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ABSTRACT

Early attempts at estimation of stress
wave damage in blasting by use of finite
element analysis met with limited success due
to numerical instabilities that prevented
calculations from being carried to late times
after significant fragmentation had occurred.
A new damage model based on microcrack growth
in tension allows finite element calculations
which remain stable at late times, Estimation
of crater profiles for blasting experiments in
granite, using laboratory properties for all
parameters, demonstrate a high level of success
for this damage model. However, estimated
crater profiles show systematic differences
from excavated crater profiles which motivate
further developments of this model.

INTRODUCTION

In recent years there has been an
increasing interest in the development of
numerical models for the prediction of rock
fragmentation by blasting. These efforts have
varied for semi-empirical (Cunningham, 1987;
Favreau et al, 1987) to more rigorous (Danell
and Leung, 1987; Kuszmaul, 1987a). Numerical
modeling of blasting has brought into focus the
complexity of the blasting process. Not only
are there numerous physical processes
occurring, but the host media is geologic and
therefore highly variable, with response
characteristics that are difficult to quantify
and often size dependent. This complexity
requires that numerical models be developed in
a highly systematic fashion in close
coordination with controlled field and
laboratory experimentation. It 1is also
important that postulated physical mechanisms
undergo thorough numerical evaluation before

they can be accepted as being important to the
blasting process.
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Since 1985, the Advanced Technology
Division at Sandia National Laboratories has
been involved in the development of numerical
models for describing the blasting process.
This work has developed two separate
computational thrusts. The initial early time
transport of stress is treated through the use
of a dynamic wave computer program PRONTO
(Taylor and Flanagan, 1987, 1989) and a
constitutive damage model that attempts to
describe the fracturing that occurs as a result
of the stress wave. A separate modeling effort
(Preece, 1990) is underway to describe the
motion of individual rock fragments as a result
of gas flow loading.

This paper describes in detail a model for
estimation of stress wave induced fracturing.
This model has evolved over a number of years
(Kipp and Grady, 1968; Taylor Chen and
Kuszmaul, 1986; Kuszmaul 1987a). As will
become apparent, modeling stress wave induced
fragmentation 1is very complex and any
computational algorithm will only represent an
approximation. Thus it is very important that
any postulated model be compared in detail
against controlled experimental data. Only by
such comparisons can it be determined if the
numerical embodiment of the physics represents
a useful engineering approximation.
Traditionally, there has been a lack of highly
controlled experimental data. However, in the
past two years, as part of our model
development program an experimental
verification effort has been conducted. The
experimental work is being performed jointly
with the Atlas Powder Company. Beginning in
1988, two sequences of cratering experiments
were conducted for the express purpose of
generating data for comparison with model
predictions. These experiments examined
systematically variations in geometry, rock
type, and explosive. Data collected on the
tests included continuous detonation velocity,
high speed photography of the ground motion,
muck pile profiles, excavated crater profiles,
and particle size information.

In addition to detailing the numerical
model this paper discusses comparisons of the
predictions with experimental data. These
comparisons have been used to derive our
current approach and are being used to identify
weaknesses in our current approach which should
be targeted in future research. These studies
also indicate the complexity of the mechanisms
involved and are serving as a basis for
developing complimentary numerical descriptions
that emphasize different physical processes.



DAMAGE MODEL

The damage model is intended to simulate
the dynamic fracture of brittle rock. It is
based on work started by Kipp and Grady, 1968
and continued by Taylor, Chen and Kuszmaul,
1986 and Kuszmaul, 1987a. It is modified here
to extend it to large crack densities as
suggested by Englman and Jaeger, 1987. The
essential feature of this model is the
treatment of the dynamic fracture process as a
continuous accrual of damage in tension, where
the damage mechanism is attributed to
microcracking in the rock. The fundamental
assumption of the model is that the rock is an
isotropic material which is permeated by an
array of randomly distributed microcracks which
grow and interact with one another under
tensile loading.

Englman and Jaeger, 1987 introduce =&
regularized damage parameter, F, which is
related to Budiansky and O’Connell’s, 1976
crack density, Cq4, but takes into account the
overlap between the damage volumes of different
cracks. To this end they define F by

F =1 - exp(-aCy), 1)

where a=16/9. The effective Poison's ratio,
Ve, and bulk modulus, K,, of a cracked medium
with undamaged Poison’s ratio v and bulk
modulus K are given by

Ve = v( 1l - F ) = vexp(-aCy) (2)
and
Ko = (1 - £,(v,)F )K, (3)
where
A T @)

In order to relate stress to strain we
will generate a system of differential
equations which can be solved for the effective
elastic moduli of the cracked medium. It is
convenient to introduce a damage parameter, D,
defined by

D = £,(v,)F. (5)
Note that 0 = F <D <1 and
K. = (1 - D)K. (6)

The crack density can be related to an
average flaw size, a, by



Cqa = Na3, (7)

where N is the number of active cracks and vy is
a proportionality ratio. Differentiating
equation 7 yields

dC dN d
Ezi il v a? + 39N a% a?, (8)

where the forms of N and a are yet to be
determined.

At this point, it should be noted that
there are a wide variety of assumptions which
can be made as to the form of N and there is
almost no agreement as to the proper form for
flaw size. Kipp and Grady, 1968 and Kuszmaul,
1987a assume that the number of cracks
activated at a volumetric strain, ¢, is
described by a Weibull distribution of the form

N = kem, ¢:))

where k and m are material dependent constants
and the volumetric strain, e, is one third of
the time integral of the trace of the
deformation tensor, d:

e = 1/3ftr(d)de. (10)

Note that ¢ is positive in tension. Equation 9
implies

Cq = kemad (11)
and
av _ -y 8¢
3t mke™ it (12)

where the proportionality ratio v has been
absorbed in the material constant k.
Introducing equations 9 and 12 into equation 8
yields

dc de 3¢ da
—_—d - ~152 pruid == =
T mke® 1a2( a ac t o oac ). (13)

In the following we will take an approach
aimed at modeling the observed dependence of
fracture strength and fragment size on strain
rate. We will assume that the characteristic
flaw size is proportional to the nominal
fragment size for dynamic fragmentation of a
brittle material. Grady, 1983 derives the
following expression for the nominal fragment
radius for dynamic fragmentation of a brittle
material based on energy considerations at high
strain rates:
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Here Kjc, p and c¢ are the fracture toughness,
density and sound speed of the undamaged
material and R is the strain rate, which 1is
assumed in the derivation to be both constant
and large.

In order to apply equation 14 to the case
where the strain rate is not constant, Taylor,
Chen and Kuszmaul, 1986 replace the constant
strain rate, R, in equation 14 with the maximum
strain rate, Rg.,, which the material has
experienced. The derivation of equation 14
assumes that the strain rate R is reached prior
to the time of interest, is large and remains
constant during the fragmentation process. 1In
the finite element program R,,, usually occurs
when the material first comes off the peak of a
shock wave and remains constant after that
time. In this case Ry, is both constant and
large, as in the derivation of equation 14. To
assure that unreasonably small values of Ry,
are not used in equation 14, a material
dependent minimum significant strain rate Ry,

is used until de/dt exceeds R,,. Use of
equation 14 in this manner results in
Skem Kyc ]2
Cy = 15
d 2 [ PCRpax (13)

and da/dt=0. Again the proportionality ratio
has been absorbed in the material constant k.
Equation 13 becomes

dcy _  Skmen? Kie |2 de . (16)
dt 2 PCRyax dt

The bulk response of the material is given
by P=K,e, where the volumetric stress P, which
is positive in tension, is one third of the
trace of the stress tensor. We assure that the
deviatoric response of the material is
consistent with the bulk response by defining a
degraded shear modulus, u,, such that

3K. (1 - 2v.)
- -
S = 2u.e ——ﬁ—-—-———'—( T+00) e, (17)

where 8 is the deviatoric part of the stress
tensor and e is the deviatoric part of the
deformation tensor d. It follows that

dpP de dD
E-E-SK(I-D)-EE-3K¢:E (18)

and



a8, de  , du

ac = 2He Gt dat (19)
where
dp_ __ BrK, 4Gy 3R(1 - 2,) dD
adt (1 + vy, )2 dt 2( 1 +wv,) dt°

Equations 2, 4, 5, 16, 18, 19 and 20
constitute a coupled system of algebraic and
ordinary differential equations which is solved
using a simple centered integration operator in
the PRONTO (Taylor and Flanagan, 1987, 1989)
finite element programs.

The parameter m relates tensile fracture
to strain. The cube root strain rate dependence
determined by Grady, 1983 dictates that m=6.
This leaves only the parameter k to be defined.
Unfortunately, no general definition of k has
been found. For the special case of a material
with Poisson’s ratio zero expanding at a
constant strain rate R, it is easy to show that

9 c | 18K )6 R2
woam (B ) () ar @
where Pgp,, is the maximum volumetric tensile
stress achieved in a test to failure at a
constant strain rate R. Here we have made use
of the fact that m=6 and have written k, to
emphasize the v=0 assumption.

Since a rock with a Poisson’s ratio of
zero would be very strange, a solution of the
constant strain rate expansion case without the
v=0 assumption would be more realistic. While
it may be possible to solve the constant strain
rate expansion case without the v=0 assumption,
we know of no such solution at this writing.
However, the same method used to derive
equation 21 can be used to solve for k'(v), the
value of k for a material of constant Poisson’'s
ratio v. This contradicts equation 2, unless
v=0, but should lend some insight into how k
might be expected to depend on v. The result
of this procedure is

- 2

k. (22)
Note that k’'(1/2)=0 and k’'(1/3)=3/8k;. This
indicates that the v=0 assumption might result
in values of k which are too large.

If laboratory data for maximum tensile
stress versus strain rate are not available, it
is possible to compute a value for k by using
an expression derived by Kipp, Grady and Chen,
1980. For a number of rocks, they found that a
reasonable approximation to maximum tensile



stress, Py, as a function of strain rate, R,
is given by

9xEK,-2R ]1/3
-
Foax [ 16¢,N,? ] ' (23)

where ¢, and E are the shear wave velocity and
Young's modulus of the undamaged material, and
N, is a shape factor (N,=1.12 for penny shaped
cracks). It is possible to eliminate the ratio
R2/P_..° between equations 21 and 23 to get

29.484 { K Y6 (e )2
ko [ Kic ] [ c ) (24)

n2

For v=0, (c,/c)?=1/2 and in general

c 2 1
[Zi]'z(lﬂ,)" (25)
SRothe % dse 9Eceguatign 23 implies that k'(v)
k"(v) - 1 - 2v ko_ (26)

(1 -v2)(1l+v)

Note that the difference between k"(v) and k,
is greater than the difference between k'(v)
and k;y, with k"(1/3)=3/4k’(1/3)=9/32k,.

Figure 1 shows the accumulation of damage
with strain for wuniaxial strain calculations
past fragmentation at constant strain rates of
10/s, 100/s and 1000/s. Figure 2 gives
volumetric stress as a function of strain for
these same three calculations. Note the
increase in peak stress with strain rate. The
main difference between this version of the
model and previous versions is evident at large
values of damage, where exponential growth of
damage is replaced with an asymptotic approach
to the maximum value (D=1). In practice this
allows the finite element calculation to remain
stable in situations which would have resulted
in numerical instability with previous
versions.

Thus far we have only considered expansion
in tension. Equation 16 implies that damage is
healed when the material is recompressed.
Since this is not our intent, the damage model
is used only when the material is expanding in
tension. Previous versions assumed that the
material response was governed by the undamaged
elastic constants in all other situatioms.
This is equivalent to assuming that the
material is identical to the way it was before
it was damaged, except when it is expanding in
tension. This is illustrated in figure 3,
which shows volumetric stress as a function of



strain for a cyclic uniaxial strain calculation
in which the material is expanded and
recompressed at strain rates of 200/s, 400/s
and 600/s. The first cycle stops short of the
maximum peak stress and very little damage is
accumulated. The second cycle proceeds well
past the peak stress and stops just short of
fragmentation. The final cycle proceeds well
past fragmentation. Note the 1large amount of
dilatancy.

The opposite extreme would be to use the
reduced bulk modulus, K,, and Poisson’s ratio,
vy, for recompression in tension, returning to
the undamaged moduli only in compression. This
is equivalent to assuming that all cracks close
exactly and then heal until tension is again
applied. This is illustrated in figure 4,
which shows volumetric stress as a function of
strain for a cyclic uniaxial strain calculation
similar to the ome illustrated in figure 3.
Note the absence of dilatancy.

Since dilatancy is observed in lab tests,
it seems reasonable to attempt to build a
controlled amount of dilatancy into the model.
This can be done by using only a fraction of
the damage to compute a partially reduced bulk
modulus, K., to be used during recompression in
tension. A fraction, B, with 0 < 8 < 1, is
used to compute the partially reduced bulk
modulus according to

K. = (1 - BD )K. (27)

The damaged Poisson’s ratio is retained in
tension and the undamaged elastic moduli are
used in compression. When f=1 we have the bulk
response 1illustrated in figure 4. Figure 3
illustrates the bulk response for p=0. Since
the reduced Poisson’s ratio is always used in
tension, the deviatoric response differs from
previous versions even for f=0. Figure 5 gives
volumetric stress as a function of strain for a
cyclic uniaxial strain calculation with g=9/10,
On the basis of uniaxial strain calculations,
it appears that even values of f near one give
significant amounts of dilatancy. In practice,
values of p<1/2 have given the best match
between calculations and field data.

At high pressures rocks are known to
exhibit behavior similar to plasticity in
metals. In previous versions this was accounted
for by assuming the compressive behavior of the
material to be elastic-perfectly plastic. In
this version we extend this to account for the
increase in yield stress with confining
pressure which is observed in triaxial tests.
This is done by allowing yield stress to be a
function of wvolumetric stress. In the most



general case, the yield stress in compression
is assumed to be an inverse parabola in the
absolute value of volumetric stress. This is
illustrated in figure 6 using triaxial data for
a sandstone., Olsson, 1989 reports two triaxial
tests at each of the confining pressures 50,
100 and 200 MPa. All of these tests exhibit
clear indications of plastic behavior. 1If it
is assumed that the sample is in a uniform
stress state, which it is not, then these data
can be plotted as a function of the absolute
value of volumetric stress at failure, as in
figure 6. The average stresses at the three
confining pressures determine an inverse
parabola, figure 6, which can be used to
determine a yield surface for finite element
calculations. If only two confining pressures
are used, the function becomes a straight line,
and if only one confining pressure is used,
elastic-perfectly plastic behavior results. In
tension the yield stress is assumed to be very
large in order to avoid plasticity.

GRANITE PROPERTIES

Olsson, 1989 reports properties for a
granite in which blasting experiments were
preformed. Unfortunately, this granite
exhibited a foliation which induced anisotropic
material properties, violating the most basic
assumption on which our model is based. In
spite of this, we attempted to model this
granite as an isotropic material wusing the
damage model and average properties from tests
at 90° and 30° to the foliation. Olsson’s data
give a density of 2680 kg/m3. Young'’'s modulus
measurements had a large amount of scatter at
both angles. After rejecting two suspicious
samples, the remaining 16 samples give an
average Young'’s modulus of 62.2 GPa with a
standard deviation of 16 GPa. This was
confirmed by two zero-stress bar velocity
measurements on nonfoliated samples which gave
an average Young’'s modulus of 62.8 GPa.
Poison’'s ratio was obtained for three samples
measured at 90° to the foliation. The average
of these three values was 0.29 with a standard
deviation of 0.05.

Kolsky bar tests were used to determine
the minimum strain rate at which to apply
equation 20. Figure 7 shows failure stress as
a function of strain rate at 90° to the
foliation for three uniaxial tests and four
Kolsky bar tests at strain rates between 100/s
and 200/s. A cube root dependence of failure
strength on strain rate drawn through the
average of the four Kolsky bar tests results in
the steeply sloping line on the right. This



line drops below the average of the three
uniaxial tests at a strain rate of 9.8/s.
Assuming that the cube root dependence of
failure stress on strain rate applies down to a
strain rate of 20/s results in the piecewise
liner fit shown in figure 7. The slope of the
left hand segment is somewhat arbitrary, but
seems reasonable.

Unfortunately none of the triaxial tests
exhibited indications of plasticity. We
decided to treat the wuniaxial and triaxial
failure strengths as lower bounds on the
plastic 1limit and construct an inverse
parabolic yield surface well above these data.
Figure 8 shows failure strengths for 8 uniaxial
tests, 9 triaxial tests at a confining pressure
of 50 MPa and two triaxial tests at a confining
pressure of 200 Mpa (Olsson, 1989 inadvertently
omitted the two tests at 200 MPa). All of
these data are plotted as a function of the
absolute value of the stress which would result
from assuming that the samples were in a
uniform stress state at the time of failure.
Note the large amount of scatter. The lower
curve in figure 8 is the inverse parabola
determined by the average failure stress at
each confining pressure. The upper curve in
figure 8 is the inverse parabola used as a
yield surface in the damage model.

Chong et al, 1988 measured K;j; values for
this granite at angles of 0°, 45° and 90° to
the foliation. These measurements confirmed
the anisotropic nature of the site. Ignoring
the anisotropy and using divider geometry, an
average value of 1.67 MPa/m with a standard
deviation of 0.41 MPa/m was obtained for K.
In the total absence of any data on maximum
tensile stress as a function of strain rate, we
calculated k=8.2x10%2¢/m3 from equation 26.

CALCULATIONS

In an attempt to model blasting
experiments in granite, two-dimensional
axisymmetric finite element calculations were
preformed using the damage model and the PRONTO
2D finite element program. The isotropic
material properties discussed above were used
without any adjustments being made to improve
agreement between the calculations and the
experiments. It was necessary to use one of
the experiments as a basis for choosing the
value of B to be used for recompression in
tension. This will be discussed below.

Three depths of burial were simulated.
Part of the finite element configuration for
simulation of the three meter depth-of-burial
blasting experiments is shown in figure 9. An



axis of rotational symmetry is assumed along
the center the borehole. The 5 3/4" diameter
of the borehole dictates that the center column
of elements have radial dimension 0.073025 m.
The radial dimension of the elements increases
with radius, requiring 67 elements between the
axis of rotational symmetry and a nonreflecting
boundary at a radius of 15 meters. A vertical
dimension of 1/8 of a meter is used between the
bottom of the borehole at a depth of 3.5 meters
and the free boundary at the surface. The
vertical dimension of the elements below the
borehole is increased with depth. There are 63
elements between the surface and nonreflecting
boundary at a depth of 20 meters, for a total
of 4,221 elements. The explosive charge is
modeled by the eight elements blacked out in
figure 9 along the axis of rotational symmetry
between the 2.5 and 3.5 meter depths. The
finite element configurations for simulation of
the two and four meter depth-of-burial blasting
experiments are generated from the three meter
depth-of-burial configuration by moving the
depth of the explosive charge and the bottom
boundary up by one meter in the two meter
depth-of-burial case, resulting in 3,886
elements and down by one meter in the four
meter depth-of-burial case, resulting in 4,757
elements.

Except for the eight elements representing
the explosive charge, all elements are assumed
to represent solid granite and are modeled
using the above material properties in the
damage model. This includes elements in the
borehole above the charge. In the blast
experiments, the borehole is filled with a
loose packed stemming material which would be
impossible to model in the finite element
calculations. Assuming that the borehole above
the charge is solid granite, rather than a
loose packed stemming material, would
invalidate pgas flow and particle motion
calculations, but should have little effect in
the short time frame of these finite element
stress wave calculations.

The explosive charge is modeled using the
JWL (Dobratz, 1981) equation-of-state. Atlas
Powder APEX 1220 and ANFO charges were
simulated at each depth-of-burial. The APEX
1220 was modeled as having 1250 kg/m® density,
6065 m/s detonation velocity and 2.6x10° J/m?
energy density. The ANFO was modeled as having
830 kg/m® density, 3780 m/s detonation velocity
and 7.08x10° J/m® energy density.



CALCULATED CRATER PROFILES

Kuszmaul, 1987b applies three-dimensional
percolation theory to derive a fragmentation
criterion based on crack densities calculated
with his fragmentation model. The only
modification of this theory necessary for use
with the current damage model is that the
fragmentation limit must be based on the
regularized damage parameter rather than the
crack density. This leads to a fragmentation
limit of F=0.693.

Figure 10 shows the fragmented region
limit as predicted by the calculated 0.693
contour for a one meter APEX 1220 charge
centered at a three meter depth. Only the
right half of the calculated fragmentation
limit is shown since the left half would be a
mirror image of the right half. The position
of the explosive charge is indicated by the
slant shaded region at the bottom of the

borehole. This is compared to perpendicular
profiles of the excavated crater from a
blasting experiment. The differences between

the two profiles of the excavated crater are
probably caused by foliation at the test site,
and is large enough to indicate that foliation
has a significant effect on the cratering
process. A second blast experiment at this
same depth gave similar crater profiles. With
the exception of an almost isolated region near
the top of the charge, the calculated edge of
the fragmented region falls between the two
excavated crater profiles. Notice that the
calculation predicts an unbroken region at the
surface above the edge of the fragmented
region. In the blasting experiments the edge
of the crater was ringed with large undamaged
pieces of approximately the predicted
thickness. The circles near the bottom of the
borehole mark elements which did not go into
tension during the calculation, probably as a
result of plasticity.

In this calculation a value of B=0 was
used for recompression in tension. Equally
good agreement was obtained with several values
of f<1/2. Values of B greater than 1/2 lead to
damage adjacent to the borehole, which was not
observed in either of the three meter depth-of-
burial experiments. We chose a value of =0
based on agreement with this experiment and the
fact that previous versions of the model have
all used this amount of dilatancy. We did not
allow any further adjustment of material
properties to improve agreement with other
blasting experiments.

Figure 11 compares the fragmented region
limit as predicted by the calculated 0.693



contour, with profiles of the excavated crater
from a blasting experiment using a one meter
APEX 1220 charge centered at a two meter depth.
Again, a second blast experiment at this same
depth gave similar crater profiles. The two
perpendicular profiles of the excavated crater
do not intersect at the center of the crater
due to surveying errors. The radius of the
calculated fragmented region agrees with the
excavated crater radius quite well. However,
the excavated crater extends to the bottom of
the charge, while the calculated fragmented
region only extends to the top of the charge.
In fact the calculation predicted very little
damage near the charge, with five elements near
the bottom of the charge remaining in
compression during the entire calculation.
This region experiences a significant amount of
plastic strain which limits tensile stresses.
Since no plasticity data was available for this
material, the way plasticity was treated is one
of the most questionable aspects of the model
and could be the cause of the shallow depth of
the calculated fragmented region. However, it
may be that the break up of the material
adjacent to the charge is a result of gas
flowing into radial cracks and breaking it up
as it is lifted from the crater. Obviously
such mechanisms cannot be predicted by any
method that considers only shock wave effects.
Figure 12 compares the fragmented region
limit as predicted by the calculated 0.693
contour, with a profile of the excavated crater
from a blasting experiment using a one meter
APEX 1220 charge centered at a four meter
depth. Only one profile of the excavated
crater is shown because of surveying errors in
the perpendicular profile. However, a shift in
the data for the perpendicular profile gave a
similar crater profile as did a second blast
experiment at this same depth. The radius of
the calculated fragmented region agrees
reasonably well with the excavated crater
radius. However, the excavated crater extends
to a depth of 1.8 m, while the calculated
fragmented region only extends to a depth of
about 0.6 m. The excavated crater was quite
symmetric so it is difficult to argue that the
disagreement is caused by the anisotropy of the
site. Note that the calculation predicts two
large fragmented regions below the excavated
crater. This damage occurs before the shock
wave reaches the surface and could remove a
significant amount of energy from the shock
wave. If the calculations are over predicting
damage during this early time, then the energy
removed from the shock wave before it reached
the surface would explain why this calculation



under predicts crater depth. However, this
same argument would lead us to attribute the
good agreement between the calculated
fragmented region and the excavated crater
profiles in figure 10 to a fortuitous
combination of too much damage at early time
and too little at late time.

Large differences between the excavated
crater profiles for the two blasting
experiments using ANFO at the three meter
depth-of-burial complicate efforts to compare
them with calculations. Figure 13 compares the
limit of the fragmented region as predicted by
the calculated 0.693 contour, with profiles of
the excavated crater from one of the blasting
experiments using a one meter ANFO charge
centered at a three meter depth. The excavated
crater is approximately the same size as
obtained with APEX 1220, but the calculation
predicts a very small fragmented region. In
this case, comparison with the experimental
results are not appropriate due to a basalt
dike which cuts through the excavated crater
but could not be modeled in the calculation. A
second blast experiment away from the basalt
dike at the same depth gave a much smaller
excavated crater, in fairly good agreement with
the calculated fragmented region as shown in
figure 14. However, this blast experiment may
also be inappropriate for comparison with the
calculation due to a measured detonation
velocity of only 2/3 of the detonation velocity
used for ANFO in the calculation.

At the two meter depth-of-burial, figure
15, agreement between the fragmented region
predicted by the calculation and an excavated
crater profile is similar to the results with
APEX 1220 at the same depth-of-burial. At the
four meter depth-of-burial, figure 16, the
agreement between the calculated fragmented
region and the excavated crater is almost
exact. Each of these blast experiments was
confirmed by a second blast experiment. Note
that none of the ANFO calculations predicted
large fragmented regions below the crater.
This might indicate that the damage calculated
at early time is related to loading rate since
the most dramatic difference between APEX 1220
and ANFO, at least as modeled in the
calculations, is the detonation velocity.

CONCLUSIONS

The current damage model is a significant
improvement over previous versions mainly
because it allows calculations even when a
large amount of damage is predicted. This
allows simulation times large enough to be sure



that no shock wave induced damage can occur at
later times. These calculations can be carried
out in as little as one percent of the computer
time required for calculations with previous
versions, even though it was necessary to
terminate calculations at shorter simulation
times with previous versions. The increased
speed is important because it allows efficient
parameter variation to evaluate the effects of
variation in and uncertainties about material
properties and will allow very large three-
dimensional finite element models to be used at
a reasonable cost.

Comparison of calculations with blast
experiments in granite indicate that reasonable
results can be obtained with the current damage
model even using average material properties
for an anisotropic site. However, significant
discrepancies between the calculated fragmented
regions and the excavated craters are evident.
Comparison with experiments in a wide variety
of isotropic rocks must be carried out before
it will be known whether or not the current
version of the model is a useful engineering
tool. Certainly the current version of the
model is not theoretically perfect, and further
tests are likely to indicate areas where the
current version of the model can be improved.

In the derivation of the model we have
tried to indicate where future efforts are
likely to yield improvements. A more realistic
interpretation of the parameter k, introduced
in equation 9 and a means of calculating it
from lab tests seems essential. Of course, the
proper solution to this might be the use of
another form for the number of cracks opened.
The use of equation 14 in determining the
characteristic flaw size has the advantage of
introducing standard material parameters into
the model, but requires the acceptance of a
characteristic flaw size that depends on a
previously determined maximum strain rate and
does not grow with the application of tensile
stress. While plasticity is a well established
theory for metals, the assumption that a rock
can flow plasticity without accumulating damage
is at best questionable. Perhaps the theory
can be modified to include a link between
plastic strain and damage accumulation in
compression. Certainly a more realistic
treatment of dilatancy is needed.

Beyond these details, it might be
necessary to examine some of the more basic
assumptions of the model. For an anisotropic
material the assumption that microcracks are
randomly distributed and oriented is probably
not wvalid. Of course, introduction of
anisotropy would require that all calculations

.



be three-dimensional and that a new anisotropic
finite element program be developed. It seems
that the activation of damage could depend on
the full stress tensor and not be limited to
situations which result in volumetric tension.
Budiansky and O’Connell’s equivalent elastic
moduli and Englman and Jaeger’s extension to
large crack densities are only intended to be
approximations. It may be possible to replace
these with more accurate approximations. Given
the complexities of this approach we intend to
explore other computational approaches as well
as evolutionary modifications to the current
model. ’

REFERENCES

Budiansky, B. and O'Connell, R. J., 1976.
"Elastic Moduli of a Cracked Soligd,"
Computer Methods in Applied Mechanics and
Engineering," vol. 12, pp. 81-97.

Chong, K. P., Basham, K. D., Wang, D. Q. and

Estes, R. J., 1988.

"Fracture Toughness Characterization of
Eastern Basalt and Gneiss,” KPC & Associates
report to Sandia National Laboratories on
contract No. 55-5698, Laramie, WY.

Cunningham, C. V. B., 1987.

Fragmentation Estimations and the KUZ-RAM
Model - Four Years On," in Proceedings of
the Second International Symposium on
Fragmentation by Blasting, (Keystone, CO).

Danell, R. E. and Leung, L., 1987.

"Computer Simulation of Blast Fracture and
Fragmentation of Rocks," in Proceedings of
the Second International Symposium on
Fragmentation by Blasting, (Keystone, CO).

Dobratz, B. M., 1981.

"LLNL Explosives Handbook - Properties of
Chemical Explosives and Explosive
Stimulants,™ DE85-015961 Lawrence Livermore
National Laboratory, Livermore, CA.

Englman, R. and Jaeger, Z., 1987.

Theoretical Aids for Improvement of Blasting
Efficiencies in 0il Shale and Rocks," Soreq
Nuclear Research Center, Israel.

Favreau, R. F., Kuzyk, G. W., Babulic, P. J.,

Morin, R. A. and Tienkamp, N. J., 1987.

"The Use of Computer Blast Simulations to
Improve Blast Quality," in Proceedings of
the Second International Symposium on
Fragmentation by Blasting, (Keystone, CO).

Grady, D., 1983.

"The Mechanics of Fracture Under High-Rate
Stress Loading," in William Prager Symposium
on Mechanics of Geomaterials: Rocks,
Concretes and Soils, (Bazant, Z. P., ed).



Kipp, M. E. and Grady, D. E., 1968.

"Numerical Studies of Rock Fragmentation,"
SAND79-1582, Sandia National Laboratories,
Albuquerque, NM.

Kipp, M. E., Grady, D. E. and Chen, E., 1980.
"Strain-Rate Dependent Fracture Initiation,"
International Journal Of Fracture, vol 16.

Kuszmaul, J. S., 1987a.

"A New Constitutive Model for Fragmentation
of Rock Under Dynamic Loading," 1in
Proceedings of the Second International
Symposium on Fragmentation by Blasting,
(Keystone, CO), pp 412-423,

Kuszmaul, J. S., 1987b.

"A Technique for Predicting Fragmentation
and Fragment Sizes Resulting from Rock
Blasting,” in Proceedings of the 28th U. S.
Symposium on Rock Mechanics, Tucson, AZ.

Olsson, W. A., 1989,

"Quasi-Static and Dynamic Mechanical
Properties of a Granite and a Sandstone,"
SAND89-1197, Sandia National Laboratories,
Albuquerque, NM.

Preece, D. S. and Taylor, L. M., 1990.
"Spherical Element Bulking Mechanisms for
Modelling Blast Induced Rock Motion," Third
International Symposium on Rock
Fragmentation by Blasting, Brisbane,
Queensland, Australia.

Taylor, L. M., Chen, E. and Kuszmaul, J., 1986.
"Microcrack-Induced Damage Accumulation in
Brittle Rock Under Dynamic Loading,"
Computer Methods in Applied Mechanics and
Engineering, vol. 55, no.3, pp. 301-320.

Taylor, L. M. and Flanagan, D. P., 1987.
"PRONTO 2D A Two-Dimensional Transient Solid
Dynamics Program," SAND86-0594, Sandia
National Laboratories, Albuquerque, NM.

Taylor,. L. M. and Flanagan, D. P., 1989.
"PRONTO 3D A Three-Dimensional Transient
Solid Dynamics Program," SAND87-1912, Sandia
National Laboratories, Albuquerque, NM,



Unioxial Strain Test

z’ 1075 100/ 1000/
M
~
°‘-
©
L AJ A T L)
0.0 &0.0 0.0 0.0 ;0.0

Micro Strovn

FIGURE 1 Damage as a function of strain for uniaxial strain calculations at strain
rates of 10/s, 100/s and 1000/s
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FIGURE 2 Volumetric stress as a function of strain for uniaxial strain calculations
at strain rates of 10/s, 100/s and 1000/s



Cyclic Unioxiol Stroin Test
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FIGURE 3 Volumetric stress as a function of strain for a cyclic uniaxial strain
calculation at strain rates of 200/s, 400/s and 600/s, with undamaged
properties used for recompression (5=0)
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FIGURE 4 Volumetric stress as a function of strain for a cyclic uniaxial strain
calculation at strain rates of 200/s, 400/s and 600/s, with damaged
properties used for recompression (f=1)
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FIGURE 5 Volumetric stress as a function of strain for a cyclic uniaxial strain

calculation at strain rates of 200/s, 400/s and 600/s, with K, computed
using B8=9/10
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FIGURE 6 Inverse parabola yield function fit to triaxial test data for sandstone
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FIGURE 7 Strain rate dependence of dynamic failure stress for granite
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FIGURE 8 Static failure stress data for granite and inverse parabola yield function
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FIGURE 9 Finite element model for 3m depth-of-burial calculations

FIGURE 10 Comparison of calculated fragmented region limit with excavated crater
profiles for a one-meter APEX 1220 charge centered at a depth of three
meters in granite
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FIGURE 11 Comparison of calculated fragmented region limit with excavated crater

profile for a one-meter APEX 1220 charge centered at a depth of two meters
in granite

FIGURE 12 Comparison of calculated fragmented region limit with an excavated crater

profile for a one-meter APEX 1220 charge centered at a depth of four meters
in granite



FIGURE 13 Comparison of calculated fragmented region limit with excavated crater
profiles for a one-meter ANFO charge centered at a depth of three meters in
granite at a basalt dike

- RN

FIGURE 14 Comparison of calculated fragmented region limit with an excavated crater
profile for a one-meter ANFO charge with low detonation velocity centered
at a depth of three meters in granite



FIGURE 15 Comparison of calculated fragmented region limit with an excavated crater

profile for a one-meter ANFO charge centered at a depth of two meters in
granite

FIGURE 16 Comparison of calculated fragmented region limit with excavated crater
profiles for a one-meter ANFO charge centered at a depth of four meters in
granite
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