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ABSTRACT

This report examines the dynamic response of wind turbines 

to atmospheric turbulence. The modeling handles both the wind 

inputs and the resulting loads using the analysis techniques of 

random vibration theory and spectral analysis. The report pre­

sents typical response results for a small, 8kW wind turbine and 

a large, 2.5 MW turbine. The turbine system mechanical model 

employs 5 degrees-of-freedom to represent the lower frequency 

motions of the system. The rotor is assumed to be rigid and is 

three bladed for simplicity. The aerodynamic forces are modeled 

using a simple quasi-static strip theory. The emphasis is placed 

on this model to identify the key turbulence imputs which are 

important in wind turbine design. On the basis of results computed 

for the two turbines modeled, it is determined that the most im­

portant turbulence imputs are the longitudinal fluctuations in the 

direction of the mean wind which act uniformly across the rotor 

disk (engulfs the rotor disk), and the across the disk gradients 

of the longitudinal wind fluctuations. Although each of these 

invokes a different machine response, they are judged to be of 

equal importance, because they each contribute significantly to 

the vibration energy of the lower system frequencies. The report 

presents numerous spectral density plots for the various turbine 

system responses, and discusses the results in some detail. This 

research effort is only one of a number of studies investigating 

the response of wind system to atmospheric turbulence sponsored 

through Pacific Northwest Laboratory.
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CHAPTER 1. INTRODUCTION

1.1 Background

Since 197 3, it has been the objective of the Federal VJind 

Energy Program to accelerate the development of reliable and 

economical wind energy systems to enable the earliest possible 

commercialization of wind power. To achieve this end, the de­

velopment of a sound technological base is required. Responsi­

bility for developing the technology base for large, horizontal- 

axis wind turbines was assigned to the NASA Lewis Research Center. 

NASA was funded to further wind technology as follows:

a) Design, build and operate an experimental turbine 

for research purposes, designated the Mod-0.

b) Initiate studies of wind turbines for utility appli­

cations .

c) Undertake a program of supporting research and tech­

nology development.

These initial efforts subsequently led to the four wind turbine 

projects designated Mod-OA, Mod-1, Mod-2, and most recently, 

the Mod-5A and B which are currently being designed.

From the first operation of the Mod-0 experimental turbine, 

it was recognized that control of the dynamic loads is critically 

important. Several sources for these dynamic loads have been 

identified: the passing of the turbine blades through the

tower wake (tower shadow), the shear of the steady wind across

the rotor disk, varying gravity loads due to turbine blade
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rotation, and finally atmospheric turbulence. Of these sources, 

the tower shadow, wind shear, and varying gravity loads are 

deterministic. That is, with proper dynamic modeling, the 

fluctuating responses are directly computable. Deterministic 

problems of this type are handled using standard, although 

complicated, analysis techniques.

The fluctuations due to atmospheric turbulence pose a more 

difficult problem due to their random nature. It is difficult 

to generate enough "typical" and "extreme" response time his­

tories to satisfy the designer that the machine will operate 

properly throughout its expected lifetime. The problem is not 

just in the amount of computation required but in determining 

what excitations should properly be used. Since the fluctuations 

arise from structural and aerodynamic interactions among the 

various system components, it is not simple to say which aero­

dynamic excitation results in a particular fluctuating response.

1.2 Past Approaches

In developing the Mod-1 wind turbine NASA specified the basic 

blade design loads in the Request for Proposals (RFP). This 

was accomplished by setting down a set of seven load cases with 

their frequency of occurrence as shown in Table 1.1 (1). These 

load cases were established on the basis of test experience 

with the Mod-0 wind turbine and a dash of engineering judgment. 

Although this approach lifted some of the burden for developing 

a complete analysis from the contractor, the result was a

2



Table 1.1. Blade Design Loads (from Ref. 1)

Case
Number Description

Frequency of 
Occurrence

1 Rated power, rated wind speed.
COo1—

1

2 Initially at rated power, wind 
speed increase from rated to 60 mph 
in 1/4 sec, no pitch change, rotor 
overspeed 25%. 105

3 Initially at rated power, change 
pitch angle to feather in 11 
seconds.

Occasional
(Proportional
Limit)

4 Initially at rated power, wind 
speed decreased from rated to 
zero in 1/4 second. 105

5 Blades in horizontal feathered 
position: wind speed 120 mph
from any direction.

Occasional
(Proportional
Limit)

6 Rotor operating at design rpm, 
wind speed 50 mph at 20° yaw 
angle, change yaw angle at
2°/sec. 105

7 Rotor operating at design rpm, 
no power, velocity retardation of
50% due to "tower shadow". io5

3



restrictive set of specifications which were difficult to modify 

as the design evolved, and probably encouraged a conservative 

design philosophy.

The Mod-2 RFP specified a turbulence model rather than a 

set of load cases. This left the contractor with the nontrivial 

task of developing the analysis methods and discovering the im­

portant load cases. The key features of the analysis procedure 

developed by the Boeing Company for computing the turbulence 

induced loads for the Mod-2 are the following:

1) The longitudinal turbulence intensity was computed 

by integrating the turbulence spectrum specified in 

the RFP between frequency limits of n . and n,^ .

2) "The upper frequency limit, nmax» i-s that which cor­

responds to the discrete gust having a circular cross- 

section which engulfs 50 percent of the disk diameter 

with 50 percent correlation across the separation dis­

tance of D/2. All gusts having frequencies less

than nmax are conservatively assumed to engulf the 

entire rotor."

3) "The lower frequency limit, nm£n' computed from 

the wind turbine dynamic response analysis as being 

that which corresponds to a discrete gust which pro­

duces a variation in rotor torque less than 5 percent 

from its steady state value."

4) Wind turbine loads are then computed using this 

turbulence intensity and assuming a discrete gust 

with a (1-cos) shape.
4



For more details, the interested reader is referred to the 

reference (1) contractor report.

The methods for computing the loads and dynamic responses 

due to atmospheric turbulence for both the Mod-1 and Mod-2 have 

some important similarities. They both reduce the turbulence 

input to some type of an effective deterministic discrete gust 

v/hich totally engulfs the rotor. For the Mod-1 the effective 

gust is based on experience with the Mod-0, while for Mod-2 the 

discrete gust is based on a general turbulence specification 

and the turbine dynamic characteristics. In addition, they 

both compute wind turbine loads using the effective deterministic 

gust as an input to a conventional analysis code. Then having 

the loads and an estimate of the number of occurrences, a 

fatigue analysis is done.

It has been the goal of this research project to develop 

an alternate analysis technique for determining the influence 

of excitations due to atmospheric turbulence. The basic approach 

has been to avoid the discrete deterministic gust concept and to 

treat both the wind input and the resulting loads using statisti­

cal methods which provide more insight into the basic physics 

of the wind response characteristics of wind turbines. The 

analysis technique developed takes advantage of the wealth of 

material concerning random vibrations and spectral analysis 

such as is found in references (3) and (4). Using this approach 

the wind inputs are specified in statistical terms, and the 

statistics of the wind turbine responses and loads can be
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computed using linear system theory. The modeling methods and 

assumptions are reported in detail in a separate report (5).

This particular report will focus on presenting some general 

conclusions as a result of initial sensitivity studies. It is 

interesting to note that in 1955 Rosenbrock (6) handled the 

wind inputs with a similar statistical approach for his classi­

cal stability analysis of large wind turbines with hinged blades.

1.3 The Goal of This Report

The goal of the research reported herein is to determine 

which of the excitation sources in the atmospheric turbulence 

are important in characterizing the wind turbine system responses. 

Previous work in determining wind turbine system responses have 

largely ignored this issue. In many studies, the turbulence is 

modeled simply as one component along the mean wind which acts 

uniformly across the rotor disk (engulfs the rotor disk). The 

goal of our work is to establish the sensitivity of the system 

responses to the in-plane turbulent velocity components and to 

the variations across the rotor disk. In this study we have 

endeavored to make the system dynamic model as simple as possi­

ble and still retain the essential physical characteristics.

The results should be regarded as a useful first step which 

should be augmented in the future with experimental data and 

more accurate wind turbine models involving blade flexibility 

and more structural degrees of freedom.
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CHAPTER 2. TURBULENCE INPUTS

2.1 Introduction

Fluctuations in the aerodynamic forces on a wind turbine 

blade are generated by the relative motions of the air with 

respect to the blade. These relative motions are comprised of 

two parts: the motions of the blade and the motions of the 

air. The motions of the air can further be divided into the 

undisturbed turbulent flow and the "induced flow" due to the 

presence of the wind turbine wake. The terms comprising the 

undisturbed flow will be characterized in this chapter. More 

precisely, for a horizontal axis wind turbine, the aerodynamic 

forces are determined by the instantaneous air velocity distri­

bution along each of the turbine blades. These blades in turn 

are rotating through the turbulence field which is being con- 

vected past the turbine rotor disk. It is thus necessary to 

characterize the wind turbulence field by a three-dimensional 

velocity vector which varies randomly with time and with the 

position in space. A complete statistical description of this 

turbulent velocity field requires the determination of all 

possible joint probability distributions between different 

velocity components at different times and positions in space. 

Clearly, such a description will not be possible without con­

siderable simplification. The validity of the resulting simpli­

fied model will depend upon a comparison of the characteristics 

predicted by the model and those observed in the atmosphere and
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more importantly, those observed in actual wind turbine field 

tests. In this chapter we will describe this model. A more 

detailed description of the analytical steps used to arrive at 

the simplified model is presented in the modeling report (1).

In the following chapters the model is used to predict wind tur­

bine response characteristics. It is hoped that these results 

will be verified in the near future by direct comparison with 

the results of actual field tests.

2.2 Model Assumptions and Approximations

For the purpose of determining wind turbine response sta­

tistics, the response variables can be characterized by a mean 

value and a power spectral density function. This report focuses 

on the determination of the latter since a great deal of atten­

tion has been placed in the literature on determining steady, 

wind turbine system responses (2). In order to determine the 

power spectral density of the system response, all of the exci­

tation sources must be identified and characterized in terms of 

their respective power and cross-power spectral densities.

The wind turbulence inputs used in this report are deter­

mined in three basic modeling steps. First, the turbulent 

velocity field is characterized by a model which gives the 

correlations between velocity components at different spatial 

points and at different time instants. Second, the velocity 

field is approximated in the rotor disk by uniform and gradient 

components which vary with time. A correlation model for these

9



components is derived from the original field model. Third, 

simple rational spectral representations are determined which 

approximate the derived correlation model for the uniform and 

gradient components. A brief discussion of the assumptions and 

approximations used in these steps follows.

The turbulent velocity field is assumed to be stationary, 

locally homogeneous, isotropic (3) and satisfying Taylor's 

frozen field hypothesis (4). The Von Karman model (5) is used 

to characterize the correlations between velocities of spatially 

separated points. This model is widely used in aircraft turbu­

lence response analysis (6,7). However, due to the anisotropic 

nature of the atmospheric boundary layer, the use of the model 

for wind turbines can be questioned. Frost (8) has estimated 

that the deviation from isotropy is of secondary importance. 

However, one should not rely heavily on design calculations 

which use this model until more complete experimental verifi­

cation is available.

Once the correlation model of the turbulence field is es­

tablished, the velocity is approximated over the rotor disk 

by uniform and gradient terms which vary with time. This is 

done to simplify the statistical nature of the random field 

to that of several stochastic processes. The uniform and gradient 

components are the first terms in an expansion and can also be 

recognized as terms for which aerodynamic influence coefficients 

are typically computed (see Chapter 3). These terms are 

chosen to minimize the expected error between the true velocity

10



and the approximate velocity over the whole rotor disk. The 

power spectral densities of the uniform and gradient components 

can then be computed. For the isotropic model, all of the 

cross-power spectral densities between components are zero.

In order to further simplify the model, the power spectral 

densities are approximated by a simple rational form, and 

nondimensional parameters are determined which match the low 

frequency power spectral density and the total variance for 

the computed spectra and the rational approximation. The 

rational form chosen corresponds to an exponentially correlated 

random process v/hich is particularly easy to handle both ana­

lytically and in simulation. The following section describes 

the resulting model in more detail.

2.3 Model Description

Retaining uniform and gradient terms in the expansion de­

scribed in the previous section, yields nine turbulence input 

terms which vary with time. These nine terms are described in 

Table 2.1. Drawings of typical fluid streamlines are shown in 

Figure 2.1 for the in-plane gradient terms. Each of these nine 

components are modeled as a stationary, exponentially correlated 

random process, and each of them are uncorrelated with each 

other. This model form is conveniently represented by the sto­

chastic differential equation

11



Table 2.1 - Description of Turbulence Input Terms

Component Description

VX uniform lateral or side component (in 
plane)

Vy uniform longitudinal component along mean 
wind

Vz uniform vertical component (in plane)

vy,x

Vy/Z

lateral gradient of longitudinal velocity

vertical gradient of longitudinal velocity

Yxz swirl about mean wind axis (in plane)

^xz
} shear strain rates (in plane)

£xz J
exz dilation (in plane)

12



u + au = bw (2.1)

where u

w

instantaneous value of one of the terms

V ,...,V ,x Y/X ,YXZ, etc.

nondimensional white noise with power spec-
2 3tral density S = a L/V 

V W W
IT a* (2.2)

f 2 
— b*

V.

v2
lS b*

for uniform terms
i_i

= { o (2.3)

for gradient terms

turbulent velocity component variance 

turbulence integral scale 

mean wind speed 

R = rotor disk radius

The nondimensional terms a* and b* are found from Figures 2.2-2.5 

(as appropriate) and depend on the ratio of turbine size to turbu­

lence scale (R/L). Power spectral densities can be obtained if 

desired from the equation

a

L

VW

~2 b b
S (to) — u _2

w (2.4)
+ to

where to = radian frequency.
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2.4 Rotating Reference Frame for In-Plane Terms

The following pairs of turbulence input terms can be con­

sidered as components of a two-dimensional vector in the plane 

of the rotor disk:

1. (V , V ) X z

The following arguments apply equally to any of these component

pairs but for simplicity only the pair (V , V ) will be treated.

Suppose it is necessary to model the components of this vector

as seen by a rotating observer. Thus, consider the axes x' and

z' which rotate at the rate ft with respect to the original axes

x and z as shown in Figure 2.6. In this case,
%

V = V cosftt + V sinfttZ Z X
(2.5

V' = -V sinftt + V cosftt x z x

Since the original turbulence field was assumed to be isotropic,

the terms V and V are uncorrelated and have identical power X z
spectral densities. Thus, using the model of the previous sec­

tion

V + aV z bwz z
(2.6)

V + aV. bwx x x

14



where w and w are uncorrelated white noise with equalX z
power spectral densities, Sw

Differentiating (2.5) and substituting in (2.6) yields

V + aV - nvZ Z X bw'z
(2.7)

V + fiV + aVX Z X bw'x

where w'z w cos^t + w sinfttZ X
(2.8)

w'X -w sinftt + w cosfttZ X

Since w and w are white noise with identical power spectral X z
densities, it is easily shown (9) that w' and w' have the same-1 x z
statistical properties, namely that they are uncorrelated white 

noise and have power spectral densities, Sw. Using Eqs. (2.7) 

avoids the bothersome time varying coefficients occurring in 

Eqs. (2.5).

2.5 Typical Wind Turbine Cases

In order to demonstrate the differences due to size, two

typical wind turbines were modeled. The turbulence parameters

chosen for these two cases are shown in Table 2.2. Both wind

turbines have three blades, and, due to the three-bladed sums

for the aerodynamic forces, only the in-plane terms y andX z
e are affected by the rotating aerodynamic coordinate frame, xz

15



Table 2.2 - Parameters for Typical Wind Turbines

Mod M Mod G

Radius of Rotor Disk, R (ft) 16.67 150

Rated Power 8 kW 2.5 MW

Windspeed, V (mph) 16.63 20

Rotation Rate, ft (rpm) 73.35 17.5

Turbulence Scale, L (ft) 300 500
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This effect appears as a rotation at three times the rotor rate 

(see Section 3.6).

Table 2.3 contains the model parameters for the two cases. 

These parameters are obtained from the data in Figures 2.2-2.5 

multiplied by the necessary turbulence parameters from Eqs. (2.2) 

and (2.3).

Figures 2.7-2.12 show the resulting power spectral densi­

ties. Note the effect of the rotating frame at three times the 

rotor frequency in Figure 2.11. A sharp peak occurs at this 

frequency, and is explained by considering that a slowly varying 

vector in the fixed reference frame appears to be rapidly rotating 

at the effective rotation rate in the rotating frame.

The models for these two cases are used in conjunction with 

the dynamic model of the wind turbine system to generate the 

results discussed in Chapter 4.
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s (s. ) w .085415 .11837

V Ms"1) .071073 .040053Y
b(ft/s2) 2.4389 1.5615

V ,V a (s-1) .14477 .085170x z
b(ft/s2) 3.5143 2.3767

V ,V ~ -1 a (s ) .53924 .093732y / x y, z
b(s z) .23787 .011101

Y " -1 a (s ) .73005 .13147' xz
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Figure 2.1. Streamlines for in-plane velocity 
gradient terms.
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Figure 2.2. Dimensionless parameter a* for 
uniform turbulence terms.
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Figure 2.4. Dinensionless parameter a* for 
gradient turbulence terms.
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Figure 2.5. Dimensionless parameter b* for 
gradient turbulence terms.
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Figure 2.6. Coordinate system for rotating observer.
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CHAPTER 3. THE TURBINE MODEL

3.1 Introduction

It is the objective of this chapter to outline the develop­

ment of the wind turbine structural and aerodynamic modeling.

The structural model involves only a few degrees of freedom, 

and can only represent lower frequency motions of the system.

The emphasis is placed on developing a simple model which can be 

used to show the sensitivity of wind turbine systems to atmos­

pheric turbulence. The aerodynamic forces are also modeled in 

a simple manner using the quasi-static strip theory. The idea 

is to demonstrate the benefit of this type of analysis before 

progressing to a more complex turbine model. However, in spite 

of the simple model every effort has been made to retain the key 

physical responses. A more detailed description of the turbine 

model is provided in reference 1.

3.2 The Turbine Model

The wind turbine model is shown schematically in Figure 

3.1. Both the rotor and the nacelle are assumed to be rigid 

bodies which move in unison, except for the spinning rotor.

Due to tower flexibility, the nacelle and rotor are free to 

translate in a plane parallel to the ground and rotate about 

the top of the tower in pitch and yaw. The yaw angle of the 

rotor axis is defined by the angle, <j>, and the pitch angle by 

X. The lateral translation, U, is in the x direction, while
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the V translation is in the y direction along the rotor axis. 

The rotor spin velocity is given by ft + ¥, where ft is the mean 
rotation rate and ’i' is some small fluctuation. For the case 

of a turbine with a three-bladed rigid rotor, the basic princi­

ples of Newtonian mechanics and linear, quasi-steady aerody­

namics give motion equations of the form

M..X, + C..X. + K..X. = F..U. 
x3 J i: D ID J ID D (3.1)

where M.., C.., K.. and F.. are the turbine system inertia,ID ID ID ID
damping, stiffness and wind input coefficients. The five dis­

placement coordinates already described are X^, while the wind 

inputs are .

3.3 The Tower

The wind turbine tower is modeled as a single finite ele­

ment within which the tower displacements are expressed in 

terms of interpolating polynomials and the displacements at 

the top of the tower. The tower deformation, v(z,t), about 

one bending axis is then written in the form

v(z,t) = Pv(z)V(t) + P (x)x(t) (3.2)

where Pv and P are the interpolating functions which approxi-

mate the displacements within the tower. These are conveniently

represented as cubic polynomials satisfying the necessary

33



boundary conditions of a cantilever tower. Using this ex­

pression for the tower bending displacement, the stiffness and 

inertia coefficients may be obtained by one of the numerous 

energy methods. In terms of the interpolating functions 

and P , the generalized stiffness and inertia coefficients 

for the tower may be expressed as

k. . = / El (z) P(z) P" (z) dzID
(3.3)

0

m.. = / m(z)P.(z)P.(z)dzID
(3.4)

0

where EI(z) and m(z) are the stiffness and mass per unit length 

as a function of height. For additional detail concerning this 

technique, the interested reader should see Clough and Penzien 

(2). Although the tower properties are the same in both bend­

ing directions, only one degree of freedom is desired for the 

x direction and therefore rotation of the nacelle about the 

rotor spin axis is neglected. The method of static conden­

sation is then used to eliminate the unwanted degree of freedom 

and to obtain the desired x direction stiffness and inertia 

coefficients as

krTTT = kT_r = k TT /k UU W Vx XX (3.5)

“W ' "W - 2(kvx/VnVx+ tkvx/kxx) m:XX (3.6)
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In addition, the nacelle and rotor inertias add directly to

the tower inertia coefficients, iik j, to give the turbine sys­

tem inertias. A detailed tabulation of the various terms in 

the inertia matrix is provided in the Appendix. There is also 

a gyroscopic coupling between the turbine pitch and yaw motions, 

This coupling coefficient appears in the damping matrix and is 

given by

= I ft = -C <I>X r X? (3.7)

where I is the total effective inertia of all the spinning mass 

connected to the turbine rotor. Using this simple model the 

structural stiffness and inertia coefficients for a particular 

wind turbine are numerically calculated using a TI-59 calculator 

code (3).

3.4 Aerodynamic Forces

The geometry of the three-bladed rigid rotor is illustrated 

in Figure 3.2. The blades are coned at an angle 3 , and are 

assumed to be twisted and tapered. The angle 0 defines the 

pitch setting as the angle from the plane of rotation to the 

zero-lift-line of the airfoil at the blade tip.

For this analysis, quasi-static aerodynamics will be 

used to compute the forces acting on the blades due to the 

turbulent wind and structural motion. The wind input including 

turbulence is assumed to be made up of a steady mean wind, V ,
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plus fluctuating components, V^(t), which at any instant are

constant over the rotor disk, and turbulence gradients V. .(t),1 / D
which vary linearly across the disk. Both V.(t) and V. .(t)

1 1 / J

may be thought as disk averaged time dependent quantities. This 

allows the wind velocity to be written in a linear expansion as

Z' A /■ \ r A
0 V V V V r sinftt

X X , X x,y X, z
< V >*< V * V V V < 0 (w y y,x y^y y» z

0 V V V V r cosftt
V V zj Z , X z,y Z, z V J

where r is the radial position in the rotor disk, and ^t is the 

azimuthal location. Motivation for this particular form for 

the turbulence is presented in Chapter 2. In this equation the 

mean wind direction coincides with the y axis of Figure 3.2.

In addition, the spatial change in the y direction due to the 

coning has been dropped in the above expression, which eliminates 

the effect of the turbulence gradients V. .1 / y
Using the above wind representation and fundamental kine­

matic relationships, provides the relative velocity as observed 

from the turbine blade. The relative velocity is made up of 

contributions from the wind, V^, the moving structure, V, and 

the induced velocity caused by aerodynamic action, v^. In 

equation form this is

~y ~y -y -yV . = v - V - v.rel 00 1
(3.9)

36



In terms of the displacement coordinates, the relative velocity- 

components parallel and perpendicular to the rotor disk rotation­

al plane are given by

vyRft = rCVRft + {r'i' + cosftt [-<)> (Vw - - 6Vx + U - a<j>]

+ sin^t[-Y(V - v.) + 6V - ax]}/Rfi w i z

V /R£l = (V - v.)/Rfi + {6V + cosnt [-8 6V + rxlv w i y o z ^

+ sinflt[8 (U - 6V ) - r^]}/R« (3.10)
O X

where the fluctuating part of the wind turbulence has been 

written as 6V^ to shorten the expressions. These expressions 

have also been linearized assuming small displacements, and wind 

fluctuations; however, in some places the product of the static 

coning angle and the wind fluctuation were retained because of 

interest in their effect.

Referring to Figure 3.3, the aerodynamic forces parallel 

and perpendicular to the rotor plane may be written as

dAy = | pa’ C d^-nvj; - evvvy + (i - n/2)v^} 

dAv = | pa’ C d£{-ev^ + (i + n)vvv^ - ev^/2}
(3.11)

where the lift and drag for a blade element have been calculated
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using the static formulas with the instantaneous velocities.

In the above expressions, a' is the slope of the sectional lift

curve dC /da, c is the local airfoil chord, n is the ratio CL /a' L D0 
where C is the zero-lift drag coefficient and p is the air 

0
density.

Using the wind input of Eq. (3.8), together with the veloci­

ty expressions of Eq. (3.10) and substituting into the aero­

dynamic force relationships gives

dA =77 pa' c, (Rfi) ^Rdx{A' - B'[f + f cosfit + f sinfit 
y 2 K t o c s

+ fc2 cos2fit + f „sin2ftt] + C [g + g cosfit + g sinfit S m o o s

+ g 9cos2f2t + g 9sin2f2t] } cz sz

1 2dA =77 pa'c, (Rfi) Rdx{D' + E'[f + f cosfit + f sinfit v 2 t o c s

+ f Ocos2fit + f „sin2^t] + F'[g + g cosfit + g sinfit c2 s2 Jo ^c ^s

+ gc2cos2fit + gs2sin2flt]} (3.12)

where the primed quantities are the aerodynamic constants

A' (r)

C (r)

B* (r)

D' (r)

[(1 - ri/2)A2 - r(nr + 0X)]c/ct 

[2nr + 0X]c/c 

[ (2 - n)A - 0r]c/ct 
[ (1 + ri)Ar - 0 (r2 + A2/2]c/ct
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(3.13)

E' (r) = [ (1 + n)X - 29r]c/ct 

F' (?) = [ (1 + n)? - X0]c/ct

with r = r/R = (h + £)/R, X = (V - v.)/Rfi, and c is the chord
W 1 t

at the rotor tip. Note that both the pitch setting, 0, and the 

blade chord, c, may be functions of ?. In the above force 

equations the subscripted f and g variables are combinations 

of the wind inputs and response variables and are defined as

follows:

fo
r ('i' + y )/Rfi

Z X
fc — <pX + + U — acj)) /RQ

f s -X* + (vz ~ ax)/Rfi

f o =c2 -r y /RQ zx

Hi W

II re /Rfi zx
Y = ' zx J(v - V )2 z,x x,z
e = zx i(v - v )2 z,z x,x

IS o

II (Vy - V - rB0^2x)/RQ

gc = <rX + rVyjZ - B0Vz)/Bn

gs = (B (U - V ) - ri + rV )/RSl'^o x Y y,x

gc2 = -3 f 0 o s2
gs2 = 3 f 0 o c2

i

N X
II i(v + v )2 z,x x,z

e = zx
^(V + V ) (3.14)
2 z,z x,x

To obtain the aerodynamic coefficients for the total forces

acting on the rotor hub, the appropriate components of the blade
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element forces, Eqs. (3.12), are summed over the three blades 

and integrated with respect to radius for a specified induced 

velocity distribution. This gives the new thrust, torque, hori­

zontal and vertical forces, and the yaw and pitch moments, which 

are to be added to the structural terms resulting in the final 

equations of motion, Eq. (3.1). A detailed list of these equa­

tions is provided in the Appendix.

3.5 The Induced Velocity

The aerodynamics of wind turbines involve highly complex 

flow phenomena, which require rather sophisticated theories in 

order to obtain accurate predictions. However, some fairly 

simple theories making relatively crude assumptions can often 

give reasonable estimates and generally can give excellent in­

sight into the physical phenomena of interest. In this case two 

different wake models are used in an effort to gain insight 

into the significance of changes in the induced velocity field 

on wind turbine response to turbulence.

For the first wake model, the induced velocity is computed 

using blade element theory following the approach of Wilson (4), 

and performing a momentum balance neglecting wake rotation. This 

provides the induced velocity as a function of radius, under 

the assumption that the rotor axis is perfectly aligned with 

the wind direction. After the induced velocity distribution 

is computed for a given mean operating condition, it is assumed 

to be constant and independent of turbulent wind fluctuations.
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This model is named the "frozen wake.

The second wake model is called the "equilibrium wake."

For this model, the axial fluctuations in wind velocity are 

assumed to occur so slowly that the induced velocity is the 

steady state value for the instantaneous wind speed. In this 

situation, the axial flow will not only be time varying but 

also will be nonuniform, because of the inclusion of the fluctu­

ating wind gradient terms in the turbulence model of Eq. (3.8). 

These gradients could be thought of as slowly changing wind 

shears of arbitrary orientation, since their effect on the wind 

turbine is similar. To obtain an approximation for the induced 

velocities of this "equilibrium wake," the "semi-rigid" wake 

model discussed by Miller (5) is used. Miller shows that the 

effect of including the induced velocity due to the nonuniform 

flow is to reduce the lift by a factor referred to as the "lift 

deficiency" function.

For this analysis, assuming small velocity changes, the 

lift deficiency function is approximately

^ (?) = ----------- *------------ (3.15)
1 + T.F'(r)/r(2A - A) t w

where A = V /Rft and t. = 3a,c_1/8TTR. In addition, the azimuthal w w t t
change in the induced velocity distribution leads to a change in 

the in-plane aerodynamic coefficients B'(r). This change is 

given by
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(3.16)AB' (r) = t , [B' (r)F' (r) + C' (r)E1 (r)]/{r (2A - A )} t w

Because this change is small, it is tempting to neglect it.

However, all of the in-plane forces are small so it will be

retained. Finally, the wind fluctuations in the axial direction

V , V and V are associated with a change in momentum in y y/Z y,x
the streamwise direction which, for the assumptions of this 

wake model, change the equilibrium thrust. This added lift 

factor is approximately

/A (?) = 1 + A/(2A - A )
cL W

(3.17)

To incorporate these effects, the aerodynamic coefficients B'(r)/ 

C'(r), E'(?) and F'(r) of Eqs. (3.13) are modified in the 

following manner to obtain the "equilibrium wake" coefficients:

B' (r) = (r) { B' (r) +AB'(r)}e d
C'eU) =,Xd(r)C'(r)

e;(?) =^(?)E'(?)

F^(r) =,_Xd(r)E' (r)

c; (?) =..i>d(?),Aa(?)c' (?)
F4y(?) = Ad(r),.Aa(r)C (?) (3.18)

where the two coefficients C and F' are specifically associ-ey ey
ated with the wind fluctuations V , V and V . The aero-y y,z y,x
dynamic coefficients A'(r) and D'(r) are related to the mean
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thrust and torque and are thus unaffected by wind fluctuations. 

Computationally, the influence of the wake model can be observed 

by replacing the primed aerodynamic coefficients of Eqs. (3.13) 

with those of Eqs. (3.18) above.

Although both of these wake models are useful in developing 

an understanding of the influence of the induced velocity distri­

bution on machine response to turbulence, it is unclear whether 

either model accurately approximates the real distributions and 

future work is needed to evaluate the effects of unsteady wake 

aerodynamics.

3.6 State Space Equations

The equations of motion Eq. (3.1) can be written in matrix

form

[M]{X} + [C]{X} + [K]{X} = {Q1} + [F]{u} (3.19)

where
T{X} = (U,V,(J) ,Xf'F) = displacement coordinate

{Q^}T= (0,T,0,Q,0) = steady state

{u} = (V ,V ,V ,V ,V ,y ,e ,y ,e ) = wind inputsx y z' y,x y,z ’xz r 'r' xz ^
e = e cos3^t + y sin3f2t r zx 'zx
Y = -£ sin3flt + Y cos3fit 'r zx 'zx

The terms £r and Yr come from the three-bladed sums of the terms

fc2' fs2' ^c2' and gs2 Egs* They can be interpreted

as components of a vector which rotates at three times the 

rotor rate.

It is possible to model each of the nine turbulence
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inputs using a set of stochastic differential equations of the 

form

{u} = [AwHu} + [BwHw} (3.20)

where the components of {w} are white noise of equal power spec­

tral density, [Bm] is the white noise input distribution matrix

[A ] matrix is diagonal except for two

3Q

a88 
a99

of the sinSftt and cosSftt in the e andr
Yr wind inputs. The source of these two off diagonal terms 3ft 

and -3£) is described in more detail in Chapter 2.

Discarding the steady terms, it is convenient to transform 

the equations of motion given in Eq. (3.19) to the state space 

form, so that they are written as a set of first order equations 

similar to the turbulence inputs of Eq. (3.20). To further 

facilitate the computation of results, the state space form 

of Eq. (3.19) can be augmented with the turbulence inputs,

which is diagonal. The 

elements

all

a77 
-3ft

which arise as a result

[A ] = w
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Eq. (3.20), to form a single system of equations with white 

noise as the driving input. The five turbine displacements 

and their derivatives together with the nine turbulence inputs 

will form the state vector for this augmented system. The 

governing equations can then be written

{x} = [A]{x} + [B]{w}

{y} = [c]{x}

(3.21)

where

{x}

[B]

X [0] [I] [0]

{X} > [A] = -[Mf' [K] - [Mf' [K] [Mf* [F]

{ u } [0] [0]l 7 w

[0]

‘V

"S

ty) - <
Mz

Mx
Power

v{x) ,

>- outputs

[C]

[K] [0]

(00. ..ftc ...0) 9
[i]

= response matrix
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With this formulation it is a relatively straightforward 

numerical procedure, to determine the complex eigenvalues of 

the A matrix and then to compute the modal matrix, which is 

made up of the associated eigenvectors. The modal matrix can 

then be used to decouple the equations of motion so that trans­

fer functions between any of the nine white noise inputs and 

any output, y^, may be easily computed. These transfer func­

tions account for differences in the energy level for the 

turbulence inputs, {u}, so that a comparison of the transfer 

function magnitudes provides a direct estimate of relative 

importance. The final result uses the central equation from 

random vibration theory (6), which states that the spectral 

density for any of the outputs {y} will be given by

(SyU)} - I2] {Sw} (3.22)

for uncorrelated inputs. In this equation, {3^.(0))} is the 

spectral density of the outputs {y}, [Ih^Ccj)! ] is the matrix 

consisting of elements which are the square of the transfer 

function magnitude and {S^} is the flat spectral density 

of the white noise driving inputs, which are all equal.
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Figure 3.1. The Turbine Model
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Figure 3.2. Rotor Geometry



Figure 3.3. Blade Element Aerodynamic Forces
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CHAPTER 4. MODELING RESULTS

4.1 Introduction

This chapter presents results for two wind turbine systems 

of vastly different sizes based on the models explained in the 

previous two chapters. In keeping with the form of the DOE 

nomenclature, the smaller 8 kW machine is designated the Mod-M 

in this report. This nomenclature evolved from the nickname 

"Mini-Mod" which was used while the model was being developed. 

This machines is typical of the small machines that are tested 

at the Rocky Flats Test Site. In contrast to this small system, 

a large wind turbine, designated the Mod-G, was modeled. The 

"G" designation arose from the gigantic 300 ft diameter and

2.5 MW nominal power. This machine is similar in size to the 

DOE Mod-2 wind turbine. The primary objective of this chapter 

is to examine the response of these two turbines using the 

methods outlined in the previous chapters, and to determine 

the sensitivity of these systems to atmospheric turbulence.

4.2 Response of a Small Turbine

The small, Mod-M, is an 8 kW system, with three blades 

located downwind of the tower and designed for free-yaw 

operation. The specific machine characteristics are shown in 

Table 4.1. With the structural characteristics for 

this system as outlined in the Appendix, and the atmospheric 

turbulence parameters for the wind inputs as specified in
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Table 4.1. Mod-II Characteristics

Rotor Characteristics (Rigid Rotor):

Rotor Radius 16.67 ft
Blade Chord (constant) 1.5 ft
Coning Angle 3.5°
Blade Twist 0.0°

System Frequencies (Tower Motions):

1st Bending (fore-aft)
2nd Bending (fore-aft)
1st Torsion
1st Bending (side-to-side)

(2.On) 15.5 rad/s 
(7.0fi) 53.5 rad/s 
(Free yaw) 0.0 rad/s 
(2.in) 15.9 rad/s

Aerodynamic Properties;

Lift Curve Slope 
Drag Coefficient, Cd_ 
Stall not modeled

Operating Conditions Used:

Wind Velocity (mean) 
Rotor Speed (mean)

Pitch Setting (to ZLL) 
Turbulence Length Scale 
Rms Turbulent Intensity 
Approximate Output

5.7
.02

16.63 MPH 
(7.81 73.35 RPM
rad/s)

3.0°
300 ft

2.03 ft/s 
6 kW
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Table 2.3, the dynamic response is computed using the approach 

outlined in Section 3.6. The most revealing response variables 

are the yaw angle and the forces and moment which act at the 

top of the tower. These response variables are shown in the 

power spectral density plots of Figures 4.1 through 4.4. In 

these figures the system resonances are identified and the 

difference in response for each of the two wake models is 

illustrated. The somewhat larger response predicted by the 

equilibrium wake is associated with the change in momentum in 

the streamwise direction, which for the equilibrium wake model 

results in additional lift. The major feature of Figure 4.1 

is the significant response at the system side-to-side bending 

frequency. Figure 4.2 shows similar responses at the two sys­

tem fore-aft bending frequencies. In Figure 4.3, the marked 

decrease in yaw response above 0.1 rad/s (.016 hz) is notice­

able, which implies that this free-yaw turbine only follows 

the low frequency wind disturbances. Figure 4.4 gives the 

tower pitching moment response and shows the same type of 

resonance peaks as the other figures. For the equilibrium wake, 

the increase in pitching moment between .1 to 1 rad/s seems to 

be associated with the decrease in yaw response, and illustrates 

the coupling between turbine pitch and yaw motions, even for 

a free-yaw system. Figure 4.4 also shows a small response 

peak at 3fl, which is the result of the sin3fit and cos3fit in the 

and inputs.
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4.3 Response of a Large Turbine

The second wind system to be analyzed in this study is a 

large turbine called the Mod-G. The Mod-G is a 2.5 MW turbine 

with a three-bladed rotor located upwind of the tower, and is 

designed for fixed-yaw operation. The specific characteristics 

of this system are shown in Table 4.2. Figures 4.5 through 4.8 

present the computation results for the Mod-G turbine, with the 

exception that since this is a controlled yaw machine, yaw 

moment response rather than yaw angle response is plotted. The 

general pattern of results is quite similar to the Mod-M with 

the resonances marked by characteristic spikes. If it were 

desired to build one of these turbines, the details of these 

curves would be very useful. The interest here, however, is 

in determining the sensitivity of these two systems to the 

turbulence inputs.

4.4 Power Output

The equations of motion in the Appendix show that the 

only coupling between the generator and the rest of the system 

is through the single damping coefficient C52 * If this coef­

ficient were zero, the drive train response would be independent 

of the other structural motions. For the systems considered 

in this report, this coupling is weak, and for all practical 

purposes, one can consider the power train independent of the 

rest of the system. However, it should be remembered that a 

direct path for coupling the generator output to structural
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Table 4.2. Mod-G Characteristics

Rotor Characteristics:

Rotor Radius 150 ft
Blade Chord (linear taper) 7.74 ft

at hub' to
3.15 ft

at tip
Coning Angle 4°
Blade Twist (linear) 8°

System Frequencies:

1st Bending (fore-aft) (1.5ft) 2.7 rad/s
2nd Bending (fore-aft) (7.5ft) 13.7 rad/s
1st Bending (side-to-side) (1.6ft) 2.9 rad/s
1st Torsion (4.9ft) 9.0 rad/s

Aerodynamic Properties:

Lift Curve Slope 5.73
Drag Coefficient, CDn 
Stall not Modeled

008

Operating Conditions:

Wind Velocity (1.833 20 MPH

Rotor Speed
rad/s)

17.5 RPM
Pitch Setting at Tip 
Turbulence Length Scale

-6.2°
500 ft

Rms turbulent intensity 2.44 ft/s
Approximate Power Output 1.1 MW
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motion was eliminated from the model, when the tower rotational 

degree-of-freedom about the rotor spin axis was removed. This 

was described in Section 3.3. Without this degree of freedom, 

the generator torque acting on the top of the tower is assumed 

to be negligible. In addition, this prevents roll motion of 

the nacelle which would realistically influence the relative 

velocity of the rotor with respect to the wind. One can, there­

fore, come to no firm conclusions concerning the degree of 

coupling between the tower motion and power output, because 

the model, due to its simplicity, has prevented these interactions. 

Supporting this simplified model is the fact that field test 

data has not yet uncovered any significant coupling between 

the drive train and the tower, and it is standard practice to 

treat the wind turbine drive train as if it were completely 

independent of the tower structure. The reader should see 

Sullivan, Miller and Spera (1) and Martinez-Sanchez (2) for 

more details on these drive train models.

Two different models are used for the generator and drive 

train. In the first, it is assumed that power fluctuations 

about the mean power are a linear function of the rotor speed 

fluctuations about the mean. This gives the power output as

p = (nc ¥)ng e (4.1)

where C isg
rotor speed,

the generator torque coefficient, ft is the mean 

'F is the fluctuation in rotor speed, and ne is
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the overall power conversion efficiency. This is mechanically 

equivalent to having a viscous dissipator connected directly 

to the rotor. This model eliminates any possibility of a drive 

train resonance, and treats the generator as if it were a viscous 

power element.

The second model assumes that the drive train is an elastic 

spring and that the generator on the output shaft always rotates 

at constant speed, fi, while the rotor on the other end is free 

to respond to wind fluctuations. This will give the output 

power as

p = n(k Y)n (4.2)g e

where k is the drive train spring rate. Although, neither of 

these models is really correct, they will provide bounds on the 

behavior which can be expected. In an elementary sense, the 

first model responds like an induction generator, while the 

second has characteristics like a synchronous generator. Better 

models would require additional degrees of freedom.

Figures 4.9 through 4.12 show the results for both power 

train models on the Mod-M and the Mod-G using both wake models. 

For the Mod-M the drive train spring rate was set so that the 

natural frequency was approximately 1.4ft, and for the Mod-G, 

it was set at .5ft. The results for the elastic drive train 

show the characteristically large spikes at the drive train 

natural frequency, and those for the viscous power element
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show almost no response except for a small downward spike at 

the first tower natural frequency, where the tower motion 

removes energy which would normally go to the generator. This 

was the only observed coupling between the drive train and 

other structural motions.

4.5 The Key Turbulence Inputs

The primary objective of this work was to identify the 

features of turbulence which are most important in wind turbine 

design. In an effort to focus on these key features, the response 

at specific system frequencies was broken down into fractional 

contributions from each turbulence input. The most significant 

results of these calculations are tabulated in Tables 4.3 and 

4.4.

From these results it seems clear that the most important

inputs are the longitudinal turbulence component, V , the two

associated gradient terms v and v , and the two in-planey,x y,z
turbulence terms and which have an effective frequency of

.

To examine this conclusion more closely, consider Figures 

4.13 through 4.18, which present plots of power spectral densities 

for the various response variables using, first, only the turbu­

lence input Vy, and then comparing it with the results when the

two gradients V and V are added to the input. Figures Y, x y,z
4.13 and 4.17 show that when computing thrust, the second mode 

bending response is virtually eliminated unless these two 

gradient terms are included. However, this deficiency is minor
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Table 4.3. Fractional Response Contributions of the Turbulence Inputs for 
the Mod-M Using the Equilibrium Wake

Response/Input V V V e YY YfX y,z r 'r

Frequency - 0
Side Force, F .0 .96 .0 .0 .0 .04
Thrust, Fy x 1.0 .0 .0 .0 .0 .0
Pitch Moment, Mx .0 .79 .14 .0 .0 .07
Yaw Angle, <f> .0 .92 .01 .0 .0 .07

Frequency = 15.4 (Fore-
Side Force, Fx

-Aft Bending)
.26 .05 .66 .0 .0 .03

Thrust, Fy .79 .05 .16 .0 .0 .0
Pitch Moment, Mx .77 .06 .17 .0 .0 .0
Yaw Angle, cj) .77 .09 .14 .0 .0 .0

Frequency = 3fi = 23
Side Force, Fx .0 .02 .67 .15 .15 .01
Thrust, Fy .41 .08 .50 .01 .01 .07
Pitch Moment, Mx .0 .12 .84 .01 .02 .01
Yaw Angle, (p .01 .90 .01 .04 .04 . 0

Frequency = 15.9 (Side- 
Side Force, Fx

-to-Side Bending)
.02 .04 .91 .0 .0 .03

Thrust, Fy .68 .04 .28 .0 .0 .0
Pitch Moment, Mx .24 .10 .66 .0 .0 .0
Yaw Angle, <j) .47 .34 .19 .0 .0 .0



Table 4.4. Fractional Response Contributions of the Turbulence Inputs for 
the Mod-G Using the Equilibrium Wake

(TiO

Response/Input

Frequency - 0
Side Force, Fx 
Thrust, Fy 
Yaw Moment, Mz 
Pitch Moment, Mx

Frequency = 2.69 (Fore-Aft Bending)
Side Force, Fx 
Thrust, Fy 
Yaw Moment, Mz 
Pitch Moment, M

Frequency = 3^ = 5.5 
Side Force, Fx

x

Thrust, Fy 
Yaw Moment, Mz 
Pitch Moment, Mx

Frequency = .89 (Drive Train)
Side Force, Fx 
Thrust, Fy 
Yaw Moment, Mz 
Pitch Moment, Mx

VY Vy,x Vy,z er Y r Other

.0 .06 .92 .0 .0 .02
1.0 .0 .0 .0 .0 .0
.0 .97 .0 .0 .0 .03
.0 .0 .97 .0 .0 .03

.93 .04 .02 .0 .0 .01

.78 .0 .21 .0 .0 .01

.77 .02 .20 .0 .0 .01

.78 .Or .21 .0 .0 .01

.02 .39 .09 .25 .24 .01

.01 .02 .19 .38 .39 .01

.02 .31 .0 .34 . 32 .01

.01 .02 .20 . 38 .39 .0

.0 .08 .90 .0 .0 .02
1.0 .0 .0 .0 .0 .0
.11 .87 .01 .0 .0 .01
.01 .0 .97 .0 .0 .02



when compared to what happens when computing, side force, or

yaw and pitch responses using only the single turbulence input.

The responses are underestimated by orders of magnitude over a

fairly broad frequency range. From these comparisons the

inescapable conclusion is that the turbulence gradient terms

v and V are just as important as the uniform term V , y, x y, z y
when computing wind turbine structural responses.

Determining the effect of discarding the in-plane turbu­

lence inputs, V , V , y , e , y , and e can be accomplished
X Z XZ 2T 2T XZ

by comparing the responses plotted in Figures 4.2 through 4.8, 

where the effect of all turbulence inputs was included, with 

the results in Figures 4.13 through 4.18. For example, an overlay 

of Figure 4.5 and Figure 4.16, which presents the Mod-G side 

force, shows that there is only a small difference around the 

frequency 3ft. From this it is concluded that the in-plane velocity 

components are not particularly important. In addition, these 

results suggest that careful study and understanding of small 

variations in wind direction is not nearly as important as 

determining the gradient of the longitudinal wind across the 

rotor disk.

Examining the sensitivity of turbine power output to at­

mospheric turbulence leads to a somewhat different situation.

The power for a three-bladed rigid rotor is only influenced by

three turbulence inputs, V , y and e , as shown by they zx zx
equations of motion in the Appendix. As explained earlier,

the simple structural model used here prevents one from drawing
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any firm conclusions concerning the coupling of power fluctuations
to any of the other turbulence inputs through the tower motions.
Considering the magnitude of these three turbulence inputs shows

that the V input is the most important, while e is almost Y zx
certainly unimportant, leaving y as a marginal term.

4.6 Conclusions and Recommendations

On the basis of the work done in this study, the longitudi­

nal turbulence input, V , and the two gradients, V and Vy y / x y, z
are of equal importance when computing the dynamic response of 

wind systems, and these three inputs together comprise the 

major excitation source for horizontal axis wind turbines. Be­

cause of the simplifying assumptions and approximations used in 
this analysis, it is imperative that the results and the tech­
nique be validated with experimental data, prior to use for 
design.

Although this study only supports the above conclusion

for three-bladed stiff rotors, the authors believe that the
two gradient terms v and v will be found to be equallyy,x y/^
important in the dynamic analysis of flexible, or teetering, 
two-bladed rotors. One reason for this supposition is that 

the two-bladed rotor will see a turbulence input with a peak 
at 20. caused by the blades rotating through the gradients Vy / ^
and V . This will result in a turbulence input spectrum Y r z
analogous to the one for y , which has a peak at 3S7 as illus­
trated in Figure 2.11. For the three-bladed rotor, this
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only involves the relatively unimportant in-plane velocity

gradients, while for the two-bladed rotor it will involve the

significant gradients V and Vy,x y,z
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APPENDIX
Turbine System Equations

Governing Equations:

00fO

/ __ - -
M̂11 0 M13 0 0 u C11 0 C13 C14 0 U

0 M22 0 M24 0 V
..

0 C22 0 0 C25
•V

H31 0 M33 0 0 * C31 0 C33 C34 0

0 M42 0 44 0 X C41 0 C43 C44 0 •

X
0 0 0 0 M55 V 0 C52 0 0 C55 T

J
r .. / \
K

0

0

0

0

11
22

42

K13 K14
K24

"33 K34
K43 K44

55

U
V

X
V

V J

0
T j

0 

Q
V. x

F11 0 F13 F14 F15 0 F17 F 18
0 " f VX A

0 F 22 0 0 0 F26 0 0 F29 Vy
F31 0 F33 F 34 F35 0 F37 F38 0 Vz
F41 0 F43 F44 F45 0 F47 F48 0 Vy/X
0 P1 52 0 0 0 F56 0 0 F*59 )

\
Vy,z

1 zx
(e cos3flt + y sin3ftt) zx ' zx
(-E sin3fit + y cos3flt) zx zx

zx



Inertia Matrix

M11 = m1]L + m + m ; n r M13 M31 = - (mn + m )q r
M22 m22 + m + m ; r n M24 = M42 : M33 = m_- + I33 zz
M44 = m44 + i ; M, cxx ' 55 = ir ; mr = mass of rotor ; m = mass of nacelle n
q = distance from C tower to nacelle-rotor C.G. ; I and I = mass moment of inertiaLi xx yy

of nacelle-rotor system about x and y axes ; I = rotor effective spinning inertia ; 

m.. = tower inertia coefficients of Eq. (3.4), where for a uniform cantilever tower.

m^ = 99 mt/420 , = 156 m^/420 , = 22 11^1^/420
2m33 = ImLt//3, m44 =: / Int = tower mass , I = tower polar inertia

Damping Matrix 
co 2
w C,, = 3f (B + &ZF)/2m ; C, , = -3f(aBrt + ) /2Q ; Cn . = -3f(C, + a3 E )/2J2XJ. O O O U O O 1 ±4 1 O O

C„0 = 3f F /Rfl ; C,,. = -3fE,/Q ; C-, = -3f(B {Ft + B*} + a{B + B2F })/2n 
ZZ O Zo 1 jl O 1 1 o o o
C33 = 3fR({F2 + 3oaB*} + a{aBQ + 6oF1})/2fi ; C34 = 3fR({E1a + 30C*} + a{C1 + a6oEo})/2fi + in

C41 = 3f({El + BoCi} + 5Bo{Co + Eo,)/2a ! C43 = -C34 ; C44 = C33 

C32 = 3fC1/Q ; = 3fRB2/n + = Generator torque coefficient

Stiffness Matrix

K11 kll ; K13 -3fG0/2 ; K14 -3f3oHo/2 ; K22 k22 ; K24 k24
K33 = k33 + 3fR(60G* + 5Go)/2 ; K34 = 3fR{E1 + 3^)72 ; K42 = K24
K43 = -K34 ; K44 = k44 + 3fR(3QG* + aGo)/2 ; k^^ = Drive train stiffness 
where k^^ = tower structural stiffnesses from Eq. (3.3), and for a uniform cantilever
tower k1]L = 3EI/L3 ; k22 = 12EI/L3 ; k,4 = 6EI/L2 ; k,, = GJ/L ; kAA = 4EI/L'24 '33 '44
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Wind Input Matrix

11
= 3f(B + 8^Fo)/2Rfi . F =' 13 -3feo(Co + Eo)/2RH ; F14 = -3fB F^3^

15 = 3fC1/2« ; F17 = - 3fB0(ci - E1)/2« ; F18 -3f (-B1 + B2F1)/2!2

1 = 3fDo ; F22 = 3fF
0
/Rft ; F26 = 3fE^/Q ; F29 = -3fF1Bo/n

'31 = -3f(3o{F1 + B*} + a{BQ + BoFo))/2a ; F33 3f({E1 + BoCi} + iBotCo + Eq})/2U

34 = 3fR(F2 + BoaF1)/2fi ; F35 = -3£R(80C* + aC1 )/2Q

37 = -3fR({E2 - " Seo{Cl - • F' 38 = 3fR(B0 (F2 - B*} + al-Bj^ + 6oFl})/2^

41 =r P • P =33 ' 43 -F31 ; f.. = f44 • F =35 ' 45 -F 34 ■ F =' 47 — P • P = P38 ' 48 37
Q = SfRA-j^ ; F52 = 3fC1/n ; F56 = -3fR B2/Q ; Fsg = -3RB0C2/fi

oo 1 2where f = -^ pa'Rc^(Rfi) . The single subscript capitalized coefficients An through Hn 

are integral aerodynamic coefficients of the form

R
n = / 

h
A' (r) rn dr where n = 0,1,2

with A' through F' defined as given in Eq. (3.13) for the "frozen wake" or Eq. (3.18) for 

the "equilibrium wake". In addition, G'(x) = XB'(x) and H'(x) = XE'(x), while the coeffi­

cients with stars are B* = B - hB n, C* = C - hC . and G* = G - hG ., and h = h/R,n n n-1 n n n-1 n n n-1




