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EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION 
OF THE FUNDAMENTAL MECHANISMS OF CRATERING

by
B. J. Thorne1, P. J. Hommert1 and B. Brown2 

ABSTRACT

SAND—90-1063C 
DE90 009568

Early attempts at estimation of stress 
wave damage in blasting by use of finite 
element analysis met with limited success due 
to numerical instabilities that prevented 
calculations from being carried to late times 
after significant fragmentation had occurred. 
A new damage model based on microcrack growth 
in tension allows finite element calculations 
which remain stable at late times. Estimation 
of crater profiles for blasting experiments in 
granite, using laboratory properties for all 
parameters, demonstrate a high level of success 
for this damage model. However, estimated 
crater profiles show systematic differences 
from excavated crater profiles which motivate 
further developments of this model.

INTRODUCTION

In recent years there has been an 
increasing interest in the development of 
numerical models for the prediction of rock 
fragmentation by blasting. These efforts have 
varied for semi-empirical (Cunningham, 1987; 
Favreau et al, 1987) to more rigorous (Danell 
and Leung, 1987; Kuszmaul, 1987a). Numerical 
modeling of blasting has brought into focus the 
complexity of the blasting process. Not ''uly 
are there numerous physical processes 
occurring, but the host media is geologic and 
therefore highly variable, with response 
characteristics that are difficult to quantify 
and often size dependent. This complexity 
requires that numerical models be developed in 
a highly systematic fashion in close 
coordination with controlled field and 
laboratory experimentation. It is also 
important that postulated physical mechanisms 
undergo thorough numerical evaluation before 
they can be accepted as being important to the 
blasting process.
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Since 1985, the Advanced Technology 
Division at Sandia National Laboratories has 
been involved in the development of numerical 
models for describing the blasting process. 
This work has developed two separate 
computational thrusts. The initial early time 
transport of stress is treated through the use 
of a dynamic wave computer program PRONTO 
(Taylor and Flanagan, 1987, 1989) and a 
constitutive damage model that attempts to 
describe the fracturing that occurs as a result 
of the stress wave. A separate modeling effort 
(Preece, 1990) is underway to describe the 
motion of individual rock fragments as a result 
of gas flow loading.

This paper describes in detail a model for 
estimation of stress wave induced fracturing. 
This model has evolved over a number of years 
(Kipp and Grady, 1968; Taylor Chen and 
Kuszmaul, 1986; Kuszmaul 1987a). As will 
become apparent, modeling stress wave induced 
fragmentation is very complex and any 
computational algorithm will only represent an 
approximation. Thus it is very important that 
any postulated model be compared in detail 
against controlled experimental data. Only by 
such comparisons can it be determined if the 
numerical embodiment of the physics represents 
a useful engineering approximation. 
Traditionally, there has been a lack of highly 
controlled experimental data. However, in the 
past two years, as part of our model 
development program an experimental 
verification effort has been conducted. The 
experimental work is being performed jointly 
with the Atlas Powder Company. Beginning in 
1988, two sequences of cratering experiments 
were conducted for the express purpose of 
generating data for comparison with model 
predictions. These experiments examined 
systematically variations in geometry, rock 
type, and explosive. Data collected on the 
tests included continuous detonation velocity, 
high speed photography of the ground motion, 
muck pile profiles, excavated crater profiles, 
and particle size information.

In addition to detailing the numerical 
model this paper discusses comparisons of the 
predictions with experimental data. These 
comparisons have been used to derive our 
current approach and are being used to identify 
weaknesses in our current approach which should 
be targeted in future research. These studies 
also indicate the complexity of the mechanisms 
involved and are serving as a basis for 
developing complimentary numerical descriptions 
that emphasize different physical processes.



DAMAGE MODEL

The damage model is Intended to simulate 
the dynamic fracture of brittle rock. It is 
based on work started by Kipp and Grady, 1968 
and continued by Taylor, Chen and Kuszmaul, 
1986 and Kuszmaul, 1987a. It is modified here 
to extend it to large crack densities as 
suggested by Englman and Jaeger, 1987. The 
essential feature of this model is the 
treatment of the dynamic fracture process as a 
continuous accrual of damage in tension, where 
the damage mechanism is attributed to 
microcracking in the rock. The fundamental 
assumption of the model is that the rock is an 
isotropic material which is permeated by an 
array of randomly distributed microcracks which 
grow and interact with one another under 
tensile loading.

Englman and Jaeger, 1987 introduce a 
regularized damage parameter, F, which is 
related to Budiansky and O'Connell's, 1976 
crack density, Cd, but takes into account the 
overlap between the damage volumes of different 
cracks. To this end they define F by

F - 1 - exp(-oCd), (1)

where q-16/9. The effective Poison’s ratio, 
i/t, and bulk modulus, K., of a cracked medium 
with undamaged Poison's ratio v and bulk 
modulus K are given by

i/, - >/( 1 - F ) - i/exp(-aCd) (2)

and
K. - ( 1 - fiKJF )K, (3)

where

f^.>- K-£.- <4>

In order to relate stress to strain we 
will generate a system of differential 
equations which can be solved for the effective 
elastic moduli of the cracked medium. It is 
convenient to introduce a damage parameter, D, 
defined by

D - f^OF. (5)

Note that 0 < F s D < 1 and

Ke - ( 1 - D )K. (6)

The crack density can be related to an 
average flaw size, a, by



cd - 7Na3, (7)

where N is the number of active cracks and 7 is 
a proportionality ratio. Differentiating 
equation 7 yields

T f a3 + 3?N it a2’ (8)

where the forms of N and a are yet to be 
determined.

At this point, it should be noted that 
there are a wide variety of assumptions which 
can be made as to the form of N and there is 
almost no agreement as to the proper form for 
flaw size. Kipp and Grady, 1968 and Kuszmaul, 
1987a assume that the number of cracks 
activated at a volumetric strain, c, is 
described by a Weibull distribution of the form

N - kc*, (9)

where k and m are material dependent constants 
and the volumetric strain, c, is one third of 
the time integral of the trace of the 
deformation tensor, d:

c - l/SjtrWdt. (10)

Note that c is positive in tension. Equation 9 
implies

Cd - kc“a3 (11)

and

dN , . dc
S ‘ 3H (12)

where the proportionality ratio 7 has been 
absorbed in the material constant k. 
Introducing equations 9 and 12 into equation 8 
yields

mkcm'1a2( a dc 3c da . dt m dt J (13)

In the following we will take an approach 
aimed at modeling the observed dependence of 
fracture strength and fragment size on strain 
rate. We will assume that the characteristic 
flaw size is proportional to the nominal 
fragment size for dynamic fragmentation of a 
brittle material. Grady, 1983 derives the 
following expression for the nominal fragment 
radius for dynamic fragmentation of a brittle 
material based on energy considerations at high 
strain rates:



Here KIC, p and c are the fracture toughness, 
density and sound speed of the undamaged 
material and R is the strain rate, which is 
assumed in the derivation to be both constant 
and large.

In order to apply equation 14 to the case 
where the strain rate is not constant, Taylor, 
Chen and Kuszmaul, 1986 replace the constant 
strain rate, R, in equation 14 with the maximum 
strain rate, Rmax, which the material has 
experienced. The derivation of equation 14 
assumes that the strain rate R is reached prior 
to the time of interest, is large and remains 
constant during the fragmentation process. In 
the finite element program R^,, usually occurs 
when the material first comes off the peak of a 
shock wave and remains constant after that 
time. In this case Rn,^ is both constant and 
large, as in the derivation of equation 14. To 
assure that unreasonably small values of Rjp^ 
are not used in equation 14, a material 
dependent minimum significant strain rate R,,^ 
is used until dc/dt exceeds R^in. Use of 
equation 14 in this manner results in

(15)

and da/dt-0. Again the proportionality ratio 
has been absorbed in the material constant k. 
Equation 13 becomes

dCri _ Skmc*-* f KTr l2 dc
dt “ 2 [ pcR^ J dt (16)

The bulk response of the material is given 
by P-K#c, where the volumetric stress P, which 
is positive in tension, is one third of the 
trace of the stress tensor. We assure that the 
deviatoric response of the material is 
consistent with the bulk response by defining a 
degraded shear modulus, , such that

(17)

where S is the deviatoric part of the stress 
tensor and e is the deviatoric part of the 
deformation tensor d. It follows that



where
d^e. 8ixeKe dCi ^ 3K( 1 - 2i/e) dD 
dt ( 1 + i/e )2 dt 2( 1 + ve) dt ‘ K }

Equations 2, 4, 5, 16, 18, 19 and 20 
constitute a coupled system of algebraic and 
ordinary differential equations which is solved 
using a simple centered integration operator in 
the PRONTO (Taylor and Flanagan, 1987, 1989) 
finite element programs.

The parameter m relates tensile fracture 
to strain. The cube root strain rate dependence 
determined by Grady, 1983 dictates that m-6. 
This leaves only the parameter k to be defined. 
Unfortunately, no general definition of k has 
been found. For the special case of a material 
with Poisson's ratio zero expanding at a 
constant strain rate R, it is easy to show that

9 f ££ I2 f 18K I6 R2
° “ 280 l K1C J I 7 J P^e (21)

where Pmax is the maximum volumetric tensile 
stress achieved in a test to failure at a 
constant strain rate R. Here we have made use 
of the fact that m-6 and have written k0 to 
emphasize the v-0 assumption.

Since a rock with a Poisson's ratio of 
zero would be very strange, a solution of the 
constant strain rate expansion case without the 
v—0 assumption would be more realistic. While 
it may be possible to solve the constant strain 
rate expansion case without the i/-0 assumption, 
we know of no such solution at this writing. 
However, the same method used to derive 
equation 21 can be used to solve for k’ (»/) , the 
value of k for a material of constant Poisson's 
ratio i/. This contradicts equation 2, unless 
»/«0, but should lend some insight into how k 
might be expected to depend on i/. The result 
of this procedure is

k'OO (22)

Note that k'(l/2)-0 and k'(l/3)-3/8k0. This 
indicates that the i/-0 assumption might result 
in values of k which are too large.

If laboratory data for maximum tensile 
stress versus strain rate are not available, it 
is possible to compute a value for k by using 
an expression derived by Kipp, Grady and Chen, 
1980. For a number of rocks, they found that a 
reasonable approximation to maximum tensile



stress, 
is given by

as a function of strain rate, R,

» f 9*EKTr2R 
““ “ j. 16csNs2 (23)

where cs and E are the shear wave velocity and 
Young's modulus of the undamaged material, and 
Ns is a shape factor (Ns-1.12 for penny shaped 
cracks). It is possible to eliminate the ratio 
R2/Pm«6 between equations 21 and 23 to get

29.4N/

For y-0, (ct/c)z~‘l/2 and in general

1
2( 1 + */ )

(24)

(25)

sp that use of equation 23 implies that k' (i/) should oe replaced with r

k’^^)
( 1

1 - 2u
»/2 )( 1 + i/ ) k0. (26)

Note that the difference between kn(i/) and k0 
is greater than the difference between k'(»/) 
and k0, with k’’(l/3)«3/4k'(l/3)-9/32k0.

Figure 1 shows the accumulation of damage 
with strain for uniaxial strain calculations 
past fragmentation at constant strain rates of 
10/s, 100/s and 1000/s. Figure 2 gives 
volumetric stress as a function of strain for 
these same three calculations. Note the 
increase in peak stress with strain rate. The 
main difference between this version of the 
model and previous versions is evident at large 
values of damage, where exponential growth of 
damage is replaced with an asymptotic approach 
to the maximum value (D-l). In practice this 
allows the finite element calculation to remain 
stable in situations which would have resulted 
in numerical instability with previous 
versions.

Thus far we have only considered expansion 
in tension. Equation 16 implies that damage is 
healed when the material is recompressed. 
Since this is not our intent, the damage model 
is used only when the material is expanding in 
tension. Previous versions assumed that the 
material response was governed by the undamaged 
elastic constants in all other situations. 
This is equivalent to assuming that the 
material is identical to the way it was before 
it was damaged, except when it is expanding in 
tension. This is illustrated in figure 3, 
which shows volumetric stress as a function of



strain for a cyclic uniaxial strain calculation 
in which the material is expanded and 
recompressed at strain rates of 200/s, 400/s 
and 600/s. The first cycle stops short of the 
maximum peak stress and very little damage is 
accumulated. The second cycle proceeds well 
past the peak stress and stops just short of 
fragmentation. The final cycle proceeds well 
past fragmentation. Note the large amount of 
dilatancy.

The opposite extreme would be to use the 
reduced bulk modulus, K., and Poisson's ratio, 
i/e for recompression in tension, returning to 
the undamaged moduli only in compression. This 
is equivalent to assuming that all cracks close 
exactly and then heal until tension is again 
applied. This is illustrated in figure 4, 
which shows volumetric stress as a function of 
strain for a cyclic uniaxial strain calculation 
similar to the one illustrated in figure 3. 
Note the absence of dilatancy.

Since dilatancy is observed in lab tests, 
it seems reasonable to attempt to build a 
controlled amount of dilatancy into the model. 
This can be done by using only a fraction of 
the damage to compute a partially reduced bulk 
modulus, Kr, to be used during recompression in 
tension. A fraction, with 0 < /S < 1, is 
used to compute the partially reduced bulk 
modulus according to

Kr - ( 1 - 0D )K. (27)

The damaged Poisson's ratio is retained in 
tension and the undamaged elastic moduli are 
used in compression. When 0-1 we have the bulk 
response illustrated in figure 4. Figure 3 
illustrates the bulk response for /M). Since 
the reduced Poisson's ratio is always used in 
tension, the deviatoric response differs from 
previous versions even for )9-0. Figure 5 gives 
volumetric stress as a function of strain for a 
cyclic uniaxial strain calculation with 0-9/10. 
On the basis of uniaxial strain calculations, 
it appears that even values of 0 near one give 
significant amounts of dilatancy. In practice, 
values of £<1/2 have given the best match 
between calculations and field data.

At high pressures rocks are known to 
exhibit behavior similar to plasticity in 
metals. In previous versions this was accounted 
for by assuming the compressive behavior of the 
material to be elastic-perfectly plastic. In 
this version we extend this to account for the 
increase in yield stress with confining 
pressure which is observed in triaxial tests. 
This is done by allowing yield stress to be a 
function of volumetric stress. In the most



general case, the yield stress in compression 
is assumed to be an inverse parabola in the 
absolute value of volumetric stress. This is 
illustrated in figure 6 using triaxial data for 
a sandstone. Olsson, 1989 reports two triaxial 
tests at each of the confining pressures 50, 
100 and 200 MPa. All of these tests exhibit 
clear indications of plastic behavior. If it 
is assumed that the sample is in a uniform 
stress state, which it is not, then these data 
can be plotted as a function of the absolute 
value of volumetric stress at failure, as in 
figure 6. The average stresses at the three 
confining pressures determine an inverse 
parabola, figure 6, which can be used to 
determine a yield surface for finite element 
calculations. If only two confining pressures 
are used, the function becomes a straight line, 
and if only one confining pressure is used, 
elastic-perfectly plastic behavior results. In 
tension the yield stress is assumed to be very 
large in order to avoid plasticity.

GRANITE PROPERTIES

Olsson, 1989 reports properties for a 
granite in which blasting experiments were 
preformed. Unfortunately, this granite 
exhibited a foliation which induced anisotropic 
material properties, violating the most basic 
assumption on which our model is based. In 
spite of this, we attempted to model this 
granite as an isotropic material using the 
damage model and average properties from tests 
at 90° and 30° to the foliation. Olsson's data 
give a density of 2680 kg/m3. Young's modulus 
measurements had a large amount of scatter at 
both angles. After rejecting two suspicious 
samples, the remaining 16 samples give an 
average Young's modulus of 62.2 GPa with a 
standard deviation of 16 GPa. This was 
confirmed by two zero-stress bar velocity 
measurements on nonfoliated samples which gave 
an average Young's modulus of 62.8 GPa. 
Poison's ratio was obtained for three samples 
measured at 90° to the foliation. The average 
of these three values was 0.29 with a standard 
deviation of 0.05.

Kolsky bar tests were used to determine 
the minimum strain rate at which to apply 
equation 20. Figure 7 shows failure stress as 
a function of strain rate at 90° to the 
foliation for three uniaxial tests and four 
Kolsky bar tests at strain rates between 100/s 
and 200/s. A cube root dependence of failure 
strength on strain rate drawn through the 
average of the four Kolsky bar tests results in 
the steeply sloping line on the right. This



line drops below the average of the three 
uniaxial tests at a strain rate of 9.8/s. 
Assuming that the cube root dependence of 
failure stress on strain rate applies down to a 
strain rate of 20/s results in the piecewise 
liner fit shown in figure 7. The slope of the 
left hand segment is somewhat arbitrary, but 
seems reasonable.

Unfortunately none of the triaxial tests 
exhibited indications of plasticity. We 
decided to treat the uniaxial and triaxial 
failure strengths as lower bounds on the 
plastic limit and construct an inverse 
parabolic yield surface well above these data. 
Figure 8 shows failure strengths for 8 uniaxial 
tests, 9 triaxial tests at a confining pressure 
of 50 MPa and two triaxial tests at a confining 
pressure of 200 Mpa (Olsson, 1989 inadvertently 
omitted the two tests at 200 MPa). All of 
these data are plotted as a function of the 
absolute value of the stress which would result 
from assuming that the samples were in a 
uniform stress state at the time of failure. 
Note the large amount of scatter. The lower 
curve in figure 8 is the inverse parabola 
determined by the average failure stress at 
each confining pressure. The upper curve in 
figure 8 is the inverse parabola used as a 
yield surface in the damage model.

Chong et al, 1988 measured KIC values for 
this granite at angles of 0°, 45° and 90° to 
the foliation. These measurements confirmed 
the anisotropic nature of the site. Ignoring 
the anisotropy and using divider geometry, an 
average value of 1.67 MPa/m with a standard 
deviation of 0.41 MPaVm was obtained for KIC. 
In the total absence of any data on maximum 
tensile stress as a function of strain rate, we 
calculated k-8.2xl02Vm3 from equation 26.

CALCULATIONS

In an attempt to model blasting 
experiments in granite, two-dimensional 
axisymmetric finite element calculations were 
preformed using the damage model and the PRONTO 
2D finite element program. The isotropic 
material properties discussed above were used 
without any adjustments being made to improve 
agreement between the calculations and the 
experiments. It was necessary to use one of 
the experiments as a basis for choosing the 
value of p to be used for recompression in 
tension. This will be discussed below.

Three depths of burial were simulated. 
Part of the finite element configuration for 
simulation of the three meter depth-of-burial 
blasting experiments is shown in figure 9. An



axis of rotational symmetry is assumed along 
the center the borehole. The 5 3/4" diameter 
of the borehole dictates that the center column 
of elements have radial dimension 0.073025 m. 
The radial dimension of the elements increases 
with radius, requiring 67 elements between the 
axis of rotational symmetry and a nonreflecting 
boundary at a radius of 15 meters. A vertical 
dimension of 1/8 of a meter is used between the 
bottom of the borehole at a depth of 3.5 meters 
and the free boundary at the surface. The 
vertical dimension of the elements below the 
borehole is increased with depth. There are 63 
elements between the surface and nonreflecting 
boundary at a depth of 20 meters, for a total 
of 4,221 elements. The explosive charge is 
modeled by the eight elements blacked out in 
figure 9 along the axis of rotational symmetry 
between the 2.5 and 3.5 meter depths. The 
finite element configurations for simulation of 
the two and four meter depth-of-burial blasting 
experiments are generated from the three meter 
depth-of-burial configuration by moving the 
depth of the explosive charge and the bottom 
boundary up by one meter in the two meter 
depth-of-burial case, resulting in 3,886 
elements and down by one meter in the four 
meter depth-of-burial case, resulting in 4,757 
elements.

Except for the eight elements representing 
the explosive charge, all elements are assumed 
to represent solid granite and are modeled 
using the above material properties in the 
damage model. This includes elements in the 
borehole above the charge. In the blast 
experiments, the borehole is filled with a 
loose packed stemming material which would be 
impossible to model in the finite element 
calculations. Assuming that the borehole above 
the charge is solid granite, rather than a 
loose packed stemming material, would 
invalidate gas flow and particle motion 
calculations, but should have little effect in 
the short time frame of these finite element 
stress wave calculations.

The explosive charge is modeled using the 
JWL (Dobratz, 1981) equation-of-state. Atlas 
Powder APEX 1220 and ANFO charges were 
simulated at each depth-of-burial. The APEX 
1220 was modeled as having 1250 kg/m3 density, 
6065 m/s detonation velocity and 2.6xl09 J/m3 
energy density. The ANFO was modeled as having 
830 kg/m3 density, 3780 m/s detonation velocity 
and 7.08xl09 J/m3 energy density.



CALCULATED CRATER PROFILES

Kuszmaul, 1987b applies three-dimensional 
percolation theory to derive a fragmentation 
criterion based on crack densities calculated 
with his fragmentation model. The only 
modification of this theory necessary for use 
with the current damage model is that the 
fragmentation limit must be based on the 
regularized damage parameter rather than the 
crack density. This leads to a fragmentation 
limit of F-0.693.

Figure 10 shows the fragmented region 
limit as predicted by the calculated 0.693 
contour for a one meter APEX 1220 charge 
centered at a three meter depth. Only the 
right half of the calculated fragmentation 
limit is shown since the left half would be a 
mirror image of the right half. The position 
of the explosive charge is indicated by the 
slant shaded region at the bottom of the 
borehole. This is compared to perpendicular 
profiles of the excavated crater from a 
blasting experiment. The differences between 
the two profiles of the excavated crater are 
probably caused by foliation at the test site, 
and is large enough to indicate that foliation 
has a significant effect on the cratering 
process. A second blast experiment at this 
same depth gave similar crater profiles. With 
the exception of an almost isolated region near 
the top of the charge, the calculated edge of 
the fragmented region falls between the two 
excavated crater profiles. Notice that the 
calculation predicts an unbroken region at the 
surface above the edge of the fragmented 
region. In the blasting experiments the edge 
of the crater was ringed with large undamaged 
pieces of approximately the predicted 
thickness. The circles near the bottom of the 
borehole mark elements which did not go into 
tension during the calculation, probably as a 
result of plasticity.

In this calculation a value of /9-0 was 
used for recompression in tension. Equally 
good agreement was obtained with several values 
of p<l/2. Values of /9 greater than 1/2 lead to 
damage adjacent to the borehole, which was not 
observed in either of the three meter depth-of- 
burial experiments. We chose a value of /9-0 
based on agreement with this experiment and the 
fact that previous versions of the model have 
all used this amount of dilatancy. We did not 
allow any further adjustment of material 
properties to improve agreement with other 
blasting experiments.

Figure 11 compares the fragmented region 
limit as predicted by the calculated 0.693



contour, with profiles of the excavated crater 
from a blasting experiment using a one meter 
APEX 1220 charge centered at a two meter depth. 
Again, a second blast experiment at this same 
depth gave similar crater profiles. The two 
perpendicular profiles of the excavated crater 
do not intersect at the center of the crater 
due to surveying errors. The radius of the 
calculated fragmented region agrees with the 
excavated crater radius quite well. However, 
the excavated crater extends to the bottom of 
the charge, while the calculated fragmented 
region only extends to the top of the charge. 
In fact the calculation predicted very little 
damage near the charge, with five elements near 
the bottom of the charge remaining in 
compression during the entire calculation. 
This region experiences a significant amount of 
plastic strain which limits tensile stresses. 
Since no plasticity data was available for this 
material, the way plasticity was treated is one 
of the most questionable aspects of the model 
and could be the cause of the shallow depth of 
the calculated fragmented region. However, it 
may be that the break up of the material 
adjacent to the charge is a result of gas 
flowing into radial cracks and breaking it up 
as it is lifted from the crater. Obviously 
such mechanisms cannot be predicted by any 
method that considers only shock wave effects.

Figure 12 compares the fragmented region 
limit as predicted by the calculated 0.693 
contour, with a profile of the excavated crater 
from a blasting experiment using a one meter 
APEX 1220 charge centered at a four meter 
depth. Only one profile of the excavated 
crater is shown because of surveying errors in 
the perpendicular profile. However, a shift in 
the data for the perpendicular profile gave a 
similar crater profile as did a second blast 
experiment at this same depth. The radius of 
the calculated fragmented region agrees 
reasonably well with the excavated crater 
radius. However, the excavated crater extends 
to a depth of 1.8 m, while the calculated 
fragmented region only extends to a depth of 
about 0.6 m. The excavated crater was quite 
symmetric so it is difficult to argue that the 
disagreement is caused by the anisotropy of the 
site. Note that the calculation predicts two 
large fragmented regions below the excavated 
crater. This damage occurs before the shock 
wave reaches the surface and could remove a 
significant amount of energy from the shock 
wave. If the calculations are over predicting 
damage during this early time, then the energy 
removed from the shock wave before it reached 
the surface would explain why this .calculation



under predicts crater depth. However, this 
same argument would lead us to attribute the 
good agreement between the calculated 
fragmented region and the excavated crater 
profiles in figure 10 to a fortuitous 
combination of too much damage at early time 
and too little at late time.

Large differences between the excavated 
crater profiles for the two blasting 
experiments using ANFO at the three meter 
depth-of-burial complicate efforts to compare 
them with calculations. Figure 13 compares the 
limit of the fragmented region as predicted by 
the calculated 0.693 contour, with profiles of 
the excavated crater from one of the blasting 
experiments using a one meter ANFO charge 
centered at a three meter depth. The excavated 
crater is approximately the same size as 
obtained with APEX 1220, but the calculation 
predicts a very small fragmented region. In 
this case, comparison with the experimental 
results are not appropriate due to a basalt 
dike which cuts through the excavated crater 
but could not be modeled in the calculation. A 
second blast experiment away from the basalt 
dike at the same depth gave a much smaller 
excavated crater, in fairly good agreement with 
the calculated fragmented region as shown in 
figure 14. However, this blast experiment may 
also be inappropriate for comparison with the 
calculation due to a measured detonation 
velocity of only 2/3 of the detonation velocity 
used for ANFO in the calculation.

At the two meter depth-of-burial, figure 
15, agreement between the fragmented region 
predicted by the calculation and an excavated 
crater profile is similar to the results with 
APEX 1220 at the same depth-of-burial. At the 
four meter depth-of-burial, figure 16, the 
agreement between the calculated fragmented 
region and the excavated crater is almost 
exact. Each of these blast experiments was 
confirmed by a second blast experiment. Note 
that none of the ANFO calculations predicted 
large fragmented regions below the crater. 
This might indicate that the damage calculated 
at early time is related to loading rate since 
the most dramatic difference between APEX 1220 
and ANFO, at least as modeled in the 
calculations, is the detonation velocity.

CONCLUSIONS

The current damage model is a significant 
improvement over previous versions mainly 
because it allows calculations even when a 
large amount of damage is predicted. This 
allows simulation times large enough to be sure



that no shock wave induced damage can occur at 
later times. These calculations can be carried 
out in as little as one percent of the computer 
time required for calculations with previous 
versions, even though it was necessary to 
terminate calculations at shorter simulation 
times with previous versions. The increased 
speed is important because it allows efficient 
parameter variation to evaluate the effects of 
variation in and uncertainties about material 
properties and will allow very large three- 
dimensional finite element models to be used at 
a reasonable cost.

Comparison of calculations with blast 
experiments in granite indicate that reasonable 
results can be obtained with the current damage 
model even using average material properties 
for an anisotropic site. However, significant 
discrepancies between the calculated fragmented 
regions and the excavated craters are evident. 
Comparison with experiments in a wide variety 
of isotropic rocks must be carried out before 
it will be known whether or not the current 
version of the model is a useful engineering 
tool. Certainly the current version of the 
model is not theoretically perfect, and further 
tests are likely to indicate areas where the 
current version of the model can be improved.

In the derivation of the model we have 
tried to indicate where future efforts are 
likely to yield improvements. A more realistic 
interpretation of the parameter k, introduced 
in equation 9 and a means of calculating it 
from lab tests seems essential. Of course, the 
proper solution to this might be the use of 
another form for the number of cracks opened. 
The use of equation 14 in determining the 
characteristic flaw size has the advantage of 
introducing standard material parameters into 
the model, but requires the acceptance of a 
characteristic flaw size that depends on a 
previously determined maximum strain rate and 
does not grow with the application of tensile 
stress. Vhile plasticity is a well established 
theory for metals, the assumption that a rock 
can flow plasticity without accumulating damage 
is at best questionable. Perhaps the theory 
can be modified to include a link between 
plastic strain and damage accumulation in 
compression. Certainly a more realistic 
treatment of dilatancy is needed.

Beyond these details, it might be 
necessary to examine some of the more basic 
assumptions of the model. For an anisotropic 
material the assumption that microcracks are 
randomly distributed and oriented is probably 
not valid. Of course, introduction of 
anisotropy would require that all calculations



be three-dimensional and that a new anisotropic 
finite element program be developed. It seems 
that the activation of damage could depend on 
the full stress tensor and not be limited to 
situations which result in volumetric tension. 
Budiansky and O'Connell's equivalent elastic 
moduli and Englman and Jaeger's extension to 
large crack densities are only intended to be 
approximations. It may be possible to replace 
these with more accurate approximations. Given 
the complexities of this approach we intend to 
explore other computational approaches as well 
as evolutionary modifications to the current 
model.
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UnLoxlol StroLn Test

FIGURE 1 Damage as a function of strain for uniaxial strain calculations at strain 
rates of 10/s, 100/s and 1000/s
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FIGURE 2 Volumetric stress as a function of strain for uniaxial strain calculations 
at strain rates of 10/s, 100/s, and 1000/s



FIGURE 3

Cyclic Unloxlol Slroln Test
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Volumetric stress as a function of strain for a cyclic uniaxial strain 
calculation at strain rates of 200/s, 400/s and 600/s, with undamaged 
properties used for recompression (0-0)

FIGURE 4 Volumetric stress as a function of strain for a cyclic uniaxial strain 
calculation at strain rates of 200/s, 400/s and 600/s, with damaged 
properties used for recompression (0-1)



FIGURE 5

Cyclic Unloxlol Slroln Test
©

200/9 600/*

-100.0 000.0KB.O
fkero Stroi.r>

Volumetric stress *s a function of strain for a cyclic uniaxial strain 
calculation at strain rates of 200/s, 400/s and 600/s, with K. computed 
using /S-9/10
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FIGURE 6 Inverse parabola yield function fit to triaxial test data for sandstone



FIGURE 7
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Strain rate dependence of dynamic failure stress for granite
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FIGURE 8 Static failure stress data for granite and inverse parabola yield function
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FIGURE 9 Finite element model for 3m depth-of'burial calculations

FIGURE 10 Comparison of calculated fragmented region limit with excavated 
profiles for a one-meter APEX 1220 charge centered at a depth of 
meters in granite
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FIGURE 13 Conparison of calculated fragmented region limit with excavated crater 
profiles for a one-meter ANFO charge centered at a depth of three meters in 
granite at a basalt dike

FIGURE 14 Comparison of calculated fragmented region limit with an excavated crater 
profile for a one-meter ANFO charge with low detonation velocity centered 
at a depth of three meters in granite



FIGURE 15 Comparison of calculated fragmented region limit vith an excavated crater 
profile for a one-meter ANFO charge centered at a depth of two meters in 
granite

FIGURE 16 Comparison of calculated fragmented region limit with excavated crater 
profiles for a one-meter ANFO charge centered at a depth of four meters in 
granite


