

DOE/ID/12033--T1

DE82 021740

MASTER

DRILLING REPORT:

STATE NURSERY TEST WELL

NO. 1

NOTICE MN ONLY

PORTIONS OF THIS REPORT ARE ILLEGIBLE. It
has been reproduced from the best available
copy to permit the broadest possible avail-
ability.

Joseph Donovan
John Sonderegger

Montana Bureau of Mines and Geology
Montana College of Mineral Science and Technology
Butte, Montana 59701

Supported by
U. S. Department of Energy

CONTRACT NO. DE-FC07-79ID12033

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

WHP
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

TEST WELL NO. 1

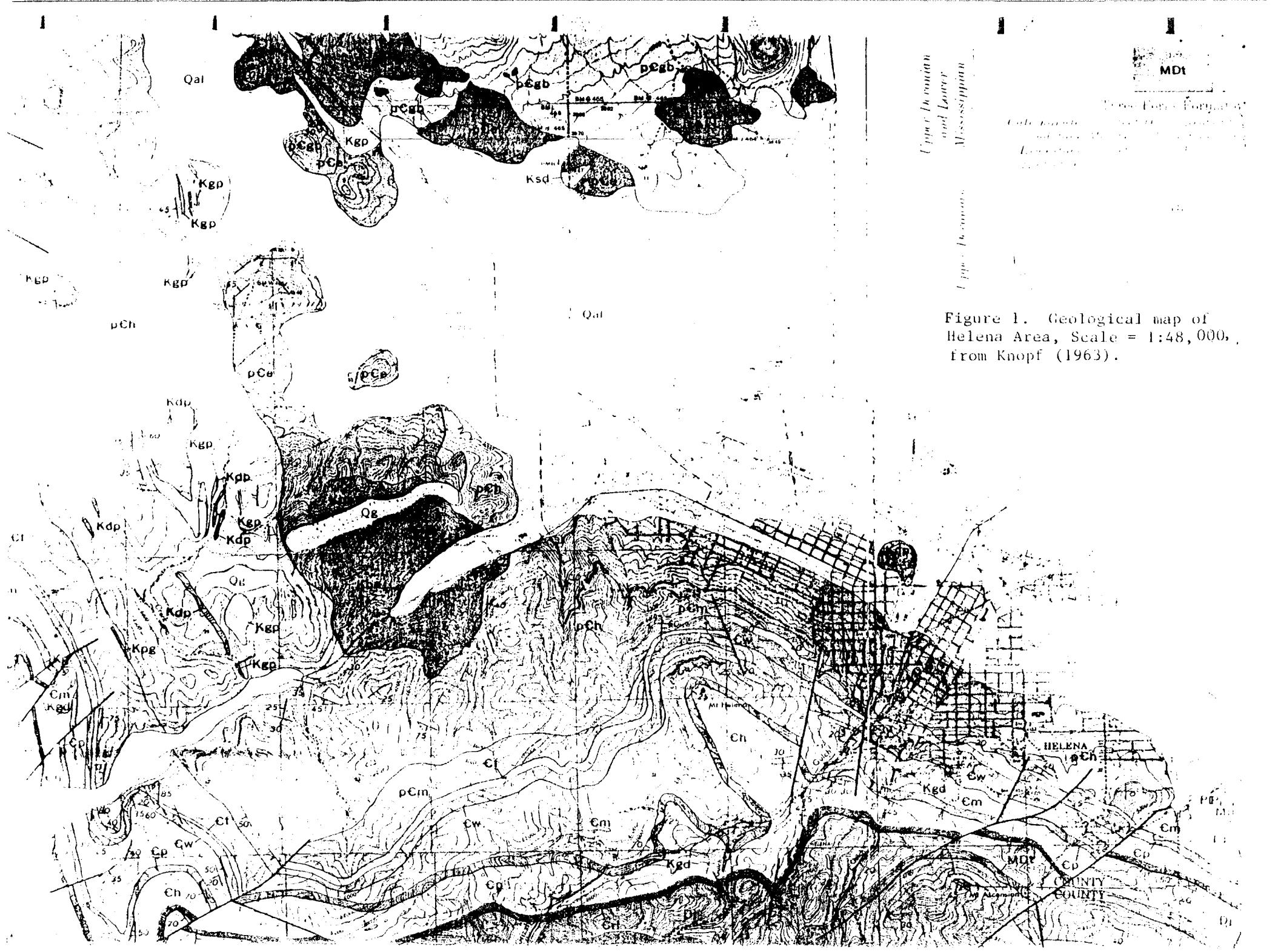
INTRODUCTION

A geothermal test well was sited and drilled approximately 0.8 miles (1.3 km) east of Broadwater Hot Springs, near Helena, Montana. The site is on the property of the State Nursery, along the north side of Ten Mile Creek. The purpose of the drilling was to test a thermal infrared imagery anomaly and to evaluate whether a source of warm water for space heating of a series of new greenhouses could be developed to replace ones destroyed in the spring 1981 flooding of Ten Mile Creek.

SITING AND LOCATION

The test well was sited in T. 22 N., R. 4 W., section 22 CD. This location is on a small low-intensity thermal anomaly apparent on infrared imagery flown over the Broadwater Hot Springs area in September 1977. It is also near the contact between a late Cretaceous granite body and Belt sediments (Proterozoic) of the Helena Formation. The well was sited at the intersection of the projection of this contact with the long axis of a small colluvium-filled draw, which probably represents a fault or pronounced joint plane cutting through the Precambrian section. The exploration rationale was to investigate the infrared anomaly, assuming that hot water circulation is encouraged along the granite-limestone contact, particularly near an intersecting fault. The infrared anomaly was not the largest or the most intense in the vicinity, but was the only one which was located on State Nursery property.

LOCAL GEOLOGY


The test well site is located near the center of a gently-dipping anticlinal structure across which are exposed lower Belt sediments of the

Precambrian Helena, Empire, and Spokane Formations, as mapped at a scale of 1:48,000 by Knopf (1963) (Figure 1). The anticline is, according to Knopf's map, intruded by a late Cretaceous granite-adamellite stock associated with a late stage of the Boulder Batholith. In the field, a pre-drilling site investigation of the granite-limestone contact approximately 200 feet (65 m) from the test site was made. Chilled margins in the granite and obvious contact metamorphism in the sediments (viz., calc-silicates or argillic alteration products) were not evident at the outcrop. Therefore, it was tentatively interpreted that the contact could be either of fault or intrusive origin.

DRILLING SUMMARY

The test well was spudded with a churn drill operated by the Montana Department of Highways Core Drill Section on 10/19/81. 6" I.D. well casing was driven through poorly-sorted colluvial sand, clay, and cobbles derived from the rock outcrops immediately upslope, dominated by Helena Formation quartzite and limestone. Solid bedrock was encountered in the well at 27 feet (8.2 m) below ground surface, where the casing was set and the cable tool rig moved off the hole. A Failing 1500 air rotary rig was moved onto the hole on 10/21/81 to proceed into bedrock with a tungsten carbide chisel-tooth tricone bit. However, due to insufficient pull-down pressure on the rig, it was unable to penetrate deeper than 33 feet (10.1 m). A water well contractor (Lindsay Drilling of Clancy, MT) was mobilized on the hole on 10/26/81 with an Ingersoll-Rand TH-60 air rotary rig. Drilling proceeded rapidly with an air hammer to a depth of 280' (85.3 m) under open hole conditions.

No significant amount of water was obtained in the overburden

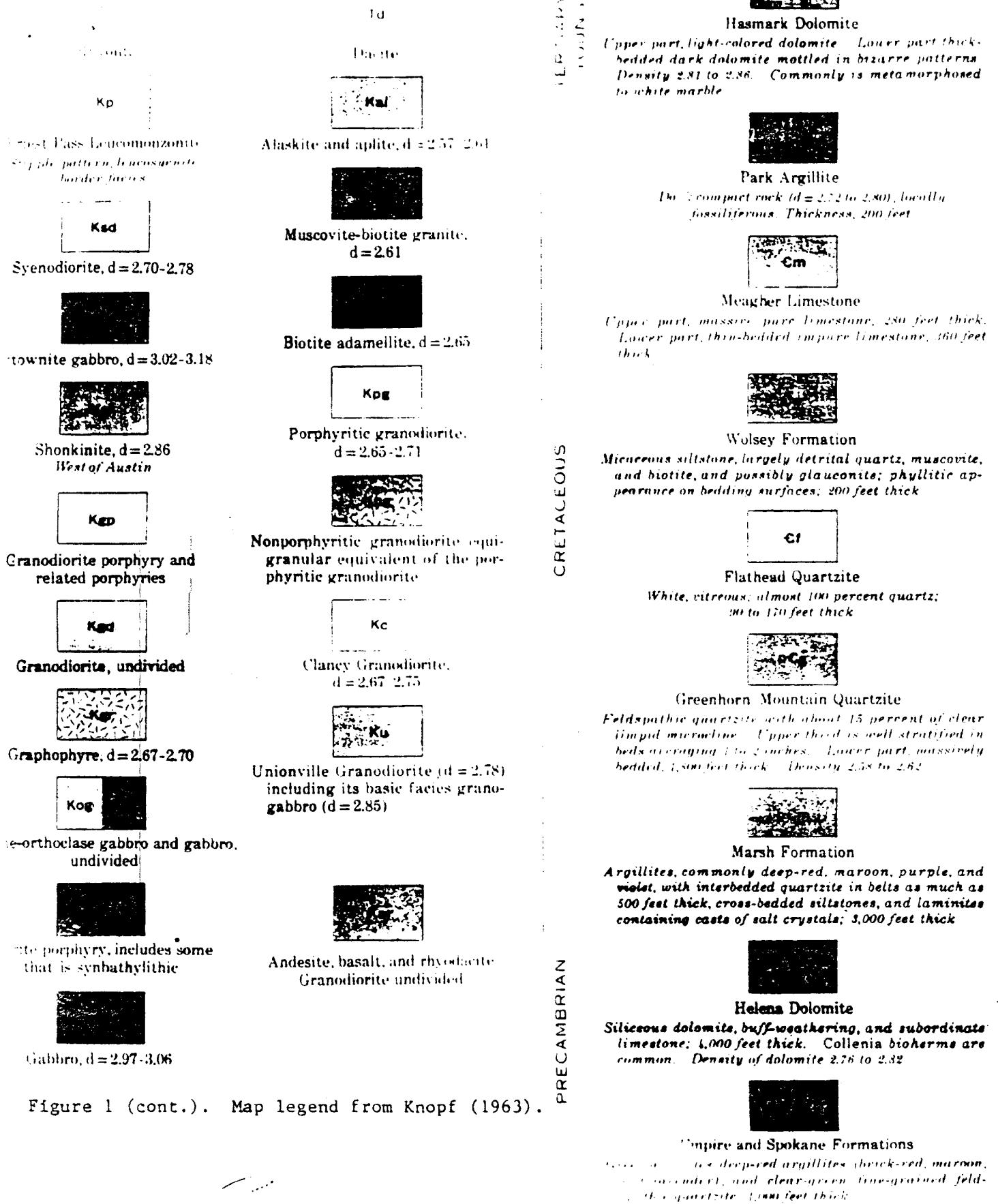


Figure 1 (cont.). Map legend from Knopf (1963).

material. A good flow of water was obtained from permeable zones in the limestone from 90-120 feet (27-37 m) and from fractures associated with the granite-limestone contact and within the granite itself, from 120-150 feet (36-46 m). Yield by air lift was estimated by the driller at 100-150 gallons per minute, although this is by no means a precise value. The specific capacity of each producing zone is not known.

The water-producing zones were subject to caving and sloughing at several levels between 110-150 feet (34-46 m). For this reason the driller did not remove the drill string from the hole after water was encountered; to continue much deeper than 280 feet (85.3 m) a steel liner would have had to have been set to prevent the sloughing from endangering the drill string.

A temperature log (Figure 2) was run while the rig was still on the hole, running the thermistor down the inside of the drill steel to penetrate the sloughed zone. The water ranged from 9.8° - 12.8° C from top to bottom. The ten foot spacing on the readings was inadequate to delineate water producing zones in detail, but does describe in general the zone from 120-140' (36-43 m) as being an aquifer. Temperature gradients in the bottom 80 feet (25 m) of the hole, which the driller had indicated had produced no additional water, ranged from 3.3° - 16.4° C/km, with an average of about 9° C/km, far less than a 'normal' conductive geothermal gradient of 25° C/km. This was interpreted to indicate that (a) no warm water source ($>30^{\circ}$ C) was located within a few hundred feet of the bottom of the hole, and (b) the depressed gradient at the bottom of the well suggests an extensive cold water reservoir, either below or around the 280 foot (85 m) depth of the test well. For this reason, and due to the additional expense of the liner needed to pursue deepening of the well, the well was drilled no deeper than 280 feet and the rig

demobilized on 10/27/81.

Geophysical logs (gamma, SP, and resistivity) were run on the hole after drilling (Figure 2). Water-bearing fractures in both the limestone and the granite can be recognized by a characteristic high SP-low resistivity signature. Unfractured dry granite is characterized by generally higher gamma values and a slightly higher frequency and amplitude of transient noise-like spikes in the gamma curve, probably due to gamma radiation from potassium in clots of biotite.

DRILL CUTTINGS

Both cable tool and rotary cuttings were fine, ranging from 0.1-5 mm in size, with rarely a few larger chips mixed in. Cuttings were sampled in the field and returned to the lab, where they were washed to remove the fine carbonate flour which coated many of them, sieved to obtain the coarser than 100 mesh fraction, and split. One split was saved for storage, while the other was used for microscopic examination and, for intervals for which there was sufficient sample, for carbonate determinations. Carbonates were determined using an acid digestion-pressure bomb technique, using the washed sieved fraction. Cuttings were pulverized in a Buehler puck mill prior to bomb carbonate determination, to assure complete digestion of carbonates.

The drill cuttings log (Table 1) indicate that the Helena Formation at this site is generally a weakly calcareous, well-crystallized siliceous limestone or calcareous quartzite, with secondary calcite precipitated along the fracture planes. The granite is of relatively homogenous composition: quartz, biotite, plagioclase, and potassium feldspar, in most cases relatively fresh, although the biotite in some zones has been strongly weathered and oxidized, staining the surrounding rock a bright orange with iron hydroxide weathering

products. The biotite is fine-grained and subhedral to euhedral, sometimes occurring in euhedral subsequent hexagonal plates in the cuttings, characteristic of plutonic biotite.

The first trace of granite in the bedrock cuttings occurs at 110' (33.5 m). This sample is composed almost exclusively of granite cuttings (limestone <15%). The next deeper sample (120', 36.6 m) showed about 35% granite cuttings but was dominantly limestone fragments. The next deeper sample (120-140', 36-43 m) was almost exclusively granite cuttings again (limestone <15%), with an amount of carbonate material that could be accounted for by contamination from the open-hole or sloughing portion of the hole above the drilling depth. It seems likely that about 8 feet (2.4 m) of granite was drilled through at 110-118 feet (33.5-36.0 m) then about 6 feet (1.8 m) of limestone, and finally back into granite from 123 feet (37.5 m) to total depth (see geophysical logs, Figure 2). This makes a fault block hypothesis for the igneous sedimentary contact seem unlikely; the contact is probably of intrusive origin despite the apparent lack of chilled margins in outcrop.

INTERPRETATION AND SUMMARY

The test well site was picked to investigate a thermal imagery anomaly located near a suspected fault. The well was drilled to 280 feet (85 m) total depth, with no success in obtaining hot or even warm water. The thermal anomaly has been confirmed to be spurious with regard to the presence of underlying warm or hot ground water, or to the existence of anomalously high subsurface heat flow. No cold water was encountered at shallow depth (<80 feet) that could have contributed to the anomaly. Abundant cold water (12°C) was encountered at 100-150 feet (30-46 m) depth; this

water may be associated with the intrusive contact zone between the late Cretaceous granite and the Helena Formation sediments penetrated by the well. There is no indication from the test well data that this well is connected in any way with the hot water system at Broadwater Hot Springs, or that deeper drilling at this site would tap into this system.

REFERENCE CITED:

Knopf, A., 1963. Geology of the Northern Part of the Boulder Bathylith and Adjacent area, Montana. U.S. Geological Survey Misc. Geologic Investigations, Map I-381.

Table 1. Sample Lithologic Log: State Nursery Test No. 1

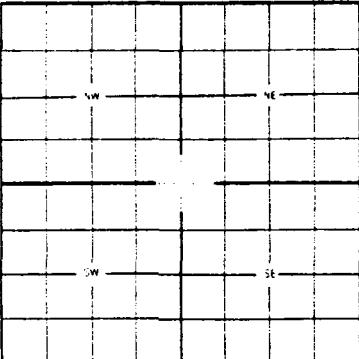

<u>DEPTH</u>	<u>CUTTINGS DESCRIPTION</u>	<u>VISUAL ESTIMATES OF CONSTITUENTS</u>	<u>WEIGHT % CARBONATE</u>
15-20'	Disaggregated quartz, fragments of quartzite and quartzite ls., minor granite fragments	quartz quartzite - quartzitic limestone granite fragments white opalline silica	40% 25 15 10 10
20-25'	Quartz; quartzitic fragments; granite fragments; white opalline silica; minor ls. fragments	quartz quartzite granite limestone opalline silica	40% 25 30 2 2
25-28'	light gray and pink quartzitic ls.; dark gray quartzite; disaggregated quartz	light gray siliceous limestone pink siliceous ls. dark gray quartzite quartz	50% 10 20 20
28-33'	light gray quartzite ls.; pink and clear quartzite fragments	light gray siliceous limestone quartzite	90% 10
30-40'	light gray quartzitic ls.; buff quartzitic ls.; pink quartzite	light gray siliceous limestone buff quartzitic ls. pink quartzite	30% 50 20
40-50'	Fine grained white and light gray recrystallized siliceous limestone	lt. gray siliceous ls. white siliceous ls. dark gray finely crystalline argilla- ceous limestone white quartzite clear quartz	25% 25 20 10 15
50-60'	Fine grained white to light gray siliceous limestone and calcareous argillite, carbonate cement in fractures	light gray siliceous limestone white quartzite clear quartz dark gray crystalline argillaceous ls.	50% 5 25 20
60-70'	Fine grained light gray siliceous limestone, clear quartzite and argillaceous limestone, calcareous cement in fractures	light gray siliceous limestone white quartzite dark gray argillaceous limestone micaceous siltstone	60% 20 10 10
70-80'	Fine grained light gray siliceous limestone, white quartzite	light gray siliceous limestone white quartzite micaceous siltstone	50% 40 10

Table 1 (continued)

<u>DEPTH</u>	<u>CUTTINGS DESCRIPTION</u>	<u>VISUAL ESTIMATES OF CONSTITUENTS</u>	<u>WEIGHT % CARBONATE</u>	
80-100'	Fine grained lt., gray siliceous limestone, white and clear quartzite	clear quartz white quartzite light gray siliceous limestone	30% 30 40	2.1
110'	small fragments of quartz and biotite, very few small fragments of fine-grained granite; large cuttings of light gray siliceous limestone and clear quartzite	quartz biotite granite fragments light gray limestone clear quartzite sparry clear calcite	20% 30 5 35 10 trace	2.3
120'	rounded granite fragments, small biotite and quartz fragments, large light gray siliceous limestone cuttings Fe-oxide stained granite cuttings	granite fragments biotite quartz light gray siliceous limestone clear quartz	10% 15 20 45 5	1.4
120-160'	angular and rounded granite fragments, disaggregated quartz and biotite, very minor limestone fragments	granite fragments biotite quartz light gray limestone	65% 10 10 10	1.1
160-180'	angular and rounded granite fragments, disaggregated quartz and biotite, very minor limestone fragments	limestone granite fragments quartz biotite	5% 70 15 10	1.3
180-280'	angular and rounded granite fragments, perthitic intergrowths in granite; disaggregated quartz and biotite, very minor limestone fragments	limestone granite fragments quartz biotite	5% 70 10 15	1.3

WELL LOG REPORT

State law requires that this form be filed by the water well driller within 60 days after completion of the well.

1. WELL OWNER <i>Montana Tech of M</i> Name _____		6. WATER LEVEL Static water level <u>31</u> feet below land surface If flowing, closed-in pressure _____ psi gpm flow through _____ inch pipe Controlled by: _____ valve, _____ reducers, _____ other (if other, specify) _____																									
2. CURRENT MAILING ADDRESS <i>Montana Tech College</i> <i>Butte, MT. 59701</i>		7. WELL TEST DATA pump _____ bailer <input checked="" type="checkbox"/> other (if other, specify) <i>Air</i> Pumping level below land surface: <u>50</u> ft. after <u>1</u> hrs. pumping <u>100</u> gpm ft. after <u>hrs.</u> pumping <u>gpm</u>																									
3. WELL LOCATION 		8. WAS WELL PLUGGED OR ABANDONED? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No If yes, how? _____																									
4. DRILLING METHOD cable, _____ bored, forward rotary, _____ reverse rotary, _____ jetted, <input checked="" type="checkbox"/> other (specify) <i>Air rotary</i>		9. DATE STARTED <u>10-26-81</u> DATE COMPLETED <u>10-27-81</u>																									
5. WELL CONSTRUCTION AND COMPLETION <table border="1"><thead><tr><th>Size of drilled hole</th><th>Size and weight of casing</th><th>From (feet)</th><th>To (feet)</th><th>Perforations and/or Screen</th><th>Kind Size</th><th>From (feet)</th><th>To (feet)</th></tr></thead><tbody><tr><td>6"</td><td>6 5/8 17#</td><td>0</td><td>37</td><td></td><td></td><td></td><td></td></tr><tr><td>6"</td><td></td><td>37</td><td>180</td><td></td><td></td><td></td><td></td></tr></tbody></table>		Size of drilled hole	Size and weight of casing	From (feet)	To (feet)	Perforations and/or Screen	Kind Size	From (feet)	To (feet)	6"	6 5/8 17#	0	37					6"		37	180					10. WELL LOG Depth (ft.) From To Formation <u>0-27</u> <i>volcanic rock</i> <u>27-110</u> <i>limestone</i> <u>110-130</u> <i>granite</i> <u>130-160</u> <i>fault zone</i> <u>160-280</u> <i>granite</i>	
Size of drilled hole	Size and weight of casing	From (feet)	To (feet)	Perforations and/or Screen	Kind Size	From (feet)	To (feet)																				
6"	6 5/8 17#	0	37																								
6"		37	180																								
Was casing left open end? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No Was a packer or seal used? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No If so, what material _____ Was the well gravel packed? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No Was the well grouted? <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No To what depth? _____ Material used in grouting _____ Well head completion: Pitless adapter 12 in. above grade _____, other _____ (if other, specify) _____ Pump horsepower _____, pump type _____ Pump intake level _____ feet below land surface Power (electric, diesel, etc.) _____		(just separate sheet if necessary)																									
11. DRILLER'S CERTIFICATION This well was drilled under my jurisdiction and this report is true to the best of my knowledge. <i>10-29-81</i> <i>Lindsay Drilling</i> Firm Name _____ Address _____ <i>Tolson, MT</i> Signature _____ License No. _____																											

MONTANA DEPARTMENT OF NATURAL RESOURCES & CONSERVATION

32 SOUTH EWING

HELENA, MONTANA 59601

449-3634

DNRC