

1980/80
12-8-80
J. Gray

12.2097

2

ORNL/TM-7353

ornl

OAK
RIDGE
NATIONAL
LABORATORY

UNION
CARBIDE

MASTER

**User and System Considerations
for the TCSTEK Software Library:
A Graphics Library for Displaying
Images on Tektronix 4000 Series
Storage Tube Terminals**

W. H. Gray

R400

OPERATED BY
UNION CARBIDE CORPORATION
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Printed in the United States of America. Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161
NTIS price codes—Printed Copy: A04; Microfiche A01

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ORNL/TM-7353
Dist. Category UC-32

Contract No. W-7405-eng-26

FUSION ENERGY DIVISION

USER AND SYSTEM CONSIDERATIONS FOR
THE TCSTEK SOFTWARE LIBRARY:
A GRAPHICS LIBRARY FOR DISPLAYING IMAGES ON
TEKTRONIX 4000 SERIES STORAGE TUBE TERMINALS

W. H. Gray

Date Published - November 1980

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37830
operated by
UNION CARBIDE CORPORATION
for the
DEPARTMENT OF ENERGY

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

**THIS PAGE
WAS INTENTIONALLY
LEFT BLANK**

CONTENTS

PREFACE	v
ABSTRACT	vii
1. INTRODUCTION	1
2. HOW TO USE THIS DOCUMENT	3
3. ACCESSING THE TCSTEK SOFTWARE LIBRARY	5
4. A SIMPLE EXAMPLE	7
5. MODIFIED TCS SOFTWARE	9
5.1 MODIFICATIONS TO SUBROUTINE INITT	9
5.2 MODIFICATIONS TO SUBROUTINES ERASE AND NEWPAG	12
5.3 MODIFICATIONS TO SUBROUTINE HDCOPY	14
5.4 MODIFICATIONS TO SUBROUTINE FINITT	18
5.5 MODIFICATIONS TO SUBROUTINE AOUTST	19
5.6 MODIFICATIONS TO SUBROUTINE TCSLEV	20
6. TCS CHARACTER-MANIPULATING SOFTWARE	21
6.1 SUBROUTINE KA12AS	21
6.2 SUBROUTINE KAM2AS	22
6.3 SUBROUTINE KAS2A1	23
6.4 SUBROUTINE KAS2AM	24
7. TCS I/O SOFTWARE	27
7.1 SUBROUTINE ADEIN	27
7.2 SUBROUTINE ADEOUT	32
8. TCS LOCAL SOFTWARE ENHANCEMENTS	35
8.1 SUBROUTINE TTRMBD	35
8.2 SUBROUTINE SLP	36
8.3 PROGRAM SETSPD	37
9. CONCLUSIONS	43
ACKNOWLEDGMENTS	45
REFERENCES	47

**THIS PAGE
WAS INTENTIONALLY
LEFT BLANK**

PREFACE

This work was sponsored by the Oak Ridge National Laboratory Fusion Energy Division Large Coil Program and was done in conjunction with system development on the GIFTs 4B¹ suite of structural analysis computer programs.

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

ABSTRACT

This report documents the idiosyncrasies of the Tektronix PLOT 10 Terminal Control System (TCS) level 3.3 software as it currently exists on the Oak Ridge National Laboratory Fusion Energy Division DECsystem-10 computer. It pertains to the graphics software library called TCSTEK, which may be used to convert TCS subroutine calls into display images on the screens of Tektronix 4000 series storage tube terminals. Fully described here are several user-oriented enhancements and system efficiency modifications to the vendor-supplied TCS software library. It is intended that this report serve as a reference for future TCS updates so that continuity between releases of TCS PLOT 10 software may be maintained.

1. INTRODUCTION

Described here is the implementation of the Tektronix PLOT 10 Terminal Control System (TCS)^{2,3} software as it currently exists on the Oak Ridge National Laboratory (ORNL) Fusion Energy Division (FED) DECsystem-10 computer. Superseding all previous reports on this subject, this document specifically applies to the TCS level 3.3 software library called TCSTEK. The TCS level 3.3 software has been implemented without any user-discriminable differences between it and the vendor-supplied installation instructions,⁴ successfully passing the vendor test program.⁵

This software library can be used to produce display images on the screens of Tektronix 4000 series storage tube terminals. Unlike several of the other graphics libraries available on the FED DECsystem-10, the TCSTEK software is a computationally efficient set of subroutines requiring a small amount of the user's core image during execution.

Several enhancements have been made to the ORNL FED TCS software. They entail making the software library automatically determine the terminal's transmission baud rate and making the software efficiently pause during a page erasure and a hard-copy operation. This report discusses these enhancements. Also presented is the locally written machine-dependent software required by TCS for the translation of ASCII text strings into ASCII decimal equivalent (ADE) characters and for the input and output (I/O) of arrays of ADE characters.

**THIS PAGE
WAS INTENTIONALLY
LEFT BLANK**

2. HOW TO USE THIS DOCUMENT

If the reader of this report is interested in the system implementation of the TCS subroutines, then all sections should be read. For the average reader, however, only four sections are required reading. They are (1) Sect. 3, where accessing the TCSTEK software library is discussed; (2) Sect. 4, where an example program demonstrates how to use this software library; (3) Sect. 5, where local enhancements to several TCS subroutines are discussed; and (4) Sect. 7, where the TCS I/O software is discussed.

This report specifically pertains to the software library on REL: called TCSTEK.REL and is organized into the following sections.

- (1) In Sect. 3 the reader may find out how to access the TCSTEK software library.
- (2) Section 4 presents an example program in order to demonstrate the correct way to initialize and finalize the TCSTEK software.
- (3) Discussed in Sect. 5 are several of the system considerations that prompted the modification of the TCS software library and therefore the writing of this document. Subroutines discussed are INITT, FINITT, HDCOPY, ERASE, NEWPAG, AOUTST, and TCSLEV.
- (4) Section 6 presents the locally written machine-dependent character-manipulating software required by TCS. Subroutines discussed are KA12AS, KAM2AS, KAS2A1, and KAS2AM.
- (5) Section 7 presents the locally written machine-dependent terminal I/O software required by TCS and specifically enumerates its advantages and disadvantages. Subroutines discussed are ADEIN and ADEOUT.
- (6) In Sect. 8 are discussed the local enhancements to the TCS software — in particular the program that sets the transmission speed code for all teletypes connected to the FED DC1Ø communications interface and the corresponding subroutine modifications in the TCS source program necessary to access the transmission speed code.

**THIS PAGE
WAS INTENTIONALLY
LEFT BLANK**

3. ACCESSING THE TCSTEK SOFTWARE LIBRARY

The TCSTEK software library is available to the users of the FED DECsysten-10 by using a command file located on device PUB: in a manner similar to that used to access all other graphics software. Such .CMD files cause the inclusion of all the necessary relocatable object modules (.REL files) without the user's having to concern himself with the location of the .REL files or the order in which they are loaded.

To execute a FORTRAN program, 'yourpg' in this example, and to use the TCSTEK software library, type

```
.EXECUTE yourpg,@PUB:TCSTEK
```

Two inflexible requirements must be met by the user's FORTRAN code:

- (1) There must be a call to subroutine INITT(). This is the standard way to initialize the TCS software. (A call to subroutine INITT with an argument of zero forces TCS to determine automatically the TTY transmission speed in characters per second.) This subroutine call should be made only once and must be the first TCS subroutine call in the user's program.
- (2) There must be a call to subroutine FINITT(IX,IY). This is the standard way to terminate the TCS software. (The arguments IX and IY represent the final position of the alphanumeric cursor in absolute screen coordinates.) This subroutine call should be made only once and must be the last TCS subroutine call in the user's program so that the last internal TCS character buffer is written to the Tektronix screen.

The command file PUB:TCSTEK.CMD loads the relocatable object module REL:TCSTEK.REL with 'yourpg' using the /SEARCH switch. This is the only .REL file necessary for this software library.

**THIS PAGE
WAS INTENTIONALLY
LEFT BLANK**

4. A SIMPLE EXAMPLE

This section demonstrates an example execution of a FORTRAN program to draw a display image on a Tektronix. The following program uses TCS to draw an exponentially decaying cosine function. This program is internally commented and should be sufficiently self-explanatory. A listing follows.

```

PROGRAM RNGTCS
C
C      COMMON /DRWPAR/ ISW(4),RVW(4),CON
C
C      DATA ISW/200,400,200,400/
C      DATA RVW/0.,20.,-1.,1./
C      DATA CON/0.2/
C
C      INITIALIZE THE TCS SOFTWARE LIBRARY
C          CALL INITT (0)
C
C      SET UP A SCREEN AND VIEWING WINDOW
C          CALL SWINDO (ISW(1),ISW(2),ISW(3),ISW(4))
C          CALL DWINDO (RVW(1),RVW(2),RVW(3),RVW(4))
C
C      DRAW RINGER
C
C      FIRST CALCULATE AND MOVE TO BEGINNING POSITION
C          Y = COS(RVW(1)) * EXP(CON * -RVW(1))
C          CALL MOVEA (RVW(1),Y)
C
C      NOW LOOP THROUGH ALL THE POINTS
C          DO 100 T=RVW(1),RVW(2),.05
C              Y = COS(T) * EXP(CON * -T)
C              CALL DRAWA (T,Y)
100      CONTINUE
C
C      DRAW A GRID
C          DO 200 X = RVW(1),RVW(2),2.
C              CALL MOVEA (X,RVW(3))
C              CALL DRAWA (X,RVW(4))
200      CONTINUE
C          DO 210 Y = RVW(3),RVW(4),.2
C              CALL MOVEA (RVW(1),Y)
C              CALL DRAWA (RVW(2),Y)
210      CONTINUE
C
C      TERMINATE TCS
C          CALL FINITT (0,780)
C          STOP
C          END

```

Successful execution of this program should yield an image similar to the curve in Fig. 1.

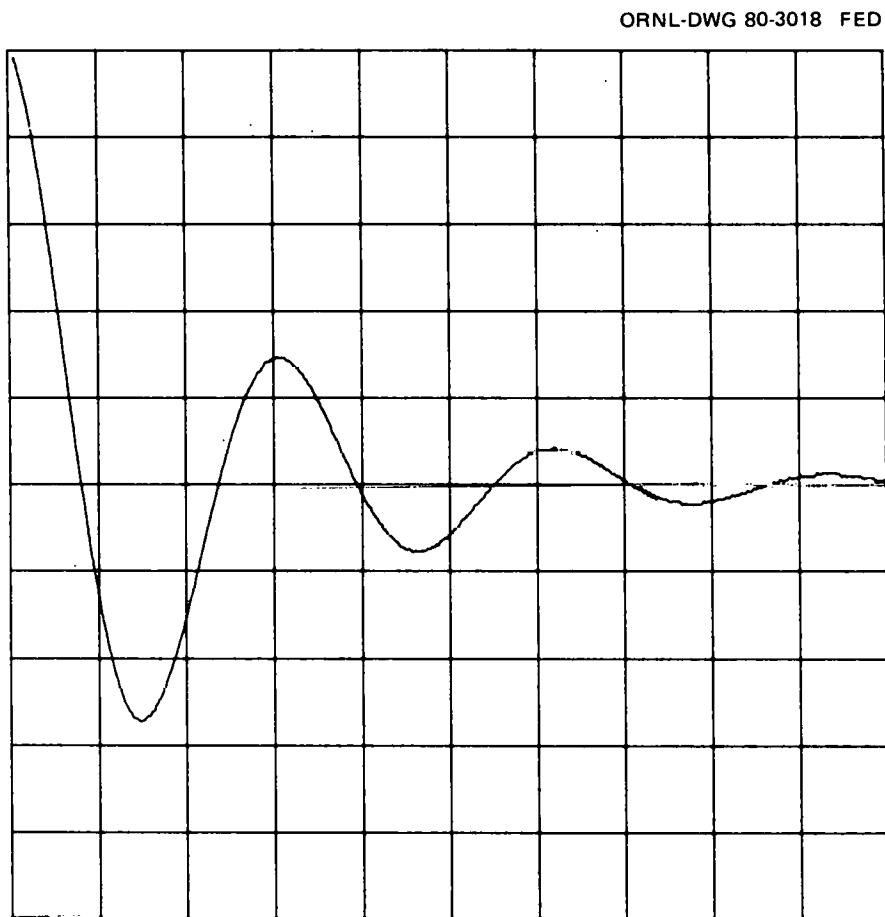


Fig. 1. The display image for the sample problem in Sect. 4.

5. MODIFIED TCS SOFTWARE

There are six major differences between the TCS software as received and that which is available in relocatable object module form. These differences are as follows.

- (1) Subroutine INITT has been modified to access the transmission speed of a user's terminal (information that is available in the monitor table for any job number).
- (2) Subroutines ERASE and NEWPAG have been modified to replace a call to the TCS subroutine IOWAIT with a call to subroutine SLP. This efficiently handles the timing delays required by a Tektronix terminal during a page erasure and refresh.
- (3) Subroutine HDCOPY has been modified to accept an argument (if one is present) that represents the number of seconds to pause during a hard-copy operation. This modification was made because similar timing delay problems exist for hard-copy operations.
- (4) The FORTRAN STOP statement in subroutine FINITT has been removed.
- (5) At the request of several users, a call to subroutine TSEND has been inserted into subroutine AOUTST. This causes any characters placed into the internal TCS character buffer by subroutine AOUTST to be output promptly to the user's terminal.
- (6) Finally, subroutine TCSLEV has been updated to reflect local version 6 of the TCS software.

The reasons for these modifications are discussed below.

5.1 MODIFICATIONS TO SUBROUTINE INITT

In order that the TCS software be initialized, a call to subroutine INITT with a single argument representing the terminal transmission baud rate (number of characters per second) is required. However, the transmission speed is known by the computer; how else could the computer communicate with a teletype? Therefore, a modification was made to subroutine INITT to have it call a function subprogram named ITRMBD.

Subroutine ITRMBD accepts one argument, the job number, and it returns the value of the transmission baud rate. This frees the user from having to worry about this value, especially since a user's program usually is executed from many terminals, each with a different transmission speed. The user need only call INITT with an argument of 0 to have the transmission speed determined by subprogram ITRMBD. (Subroutine ITRMBD is fully described in Sect. 8.1.)

However, this modification did not completely solve the problem of TCS internally determining transmission speeds. Numerous teletype lines are hardwired into the FED DC10 communications interface, which does not have the hardware/software to set transmission speed codes in the monitor table for a job connected to it. To alleviate this difficulty a program (SETSPD) was written to software-set the transmission speed codes of all the hardwired lines connected to the DC10. The program is run from the system AUTO file when the system is initialized. (Program SETSPD is discussed further in Sect. 8.2.)

Taking advantage of the way in which subroutine ADEOUT (see Sect. 7.2) is written, another modification was made to the ORNL version of subroutine INITT for the purpose of making the TCSTEK software library more efficient. The vendor-supplied version of subroutine INITT initializes the TCS buffer type to 1. This buffer type forces the TCS software to solve the problems associated with system-supplied interline characters (especially carriage return-line feed sequences) by generating beam-positional moves back to the currently stored beam position before every TCS buffer is output, thus creating extra computational and I/O activity. The ORNL version of subroutine INITT initializes the TCS buffer type to 3. This buffer type forces the TCS software to assume that no system-supplied interline characters are appended to the output buffer as is the case with the ORNL version of subroutine ADEOUT, thus reducing the computational and I/O activity.

Calling sequence:

CALL INITT (IBAUD)

Argument list:

IBAUD is the transmission baud rate in characters per second. If IBAUD is \emptyset , then the transmission baud rate will be automatically determined.

Required subroutines: ITRMBD, SETBUF, RESET, and NEWPAG

Language: FORTRAN-10

Subprogram listing:

5.2 MODIFICATIONS TO SUBROUTINES ERASE AND NEWPAG

Subroutine IOWAIT's function is to transmit synchronous (SYN) ASCII characters (ASCII character code 37₈; numbers subscripted by 8 in this report refer to octal, or base 8, notation) to the terminal to prevent loss of output while the terminal is busy doing the previous instruction, such as a page erasure. To perform this task it multiplies the ITIME (the only argument to subroutine IOWAIT) by the transmission baud rate divided by ten and uses this figure as the number of SYN characters to transmit to the terminal. (The SYN ASCII character is a no-operation instruction for the terminal.) This method is at best inaccurate; at worst it is a tremendous unnecessary overhead on the system. Consider, for example, a call to IOWAIT with ITIME equal to 180 (such a call used to be made from subroutine HDCOPY). If a user is transmitting 960 characters per second, then $180 * 960/10$, or 17,280, SYN characters are being sent to the terminal — clearly a wasteful operation. By empirical determination it was found that a pause of 2 s was sufficient for terminals during a page erase and refresh. Therefore, in subroutines NEWPAG and ERASE the call to IOWAIT was replaced with a call to subroutine SLP with an argument of 2 s. (Subroutine SLP's function is simply to put the user's program to sleep for the specified number of seconds.) Also, before the call to SLP in these subroutines, a call to the TCS subroutine TSEND is included to

ensure that the terminal operation begins at the prescribed time.

(Subroutine TSEND forces out to the terminal the internal TCS buffer.)

Calling sequence for subroutine ERASE:

CALL ERASE

Argument list: None

Required subroutines: TOUTST, TSEND, SLP, and RECOVR

Language: FORTRAN-10

Subprogram listing:

Calling sequence for subroutine NEWPAG:

CALL NEWPAG

Argument list: None

Required subroutines: TOUTST, TSEND, SLP, MOVABS, and ALFMOD

Language: FORTRAN-10

Subprogram listing:

5.3 MODIFICATIONS TO SUBROUTINE HDCOPY

A similar timing problem exists during a software-generated hard-copy request. The user's program must delay output to the Tektronix terminal until the hard-copy operation is finished to ensure

that no graphics are lost. Usually, 9 s is sufficient for this delay. However, if several terminals are multiplexed to a single hard-copy device, a longer delay is required. The data acquisition group for ORNL's Impurity Study Experiment has such a setup. Furthermore, terminal age also influences the time required for a hard-copy operation. To alleviate this timing problem, the following solution was programmed.

With the exception of 4006 series terminals, Tektronix hardware provides a facility for requesting a terminal to indicate the completion of a hard-copy operation. Subroutine HDCOPY has been rewritten in MACRO to make such an enquiry, thereby automatically ensuring that the exact hard-copy timing delay is used for the user's specific operational environment without user interaction. Warning — the default terminal type for the TCSTEK software library is a series 4010. If a user is plotting on a 4006 series terminal and does not tell the software this fact via subroutine TERM, the TCSTEK software will be waiting for five characters to be typed at the end of the hard-copy operation. Any five characters may be typed by the user (they will not be echoed); then the user's program will proceed normally.

In order not to penalize other users by having excessive delays during hard-copy operations and in order to make hard copies convenient for users of 4006 terminals, subroutine HDCOPY checks for the presence or absence of a single argument. If an argument is present, then regardless of the terminal type its value will be used as the integer number of seconds to put the user's program to sleep. If no argument is present and the terminal is a series 4006, then a 9-s delay will be used. If no argument is present and the terminal is a series 4010 or greater, then the automatic enquiry will be made for the exact delay time.

Calling sequence with no arguments:

CALL HDCOPY

Calling sequence with one argument:

CALL HDCOPY (ISECS)

Argument list:

ISECS is the integer number of seconds to delay output during a hard-copy operation.

Required subroutines: TOUTST, TSEND, ADEIN, and SLPLanguage: MACRO-10Subprogram listing:

TITLE HDCOPY

REPEAT 0,<

HDCOPY, A SUBPROGRAM TO MAKE A HARD COPY OF THE DISPLAY IMAGE ON THE SCREEN OF A TEKTRONIX TERMINAL

AUTHOR: W.H. GRAY
 OAK RIDGE NATIONAL LABORATORY
 OAK RIDGE, TENNESSEE 37830

>

ENTRY HDCOPY

T0=0
 T1=1
 L=16
 P=17

.COMMON TKTRNX[^D60]

KTERM=TKTRNX+50
 KGNMOD=TKTRNX+25

SIXBIT /HDCOPY/

HDCOPY:

MOVEI	T0,11	;DEFAULT NUMBER OF SECONDS
PUSH	P,L	;SAVE L
MOVE	T1,-1(L)	;GET NUMBER OF ARGUMENTS
JUMPE	T1,STICK	;IS IT ZERO
MOVE	T0,@0(L)	;NO, CALLER IS TELLING NUMBER OF SECONDS
STICK:	MOVEM T0,SECS	;STORE NUMBER OF SECONDS
MOVEI	L,HDCS	;ADDRESS FOR HARD COPY BLOCK
PUSHJ	P,TOUTST##	;INSERT HARD-COPY INSTRUCTIONS
MOVEI	L,TSEND	;ADDRESS FOR TSEND BLOCK
PUSHJ	P,TSEND##	;SEND BUFFER
POP	P,L	;RESTORE L
MOVE	T1,-1(L)	;GET NUMBER OF ARGUMENTS AGAIN
JUMPN	T1,SLPIT	;WAS AN ARGUMENT SPECIFIED

	SKIPE	KTERM	;NO. IS TERMINAL >= 4010?
	JRST	ENQUIR	;YES, DON'T SLEEP
SLPIT:	MOVEI	L, SLPA	;NO, FORCED SLEEP
	PUSHJ	P, SLP##	;ADDRESS FOR SLEEP BLOCK
	POPJ	P,	;GO TO SLEEP
ENQUIR:	MOVEI	L, ENQBLK	;HERE IF ENQUIRE IS AVAILABLE
	PUSHJ	P, TOUTST	;ADDRESS FOR ENQUIRE BLOCK
	MOVEI	L, TSND	;INSERT ENQUIRE INSTRUCTIONS
	PUSHJ	P, TSEND	;ADDRESS FOR TSEND BLOCK
	SETOM	KGNMOD	;SEND BUFFER
	MOVEI	L, ADEINP	;TURN ON GIN MODE FLAG
	PUSHJ	P, ADEIN##	;ADDRESS FOR ADEIN BLOCK
	IONEOU	[7]	;RECEIVE CHARACTERS FROM TERMINAL
	SETZM	KGNMOD	;TELL HIM ABOUT IT
	POPJ	P,	;TURN OFF GIN MODE FLAG
	-2,,0		
HDCS:	0,,NUM		
	0,,ICODE		
	0,,0		
TSND:	0,,0		
	-1,,0		
SLPA:	0,,SECS		
	-2,,0		
ENQBLK:	0,,NUM		
	0,,ECODE		
	-2,,0		
ADEINP:	0,,NCHR		
	0,,IADE		
NUM:	2		
ICODE:	^D27		;ADE CODE FOR ESCAPE
	^D23		;ADE CODE FOR HARD-COPY
ECODE:	^D27		;ADE CODE FOR ESCAPE
	5		;ADE CODE FOR ENQUIRE
SECS:	0		
NCHR:	Z		;NUMBER OF ADE CHARACTERS RETURNED
IADE:	BLOCK 5		;ADE ARRAY FOR ADEIN ARGUMENT RETURN
	END		

5.4 MODIFICATIONS TO SUBROUTINE FINIT

For some unexplained reason, the vendor-supplied version of subroutine FINITT included a FORTRAN STOP statement as the last executable statement in the subprogram. This statement has been removed and users are encouraged to include a call to subroutine FINITT as the last TCS software calls in their program. Among other functions, subroutine FINITT calls subroutine TSEND, ensuring that all of the internal TCS character buffer will be sent to the terminal before program termination.

Calling sequence:

CALL FINITT (IXEND,IYEND)

Argument list:

IXEND is the ending X position of the alphanumeric cursor.

Units are in absolute Tektronix screen coordinates.

IYEND is the ending Y position of the alphanumeric cursor.

Units are in absolute Tektronix screen coordinates.

Required subroutines: MOVABS, ALFMOD, and TSEND

Language: FORTRAN-10

Subprogram listing:

5.5 MODIFICATIONS TO SUBROUTINE AOUTST

At the request of several FED users, subroutine AOUTST has been modified to include a call to subroutine TSEND. This causes any characters placed into the internal TCS character buffer by subroutine AOUTST to be output promptly to the user's terminal.

Calling sequence:

CALL AOUTST (NCHAR,IAM)

Argument list:

NCHAR is the number of characters to be translated (unmodified by this subroutine).

IAM is the left-justified ASCII character array stored five characters per word (unmodified by this subroutine).

Required subroutines: KAM2AS, ANSTR, and TSEND

Language: FORTRAN-10

Subprogram listing:

5.6 MODIFICATION TO SUBROUTINE TCSLEV

Subroutine TCSLEV has been modified to reflect version 6 of the ORNL FED TCS software library.

Calling sequence:

CALL TCSLEV (LEVEL)

Argument list:

LEVEL is a three-word integer array. The first word will be returned with the value of the year in which the last modification to the TCS library took place. The second word will be returned with the value of the month and day in which the last modification took place. The third word will be returned with the local version number of the TCS library.

Required subroutines: None

Language: MACRO-10

Subprogram listing:

6. TCS CHARACTER-MANIPULATING SOFTWARE

This section describes four machine-dependent subroutines for translating ASCII character strings required by the TCS software. Their names are constructs of the following mnemonics: convert, K; left-justified ASCII one character per word, A1; to, 2; right-justified ASCII one character per word, AS; left-justified ASCII five characters per word, AM. Therefore, to convert a left-justified ASCII text string to a right-justified array of characters in ADE format, the appropriate subroutine to call is KAM2AS. The next four subsections describe the calling sequence, argument list, and subprogram listing of subroutines KA12AS, KAM2AS, KAS2A1, and KAS2AM.

6.1 SUBROUTINE KA12AS

Subroutine KA12AS performs to Tektronix TCS specifications and may be used to convert left-justified ASCII characters (stored one character per word) into right-justified, zero-filled characters (stored one character per word).

Calling sequence:

```
CALL KA12AS (NCHAR,KA1,KADE)
```

Argument list:

NCHAR is the number of characters to be translated (unmodified by this subroutine).

KA1 is the left-justified ASCII character array stored one character per word (unmodified by this subroutine).

KADE is the right-justified, zero-filled ASCII character array stored one character per word (returned by this subroutine).

Required subroutines: None

Language: MACRO-10 (see Ref. 6)

Subprogram listing:

```
TITLE KA12AS
```

```
T0=0
```

```
T1=1
```

```
T2=2
```

L=16
P=17

ENTRY	KA12AS
SIXBIT	/KA12AS/
KA12AS:	PUSH P,T2 ;SAVE T2
	HRRZ T2,@Ø(L) ;GET NUMBER TO TRANSLATE
	JUMPE T2,BYE BYE ;IS IT Ø
	MOVN T2,T2 ;NO, MAKE IT NEGATIVE
	HRL T2,T2 ;IN LEFT HALF
	HRRI T2,@2(L) ;NOW PUT IN THE OUTPUT ADDRESS
	HRRZI T1,@1(L) ;GET ADDRESS OF A1 CHARACTERS
LOOP:	MOVE TØ,(T1) ;GET AN A1 CHARACTER
	LSH TØ,-^D29 ;MAKE IT ADE
	MOVEM TØ,(T2) ;PUT THE ADE CHARACTER AWAY
	AOJ T1, ;INCREMENT ADDRESS FOR A1
	AOBJN T2,LOOP ;ARE WE FINISHED
	POP P,T2 ;RESTORE T2
BYE BYE:	POPJ P, ;WE ARE DONE
	END

6.2 SUBROUTINE KAM2AS

Subroutine KAM2AS performs to Tektronix TCS specifications and may be used to convert left-justified ASCII characters (stored five characters per word) into right-justified, zero-filled characters (stored one character per word).

Calling sequence:

CALL KAM2AS (NCHAR,KAM,KADE)

Argument list:

NCHAR is the number of characters to be translated (unmodified by this subroutine).
 KAM is the left-justified ASCII character array stored five characters per word (unmodified by this subroutine).
 KADE is the right-justified, zero-filled ASCII character array stored one character per word (returned by this subroutine).

Required subroutines: None

Language: MACRO-10

Subprogram listing:

TITLE KAM2AS

T0=0

T1=1

T2=2

L=16

P=17

ENTRY KAM2AS

SIXBIT /KAM2AS/		
KAM2AS:	PUSH P, T2	;SAVE T2
	HRRZ T2, @0(L)	;GET NUMBER TO TRANSLATE
	JUMPE T2, BYEBYE	;IS IT 0
	MOVN T2, T2	;NO, MAKE IT NEGATIVE
	HRL T2, T2	;IN LEFT HALF
	HRRI T2, @2(L)	;NOW PUT IN THE OUTPUT ADDRESS
	HRRZI T1, @1(L)	;GET ADDRESS OF AM CHARACTERS
	HRLI T1, 440700	;GET A GOOD BYTE POINTER
LOOP:	ILDB T0, T1	;GET AN AM CHARACTER
	MOVEM T0, (T2)	;PUT THE ADE CHARACTER AWAY
	AOBJN T2, LOOP	;ARE WE FINISHED
	POP P, T2	;RESTORE T2
BYEBYE:	POPJ P,	;WE ARE DONE
	END	

6.3 SUBROUTINE KAS2A1

Subroutine KAS2A1 performs to Tektronix TCS specifications and may be used to convert right-justified ASCII characters (stored one zero-filled character per word) into left-justified, blank-filled characters (stored one character per word).

Calling sequence:

CALL KAS2A1 (NCHAR,KADE,KA1)

Argument list:

NCHAR is the number of characters to be translated (unmodified by this subroutine).

KADE is the right-justified, zero-filled ASCII character array stored one character per word (unmodified by this subroutine).

KAL is the left-justified ASCII character array stored one character per word (returned by this subroutine).

Required subroutines: None

Language: MACRO-10

Subprogram listing:

TITLE KAS2A1

T0=0

T1=1

T2=2

L=16

P=17

ENTRY KAS2A1

SIXBIT /KAS2A1/		
KAS2A1:	PUSH P,T2	;SAVE T2
	HRRZ T2,@0(L)	;GET NUMBER TO TRANSLATE
	JUMPE T2,BYEBYE	;IS IT 0
	MOVN T2,T2	;NO, MAKE IT NEGATIVE
	HRL T2,T2	;IN LEFT HALF
	HRRI T2,@2(L)	;NOW PUT IN THE OUTPUT ADDRESS
	HRRZI T1,@1(L)	;GET ADDRESS OF ADE CHARACTERS
LOOP:	MOVE T0,(T1)	;GET AN ADE CHARACTER
	LSH T0,^D29	;MAKE IT A1
	MOVEM T0,(T2)	;PUT THE A1 CHARACTER AWAY
	AOJ T1,	;INCREMENT ADDRESS FOR ADE
	AOBJN T2,LOOP	;ARE WE FINISHED
	POP P,T2	;RESTORE T2
BYEBYE:	POPJ P,	;WE ARE DONE
	END	

6.4 SUBROUTINE KAS2AM

Subroutine KAS2AM performs to Tektronix TCS specifications and may be used to convert right-justified ASCII characters (stored one zero-filled character per word) into left-justified, blank-filled characters (stored five characters per word).

Calling sequence:

CALL KAS2AM (NCHAR,KADE,KAM)

Argument list:

NCHAR is the number of characters to be translated (unmodified by this subroutine).

KADE is the right-justified ASCII character array stored one character per word (unmodified by this subroutine).

KAM is the left-justified, blank-filled ASCII character array stored five characters per word (returned by this subroutine).

Required subroutines: None

Language: MACRO-10

Subprogram listing:

TITLE KAS2AM

T0=0
T1=1
T2=2
L=16
P=17

ENTRY KAS2AM

SIXBIT	/KAS2AM/	
KAS2AM:	PUSH	P, T2 ;SAVE T2
	HRRZ	T2, @0(L) ;GET NUMBER TO TRANSLATE
	JUMPE	T2, BYEBYE ;IS IT 0
	MOVN	T2, T2 ;NO, MAKE IT NEGATIVE
	HRL	T2, T2 ;IN LEFT HALF
	HRRI	T2, @1(L) ;NOW PUT IN THE OUTPUT ADDRESS
	HRRZI	T1, @2(L) ;GET ADDRESS OF AM CHARACTERS
	HRLI	T1, 440700 ;GET A GOOD BYTE POINTER
LOOP:	MOVE	T0, (T2) ;GET THE ADE CHARACTER AWAY
	IDPB	T0, T1 ;PUT INTO AM
	AOBJN	T2, LOOP ;ARE WE FINISHED
	POP	P, T2 ;RESTORE T2
BYEBYE:	POPJ	P, ;WE ARE DONE
	END	

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

7. TCS I/O SOFTWARE

This section describes two subroutines for character transmission between a user's program and a Tektronix terminal. These are subroutines ADEIN and ADEOUT, which mnemonically represent ADE I/O, respectively. Both subroutines are written in MACRO-10; therefore, the TCS software library does not require the FORTRAN REAL TIME OPERATING SYSTEM⁷ (FOROTS) to be in the user's high segment during execution.

7.1 SUBROUTINE ADEIN

Subroutine ADEIN performs to Tektronix TCS specifications and may be used to input right-justified, zero-filled ASCII characters from the user's terminal. The complete ASCII character set may be transmitted with this subroutine; however, there are certain characters that have a special meaning. These are discussed below.

- (1) ^U If a ^U (ASCII character code 25₈; numbers subscripted by 8 in this report refer to octal, or base 8, notation) is typed, the input line is erased and the input may be started over.
- (2) ^R If a ^R (ASCII character code 22₈) is typed, the current line is retyped to the user's terminal for visual inspection of mistakes. The contents of the input buffer are not altered by this character.
- (3) (DEL) If a DEL (ASCII character code 177₈) is typed, the previously input character is thrown away and the terminal input line is backspaced one character. (If the terminal type has been set as Ø via TCS subroutine TERM, indicating 4006 terminal hardware, then a backspace is impossible; therefore, none is output to the terminal. However, the deleted character will still be discarded.)
- (4) (BS) If a backspace (ASCII character code 10₈) is typed, it has the same effect as typing a DEL character.
- (5) (CR) If a carriage return (ASCII character code 15₈) is typed, it is ignored. (Remember that on most terminals the

carriage return key actually transmits two characters to the host computer — both a carriage return and a line feed.)

(6) (LF) If a line feed (ASCII character code 12_8) is typed, input is terminated without inserting the line feed character into the input buffer, and program control is passed back to the calling subroutine.

Remember that during any single call a maximum of 72 characters may be input by this subroutine.

Tektronix 4010 series models have the capability of being used in the graphic input (GIN) mode. When an ESC SUB character sequence (ASCII character codes 33_8 and 32_8 , respectively) is transmitted to a terminal via subroutine ADEOUT, the terminal's graphic cross-hair cursor will be turned on as a prompt for GIN mode input. By positioning the graphic cursor (using the thumb wheels located on the terminal) to a user-selected screen position and then striking a character, both the character (in ADE format) and four more characters are transmitted to subroutine ADEIN. The last four characters are decoded by the TCS software to locate the screen position of the graphic cursor.

Subroutine ADEIN is written to accept five and only five characters when the GIN mode switch is set; therefore, only a single character need be typed to transmit all the graphic cursor coordinate position information to the host computer. (The other four characters are internally generated and transmitted by the Tektronix terminal hardware.) This differs from previous implementations of the TCS software for the FED DECsystem-10, but it reflects the author's preference of execution.

The following list enumerates three special considerations of which all users of GIN mode should be aware.

(1) If either a carriage return or a line feed key is struck during GIN mode, then the terminal is returned to alphanumeric mode immediately because of the terminal hardware. This version of subroutine ADEIN sets the software alphanumeric output flag to zero, attempting to simulate the hardware action of the

terminal. However, setting the flag to zero may not work under all circumstances — be careful or simply do not transmit line feed characters during GIN mode.

- (2) If a carriage return is struck, two characters are transmitted to the software — both a carriage return and a line feed. This version of subroutine ADEIN discards the carriage return character. The line feed will be passed back to the calling subroutine as the GIN mode response character. (See the previous special consideration.)
- (3) During GIN mode the terminal echo is temporarily turned off, preventing the response character, as well as the four hardware-generated characters, from being echoed back to the terminal by the monitor. Under certain circumstances, if this were not done, very interesting errors could occur. However, if a user ^C's out of his program during GIN mode, he will have to turn the terminal echo back on manually by typing

.SET TTY ECHO

Upon normal return from subroutine ADEIN, the terminal echo characteristic will be restored to whatever it was prior to the call to this subroutine.

Calling sequence:

CALL ADEIN (NCHAR,KADE)

Argument list:

NCHAR is the number of characters to be translated (unmodified by this subroutine).

KADE is the right-justified ASCII character array stored one character per word (unmodified by this subroutine).

Required subroutines: None

Language: MACRO-10

Subprogram listing:

TITLE	ADEIN
ENTRY	ADEIN

T₀= \emptyset
 T₁=1
 T₂=2
 L=16
 P=17

.COMMON	TKTRNX[[^] D60]	;ADDRESS OF TKTRNX COMMON
KCNMOD	=TKTRNX+25	;ADDRESS OF GIN MODE FLAG
KKMODE	=TKTRNX+40	;ADDRESS OF VECTOR MODE FLAG
KTERM	=TKTRNX+50	;ADDRESS OF TERMINAL TYPE FLAG
SIXBIT /ADEIN/		
ADEIN:		
MOVE	T ₀ ,KGNMOD	;GET GIN MODE FLAG
JUMPE	T ₀ ,START ;DON'T CHANGE ECHO IF NOT GIN	
HRRZI	T ₁ ,-1	;SET UP LINE NUMBER FOR GETLCH
GETLCH	T ₁	;GET THE LINE CHARACTERISTICS
MOVEM	T ₁ ,LINCHR	;SAVE THEM
TLO	T ₁ ,4	;YES, TURN OFF ECHO
HRRI	T ₁ ,-1	;SET UP LINE NUMBER FOR SETLCH
SETLCH	T ₁	;SO
START:	PIISH	P,T ₂ ;SAVE T ₂
BEGIN:	HRREI	T ₁ , [^] D72 ;WE NEED 72 ADE CHARACTERS
	SKIPE	KGNMOD ;UNLESS GIN MODE TNPUI
	HRREI	T ₁ ,-5 ;IN WHICH CASE WE ONLY WANT 5
	HRRZI	T ₂ ,@1(L) ;ADDRESS OF IARRAY
	SETZM	@0(L) ;ZERO OUT NCHAR
	SETZM	@1(L) ;PLUS FIRST ADE CHARACTER
LOOP:	INCHRW	T ₀ ;GET A CHARACTER
	CAIN	T ₀ ,15 ;IS IT A CARRIAGE RETURN
	JRST	LOOP ;YES, IGNORE IT
	SKIPE	KGNMOD ;ARE WE IN GIN MODE
	JRST	GINCHK ;THEN THIS COULD BE A COORDINATE
	CAIN	T ₀ ,25 ;IS IT A [^] U
	JRST	CONTLU ;YES, START OVER
	CAIN	T ₀ ,22 ;IS IT A [^] R
	JRST	CONTLR ;YES, TYPE OUT
	CAIN	T ₀ ,177 ;IS IT A RUBOUT
	JRST	RUBOUT ;YES, GO PROCESS A RUBOUT
	CAIN	T ₀ ,10 ;IS IT A BACKSPACE
	JRST	RUBOUT ;YES, TREAT AS IF RUBOUT
	CAIN	T ₀ ,12 ;IS IT A LINE FEED
	JRST	LF ;THEN INPUT FOR CALL IS DONE
GINCHK:		

MOVEM	T ₀ , (T2)	; STORE CHARACTER	
AOS	@ ₀ (L)	; BUMP NCHAR	
AOJ	T ₂ ,	; INCREMENT ADDRESS	
JRST	SKIP	; GO TO THE END OF THE LOOP	
CONTLU:			
OUTSTR	CRLF	; OUTPUT A CR-LF	
JRST	BEGIN	; START OVER	
CONTLR:			
PUSH	P, T ₁	; SAVE T ₁	
OUTSTR	CRLF	; OUTPUT A CR-LF	
MOVN	T ₁ , @ ₀ (L)	; GET NEGATIVE NUMBER OF CHAR.	
HRL	T ₁ , T ₁	; IN LEFT HALF	
HRRI	T ₁ , @ ₁ (L)	; GET ADDRESS OF CHARS.	
LOP:	MOVE	T ₀ , (T ₁)	; GET A CHARACTER
	IONEOU	T ₀	; OUTPUT IT
	AOBJN	T ₁ , LOP	; ARE WE FINISHED
	POP	P, T ₁	; RESTORE T ₁
	JRST	SKIP	
RUBOUT:			
SKIPG	@ ₀ (L)	; HAVE WE GOT ANY CHARACTERS YET	
JRST	LOOP	; NO, THEN GO BACK TO LOOP	
SOJ	T ₁ ,	; DECREMENT COUNTER	
SOJ	T ₂ ,	; DECREMENT ADDRESS	
SETZM	(T ₂)	; ZERO RUBBED-OUT CHARACTER	
SOS	@ ₀ (L)	; DECREMENT NCHAR	
CAIN	T ₀ , 1 ₀	; WAS IT A REAL BACKSPACE	
JRST	LOOP		
SKIPE	KTERM	; DO NOT BACKSPACE IF 4006 TERMINAL	
IONEOU	[1 ₀]	; BACKSPACE TERMINAL	
SKIP:			
AOJL	T ₁ , LOOP	; ARE WE FINISHED	
LF:			
BYEBYE:			
POP	P, T ₂	; RESTORE T ₂	
MOVE	T ₀ , KGNMOD	; GET GIN MODE FLAG	
JUMPE	T ₀ , FIN	; IF NOT GIN, DO NOT CHANGE ECHO	
MOVE	T ₁ , LINCHR	; RESTORE THE LINE CHARACTERISTICS	
HRRI	T ₁ , -1	; SET UP LINE NUMBER FOR SETLCH	
SETLCH	T ₁	; SO	
CLRBFI		; THEN CLEAR THE INPUT BUFFER	
MOVE	T ₀ , @ ₁ (L)	; GET FIRST TYPED CHARACTER	
CAIE	T ₀ , 12	; WAS IT A LINE FEED	
JRST	FIN	; NO	
SETZM	KKMODE	; YES, TERMINAL IS NOW IN ALPHAMODE	
FIN:			
POPJ	P,	; RETURN	
CRLF: ASCIZ/			
/ LINCHR: Ø			
END			

7.2 SUBROUTINE ADEOUT

Subroutine ADEOUT performs to Tektronix TCS specifications and may be used to output right-justified, zero-filled ASCII characters to the user's terminal. The complete ASCII character set may be transmitted with this subroutine because it uses the IONEOU machine instruction for output of a single packed image mode (PIM) character. This instruction bypasses several monitor level checks; e.g., after every 72 characters the monitor automatically inserts a carriage return-line feed sequence into the output stream. It is, therefore, an efficient way to transmit characters.

Calling sequence:

```
CALL ADEOUT (NCHAR,KADE)
```

Argument list:

NCHAR is the number of characters to be translated (unmodified by this subroutine).

KADE is the right-justified ASCII character array stored one character per word (unmodified by this subroutine).

Required subroutines: NoneLanguage: MACRO-10Subprogram listing:

```
TITLE ADEOUT
ENTRY ADEOUT
```

T0=0

T1=1

L=16

P=17

SIXBIT /ADEOUT/ADEOUT:

MOVN	T1, @0(L)	;GET NCHAR
HRL	T1, T1	;PUT IN LEFT HALF
HRRI	T1, @1(L)	;ADDRESS OF ADE CHARACTERS
LOOP:	MOVE T0, (T1)	;GET A CHARACTER
	IONEOU T0,	;OUTPUT IT
	AOBJN T1,LOOP	;ARE WE FINISHED
	POPJ P,	
	END	

Because under the 603a monitor, buffered PIM I/O appears to be functioning correctly,⁸ future system development of the TCS software library should consider replacing this subroutine with a subroutine that uses buffered PIM output.

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

8. TCS LOCAL SOFTWARE ENHANCEMENTS

This section presents two auxiliary subprograms and one program, completing the TCS system software on the FED DECsysterm-10. Program SETSPD is a privileged program that will set the transmission speed codes of teletypes connected to the FED DC10 communications interface, integer function ITRMBD will return the transmission baud rate for any job number currently active in the system, and subroutine SLP will put the controlling job to sleep for a specified number of seconds.

8.1 SUBROUTINE ITRMBD

Subroutine ITRMBD may be used to return the transmission baud rate for a particular system job number. The baud rate, that is, the number of characters per second being transmitted and received by the terminal, is approximately the transmission speed in bits per second divided by ten.

Calling sequence:

IBAUD = ITRMBD(JOBNM)

Argument list:

JOBNM is the system job number for which the baud rate is to be obtained. If JOBNM is equal to -1, then function ITRMBD returns the baud rate for the controlling terminal.

Required subroutines: None

Language: MACRO-10

Subprogram listing:

TITLE ITRMBD

```

        SEARCH UUOSYM
TØ=Ø
T1=1
L=16
P=17

        ENTRY ITRMBD
SIXBIT /ITRMBD/
ITRMBD: SETZ   TØ,           ;CLEAR RETURN VALUE
        MOVE    T1, @Ø(L)      ;GET JOB NUMBER
        TRMNO. T1,           ;GET JOBS UDX
        JRST    BYEBYE       ;BUMMER
        MOVEM   T1, UDX       ;STORE IN TRMOP BLOCK
        MOVE    T1, [XWD 2, CODE] ;FORM TRMOP WORD
        TRMOP. T1,           ;DO IT
        JRST    BYEBYE       ;ANOTHER POSSIBLE BUMMER
        MOVE    TØ, SPEED(T1) ;GOOD RETURN LOOK UP CORRECT SPEED
        IDIVI   TØ, ^D1Ø      ;CONVERT TO BAUD
BYEBYE: POPJ   P,           ;WE ARE DONE
CODE:   1Ø31           ;FUNCTION CODE FOR TRANSMIT SPEED
UDX:   Z
SPEED: Ø
        ^D5Ø
        ^D75
        ^D11Ø
        ^D134
        ^D15Ø
        ^D2ØØ
        ^D3ØØ
        ^D6ØØ
        ^D12ØØ
        ^D18ØØ
        ^D24ØØ
        ^D48ØØ
        ^D96ØØ
Ø
Ø
END

```

8.2 SUBROUTINE SLP

Subroutine SLP may be used to put a program to sleep for a specified number of seconds. This subroutine has been substituted for subroutine IOWAIT in the TCS subroutines HDCOPY, NEWPAG, and ERASE. The reason for this substitution is discussed in the system considerations section of this report.

Calling sequence:

CALL SLP (ISEC)

Argument list:

ISEC is the number of seconds to sleep.

Required subroutines: NoneLanguage: MACRO-10Subprogram listing:

TITLE	SLP
ENTRY	SLP

T0=0

L=16

P=17

SIXBIT /SLP/

SLP:

MOVE	T0, @0(L)	; NUMBER OF SECONDS TO SLEEP
SLEEP	T0,	; GOOD NIGHT
POPJ	P,	; GOOD MORNING
END		

8.3 PROGRAM SETSPD

Program SETSPD may be used to set the transmission speed code⁹ (TSC) for any terminal connected to the FED computer system. This program is intended to set the TSC of all hardwired terminals connected to the DC10 communications interface because the DC10's hardware cannot autobaud detect. The table named TABLE located under SUBTTL TTY-TABLE contains the TSC's and TTY line numbers set by this program.

This program is executed every time the system is initialized from the system AUTO file. The current source is located in a UFLIP file under account DSKA:SETSPD.UFL[5,202002,SETSPD].

Execution:

.R SETSPD

Restrictions:

In order for this program to perform correctly, it must be executed from a privileged project-programmer account.

Language: MACRO-10

Program listing:

TITLE	SETSPD
SEARCH	UUOSYM

.JBVER=137

VERNO==01	;MAJOR VERSION NUMBER
VEDIT==3	;MAJOR EDIT NUMBER
VMINOR==0	;MINOR EDIT NUMBER
VWHO==06	;WHG LAST EDITOR

VSTSPD==BYTE (3)VWHO(9)VERNO(6)VMINOR(18)VEDIT

LOC	.JBVER
VSTSPD	
RELOC	

T0=0
 T1=1
 T2=2
 T3=3
 T4=4
 T5=5
 T6=6
 T7=7
 T10=10
 T11=11
 T=16
 P=17

SUBTTL THE-BIG-CODE

DEBUG:

SETSPD: JFCL

RESET

MOVE	P, [XWD PDLEN,PDLST]	
MOVEI	T1,NTBL	;GET NUMBER OF TTY'S TO SET
JUMPE	T1,BYE BYE	;ARE THERE ANY?
MOVE	T3,[XWD 3,SXCODE]	;YES, SET UP TRMOP FUNCTION
MOVN	T1,T1	;NEGATE NUMBER OF TTY'S
HRL	T1,T1	;IN LEFT HALF
HRRI	T1, TABLE	;GET ADDRESS OF TTY TABLE

OUTSTR [ASCIZ/HELLO, MY NAME IS SETSPD AND I AM GOING TO SET THE XMTSPEEDS
 OF THE FOLLOWING TERMINALS WHICH ARE CONNECTED TO THE DC10
 /]

LOOP: MOVE T2,(T1) ;GET TTY SPEED CODE AND #

HLRM	T2,SPDCDE	;STORE SPEED CODE IN TRMOP BLOCK
HRRZ	T2,T2	;GET TTY #
ADDI	T2,.UXTRM	;MAKE IT A UNIVERSAL DEVICE INDEX
MOVEM	T2,UDX	;PLACE IN TRMOP BLOCK
MOVEI	T0,2031	;[3]GET SET XMTSPEED CODE
MOVEM	T0,SXCODE	;[3]PUT INTO TRMOP BLOCK
TRMOP.	T3,	;SET IT
JRST	BAD	
MOVEI	T0,2030	;[3]GET SET RCVSPEED CODE
MOVEM	T0,SXCODE	;[3]PUT INTO TRMOP BLOCK
TRMOP.	T3,	;[3]SET IT
JRST	BAD	
OUTSTR	[ASCIZ/TTY/]	
SUBI	T2,.UXTRM	;GET TTY # AGAIN
HRL	T2,T2	;MOVE TO LEFT HALF
PUSHJ	P,OCTOUT	;OUTPUT TTY #
SPDOUT:		
HLRZ	T2,(T1)	;GET SPEED CODE AGAIN
PUSH	P,T1	;SAVE T1
MOVE	T1,SPEED(T2)	;GET SPEED IN CHARACTERS/S
OUTSTR	[ASCIZ/ TO /]	
PUSHJ	P,DECOUT	;TYPE IT OUT
POP	P,T1	;RESTORE T1
OUTSTR	[ASCIZ/	
/]		
JRST	CONT	
BAD:		
OUTSTR	[ASCIZ/?ERROR - YOU ARE NOT PRIVILEGED TO SET TTY/]	
SUBI	T2,.UXTRM	;GET TTY NUMBER AGAIN
HRL	T2,T2	;MOVE TO LEFT HALF
PUSHJ	P,OCTOUT	;OUTPUT TO TTY
JRST	SPDOUT	;TYPE OUT SPEED
CONT:		
AOBJN	T1,LOOP	
BYEBYE:		
EXIT		
SUBTTL SUBROUTINES		
OCTOUT:		
MOVE	T6,[POINT 3,T2]	;pointer to T2
SETZ	T5,	;SET NONZERO OUT FLAG
MOVEI	T4,6	;ONLY 1/2 WORD WORTH
OCTLOP:	ILDB T7,T6	;GET OCTAL CHARACTER
SKIPN	T7	;NONZERO?
JUMPE	T5,.+4	;NO, HOW ABOUT NONZERO FLAG
ADDI	T7,60	;MAKE IT ASCII
OUTCHR	T7	;PRINT IT

SETO	T5,	;NONZERO FLAG ON
SOJG	T4,OCTLOP	;MORE CHARACTERS
SKIPN	T5	;WAS IT Ø
OUTCHR	["Ø"]	;TYPE IT OUT
POPJ	P,	;RETURN
 DECOUT:		
IDIVI	T1,12	;DIVIDE BY 1Ø
HRLM	T2,(P)	;SAVE REMAINDER
SKIPE	Ø,T1	;SEE IF ANYTHING LEFT
PUSHJ	P,DECOUT	;YES, GO BACK
HLRZ	T1,(P)	;GET DIGIT BACK
ADDI	T1,"Ø"	;MAKE IT ASCII
OUTCHR	T1	;TYPE IT
POPJ	P,	;LOOP BACK UNTIL DONE

SUBTTL TTY -TABLE

REPEAT Ø,<

THE FOLLOWING LIST CONTAINS THE XMTSPEED CODE AND TERMINAL LINE NUMBER IN HALF WORD FORMAT FOR ALL THE TERMINALS WHOSE XMTSPEEDS ARE NOT SET BY HARDWARE, I.E., THE LINES CONNECTED TO THE DC1Ø.

LEFT HALF CONTAINS THE XMTSPEED CODE
RIGHT HALF CONTAINS THE TTY #

THE TRANSMISSION CODE IS LISTED BELOW

CODE	CHARACTERS PER S
Ø	Ø
1	5Ø
2	75
3	11Ø
4	13Ø
5	15Ø
6	2ØØ
7	3ØØ
1Ø	6ØØ
11	12ØØ
12	18ØØ
13	24ØØ
14	48ØØ
15	96ØØ
16	EXTERNAL A
17	EXTERNAL B

FOR EXAMPLE SUPPOSE THE DC1Ø IS TRANSMITTING TO TTY1 AT 48ØØ CPS,
THEN THE CORRESPONDING ENTRY IN TABLE WOULD BE

14,,1

;TTY1 XMTSPEED OF 48ØØ CPS

>
TABLE:

15,, \emptyset
15,,1
15,,2
7,,3
7,,4
7,,5
7,,6
7,,7
7,,1 \emptyset
11,,11
11,,12
11,,13
11,,14
11,,15
11,,16
11,,17
7,,2 \emptyset
7,,21
7,,22
7,,23
7,,24
7,,25
7,,26
7,,27
11,,3 \emptyset
11,,31
11,,32
11,,33
11,,34
11,,35
11,,36
11,,37

NTBL= .-TABLE

	SUBTTL	MEMORY	
SXCODE:	2031		CODE TO SET SPEED
UDX:	Z		
SPDCDE:	Z		
SPEED:	\emptyset		
	\sim d5 \emptyset		
	\sim d75		
	\sim d11 \emptyset		
	\sim d134		
	\sim d15 \emptyset		
	\sim d2 \emptyset 0		
	\sim d3 \emptyset 0		
	\sim d6 \emptyset 0		
	\sim d12 \emptyset 0		
	\sim d18 \emptyset 0		

^d2400

^d4800

^d9600

Ø

Ø

PDLST: Ø, ,PDERR

BLOCK 100

PDLEN=-PDLST

PDERR: ASCIZ/?PDL OVERFLOW

/

END SETSPD

9. CONCLUSIONS

Hopefully, this report will sufficiently document the FED system dependencies of the TCS software so that future updates to this software product will be upwards compatible, thus ensuring system continuity between user application programs.

**THIS PAGE
WAS INTENTIONALLY
LEFT BLANK**

ACKNOWLEDGMENTS

I would like to express my appreciation to C. L. Thompson for his comments on the internal operation of the TCS software, to K. H. Carpenter for his suggestion to use PIM output in subroutine ADEOUT, to R. D. Burris for his patience in helping me debug MACRO subroutines, and to D. W. Swain for his empirical determination of the delay time for a Tektronix hard-copy unit.

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

REFERENCES

1. H. A. Kamel and M. W. McCabe, "The GIFTS System: Version 4B User's Manual," University of Arizona, Tuscon, Arizona (March 1978).
2. "Tektronix PLOT 10 Terminal Control System User Manual," Tektronix, Inc., Beaverton, Oregon (February 1977).
3. "Tektronix PLOT 10 Terminal Control System System Manual," Tektronix, Inc., Beaverton, Oregon (February 1977).
4. "Tektronix PLOT 10 Terminal Control System Installation Guide," Tektronix, Inc., Beaverton, Oregon (February 1977).
5. "Tektronix PLOT 10 Terminal Control System Verification Routine," Tektronix, Inc., Beaverton, Oregon (February 1977).
6. "DECsystem-10 MACRO Assembler Reference Manual," Digital Equipment Corporation, Maynard, Massachusetts (April 1978).
7. Appendix D in "DECsystem-10 FORTRAN Programmer's Reference Manual," Digital Equipment Corporation, Maynard, Massachusetts (June 1977).
8. C. L. Thompson (Oak Ridge National Laboratory), private communication, April 1979.
9. "DECsystem-10 Monitor Calls Manual," Digital Equipment Corporation, Maynard, Massachusetts (January 1978).

**THIS PAGE
WAS INTENTIONALLY
LEFT BLANK**

ORNL/TM-7353
Dist. Category UC-32

INTERNAL DISTRIBUTION

1. F. W. Baity	29. G. S. McNeilley
2. T. V. Baudry	30. J. K. Munro
3. W. B. Bigney	31. D. R. Overbey
4. B. A. Clark	32. V. K. Paré
5. R. J. Colchin	33. C. E. Parker
6. W. A. Davis	34. R. L. Reid
7. R. A. Dory	35. J. A. Rome
8. L. C. Emerson	36. S. D. Scott
9. K. N. Fischer	37. J. Sheffield
10. G. E. Gorker	38. D. A. Spong
11-15. W. H. Gray	39. D. W. Swain
16. D. E. Greenwood	40. C. E. Thomas
17. S. L. Halsted	41. T. C. Tucker
18. C. E. Hammons	42. T. Uckan
19. W. R. Hendrich	43-44. Laboratory Records Department
20. L. M. Jenkins	45-46. Central Research Library
21. T. C. Jernigan	47. Document Reference Section
22. H. E. Ketterer	48. Laboratory Records, ORNL-RC
23. P. W. King	49. ORNL Patent Office
24. A. Komori	50-51. Fusion Energy Division Library
25. M. S. Lubell	52. Fusion Energy Division Reports Office
26. L. B. Maddox	
27. B. F. Maskewitz	
28. R. W. McGaffey	

EXTERNAL DISTRIBUTION

53. D. J. Anthony, General Electric Company, 1 River Road, Building 23, Room 290, Schenectady, NY 12345	
54. S. O. Dean, Science Applications, Inc., 2 Professional Drive, Suite 249, Gaithersburg, MD 20760	
55. H. K. Forsten, Exxon Nuclear Company, Inc., 777 106th Avenue, NE, Bellevue, WA 98009	
56. H. P. Furth, Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08540	
57. R. L. Hirsch, Exxon Research and Engineering Company, P.O. Box 101, Florham Park, NJ 07932	
58. Office of Assistant Manager for Energy Research and Development, Department of Energy, Oak Ridge Operations Office, Oak Ridge, TN 37830	
59-241. Given distribution as shown in TID-4500, Mathematics and Computers (Distribution Category UC-32)	