded in a Taylor series up to order J1, and then (32) is used to make the integrand depend 

solely on <)>, allowing T to be evaluated. This gives



which is correct to first order in Jq . The presence of the resonance denominator in the V332 term shows that it is 

unnecessary to consider the cross terms between sextupoles, if the tune is close enough to 1/3 .

3.3 The five turn motion, and experimental observables

Most of the persistent signals observed in E778 were due to the 2/5 resonance, and so the five turn motion is 
very relevant. After expanding the (ik) set even further, to be {33,31,44,42,40,55,53,51}, but keeping 
only tenns with k=0 and 5 according to (30), then the 5-turn flamiltonian is written down as

H5 = 2k (Qq _ j) J + V40 J2 + V55j5/2sin(5(t>+<|)55) (36)

The decapole terms with i=5 coming from cross {errns between sextupoles can also, in principle, be calculated in 

second order perturbation theory. However, as Taf says, "Beyond first-order results I know of no useful result 
from perturbation theory in (celestial) mechanics... "[7], What is more, tracking results show that (36) is not an 

accurate description even at moderate amplitudes - V33 terms are still important in practice. Without minimizing 
these difficulties, it is possible to proceed with a general description by rewriting H5 as

H5 = 27t(Q0-f)J + U(J) - V5(J) cos(5<t>) (37)

where
Q(J) - f + (Qo-f) + (38)

-1 J 2n

and a prime now indicates differentiation with respect to J . This Hamiltonian exhibits island structure, with five 

stable and five unstable fixed points at local minima and maxima. They occur close to an action Jj which makes 
the tune exactly 2/5, and which is found by solving (38).

It is illuminating to rewrite (37) in a Taylor expansion in I, the action displacement from the fixed points,

H5(I.<1>) = I2 - V51 cos(5(j)) (39)

where
I = J - Jl, U"i = lAJj), V5I = V5(Ji) (40)

Thus the stable and unstable fixed point phases are, respectively, even and odd integer multiples of n/5 (assuming 
U'j and V51 have the same sign). The island half width is found by solving HsHw, 0) = H5(0,7t/5),

Small oscillations about the stable fixed point at the origin are described by

ef =-^2v5i f ^ = iA 1 (42)

so that motion around the center of an island is characterized by the island tune
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(43)Qi = ~ (U”i V51)1/2
2k

These are the theoretical variables: what can be measured in E778?

The detuning function Q(a) already measured in E778 is in good agreement with tracking at small and 
moderate amplitudes[2,3]. This leads to a measurement of U as a function of the action. The fraction of particles 

captured on fifth order islands is expected to be roughly proportional to the island half width in amplitude, a\y . 
Accepting the parameterisation in (36) for a moment,

31
(44)

in which case the capture fraction rises slightly faster than linear with the resonance amplitude, aj. In any case,
observation of the capture fraction leads to measurement of —tr- as a function of the action, after correction for

U I
systematic effects by comparison with multi-particle simulation. This measurement is being actively pursued. 
These two sets of observations are sufficient to measure the primary theoretical functions U(J) and VsifJ) . 
Knowledge of U and V51 leads to a prediction for the island tune which, if Qi can be measured independently, 
imposes a redundant test on the simple theory. When a single particle is captured close to the center of an island in 

a tracking program, a Fourier transform of its phase reveals a peak at Qi, the island tune. Although the real signal 
caused by a beam of particles with finite size is weaker, it is hoped (with some justification) that Qi can be 
measured as a function of ai in the E778 data.

4. LONG TIME SCALE - TUNE MODULATION

The long time scale behavior of the Tevatron was probed, in E778, by observing the response of persistent 
signals under the tune modulation described in equation (1). Data were usually taken for 64k turns, but some were 

taken over one megaturn, at the limit of the instrumentation[8]. This is only two orders of magnitude short of the 
SSC storage time, about 3* 104 * * * 8 turns in one day. The following description is broken into slow and fast regimes, 

where the modulation tune Qjq is much less, or much greater, than Qi, the island tune.

4.1 Adiabatic tune modulation, and trapping

If the tune is changing slowly at a constant rate of Q, then (39) is modified to become

H5(I,<])) = 2jtQt I + jU’i I2 - V51 cos(5(t>)

“\T T
This shows that the fixed point action Ipp, where= 0, moves according to

(45)

IFp - e t (46)

The explicit time dependence in the Hamiltonian is reduced to second order in the small quantity e, defined above,



by performing a canonical transformation from (!,<)>) to (I.t])), using the generating function

W(I,<j>,t) = + et^ (47)

so that

1 ^ af = I + Et’ * s in- = h5 s H5 + ^ = H5 + e0 (48)

The new action variable I is the action displacement from the moving fixed point, while the angle variable is 

unchanged. The new Hamiltonian is no longer periodic in the angle variable 0,

1H5 = jU"ll2 - V5I cos(50) + E 0 - ^-U" E21 (49)

and only has stable fixed points if there is a solution to —r-=0, that is, if
90

27C|^r| < 5IV5ll (50)

This is analogous to the well known problem of radio frequenc^acceleration, in which the stable buckets shrink, to 
become shaped like tear drops, or even to disappear, when ^-= is non zero. If the tune modulation is 

sinusoidal, as in (1), then the maximum value of Q is 27tqQM> and, comparing equations (43) and (50), particles 

are only adiabatically trapped on resonance islands if

Qi2
oQm < (51)

(after generalization to the case of an N'th order resonance). This condition is a factor of two more stringent than 
the one originally proposed by Chao and Month, which was based on a more heuristic model[9],

4.2 Rapid modulation, and svnchrobetatron sidebands

When the sinusoidal nature of the tune modulation is explicitly included in the time independent Hamiltonian 

(39), the time dependent five-turn Hamiltonian is described, not by (45), but by

H5 = 271 q sin(27iQM t) I + }u"il2 - V5icos(50) (52)

This is canonically transformed by a generating function different from (47), namely

W(I,0,t) = 01 + qLcos(27tQMt) I (53)

to give
1 = 1, 0=0 + ^•cos(27tQMt), H5 = H5 - 271 q sin(27tQM 0 (54)

The new action is unchanged, while the new angle is sinusoidally modulated with respect to the old angle, and the

11



tune modulation in the new five-turn Hamiltonian is shifted inside the cosine

H5 = 5-U"iI2 - V51 cos[5<t> + ^j-cos (2it QmO] (55)

This is rewritten, without overbars, as

H5 = iu"il2 - V5i^Ji(^)cos(5<t>+i27tQMt) (56)

using the identity

cos(A + B cos(C)) s ^ Ji(B) cos(A + iC) (57)

where the J; are Bessel functions. Now, if the action of a particular test particle is close to

Ik = k
27t Qm 
5 U"i

then its tune is close to
Qk = |+k%i

(58)

(59)

and after five modulation periods, 5M turns, the net phase advance is small. All of the harmonic terms except one 

disappear in going to the 5M-turn Hamiltonian,

H5Mk = jU"i(I-Ik)2 + V5iJ-k(^)cos(5<))) (60)

due to the same averaging which made most terms disappear in going from the one turn (difference) map to the five 

turn (differential) map, equations (24) to (30). Note that this averaging is only valid if not much happens in 5M 

turns - if Qm » Qi • Just as the N-tum Hamiltonian motion was only correct every N turns, the motion found by 

"integrating" HsMk is only strictly correct at integral multiples of 5M .

Equation (60) has stable fixed points and resonance island chains for every integer k, at a family of tunes 

with a spacing of where N is the general resonance order. These "synchrobetatron" sidebands are strongly 

suppressed by small Bessel functions at large values of k, since

"J ^ IcTC TT
Jk(A) = cos(A--j—3-) if A > k > 0

Jk(A) =0 if A<k

Physically, 
carry it the

this means that the test particle is hardly perturbed if its tune modulation amplitude q 
distance to the tune of the resonance. Only the fundamental k = 0 is present

is insufficient to 
if

q <
Qm
N (62)
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The half width of a significant synchrobetatron island is given, in comparison with (41), by

(63)

where the value of a Bessel function is approximated by its rms size. The action separating neighboring sidebands 

is given by (58), so the condition for synchrobetatron sideband overlap is just

(64)

(65)

4.3 Dynamical "phases" in the tune modulation plane. (Qm.Q)

Figure 2a shows how the (Qm.c1) tune modulation plane is broken into different regions by three solid 
boundaries corresponding to the conditions (51), (62), and (65), drawn here with N = 5 and Qi = 0.0053 . 
Assuming that the order of the resonance N is fixed, the only independent variables in these conditions are the 

three tunes q, Qm> nnd Qi . These three occur only in combinations of two more basic quantities, Qm/Qi and 
q/Ql, which are the externally controlled tunes in units of the island tune. This shows that Qi is a fundamental 
dimensionless measure of the resonance strength. The dashed boundary, Qm = Qi, roughly separates the zones 
where the slow and fast generating functions, (47) and (53), are valid.

or, using (43),

t _ 2n Qm „
tseparation - J\J JJ "i ^

Qm 4 (Nq)4 < -^tQi
Tt1'4

Large scale chaos is expected when this condition is satisfied.
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Figure 2 a) Tune modulation plane phases, and b) persistent signal decay rate versus modulation tune, Qm
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In the bottom left corner of this "phase" diagram, particles are trapped in a single fundamental island chain 
which "breathes" in and out, to larger and smaller amplitudes. Hence the strength of the persistent signal is 

amplitude modulated, in step with the tune modulation. In the bottom right comer there is still only a fundamental 

island chain, but trapped particles do not exhibit coherent amplitude modulations. Sideband island chains occur in 

the top right hand comer, in addition to the fundamental. If the size of the kicked beam in this region is large 

enough, then more than one sideband is populated at a time, and a Fourier transform of the persistent signal reveals 

peaks separated in tune by Qm/N. without amplitude modulation. The fourth region, the top left, is chaotic. If 
"persistent" signals are observed there at all, they decay away very rapidly.

The dotted line in Fig. 2a shows the region which was physically accessible in the E778 experiment during 
the Febmary 1988 run. Only the "adiabatic trapping" and "chaos" regions were accessible at values of Qi where 
the persistent signals were significantly strong. The 64k turns of data typically taken per shot could not be analyzed 

on line (for example, in searching for amplitude modulation) in time for the next shot. Consequently, the main real 
time observable was the decay rate of the persistent signal. Figure 2b shows how, at a particular base tune Qq, 
and hence at a particular island tune Qi, the decay rate increased dramatically above a critical value of Qm . The 

four crosses drawn on Fig. 2a correspond to the four q values in Fig. 2b, showing behavior consistent with 

crossing the boundary between adiabatic behavior and chaos. Detailed analysis of the hundreds of megabytes of 

data taken in the tune modulation phase of the E778 experiment is only just beginning.
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