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ABSTRACT

This report examines the dynamic response of wind turbines
to atmospheric turbulence. The modeling handles both the wind
inputs and the resulting loads using the analysis techniques of
random vibration theory and spectral analysis. The report pre-
sents typical response results for a small, 8kW wind turbine and
a large, 2.5 MW turbine. The turbine system mechanical model
employs 5 degrees-of-freedom to represent the lower frequency
motions of the system. The rotor is assumed to be rigid and is
three bladed for simplicity. The aerodynamic forces are modeled
using a simple quasi-static strip theory. The emphasis is placed
on this model to identify the key turbulence imputs which are
important in wind turbine design. On the basis of results computed
for the two turbines modeled, it is determined that the most im~-
portant turbulence imputs are the longitudinal fluctuations in the
direction of the mean wind which act uniformly across the rotor
disk (engulfs the rotor disk), and the across the disk gradients
of the longitudinal wind fluctuations. Although each of these
invokes a different machine response, they are judged to be of
equal importance, because they each contribute significantly to
the vibration energy of the lower system frequencies. The report
presents numerous spectral density plots for the various turbine
system responses, and discusses the results in some detail. This
research effort is only one of a number of studies investigating
the response of wind system to atmospheric turbulence sponsored

through Pacific Northwest Laboratory.

xiii



CHAPTER 1. INTRODUCTION

1.1 Background

Since 1973, it has been the objective of the Federal Wind
Energy Program to accelerate the development of reliable and
economical wind energy systems to enable the earliest possible
commercialization of wind power. To achieve this end, the de-
velopment of a sound technological base is required. Responsi~
bility for developing the technology kase for large, horizontal-
axis wind turbines was assigned to the NASA Lewis Research Center.
MASA was funded to further wind technology as follows:

a) Design, build and operate an experimental turbine

for research purposes, designated the Mod-0.

b) Initiate studies of wind turbines for utility appli-
cations.
c) Undertake a program of supporting research and tech-

nology development.
These initial efforts subsequently led to the four wind turbine
projects designated Mod-0A, Mod-1l, Mod-2, and most recently,
the Mod-5A and B which are currently being designed.

From the first operation of the Mod-0 experimental turbine,
it was recognized that control of the dynamic loads is critically
important. Several sources for these dynamic loads have been
identified: the passing of the turbine blades through the
tower wake (tower shadow), the shear of the steady wind across

the rotor disk, varying gravity loads due to turbine blade



rotation, and finally atmospheric turbulence. Of these sources,
the tower shadow, wind shear, and varying gravity loads are
deterministic. That is, with proper dynamic modeling, the
fluctuating responses are directly computable. Deterministic
problems of this type are handled using standard, although
complicated, analysis techniques.

The fluctuations due to atmospheric turbulence pose a more
difficult problem due to their random nature. It is difficult
to generate enough "typical" and "extreme" response time his-
tories to satisfy the designer that the machine will operate
properly throughout its expected lifetime. The problem is not
just in the amount of computation required but in determining
what excitations should properly be used. Since the fluctuations
arise from structural and aerodynamic interactions among the
various system components, it is not simple to say which aero-

dynamic excitation results in a particular fluctuating response.

1.2 Past Approaches
In developing the Mod-1 wind turbine NASA specified the basic

blade design loads in the Request for Proposals (RFP). This

was accomplished by setting down a set of seven load cases with
their frequency of occurrence as shown in Table 1.1 (1). These
load cases were established on the basis of test experience

with the Mod-0 wind turbine and a dash of engineering judgment.
Although this approach lifted some of the burden for developing

a complete analysis from the contractor, the result was a



Table 1.1.

Blade Design Loads (from Ref.

1)

Frequency of

Description Occurrence

Rated power, rated wind speed. lO8
Initially at rated power, wind
speed increase from rated to 60 mph
in 1/4 sec, no pitch change, rotor 5
overspeed 25%. 10
Initially at rated power, change Occasional
pitch angle to feather in 11 (Proportional
seconds. Limit)
Initially at rated power, wind
speed decreased from rated to 5
zero in 1/4 second. 10
Blades in horizontal feathered Occasional
position: wind speed 120 mph (Proportional
from any direction. Limit)
Rotor operating at design rpm,
wind speed 50 mph at 20° yaw
angle, change yaw angle at 5
2°/sec. 10
Rotor operating at design rpm,
no power, velocity retardation of 5

10

50% due to "tower shadow".




restrictive set of specifications which were difficult to modify

as the design evolved, and probably encouraged a conservative

design philosophy.

The Mod-2 RFP specified a turbulence model rather than a

set of load cases. This left the contractor with the nontrivial

task of developing the analysis methods and discovering the im-

portant load cases. The key features of the analysis procedure

developed by the Boeing Company for computing the turbulence

induced loads for the Mod-2 are the following:

1)

2)

3)

The longitudinal turbulence intensity was computed
by integrating the turbulence spectrum specified in

the RFP between frequency limits of n

. and n .
min ™

ax
"The upper frequency limit, Nk’ is that which cor-
responds to the discrete gust having a circular cross-
section which engulfs 50 percent of the disk diameter
with 50 percent correlation across the separation dis-
tance of D/2. All gusts having frequencies less

than n .y are conservatively assumed to engulf the

entire rotor."

"The lower frequency limit, n , is computed from

min
the wind turbine dynamic response analysis as being
that which corresponds to a discrete gust which pro-
duces a variation in rotor torque less than 5 percent
from its steady state value."

Wind turbine loads are then computed using this
turbulence intensity and assuming a discrete gust
with a (l-cos) shape.

4



For more details, the interested reader is referred to the
reference (1) contractor report.

The methods for computing the loads and dynamic responses
due to atmospheric turbulence for both the Mod-1l and Mod-2 have
some important similarities. They both reduce the turbulence
input to some type of an effective deterministic discrete gust
which totally engulfs the rotor. For the Mod-1l the effective
gust is based on experience with the Mod-0, while for Mod-2 the
discrete gust is based on a general turbulence specification
and the turbine dynamic characteristics. In addition, they
both compute wind turbine loads using the effective deterministic
gust as an input to a conventional analysis code. Then having
the loads and an estimate of the number of occurrences, a
fatigue analysis is done.

It has been the goal of this research project to develop
an alternate analysis technique for determining the influence
of excitations due to atmospheric turbulence. The basic approach
has been to avoid the discrete deterministic gust concept and to
treat both the wind input and the resulting loads using statisti-
cal methods which provide more insight into the basic physics
of the wind response characteristics of wind turbines. The
analysis technique developed takes advantage of the wealth of
material concerning random vibrations and spectral analysis
such as is found in references (3) and (4). Using this approach
the wind inputs are specified in statistical terms, and the

statistics of the wind turbine responses and loads can be



computed using linear system theory. The modeling methods and
assumptions are reported in detail in a separate report (5).
This particular report will focus on presenting some general
conclusions as a result of initial sensitivity studies. It is
interesting to note that in 1955 Rosenbrock (6) handled the
wind inputs with a similar statistical approach for his classi-

cal stability analysis of large wind turbines with hinged blades.

1.3 The Goal of This Report

The goal of the research reported herein is to determine
which of the excitation sources in the atmospheric turbulence
are important in characterizing the wind turbine system responses.
Previous work in determining wind turbine system responses have
largely ignored this issue. In many studies, the turbulence is
modeled simply as one component along the mean wind which acts
uniformly across the rotor disk (engulfs the rotor disk). The
goal of our work is to establish the sensitivity of the system
responses to the in-plane turbulent velocity components and to
the variations across the rotor disk. In this study we have
endeavored to make the system dynamic model as simple as possi-
ble and still retain the essential physical characteristics.
The results should be regarded as a useful first step which
should be augmented in the future with experimental data and
more accurate wind turbine models involving blade flexibility

and more structural degrees of freedom.
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CHAPTER 2. TURBULENCE INPUTS

2.1 Introduction

Fluctuations in the aerodynamic forces on a wind turbine
blade are generated by the relative motions of the air with
respect to the blade. These relative motions are comprised of
two parts: the motions of the blade and the motions of the
air. The motions of the air can further be divided into the
undisturbed turbulent flow and the "induced flow" due to the
presence of the wind turbine wake. The terms comprising the
undisturbed flow will be characterized in this chapter. More
precisely, for a horizontal axis wind turbine, the aerodynamic
forces are determined by the instantaneous air velocity distri-
bution along each of the turbine blades. These blades in turn
are rotating through the turbulence field which is being con-
vected past the turbine rotor disk. It is thus necessary to
characterize the wind turbulence field by a three-dimensional
velocity vector which varies randomly with time and with the
position in space. A complete statistical description of this
turbulent velocity field requirés the determination of all
possible joint probability distributions between different
velocity components at different times and positions in space.
Clearly, such a description will not be possible without con-
siderable simplification. The validity of the resulting simpli-
fied model will depend upon a comparison of the characteristics

predicted by the model and those observed in the atmosphere and



more importantly, those observed in actual wind turbine field
tests. In this chapter we will describe this model. A more
detailed description of the analytical steps used to arrive at
the simplified model is presented in the modeling report (1).

In the following chapters the model is used to predict wind tur-
bine response characteristics. It is hoped that these results
will be verified in the near future by direct comparison with

the results of actual field tests.

2.2 Model Assumptions and Approximations

For the purpose of determining wind turbine response sta-
tistics, the response variables can be characterized by a mean
value and alpower spectral density function. This report focuses
on the determination of the latter since a great deal of atten-
tion has been placed in the literature on determining steady,
wind turbine system responses (2). In order to determine the
power spectral density of the system response, all of the exci-
tation sources must be identified and characterized in terms of
their respective power and cross-power spectral densities.

The wind turbulence inputs used in this report are deter-
mined in three basic modeling steps. First, the turbulent
velocity field is characterized by a model which gives the
correlations between velocity components at different spatial
points and at different time instants. Second, the velocity
field is approximated in the rotor disk by uniform and gradient

components which vary with time. A correlation model for these



components is derived from the original field model. Third,
simple rational spectral representations are determined which
approximate the derived correlation model for the uniform and
gradient components. A brief discussion of the assumptions and
approximations used in these steps follows.

The turbulent velocity field is assumed to be stationary,
locally homogeneous, isotropic (3) and satisfying Taylor's
frozen field hypothesis (4). The Von Karman model (5) is used
to characterize the correlations between velocities of spatially
separated points. This model is widely used in aircraft turbu-
lence response analysis (6,7). However, due to the anisotropic
nature of the atmospheric boundary layer, the use of the model
for wind turbines can be questioned. Frost (8) has estimated
that the deviation from isotropy is of secondary importance.
However, one should not rely heavily on design calculations
which use this model until more complete experimental verifi-
cation is available.

Once the correlation model of the turbulence field is es-
tablished, the velocity is approximated over the rotor disk
by uniform and gradient terms which vary with time. This is
done to simplify the statistical nature of the random field
to that of several stochastic processes. The uniform and gradient
components are the first terms in an expansion and can also be
recognized as terms for which aerodynamic influence coefficients
are typically computed (see Chapter 3). These terms are

chosen to minimize the expected error between the true velocity

10



and the approximate velocity over the whole rotor disk. The
power spectral densities of the uniform and gradient components
can then be computed. For the isotropic model, all of the
cross-power spectral densities between components are zero.

In order to further simplify the model, the power spectral
densities are approximated by a simple rational form, and
nondimensional parameters are determined which match the low
frequency power spectral density and the total variance for
the computed spectra and the rational approximation. The
rational form chosen corresponds to an exponentially correlated
random process which is particularly easy to handle both ana-
lytically and in simulation. The following section describes

the resulting model in more detail.

2.3 Model Description

Retaining uniform and gradient terms in the expansion de-
scribed in the previous section, yields nine turbulence input
terms which vary with time. These nine terms are described in
Table 2.l. Drawings of typical fluid streamlines are shown in
Figure 2.1 for the in-plane gradient terms. Each of these nine
components are modeled as a stationary, exponentially correlated
random process, and each of them are uncorrelated with each
other. This model form is conveniently represented by the sto-

chastic differential equation

11



Table 2.1 ~ Description of Turbulence Input Terms

Component Description
Vx uniform lateral or side component (in
plane)
\Y uniform longitudinal component along mean
4 wind
v, uniform vertical component (in plane)
Vy < lateral gradient of longitudinal velocity
14
Vy z vertical gradient of longitudinal velocity
14
Ygz swirl about mean wind axis (in plane)
sz ' . .
shear strain rates (in plane)
©xz
€ %z dilation (in plane)

12
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mean wind speed
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The nondimensional terms a, and b, are found from Figures 2.2-2.5

(as appropriate) and depend on the ratio of turbine size to turbu-

lence scale (R/L).

desired from the equation
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W
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S (w) =
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where w = radian frequency.
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2.4 Rotating Reference Frame for In-Plane Terms
The following pairs of turbulence input terms can be con-
sidered as components of a two-dimensional vector in the plane

of the rotor disk:

1. (VX, Vz)

2. \Y \Y
(y,X’ y.z)

3. (sz, sxz)

The following arguments apply equally to any of these component
pairs but for simplicity only the pair (Vx, VZ) will be treated.
Suppose it is necessary to model the components of this vector

as seen by a rotating observer. Thus, consider the axes x' and
z' which rotate at the rate Q with respect to the original axes

x and z as shown in Figure 2.6. In this case,

<
N -
I

V_  cosfiit + V _sinQt
z X
(2.5)

V' = =V_ sinQt + V_cost
X z X

Since the original turbulence field was assumed to be isotropic,
the terms Vx and Vz are uncorrelated and have identical power
spectral densities. Thus, using the model of the previous sec-

tion

(2.6)

<
+
jv))
<
b
It
o
=

14



where W and w, are uncorrelated white noise with equal

power spectral densities, Sw.

Differentiating (2.5) and substituting in (2.6) yields

V! + av! - Qv! = bw!
z b4 X z
(2.7)
V! + QV! + av! = bw!
X X X
where w! = w_cosit + w_sinQt
z VA X
(2.8)
w'! = -w sint + w cosft
X b4 X

Since W and w, are white noise with identical power spectral
densities, it is easily shown (9) that wé and wé have the same
statistical properties, namely that they are uncorrelated white
noise and have power spectral densities, Sw‘ Using Egs. (2.7)
avoids the bothersome time varying coefficients occurring in

Egs. (2.5).

2.5 Typical Wind Turbine Cases

In order to demonstrate the differences due to size, two
typical wind turbines were modeled. The turbulence parameters
chosen for these two cases are shown in Table 2.2. Both wind
turbines have three blades, and, due to the three-bladed sums
for the aerodynamic forces, only the in-plane terms ;xz and

£, are affected by the rotating aerodynamic coordinate frame.

15



Table 2.2 - Parameters

for Typical Wind Turbines

Mod M Mod G
Radius of Rotor Disk, R (ft) 16.67 150
Rated Power 8 kW 2.5 MW
Windspeed, Vw (mph) 16.63 20
Rotation Rate,  (rpm) 73.35 17.5
Turbulence Scale, L (ft) 300 500

16



This effect appears as a rotation at three times the rotor rate
(see Section 3.6).

Table 2.3 contains the model parameters for the two cases.
These parameters are obtained from the data in Figures 2.2-2.5
multiplied by the necessary turbulence parameters from Egs. (2.2)
and (2.3).

Figures 2.7-2.12 show the resulting power spectral densi-
ties. Note the effect of the rotating frame at three times the
rotor frequency in Figure 2.11l. A sharp peak occurs at this
frequency, and is explained by considering that a slowly varying
vector in the fixed reference frame appears to be rapidly rotating
at the effective rotation rate in the rotating frame.

The models for these two cases are used in conjunction with
the dynamic model of the wind turbine system to generate the

results discussed in Chapter 4.

2.6 References
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Figure 2.6. Coordinate system for rotating observer.
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CHAPTER 3. THE TURBINE MODEL

3.1 Introduction

It is the objective of this chapter to outline the develop-
ment of the wind turbine structural and aerodynamic modeling.
The structural model involves only a few degrees of freedom,
and can only represent lower frequency motions of the system.
The emphasis is placed on developing a simple model which can be
used to show the sensitivity of wind turbine systems to atmos-
pheric turbulence. The aerodynamic forces are also modeled in
a simple manner using the quasi-static strip theory. The idea
is to demonstrate the benefit of this type of analysis before
progressing to a more complex turbine model. However, in spite
of the simple model every effort has been made to retain the key
physical responses. A more detailed description of the turbine

model is provided in reference 1.

3.2 The Turbine Model

The wind turbine model is shown schematically in Figure
3.1. Both the rotor and the nacelle are assumed to be rigid
bodies which move in unison, except for the spinning rotor.
Due to tower flexibility, the nacelle and rotor are free to
translate in a plane parallel to the ground and rotate about
the top of the tower in pitch and yaw. The yaw angle of the
rotor axis is defined by the angle, ¢, and the pitch angle by

X. The lateral translation, U, is in the x direction, while
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the V translation is in the y direction along the rotor axis.
The rotor spin velocity is given by O + @, where O is the mean
rotation rate and ¥ is some small fluctuation. For the case
of a turbine with a three-bladed rigid rotor, the basic princi-
ples of Newtonian mechanics and linear, quasi-steady aerody-

namics give motion equations of the form

Minj + ci.x. + Ki.x. = F..U. (3.1)

jr ©

damping, stiffness and wind input coefficients. The five dis-

where Mi K.. and Fij are the turbine system inertia,

ij’ "ij
placement coordinates already described are Xj, while the wind

inputs are Uj.

3.3 The Tower

The wind turbine tower is modeled as a single finite ele-
ment within which the tower displacements are expressed in
terms of interpolating polynomials and the displacements at
the top of the tower. The tower deformation, v(z,t), about

one bending axis is then written in the form
viz,t) = P (2)V(t) + PX(x)x(t) (3.2)

where PV and PX are the interpolating functions which approxi-
mate the displacements within the tower. These are conveniently

represented as cubic polynomials satisfying the necessary
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boundary conditions of a cantilever tower. Using this ex-
pression for the tower bending displacement, the stiffness and
inertia coefficients may be obtained by one of the numerous
energy methods. In terms of the interpolating functions PV

and PX, the generalized stiffness and inertia coefficients

for the tower may be expressed as

L

kij = é EI(z)P{(z)Pg(z)dz (3f3)
L

mij = é m(z)Pi(z)Pj(z)dz (3.4)

where EI(z) and m(z) are the stiffness and mass per unit length
as a function of height. For additional detail concerning this
technique, the interested reader should see Clough and Penzien
(2). Although the tower properties are the same in both bend-
ing directions, only one degree of freedom is desired for the

x direction and therefore rotation of the nacelle about the
rotor spin axis is neglected. The method of static conden-
sation is then used to eliminate the unwanted degree of freedom
and to obtain the desired x direction stiffness and inertia

coefficients as

kUU = kVV =k VX/kXX (3.5)

2
= - k
My My 2(kVX/kXX)mVX+ (kVX/ XX) mXX (3.6)
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In addition, the nacelle and rotor inertias add directly to

the tower inertia coefficients, mij’ to give the turbine sys-
tem inertias. A detailed tabulation of the various terms in
the inertia matrix is provided in the Appendix. There is also
a gyroscopic coupling between the turbine pitch and yaw motions.
This coupling coefficient appears in the damping matrix and is

given by
C = I Q=-C_ - (3.7)
r

where Ir is the total effective inertia of all the spinning mass
connected to the turbine rotor. Using this simple model the
structural stiffness and inertia coefficients for a particular
wind turbine are numerically calculated using a TI-59 calculator

code (3).

3.4 DAerodynamic Forces

The geometry of the three-bladed rigid rotor is illustrated
in Figure 3.2. The blades are coned at an angle Bo’ and are
assumed to be twisted and tapered. The angle 6 defines the
pitch setting as the angle from the plane of rotation to the
zero-lift-line of the airfoil at the blade tip.

For this analysis, quasi-static aerodynamics will be
used to compute the forces acting on the blades due to the
turbulent wind and structural motion. The wind input including

turbulence is assumed to be made up of a steady mean wind, Vw’



plus fluctuating components, Vi(t)’ which at any instant are
constant over the rotor disk, and turbulence gradients Vi,j(t)’
which vary linearly across the disk. Both Vi(t) and Vi,j(t)

may be thought as disk averaged time dependent quantities. This

allows the wind velocity to be written in a linear expansion as

0 JV \Y% \Y \Y r sith}
X X, X X,¥Y X,2
v} = vV ,+V v \Y v 0 3.8
t @ Wy YrX Y/¥ Y2 ( )
0 !V v \Y/ \Y r cosfit
» L2} | z,X 2,Y 2,2

where r is the radial position in the rotor disk, and Qt is the
azimuthal location. Motivation for this particular form for
the turbulence is presented in Chapter 2. In this equation the
mean wind direction coincides with the y axis of Figure 3.2.
In addition, the spatial change in the y direction due to the
coning has been dropped in the above expression, which eliminates
the effect of the turbulence gradients Vi,y’
Using the above wind representation and fundamental kine-
matic relationships, provides the relative velocity as observed
from the turbine blade. The relative velocity is made up of
contributions from the wind, §m, the moving structure, G, and

the induced velocity caused by aerodynamic action, gi' In

equation form this is

<¥

> > e
rel = Vo TV T V4 (3.9)
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In terms of the displacement coordinates, the relative velocity
components parallel and perpendicular to the rotor disk rotation-

al plane are given by

Vu/RQ rQ/RQ + {r¥y + coth[—q>(Vw - vi) - GVX + U - ao¢]

+ 51th[-x(Vw - Vi) + GVZ - ax]}/RQ

VV/RQ (Vw - vi)/RQ + {cSVy + coth[-Boévz + ry]

+ sinnt[so(ﬁ - 8V - rd]}/RQ (3.10)

where the fluctuating part of the wind turbulence has been
written as 6Vi to shorten the expressions. These expressions
have also been linearized assuming small displacements, and wind
fluctuations; however, in some places the product of the static
coning angle and the wind fluctuation were retained because of
interest in their effect.

Referring to Figure 3.3, the aerodynamic forces parallel

and perpendicular to the rotor plane may be written as

_ 1 . g2 _ 2
da =3 pa'c dag{ nvu erVu + (1 n/z)vv}

(3.11)

2

2
. + (1 + n)v\)vu - evv/z}

N -

dAv = pa' c dg{-ev

where the lift and drag for a blade element have been calculated
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using the static formulas with the instantaneous velocities.
In the above expressions, a' is the slope of the sectional lift

curve dCL/da, ¢ is the local airfoil chord, n is the ratio CD /a’
0
where CD is the zero-lift drag coefficient and p is the air
0
density.

Using the wind input of Eg. (3.8), together with the veloci-
ty expressions of Eq. (3.10) and substituting into the aero-

dynamic force relationships gives

-1 2 " - ont :
dAu = 3 pa ct(RQ) Rdx{A B [fO + fccoth + f551n9t

+ £ .cos2Qt + fs

a2 sin2Qt] + C [gO + gccoth + 9551th

2

+ g.,co820t + gszsinZQt]}

_ 1 2 ' ' .
dAv = 5 pa ct(RQ) RdAx{D' + E [fo + fccoth + f551th

+ £ _cos2Qt + fs

. . + .
c2 sin20t] + F [gO gccoth + Iq sinQt

2

+ gcchSZQt + 9. sin2Qt]} (3.12)

2

where the primed quantities are the aerodynamic constants

A'(F) = [(1 - n/2)A% - E(nE + 8x) le/cy
B'(r) = [2nT + Oxlc/c,

C'(r) = [(2 - n)A - 8rlc/c,

D'(Y) = [(1L + n)AT - 8 (2 + A2/2]c/ct
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E'(r) = [(1 + n)x - ZGE]C/Ct

F'Ur) = [(L + n)¥ - Xe]C/ct (3.13)

with r = r/R = (h + £)/R, A = (v, - v;)/RQ, and c_ is the chord
at the rotor tip. Note that both the pitch setting, 6, and the
blade chord, ¢, may be functions of r. In the above force

equations the subscripted f and g variables are combinations

of the wind inputs and response variables and are defined as

follows:
£, = r(¥ + Y, ) /RO
£, = =¢x + (-V_+ U - a$)/Ra
£, 0= -x2 + (V, - ay) /RQ
ch =r §zx/RQ
fs2 = rezx/RQ
YZX - %(VZ,X - X,Z)
€ZX = 12--(VZ,Z - X,X)
9o = (v. - - rBOEZX)/RQ
g, = (ry + AN BV, ) /RQ
95 = (Bo(U - V) - x) + v, )/RA
9e2 = "Bs To2
Is2 = Bo fc2
qzx = %(Vz,x + Vx,z)
€rn = %«vz,z VD (3.14)

To obtain the aerodynamic coefficients for the total forces

acting on the rotor hub, the appropriate components of the blade
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element forces, Egs. (3.12), are summed over the three blades
and integrated with respect to radius for a specified induced
velocity distribution. This gives the new thrust, torque, hori-
zontal and vertical forces, and the yaw and pitch moments, which
are to be added to the structural terms resulting in the final
equations of motion, Eq. (3.1l). A detailed list of these equa-

tions is provided in the Appendix.

3.5 The Induced Velocity

The aerodynamics of wind turbines involve highly complex
flow phenomena, which require rather sophisticated theories in
order to obtain accurate predictions. However, some fairly
simple theories making relatively crude assumptions can often
give reasonable estimates and generally can give excellent in-
sight into the physical phenomena of interest. 1In this case two
different wake models are used in an effort to gain insight
into the significance of changes in the induced velocity field
on wind turbine response to turbulence.

For the first wake model, the induced velocity is computed
using blade element theory following the approach of Wilson (4),
and performing a momentum balance neglecting wake rotation. This
provides the induced velocity as a function of radius, under
the assumption that the rotor axis is perfectly aligned with
the wind direction. After the induced velocity distribution
is computed for a given mean operating condition, it is assumed

to be constant and independent of turbulent wind fluctuations.
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This model is named the "frozen wake."

The second wake model is called the "equilibrium wake."
For this model, the axial fluctuations in wind velocity are
assumed to occur so slowly that the induced velocity is the
steady state value for the instantaneous wind speed. In this
situation, the axial flow will not only be time varying but
also will be nonuniform, because of the inclusion of the fluctu-
ating wind gradient terms in the turbulence model of Eq. (3.8).
These gradients could be thought of as slowly changing wind
shears of arbitrary orientation, since their effect on the wind
turbine is similar. To obtain an approximation for the induced
velocities of this "equilibrium wake," the "semi-rigid" wake
model discussed by Miller (5) is used. Miller shows that the
effect of including the induced velocity due to the nonuniform
flow is to reduce the lift by a factor referred to as the "lift
deficiency" function.

For this analysis, assuming small velocity changes, the

lift deficiency function is approximately

K g(X) = 1 (3.15)

1+ TtF'(E)/E(zx - A,

where Aw = VW/RQ and Ty = 3a'ct/8ﬂR. In addition, the azimuthal
change in the induced velocity distribution leads to a change in
the in-plane aerodynamic coefficients B'(r). This change is

given by
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AB'(T) = 1, [B'(L)F'(Y) + C'(D)E'(Y)1/{T (2 - A (3.16)

Because this change is small, it is tempting to neglect it.
However, all of the in-plane forces are small so it will be
retained. Finally, the wind fluctuations in the axial direction
V., V and V are associated with a change in momentum in

Y Yr2 YiX

the streamwise direction which, for the assumptions of this

wake model, change the equilibrium thrust. This added 1lift

factor is approximately
ij\a(r) =14+ A/(2) - Aw) (3.17)

To incorporate these effects, the aerodynamic coefficients B'(f),
Cc'(r), E'(r) and F'(r) of Egs. (3.13) are modified in the

following manner to obtain the "equilibrium wake" coefficients:

BL(T) =X (®)(B'(F) + aB' (D)}
' o =..’ r ' r
cL(r) =HA (x)c'(x)
EL(r) =FA4(r)E'(r)
Fe(r) =;Ad(r)E (r)

Cay (F) =440 (T)C! (1)

Foy (X)) =hg(r)i (r)C'(r) (3.18)
where the two coefficients Céy and Féy are specifically associ-
ated with the wind fluctuations v, V and V . The aero-

Y Yi2 YiX

dynamic coefficients A'(r) and D'(r) are related to the mean
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thrust and torque and are thus unaffected by wind fluctuations.
Computationally, the influence of the wake model can be observed
by replacing the primed aerodynamic coefficients of Egs. (3.13)
with those of Egs. (3.18) above.

Although both of these wake models are useful in developing
an understanding of the influence of the induced velocity distri-
bution on machine response to turbulence, it is unclear whether
either model accurately approximates the real distributions and
future work is needed to evaluate the effects of unsteady wake

aerodynamics.

3.6 State Space Equations

The equations of motion Eg. (3.1l) can be written in matrix

form

(M1{X} + [C1{X} + [KI{X} = {Q;} + [F]{u) (3.19)
where

{X}T = (U,V,¢,x,¥) = displacement coordinate

{Ql}T= (0,7,0,0,0) = steady state

{u}T = (Vxlvy'vz’Vy,x'vy,z’sz’er’;r’gxz) = wind inputs

e, = €,.COS30t + ?szin39t

?r = -e, sin3ot + ?zxcos39t
The terms €. and Vr come from the three-bladed sums of the terms
fc2’ fs2’ 9o and < in Egs. (3.14). They can be interpreted

as components of a vector which rotates at three times the
rotor rate.

It is possible to model each of the nine turbulence
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inputs using a set of stochastic differential equations of the

form
{0} = [a 1{u} + [B_1{w} (3.20)
where the components of {w} are white noise of equal power spec-

tral density, [Bw] is the white noise input distribution matrix

which is diagonal. The [Aw] matrix is diagonal except for two

elements
- n
211
A ] = '

W

a77 3Q

=30 a88

L a99

which arise as a result of the sin3Qt and cos3Qt in the e and
;r wind inputs. The source of these two off diagonal terms 30
and -3} is described in more detail in Chapter 2.

Discarding the steady terms, it is convenient to transform
the equations of motion given in Eq. (3.19) to the state space
form, so that they are written as a set of first order equations
similar to the turbulence inputs of Eq. (3.20). To further
facilitate the computation of results, the state space form

of Eq. (3.19) can be augmented with the turbulence inputs,
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Eq. (3.20), to form a single system of equations with white
noise as the driving input. The five turbine displacements
and their derivatives together with the nine turbulence inputs
will form the state vector for this augmented system. The

governing equations can then be written

{x}

[A]l{x} + [B]{w}

(3.21)
{y} = [c]l{x}
where . -
X ] [0] [1] [0]
{x} = {x} (a] = | - (k1 -7 k) M IF)
{u{f [0] [0] [Aw]
L J
(F N\
X
FY
[0] Mz
[B] = {y} = < ?= outputs
[Bw] M
Power
K{X]’ )
[K] (0]
[c] = (00...ch...0) = response matrix
(I]
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With this formulation it is a relatively straightforward
numerical procedure, to determine the complex eigenvalues of
the A matrix and then to compute the modal matrix, which is
made up of the associated eigenvectors. The modal matrix can
then be used to decouple the equations of motion so that trans-
fer functions between any of the nine white noise inputs and
any output, Y;, may be easily computed. These transfer func-
tions account for differences in the energy level for the
turbulence inputs, {u}, so that a comparison of the transfer
function magnitudes provides a direct estimate of relative
importance. The final result uses the central equation from
random vibration theory (6), which states that the spectral

density for any of the outputs {y} will be given by
(S (@7t = [E_ (] (s ) (3.22)
y yw \ .

for uncorrelated inputs. In this equation, {Sy(w)} is the

spectral density of the outputs {y}, [|H (w)|2] is the matrix

yw
consisting of elements which are the square of the transfer
function magnitude and {Sw} is the flat spectral density

of the white noise driving inputs, which are all equal.
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CHAPTER 4. MODELING RESULTS

4.1 Introduction

This chapter presents results for two wind turbine systems
of vastly different sizes based on the models explained in the
previous two chapters. In keeping with the form of the DOE
nomenclature, the smaller 8 kW machine is designated the Mod-M
in this report. This nomenclature evolved from the nickname
"Mini-Mod"” which was used while the model was being developed.
This machines is typical of the small machines that are tested
at the Rocky Flats Test Site. In contrast to this small system,
a large wind turbine, designated the Mod-G, was modeled. The
"G" designation arose from the gigantic 300 ft diameter and
2.5 MW nominal power. This machine is similar in size to the
DOE Mod-2 wind turbine. The primary objective of this chapter
is to examine the response of these two turbines using the
methods outlined in the previous chapters, and to determine

the sensitivity of these systems to atmospheric turbulence.

4.2 Response of a Small Turbine

The small, Mod-M, is an 8 kW system, with three blades
located downwind of the tower and designed for free-yaw
operation. The specific machine characteristics are shown in
Table 4.1. With the structural characteristics for
this system as outlined in the Appendix, and the atmospheric

turbulence parameters for the wind inputs as specified in



Table 4.1. Mod-~!1 Characteristics

Rotor Characteristics (Rigid Rotor):

Rotor Radius
Blade Chord (constant)
Coning Angle
Blade Twist

System Frequencies (Tower !lotions):

1st Bending (fore-aft)
2nd Bending (fore-aft)
1lst Torsion

1lst Bending (side-to-side)

Aerodynamic Properties:

Lift Curve Slope
Drag Coefficient, CDO
Stall not modeled

Operating Conditions Used:

Wind Velocity (mean)
Rotor Speed (mean)

Pitch Setting (to ZLL)
Turbulence Length Scale
Rms Turbulent Intensity
Approximate Output

1l6.67 £t
1.5 ft
3.5°
0.0°

(2.00) 15.5 rad/s
(7.08) 53.5 rad/s
(Free yaw) 0.0 rad/s
(2.1Q) 15.9 rad/s

.02

1l6.63 MPH
(7.81 73.35 RPM
rad/s)
3.0°
300 ft
2.03 ft/s
6 kw
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Table 2.3, the dynamic response is computed using the approach
outlined in Section 3.6. The most revealing response variables
are the yaw angle and the forces and moment which act at the
top of the tower. These response variables are shown in the
power spectral density plots of Figures 4.1 through 4.4. 1In
these figures the system resonances are identified and the
difference in response for each of the two wake models is
illustrated. The somewhat larger response predicted by the
equilibrium wake is associated with the change in momentum in
the streamwise direction, which for the equilibrium wake model
results in additional 1lift. The major feature of Figure 4.1

is the significant response at the system side-to-side bending
frequency. Figure 4.2 shows similar responses at the two sys-
tem fore-aft bending frequencies. 1In Figure 4.3, the marked
decrease in yaw response above 0.1 rad/s (.016 hz) is notice-
able, which implies that this free-yaw turbine only follows

the low frequency wind disturbances. Figure 4.4 gives the
tower pitching moment response and shows the same type of
resonance peaks as the other figures. For the equilibrium wake,
the increase in pitching moment between .1 to 1 rad/s seems to
be associated with the decrease in yaw response, and illustrates
the coupling between turbine pitch and yaw motions, even for

a free-yaw system. Figure 4.4 also shows a small response

peak at 302, which is the result of the sin3Qt and cos3Qt in the

€, and Y, inputs.



4.3 Response of a Large Turbine

The second wind system to be analyzed in this study is a
large turbine called the Mod-G. The Mod-G is a 2.5 MW turbine
with a three-bladed rotor located upwind of the tower, and is
designed for fixed-yaw operation. The specific characteristics
of this system are shown in Table 4.2. Figures 4.5 through 4.8
present the computation results for the Mod-G turbine, with the
exception that since this is a controlled yaw machine, yaw
moment response rather than yaw angle response is plotted. The
general pattern of results is quite similar to the Mod-M with
the resonances marked by characteristic spikes. If it were
desired to build one of these turbines, the details of these
curves would be very useful. The interest here, however, is
in determining the sensitivity of these two systems to the

turbulence inputs.

4.4 Power Output

The equations of motion in the Appendix show that the
only coupling between the generator and the rest of the system
is through the single damping coefficient C52. If this coef-~
ficient were zero, the drive train response would be independent
of the other structural motions. For the systems considered
in this report, this coupling is weak, and for all practical
purposes, one can consider the power train independent of the
rest of the system. However, it should be remembered that a

direct path for coupling the generator output to structural
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Table 4.2. Mod-G Characteristics

Rotor Characteristics:

Rotor Radius
Blade Chord (linear tape

Coning Angle
Blade Twist (linear)

System Frequencies:

lst Bending (fore-aft)
2nd Bending (fore-aft)

r)

1st Bending (side-to-side)

l1st Torsion

Aerodynamic Properties:

Lift Curve Slope
Drag Coefficient, CDO
Stall not Modeled

Operating Conditions:

Wind Velocity

Rotor Speed

Pitch Setting at Tip
Turbulence Length Scale
Rms turbulent intensity
Approximate Power Output

150 ft
7.74 ft
at hub to
3.15 ft
at tip

40
80

rad/s
rad/s
rad/s
rad/s

—

(o)

o]

~
ONDWN
L I LI
OO I

5.73
.008

(1.833 20 MPH
rad/s)
17.5 RPM
-6.2°
500 ft
2.44 ft/s
1.1 Mw
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motion was eliminated from the model, when the tower rotational
degree-of-freedom about the rotor spin axis was removed. This
was described in Section 3.3. Without this degree of freedom,
the generator torque acting on the top of the tower is assumed
to be negligible. 1In addition, this prevents roll motion of
the nacelle which would realistically influence the relative
velocity of the rotor with respect to the wind. One can, there-
fore, come to no firm conclusions concerning the degree of
coupling between the tower motion and power output, because
the model, due to its simplicity, has prevented these interactions.
Supporting this simplified model is the fact that field test
data has not yet uncovered any significant coupling between
the drive train and the tower, and it is standard practice to
treat the wind turbine drive train as if it were completely
independent of the tower structure. The reader should see
Sullivan, Miller and Spera (1) and Martinez-Sanchez (2) for
more details on these drive train models.

Two different models are used for the generator and drive
train. In the first, it is assumed that power fluctuations
about the mean power are a linear function of the rotor speed

fluctuations about the mean. This gives the power output as

where Cg is the generator torque coefficient, @ is the mean

rotor speed, ¥ is the fluctuation in rotor speed, and Ne is



the overall power conversion efficiency. This is mechanically
equivalent to having a viscous dissipator connected directly

to the rotor. This model eliminates any possibility of a drive
train resonance, and treats the generator as if it were a viscous
power element.

The second model assumes that the drive train is an elastic
spring and that the generator on the output shaft always rotates
at constant speed, Q, while the rotor on the other end is free
to respond to wind fluctuations. This will give the output

power as
P = 0k ¥)n, (4.2)

where kg is the drive train spring rate. Although, neither of
these models is really correct, they will provide bounds on the
behavior which can be expected. In an elementary sense, the
first model responds like an induction generator, while the
second has characteristics like a synchronous generator. Better
models would require additional degrees of freedom.

Figures 4.9 through 4.12 show the results for both power
train models on the Mod-M and the Mod-G using both wake models.
For the Mod-M the drive train spring rate was set so that the
natural frequency was approximately 1.4Q, and for the Mod-G,
it was set at .5Q. The results for the elastic drive train

show the characteristically large spikes at the drive train

natural frequency, and those for the viscous power element
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show almost no response except for a small downward spike at
the first tower natural frequency, where the tower motion
removes energy which would normally go to the generator. This
was the only observed coupling between the drive train and

other structural motions.

4,5 The Key Turbulence Inputs

The primary objective of this work was to identify the
features of turbulence which are most important in wind turbine
design. 1In an effort to focus on these key features, the response
at specific system frequencies was broken down into fractional
contributions from each turbulence input. The most significant
results of these calculations are tabulated in Tables 4.3 and
4.4.

From these results it seems clear that the most important
inputs are the longitudinal turbulence component, Vy' the two
associated gradient terms Vo, x and Vo, 2’ and the two in-plane
turbulence terms Vr and €. which have an effective frequency of
3Q.

To examine this conclusion more closely, consider Figures
4.13 through 4.18, which present plots of power spectral densities
for the various response variables using, first, only the turbu-
lence input Vy' and then comparing it with the results when the
two gradients Vy, and V 2 are added to the input. Figures
4.13 and 4.17 show that when computing thrust, the second mode
bending response is virtually eliminated unless these two

gradient terms are included. However, this deficiency is minor

58



6S

Table 4.3. Fractional Response Contributions of the Turbulence Inputs for
the Mod-M Using the Equilibrium Wake

Response/Input \Y \Y \YJ € Y Other
Y Y.X Y2 r r

Frequency =~ 0

Side Force, F .0 .96 .0 .0 .0 .04
Thrust, Fy 1.0 .0 .0 .0 .0 .0
Pitch Moment, M, .0 .79 .14 .0 .0 .07
Yaw Angle, ¢ .0 .92 .01 .0 .0 .07

Frequency = 15.4 (Fore-Aft Bending)

Side Force, Fy .26 .05 .66 .0 .0 .03
Thrust, F .79 .05 .16 .0 .0 .0
Pitch Moment, My .77 .06 .17 .0 .0 .0
Yaw Angle, ¢ .77 .09 .14 .0 .0 .0

Frequency = 30 = 23

Side Force, Fy .0 .02 .67 .15 .15 .01
Thrust, Fy .41 .08 .50 .01 .01 .07
Pitch Moment, M, .0 .12 .84 .01 .02 .01
Yaw Angle, ¢ .01 .90 .01 .04 .04 .0

Frequency = 15.9 (Side-to-Side Bending)

Side Force, Fy .02 .04 .91 .0 .0 .03
Thrust, Fy .68 .04 .28 .0 .0 .0
Pitch Moment, My .24 .10 .66 .0 .0 .0
Yaw Angle, ¢ .47 .34 .19 .0 .0 .0
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Table 4.4. Tractional Response Contributions of the Turbulence Inputs for
the Mod-G Using the Equilibrium Wake

Response/Input Vy Vy,x Vy,z €. Y Other

Frequency = 0

Side Force, Fy .0 .06 .92 .0 .0 .02
Thrust, F 1.0 .0 .0 .0 .0 .0
Yaw Moment, M, .0 .97 .0 .0 .0 .03
Pitch Moment, My .0 .0 .97 .0 .0 .03
Frequency = 2.69 (Fore-Aft Bending)
Side Force, Fy .93 .04 .02 .0 .0 .01
Thrust, F .78 .0 .21 .0 .0 .01
Yaw Momen¥, M, .77 .02 .20 .0 .0 .01
Pitch Moment, My .78 .0~ .21 .0 .0 .01
Frequency = 30 = 5.5
Side Force, Fy4 .02 .39 .09 .25 .24 .01
Thrust, F .01 .02 .19 .38 .39 .01
Yaw Momen¥, M, .02 .31 .0 .34 .32 .01
Pitch Moment, My, .01 .02 .20 .38 .39 .0
Frequency = .89 (Drive Train)
Side Force, Fy .0 .08 .90 .0 .0 .02
Thrust, F 1.0 .0 .0 .0 .0 .0
Yaw Moment, M, .11 .87 .01 .0 .0 .01
Pitch HMoment, M .01 .0 .97 .0 .0 .02
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when compared to what happens when computing, side force, or

yaw and pitch responses using only the single Vy turbulence input.
The responses are underestimated by orders of magnitude over a
fairly broad frequency range. From these comparisons the
inescapable conclusion is that the turbulence gradient terms

v and V are just as important as the uniform term V_,

YyX Yi2 Y
when computing wind turbine structural responses.

Determining the effect of discarding the in-plane turbu-

lence inputs, V_, V,, Y E_, ;r’ and Exz can be accomplished

X xz' “r

by comparing the responses plotted in Figures 4.2 through 4.8,
where the effect of all turbulence inputs was included, with
the results in Figures 4.13 through 4.18. For example, an overlay
of Figure 4.5 and Figure 4.16, which presents the Mod-G side
force, shows that there is only a small difference around the
frequency 3Q0. From this it is concluded that the in-plane velocity
components are not particularly important. 1In addition, these
results suggest that careful study and understanding of small
variations in wind direction is not nearly as important as
determining the gradient of the longitudinal wind across the
rotor disk.

Examining the sensitivity of turbine power output to at-
mospheric turbulence leads to a somewhat different situation.
The power for a three-bladed rigid rotor is only influenced by

and €__, as shown by the
zZx

three turbulence inputs, Vy, Y x

equations of motion in the Appendix. As explained earlier,

the simple structural model used here prevents one from drawing
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any firm conclusions concerning the coupling of power fluctuations
to any of the other turbulence inputs through the tower motions.
Considering the magnitude of these three turbulence inputs shows
that the vy input is the most important, while gzx is almost

certainly unimportant, leaving Y, @S a marginal term.

4.4 Conclusions and Recommendations

On the basis of the work done in this study, the longitudi-
nal turbulence input, Vy, and the two gradients, Vy,x and Vy,z
are of equal importance when computing the dynamic response of
wind systems, and these three inputs together comprise the
major excitation source for horizontal axis wind turbines. Be-
cause of the simplifying assum?tions and approximations used in
this analysis, it is imperative that the results and the tech-
nigque be validated with experimental data, prior to use for
design.

Although this study only supports the above conclusion
for three-bladed stiff rotors, the authors believe that the
two gradient terms Vy,x and v ,z will be found to be equally
important in the dynamic analysis of flexible, or teetering,
rwo-hladed rotors. One reason for this supposition is that
the two-bladed rotor will see a turbulence input with a peak
at 2Q caused by the blades rotating through the gradients V

Y/X

and Vy 2 This will result in a turbulence input spectrum
14
analogous to the one for Yr' which has a peak at 30 as illus-

tr-ted in Figure 2.11. For the three-bladed rotor, this
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only involves the relatively unimportant in-plane velocity
gradients, while for the two-bladed rotor it will involve the
significant gradients V and V .

Y. X Yr2
4.7 References

1. Sullivan, T.L., Miller, D.R. and Speara, D.A., Drive Trai:

Normal Modes Analysis for the ERDA/NASA 100-kilowatt Wind

Turbine Generator, NASA TM-73718, July 1977.

2. Martinez-Sanchez, M., Drive Train Dynamics Vol. IV. of Wind

Energy Conversion; Massachusetts Institute of Technology,

Aeroelastic and Structures Research Laboratory Report ASRI,-

TR-184-7, 1980.

63



X

PSD of side force, F_ lbz/(rad/s)

6 1st
10 Bending

Frozen wake

— = — Equilibrium wake

0 Lt s gt 1 el ] oot B o

10 01 10 1.0 10

Frequency v rad/s

Figure 4.1. Mod-M power spectral density of side
force, Fx.

64

100

FX N N2/(rad/s)



10

5

10
7

S5 10t
[10]
8
N\
Q

< 03
e
™
[y
S

2 102
¥
£
B
U

°© 1

fa) 10
w0
A

10°

-1

10

: 310’
- T T T T~ 2nd ]
\\ Bending -
S N\ 1st 310®
_ \ Bending 3
= ]
= F10°
B Z )
3 | 3
= | 104 H
N | o
Z
= e
: 103 &
3 102
B Frozen wake \
= ———Equilibrium wake \
E (" 101
crrond e o o rrrd el i
.01 10 1.0 10 100

Frequency v rad/s

Figure 4.2. Mod-M power spectral density of thrust,

F_.
Yy

65



PSD of yaw angle, ¢ ~ radz/(rad/s)

Frozen wake
= =—=—Equilibrium wake

LILBLILLLL]

S,
n
T TTTIm T I

o
T TTTTm

-4 L Lt L1l \ Lol

10 01 10 1.0 10 100

Frequency ~ rad/s

Figure 4.3. Mod-M power spectral density of yaw
anale, ¢.

66



PSD of pitch moment, Mo (ft—lb)z/(rad/s)

10 8
10
10"
107
6
10 \
\ 2nd 108
Bending -
; 3
10 s}
1O5 O
E
S
107 N
4q el
107
3
10 3
10
Frozen wake
102 — — — Equilibrium wake
10°
101 Ll oy el BRI N R IIHkI
.01 10 1.0 10 100

Figure 4.4.

Frequency v rad/s

Mod-M power spectral density of pitch
moment, Mx'

67



10

X

PSD of side force, F_ 1b2/(rad/s)

= 1Bst

= endin

- L 310"
B | i

E Frozen wake _: 10
-  — — — Equilibrium wake 3 10

: 310°
_:T" - ” E 10
- 210
B l -

E It Tower =106
" N~/ ) Torsion §1O
prornd oyl r i |t11uh R

.01 10 10 10 100

Frequency " rad/s

Figure 4.5. Mod-G power spectral density of side
force, Fx.

68

FX N Nz/(rad/s)



Yy

PSD of thrust force, F._ ~ lb2/(rad/s)

10

10
1011
o T~ Drive
10 \\ Train
10
1st 10
\ S
Bending
10° |
i . 9
Torsion 10 -
I Q
7 2nd g
10 Bending H
8
10 2
I
10° >
10"
10°
Il 108
Frozen wake |
0% ———Equilibrium wake |
l 10°
I
103 cedevl v vt el oy 1l ‘I [EETI
.01 10 1.0 10 100

Frequency Vv rad/s

Figure 4.6. Mod-G power spectral density of thrust

force, F .
Y

69



PSD of yaw moment, Mz ~ (ft—lb)z/(rad/s)

12

“E 12
':- _____ = 1st _é 10
n N Bending 3
1011? | "
s 210
1010%_ _ 10
s 310
°k d
10°E nding |
- =109
10°E 1.
. 310
- Frozen wake 3
107E — — — Equilibrium wake : -
- 3107
_ \ =
106 pov vl o vyl v rpnend o il \ [REAL
.01 10 1.0 10 100

Frequency " rad/s

Figure 4.7. Mod-G power spectral density of yaw
moment, MZ.

70

Mz N (N—m)z/(rad/s)



X

PSD of pitch moment, M. ~ (ft-lb)z/(rad/s)

1012

1011

10

10

10

10

10

10

1O12

lllluﬂr'lllﬂum

LRI R RRLLI

T 7T

Ll

|

I

\

|
— — — Equilibrium wake \\
\

/
Ly

2nd

Bending 11

10

\ Torsion

1st \
\ Bending

Ll

O—J
o)

Lol

o
©

o

o
@

Frozen wake

Ll

10

ot

\

RN R A RN N\ YT

.01 10 1.0 10 100

Figure 4.8.

Frequency ~ rad/s

Mod-G power spectral density of pitch
moment, MX.

71

M (N-m) 2/ (rad/s)



PSD of output power ~ (ft—lb/s)z/(rad/s)

10 Drive train — .2
natural frequency 310
108:;________ .: ,
- 310
7 —
10 E
= E 10°
6L .
10 E I
- 310
10°F i
- 310
10%E Elastic drive train N\ .
= ———Viscous power element \ = 1073
- \ E
3 pegapt v cveod ool lilllllh L1 1
10 .01 10 1.0 10 100

Frequency v rad/s

Figure 4.9. Mod-M power spectral density of power

output using the frozen wake.

72

Power ~ kw2/(rad/s)



PSD of output power ~ (ft—lb/s)z/(rad/s)

10
°
10
10
10
10

10

= Drive train 10°
- natural frequency
2 =10’
3 4,0 3
- 310 S
- . >
= - =
= -1
- =10 o
[ = “
~ - 0
K3

= 1 ., 8
E 310°
- Elastic drive train \ ]
L.~ = —Viscous power element \ ~
S \ 510°
- \ =

Lo Lol 1 1 llllll| || IlIIIII\. 11 Illll—l-

.01 10 1.0 10 100

Figure 4.10. Mod-M power spectral density of power

outonut using the equilibrium wake.

73



2
PSD of output power v (ft-1lb/s)”/(rad/s)

1015= Drive train
= natural frequency 5
- 310
14| :
10 E :
= E 10
10135 1,
E 510
10125_—- 1 .
— —g 10
10''E 1.,
- —g 10
10105— ]
- =107
= 3
9 i
10 E
= 510°
- \ 3
g| — Elastic drive train \\ _
10" E — —— viscous power element I
— \ 510
N In -
1O7 IR R N R I&Jl“ﬂ L
.01 J0 1.0 10 100

Figure 4.11.

Frequency " rad/s

lMod-G power spectral density of power
output using the frozen wake.

74

Power ~ MWZ/(rad/s)



PSD of output power.n (ft-lb/s)z/(rad/s)

14

10 Drive train
natural frequency 310!
1 ]
10"
1012§_ 1
- _g 10
1L ]
- \ 310
- \\ -
10 -
10 § \ _3
- \ T} 10
| \ 3
10° 1
= 104
B Elastic drive train
8 )
10 — — — Viscous power element i
\ 10
\
\
107 Ll Lrond L4 vinul L 1
.01 10 1.0 10 100

Frequency v rad/s

Figure 4.12., Mod-G power spectral density of power
output using the equilibrium wake.

75

Power ~ MWZ/(rad/s)



10

MR

5
10 3
N 310
Le) pun
g -
~ 4
& 10 N 5
= 10
I
>

3
L0 |
# | g10%
¥ I
3 2
H =
a E 10
A~ B Vy alone

"B o——— v eV, y

10 E y & Vy,i hd 2

= I F10

C I

0 R IR AN Wi

10 .01 .10 1.0 10 100

Frequency " rad/s

Figure 4.13. The effect of the c¢radients, vy, 6x and
vy,z on thrust for Mod-~-M using the
equilibrium wake.

76

F ~ NZ/(rad/s)

Y



PSD of yaw angle, ¢ radz/(rad/s)

T 17T

T TTTITm

Lot

Vy alone
T Vy By

ool oo reisob o eed ol

.01

Figure 4.14.

10 1.0 10 100

Frequency ~ rad/s

The effect of the gradients vy x and
Vy,z on yaw angle for Mod-M using the
equilibrium wake.

77



PSD of pitch moment, MX N (ft—lb)z/(rad/s)

10
10

10

4
10

UL L I R R LI DR R LA B R ALLI lllllll' ILILLLLALI

-
-
oone
-—
-—
=

| LN |

Lol

Vy alone
— T Vy & Vy,i

(
~

REI
O

o oot o vaoed e

Lol

il

Ll
o

Lol v el ot

W

.01

Figure 4.15.

10 1.0 10

Frequency v rad/s

100

The effect of the gradients, vy, x and

v
the

- on pitch moment for Mod-M using
equilibrium wake.

78

MX N (N—m)2/(rad/s)



X

PSD of side force, F_ ~ lbz/(rad/s)

10

10 E
E | 351011
ol -
10 E V, alone .
= Y — ,~10
- ! 3
10%E -
; 510°
- 3
10'E .
e =108
sl N -
10 = \\ =
: \ LM
- \ I ::‘
10°F AN 4 -
— — 116
- NG/ 510
104 Lo e e 1o v Ilh||“h ] LLHIE
.01 10 1.0 10 100
Frequency Vv rad/s
Figure 4.16. The effect of the gradients v and

X
Vy,z on the side force for MO%LG using
the equilibrium wake.

79

F ~ N2/(rad/s)



10

10
E§1O11
_ 109 -
g .51010
5 .
& 108 .
3 —=10°
e =
5 .
“ 107 .
+ — 8
2 . =
el =
+$ 6 I
w“ 10 , | )
A7
a | =10
& Vy alone ) '|'I =
5 y vl 1 3
10 ———vV, 8V, JVi -
y Yl | —_106
JL}il_lJJJlE
104 IR N NN A

Figure 4.17.

01

The e

Z&ﬁfl

10 1.0 10

Frequency Vv rad/s

-—

00

ffect of the gradients vy x and
on thrust for the Mod-G using the
ibrium wake.

80

/ (rad/s)

N

v N

F

y



PSD of yaw moment, MZ N (ft-lb)z/(rad/s)

—— TV 8 Vy,

5 L4l

o
—
N

11

—

O
—
—h

AR

Vy alone

°

M_n (N-m)z/(rad/s)

2

o

[

L bl

l
10

Ll

I
I
I
|
|

\
|\
\
\

\

Ll Lol o Lo

107

10°

10 .01

Figure 4.18.

10 1.0 10 100

Frequency Vv rad/s

The effect of the gradients vy, 6 x and
Vy,z on yaw moments for Mod-G using the
equilibrium wake.

81



Z8

Governing Equations:

~

—

Mll 0 M

0 M

13

22 0

1‘131 0 M33

0 M 0

42
0 0 0

0

M24

0
M44

0

52

o )+

APPENDIX

Turbine System Equations
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Inertia Matrix

Mll =myy + m + m,_ ; MlB = M31 = —(mn + mr)q

Map SMpp *mp +my 3 My =My i Myz =mg3 + 1,

M44 = My, + IXX ; M55 = Ir i m_ = mass of rotor ; m, = mass of nacelle

q = distance from CL tower to nacelle-rotor C.G. ; IXX and Iyy = mass moment of inertia
of nacelle-rotor system about x and y axes ; Ir = rotor effective spinning inertia ;
mij = tower inertia coefficients of Eq. (3.4), where for a uniform cantilever tower,

myy = 99 mt/420 r My, = 156 mt/420 r My, = 22 tht/420

May = ImLt/3, My, = thi/lOS ;o ML= tower mass , Im = tower polar inertia

Damping Matrix

Cyp = 3£(B, + BZF_)/2RQ ; C; = -3£(3B_ + B_F,)/20 ; C , = -3£(C; + B E_)/20

Chp = 3EF/RQ ; C,o = -3fE,/Q ; Cg; = -3£(B_{F, + Bf} + a(B_ + ngo})/zﬂ

Cy4 = 3fR({F, + BoaBi} + E{SBO + B F /20 5 Cqy = 3fR({Ela + B,C5} + a{cl + asOEO})/zg + I8
Cyy = 3E(LE, + 82t} + BB _{C_ + E_})/20 5 Cyq = ~Cyy 5 C,y = C,, |
C52 = 3fCl/Q : C55 = 3fRB2/Q + Cg : Cg = Generator torque coefficient

Stiffness Matrix

K = k K = —3fGO/2 ; K = —3fBoHo/2 ;7 K =k ; K =k

11 11 7 "13 14 22 22 24 24

= * a . = a . =
K33 k33 + 3fR(BOGl + aGO)/2 : K34 3fR(Hl + BOaHO)/Z : K42 K24

= - . = * a - = ] ] .
K43 K34 : K44 k44 + 3fR(BOGl + aGO)/2 ; k55 Drive train stiffness
where kij = tower structural stiffnesses from Eg. (3.3), and for a uniform cantilever
tower k = EI L3 . = 3 . = 2 - = . -

11 3EI/ i kyy 12EI/L” ; k,, 6EI/L” ; k33 = GI/L i k,, 4EI/L
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Wind Input Matrix

Fi, = 3£(B + BgFo)/ZRQ ; Fiy = -3£8_(Cy + E_)/2RQ ; Fy, = -3£8_F /20

Flg = 3£C,/20 ; F ., = -3f8_(C; - E,)/20 ; F g = -3£(-B, + BgFl)/ZQ

T = 3fD_ ; F,, = 3fF_/RQ ; F, = 3fE /Q ; F,, = -3fF 8_/Q

Fy = -3£(B_{F, + BY} + a{B_ + B2F_))/20 ; F , = 3£({E, + B2C}} + ag_{c, + E_})/20
Fyy = 3fR(F, + eOEFl)/zg ; Fyg = —3fR(BC% + acl)/zg

F,, = -3fR({E, - 8C§} - ag {c, - B\ })/20 ; Fyg = 3FR(B_{F, - B£) + a{-B, + B2F,})/29
Fap = F33 7 Fy3 = T3y 7 Fyy = Fag 7 Fyg = -Fgy i Fyy = “Fag i Fyg = Fyy

Q = 3fRA] ; Fg, = 3£C,/Q ; Fy, = -3fR B,y/Q ; F g = -3RB_C,/Q

where f = % pa'Rct(RQ)2. The single subscript capitalized coefficients An through Hn

are integral aerodynamic coefficients of the form
ar where n = 0,1,2

with A' through F' defined as given in Eq. (3.13) for the "frozen wake" or Eg. (3.18) for

the "equilibrium wake". In addition, G'(x) = AB'(x) and H'(x) = )AE'(x), while the coeffi-

cients with stars are B; = B - hB C* = C - hC and G; = G_ - hG

n n-1’ "n n n-1 n n-1' and h = h/R,

a = a/R.





