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Introduction

This volume contains the elaborations of lectures at a

seminar held at the Courant Institute in the spring of 1977 on the

mathematical aspects of combustion. The purpose of the seminar

was to put the achievements and problems of combustion theory into

sharp focus and to bring them to the attention of the mathematical

community, in the hope that, just as in the past, mathematical

methods will shed light on these theories, and that mathematical

ideas  will  lead  to  new ,and e fficient computational procedures.

The first half of the semester was devoted to subjects that

were reasonably well understood as mathematics; the speakers were

mathematicians. After the spring recess the seminar was devoted

to subjects not yet mathematically digested; among the speakers

there were engineers, chemists, and physicists with sympathy in

their hearts for mathematics.

The first part starts with a paper by Peter D. Lax which is

a review of those numerical methods in fluid dynamics that are

especially promising for reacting flows. This is followed by a

report prepared by K. 0. Friedrichs for the Navy in 1946,

edited and presented by Gary A. Sod. The third paper by Peter D.

Lax is a brief introduction to chemical kinetics, followed by

papers by Alexandre Chorin, of the University of California at

Berkeley, on reactive flows, by Gary A. Sod on a first step to

modeling flows in an engine, and by Samuel Z. Burstein on combus-

tion instability.

V



The second part consists of two papers by William Sirignano

of Princeton University on flame spread and reactive flows in a

one-dimensional engine, followed by three papers by Irvin Glassman

of Princeton University on the burning rate of single coal parti-

cles, on hydrocarbon oxidation in a flow reactor, and on flame

spreading.

We did not include in this collection an interesting lecture

by Louis Howard of M.I.T. on his work with Nancy Kopell on reaction

diffusion equations, the content of which is contained in these two

papers:

N. Kopell and L.N. Howard, "Plane Wave Solutions to Reaction-
Diffusion Equations," Studies in Appl. Math., 52, 291 (1973).

11L.N. Howard and N. Kopell, Slowly Varying Waves and Shock
Structures in Reaction-Diffusion Equations, " Studies   in  Appl.
Math., 56, 95 (1977)·

Another interesting lecture not included was by James Muckerman of

the Brookhaven National Laboratory of the Department of Energy on

the calculation of bimoledular rate constants based on the three

papers:

J. Muckerman and M.D. Faist, "Rate Constants from Monte Carlo
Quasidla-§sical Trajectory Calculations: The Use of Important
Samplings," to appear.

P.A. Whitlock, J. Muckerman, and E.R. Fisher, "Theoretical
Investigation of the Energetics and Dynamics of Reactions of
0(d) with H2," submitted to J. Chem. Phys.

, "Theoretical
Investigation of the Energetics and Dynamics of Reactions of
0(3p  d)  with  H2  and  C(d)  with  H2," RIES Technical Report,
Wayne State University, Detroit, Michigan (1976).

Vi
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The Numerical Solution of the Equations of Fluid Dynamics

Peter D. Lax

Courant Institute of Mathematical Sciences
New York University

1. Introduction
2. The equations of fluid dynamics
3. Theory of shock waves4. The method of fractional steps
5. Difference approximation of conservation laws_6. The methods of Godunov and Glimm
7. Entropy and viscosity

1. Introduction

The theory of Chapman and Juguet for detonations and
.........--'*

deflagrations describes reacting flows in the limit as the re-
.-------

action rate goes to co, viscosity, diffusivity and heat conduc-

tion go to 0. In this theory the transition from burnt to unburnt
gas takes place instantaneously over an infinitely thin reaction

z one. In many problems of combustion one is interested in a finer

resolution of the reaction zone; this is possible only by solving

flow equations which contain an adequate description of all rele-

vant chemical and physical processes: the rates at which the

reactions proceed, the conversion of chemical energy to heat, the

conduction of heat, the diffusion of the various species, and the
effect of viscous forces. In the traditional engineering litera-

ture such problems are treated analytically, at the cost of

drastic simplification which still retain shreds of the physico-

chemical processes responsible for the phenomenon under  investiga-

1
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tion. This is the only avenue open, unless, as F.A. Williams

remarks in his treatise on combustion theory, "one is willing to

expend the labor required to obtain complete numerical solutions" .

With the advent of modern computers and modern numericar methods

for calculating fluid flows, scientists are willing - and able -

tb expend such labor, although the complete modelling of a combus-

tion problem, tracing dozens of intermediary products participating

in the reaction, is beyond the scope of present day numerical

methods. Much current research is directed at adopting existing

methods for calculating fluid flows to the calculation of reacting

flows.  Many of these existing methods employ stabilizing devices,

of which artificial viscosity is the most prevalent, that cause

only marginal and acceptable numerical inaccuracies for non-

reacting flows but would distort essential features of reacting

flows such as flame velocity that depend on a balance between

transport, heat conduction, and energy production. A. Chorin has

made the important observation that among the many available

methods  the one developed by Glimm,  [9] ,  is the freest of artifi-

cial encumbrances. In Section 6 of this lecture we describe how
---.....-*.---,»......„--S---------V---.*

andwhy Glimm's method works fo _nonreacting flows; the adoption
--'*-I--'.-------4,-.--I.-'.-I.-,----.+-

to reacting flows is described in a subsequent lecture by Chorin.

Another phenomenon of numerical schemes which are of higher

than minimal order of accuracy is oscillatory behavior near a

discontinuity, which results in an overshooting-of peak values.

This is present in Lax-Wendroff type difference schemes, and also

in spectral schemes, on account of the Gibbs phenomenon. In

2
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ordinary fluid dynamics such an overshoot, when not excessive, is
merely an aesthetic blemish; in reacting flows, where the rate of
chemical reaction is so sensitive to temperature, an overshoot
would,prematurely trigger off ignition and would falsify the time
history of burning. One cure for overshooting in LW or other
types of higher order schemes lies in hybridization combined with
artificial compression, as developed by A. Harten,  [15 ]. The case

for spectral methods lies in applying some summation method.

2. The equations of fluid dynamics

A conservation law asserts that the change in the amount of
a substance contained in any portion of space is due to the flux
of that substance across the boundary of the portion of space under
consideration.  Let's denote the density of the substance by u, its
flux by f, and the portion of space under consideration by G.
Then the conservation law says that                                      _

tt
(2.1) I udx ,  I f·v dSdt =0,

G     s   s  bG

where v denotes the outward normal to the boundary 8G of G.  Using

the divergence theorem the boundary integral term can be written as
t

  f div f dxdt .
S G

Letting s tend to t and G shrink to a point we deduce that at every
point where u and f are differentiable, the differential conserva-
tion law

3
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(2.2) U  + div f=0
t

is satisfied.

The rest of this section is devoted to a brief discussion of

the classical conservation laws of mass, momentum and energy in

fluid dynamics. We shall show how various transport mechanisms can

ba expressed by a suitable choice of flux.

We shall use the notation

p = mass density

M = momentum density

E = energy density

Momentum and energy densities can be expressed as follows:

(2.3) M = pV , E  =   pe  +2   pV

1    2

where

V = flow velocity

e = internal energy per unit mass

Since the fluid is streaming past G with velocity V, mass is

convected out of G at the rate

.1 p',T·v,5 .
3G

The mass flux due to this convection is

(2.4)                  f          =p V=M.
conv mass conv

An additional flux of mass is due to diffusion; this is propor-

tional to the negative gradient of mass density:

4
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(2.4)                 f          = -D grad p ;diff mass diff

D is called the coefficient of diffusion.

Momentum flux is the sum of two kinds of term, each repre-

senting two distinct transport mechanisms: convection, and impulse

of forces exerted by the fluid. The convective term is entirely

analogous to (2.4) and is of the formconv

i               i(2.5)                    f         =M Vconv mom conv

where the superscript i refers to the 1 Cartesian component,
. th

i = 1,2,3. To derive the impulsive terms, denote by F the force

per unit area exerted by the fluid across a surface element through

a point x and with outward normal v. It is a basic law of

continuum mechanics that F has the form

(2.6) F = Pv ,

where P, called the pressure tensor, is a symmetric matrix function

of x.  The impulse of the force F of form (2.6) changes the

momentum of the fluid contained in G at the rate

1      Pv ds   .4
3G

. thThe rate at which momentum in the 1 coordinate direction changes

is thus

-   f      'i.v    'S
3G

where pi is the ith row of P. This shows that

5
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i                  i

(2.7)P                f           =Pmomentum P

For a nonviscous fluid the pressure tensor is scalar, i.e.

the identity multiplied by the scalar pressure p:

(2.8) P = PI .

. th
In this case the flux of the momentum in the 1 direction is

(2.7)            f                               =   pe , e  = unit vector in 1 direction .i              i      i                  .th
p    momentum p

For viscous fluids the scalar pressure tensor has to be augmented

by a matrix which for incompressible fluids takes the simple form

(2.9)                                          p             =  11   (-avl   +  -ayl j      ;
Visc 2  8x.   ax. 1

J 1

A is called the coefficient of viscosity. The flux of momentum in

th
the i direction due to viscous forces can be obtained by setting

(2.9) into (2.7)P:

(2.7) f omentum visc =   grad Vi +Vx ] .
Vlsc 1

Energy flux is the SUIn of three terms; the first represents

the effect of convection and has the value

(2.10)                 f            = EV .conv energy conv

The work done by a force of form (2.6) changes the energy contained

in G at the rate

  V·FdS --
 

V·PvdS .
J
AG               G

6
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Since P is a symmetric matrix, the right side can be written as

-    ..1      v  ·  P'ds     ,

this shows that the energy flux due to work done by the pressure

tensor is

(2.10)p                  f         = PV .
energy P

If P is scalar, we have from (2.8) that

(2.10)  fenergy P
= PV .

If viscosity plays a significant role, then (2.10)  has to be
P

augmented by (2.10)p, with P given by (2.9).
There is a third mechanism for transferring energy in and out

of G: heat conduction. Newton's law states that the energy flux

due to heat conduction is proportional to the negative temperature

gradient:

(2.10)h              f            = -c grad T ,
energy ·heat

c is called the coefficient of heat conduction.

Flux across boundaries is not the only transfer mechanism;

an additional change in the amount of a given substance can be

caused by the continued creation or annihilation of substances due

to sources or sinks distributed throughout space. Denote the rate

of generation of substance by S; S is called the source strength

(when S is negative, it measures the sink strength).  The total

amount created in a domain G during the time interval (s, t) is

7
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t

     S»,t ,
s G

and this has to equal the left side of (2.1); thus we obtain the

e quat i on:
t     t                  t

(2.11)
    udx        + f   f  f·vdSdt   = f          S dxdt    .

G     s   s BG s G

From this we can derive as before the analogue of the differential

form (2.2), which for equation (2.11) is

(2.12) u +div f=S.
t

There are many processes in which source terms play an important

role, par excellence chemically reacting flows; the chemical re-

action is a source of mass for the products of the reaction, and a

sink for the reactants. If the reaction is exothermic it is a

source of heat energy, if endothermic a sink of energy. These

source strengths will be denoted as follows:

S        = r. ,mass i    1

where i labels the species participating in the chemical reaction

and r., called a reaction rate, is the rate at which the density1

of the species i is changing as a result of the chemical reaction.

The reaction rates ri at x depend on the densities of the species

participating in the reaction at x. The strength of the heat

source is denoted by

S         =q,energy

8
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where q is the rate of energy release during the reaction; q is a
function of the densities of the reactants.

Another energy transfer mechanism that is described in terms

of sources and sinks is radiation; this mechanism becomes impor-

iant at high temperatures.

The foregoing discussion shows that the conservation laws of
fluid dynamics may contain a variety of fluxes and source terms.

In Section 4 we shall show how the method of fractional steps can
--*ill---#-$-*lillI--4
be used to disentangle the various transfer mechanisms from each

other in the construction of approximate numerical solutions.

3. Theory of shock waves

It follows from the discussion in Section 2 that if diffusion,

viscosity, heat conduction and chemical reactions are neglected,

the laws of conservation of mass, momentum and energy are

pt + div M=O  ,

(3.1)                  iMt  +  div    ( Miv )  +p x      =   O   ,
1

Et  + div    (E V   +pV )    =   0    .

To make this system self-contained we have to adjoin relations

(2.3):

(3.2) M = pV , E = pe + 2- PV   ,
1   2

and the equation of state, which relates three thermodynamic

variables, say e, p, p:

9
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(3 ·3) p = p(e, p) 0

The simplest equation of state is the classical polytropic relation

(3.3 ) ' p = (y-1)ep , y = const.

The system of conservation laws (3.1) supplemented by (3·2) and

(3·3) is of the general form

(3.4 ) u   + div  f    =  0 , k = 1,...,N ,
kk
t

kwhere each f is a function of the densities themselves:

(3·5) fk = fk(ul'... uN) .

To simplify the discussion we turn now to one-dimensional flows;

a brief discussion of the two-dimensional case will be given at the

end.  Dropping dependence on y and z in (3.4) leaves

(3.6) u +f  =0.k   k
t    x

To analyze solutions of such a system we carry out the differentia-

tion'with respect to x in (3.6); we get a first order system which

in matrix notation can be written as

(3.7) u +A(u)u = 0t         x.

where u = (ul,...,uN)t and A is the matrix gradient of

f = (fl, N)t...,f    with respect to u:

3fk
(3.8) A     =       (akj)        ,                    ak j      =     3-u--       '

This is a system of quasilineat equations; it is well known that

10
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in order for the initial value problem to be properly posed, (3·7)
*

has to be hyperbolic, i.e. the matrix A has to have real eigen-
1        N

values a ,...,a , themselves functions of U. The eigenvalues have

a very interesting physical interpretation: they are the local

velocities with which sharp signals propagate in the medium

described by equations (3.7).  These are called the characteristic

velocities of the equation (3.7).

The one-dimensional version of the system  (3.1), (3.2),

(3.3) is hyperbolic in this sense, provided that pressure is an

increasing function of p at constant entropy. Since
d    I-el = -2-,  when p is given as function of p and e
dp  lentroPY=const   Pv

its derivative with respect to p at constant entropy is given by

(3.9)                                               dp                                                             ap    1     P      ap

·a-F                  = 3F -7 3E ·entropy=const

The increasing character is expressed by setting

(3.10)                dP                  2=      =c .
entropy=const

The quantity c is called sound speed. In the polytropic  case  (3.3 )

we have

(3.10), c2 =   
P

The characteristic velocities for the equation of gas dynamics are

*
If the eigenvalues are distinct, this condition suffices, in case

of a ·multiple eigenvalue additional conditions have to be imposed.

11
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(3.11) V-C , C, V+C .

According to. the general theory of nonlinear hyperbolic equa-

tions of form (3.7), we may prescribe the initial values u(x, 0)

arbitrarily; the corresponding solution U at the point x, t is

uniquely determined by the initial data, in fact by the initial

data on a finite interval, called the domain of dependence of the

point (x, t) ; the domain of dependence is the smallest interval

containing the intersection of all characteristic curves through

x, t with the initial line t = 0; a characteristic curve is one

which propagates with one of the characteristic velocities, i.e.

satisfies one of the differential equations

(3.12) -dT=  a   l u,1 , u = u(x, t) , k = 1,...,N .dx    k, ,

In general solutions of a nonlinear hyperbolic equation

develop singularities after a certain time has elapsed. The source

of this breakdown is easiest seen for a single conservation law:

(3.13 ) u +f(u)  =0,  ,tx

which can be written as

df
(3.14) u      +  a(u)u x   =    O    ,            a    =    dut

The left side of (3.14) can be interpreted as the derivative of u

in the characteristic direction:

(3.15) - =0,  where  - = a(u) .
du dx
dt dt

This equation says that u is constant along the characteristic

12
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curve, but then the speed a(u) is constant along the characteris-

tic curve, and so it follows that the characteristic curve is a

straight line.  Now let x1 and x2 denote any two points on the

initial line t = 0, u(x, 0) the prescribed initial function.  The

speeds of the characteristic lines issuing from these points are

al = a(u(xl)) and a2 = a(u(x2)); if these two lines are on colli-

sion course, then at the point (x, t) of their intersection u(x, t)

has to be equal to both ul and u2' which shows that no solution

can exist beyond that time, at least not a continuous one.

What does exist beyond that time? Experiments disclose the

appearance of discontinuous solutions. In what follows we outline

briefly the theory of these. For a mathematical definition of

discontinuous solutions we have to go. back to the physical defini-

tion of a conservation law: we say that u is a solution of the

system of conservation laws (3.4) if the integral relations (2.1)

are satisfied for all domains D and all times t and s. An entirely

equivalent formulation is to require that the equations (3.4) be

satisfied in the sense of distribution theory; that is, if we

multiply  (4.4)  by any smooth test function w(x, t) that vanishes

for |x| large, and if we integrate by parts, the resulting integral

relation

(3.16)   J  (wtuk +grad u . fk)dxdt

-  w(x, T')uk"(x, T')dx + 'w(x, O)uk(x, O)dx = 0

holds for k = 1,...,N.

13
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Suppose that u is a piecewise smooth function in regions

separated by smooth surfaces. It is not hard to show that u satis-

fies (3.4) in the distribution sense (3.16) iff
i)  u satisfies equation (3.4) pointwise in each smooth

region,

ii)  across each surface of discontinuity the jump relations

(3.17) s[u]  =  [ f] ·v

hold, where [ ] denotes the jump of the quantity in brackets

across the surface of discontinuity, v the direction in which the

surface propagates, and s the speed with which it propagates.

These relations, called the Rankine-Hugoniot conditions and

abbreviated as R-H, are easily derived from (3.16), or from the

more physical equation (3.1).

In case of one space dimension the jump relations take the

form

(3.18) s[u ] = [fk] ,  k.= 1,...,N ,

where s is the speed with which the discontinuity propagates from

left to right.

For small discontinuities the jump relation has a simple

consequence.  Using relation (3.8) we can write

[f] = A[u] ,

where A is very close  to A(u) = gradu f . .Substituting the above

into (4.18) gives

14
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(3.18)1 sIU] = A[u] ,

which shows that for [u] small, s is very close to an eigenvalue
of A. Since these are the propagation velocities we conclude that

small discontinuities propagate with velocities very close to the

velocities of sharp signals - a most plausible result.

For a good·theory of discontinuous solutions two things must
be shown:

a) that every initial value problem has a solution in the

sense of (4.16) which exists for all times t > 0.

b) that this solution is unique.

It turns out that b) is falsel  The following example shows

it so for the single conservation law

(3.19)
ut  +(21  u 2)x  =  0   .

Define the function ul by

  0  for  x/2 < 1/2
(3.20)1 ul(x, t) = 1

<1  for  1/2 < x/t

Since a constant satisfies equation (3.19 ), we see that ul consists

of two solutions fitted together along the line x/t = 1/2.  The

speed of propagation of this line is chosen as s = 1/2, so that the

R-H relation (3.18), for [ul] = 1-0 =1, [f] = 1/2 -0= 1/2, is

satisfied.  Thus ul is a solution of (3.19) in the distribution
sense. Next we define

15
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0   for  x/t < 1/4

(3.20)2 u2(x, t) = 11/2  for  1/4 < x/t < 3/4

, 1   for  3/4 < x/t

Here three constant states u = 0, 1/2, 1 are fitted together along

two lines, whose propagation speed is chosen as s = 1/4 and s = 3/4

so that the R-H relation (3.18) is satisfied at both discontinui-

ties; thus u2 satisfies (3.19) in the distribution sense.  Finally

we define

, 0   for  x/t < 0

(3.20) u.3(x,t) = ix/t  for  0 < x/t < 13

ll for  1 < x/t .

Here the two constant states u=0 and u=1 are joined continu-

ously by the function x/t; this function satisfies equation (3·19)

pointwise.

The three functions ul' u2' u3 have the same.initial value:

u=0 for x<O,u=1 for 1<x. Clearly many more are possible.

We abstract from these examples a principle that eliminates all

but one of these solutions.

Let u  and u  be two constants denoting the state on the left2              r
and on the right of a discontinuity. Let

f  -f
8    r

(3.21) S = U  -U   '2 r

where

16
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fr = f(ur) '   f£ = f(uf) ;
then

 uf  for  x/t < s
(3.22) u(x, t) = 5

lur  for  s < x/t

is  a discontinuous solution  of  (3.13 )  in the integral sense.    We

say that this discontinuity can be split if there is a value of v

between u and ur such that£ -
f -f(v) f(v) - f(3.23) S = S =
8                                     r

E   u -v '   r   v-u8                                                r

satisfy

(3.24)                        s  <sE r

In this case the split solution

uf  for  x/t < sf

usplit(x,t) =t v   for  sf < x/t <s r

u   for  s  < x/tc r   r

also satisfies the integral form of the conservation law (3.13),

and  has  the same initial ·value  as the solution u defined  by  (3.22
We call a discontinuity that can be split unstable. Solutions

with unstable discontinuities are rejected as physically not

realizable. Stability is opposite of instability:

A discontinuity (uf, ur) is called stable if it cannot be

split, i.e. if for all v between u£ and u- r

17
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(3.25) S   >S8- r

Using the definitions (3.21) of s and (3.23) of sf, sr we
can write

.UE- V V -Ur
S = S + S

uf  - ur    f       ug  - ur    r

Since v lies between u and u , this shows that s is a convexE r
combination of s and s : so it follows from (3.25) that

8        r.

(3.25)' sf f s 1 sr 0

Again using (3·21), (3·23) we can write this as

ff- f(v)   ff - fr   f(v) - fr(3.25)"                                       >              >
U -V   - U   -U

- V-U2 r  r

Letting v tend to uf or ur respectively, and recalling that

df/du = a(u), we deduce that

(3.26) a f z s l a r'

This expresses the fact that sound waves originating on either

side of the discontinuity propagate toward the discontinuity.

The theoretical significance of this condition emerges if we look

upon a discontinuous solution as a solution of a mixed initial-

boundary value problem, the discontinuity serving as an internal

boundary. Condition (3.26) guarantees that every characteristic

drawn backward from either side of the discontinuity reaches the

initial line. This shows that the initial data determine uniquely

the solution on either side of the discontinuity; the R-H

18
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condition (3.21) then serves as an ordinary differential equation

for the determination of the line of discontinuity x = x(t), with

s = dx/dt.  We shall call (3.26) the'characteristic condition.
If f(u) has no inflection points, then (3.26) implies (3.25).

Suppose, e.g., that f > 0; then f' = a is an increasing functionUU

of u, so (3·26) implies that u  >u.  Since difference quotientE r
also are increasing functions of their arguments, (3.25)" follows.
When f has inflection points, the stability condition (3.25) is a

genuine additional restriction.

It can be shown that every initial value problem for a single

conservation   law    (3.13)    has    a   uni que solution   in the integral

sense (3.16) that exists for all time t>0 and all whose dis-
continuities are stable in the sense of (3.25). In Section 7 we

shall prove the uniqueness of such a solution, and construct solu-

tions with piecewise constant initial data.

We turn now from single conservation laws to systems. Here

we have not one but N signal speeds al(u),...,aN(u).  We claim

that the appropriate extension of the characteristic condition

(3.26) to this case is:

There exists an index k, 1<k<N, such that
- -

(3.27)1 a t u i>s>a Cur)
k , .' k,  '

-    .  2,

while

k-1, k+1,
(3.27)2              a   iu ) <s<a Cur . 2
A discontinuity satisfying this condition is called a k-shock.

The left half of the two inequalities says that exactly N-k+1

19
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characteristic curves impinging on the discontinulty from the

left; the right half of the inequalities say that exactly k impinge

from the right. So altogether the total number of characteristics

that impinge on the discontinuity from either side is N+1. Each

of these characteristics carries one piece of information; these

N+1 data, combined with the N-1 relations that can be obtained

from the N  R-H conditions (3.18) by eliminatihg s, are needed to

determine, iteratively, the 2N components of uf and ur.

We proceed now to show that solutions whose discontinuities

violate the characteristic conditions (3.27) can be split into

rarefaction waves, and thus are in this sense unstable. Therefore

such solutions are rejected as not realizable physically.

The conservation laws (3.6) in both differential and integral

form are invariant under a uniform stretching of ,both the x and t

variables; it follows that (3.6) has so-called centered solutions,

i.e. solutions that depend on x/t alone.  We shall describe now

these solutions; there are two kinds: shocks and rarefaction

waves. A shock is of the form

/ uf    for    x/t  <  s
(3.28) u(x, t) = &

u   for  s < x/t\r

whe re the states    u£   and ur satisfy   the R-H conditions    (3. 18).       We

ask: given u , describe the set of states u  that can be connectedE                                                                        r

to u  through a single shock.  This is easily answered if we are
.g

looking for weak shocks, i.e. states u  close to u . We claim that
r                           Z

they form N one-parameter families ur = u(e); we take now the jump

relation (3.18):

20
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s[u-ug]    =   f(u)  -f(u£)

and differentiate twice, with respect to s.  Denoting d/de by '
and re calling    (3.8) :

gradu f  =   A
we get

(3.29)1 s'  [ u]   + su'    =   Au'    ,

(3.29)2 s"[u] +2s'u'+su" = Au"+A'u'

Setting s=O i n (3.29)1 we get

sul = Aut

which shows that s(0) is one of the eigenvalues of A = A(uf),

u'(0) the corresponding eigenvector r= r(uf).  Setting E=O i n

(3.29)2 and setting u' =r,s=a w e get

(3.30) 2 s' r +  au"    =   Au"   +A'  r    .

Now take the eigenvalue relation

ar =A r,   u= u(g) ,

and differentiate at £ = O:

(3.31) a'r+ar' = Ar'+A'r .

Subtracting this from (3.30) gives

(2 s '    -  a'  )r   +a(u"   -  r'  )    =   A(u"  -    r'  )     .

21
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Multiplying this with the left eigenvector f of A gives

(3·32) 2s' = a'

Now

at = ur·gradua = r.gradua .

Let's assume that r·gradua 0 0, then

(3.33 ) r·gradua = 1

can be achieved by normalizing r. It follows  from  (3.32),  (3.33 )
and _U'    =_  r.that  .

(3.34) 1 = a' = 1 s'2

Note  that when  r is normalized by  (3 ·33 ), the parameter E needs

rescaling in order to have u' = r.  It is easy to see that, for s

small enough, the characteristic condition (3.27) is satisfied iff

E is negative.

Since a is any one of N eigenvalues, we see that N one-

parameter families u  can be connected to uf by a single shock;

exactly  one  half  of each family satisfies condition  (3.27).
We turn now to rarefaction waves; differentiable solutions

of (3·7) of form

(3 ·35) u(x, t) = w(p) ,   p= x/t .

Substituting this into (3·7) we get

-pw '  +A w'    =   0   ,

which is solved by
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(3.36) w' = cr(w) , p = a(w) .

Differentiating the second relation with respect to p and using
the first we get

(3.37) 1 = gradua·w = c gradua·r .

In view of the normalization (3·33), c = 1.  To obtain w(p) we

solve the ODE (3·36), with initial value

w(po) =u,   p  = a(u )8        0        8.

Now let s be a small positive quantity. We define the centered

rarefaction wave as the composite

/ U for x/t < p8       - 0

(3.38) u(x, t) = 7 w(x/t)   for   p  < x/t < po+E0

£w (po+E)  for   Po+8 1 x/t .

The state ur = w(p +E) is connected to uf through a rarefaction
wave; since a is one of N possible eigenvalues, we have N halves

of one-parameter families of states u that can be connected to ur                                                                 2
by a single rarefaction wave.

Note that the two halves of the one-parameter families to

which uf can be connected through either a shock or a rarefaction
wave can be fitted together differentiably to form N complete one-

paramete r families u (e), k = 1,...,N.  Given now any state u .r, k                                          o'
it can be connected to a one-parameter family of states ul(El)
through a wave pertaining to the lowest speed al; ul in turn can
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be connected to a one-parameter family of states u2(El'E2) through

a wave pertaining to the second wave speed a2' etc.  Continuing in

this fashion we see that by going through all available waves we

can connect any state u  to an N parameter family of states
du

UN = UN(El,   ,EN) = UN(E).  We have shown earlier that 32- = rk;k
since the right eigenvectors rk are linearly independent it follows

that for s small the family uN(E) simply covers a full neighbor-

hood of u . Thus we have shown:
0

Suppose condition (3.33) holds; then given any two states

uo and un sufficiently close, there exists a. solution. u(x, t) of
(3.6) with initial values

C u      for    x  <  00
(3.39) U(X, 0) = 2

u for 0<X.
\ N

This solution is centered, i.e. a function of x/t, and consists of

N+1 constant states separated by shocks or centered rarefaction

waves:

t

U2

u1                    u 3

UO
U4

X

Figure 3.1

An initial value problem of form (3·39), with initial data con-

sisting of two constant states, is called a Riemann initial value

problem.
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Condition (3·33 ) is a kind of a convexity condition; there          j
are some important cases where it fails to hold, e.g. for so-
called contact discontinuities r·gradua s 0; in this case the con-
cept of shock and rarefaction wave coalesce and the result still           
holds.

For what systems does the above result hold in the large?
that is, if we do not restrict the parameters g to be small, how           
large a neighborhood of.uQ is covered by u(g), and is the covering         simple? if not, the initial value problem (3·39) has several solu-        1
tions and we need some criterion in addition to (3.27) to identify         
the physically realizable solutions.

Bethe and Weyl have shown, see [ 1] and [34], that if p is a
1                                               1convex function of p at constant entropy, then the initial value        I

problem (3·39) has only one solution. Wendroff, [33], has                 I
investigated the situation when this convexity condition is                 violated.

In an interesting sequence of papers [24], Liu has                   I
analyzed the Riemann initial value problem when (3·33) is violated;        1
he has derived an analogue of condition (3.25) for systems, and

has applied it to the equations of gas dynamics.                            i

4. The method of fractional steps                                           1
We are interested in approximating solutions of evolution              

equations of the schematic form                                             I

(4.1)                       ut = L(u)

by employing -approximata-bolution operators Sh(L) which, when                
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applied to the initial value u  = u(0) of a solution u of (4
.1)

furnishes an approximation to the value of the solution u at h:

(4.2) Sh(L)(uo)
= u(h)+error .

Here h is a small quantity; to approximate u(t), t not small, the

operator Sh is applied repeatedly:

(4.2), S (L)(uo) = u(t) +error ,    t=N h.

The approximating operator Sh(L) is constructed so that the er
ror

in (4.2) is small; this implies that the error-in (4.2)11 is also
if, and only if, the scheme is stable in the sense that S (L) does

not magnify.  If this condition is fulfilled, then the error i
n

(4.2)N is, roughly, N times the error in (4.2). This shows that we

must choose Sh so that the error in (4.2) is 0(h2).

The error in (4.2) can be appraised by Taylor's theorem:

u(h) = u(0)+hut(0)+0(h2) - uo +hL(u )+0(h2)..

This shows that in order to make the error in (4.2), 0(h2), Sh(L)
must satisfy

(4.3 ) S h(L)    =   I  + h L  +0(h 2)    .

In many problems, par excellence in fluid dynamics the operator L

is the sum of several operators Li' each describing a different

physical mechanism:

(4.4) L = F--L.
- 1

The method of fractional steps constructs an approximate solution
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operator. for (4.1) as the product of approximate solution operators

Sh(Li) of the partial equations

(4..5)i ut = Li(u) .

Each Sh(Li) satisfies

(4.6)i Sh (L i)    =   I +  hLi +  0(h 2)    .

We set

(4.7)
Sh (L)    =  T-T   Sh (L i)     ·

It is easy to show that if each Li satisfies (4.6)i then Sh(L)
defined by (4.7) satisfies (4.3), with L =  - Li

The method of fractional steps has several distinct

advantages:

i) Each equation (4.5)i usually has its own special feature
(symmetry, invariance, etc.) which can be exploited to construct

an efficient scheme Sh(Li)*

ii) If each scheme Sh(Li) is stable in the sense that it does
not increase some norm, such as the L  norm, common to all equa-
tions (4.5)i, then likewise the product (4.7) does not increase
that norm and so is automatically stable.  Even if each Sh(Li)
increase dorm slightly

I'Sh(Li)11 1 1+0(h) ,

it only causes a similar slight,norm increase by Sh(L).  Thus
instead of having to check the stability of a complicated composite
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scheme it suffices to check the stability of each of its factors.

iii) Programming convenience: one can write a program for

implementing a scheme of form (4.5) which consists of n distinct

packages strung together in series, each package solves an equation

of form (4.6)i.  If one wants to incorporate an improved method
. thfor solving the 1 equation, only one of the packages has to be

rewritten.

iv) Yet another advantage is described in Section 5.

Relation  (4.3 )  says that applying the approximation scheme

once leads to an error of size 0(h2).  Repeating the approximation.

N times, where Nh =T= final time results in cumulative error of

size NO(h2  = 0(h), provided that the scheme is stable.  To bring

the error down to acceptable size may require making h so small

that  the time required to perform  N  = T/h steps is unacceptable.

In this case it is possible to reduce the number of steps required

by employing a scheme that is accurate to second order, i.e. that

approximates u(h) with an error .0(h  ). We explain how to do this

in case the operator L is linear; we allow L to depend on t.

We start with Taylor's theorem to second order:

2

u(h) = u(0) +hut(0) +   utt(0) +0(h3)

The first derivative of u is given by (4.1); the second can be

obtained by diffe rentiating (4.1) with respect to t:

utt   =   Lut  +  Ltu   =    (L 2  +  Lt)u    .

Substituting into the Taylor approximation gives
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(4.8 )           u(h)    =   u(0)  +  hI,(0)u(0)    +   .     [ IP (0)+Lt (O)]u(0)+0(h1)     .

This shows that for second order accuracy we must have

(4.9)
S h(L)    =    I+h L(0)    +   1     [L 2. (0)  +   L t(0) 1   +  0(h 3)     .

The reader may easily convince himself, in the simple case when all

L. are independent of t, that even if each S. is a second order1                                                         1

approximation to (4.5)i:

(4.10)
Sh· (L i)   =   I + hLi (O)   +  ·'    L  (0)    ,

the product (4.7) is still only a first order approximation to

(4.1), unless all the L. commute (which they don't in general).
1

Gilbert Strang,  [32], has devised a variant  of the method which

does not suffer from this restriction; we shall describe it for two

terms, i.e. when L is of the form

(4.11) L = A+B .

Theorem (Strang):  Suppose Sh(A) and Sh(B) are second order

approximations to

u  = Au and   ut = Bu ,t

respectively. Then

(4.12)
Sh(L)  = Sh/2(8(0))Sh(A(0)) Sh/2(B (2))

is a second order approximation to solutions of (4.1).

The proof is a simple matter of algebra:  By (4.9) we have,

modulo terms 0(h ):
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S          (8(0) )    =   I  +h   8(0)    +  .    [8 2 +  Btl     'h/2

Sh*(A,(.0 ),)     =    I  +  hA (0)     +        1[ A2   +  At l          '

Sh/2 (B( )) = I +·  B(·1 ) + -h '[82 +Bt]

= I +·  8(0) + 1 1 [B2 +3Btl  .
-

The triple product. (4.12) is, mod 0(h3),

2

I  + h [A(0)   + 8(0) ]     +        [A 2  +  At  +    82  + B t    +    +   BA  + AB]     ,

and this by (4.11) is indeed equal to

2

I  + hL(0)   +  h-   [I,2  + Ltl    .

We turn now to nonlinear equations of the form (2.12); where

the flux f is the sum of fluxes f.:3

(4.13) ut + 7-- div f j=S.
J

The analogue of. the method.of fractional steps constructs approxi-

mations to solutions of (4.13) as a product of operators approxi-

mating solutions of the partial equations

(4.14)i
u   + div  f.  =  0
t         J

and

(4.15)                        u  =S.t

In practice the equations (4.14)i are often further decomposed as
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1 2 3u+B f+8 2+B f  =Ot x y z

and their solutions approximated by products of operators approxi-

mating solutions of the partial equations

(4.16) u +3 f =0, u +3 f2=0, u +8 f3=0·
1

t x t Y t  .z

If (4.13) stands for the equations of fluid dynamics, then

the partial equations (4.14)i might stand for equations of fluid

dynamics in which the only transport mechanisms are convection and

those are due to scalar pressure, or might. describe fluid flow
governed by diffusion, viscosity and heat conduction; (4.15)

describes the chemical reaction. Since these partial systems

evolve on diffe rent time scales, the way they are mixed together

is crucial to the success of the fractional step method. The

method of fractional steps has been developed by Godunov, [11],
Marchuk [25] and Yanenko [35]; it is an outgrowth of the alter-

nating direction method of Peaceman, Ratchford and Douglas, [28].

5. Difference approximation of conservation laws

We start with one dimensional conservation laws:

(5.1) ut+fx=O .

We divide x-space into cells I of length 8,k

(5.2)
Ik   =    ( (k  -1/2 )5, (k  + 1/2 )5)     .

We denote by v  an approximation to the average density of u over
n+1/2the cell Ik at time step n, and by g an approximation to the
k+1/2
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average flux f between time step n and n+1/2 at the boundary be-

tween I and I The approximation to (5.1) then is
k      k+1'

n+1 n n+1/2 n+1/2
(5-3) V -v + T (g

k     k  E   k+1/2 -  k-1/2  = 0

where T is the time step from n to n+1. Since the flux f is a
n+1/2

function of the density u, we take the approximate flux gk+1/2 to

be a function of the approximate densities at a finite number of

points near the point k+1/2 and time n+1/2:

(5.4) gk   2 = g(vk-r+1'"''vk+r'vk l+1'···,vk l) ·

We require g to be consistent with f, in the sense that

(5·5) g(u,...,u) = f(u) .

It is convenient to regard v as being defined for all x, t:

n
v(x, t) = vk   for  x in Ik ' t  <t<t +8. .n n

We show now that the consistency condition (5·5) guarantees that

if a sequence of--solutions of (5·3) with initial values uo(x)
tends   as  5, r  -+ 0 boundedly and almost everywhere   to some function

u(x, t), then this limit u is a solution of the integral form (4.16)

of the conservation law with initial value uQ(x).  For let w(x, t)

be any' smooth test function which is zero for x, t large; multiply

(5·3 )   by   8 w(k 6, t n) ' sum over"k and n and sum by parts; we get

<wk-1- wk  k    (wk -wk+1)  n+1/2(5.6) V +
 (          T                 n                       5               gk+1/2   5'r   =   5      w vko    .
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ntl/2If vk tends to u boundedly and a.e.., then gk:+1/2, defined by (5.4)
and satisfying (5·5), tends to f(u), boundedly and a.e., and (506)

tends to

_ J  (wtv +wxf )dxdt -  ' w(x, 0)u0(X)dx =0.
This is precisely relation (3.16).

Here are some examples of approximations to flux functions:

i)   2n+1/2          f( 1.1 )   + f(uk+1 )
 k+1/2         2        '

/n \

ii 1           n+1/2        - /Uk + Uli j

'      k+1/2     I<    2       /   ,1

n+ 1/2               f (u + 1  )    +  f ( u )iii)   2
k+1/2 2'

iv)  n+1/2 f (il ) + f (u +1)  T A/6 + "C \
'           k+1/2                             2                          -   25                     2   +1/11(f ( 1.,1  4-1 )  -  f (u ))

The following observations are obvious but useful.
a) If g is consistent with f, and if h is a function of v:

3
that vanishes when all its arguments are equal, then g+h too is
consistent with f. For example we can augment the approximate flux
function in i) to

n+1/2   f(u  ) + f( 1·i +1 )v)          gk+1/2   =                      2                          +   c (u    _  1.1 +1)    ,

another consistent flux approximation.

b)  Suppose  the  flux  f  is  the  S'lim of several fluxes
fl +f 2+  . . =f, and suppose we treat these fluxes by the methodof
fractional steps expl»ined in Section 4.  If at each step we employ
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a flux approximation consistent with the partial flux fi' then the

overall scheme will be consistent with the total flux f. This

applies in particular to the important case when the number of

space variables is greater than 1, and the flux has an x and a y

component.

c) The flux approximation has to be so chosen that the scheme

(5·3) is stable. Our examples i) and ii) are unstable, iii) is
stable, iv) is stable if 5/T exceeds the signal speeds, and v) is

stable if c is large enough and 8/r is small enough.

6. The methods of Godunov and Glimm

These methods were devised for conservation laws in one space.

variab le:

(6.1) u+f  =0.
t    x

As in Section 5 we divide the x-axis into cells Ik' each of length

5, centered at x = k8, see (5.2).  Given any initial data u (x) we

can project it onto the space of functions which are constant on

each Ik by setting

(6.2)          v°(x) = vk = FJ   uo(x)dx ,  x in Ik .

We define the functiond vk+1/2(x, t) as the,solution of equation

(6.1)  with the .following initial values:

0    for  x < (k+1/2) 5vk
(6.3) vk+1/2(x, 0) =

vk+1  for  (k+1/2)5 < x
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This is a Riemann initial value problem of form (3.39); its solu-

tion consists of N+1 states separated by N waves centered at
x = (k+1/2)8, t = 0.  Each wave travels with a speed that equals
or is bounded by one of the signal speeds a. Denote the maximum

signal speed by |a| : it follows then that the centered wavesmax'

issuing from two adjacent centers (k-1/2)8 and (k+1/2)6 don't
intersect each other as long.as

6(6.4) t<
- 2Ial max

So during the time interval (6.4) the solutions v with
k+1/2

initial values  (6.3 )  can be fitted together  to form a single exact
solution v(x, t) of (6.1) with initial value v' given by (6.2).

This solution consists of constant states separated by centered
waves, see Fig. 6.1.

t•

litvvit
Figure 6.1

After time (6.4) the waves issuing from adjacent centers start to
interact; in a numerical method developed  in the fifties  [11],
Godunov replaces v(k, T) at T = 8/2 Ial by its piecewise constantmax
projection defined by (6.2).  Note that the integration indicated

by (6.2) need not be carried out explicitly; for v(x, t) is an exact
solution of (6.1), so the integral form of (6.1) gives
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T

  V(X, T)dx =U v(x, O)dx +  f(v((k-1/2)5,t))dt
I               I               0k            k

T

  f(v((k+1/2)8,t))dt6
0

This can be rewritten as

(6.5) vk = vk + E   k+1/2 -  k-1/2 1    0   T  
1/2 1/2

where

(6.6)  k+1/2 = f(vk+1/2(k+1/2)5,t) ,
1/2

since vk+1/2(x, t), being centered at (k+1/2)5, is independent of t.

Once vl has been determined as a piecewise constant function,

the basic step is repeated; this is done as many times as necessary

to reach the times T at which the phenomena under investigation

are taking place.  We denote by tl'...'tM the intermediate times

at which the projections (6.2) take place.

Note that if vk = vk+l, then vk+1/2(x, t) a vk; by (6.6) we
1/2have then gk+1/2 - f(vk); this proves that the approximate flux

(6.6) employed in Godunov's scheme is consistent with the exact

flux f.

Glimm' s method·resembles Godunov's inasmuch as the approxi-

, mations v(x, t) employed are-piecewise constant· functions of x at

the selected times tl't2 '..., and are exact solutions in the strips

t    <t<t, and are discontinuous across t=t. However Glimmn-1       n                                   n
defined v differently at time tn; instead of (6.2) Glimm sets

(6.7)
v(x,tn+0 )    =   v (k 8 +anB,tn- 0)     '            x   €    Ik'
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where v(x, tn+ 0) denotes the limiting values of v as t-+tn from
- below and above tA respectively, and (an} is a sequence of random

variables chosen from a sample uniformly distributed in (- 1 1)2' 2 '
nGlimm shows that for almost all choices of (a },

v = v(x, t, a) converges to an exact solution as 5 -+ 0.  Here is a

slightly modified form of his argument.

.Let  w(x, t) be a-smooth test function,   =  0  for   |x I large.
Multiply vt + f(v)x = 0 by w, and integrate by parts in the strip

tn-1 Z t -f tn; Re get

CO

'   [w(x, tn)v(x, tri-o) -w(x, t   )v(x, t   +0)]dxn-1 n-1
-CO

t           00rn r
_  J            J        Iwtv  + wxf(v)]dxdt   =   0    .

tn_ 1      -00

Sum over 0<n<M; denoting tM =T w e get- -

T 00

(6.8)      [wtv +wxf (v)]dxdt
0     -CD

00 00

-  ' w(x, T)v(x, T)dx +   w(x, 0)v(x, 0)dx = r
-00 - 00

where

M
(6.9) r = T-  r

T n
with

00

(6.10)        rn =ul'£ w(x, tn)[v(x, tn-o) -v(x, tn+O)]dx .
-CO                                                                                                   -

Lemma 6.1: Denote by n an upper bound for the total variation of

v(x, t) as function of x.  Then
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(6.11)           -    Ir | < cohst 69'wln - max

Proof:  Denote the variation of v(x, tn-1+0) over the union of Ik

and Ik+l by nk+1/2.  Since v is constant over each Ik'

(6.12)   nk-1-1/2 1 71

Glimm shows that for x in Ik

(6.13) Iv(x, tn-0) -v(x, tn+0)| < const (nk-1/2 +nk.+1/2)  '

for detailed proof we refer  to  [9] ;  here we merely observe  that

if   nk+1/2   and   nk-1/2   are  both  zero,    then  v(x, tn-1+0)   has   the   same
value in all three intervals I .I I so that v(x, t) isk-1' k'  k+1'

constant in I for t <t<t and therefore v(x, t -0)k n-1 n+1'

= v(x, tn+0) in Ik.  Thus if the right side of (6.13) is zero, so is

the left side; while this does not prove inequality (6.13), it

makes it plausible.

We multiply (6.13) by w(x, tn) and integrate over Ik; since

the length of Ik is 6 we obtain

(6.14)   J£ lw(x, tn)|lv(x, tn-0)- v(x, tn+0)1 dx
Ik

2 const 5(nk-1/2 +nk+1/2)'w max '

Comparing (6.10) and (6.11) we conclude that

 rnl Z const Blw|max 2 3-- nk+1/2 1 2 const 89'w|max '

where in the last step we used (6.12). This proves (6.11)·.
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The approximate solution v(x, t) depends on the sequence of
random variables a. Next we show

Lemma 6.2:

(6.15)     r dan I < const 529Iw II J   n 1_ ,

x max                            I
Proof:  The function v(x, t -0) does not depend on an, and
v(x, t +0) depends on an through formula (6.7).  So integrating

(6.10) gives

(6.16)   r dan - 3---
J    n           k    <w(x, tn)[v(x, tn-Oj -vk(tn)]dx ,

where

Fk (tn )    =   'l  j v (x, tn- O) dx    .
Ik

Since v is the mean value of v over I , the integral of [v -vk]k

over Ik is 0; therefore we deduce from (6.16) that

(6.17)
f r dan = I 1J   n

<[w<x, tn) - w(kO, tn)] [v (x, tn-o) -vk(tn)] di
It follows from (6.13) that for x in Ik

(6.18)
I v(x,  tn- 0)   - Fk (t n)  |    <   const    (9                  + 7                 )k-1/2 k+1/2  '

furthermore,

(6.19)
I w(x,t n)   -w(k 8, t n)  1   2   6  I w    Ix max

for all x in Ik.  Using (6.19) and (6.18) to estimate the integrand
shows
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  [w(x, trl) -w(k6,trl)l [v(x, trl-0) -vk(tn)]dx
Ik

1 const (nk-1/2 +nk+1/2)82'wx|max '

Summing over all k we deduce from (6.17), using (6.12), that (6.15)

holds.

Lemma  6.3:     For  m  0  n,

3 2, ,
(6.20) J'r rmrnda < const 5 n Iw'max'wx|max '

12 Mwhere da = da da ...da .

Proof:  Suppose m < n; then rm is independent of an; so we get,

using (6.11) and (6.15) that

  J   rmrndan     =      r m     J rnda    1    2   const   5 9 'w|max   5 2 9  Iwx|max
n I

Integrating with respect to 'the rest of the a  yields inequality

(6.20).

We are now ready for the main est·imate; using (6.11) and
(6.20) we get

( 6.21 )   J£ r2da = J ' ( T. - rn )2da = J  3--- r rnda

=F-M          [   2 da   +  3--        r   rdaL-r J n -7 - J  n m
2 2, 23 2,

1 Const MB n 'w'2ax +donst M 8 n lw|max'wx|max '

M is the number of time steps, 5 the size of the space step. Since

the   size    of    the    time step, subject    to   inequality    (6.4), is taken
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to be as large as possible, i.e.  6/2 Ia| , we havemax
M

T  =  tM  =  3--  tn - tn-1  Z  MB/2 l a I max1

Setting this into (6.21) we obtain the estimate

(6.22)
  r da 1 (5
F 2

where

2,(6.23)  C = const 9 'w|max la|maxT{Iwl max +TIa|max'wx|max1 '

In  [9] Glimm estimates for all t the total variation of the
approximate solutions v for all choices of a in terms of u total
variation of the initial data.  This gives an estimate for n valid
for all a.

The quantity r, defined by (6.8), is the amount by which the
approximation v fails to satisfy the integral form (4.16) of the
conservation law. We call r the residual, with respect to the test
function w.

Given any e, it follows from (6.23) that

Irl < g

2except possibly for an a-set of measure < (6s- .  Given N conserva-

tion laws and K test functions wl'...'wK' all residuals are < s
except possibly on a set which is the union of the exceptional
sets for each individual w and each conservation, and which may

-2therefore have as large a measure as CKNBE  ; this estimate is
unduly pessimistic, allowing for no overlap among the exceptional
sets.

41
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What are the implications for realistic values of the

parameters? Let's take the case that the total variation of the

initial data is 1; then we cannot expect a better estimate for 9

than n = 1.  Let's take a test function w with |wl = IW 1
=1.

max x max

Suppose the maximum sound speed |a| = 1, and let's take asmax

final time T = 1.  A realistic value for the constant in inequality

(6.18) is 1. Setting all these numbers into (6.23 ) gives C = 2,

so we conclude, for a single conservation law and test function,

that

Irl < E

-2
except possibly on ·a set of a of measure 262 It is not un-

-2
reasonable to want to make g = 10 , and ordinary prudence requires

making the measure of the exceptional set less than 10-2.  To

satisfy this we must. have

25 102 < 10-2 ,

i.e. the spatial stdp size 8 must be less than 5 x 10-51  This is a

very fine grid, hardly called for to achieve a resolution which,

with Iwl = IW I
= 1, is of the order of unity.max x max

It is illuminating to examine how Glimm's scheme treats a

particularly simple Riemann initial value problem

u for X<0
f

U(X, 0) =

u for 0<X,r

where u and u are so chosen that the exact solution consists of
2.              r

a single shock wave propagating with speed s:
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, <u            f o r          x     <st
(6.24) u(x, t) = ,

u for S t<X.\r

For this calculation it is convenient to take Ik = (k8,(k+1)5);
with this choice Glimm's scheme reads

(6.25)
v(x, t+0)  = v(ko + Bn6, tn-o)

where  Brl  =  an + 1/2,   n  =  1,2, . . .   .     Note  that  the  B's are uniformly
distributed in (0,1).

Since v(x, t-0) is the exact solution (6.24), we get from

(6.25) that
/

uf  for  x < J15
V (X, +0) = 4

,ur  for  J18 < x
where

1

Jl     =           1          i f          5 0          <     S T
\
0  if  6Bl > sr .

Repeating this M times we get

fu  for x< J 6
(6.26)

v(x,MT) = 1

1 8                                                                     M

lur  for  J O<xM
where

(6.27)              JM = no. of B  < sT/5 ,   j<M.

The location of the shock in the approximate solution at time

T = MT is
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3 3M      M5
(6.28) JNB = -Er N& = M T T.

As M -+ 00, JM/M
defined by (6.27) tends to sr/5, so the shock

sT   5
location tends to -T- = sT, the exact location of the shock at

8     T

time T. A simple calculation shows that the expected deviation

of J /M from its expected value sT/5 = K is c//9, where

c  = 4% (1-K)/1/57. So using   (6.28)   and  T  =  Mr  we  see   that  the

expected deviation of the calculated value of the shotk position

from the true one is

d(T/T)1/25 .

Let's take T = 1, 8/T = 1, s = 1/2; then K = 1/2.  To make the

expected deviation < s, we must have

2
6    <   87TE       •

-2For  s  =  10 this means   6   <  2·5 x 10-3.     This  is  not   too  bad  but

gets worse as T increases.

Note that the accuracy of Glimm's scheme applied to the

special Riemann problem above can be increased appreciably by

taking the sequence Bn not at random but as uniformly distributed

as possible. From the point of view of equidistribution an attrac-

tive choice is Bn = ne (mod 1), where e is an algebraic number,

say ,/ . The error in shock position when applied to the special

log N,
Riemann problem above is 0(  N  ).  The use of such sequences in

Monte Carlo calculations has been suggested by R.D. Richtmyer in

the early 50's, and in connection with Glimm's scheme by the

author, [21]. Chorin has successfully introduced other types of

well distributed sequences.
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Recently Tai Ping Liu succeeded in showing the convergence
of Glimm's scheme to a solution for equidistributed sequences when

the initial data are arbitrary. The time rate of convergence is

an open problem; its determination will have to be, most likely, a

combination of theory and numerical experimentation.

Godunov has successfully applied his method to systems of

conservation laws in several space variables by using the method

of fractional steps. Glimm's method has been applied by Chorin

in several space variables, again using the method of fractional

steps. No analytical results are available in this case.

A. Harten has observed that when Glimm's method is used in frac-

tional steps to calculate the propagation of a contact discontin-

uity in two dimensions, the resulting one dimensional problems are

resolved in terms of shocks. This introduces a certain amount of

excess entropy production.

7. Entropy and viscosity

In Section 3 we saw that several solutions in the integral

sense of a system of nonlinear conservation laws could have the

same initial values. Since the initial configuration ought to

determine the flow in the future, only one of these several solu-

tions can occur in nature, and all others have to be excluded on

the basis of some physical or mathematical principle. In Section

3 we have formulated two such principles:

i)  stability,  ii)  the characteristic condition.

In this section we formulate two further principles, and show

that, ih sufficiently simple cases, all four are equivalent.
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We start with the following question: if u is a smooth solu-

tion of the system of conservation laws (3.6):

(7.1) u +f(u) =0,tx

does u satisfy some other conservation law that is not merely a

linear combination of the equations (7.1).  To answer this we write

(3·7) in the differential form (3·7):

(7.2) u +A(u)u =0, A = grad f .tx

Let U = U(u) be some function of u; multiplying (7.2)  grad U

= (U 1'...,U N) we get
U U

(7 ·3) Ut  + grad   U A  ux   =   0    .

If there is a function F(u) such that

(7.4) grad UA = grad F

then  (7.3 )  can be written  as a conservation  law:

(7·5) U+F  =0.t .x

Since in our derivation we used the differential form (7.2) of the

equation,.we cannot conclude that a solution of (7.1) in the

integral sense satisfies (7.5) in the integral sense; in fact, as

we  shall  see, the ·opposite  of  this  is  true.

We remark that (7.4) is a system of N linear differential

equations for the two functions U and F. For N<2 there are

plenty of solutions; for N>2 there are none in general, except in

special cases. For example, Godunov :has observed that when A is
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symmetric, i.e.

3fi    fj
(7.6)

=3. I. 2'I3L
then

2
(7.7) U= F  uj and    F = 3--- u f  - g

satisfies (7.4), where g is defined by

(7.8) 85          =     f.1

BuJ      ,   j= 1'...,n ;

note that (7.6) is the compatibility relation for (7.8).  The

equations of gas dynamics, discussed in Section 3, have an extra

conservation law, where U is entropy S. Generalizing this case we
define U to be an entropy function for the system (7.1) if equation

(7.4) can be satisfied, and if U is a convex function of u.  Note
that U in (7·7) is a convex function; so is -S in gas dynamics.

According to the laws of thermodynamics, entropy is a non-

decreasing function along a particle path; we shall deduce a

similar property of the generalized entropy functions defined

above.  We look at solutions of (7.1) which are limits of viscous

equations.  We envisage here an artificial viscosity, of the form

(7.9) u +f = Au A>0.t x XX '

Suppose that as A - 0, solutions u(A) of (7.9) tend boundedly, a.e.

to a limit u.  Then ut(A) tends to ut' f(u(A))x to f(u)x and the
right side of (7.9) tends to 0 in the sense of. distributions;

therefore u satisfies in the distribution sense

u  +f (u) =0.t   x'
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Let's rewrite (7.9) in nonconservation form:

(7.9)' u  + Au = Aut    x     xx

Suppose U is an entropy function; then multiplying (7.9)' by

grad U we get, using (7.4),

(7.10) U  + Fx = A  grad U · uxx  't

Using the chain rule we get, differentiating Ux = grad U · ux'  that

T
(7.11) Uxx = grad U · uxx +UXUuuux I

Since U is an entropy function, it is convex, i.e. the matrix of

its second derivatives is positive definite:

(7.12) U   >0.
UU

We deduce from (7.11) and (7.12) that

grad U·u <U
XX - XX

Substituting this into (7.10) we get

(7.13) U +F < AU
t x- XX

Suppose that u(A) is a sequence of solutions of (7.9) that tends

as A-+ 0 boundedly and a.e. to a limit u.  Then U(A) = U(u(A)) and

F(A) = F(u(A)) tend to U and F in the sense of distributions,

while the right  side  of  (7.13 ) tends  to  zero  in the sense  of

distributions. So we have proved the

Viscosity Theorem: Let U be an entropy function for the system

(7.1).  Let u be a limit, boundedly, a.e., of a sequence u(A) of
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solutions of the viscous equations (7.9).  Then u satisfies the

conservation laws (7.1), and the inequality

(7.14) U(U)t+F(u)  <0.X-

Suppose u is a piecewise smooth solution with discontinu-

ities;  then Ut + Fx =  0 in the smooth regions, while  on a discon-
tinuity x = x(t)

(7.15)
ut+Fx = 5(x -x(t)){s[UE -url -[Ff -Frll .

We draw two conclusions from this:

(7.15),
s[U E   -Url   - [F E-  Fr]    2    o    .

Denote by U(t) the total entropy at time t:

(7.16) U-ct,= S U(x,t)dx ;

then

(7.16), 3:5 =J utdx = E s[ug -url - [Ff- Frl .
d.       2

This shows that the left side of (7.15)' is the rate at which

entropy is diminished at the discontinuity. (7·14) and (7.15)'

are called entropy conditions.

The viscosity theorem characterizes solutions of (7.1) that

are limits of viscous solutions without carrying out the limiting

procedure; the characterization is in terms of entropy.  We connect
now this entropy condition to the stability condition stated in

Section 3:
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Entropy Theorem: Let u be a piecewise continuous solution of a

single conservation law that satisfies the entropy inequality

(7.15)' for all entropy functions. Then the discontinuities of u

are stable in the sense bf conditidn (3·25).

Proof, due to Hopf [16] and Kruzkov, [19]:

Let (uf, ur) be a discontinuity of u, say uf < u : let v be
r'

any value between the two:

U  <V<U
E r

We define U by
0 for U<V

U(U) =
U-V for V<U.

Note that U is a convex function. Set U into the differential

equation (7.4); we get

Fu(u) = <0

for U<V

la(u)  for  v<u.
t

Integrating gives

0 for U<V

F(u) =

f(u) - f(v)  for  v<u

With this choice of U and F we have

U-U  =v-u  ,   F-F  =f v-fEr r Er  r

Set this, together with definition (3.21) of s, into (7.15)'; after

a little tearrangement we get
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U - V V -U
(7.17) f(v) >

r
f  +       f

- U -U f U -U fr 'r 2 r Z

which is equivalent with condition (3.25) when uf < ur.  The case

uf > u  can be reduced.to the previous case by using the conserva-r
tion law, entropy and stability condition satisfied by -u.

·If we combine the viscosity and entropy theorems, we deduce

that the following statements about discontinuous solutions of

single conservation laws are equivalent:

(I)  u is the limit of solutions of the viscous equation

(7.9).

(II)  u satisfies the entropy condition (7.14) for every

entropy function.

(III)  The discontinuities of u are stable in the sense of

(3.25).

A direct derivation of (III) from (I) is contained in [18].

As remarked in Section 3 for convex f (III) is equivalent

with

(IV)  The discontinuities of u satisfy the characteristic

condition (3.26):

Next we show that discontinuous solutions that satisfy the

stability'condition are uniquely,determined by their initial data.

The proof is based on the

Contraction Theorem (Keyfitz, [18]):  Let u and v both be solutions

of

ut  + fx  =  O

and suppose that both satisfy the stability condition (3.25); then
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00

(7.18) |u(t)   -v(t) | . =  j       l u(x,t)   -v(x,t)  I dt
- 00

is a decreasing function of t.

Proof: We write

(7.19) I u-v I   =  F--   E         ( u-v)dxz  n J
In

where the intervals In are chosen so that (u-v) is of sign En over

I .  Denote the endpoints of In as [an'bnl; of course bn = an+l.n

Since u and v depend on t, so do an(t) and bn(t); we assume the

dependence is differentiable. Differentiate .(7.19):
-                             b-

dx  n
(7.20) -1- lu-VI =r-E   f Cut -vt)dx + (u-v) TEdt ' n J

--I a
n n

Replacing ut by -f(u) . v. by -f(v), and carrying out the integra-X I

tion we get
b

:                           n

(7.20), 4& |U-v| = r-- E lf(v) -f(u) +(u-v)s1- n L .an

where s abbreviates dx/dt, x=a  or b.n n

If a or b is a point of continuity for both u and v, thenn n

u = v there and so the contribution to the right side of (7.20)' is

zero.  Suppose on the contrary that, say, bn is a discontinuity of

u but not for v, with say

(7.21)          uf = u(bn- 0) 1 v(bn) < u(bn+ O) = ur

In. this case u-v < 0 in In so En = -1. Using the definition (3.21)
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of s and the abbreviations

fr = f(ur) '   ff = f(ug) ,   f= f(v)

we can write the correspondidg term on the right of (7·20)' as

f £-fr(7.22)
-      f-  f    +  (u£  -v)

£                      u£  -ur

According to condition  (3.25)'

f  -f    f-fE r>
U£ -V-v-U r

This and (7.21) readily imply that (7.22) is nonpositive.

Condition (3.25) is invariant when u is replaced by -u, f(u)

by -f(-u), v by -v, f by -f; this proves that when the inequality

in (7.21) is reve rsed, the contribution to the right side of
(7.20)' is still nonpositive.  Similarly, condition (3.25) is

invariant when x is replaced by -x and f by -f; this proves that
the contributions to the right side of (7.20)' at the lower end-

points are likewise nonpositive. Finally, since u and v enter the

inequality symmetrically, contributions to the right side of
(7.20), at discontinuities of v are likewise nonpositive, as long

as these are distinct from the discontinuities of u. If the dis-

continuities of u and v intersect only at discrete times, we con-
clude from (7.20) that |u-v| is a nonincreasing function of t; the

exceptional case can be reduced to this by changing slightly the

initial data of one of the functions. This completes the proof of
the contraction theorem.
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It follows that if u=v a t time t=0, then u=v for all

t;,this proves the

Uniqueness Theorem: Two solutions of a single conservation law

both of which satisfy the stability condition and which are equal

at t=0 are .equal at all times t>0.

We turn now to the question of existence of stable solutions

with prescribed initial values; we content ourselves with Riemann

initial values, consisting of two constant states

<w  for  x<0

(7.23) U(X, 0) =<
z for 0<X.

.

We have remarked earlier that for u <ur (3.25)" is equivalent
f

with (7.17); the geometric interpretation of this is that f lies

above the secant in the interval (uf,ur).  When uf > ur' condition

(3.25) demands that f lie below the secant in (ur'uf).
To solve the initial value problem in the case, say, w<z

we construct the convex envelope g of f between z and w defined as

the largest convex function g which is < f, see Fig. 7.1, where g

appears  as a dotted line. Denote  by w  =  uo  <  ul < - . <u k=  z  the

-------1111
1

W                                      1                                  U

Figure 7.1

-endp-oints -of- intervals where  g  =f.     Then  the  -solution -of-  the
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initial value problem consists of k+1 constant states connected

by   k   waves;     i f    g    =    f    in    (u. . u            )        ,1        and u are connected
J' j+1 ' -j j+1

through a centered rarefac tion wave; if g<f there, the wave

connecting them is a straight shock. In the case depicted in Fig.

7.1, k = 2:
-1

t

u 1

W Z

.

X

Figure 7.2

Clearly u  < ur for each shock, and f lies above the secant g in

(uf,ur)'

We note the following general properties of solutions:

i)  If f has f inflection points k < 8+1.

ii)  If k = 2, then the shock is sonic on one side but not,

in general, on the other.

The occurrence of shocks which are sonic on one side when f

has inflection points is analogous to detonation waves satisfying

the Chapman-Juguet condition.

We turn now to systems, for which we have already defined the

entropy concept and have proved the viscosity theorem. Next we

state a local version of the

Entropy Theorem: Let u be a piecewise continuous solution of a

system of conservation laws that has an entropy function U.

Suppose further that the jumps of u across discontinuities are
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small. Then the discontinuities of u are stable iff the entropy

condition (7.15)' is satisfied.

Sketch of proof.: It was shown in Section 3 that the states u thatr

satisfy the R-H conditions form N one parameter families ur(E); the

states that satisfy the stability condition (3.25) make up half of

this family, corresponding to  s  < 0 under the hormalizations  (3.33 )

and u'(0) = r.

Abbreviate the left side of (7.15)' by R:

(7.24) R = s[UE-Url -[Ff -Frl 0

Obviously R(0) = 0; we show now that also R'(0) = 0.  For differ-

entiating (7.24) we get

R'(0) = -sU'(0)+F'(0) .

Multiply (7.4) by u'(0); using the fact that u'(0) = r and there-

fore Au'(0) = ar we get

aU'(0) = F'(0) .

Since a(0) =---s-(-0-)-,---we deduce from the last two relations that

R'(0) = 0.

A straightforward but slightly tedious calculation shows that

R"(0) = 0 and

R"'(0) =p r U
1  T

uur

Since the entropy U is assumed to be a convex function of u, it

follows that R"'(0) > 0. This shows that for E small enough,

R(s)  < 0 iff  g  < 0. This proves  that for small--dis-eontinuities  the .

stability and entropy conditions are equivalent, as asserted.
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Notice that if R"(0) were   0 then R(E) has the same sign
for all g small, regardless of the sign of s. Therefore if we

assume the truth of the entropy theorem, it follows without any

tedious calculation that R, the rate of entropy production, is at

most cubic in the shock strength g.

The contraction theorem is most likely not valid for systems.

A uniqueness theorem for a special·class of systems of 2 conserva-
tion laws has been given by Oleinik in [27]; a more general unique-

ness theorem, using entropy,  has been given by Diperna,  [7] .
We close this section by remarking that the circle of ideas

described in this section remains an active area of research. The

concepts of entropy and stability are central in describing solu-

tions that are limits of solutions of equations with viscosity,
real or artificial. The characteristic condition, always necessary,

is not always sufficient and has to be supplemented by the first

two.
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ON THE MATHEMATICAL THEORY OF DEFLAGRATIONS AND DETONATIONS

K. 0. Friedrichs

Courant Institute of Mathematical Sciences
New York University

New York, New York 10012

While the propagation of a shock wave is completely deter-

mined by the conservation laws, the boundary conditions of the

problem, and the additional condition that the entropy increase in
the process, the same is not true for the propagation of a detona-

tion wave and of the flame front in an ordinary combustion process.
More conditions must be added to the conservation laws in order to

provide sufficient data for the unique determination of the propa-

gation process. For detonations this necessity was recognized by

Chapman and Jouguet  when they introduc'ed their famous hypothesis.

For combustion processes this necessity was more or less tacitly

assumed by Jouguet and others when they attacked the calculation

of the flame speed by taking heat conduction into account without

even trying to determine the flame speed from the conservation laws

and boundary conditions alone.

It is natural to expect that the needed additional conditions

could be derived from an investigation of the internal mechanism
of the combustion or detonation process. Thus v. Neumann [1] has

arrived at a justification of the Chapman-Jouguet hypothesis for
detonations by taking into adcount that the chemical reaction takes

place over a zone of finite width; his arguments are based on the

assumption that a detonation is initiated by a shock. For combus-
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tion processes, which do not involve shocks, no unique determina-

tion can be achieved without taking heat conduction into account.

It is the intention of the present paper to offer a unified

and more complete discussion of the question of determinacy for
1

detonations and deflagrations . In order to be able to point out

the contrast between these two kinds of processes we shall treat

both of them on the basis of the same assumptions:  We shall take

viscosity and heat conduction into account and assume a finite rate

of chemical reaction. (Accordingly, we shall not postulate that a

detonation process begins with a shock. )   From the discussion ·of

the internal mechanism of the detonation and deflagration process

on .this basis we shall obtain the desired additional conditions

which make unique determination of the whole process possible by

excluding c6rtain detonation or deflagration processes which would

be compatible with the conservation laws. In particular we shall

find as a result that a detonation begins with a shock and that the

Chapman-Jouguet hypothesis furnishes the correct additional condi-

tion provided that for a given value of the reaction rate the vis-

cosity and the heat conductivity are sufficiently small. If, on

the other hand, the reaction rate is very high, for given viscosity

and heat conductivity, the detonation no longer begins with a

shock; and if the reaction rate is excessively high, the Chapman-

1 We propose to use the term deflagration for those combustion

processes which take place in a very narrow zone of constant width
and which therefore in good approximation can be described by a
discontinuity. For detonation and deflagration processes we shall
employ the common name " reaction process".
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Jouguet hypothesis is no longer correct; (see Appendix II).  The

additional condition for deflagrations is such that it prescribes,

the flame speed dependent on heat conduction and reaction rate.

To fix the ideas we have considered the problem of determin-

ing the flow under the following circumstances: In an infinite

tube a piston moves in a prescribed manner beginning at an initial

time at an initial cross-section. At the same time a reaction

process begins at the piston and travels into the quiet unburnt gas.

This problem includes the important case that the tube is closed

at the initial cross-section; for, this case results when the

piston remains at its original place.  The case of an open end

results when the piston is withdrawn with sufficiently large speed.

Also the case is included that in a doubly infinite tube containing

combustible and' non-combustible gas, not separated by a piston, a

reaction begins at the interface. One needs only force the piston

to move in the same manner in which the initial cross-section would

move anyhow if there were no piston.

Before describing the results in greater detail .we formulate

the basic assumption underlying our investigations, viz. that the

reaction process in question may approximately be considered as a

sharp discontinuity. More precisely the assumption is ·that the

"reaction zone," across which chemical composition, pressure,

temperature, and velocity change is very narrow and of nearly

constant width; (see Appendix I).  By this we mean, firstly, that

the space rates. of change of the pertinent quantities over a sec-

tion in the field of flow outside of the reaction zone are negli-

gibly small when compared to·the rates of change of the same
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quantities inside the reaction zone and, secondly, that the time

rate of change of the width of the reaction zone is small when

compared with the average speed with which the gases cross the

reaction zone. This assumption appears to be justified only if the

coefficients of viscosity and heat conduction are sufficiently

small and the rate of reaction is sufficiently large. (We leave

aside the question whether or not under these circumstances the

assumption is always justified.)  The pertinent quantities on both

sides of the "reaction front" are then connected by the same well-

known laws of conservation of mass, momentum, and energy that hold

for the quantities at both sides of a discontinuity surface.

Next we give a brief account of the indeterminacies that one

encounters when one tries to determine a flow involving a reaction

discontinuity solely by using the conservation laws and the bound-

ary conditions. To this end it is necessary to distinguish various

types of reaction processes. Among the detonations there is, as is

well  known, a particular   one,    the
" Chapman- Jouguet" detonation,

which is singled out from others by the property that the flow of

the burnt gas is sonic when observed from the reaction front.  We

have termed "strong" or "weak" a detonation if it involves a

pressure rise greater or less than fot a Chapman-Jouguet detona-
1

tion. Similarly,  we have termed "
strong"  or  "weak" a deflagration

if it involves a pressure drop greater or less than for a Chapman-

Jouguet deflagration, which again is characterized by the condition

that the flow burnt gas is sonic when observed from the reaction

1 For the following-_see -[21.....
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front.  A constant volume detonation is the limiting case of a

weak one, producing the least pressure rise (and the least tempera-

ture rise) among all detonations for the same explosive; a constant
pressure deflagration is also the limiting case of a weak one,

producing the least drop in density (and the greatest temperature

rise) among all deflagrations.

We now consider the flow of gas in a half-finite tube re-

sulting, as indicated before, when a reaction front starts to move

from the finite end of the tube into the unburnt gas under the

influence of a piston which moves in a prescribed manner. We then

ask for the gas motions which are compatible with the conservation

laws and the piston motion. Mathematically speaking, we ask for
the solutions of the flow differential equations compatible with

the transition conditions at the discontinuity front and with the

boundary condition, which expresses that the gas adjacent to the

piston has the same velocity as the piston. This problem will be

referred  to  as the "external flow problem." The answer,

explained in detail in [2] is this: Suppose the reaction
1

process is a detonation; if then the piston moves in the same

direction as the reaction front, and if the velocity u  of the
piston exceeds the gas velocity uD which would be produced by a

Chapman-Jouguet detonation, then there is just one flow involving

a strong detonation in which the burnt gas has the prescribed

1
It should be emphasized that the theory as considered in this

report, based on the assumption that the reaction front be a sharp
discontinuity, does not offer any possibility of predicting whether
a detonation or a deflagratioh will occur in a given situation
(except that under certain circumstances deflagration flow is not
possible).
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piston velocity.  If, however, the piston velocity u  is less than

uD, adjustment of the velocity of the burnt gas to the piston

velocity can always be achieved by a Chapman-Jouguet detonation

followed by an appropriate rarefaction wave, but it can also be

achieved by a set of weak detonations followed either by a shock

or a rarefaction wave.  Thus, in case u  < uD' the solution of the

mathematical problem is not unique; there is a one-parametric set

of solutions.

For deflagration processes the degree of indeterminacy is

still_higher.  To any piston velocity.u  one.h4s still. the choice
1

of a flame velocity arbitrary within certain limits and can

achieve adjustment of the gas velocity to the piston velocity by

sending ahead of the flame a shock of appropriate strength. Again,

there is a one-parametric set of solutions as long as the deflagra-

tion remains weak. If the resulting deflagrations become strong

ones, the possibilities of adjustment become still greater and the

set of solutions is two-parametric.

To express these determinacy statements in a simple form.we

introduce as "degree of under-determinacy" of the external flow

problem the number t of conditions that must be imposed on the data

of the flow problem in order to make the solution unique.

Summarizing we then have:

1
The limiting case is,the one in which the flame together with

the pre-compression shock are just equivalent to a detonation.
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Strong detonations t=0,
Weak detonations t=1 '

Weak deflagrations t=1 '

Strong deflagrations   t=2.

Chapman-Jouguet detonations and deflagrations are here classed with
strong detonations or weak deflagrations respectively.

These peculiar under-determinacies are a consequence Of

Jouguet's important rule (cf. [2]); concerning the properties of
the gas flow observed from the reaction front:

t A                                t h
Detonation Detonation\ t // front                                            /          / front\\// /1/

<Al      (81         ,/
1

/f'\ CA,) ./1\(,0 1- /1\ /1\
r

X                                             X
Weak detonation. Strong detonation.

Deflagration A Deflagrationt                                                                 tfront front

(81   *   \I
(Al )           (BO),/1\\       (B, 1

/7 1\      1                         / *  1
r r
X X

Weak deflagration. Strong deflagration.                                    1
Particle paths and sound paths / at                        detonation or deflagration fronts.

Figure 1
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The flow ahead of a detonation front is supersonic, and sub-

sonic ahead of a deflagration front. The flow is subsonic behind

a strong detonation and a weak deflagration front, supersonic

behind a weak detonation and a strong deflagration front. The flow

is here always understood relative to the reaction front.

We now proceed to discuss the chief aim of the present paper,

namely to decide which of the flow processes, still permitted by

the conservation laws, are excluded through the action of viscosity,

heat conduction, and chemical reaction. To this end we shall take

into account that the reaction zone has a finite extension.. We

then shall set up the differential equations governing the transi-

tion across such a reaction zone and investigate under which cir-

cumstances these differential equations possess solutions satis-

fying the boundary conditions imposed at the two ends of the re-

action zone. These boundary conditions consist in prescribing the

chemical composition, pressure, temperature, and velocity of the

gases at both ends of the reaction zone in such a way that the laws

of conservation of mass, momentum, and energy are satisfied by

these quantities. The differential equations in the interior of

the reaction zone express the same conservation laws, but take into

account chemical reaction, viscosity, and heat conduction.

Investigations of this kind for shocks not involving a

chemical reaction have been made in detail by various authorsl.

The result was that a transition between the given quantities at

both sides of the zone is always possible provided that the

1 See e.g. Becker [31 and Weyl [4].
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direction of the flow corresponds to increasing entropy. Our

investigation will show that the same is true for strong detona-
tions and for Chapman-Jouguet detonations. For other modes of

reaction, however, the situation is completely different.  Here are
the results of our analysis:

Unless the rate of reaction is excessively high, weak detona-
tions, though compatible with the conservation laws, are impossible.
The condition that the detonation be strong or of the Chapman-

Jouguet type is, therefore, the desired additional condition men-
tioned in the beginning. Consequently, a flow involving a detona-
tion is uniquely determined. For, if the piston velocity is high,
u  > u-, there is a unique solution involving a strong detonation,PD

as mentioned before; for lesser piston velocity, however, up < uD'

there is now only one possible flow left in which the velocity of

the burned gas equals the piston velocity, and that is the flow

involving a Chapman-Jouguet detonation. In particular we see that

for a tube with a closed end, u  = 0, or open end, u  << 0, a
Chapman-Jouguet detonation is the only possible one. Thus the

occurrence·of this particular detonation is here deduced and no
additional hypothesis is required.

If, however, the reaction rate is excessively high, the

analysis yields the result that the Chapman-Jouguet detonation is

impossible. Instead, a particular weak detonation is possible

which travels with a well-determined velocity (depending on
pressure and temperature in the unburnt gas, reaction rate, viscos-

ity, and heat conductivity).  If the piston velocity is large

enough; adjuatment still re-(iuires a strong detonation. For lesser
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piston velocities, for example for closed or open ends, adjustment

is effected by the particular weak detonation followed by an

appropriate shock or an appropriate rarefaction wave.

As to deflagrations the results of the analysis are that

strong deflagrations are impossible altogether.1  A weak deflagra-

tion is possible only·with a well-determined speed. We distinguish

the ".flame velocity," i.e. the velocity of the reaction front

relative to the tube, from the "burning speed, " i.e. the speed of

the reaction front relative to the unburnt gas ahead of it. While

the flame velocity depends on the boundary conditions....of. the.

problem as a whole, the burning speed depends only on pressure and

temperature in the unburnt gas, and also on reaction rate, heat

conductivity and viscosity. That the burning speed has this partic-

ular value is the desired additional condition for deflagrations.

As stated before, for a burning speed arbitrary within certain

limits, a deflagration flow can be found which is adapted to the

piston motion.  A further limitation is imposed by excluding strong

deflagrations. Thus we see: Within certain limits for the data of

the problem there exists a uniquely determined flow involving a

deflagration and adapted to the piston motion.

We call attention to a number of detailed investigations of

the transition process in reaction zones.  Detonation transitions

1 This result could also be established by v. Neumann's argument
ignoring viscosity and heat conduction and taking only the finite-
rate of chemical reaction into account.
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have been determined in detail by Eyring and his collaboratorsl.

Deflagration flame speeds have been calculated by Jouguet and
2

others , on the basis of various assumptions about the details of
the transition process. The aim of the present report is differ-

ent: it is not intended to give new methods for calculating such
transition processes. The intention is solely to decide the ques-

tion of determinacy by investigating such transition processes

systematically on the basis of the existing theory.

1. The internal mechanism of the reaction process.

We assume the process to be strictly one-dimensional3 and

observe the process from a frame moving with instantaneous flame or'
detonation speed. We assume that the flow so observed is steady

4at the time considered.in the neighborhood of the reaction zone .

1 See [5] for an excessively high reaction rate, [6] for actualreaction rates. The latter paper contains a great number of
detailed investigations concerning detonations primarily of·solidexplosives.

2 Cf· Lewis and v. Elbe E71, Jost [8], Semenov [9] , further [10]and  [ 11] ;  the
"

latter report gives a survey of earlier work.
3 This assumption is no serious restriction for the discussion ofthe internal mechanism since the flow in the neighborhood of a
point of a reaction front may. be considered one-dimensional to thesame degree of accuracy as the assumption is valid that the
reaction front is a sharp discontinuity.

The assumption of the one-dimensional character of the flow is,however, a serious restriction for the external flow problem sincethis assumption is known to be never quite satisfied for combustionwaves.

4
The assumption of "local steadiness" does by no means imply thatwe consider only reaction processes that proceed with constantvelocity into the unburnt gas.  See the discussion in the Appendix.
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This is in agreement with our basic assumption (p. 3) that the

reaction zone is very narrow and of nearly constant width. Con-

sequently, all quantities depend only on an abscissa x, and not on

the time. At each place x, there is a mixture of burnt and unburnt

gas; we denote by s the fraction of mass of burnt gas in the mix-

ture. We denote pressure and specific volume by p and T and intro-

duce  the " reduced temperature"   e  =  pr,   a quantity which  has  the

dimension of velocity squared. We assume burnt and unburnt gas to
1

be ideal. Accordingly, e is proportional to the temperature .

The internal energy e per unit mass of the burnt and of the unburnt

gas is assumed to be a function of 8 only, (actually e depends also

somewhat on the pressure p, see also footnotel: denoting by g the

energy of formation per unit mass (at absolute zero temperature),

we introduce the total energy per unit mass

E = e+ g .

Burnt and unburnt gas are distinguished by the superscripts (1) and

(0).  The total energy per unit mass of the mixture is then

E(E)(8) = (1-s)E"(0)(e)+ EE(1)(e) .

On the energy functions E(e) we require that

BE(£) <0
8E

or

E(0)(e) > E(1)(e) .

1
The absolute temperature is given by Re/M where R is the gas

constant and M the molecular weight. We disregard the dependence

of the molecular weight on the mixture ratio g.
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This condition implies that the "liberated energy"

E(0)(0)-E(1)(0)
is positive. (It is convenient to make this assumption although
most of our conclusions hold without it.)  Our requirement is
satisfied if burnt and unburnt gas are "polytropic"; i.e. if the
energies are given by

E(0)(e) = ye-1+go ,   E(1)(e)  y -1 +gl0

with constant yo, 71, go, gl, provided that the temperature is
1below a certain limit .

/  By v we denote the velocity of the steady gas flow and by
-1m= r  v the "mass flux" of mixture through a unit cross-section

per unit time. By S we denote the mass of burnt gas created per
unit mass of unburnt gas per unit time.  We assume that the
"reaction rate," S, depends on e and p, (cf. foothote 1),
and that S vanishes below a certain "safety temperature" :

2S = 0 for e<e- S

(70-1)(ll-1)1 This limit corresponds to e Z   0-  1)   If one70-71assumes yo = 1.4, 71.- 1.2, the molecular weight Mo = Ml - 30, andthe "liberated energy" go- 1 + '7 kcal/gr, then the limit is about
3200'K.  This case is, however, unrealistic since for such tempera-

-     tures the value of y for combustible gases will hardly ever be ashigh as 1.4.

2
The latter assumption is made only to achieve mathematical sim-plicity.. In recent papers [6], [10], fill, the reaction rate is'

assumed to be of the form

(footnote continued)
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The transition between the two states on both sides of the

reaction front is effected by the action of viscosity and heat
1

conduction .  We introduce corresponding coefficients K and A such

that

dy          de
- '-L   33E        and         - A    Tx

are the viscous pressure and heat per unit mass conducted through
2

a unit cross-section per unit time . These coefficients depend on

p, T, and E; but we need pay only little attention to this depen-

dence of our general discussion.

We now formulate the laws governing the process.  The conti-

nuity equation simply assUmes the form

(footnote continued)
S= s  e-A/6

00

where A, proportional to the activation energy, is so large that S
is negligible when e assumes values corresponding to a temperature
of 3 OOIK.  The reduced safety temperature es has no precise signif-
icance (as the ignition temperature has in the older literature);
it is simply a value below which S can be set equal to zero for all
practical purposes. The maximal reaction  rate,   S( , may depend
on P.

1
We ignore diffusion and radiation. Diffusion should not be

neglected in the actual calculation of flame speeds according to
[11].  We felt that for the sake of simplicity we could disregard
diffusion since the additional terms due to it would not seem to
entail any essential change in the general results.

One might object to using the notions viscosity, heat conduc-
tion, and diffusion if the width of the transition zone is ex-
tremely small. It seems likely, though, that nevertheless our
results remain correct in qualitative respects, in particular as
far as determinacy is concerned.

2 The customary coefficients of viscosity and heat conduction are,
in our notation, 3/4F and x/R, R being the gas constant such that
Re is the temperature.
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(0) m   =   const-.

The law of conservation of momentum is

(1)' dv-AL  +p+mv =p= const.

1Conservation of energy  is expressed by

(2)' -A   .aE  +m[E C E) (e)  +      v2 ]   +V[p-  1.1. · ] = mQ = const.
de

The balance between burnt and unburnt gas is given by

(3)'                                          de
dx                '-v  -  + (1- € )3(e)   =   O

2assuming a first.order reaction from a unimolecular mechanism .

The problem is to investigate possible ·solutions of these
differential equations if the values of the quantities v, P, r,
and E are given at the end points of the reaction zone. We modify
this problem by prescribing the same values of these quantities at
x   =   00    and   x  = -0 0. That it is justified with good approximation
to substitute the modified problem for the original one follows

1
If we were to consider diffusion we would intr6duce a coefficient6 such that -6 de/dx is the fraction of mass of burnt gas diffusingthrough a cross-section per unit time. Then we would have to add

the  term  ·rd(8  di/dx)dx to equation   (3)' and -Bd[ECE)(e)+   v2]/dxto equation (2)' in order to express the diffusion of energy.  The
resulting modified equation (2)' would differ somewhat from those
in the literature (see [11] where only the diffusion of the energyof formation is taken into account.

2

I terms (1-6) or (1-6)(1+ne)S, cf. [10] and [ll], no change in the

If a
diffBlent

mechanism of reaction were assumed leading to

general conclusions would result.
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from our basic assumption (p. 3) that the width of the reaction

zone is very narrow. More specifically, the assumption was that

the rate of change of the pertinent quantities outside the reaction.

zone is negligibly small as compared to the rates of change of

these quantities inside the reaction zone. Consequently, these

quantities appear to be nearly constant at the ends of the reaction

zone over a region whose extension is large compared with the width

of the reaction zone. It is then natural to assume that the

process inside the reaction zone can very well be approximated by a

process that extends    over the whole field   from.  x.-   -co     to   x   =.+00.

and in which the pertinent quantities assume at too those values

that are prescribed for the proper process at the ends of the

1
finite reaction zone.

Accordingly we ask for solutions of the equations (1):, (2)',

and  (3 ) '  which are defined  for  -co  < x  <  co and which approach

finite limit values  (with  T     0)  as  x -+ too;  then the derivatives

approach zero as seen from (1)', (2)', and (3)'. Solutions which

behave in that way at x = 00 or x = -00 will be called "regular"

1 This procedure, typical   for the treatment of "boundary   laye r
phenomena" is always employed for differential equations in which
the terms of highest order are multiplied by small factors. (In

1
our case these factors are B, A, and S- .)00

No accuracy would be gained by trying to discuss the solutionsfor a finite range xo < x < xl; for, the conservation laws ( 1) 6
and (2)j, would  not be accurately valid unless accidentally

dt   de   de
33E =  a3E =  33E = O  at  x = xo  and  x - xl .

For the infinite range it follows from regularity (see Section 2)
that these derivatives vanish at the end points.
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there. The limit values for x - -co are denoted by p .  T0 0 ,    eo'
and go; those for x -+ co by Pl, 'rl, el' and El. The boundary
conditions then consist in prescribing these values; in particular

we prescribe

Ec>= '  El=l,

expressing that the gas consists of unburnt gas at x = -co and of
completely burnt  gas  at  x =  +00. From relation  (3) '  we then deduce
that the flux m is positive:

00 00

m=m /f' d e =    (T-1)(1-s)S(e)dx >0. .J
- CD - 00

From this fact it follows that the reaction begins in the unburnt

gas at x= -00 and ends in the burnt gas at x= co .
The values po, To, Go, vo, and Pl, Tl' el' vl for unburnt and

burnt gas are those that are prfscribed at both sides of the dis-

continuity front. These quantities are not prescribed arbitrarily,

they are to satisfy the conservation laws: (0) and

(1) 0 P  + mvo  =  Pl + mvi  =  P  '0

(2) 0 E o+e o+7  v    =  E   +8 + - =Q,
2              12
0    1   1 2 v l

through which at the same time the values of the constants P and Q
are determined. Here we have set

E(0)(eo) = Eo  and  E(l)(el) = El '

The conservation laws follow immediately for any regular
solution from the differential equations ( 1) ' and (2)1, since these
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equations reduce to (1)  and (2) 0 for   x   =   m    and   x   = -c o.

A further assumption which we impose on our boundary values

is

e <0 <eo     s l'

expressing that no reaction can take place in the unburnt gas at

its initial temperature, and that reaction would take place at the

final temperature if unburnt gas were still left.1

For the following arguments it is convenient to eliminate v

and p by
-1

v = m·r and p=T 8,

and to consider T, e and s as the only dependent variables; the

equations then become

(1-)                     - tim · E + T  8 +m r=P,
dr -1   2

(2)            - A de +m[ECE)(e)- 2 m2T2+Pr] =mQ ,dx

(3)                             -m  + r-1(1-g)SCe) =0.dE

The constant coefficients m, P, Q, and the boundary values T , rl'

eo, el' Eo = 0, and El = 1 are subject to the conservation laws

(1)0   '            T e + m T  = Tl el +m Ti = p '
1    2     -1    2
00 0

(2)0 E +0_+ 7 m T = El+el+ 7 m 'rl = Q
1 2 2 1  2 2

0          0                       0

1 Relation 8  >e s would imply S>0 for e=e  and would hence not0

be compatible with- equation  (3) ' . for  a regular. solution.
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We now consider the system of differential equations (1),

(2), (3) and ask whether or not it possesses regular solutions
assuming the prescribed boundary values.

2. Regularity and determinacy.

We shall introduce as "degree of regularity"  for each end-
point a number r such that the manifold of solutions of the differ-

ential equations (1), (2), (3) which are regular at that endpoint
and assume the prescribed boundary values there depends on r

parameters.

Let us first consider the endpoint x=w. To determine the

degree of regularity rl at the end x = 00 we shall introduce

characteristic exponents, a, by the following formal procedure. We

expand the differential equations (1), (2), (3) with respect to

powers of T-rl' 8-el' and E-E  = E-1.  The terms of order zero

vanish by definition of P and Q. The terms of first order consti-

tute a system of linear differential equations with constant coeffi-

cients, the "linearized" diffe rential equations for x = 00.   Upon

inserting into these equations multiples of an exponential function
ax
e   for T-Tl' e-el' and 6-1, we obtain three linear equations for

the three coefficients whose determinant is a cubic equation for a.

The three roots of this cubic equation are the three characteristic

exponents.  We anticipate the fact, shown later on, that for our

equations these characteristic exponents are always real. Suppose

we have rl negative and 3-rl Positive characteristic exponents,

then rl is the degree of regularity.  This fact is implied by the

well-known theory of singular points of ordinary differential
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equations.  The behavior of the rl parametric set of regular solu-

tions can be characterized by the regular solutions of the

linearized equations; the latter are a linear combination of expo-
axnential functlbns e if the characteristic roots are different;

ax 2 axotherwise terms like xe or x e enter. In case one character-

istic exponent is zero, one cannot say off-hand what the degree of

regularity is; a special consideration is needed.

The linearized equations at x = co for the quantities 'r-·rl'

8-el, e-1 are immediately found to be

(1)+      mx          +T  e (T-Ti) -m (T-Ti) -Til(e-el) = 0,
d(T-il)   -2           2,

1 dx 1  1

d(e-el) re-e

(2)+      A        -1111--- -8El.(6-1)-'rilel(·r-'rl)  =o,1 dx
LY 1-1

(3 )+ m   d(g-1)  + Tilsl (E-1)   =   O   ,dx

1            BE (E) (e)      AE   =   E<0)  -  E(1) ,    and   the   sub-where we have set FI
=

88   '

script (1) indicates that these quantities and also W, A, and S

are to be taken for e = el' T = Ti, E = 1

For the characteristic exponent a one then obtains the equa-

tion

mtila - m2 + TI281 -T-11          0

-1              m
-m·r l e l A.a-- mAE =0

1   71-1           1

-1O                             0                 m a t r    S1  1

or
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(4)
[mTla + Sl] [mTlxl'lla2 -  (m  rlxl - 81Al

22

tm -r )a _  m
2 2 Ill 2 2.
1 71-1    71 1  (Ylel-m Tl)]  =0·

The first bracket has evidently one negative root. As to the
2second bracket, which we write  in  the  form  aa  - ba + c we observe

that it has real roots since the discriminant

22
2 2 2 2 2  Wl 2 m T A t i

b - 4.ac = (m Tlxl- elxl+m ·rl 71-1)  + 4  1 -i"1 (ylel- m2.r )

,2 2 22  Wl 2 2 2

= Cm Tlxl -elxl-m Tl 71-1)  + 4m rlAl' lel
is positive.

Since a>O w e see that the second bracket has one positive
and one negative root if c < 0. If c = 0, we have

Y1b = bo = (yl-l)elx, +---  81'll > 0 and hence the bracket has one
1  11-1

vanishing and one positive root.  If c>O w e have b>b  >0 and
hence the bracket has two positive roots.

In  case   c   <   0  we   have   rl   =   2   and   in   case   c   >   0  we   have   rl = 1.
A detailed investigation of the vector field corresponding to the
diffe rential equation would show that in case c=O a two parametric

set of regular solutions exists; hence r2 = 2 also in this case.
Since the condition c & 0 is equivalent with ylel & m2Tl we have to

distinguish the following two cases

Case
(Al)

2 2
m Ti > 7181 1

22Case
(Bl) m Ti < 7181 0
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The degree of regularity in these cases is:

Case (Al) rl=l,

Case (Bl)     r  =2.1

Employing the sound speed cl = 47181 for the burnt gas in

state (1) we can write the condition for cases (Al) and (Bl) in

the form

Case (Al) vl      >     cl      '

Case (Bl) vl 1 cl '

Thus the flow of the burnt gas in state (1) is supersonic in

case (Al) and subsonic or sonic in case (Bl).

For the state (o) at the end x = -co we obtain a similar

equation for a, the only difference being that S=O i n state (o)

since e < e  was assumed. The equation for a then becomes
0- S

f 2 2,2 2 2 2 FO(4)- malm·r    A    u    a     -   C m    T    A      -   e A
+m To 70-1)aL ··  0  0, o 0 0 0 0

2 2,7
_  m 1 (loeo-m To)  =0,Yo-

where Ao, B i, refer t o e=e.T=T.E=0• The first factor0' 'o 0- 0'

here has the root a = 0.  The bracket always has one positive root

and in addition one positive, vanishing, or negative root depending
22

on whether yoS  -m T  > 0, = 0, or < 0.0

To determine the degree of regularity r 
at   the   end   x   =   -c o

we first recall that eQ < 8  was assumed.  Hence for every regularS

solution assuming the prescribed boundary values at x = -co we
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have e<e s i f x i s sufficiently negative, for -00 <x< x s say.
By virtue of S=0 for e l e s equation (3) entails g=0 for
-OD <x< xs .  The invdstigation of the manifold of solutions
regular at x = -co is thus reduced to the investigation of the

regular solutions of equation (1) and (2) with E   (8) = E<' (8).
The characteristic exponents for this problem are the roots of the
bracket in relation (4)-.  Hence we conclude:  If both roots of the
bracket are positive we have r  = 2.  The same is true if one of0
the roots is zero, as a detailed investigation of the vector field

corresponding to the diffe rential equation would show.  If one of
the roots is negative, however, the other one being positive, we

have rl = 1.  Accordingly, we distinguish the following two cases:

Case (Ao)
2 2

m To 1 70Go ,

22Case
(Bo) m T

0 < Yoeo ·

The degree of regularity is

r =2 in Case (Ao) ,0

r=1
in Case (Bo) .0

Employing the sound speed c  in the unburnt gas we write the
condition for cases (Ao) and (Bo) in the form

Case (Ao)     v  >c0-  0'

Case (Bo)     v  <c0 0

Thus, the flow of the unburnt gas at x = -co is supersonic or sonic

there in case A , while it is subsonic in case B .
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We see that four different cases are to be distinguished

according to whether case A or case B obtains at x = co or at

x =  -00.    It  is  now very interesting  that by virtue of Jouguet' s

rule (see [2], p. 215) these four cases just correspond to the

four cases df strong and weak detonations and deflagrations;

the Chapman-Jouguet detonation or deflagration, characterized by

Vl = cl' is here classed with the strong detonations or weak

deflagrations respectively.

We now shall determine in a formal way, simply by counting

the number of parameters, the manifold of solutions which are regu-

lar at both endpoints. The set of solutions which are regular at

X= co is rl-parametric.  Among these solutions those are to be

selected which are regular at x = -co . Since all solutions regular

at x = -co form a r -parametric set in the three-parametric set of

all solutions, it is clear that the condition to be regular at

x = -co is expressed by 3-ro relations.  Thus 3-ro conditions are

imposed on the rl parameters characterizing the solutions regular

at x= oo. One of these parameters can always be chosen arbitrar-

ily (within limits), since from every solution satisfying the

boundary conditions one obtains a set of others by substituting

x+const. for x.  Thus 3-ro conditions are imposed on rl-1 parame-

ters. If r -1 > 3-r an (r +r. -4)-parametric set of solutions
1          0'        0    1

can be expected to exist. If r -1 = 3-r one solution (or else a1         0'

finite number of them) can be expected to exist. If r -1 < 3-r1 0

more conditions are imposed than parameters are available. These

conditions will be satisfied only if the coefficients entering the

differential equations or the boundary values assume appropriate
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values. In other words,  4 - ro - rl conditions are imposed  on

coefficients and boundary values. We term the number

s=4-ro-rl
t 1the "degree of over-determinacy. From Jouguet's rule and the

determination of the values of r  and rl given before we find

Strong detonation, Case (A Bl) ' S=0

Weak detonation, Case (A Al) '  s=1

Weak deflagration, Case (8081) '   s=1

Strong deflagration,  Case (BIAl) '   s=2.

Upon comparing this table with the table for the degree of

under-determinacy given in the Introduction (p. 7) we realize the

fundamental fact that the degree of over-determinacy resulting from

the internal mechanism of the reaction process equals the degree of

under-determinacy of the external problem flow. The number of

conditions needed to make the flow problem unique thus equals the

number of conditions imposed by the mechanism of the reaction

process.

This result may be interpreted as follows: All strong

detonations are possible. Weak or Chapman-Jouguet detonations are

only possible if one of the parameters of the process satisfies one

condition. As such a parameter we may consider the flux m. As

we shall see later, weak detonations exist just for such values of

the flux that lead to Chapman-Jouguet detonations except for

sufficiently high values of the reaction rate, for which a larger
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value of the flux leads to a possible weak detonation. Weak

deflagrations are also only possible if one of the parameters, the

flux m say, satisfies one condition. As we shall see later, weak

deflagrations exist indeed for only a particular value of the flux.

Strong deflagrations should exist only if two conditions are satis-

fied by the parameters. As we shall. see later, strong deflagra-

tions do not exist at all.

It must be emphasized that these statements are so far

derived in a purely formal manner. They are obtained by balancing

the number·of available parameters with the number of conditions

imposed. A definite statement about the existence and uniqueness

cannot be made on this basis. As a matter of fact these arguments

are not sufficient to exclude weak detonations and strong deflagra-

tions. More detailed considerations are needed for this purpose.

In the following Sections (3 and 4) we shall first investigate

certain. limiting cases of weak deflagrations and strong detonations,

and then proceed to discuss in Section 5 the problem of existence

of solutions in general.

3. Weak deflagrations.

The degree of over-determinacy was found to be s=1 for

weak deflagrations. As indicated above, such deflagrations can

therefore be expected to exist only if the coefficients of the

differential equations satisfy one· condition. This condition may

be considered a condition for the constant m, the flux, or for the

burning velocity vo = T m.  The question arises whether or not to

given values of T   e   and given functions S(e) and E   (e) there0, 0,
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really is a value of the flux m for which the problem has a solu-

tion. We shall deal with this question in Section 5.

Here we,shall consider only the limiting case of a constant

pressure deflagration in which this question can easily be

answered. This limit case results if either heat conductivity A

and viscosity X approach zero, if the reaction rate S approaches

zerol, or if the pressure p  increases indefinitely while the

temperature eo remains fixed. This limit case, to which actual

situations frequently come very near, has always been assumed for

numerical determinations of the flame speed (see [10], [11]).

To describe the limiting "constant pressure problem" we first

introduce dimensionless quantities

./
m = mr

9/   /el       ,

B      =      11. S co  /p 082       ,                   '*      =      S oo  /P oliM 2       ,

A = P/Po , 9 = Q/Go ,

and introduce the new variables

2 = XS  /mr00           0

ip = T/To ,     = 9/00 .

1 For example hy letting  S    -+  0,    (c f. footnote   on  p.   13).

The objection may be raised that for small values of the
reaction rate the basic assumption (pp. 3 and 12) cannot be satis-
fied. Nevertheless it is necessary to consider the limit S - +0
for the discussion of the mathematical implications of the problem
formulated in Section 1.
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The equations (1), (2), (3) then become

  m2 dr/dx   +    3/%    + m2:I =P,
r.

- d /d2 + E(E)(eo )/Go - 1
 2#2 +   ./            .b

-m T +PT =Q,

- (16/dk + 9 -1(1-s)s(ec )/eo =0.

This system of differential equations depends on the parame-
+                            +           0-'

ters m, A, F, P, Q, and e .  We obtain the limiting problem by
4

considering a set of such systems for which m approaches zero while

the other parameters are kept fixed. In other words: The differ-

ential equations of the limiting problem are simply obtained by
' ,2

omitting the three terms involving the factor m .
r.

The fact that A and W are fixed while m approaches zero

evidently implies ASoo/po - 0  and  ALSID /po -+ 0. The limiting  equa-

tions will therefore represent a good approximation if Asco/p O,
r.

p.SaD /po,  and m are small.    In  that  case  we can re-introduce  the

original quantities. Thus we obtain the equations of the constant

pressure problem in the following form:

d)                 P = P= P .0'

(3)                                                              -A   ·    +   m[E C E  (e)   + e]     =   mQ    ,

(3)                 -m -- + pe-1(1-E)SCe) =0  ,dE
dx

where we have eliminated T from (2) and (3), using (1).

Relation (T) expresses the fact that under the conditions of

the limiting problem the pressure does not vary across the flame

front: we have constant pressure combustion. -Further we see that
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the term representing the kinetic energy has dropped out from (2).

The boundary conditions are 8= el'  E =l a t x=0 0,  and
s = O at x = -co. The constant Q is given by Q = El + el.   The
relation E  +8 =Q, which holds for regular solutions determines0 0

the value e=B at  X   =   -O D  .0

To investigate possible solutions of this problem one may

consider e as independent variable running from e  to el and com-

bine the equations to

(5) de pA S(e) 1-8== e
m                 E l+e l-E   e  (e)  -e

It is immediately seen that this equation has a saddle-singularity

at the point e = el' E = 1.  There is just one solution curve that

enters this point from the region 6 < 1, 8 < 81.  If this curve is

followed backwards it will enter the axis g=O a t a point with

e > es provided p A/m2 is sufficiently large; if p A/m2 is suffi-

ciently small the curve will enter the line e = es at a point with

s > 0.  It is thus clear that there is just one value of p A/m2 for         

which the curve enters the line e = es with s = O.  Since
ds/de =0 for e< 8. the curve will enter the line e=e  also- S'                               0

with the value E = 0.  That for this solution the quantity x

approaches co as e -* el and -0  as 8 -+ e is immediately seen from
0

(7)   and    (3').

Thus it is shown that in the limit, as the quantities

AS(JO /Po   and  t.t.S © /p    approach   zero,    a  deflagration  process   exists

with a well-defined flux m and flame speed v .  As will be shown

later (at the end of Section 5), the same is true. for small values
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of thesd quantities, in other words, for sufficiently small values

of  AS /po   and  FEco/po
a deflagration exists which is nearly   a

constant pressure combustion and which is characterized by a

uniquely defined burning speed v .

Computations of the burning speed can be carried out by

solving equations (2) and (3) or (5) through interactions, (see

[ 9], and [ 10], in the latter report the term d(5 de/dx)dx was

added to equation (3) in order to take diffusion into account); it

was found in .the quoted reports that for the actual situations

considered the approximation involved  in  (2)  and   (3 ) was rather

accurate since the omitted terms turned out to be very small for

the calculated solution.

It is interesting that essentially only the combination

PA/m2 or the dimensionless combination

(6 )           m2ed/PASID = (v /Go )/(AS  /p )

enters the constant pressure problem, as seen from equation (5)·

(More precisely, the problem depends only on the dimensionless

quantity (6) in addition to the functions S(e)/Sm  and ECE)(e)/Go;
note E +8   =E  +8. ) The quantity (6) approaches a finite limit

0    0   ,1    1
value as ASco Po approaches zero. Therefore, for small values of

ASOD /po,   the  flux m is proportional to /poAS /60  and the burning

speed vo to v/ASoo eo/Po.  If in particular A, Sco' and the reduced

initial temperature 8  are kept fixed, the flux increases like

/S aD /Po    and the burning speed decreases    like   JSco /Po    as    po

increases. If S were independent of p or increased with p  of00

less -than first order, the latter result would mean that-the
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burning speed should decrease with increasing pressure. This does
1

not seem to be confirmed experimentally . It is thus indicated

that S increases with p  of higher chan first order.  WhatCO

happens when p  decreases cannot be derived by considering expres-
sion (6), since the approximation made is no longer valid if

PO/ASDD is small. Whether or not deflagrations are then possible

will be discussed later on, in Section 5.

4. Strong detonations and Chapman-Jouguet detonations.

We next consider strong detonations, including Chapman-

Jouguet 'detonation; according to Jouguet' s   rule  they  have  it  in

common with weak deflagrations that the flow of the burnt gas is

subsonic.  The flow of the unburnt gas, however, is supersonic (or

sonic). The degree of over-determinacy was found to be s = 0.

Hence no conditions need be imposed on the data other than the
22

inequality m Tl < 7181' or vl < cl.  Whether or not it is true

under this condition that a unique solution exists will be dis-

cussed in the next Section, 5.

In the present section we shall consider a limiting case

obtained by letting  #Sa)/po  and ASco/Po approach zero. We imagine,

in particular that viscosity W and heat conductivity A approach

zero while Sco  and p  are kept fixed. This limiting problem

presents an analogy to the limiting problem considered in Sedtion

3; the limiting behavior of the present limiting problem is, how-
ever, quite different from that encountered in Section 3.

1 see e.g· [8], p. 146, Table 27.
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Consider a sequence of solutions. There are two possibili-

dr       deties:  either the terms K - and A - in equations (2) drop out indx dx
dr     dethe limit, or   and . 3E

become infinite. For those values of x for

which-the first case occurs, the equationh

(1)cn T   0+m T=P,
-1   2

(2)00 E C E) (8) -2 i m  T    +  PT   =Q  ,
22

(3) -itl · E+T-1(1-g)s(e) =0,de

are satisfied in the limit. If the second case occurs at a place

x, a discontinuity of r and e occurs in the limit while s remains

continuous. Such a discontinuity would simply be a shock not

involving a reaction.

A more detailed investigation (see Section 5) of the limit

process  ASa,/po,   p.Sa,/po -+  0 will yield  that a strong detonation

can in the limit be described as a shock, not involving a reaction,

immediately followed by a reaction process governed by equations

(1)OD, (2)00, (3). This confirms the accepted idea about a detona-

tion process, which was formulated more specifically by G.I. Taylor

and v. Neumann (see [1], e.g.).

The question arises whether to given values of T . eo, Tl'0-

81' and m with 'r lc  <m < .rilcl satisfying the conservation laws,

a transition process exists which consists of a shock followed by

a reaction. We assume that the temperature to which the shock

raises the unburnt gas is above safety temperature. Otherwise the

reaction process would simply be a deflagration process, which
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1cannot exist in the present limiting case . Denoting the quanti-

ties past the shock front by an asterisk we require

8 <8 <e
O     S* .

To find out whether the equations (1)( , (2)(31' (3) possess a solu-

tion we determine T and e as functions of s from (1)   and (2)OD '
and insert in (3).  This is possible if the Jacobian

dE(E)   23= (m   -T-28) -T-28de

of   (1)     and (2)  does not vanish. Introducing quantities y
(E)

and c(g) by

dE(E /de = 1/(y(E)- 1) ,

2      (E)
c, , =y   8,le)

we find
2   -2 2

J=  (m  -T   C  )/(y-1) ,

where T, c, and y depend on E. Since the flow is subsonic in the

state (*) past the shock we have J* < 0.  In the neighborhood of

the state (*) we may therefore express T and e in terms of s and

the  solution  of the equation resulting  from  (3) is uniquely deter-

mined through the initial condition s=O a t x=0, say, where we

may place the shock front. The question then is whether on con-

tinuing the solution one would obtain a value for which J changes

1 Expressing T and e through s by (1)   and (2)  , equation (3)

becomes a differential equation for s, which yields de/dx = 0 for
s = O since S(eo) = o for e  4 es.  The sole solution of this
differential equation vanishing for x = -co is therefore E = O.
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sign.  The final state is also subsonic, Jl < 0' and the transi-

tions from the state (*) to any of the intermediate states between

(*) and (1) correspond, as regards the conservation laws, to a set

of weak deflagrations. All the intermediate states are thus sub-
1

sonic. Consequently, J remains negative throughout .

The differential equation for E resulting from  (3 ) possesses,

therefore, a solution with s = O' for x = 0.. Since for this solu-

tion,   de/dx -+ 0  as  g -+ 1, the final state   (1) is approached  as

X -+ 00. Thus it is seen that a limiting type detonation consisting

of a shock followed by a reaction in possible for arbitrary values
-1 -1    2

of the flux m, satisfying To Coc o<m< ·rl cl'

The reaction process in a strong (limit type) detonation

following the shock has it in common with a weak deflagration that

unburnt gas in a subsonic state is transformed into burnt gas in a

subsonic state. The two processes differ, however, in other

respects. The initial temperature in a deflagration is below

safety temperature while the reaction in a detonation begins with

a higher temperature. Also in a deflagration the rates of change

dT/dx, de/dx, de/dx are zero initially while there is no such

restriction for the reaction process following a shock; for small

values of A and W the rates of change undergo such great changes

1 Whether or not BE(E)/Be changes sign during this process is

immaterial, cf. however, v. Neumann's report [1], in which transi-
tion process are discussed on the basis of equations ( 1 )c© and (2 ) D.

2
For numerical determination of such processes and various de-

tailed discussions see the reports bf Eyring and his collaborators,
[5] (where an excessively high reaction rate was assumed) and [6].

(The case shown in Fig. 10a, p. 44 in [6] and labeled "steady
deflagration" there is a "weak detonation" in our terminology.)
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in.the narrow shock zone that adjustment to any values of these

rates at the beginning.of the reaction zone is possible. It can

thus be understood that for the reaction process in a detonation

no definite value of fhe flux is required as for proper deflagra-

tions.

5. Discussion of possible processes with the aid of the vector

field.

It is very helpful for the further discussion to refer to the

vector field in the (T,8,e)-space generated by the differential

equations (1), (2), and (3).  It is convenient for our discussion

to consider as positive the direction of decreasing x; when we

speak of following a solution curve ..T we always imply that we

travel in direction of decreasing x. All vectors of the field

point to smaller values of s except on the surfaces g=1 and. in

the region e < es' where they lie in the surfaces s = const.  Every

solution curve that hits the surface 8 = es will stay on the plane

s = const. from there on.

Further important properties of this vector field are these:

22dT  =  0  on the cylinder  8+m  T    =  Pr  and  de  =  0  on the surface  &

given by the equation

22
E C E) (e)   =   m  T    -  PT + Qo   .

Points of intersections of the surface E with the cylinder
228 +m T  = PT and the plane E = const. will be denoted by As and B .E

The conservation laws (1)  and (2)OD are obviously satisfied at

such points. Any two such'points on the plane g = const. with
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0>0 and T>0 evidently represent the two states on both sides

of a possible shock transition in the gas mixture characterized by

the values of s considered. Therefore, one of these two points,

As, corresponds to a supersonic, the other, Bg, to a subsonic flow.

We assume the values of the constants P and Q such that the surface

6 intersects the initial plane s=O a t two points AQ and B  with

9 > 0,  T > 0. From the discussion on p. 33 it follows that for

every 6>0 two points of intersection A  and B  exist as long asEE

A  or B do not become sonic, or, what is equivalent, do notE E

coalesce. We assume that this is not the case for 0<6<1; this

assumption is primarily a condition on the flux m. We also assume

that e>O,r>O a t these points for 0<6<1. We then have two
- -

curves  d and   of points Ag and B  along which e and T are con-E

tinuous functions of the parameter s. (The last assumption made

here is somewhat stronger than necessary. For the discussion of

weak deflagrations, for example,  only the existence of the curve J
is needed. Incidentally, the existence, of the supersonic state A

E

with 8>0,T>0 always implies the existence of the subsonic

state B , but-the .converse-is not true. )E

At the points Ag, B we have dT = de = 0, ds/dx > 0 exceptE

for g=l o r e<e: hence the field vector points in the negative- S'

6-direction at these points. The projections of the field vectors

on the planes E = const. have singularities at the points Ag

and B .  At a point As the projected field has a nodal point andE

the solution curves of the projected field lead from the neighbor-

hood of this point into it.  At the point Bg the projected field
has-  a saddle-singularity; (see Figures 2 to 5).  At the points Ag
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Detonation

(Integral curves of the projected vector field
on the plane g=1 for a detonation)
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Detonation

(Integral curves of the projected vector field on
the plane s = const. for a detonation)
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Deflagration

(Integral curves of the projected vector field on
the plane s=1 for deflagration)
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Deflagration

(Integral curves of the projected vector field on
the plane E = const. for a deflagration)
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and B  on the surface g=1 and in the region e<e s the three-E -

dimensional vector field has singularities.

If we are interested in a deflagration we must assume thau

8 < es for the initial point BQ, (see p. 31); if we are interested
in a detonation we must assume, (see p. 33 and Figs. 2, 3), that
8 > es at the point B , which in this case is connected with the

initial point AQ through a curve representing a shock.  We require
somewhat more for detonations, viz. that e>e on the wholeS

r·,line :11 . We first investigate which strong deflagrations and weak
detonations are possible. Both processes have. it...in common--that

the flow in the burnt gas is supersonic. The state (1) thus
belongs to the case (A), and corresponds to a point Al.  As was
shown earlier there exists in case (Al) only a one-parametric set
of solutions which are regular  at  x  =  co,   and the values   of  the

parameter may be chosen arbitrarily provided it is so chosen that
g decreases as x decreases. Thus there exists only one solution
curve, 6., starting at Al which could represent one of the

processes mentioned.  If this solution curve ( reaches the point

B  it represents a strong deflagration, if it reaches the point A 
it represents a weak detonation.

In the following we shall consider problems differing in the

reaction rate S, all other parameters being unaltered; we may, for

example, assume the factor S (cf. 1 on p. 13) to vary from 000
1                    ,·7to co. The curves c·''t and j.3 are evidently independent of S; the

curve g , however, depends on S.  If we want to emphasize this
dependence we write ((S).
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If the reaction rate S is very high compared with p /A and

p /F, all vectors point nearly in negative E-direction except near

E=l a n d e<e. In this case, therefore, any solution curve is- S

approximately a straight line in the negative E-direction until it

meets the surface e=e.  Therefore, the curve 6 that begins at
S

the point Al' i.e. at s =1,8= el' T= Tl' ends up on g=0

nearly  with the values  e  =  el'   T  = Tl, hence with nearly  e=e   >e
1   s'

Thus we see that C ends Up on E=O a t a point with e>e  if SS

is sufficiently high.  At such a point ds/dx > 0 and hence there is

no continuation of the curve on the plane s=0 and hence none of

the " desired initial states is reached.

Let us consider the opposite extreme that the reaction rate

S is very small; then the direction of the field vector lies every-

where nearly in the plane E = const. except near the curves «9.
/7

and 30 : Consider any " cylindrical" neighborhood of the line , 1. and

exclude from it an arbitrarily.small neighborhood of the point Al.

If S is small enough then clearly the vector field on the lateral
./

surface of the "cylinder" points into its interior. The curve G ,

beginning at Al' can therefore never lead far away from the curve

A ; for, as soon as moved away from G , the rate of change ds/dx

would become much smaller  than   Id'r/dx 1 +Ide/dx | and therefore  the

curve (I  would again be drawn nearer into the neighborhood of z€ .

Consequently, the curve / meets the surface e = es not far from

the intersection AS of this surface with the curve L.t , remains

from there on the plane g = const.· and soon enters the point Ag.
1-.

In general the course of the curve 6 can be delimited as

follows: Let-(·r ,es) be the coordinates of the point Ag.  From theE
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assumption aE( )/86 > 0 made earlier (p. 23) it follows that T
E

increases and e decreases with decreasing s. The statement then
1

E

is that the curve C remains in the cell

T l<T Z T E, 6 <8<e 0<E<1.E- -1'    -  -

This follows from the fact that the field vector at the boundary

of this cell points into its interior except on s = 0.

This statement implies that the curve ( never ends up at the

point 80, since B  is Evidently not contained in the cell just
described. In other words, strong deflagrations are impossible.

Let us denote the points at which the curve C enters either
the surface E=O o r the surface 6=e  as "terminal points" T. .S 6
They  form  a " terminal  line" 7 which connects the point  T  =  Tl,
8= el' 6=0 (for finite S) with the point AS (for S= 0).

2
The terminal point Td depends continuously  on the reaction

rate S. Therefore, if we let S vary from co to 0, the terminal

1
From (1) and (2) we have

deg  + BE(€)        -1
7 -1    86          E     E

d E = -T
0 Ed·r    ,E

de = -(m2T -T-le )drE           E    EE    E

12where P = t- 8 +m T  has been used. Eliminating de one hasEE E

BE(6)             
           e

(YE-1) dE = (m TE -ysT les)drg8E

whence the statement follows since the state A is supersonic and2 2              "                    8hence m T >ie .E- E E

2
This follows immediately from de/dx 0 0 o n e= es, 6>0 and

ds/dx 0 0 o n s=O,e>e: the continuity at e=e.E=O can beS' S.
shown by a more refined consideration.
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point will move continuously along the terminal line from the plane

6 = 0 into the surface e = es.  Consequently there is a particular

value of S of Sao for which the terminal point lies on the inter-

section of the plahe E=0 and the surface e= es.  We then speak

of the "extreme" situation and the "extreme" terminal point T'.

Otherwise, if the terminal point lies on the surface e=e  weS

speak of a "normal" situation, if it lies on g = 0, of an

" abnormal"   one.

In the extreme situation a weak detonation exists; for,

since e=e  at the extreme terminal point, the solution curve
S

starting at this point remains on the surface E = 0.  That this

solution curve ends up at A  follows from the fact that the field

has an attractive singularity at AQ and that the terminal point

T' = (T',8') lies in the cell Tl < T. 1 TO, Po Z P' 1 Pl and hence

belongs to those points that are attracted by A .  It is clear that

a solution curve can reach A  only if its terminal point lies on

E = 0 and 8 = es.  Hence, a weak detonation exists only in the

extreme situation, i.e. if the reaction rate S assumes a particular
*

high value S .

The discussion of the terminal line  '.7 will also be useful

for the investigation of strong detonations. Before we enter the

discussion of strong detonations and weak deflagrations we must

investigate the possible continuations of solution curves after

they have entered the region 8<8.- S

In    the    region   8   · < 8 the actual vector field agrees with the
- S

projected vector field.  Suppose the point Bg = (T ,eg, E) on the
Acurve w) ·lies below e·-=·e·. i.e. suppose-88 <8. Then·the vector

S'                        S
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field has a saddle singularity at 86, (see p. 36). Conse-
P+quently, two solution curves, U and 2 -, leave B  (seeE           E              E

Fig. 3); and two solution curves, C  and g I, enter Bs; (the
/..  +curves with e>e g are .6) .and i 6, the one with e<e  are E-E E

and '. -).  We see from the vector field (Fig. 3 and Fig. 5)E

that ,/6.-  ends up at the point A  on A.
E

A solution curve .3 can enter the region e < es only at a
point where de/dx < 0, hence only on the section Jf of the sur-

face e = es cut out by the surface 6  (see p. 35)·  The inter-
section    of    ./    with a plane    E = const.     will be denoted   by ·  ...Z'g,
(see Fig. 3 and Fig. 5).  We consider the continuation of the

solution curve .,f after its entry into 8 1 es on the segment

Zg.  There are two cases. Either, the point BE = (TE' es,E)
lies above the plane e = es, i.e. e  > es.  Then the continua-E

tion of -t,f from .,62 on, ends up in the point A , as seen fromE

the vector field  (Fig.  3) .    Or, the point BE  lies  in the region
rirte < es (see Fig. 5). Then the curve
fg entering Bg with de-

creasing e intersects the segment I  in a point G .  If .:·f
E

enters ,C  on one side of G  (on the side with larger T), itsE                        E

continuation ends up at Ag as before.  If ,:f enters ..,L on the
€

other side its continuation ends up on T=0 unless it has left
0the region e<8  before reaching T=0. If y:/ enters .4 at G

-4/
- S E E

the continuation of ,-<f leads along 'fg to Bg and from there on
....% can be either continued along L)  up to Ag or along 1,+ up to
T = 0 unless 19  leaves e Z es before reaching T = 0.€

We now enter the discussion of strong detonations. Strong

and Chapman-Jouguet detonations imply subsonic or sonic flow in

L      ---
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the burnt gas at x = w . Hence case (Bl) obtains, or the state (1)
corresponds to a point Bl.  Consequently, according to the state-

ments made earlier, (see Section 3, P. 21) there is a two-parametric

set of solutions regular at x = co . Hence there is a one-para-

metric set of solution curves .0 leaving the point Bl.  We want to
*

show that among the curves t, there is a one /0 , which ends up at

A , and thus represents a strong (or Chapman-Jouguet) detonation.
The set of curves 2 is limited by two curves remaining on

the plane e = 1.  One of these two curves, £1, leads to larger

values of 8, and ends up on the plane T=O a t a point Hl (see

Fig. 2). The other curve, A-1, leads to smaller values of e and

ends up in the point Al; it represents the possible shock transi-

tion from state Al to state Bl.  The set of curves  .I may be

characterized by a parameter 0, which for B=O yields k. 1 and for
%3  -  1  yields   /4/I·

On the basis of the assumption made earlier (p. 41) that the

(1curve #0 lies above the plane e = es we see from the remarks made

before that all curves k. that enter the plane e = es end up on «,1 ;
none therefore meet B below e = es or end up on e = 0.  Therefore

the curves i· end up either on T = O, s = O, 'or on 41 .  The so

defined end points will be called "ultimate" points and denoted by

U (S) or U (S).8               0
We investigate whether or not the point U0 depends continu-

ously on the parameter B.  The continuity of U  could be inter-

rupted only in three cases. The first case would be that U were
B

the ultimate point of a curve t) which passes through a saddle

singularity of the differential equation. This possibility is
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excluded; for there is no saddle singularity except on s=1 since
8 was assumed to lie above e = es. The second case would be that

dT/dx =O a t a point U  on T=0; this is excluded for 8<O a s
seen from the differential equation (1).  The third case would be

that ds/dx = 0 at a point U  on g = 0.  This case can arise at

points on 6=0 with e=e.
S

Let B* be a value of B such that the coordinates s and e of
U  approach 0 and es respectively as {31, B* (i.e. B approaches 8*
from below).  A more detailed investigation would show that then

*                     ,

47    =   /3 *  ends  up  at a point  U   =  U *  with  g  =  0  and  e  =  es·
If, for values of B somewhat greater than B*, the curve AV 

ends  up  on  g  =  O with  e  >  es' the point  5 is continuous  at  #*.
If, however, such a curve .ij· does not reach E-O i t will meet

B

8=e s for a value 6>0 and end up on it.  Thus U  =A g for such
values of 0, and as Bl B* (i.e. as B approaches B* from above),

U  -+ A0.   Thus U  is not continuous at B = 8 .

These considerations make it evident that the ultimate points

U  vary continuously from the position U  = Hl on, until either B
*

reaches a value B* for which U  is on e = O, 8 = es or until for
B· =l a point Ulong=Owithe>e is reached without passingS

through  such a point  U*. We maintain  that the latter possibility
0cannot arise in the normal situation S<S.

To this end we investigate the curves k.7 for values of B
slightly less  than 1. They remain near the curve  P 1 until they
come near to the point Al; from then on they will remain near the
curve 6, which leaves the point Al.  In the limit, B - 1, we have

...a curve Cj which coincides with DI up to the point Ai and then

107

1



2-48

./

coincides with the curve G . The ultimate point Ul' therefore,

lies on s=0 with e<e s only if this is the case for the terminal

point of 6, viz. in the "abnormal" situation.  In the normal

situation no terminal point on E=O w it h e>e exists. Conse-
S

quently, in the normal situation there exists an ultimate point U*,

E=o w i t h e=e.
S

The curve kj= 114 whose ultimate point is U* temains on the

plane 6=0 after having passed through U*, and enters the point

Ao.  It is evident that the curve L;* represents a strong detona-

tion. Thus we have established that in normal situations a strong

detonation is possible. It is not so easily seen whether or not

strong detonations are possible in the abnormal case since it is

not obvious whether or not there are ultimate points on s=0 with

8 = e  from which the continuation leads into A .
S                                                           0

Suppose the value of the reaction rate S is such that we are

in a normal situation but near to the extreme situation. Then the
*                                                                                                                                                                                                      9

ultimate point U  is near to the terminal point Te' of the curve  u .

Hence the curve /5* ending up at U* will first lie near to the

Curve i-1 leading from Bl to Al and then near to the curve S

leading from Al to TC.  Thus we see:  in the extreme case,· in which
*

the point Tb falls on T , the strong detonation is represented by

a curve consisting of the curve bI in the plane £ =0 from Bl to
Al, then by   leading from Al to T  and finally by a section

leading from TC to A .  In other words:  in the extreme situation

not only a weak detonation exists but also a strong detonation

which consists of the weak detonation followed by a shock. In a

normal but nearly extreme situation the strong detonation will"be
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approximately a weak detonation followed by a shock.  The extreme

situation, however, will occur only for extremely high reaction
rates.

Let us consider how a detonation looks in the limiting case
when the reaction rate approaches zero; as far as the curves in

the (T, e,s)-space are concerned this is equivalent to assuming that

A   and 11 approach zero since ASoo/Po   and  W.Soo/po   are the essential
dimensionless parameters. The field vectors in this case lie

almost in the planes E = const. except on the lines  6/9 and .6 .   As
was stated earlier, the projection of the vector field in the

planes s = const. has a saddle singularity at the points Bg.  Hence
there are two lines k  and t I depending on s, which lead out of

B .  For s=l they coincide with AY'  and t'I· The curve 10+
E

leads to larger values of 8, while k)- leads to smaller valuesE

of  e.     In the limit  S -+ 0,   or, in dimensionless  form,   11,Soo /po -+ 0
and ASD,/po -+ 0, the solution curves i. leaving the point Bl
consist of sections of the curve ") followed by the curves 25 or

0+
:.

E

b   until these meet.the plane  T  =  O  or  the  line  ,«'i.    From  this
remark it is clear that the ultimate

points U  = U (0) on
the plane

' +6=0 consist of the curve k.o o n s=0 from the point H  on the
plane T = O to the point B , then of the curve 4<0 up to the point

Ao.  It is clear from this description that the curve £f (0) con-
'.

sists  of the curve  ,/,0 from Bl to Bo followed by k> o  on E =O u p
to Ao.  In the limit case tls/pO -* 0, AS/pO -+ 0, therefore, the
strong detonation consists of a shock followed by a reaction
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1
process, as expected.

Finally we are going to show that weak deflagrations exist

unless the reaction rate exceeds a certain bound. To this end we

should find out whether or not any of the curves £9 starting at

the point Bl can end up at the point B .  The situation differs

from that for detonations in that it must now be assumed that

e < e  at B , (see p. 41 and Fig. 5).  As a consequence the line

'1(.( S ) of ultimate points U (S)
is modified for small values of S.

For large values of S, the situation is as before. For S =co,  the

initial part of the ultimate line Q<(S) leads from the point Hl on

T = 0 straight over to the projection of Hl on s = 0.  For large

values of S, therefore,· the ultimate line >1( (S) also begins at Hl
and leads on the plane T = 0 over to the plane s = O. From there

on U leads on s=O t o the point -fc if e>e s a t Al, or to a

point U* if e<e  at A.s 1

For small values of S, however, the situation is quite

different. We can no longer assert that the ultimate line leads

over from Hl on the plane T=O t o the plane 6=0.  As a matter

of fact, for small values of S the ultimate line stops on r=O a t

a point with g>0 and jumps discontinuously over to the line vt ;

the reason being that a curve k/ exists which enters the line

below 8 - 0s; (this possibility was excluded for detonations, (see

pp. 41,42).  We first consider the case S = 0.  In that case the

curves 29 consist of sections of the curve 613 followed by sections

1 If this picture of a detbnation is accepted, then v. Neumann's
result that no weak detonations exist is implied by the fact that
the curve B connects the point Bo with Bl and .not with Al.
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of the curves k,1+ or ts (see Fig. 4). Since the curve 13 nowE

meets the plane e=e s before g=O i s reached it is clear that
none of the curves ,<3 will reach the plane s = 0.

The ultimate line %((0) in this case'consists of the inter-
*+sections of the lines /  with 1=0 from Hl on up to a value g=EE S

for which 8 intersects e = es, from there on of the part of the

curve J   with  E  >  Es· The ultimate  line thus suffers a discontinu-
ity.  Evidently we have e < es on the line 44(0).  This confirms
the statement that 9((O) does not reach the plane s = 0.

It is now clear that for sufficiently small values of S the
ultimate line fl(S) will also not reach the plane E = 0.  As for

S = 0, the ultimate line will consist of one part on the"plane
T - 0 and another part which is a section of the curve / . The

values of the parameter B referring to these two parts are
separated  by a value  Bo (S)   such  that the solution curve

'E;B
enters

0the point G  for a certain value 2(S) of E and then enters theE

point B.. (We recall that G  is the point at which the solutionE               .6
,-'*-curve -+ through BE intersects the plane e = es,  see p.  40. )   ForJE

sufficiently large values of S no such value 2 of s exists sihce

then the ultimate line remains above e = es until it ends at 56
or U*.  Therefore, there is a largest value S' of S for which a
value 2 exists. It is then seen that this value is 2 = 0.  Conse-
quently, there is a value B' of B such that the curve 150
for S = S' meets the plane E=O a t the point GQ and ends up at the
point Bo. This curve ki' then represents a weak deflagration.
Thus we have shown that for every value of the flux m and for an

appropriate reaction rate a weak deflagration exists.
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The argument presented holds just as well if the points Al

and Bl coalesce so that the flow corresponding to this point is

sonic. Thus we see that for an appropriate reaction rate Chapman-

Jouguet deflagrations are possible.

In the limiting case where m and S co
approach zero in such a

way that s = S o /m2 approaches a finite value, a·deflagration is

always possible for an appropriate value of S  /m2, as was shown
CO

in Section 3. In this limiting case de = 0 and de = o for the

vector field except on the plane e = Pr, on which the vector field

is given by  (3),  (3);  (see_Pl 28). The points  B   and Bl  lie  on
this plane e= PT.  The line ,l-1 is the line e=e l o n s=1 with
decreasing T. The line J  is the line e=P r o n e=0 with in-

creasing T.  The point G  is then the intersection of e = Pr with

8=8. As is easily seen there is only one line ·„ on the plane
S

e = Pr and this line meets the point G  only for a special value

s  of s = S/m2.0
Suppose we let m increase holding the initial state (T ,8 )

fixed. Let S(m) be the value of S for which a deflagration exists.

We have not proved that S depends continuously on m, but we can be

sure that a continuous curve of points (m, S) in a (m, S)-plane

exists representing pairs of values of m and S for which deflagra-

tions are possible.  Eventually the flux m will reach a value mc

for which the points Al and Bl coalesce and a Chapman-Jouguet

situation arises.  Let SC be the corresponding value of the re-

action rate S. Then we can at least say that for every value of

the reaction rate S < Sc deflagrations are possible with an

appropriate value of the flux m.
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APPENDIX I

On The Assumption About The Discontinuous Character

Of The Reaction Process

The considerations of this report rest on the "basic"
assumption (see p. 3 )  that the reaction process may be considered
approximately a sharp discontinuity; more specifically, that,
firstly, the rates of change of the pertinent quantities in the
field of flow outside of the reaction zone are negligibly small
when compared to the rates of change of the same quantities inside
the reaction zone and, secondly, that the rate of change of the
width of the reaction zone is small when compared with the average
speed with which the gases cross the reaction zone. It was further
assumed (p. 21) that the flow, when observed from a frame moving
with the instantaneous velocity of the reaction front, is steady
in the neighborhood of the reaction front at the time considered.

We first want to show that this latter assumption is con-
sistent with the assumption of the discontinuous character of the
reaction.  Suppose we define the velocity A of a border of the re-

action  zone  ut + Aux  =  0, and suppose we choose the velocity  of  our
frame such that x=O a t one point inside the reaction zone. Then

the assumption that the rate of change of the width of the re-
action zone is small compared with the average gas velocity in the
zone can then be formulated as lAI << u everywhere in the zone.
Consequently,

lutl
<< luuxl everywhere in the zone.  The term ut'

can, therefore, be omitted from the differential equation which
expresses the fact that the acceleration ut + Uux equals the total
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applied force per unit mass. For similar reasons one can omit the

terms rt' et' and gt from the differential equations expressing the

balance of mass flow, energy, and chemical reaction. In other

words, to the degree of accuracy implied by our basic assumption,

the equations characterizing non-steady flow reduce to the equa-

tions (1)', (2)', (3)' in addition to m = const.  Thus our assump-

tion  of " local steadiness"  is in agreement  with our "basic"

assumption.

Secondly we want to mention that frequently reaction flow

processes occur in which our basic as.sumption is not satis.fied.

Detonations, consisting of a dhemical reaction process initiated

by a shock, are frequently followed by rarefaction waves.  It is

clear that this rarefaction wave interferes with the reaction

process, but the interference can be ignored if our basic assump-

tion is satisfied and the changes which the rarefaction wave pro-

duces in a section of the width of the reaction zone are signifi-

cant. If, however, the reaction zone is so wide that this inter-

ference can no longer be ignored, then pressure and temperature in

the reaction zone are diminished and the strength of the initiating

shock is reduced. In particular, the speed of the detonation wave

is then less than that calculated without interference and could

thus be less than that of a Chapman-Jouguet detonation. If the

interaction is strong the detonation may eventually cease.

The occurrence of a lower detonation limit may be explained

in this way, since the reaction rate is low, and hence the reaction

zone is wide, if the concentration of the combustible component in

the unburnt explosive mixture is low.  (See Wendlandt [12].)
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Spherical detonation waves maintaining the Chapman-Jouguet
condition are possible inasmuch as the detonation process can be
considered a. discontinuity, as Taylor has shown f13]. The rare-

faction wave following the detonation front begins, however, with
an infinite rate of change of the significant quantities, (see
[ 13] ).    Consequently, this rarefaction wave always interferes with
the detonation wave noticeably and diminishes its strength and
speed. It can thus be understood why the speed of spherical
detonation waves is less than required by the Chapman-Jouguet
hypothesis. Calculations of such spherical detonation waves with
sub-Chapman-Jouguet speed were carried out by Eyring and his
collaborators [5], [6].

The gradual building up of a detonation wave ignited at the
closed end of a tube may also be explained as due to the inter-
ference of a rarefaction wave with the reaction process. The

condition that the flow velocity vanish at the closed end requires          
that a simple rarefaction wave follow the detonation wave. This            
rarefaction wave, when it begins, involves an infinite drop of
pressure, temperature and velocity; thus a noticeable interference
is clearly indicated. (For numerical calculations of the gradual           
building up of a detonation see [6].)

As regards deflagration processes it would seem probable that

combustion processes occur in which the width of the reaction zone
widens noticeably. Otherwise it would seem impossible to explain
how a flame could ever overtake a shock front preceding it. Such

combustion processes would then be analogous to rarefaction waves
' '
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and not to shock discontinuities. No theoretical treatment of such

processes seems to exist.

These remarks are intended' to show that the frequently

observed deviations from the predictions of the discontinuity

theory are not due to the unsteadiness of the process as such but

rather to the occurrence of a relatively wide reaction zone which

permits the interference of the outside flow with the reaction

process.

APPENDIX II

It was shown in the text that for an "excessively" high

reaction rate S = S(p, e) a weak detonation occurs instead of the

Chapman-Jouguet detonation   ( see  p. 44). It is of interest to know

how high a reaction rate must be in order to be excessive in this"                "

sense. The excessive cases are separated from the regular ones by

"maximal" cases in which a Chapman-Jouguet detonation is just

possible, while such a detonation is impossible for a reaction rate

higher than a maximal one.  We shall present some such maximal re-

action rates numerically. From these results it will appear that

for maximal reaction rates the transition zone becomes extremely

small, of the order of magnitude of one mean free path, if viscos-

ity and heat conduction are those of air at 300'K and atmospheric

pressure. Under these circumstances the notions of viscosity and

heat conduction in the transition zone become meaningless.  If,

however, viscosity and heat conduction are ten times as large as
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for atmospheric air at 3000K, excessive reaction rates may well be

possible. For example, S would then be excessive if it vanishes
10 -1up to 900'K and equals 16.10 sec or more for higher tempera-

tures. The width of the transition zone would then be about ten

times as long as a mean free path.

We assume that unburnt and burnt gas are polytropic with

exponents 70 = 1.4 and 71=1.2.  For the mixture consisting of the

fraction E of burnt gas and 1-s of unburnt gas we define y by

l E E
FI  =  yo- 1  +  9331

Then we have for the energy per unit mass of the mixture the

expression

E(s) (e)   =. 9-e-1  +   (1-g)F   ,

in which the liberated energy per unit mass F is assumed to be

F =32.5 80

which corresponds to a value 665 cal/gm if the initial temperature

is MoeQ/Ro = 300'K and the molecular weight of the unburnt gas is

Mo = 29.

About the heat conductivity A and viscosity u we have made

the assumption

BA= 93I

which was proposed by Becker [3].  We shall in particular consider

as reference value for F the value
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Fo = 2.44·10-4gm/cm sec

with y=y  = 1.4, the corresponding value of A i s then
0

4A  = 8.54·10  gm/cm sec .
0

We recall that the customary coefficients of viscosity and heat

conductivity are  -1,  and RA in our notation; (see footnote 2 on

p. 14).
The reaction rate S was assumed to be zero up to a safety

temperature e=e; for e>e  we have assumedS                S

FS = const. ;

thus, if A is independent of temperature and pressure the same is

then assumed of the reaction rate for e>e. This assumption is0

rather unrealistic because both the· reaction rate and the viscos-

ity will increase with the pressure; but this assumption should be

sufficlent to given information about the order of magnitude of

maximal reaction rates.  In Fig. 6 we have plotted such maximal

reaction rate.s, ©r -rather the values -EL S , in which go  is  the
#O

reference viscosity given above.  For a safety temperature of

900'K or es = 38 , for example, we find as maximal value of the

Q    Al n -1
reaction  rate  S  =  16·10'  -- sec for e > es.  The velocity vQ with

11

which the detonation wave travels into the unburnt gas at rest,

solely determined by the Chapman-Jouguet condition, equals

-1
vo = 15'7 msec  . The width of the reaction zone is roughly given

by

5=v S-1.0
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Fig. 6

Maximal reaction rates S as functions of the temperature T.

(If the reaction rate exceeds a maximal one, a Chapman-
Jouguet detonation is not possible.  R/F  is the ratio
of actual viscosity to that for atmospheric air at room
temperature.)

In the case es = 380, S = 16·109 12 sec-1, we therefore have
AL

5  =  98· ld-7  -p    cm  ,
F0

a length which for W=K  would be about equal to one free mean0

path in air.

To determine maximal reaction rates we observe that the

Chapman-Jouguet condition cannot be satisfied if it would lead to

a situation called "abnormal" in Section 5, p. 39. In abnormal

situations, the curve 0 starting at the point vlil' ends up on the
plane E=O with. a value' e> es.
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A maximal situation, in which the Chapman-Jouguet condition

can just be satisfied, therefore corresponds to what was called

an  " extreme" situation, in which the curve ends up on E=O

-just with e = es.  To obtain a maximal reaction rate we then pro-

ceed as follows.  To a given initial state (T ,p ,8 ) corresponding0 0

to the point 0,
we determine the end state (Tl'pl'el) from the

Chapman-Jouguet condition. The flux m is then also determined.

We now assume any value for the reaction rate S, or rather for FS

and determine the curve The value of e with which ends

upon g=O i s then taken as safety temperature es.  We finally

select those values for the reaction rate S for which the safety

temperature turns out to be between 600'K and 900'K.

The curve e was characterized as the graph of that solution

of the differential equation which leaves the point  41 with de-

creasing x. All other solution curves entering  -i lie on s = 1.
:.Consequently, c can also be characterized as the only s'olution

curve leaving the point 411 without de = 0. Hence g can be intro-

duced as parameter. The differential equations then become, after
2introducing t=In T:

dt(1-E )tls 32 = t(p+t - Pl-tl ) '

(1-g)·ytiS ·  t- = t[pt -121 t2 + (-7-l)ttl

+    (y-1) (1-s) fpltl  - pltl  - 18    t ]     .

The desired solution t = t(E), p = p(s) is then the one that

assumes the values ( tl' pl ) for .£ = 1. and permits expansion with
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respect to powers,of (1-6).  It is easily obtained from this power
series for small values of (1-s) and by finite differences for
larger values of 1-g up to g =0.

This is a reproduction of a NAVORD Report ·79-46, dated June25, 1946.
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Chemical Kinetics

Peter D. Lax

Courant Institute of Mathematical Sciences
New York University

The propagation of chemical reactions in combustion is

governed by the rate at which energy is transported in and out of

the reaction zone, and on the rate at which the chemical re
actions

proceed. In the simplest models the reaction is assumed to pro-

ceed  at an expanential  rate  exp {kt], k being a function of tempera-

ture, changing from 0 to some high value beyond the so-cal
led

ignition temperature. In reality chemical reactions are more

complex, astonishingly complex;  a good understanding ·of them is

necessary to gauge the limitations of simple models and to de
velop

more realistic ones. The purpose of this lecture is to present

the elements of chemical kinetics. For a more thorough treatment

we recommend a text on Physical Chemistry such as [5]; for 
the

state of the art the Symposium Proceedings contained in [6] sho
uld

be consulted.

A chemical reaction is the formation of one or several com-

pounds, called products of the reaction, out of one or several

compounds or elements called reactants. Houdehold examples are

2H + 0  -+2HO222
or

H2 + I2 - 2HI  .

Generally, denoting reactants by M. and products by N.,J J
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(1)                     )  W·jMJ -AF--- vjNj .
The coefficients v . and 11 .,  such as the factors 2 in the oxidation3 3
of hydrogen, are called stoichiometric coefficients.

The products of a chemical reaction are built out of the same
ingredients as the reactants, i.e. the same nuclei and electrons,
but their arrangement is different. The chemical reaction accom-
plishes the rearrangement as a continuous process starting with
the reactants and ending up with the products. With each point in
configuration space along this path of deformation one can associ-
ate a potential energy, also called energy of formation, defined
as the energy needed to put the configuration together out of its
widely separated ingredients.

The initial and final states consist of the reactants and
products, respectively; these are stable elements and therefore are
local minima for the potential energy function.  This shows that
along a path of deformation the potential energy passes through a
peak. There are many possible paths of deformation; the actual
reaction is channelled overwhelmingly along the path where the peak
value of energy is a minimum. The difference between the minimum
peak value and the initial energy is called the activation energy;
it is the minimum energy required for the reaction to take pldce.

The above description of a chemical reaction as a rearrange-
ment in one step is an oversimplification and describes only
elementary reactions. Most reactions are complex, consisting of a
network of elementary reactions; these elementary reactions lead
to the creation, and eventual annihilation, of a large number of
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intermediate products-atoms, free radical, activated states. This

network of elementary reactions is called the reaction mechanism.

In order to analyze a chemical reaction, one has to perform

three tasks:

a) Find all relevant reaction mechanisms.

b) Determine the rates at which the elementary reactions

entering a mechanism proceed.

c) Determine the overall rate at which the reaction

mechanism proceeds.

Typical. reaction mechanisms may involve upward of 80 species;

finding all the relevant ones is an art. We call the readers

attention to the on-going controversy about the rate at which

fluorocarbons released by spray cans are removed from the upper

atmosphere; the controversy is about possible reaction mechanisms

involving ozone and fluorocarbons. The most intriguing aspect of

reaction mechanisms is catalysis, where the presence of a small

amount of catalyst makes possible a reaction mechanism which pro-

ceeds extremely fast, at the end of which the catalyst is restored.

We remark that since elementary reaction rates are rapidly varying

functions of temperature, a reaction mechanism that is the relevant

one, i.e. the fastest, at one temperature may be irrelevant at a

higher temperature.

The determination of rates of elementary reactions is a

collaborative effort between experimenters and theorists. We shall

say a few words about the theory, a combination of statistical

mechanics and quantum chemistry. As remarked earlier, an elemen-

tary reaction can take place only if energy, exceeding the
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activation energy, is supplied. The source of that energy is the
translational energy of sufficiently energetic molecules; upon

collision translational energy is converted into internal energy.

Assuming that particles are statistically independent of each

other, the familiar Stosszahl Ansatz, the number of collisions will

be proportional to the product of the concentration of reactions.
Suppose the reaction is given by equation (1); let's denote the

concentration of species M  by [M ], of Nj by [N ], measured in
moles/cm3.  Then the rate at which these concentrations change is

d  [M ] = -AL jkf 7--T [Mj] jdt   j '

(2)

7& [Nj] =  vjkf T-T [Mj]11,j .

This is called the law of mass action, and kf is called the forward
reaction rate.  Many, theoretically all, reactions go both forward

and backward; the forward reaction rate is denoted by kf' the back-

ward rate as kb' and the reaction (1) is written as

kf
3- p..M. >    r-vjNj   .6-- J J *.22

Equilibrium is established at such concentrations where the forward

and backward reaction rates are equal. Since the law of mass

action for the backward reaction is

V.

7& [Mj] = tijkb 7-T [Nj] J ,
V

 E   [N j]    =   -v jkbT-T   [N j]    j   ,

at equilibrium
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V

kf T-T [M j]   = kb -1--T [Nj] j .

These relations lead to an easy determination of the ratio kf/kb'

and only one of the two rate constants kf or k  need to beb

measured.

As we shall show below, the reaction rate is an exponentially

decreasing function of the activation energy. Since the activation

energy for the backward reaction equals the activation energy of

the forward reaction plus the energy released in the forward re-

action, it follows that for reaction in which a great deal of

energy is released, the backward reaction is negligibly slow.

Since the number of energetic particles whose collision leads

to possible chemical reaction is a rapidly increasing function of

temperature, so is the reaction rate. Arrhenius' law states that

-E/RTk = Be

where E is the activation energy, R. the gas constant and B a

constant. A more elaborate statistical collision theory, taking

internal degrees of freedom into account, gives

k = B(T)e
. -E/RT

where B is a function of temperature, typically a power of T.  Rates

calculated this way are much higher than experimentally observed

values. The reason is that not all collisions lead to a reaction,

only those where the colliding molecules are properly oriented.

This can be corrected empirically by cutting down k by a fudge

factor called a steric factor. A more satisfactory calculation can
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be based on a statistical theory involving reactants, products and
the so-called activated complex, defined as the configuration at

the min-max point along the optimal path deformating the reactants

into products. Note that the activated complex is in equilibrium,

although an unstable one. This method yields good results when the

structure of the activated complex is well known; this is a task

for quantum chemistry, which has been carried out only for the

simplest molecules.

Once a reaction mechanism has been proposed and the rates of

the elementary reactions occurring therein have been determined,

the law of mass action tells the rate at which species are created

or consumed in each elementary reaction. The rate of change of

concentration of any specie is the sum of the rates of its crea-

tion minus the sum of the rates of its destruction. The resulting

system of ODE's together with the specification of all initial

concentrations, completely determine the time history of the re-
action mechanism. In some simple cases solutions can be expressed

in terms of special functions; but the only general way of solving

systems of ODE's is by numerical methods.

Rates of elementary reactions within a single mechanism can,

and typically'do, differ by many orders of magnitude; this has the

effect, called stiffness, that various components grow or decay at

vastly different rates, which creates special difficulties in

finding solutions numerically.  We illustrate the difficulty on the

simple linear equation

dTEX=-kx, x(0)=1,
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-kt
k large positive, whose exact solution is e The crude forward

scheme

x(t+5)-x(t)   =   -kx (t)   ,
whose solution is

x(t+5)    =    (1   -k 8)x(t)     ,
leads to

(3)                      x(n6) = (1- k5)n .

When k is large, say 0(104), the solution (3) is exponentially

unstable, unless 5< 2 = d(10-4), a prohibitively small time step.

A remedy is to use instead the implicit backward scheme

x(t+5) -x(t)   == -kx(t+6) ,
5

whose solution is

x(t+6) =   1   x(t) ,1 + k6

so that

x(n6) = <  1  . n1 + kB

-ktThis is stable and approximates well e , t = nB, regardless of

the size of k.

We now try the implicit second order scheme

x(t+5 )  -x(t)   =   -k   x(t) +x(t+6) '
5

whose solution is

x(t+5) = 1- k8/2 x(t) ,
1 + k6/2

so that

x(n 5)     =     (1  -k 6/2  )n1  +  k8/2
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This is stable, i.e. uniformly bounded, for all k and 8, but for

k large is not a good approximation to e
, t=n6. What is true

-kt

for this simple example is true for systems, and shows that to

obtain accurate solutions of stiff systems one must use a specially

designed numerical scheme. The most versatile. and best known

method is due to W. Gear, see [2]. Gear's method is available as

a user-oriented packaged program, see [3].

At the end of this talk we will show how to exploit stiffness

by making use of asymptotic methods.

We now give some examples:

(I) Reaction: H2 + I2 -+2HI
Reaction mechanism

Elementary reactions Rate constants

I  Lf 2I
kf' kb2

I+H =H I+H                                        k
2                                           2

H+I - +H I+I                                           k
2                                           3

H+I-+HI          k4
Diffe rential equation:

 E    [I 2]           -kf [I 2] +k b[I]2  - k3 [H]  [I 2]     '

     [H 2 1          -Ik.2 [I] [H 2 1    3

d
3E [H] k2[I].[H2] -k3[H][I2] '

4 [I]
2kf [I21 -2kb [I]2 - '2[I][H21 + 5 [H][I21 -k4[H][I]
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(II) Reaction: A-+B+C

Reaction mechanism

Elementary reactions Rate constants

(4)        A +A * A*-1· A kf,        kb

(5)           A* -08+ C                                    s
.*A  is a so-called activated molecule, formed by·collision of

energetic molecules A; the activated molecule A* decays spontane-

ously into the fragments B and C.

Differential equations:

(6)      [A]         =   - k f [A] 2  + kb[A]  [A*]     ,

(7)  E [A*] =  kf[A]2-kb[A][A*]-s[A*]

(III) Reaction: 203 - 302
Reaction mechanism

Elementary reactions Rates

(8) 0 40 +0 kf, kb3     2

(9)        0+ 0 -+ 20                         s
3     2

Differential equations:

(10) -1  [ 0_ ]   =  -  kfI o3 l  + kb I 021 I 01  - s [ o] [ 03 ]   'dt   3

(11) d[o]= kf 0 03 ] - kb I 021 I 01 + 2s  [ 0] [ 03]  'dt 2'

(12)   [o] = kf[5 ] - kb I 021 I 01 - s [ 0] [ 03 ] 0
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Examples (II) and (III) are stiff systems in the sense that in both
systems the first reaction, (4) respectively (8), is much faster
than the second, (5) and (9) respectively. Of course, since they

are of modest size, there is no difficulty in solving these systems

numerically; we shall show now how to exploit the stiffness to give

an asymptotic analysis of the last stages of these reactions.

Assume in case (II) that kf and kb are very much larger than
s; then the third term on the right in equation (7), s[A*], is very

much smaller than the first two, kf A]2 and kb[A](A*].  As a con-
sequence the effect of the third term is negligible until the first

two terms become very nearly equal. The points where the first two

terms are equal:

(13) kf[A]2 = kb[A][A*] ,

are called equilibrium states for the reaction (4),  for at such

points the forward and backward reactions exactly cancel each other.

Once a neighborhood of equilibrium is reached, the third term in
(7) becomes important.  We add (6) and (7) and obtain

(14) . E m = -s[A*]

where m denotes the sum

(15) m  =   [A]  +  [A* ]    .                                                                             '

Since equilibrium (13) holds approximately, we deduce  that

(16) kf[A  2 kbIA*]

which implies that'
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k

(16)t [A*] -    f- kf + kb
m .

Substituting this into (14) we obtain an equation of simple

exponential decay for m, giving

<-skft h
(17) m . const. exp 1

''<kf + kb..)

Using (15) and (16) we deduce from (17) that

/ -skf   
(17)' [A]  2  const  exp < kf + kb  t,/11    .

We now turn to case (III); here too kf and kb are very much

larger than s; here too this fact can be exploited to give an

asymptotic analysis of the last stage of the reaction. As before,

the third term in all three equations (10)-(12), s[0][03], is small

compared to the first and second terms, kf[%] and kb I 021 I 01 ;

therefore the effect of this third term is negligible until the

first two terms become very nearly equal, i.e. until we come near

equilibrium for reaction (8):

(18) kf I 031 = kb I 021 I 01 0

We also assume that ozone and oxygen atom concentrations are small

compared to that of oxygen molecules. If so, we can calculate the

value  of [02] since 3[05]+2[02]+ [o]   is a constant  in  time.

Denote this value of [02] by Y; from (18),

(19) I031 2 KY[O].,   K = kb/kf .
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To calculate the time histories of [5] and [0] add equations (10)

and (12); we get

(20)                     d
35    m    =    -2s[(3][ 0]      ,

where

(21)
m = Io3l + Iol .

Using (19) and (21) we get

KYm              m
I 5 ]   2  1 + KY ' Iol = 1+ KY

Substituting this into (20) gives

d         2KYs    2
3:Em=-           In(1+KY)2whose solution is

(22) m(t) = H=
1               2KYs

Ht  + c ons t    ' (1+KY)2
We now turn to an asymptotic method developed by chemists,

called the quasi-steady state approximation; it is applicable in

situations where one of the components is very nearly in steady

state, i.e. its concentration hardly changes with time. This is

the case e.g. in (II), where the value of [A*] is determined mainly
by the equilibrium of the reactions in (4); although A* decays

spontaneously, the rate of decay s is assumed to be small, so that

equilibrium is reestablished. The method consists in assuming that

exact steady state has been reached, i.e. that the time derivative

of the component in question is zero. The resulting algebraic

relation is used to eliminate one of the concentrations from the
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system of differential equations; the remaining diminished system

of ODE's is free of stiffness.

We now apply this method to system (II); setting -1- [A*] = O
dt

in (7) gives

(23) kf[A]2-kh[A][A*]  - s[A*]  =0,
from which

(24)                     IA*] =  kfIA] 2  + kf [A] ,
kb [A J    +  S    -   Kb

i.e.  A and A* are very nearly in equilibrium. NoW add (23) to

(6); we get using (24)

sk

 E   [A l    =   -s[A* ]    -   -   -2     [A]     ,

whose solution is

< sk  
(25 )                                                       [A]    =   const   exp    -   --2     /1       0

This result agrees with (17), when kb is very much larger than kf'

but disagrees otherwise. Which is correct? numerical integration

of the system  (6), (7) gives the nod to '(17)'; this is not sur-

prising since one can prove rigorously that (17)' is true. In

their interesting article [ 1], "The Steady State Approximation:

Fact or Fiction?", Farrow and Edelson ahalyse a reaction mechanism

involving 81 elementary reactions; the ODE system describing the

reaction is stiff.  They solve this system by Gear's method; this

solution differs significantly from previously obtained solutions

using the steady state approximation. Since Gear's method is reli-

able, this shows that the steady state method is not. Nevertheless
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we feel that there is need for asymptotic methods - provided that
they are valid - such as the one described earlier, or the one

expounded in [4] for studying inhomogeneous reactions, where con-

centrations are functions of space as well as of time. Combustion

processes, such as in fuel injected internal combustion engines,

are typically inhomogeneous; the detailed solution of complicated

ODE's at many points in space would be prohibitively expensive.

The reaction mechanisms in combustion can be complicated
indeed.  In [6], Westbrook, Dryer et al. discuss the reaction of

carbon monoxide and methane in the presence of vapor; the reaction
mechanism they dstablish includes 20 chemical species and 56

reactions. For other examples we refer the reader to the litera-

ture of mechanisms for the burning of hydrocarbon fuels, see e.g.

[7] and I. Glassman et al. herein.
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RANDOM CHOICE METHODS WITH APPLICATIONS TO REACTING GAS FLOW

*Alexandre Jool Chorin

Department of Mathematics and Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeley, California 94720

Abstract
The random choice method is analyzed; appropriate boundaryconditions are described, and applications to reacting gas flow inone dimension are carried out. These applications illustrate the

advantages of the method.

Introduction

The random choice method for solving hyperbolic systems was
introduced as a numerical tool in [2]. It grew from a construe-
tive existence proof due to Glimm [5]. In this method, the solu-
tion of the equations is constructed as a superposition of locally
exact elementary similarity solutions; the superposition is carried
out through a sampling procedure. The computing effort per mesh

point is relatively large, but the global efficiency is high when
the solutions sought contain components of widely differing time
scales. This efficiency is due to the fact that the appropriate
interactions can be properly taken into account when the elementary
similarity solutions are computed. The aim of the present lecture
is to provide· a further analysis of the method, and to illustrate

its usefulness in the analysis of reacting gas flow.  Examples are
given of detonation and deflagration waves, with infinite and
finite reaction rates.
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hyperbolic system of equations

4-2

We begin by describing the method briefly. Consider the

(1)               It = (f(v))x, 2(x, 0)  given ,

when v is the solution vector, and subscripts denote differentia-

tion. The time t is divided into intervals of length k. Let h be

a spatial increment. The solution is to be evaluated at the points

(ih, nk) and ((i+ )h, (n +·21)k), i = 0,+1,+2, . . . ,   n  =   1,2,  . . .    .     L e t
ri+1/2

ui approximate v(ih, nk), and ui+1/2 approximate .v(( i + · )h, (n +  )k).
n+1/2 n n

The algorithm is defined if 81+1/2 can be found when ui, ui+l are

known. Consider the following Riemann problem:

v= (f (v))  ,  t>0,  -co <x< +D D ,

. n
f ui+1 for X>0,

V(X, 0) = 1
n

.U. for X<0.
-1\

Let w(x,t) denote the solution of this problem.  Let ei be a value

of a random variable e, -   2 e..1 ·1·  Let P. be the point  (eih, 2 ,-k)1

and let

w = w(pi) = w(eih, )

be the value of the solution w of the Riemann problem at P.. We
- 1

set

ri+1/2   m
ui+1/2 =w.
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In other words, at each time step, the solution is first approxima-
ted by a piecewise constant function; it is then advanced in time
exactly, and new values on the mesh are obtained by sampling.  The
usefulness of the method depends on the possibility of solving

Riemann problems efficiently.

Simple Examples and Partial Error Estimates

In order to explain the method further and analyze its limita-

tions, we consider in this section simple examples of its use; the
first one was already discussed in{7].  Consider the equation

(2)                          vt = VX

in -co <x< +00, t>0, with v(x, 0) = g(x) gived.  One can readily
see that if a single e is picked per half time step, Glimm's method
reduces to

/n
u     if  eh > -k/2

n+1/2 i+1

ui+1/2 = 4 n
U. if  eh < -k/2 .\ 1

It follows that

ui  =v( ih+71, t) ,

where n = 9(t) is a random variable which depends on t alone; i.e.,
the computed solution equals the exact solution with a shift inde-

pendent of x. The magnitude of 9 depends on the choices of e.

Consider the following strategies for picking 8:
i)  e is picked at random from the uniform distribution on

I-    . 6 ,
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ii)  n is assumed known in advance; the interval [-  ,1] is

divided into n subintervals of equal lengths and ei is picked in
. th

the middle of the 1 subinterval;

iii)  (A compromise between i) and ii)): [- 2, p]
is divided1  1.

into m subintervals, m << n, and el is picked at random in the

first subinterval, e2 in the second subinterval e in the first'  m+1

subinterval, etc.

A fourth strategy which relies on the well-equipartitioned

sequences studied by Richtmyer and Ostrowski was suggested by Lax

[6], but is not useful in the present context.

If strategy i) is used, we have'

x+n = displacement of the initial value

2n

=  I 'li ·
where

Ch

   2  if  hei < -k/2
n. = '1

- h  if  hei 1 -k/2\

The variance of ni is readily evaluated:

var
( 91 )   =  Ii--   (1-   ) (1+  )    i

the variance of 9 is thus

nh2 t k, k,

-IF-    (1-  h) (1 +h)    '

and the standard deviation of n, which measures its magnitude is

2 h   { (1-k h) (1+  kh)} 1/2   =   0    ( /Eh).
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If the second strategy is used,

n
ui      =     v (x+ 9,  t)      ,             1711     1   ·A,

if n = 0(h-1), n = O(h).  If the third strategy is used, and n is

a multiple of m, n = O(1/n7m), since only in every m half step
th

is the outcome of the sampling in doubt.

Assume v is of compact support. Following a suggestion by

Lax, we define the resolution of the scheme by

-1        nQ  = min  lui - v(ih+q, t)11
q

where     denotes the maximum ·norm. The scheme has resolution of
order'm if Q = 0(h-m).  The displacement d of the scheme is defined

by

Q-1 = ||ui- v(ih+d, t) 

= min  uO-v(ih+q, t)  .
q

The method applied to the present problem has almost first order

accuracy, almost first order displacement, but infinite resolution.
There is no smoothing and no numerical diffusion or dispersion.

For any k/h, the domain of dependence of a point is always a single

point. The answers are always bounded. If the Courant condition

k/h < 1 is violated, the equation being approximated is

vt = (h/k)vx.  Clearly, since these results are independent of k/h,

they generalize to hyperbolic systems with constant coefficients.

Consider now the equation

vt = a(x, t)vx ,
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in   -1     <   x   <   +00,     t    >   0,    v(x, 0)    = g(x) given,     and   a(x, t)    a

Lipschitz continuous function of both x and t. The method is not

well suited to the solution of such an equation, both because the

solution of the Riemann problem requires a possibly laborious inte-

gration of a characteristic equation, and because the errors will

turn out to be large compated with those incurred in other available

methods. The analysis is nevertheless illuminating.

Let C be the characteristic
X
0

dx
TE = -a(x, t) , X(0) = XO .

For each i, we have

-n
/ U. ir  P = (eh,p) lies to the right of C

n-1- 1/2            1         1                                                                                                                                                                          (1  + ·2l)h

ui+1/2 =
n if P lies to the left of C.,ui+1 (it p)h

As before

n
u. = v(x+U, t) ,  x=i h,  t=n k;1

where n is a random variable which now depends on both x and t.

If e is picked at random from the uniform distribution on

[- 2, ·1]   (Strategy i)) we have as before n = 0 (ht/E)... Strategy ii)

clearly yields an error 0(1).  Strategy iii) is more advantageous;

the standard deviation of n is again bounded.by 0(h/E;7ii-). However,

the mean of n is no longer zero.  Assume k = 0(h).  Note that

a(x, t) may vary by 0(mh) before this change affects the values of 9·

Thus,  n = mean of n  =  0(mh),  and  n  =  0(mh) + O (h,/E7E).    If
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n = 0(h-1)  and m = 0(nl/3),  then n = O(h2/3 ) We have less than

first order accuracy and more than first order displacement.

We, now  try to assess the relative displacement  of two points.

Let us assume that the first sampling strategy is used, i.e., e is

picked at each step from the uniform distribution on [- .1, ·1] .

Consider first the quantity

8 9(h,k)    =    (71(x,t+k)   -71(x+h,  t+k))   -  (7 1(x,t)   -  n(x+h,t))     ,

i.e., the difference between the numerically induced translations

experienced ·by -·two ··neighboring· ·points  ·during  one  time   step:"---If-

69(h, k) > 0, information is lost:  one value of v(x, 0) disappears.

If 89(h, k) < 0, a false constant state is created.  89(h, k) can

take on the values 0, th.  84(h, k)   0 if P = (eh,k) falls to the

left of the characteristic through one of the points (ih, nk),

((i+1)h, nk) and to the right of the other. This happens with

probability 0(h), i.e., the variance of 69(h, k) is 0(h3). There-

fore, the variance of 89(h) = 4(x, t)- n(x+h, t) is nO(h3)= 0(h2) if
n = 0(h-1), and the standard deviation of An(h) is 0(h), i.e.,

neighboring values in the range of v do not fly far apart. The

same estimite holds for the other sampling strategies.

Consider now the relative displacement An of two values far

apart.  Let 91 = 9(x, t), 92 = 9(x+X, t), and An = 92-91' and thus

nu. = v(x+91't) = g(xl) '  ih =x,  nk =t,1

u +10 = v(x+X+712't) = g(x2) ,  i0h =X,

where g(x) = v(x, 0).  Let Cxl be the characteristic through (xl, 0),
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and similarly for C  .  x2-xl has increased by th each time
X2,

P = (eh,p) fell between the two characteristics. Assume the first

sampling strategy is used. There are two sources of error which

make 84 0 O.  There is the.standard deviation of the sum of the

random variables which equal th when P is between the characteris-

ties,·and are zero otherwise, (this is clearly 0(h/E)), and there

is the uncertainty in the slope of the characteristics due to the

lateral displacement of the solution; this is again 0 (ht/E) and

induces an error 0(h3/2113/4) .= 0((h/E)3/2); if n = 0(h-1), this is
O(h3/4).      Thus   An   =   O(h/E),    and the resolution   is   not of highe r

order than the accuracy. Similar results hold for the other

sampling strategies.

We now turn to the nonlinear problem

vt = (f(v))x ,

where f is a function. of v but not explicitly a function of x

and t. The method of analysis we have used here is not applicable,

since values of v are not merely propagated along characteristics.

Furthermore,   we   have"--here   no  way of taking into account properly

the fact that rarefaction or loss of information incurred in the

numerical process correspond to genuine properties of the differen-

tial equations. All we can provide here is a heuristic analysis.

Consider the third sampling strategy. Since the slope of the

characteristic depends on the values of v and not on x, the values

of v at neighborhing points remain attached to neighboring points,

we  expect  the  term  0(mh)  in  n to disappear,  and. have  n  =  0(h,/E7Ei).
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Thus, the resolution should be at least 0(h,/n/m).  Note that if
n = 0(h-1) and m = 0(n), the random element in the method loses its
significance.

In the case of a shock separating two constant states, one

can readily see that d = O (h/E7E ) but the resolution is infinite.
One can trivially define resolution in a neighborhood.  Thus, 'what
we have is a rather awkward first order method, which resolves

shocks very sharply. We also know that it keeps fluid interfaces

perfectly sharp [2]. It is useful for the analysis of problems in

cartesian coordinates in which the dynamics of the discontinuities
are of paramount significance. We shall provide examples of such
problems in later sections.  Recent results (see, e.g., [8]) show
that in such problems substantially higher accuracy cannot be
achieved.

Boundary Conditions

The correct imposition of boundary conditions in our method
requires careful thought, and was not adequately discussed in f2].

It is clear that even in the case of equation (2) the presence of

a boundary can detract from both accuracy and resolution. The

lateral displacement of the solution may make some function values

disappear across the boundary and care mUst be taken to ensure the

possibility of their retrieval. Additional storage across the

boundary and careful accounting of the lateral displacement provide

a remedy.

The following procedure has been introduced in [2] to reduce

the lateral displacement of the solution (and thus reduce the loss
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of information at walls), when the third sampling strategy is used.

The goal is to obtain as fast as possible solution values on both

sides of whatever wave pattern emerges in the solution of the

Riemann problem, and thus rapidly offset a displacement to right

by a displacement to the left (or vice versa).  We pick an integer

m' < m, and m and m' mutually prime, and nQ integer, n  < m, and
construct the sequence of integers

(3)                   n    = (n.+m')(mod m) .i+1     1

The  subintervals  of  [- .1 , · ]  are then sampled in the order

nO, nl'n2'... rather than in the natural succession.  One can

further modify the sampling so that of two successive values of 6,

one lies in [-  ,0] and one in [O,p] . These procedures do not

increase the error far from the wall, and are quite effective,

although no analytical assessment of their efficiency is available.

Suppose we are solving the equations of gas dynamics (equa-

tions (4) below), and using the third sampling strategy, modified

by (3) or not.  Assume the velocity v is given at the boundary.

One can find a state (i.e., a set of values for the gas variables)

which has the given velocity and which can be connected to the

state one mesh point into the fluid by a simple wave (see, e.g.,

[4]).  This is equivalent to solving half a Riemann problem, and

provides an appropriate solution field. which can be sampled. The

same  result  can be obtained by symmetry considerations. Consider

a boundary point to the right on the region of flow; let the

boundary conditions be imposed at a point i h.  A fake right state

at (il+ 7)h is created, with
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Pi0+1/2 = Pil-1/2 '

vil+1/2 vil-1/2 '
= 2V -

Pi +1/2 = Pil-1/2 '

where p, v, p are respectively the gas density, velocity and
pressure, and V is the velocity of the wall.  The constant state in

the middle of the Riemann solution is the wall state, and it is
dxsampled to the left of the slip line 2 E = V.

This procedure contains a pitfall, not noticed in [2]; let e
be chosen in accordance with our usual sampling strategy; let el'
82 be the values of e at two successive time steps (81 and 82 are

-      not independent).  el, 82, the values used at the wall, differ from
1  1el and 82 since only part of the interval [- 2, p]  is sampled (or

dxelse one does not remain to the left of the wall line - = V).dt

el and 82 can presumably be obtained by a linear change of
variables. Consider a specific part of the wave pattern at the

wall.  Since el, 82 are not independent, the possibility exists

that whenever el picks up the specific part we are considering, 62
is such that this information is lost to the wall. This possi-

bility was not noticed in [2], and its removal by the methods whose
description follows contributes to the sharpening of the results

obtained in [2].

It is always consistent to pick el, 62 by a linear change of
variables from two values picked independently from the uniform

distribution   on    [-   ·1,  ·1].    '   On   the    average   no.informati'on   will   be                                   I
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lost to the wall, but the variance of the solution will be

increased. Better strategies can be devised, but require thought

in each special case. If the walls are at rest, V = 0, one can

proceed as follows: impose the boundary condition on the right at

time  nk  and a point  ilh,  and  on  the  left  at  time  (n + l)k  at a point

' i +1)h 44 2  2, ' +1' i2 integers.  One can see that if el' 02 are so

chosen that el 2 0 at time nk, and 82 1 0 at time (n + l)k, then el
and 82 can be used at the boundary as well as in interior without

loss of resolution.

Detonations and Deflagrations in a One Dimensional Ideal Gas

Our goal in this section is to present a quick summary of the

elementary theory of one dimensional detonation and deflagration

waves, (for more detail, see, e.g., [4] and [10], and then derive

some relations between the hydrodynamical variables on the two

sides of such waves for later use.

The equations of gas dynamics are

(4a) P t +  (p v,x  =  O  3

(4b) (p v)t      (pv2  +  p )x=    O,

(4c) e+ ((e+p)v)  =0,tx

where the subscripts denote differentiation, p is the density of

the gas, v is the velocity, pv is the momentum, e is the energy per

unit volume and p is the pressure. We have
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(4,) 1   2
e = ps + 2 pv  ,

where  E  = si + q,  Ei  is the internal energy per unit mass,

(4e) 1P
E i     =    - p

where y is a constant, y > 1, and q is the energy of formation
which  can be released through chemical reaction  (see  [4] ).    In  the
present section it will be assumed that part of q is released

instantaneously in an infinitely thin reaction zone. Let the sub-

script 0 refer to unburned gas (i.e., gas which has not yet under-

gone the chemical reaction) and let the subscript 1 refer to burned

gas. The unburned gas is on the right. We have

'l - yll-' 2.q,

E =

-- + qo .
1  PO

0  70-1 PO

For the sake of simplicity, we shall make here the unrealistic

assumption 71 = 70 = Y.  (The case 71 0 70 is more difficult only

because of additional algebra.)  When yl = yo = y the reaction can

be exothermic (i.e., release energy) only if ql > qo·

Let U be the velocity of the reaction zone. Le t

wl= vl-U

WO = VO-U •

Conservation of mass and momentum is expressed by
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(5)                      Plwl = PowO = -M

(6)                           Powo +Po = Plwl +Pl
22

(see [4]). From these relations one readily deduces

2 PO-Pl
M = - , where  T = 1/p .

T/-Tl

Define the function H by

(Tl-Tn)
H = El-60

 
2                (P 1+P O       '

Conservation of energy is expressed by

H= H(rl'Pl, To,Po) =0.

2 _ 1-1.
Define & = q -ql, (6 1 0 for an exothermic process), and W  -  +1,

we find

21-1,2H   =0=    (1-1.12)Tlp].  -   (1-112).ropo  -2At,28+  t.t.2(Tl- To)(Pl+PO )

(7)

= -po(TO-11,2Tl) +Pl(Tl-112TO) -21128 .

In the (rl'pl) plane the locus of points which can be connected to

(TQ, pO) by an infinitely thin combustion wave is a curve which

reduces to a hyperbola when & is independent of p and T. (See

'

Figure 1.)  The lines through (1 ,p ) tangent to H=0 are called

the Rayleigh lines.  Their points of tangency, Sl and S2' are

called the Chapman-Jouguet (CJ) points.  The portion, Pl > P  and

Tl > TO, of the curve is omitted because it corresponds to
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D 4
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Figure 1. The Hugoniot curve for exothermic gas flow.
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2
unphysical events in which M  < 0. The upper portion of the curve

corresponds to detonations; the portion above Sl to strong detona-

tions and the portion below to weak detonations. The lower part

of the curve corresponds to deflagrations.

The velocity and strength of a strong detonation are entirely

determined by the state of the unburned gas in front of the detona-

tion and one quantity behind the detonation, just as in the case

with shocks.  Let PO, po, To, EO and vl be given, as well as Pl,

and assume the unburned gas lies to the right of the detonation.

We  have  from  (7)

.(8)               Tl   TO  2
=       Poll.'2Plj +   2 ,124

  Ll    PO+pl  /          11    PO+Pl

and thus

2 PO-Pl Po-Pl
M = -      =                           ·

To-Tl <PO+It,2pl + 2t.t,2tpo

TOI     0      0\ Pl+11, -po     AL -PO+pl  -  1, 

Let [p] = pl-Po; some algebra yields

(9)        M2 = POPO(21 + 1 1 ( P ))/(1- (y-1)pOA/[p])

If 6=0 this formula reduces to the expression for M i n .a shock,

as given in [2]  or [9] .   M is real if [p] - (y-l)pla Z O;  this can
be readily seen to hold in a strong detonation.

The states on the curve H=0 located between the CJ point Sl

and the line T = T  correspond to weak detonations.  As described

in [4], the state behind a weak detonation is entirely determined

by the velocity U of the detonation and the state in front of it.

152



4-17

In fact, a weak detonation cannot occur and what does happen is a
CJ detonation followed by a rarefaction wave. Our next objective
is to derive an explicit criterion for determining whether a
detonation will be a strong detonation or a CJ detonation.

It is shown in [4] that at Sl' Iwll
= c  where c1 = JYP1/Pl1

is the sound speed, i.e., a CJ detonation moves with respect to the
burned gas with a velocity equal to the velocity of sound in the
burned gas.  We now use this fact to determine the density 953'
velocity v and pressure p behind a CJ detonation.CJ CJ

From equations (4) and (5) one finds

Pl-PO 2 2 2 2     2
T -r  = -Plwl 2 -Powo = -M  ,1  0

and thus in a CJ detonation

Pl-PO 2 7Pl
·rl-TO = -Pl pl- = -Ypl//Tl ,  ·rl = 1/p 1 ,

or

(10)
Tl(Pl(1+Y)-PO) = YT0P1 0

Equating rl obtained from (8) to Tl in (10), we find

T /,2,11:PO j .
2

2  8    _   YTOPl
01\ pl+AL Pof  (pl+ 2PO) - Pl(1+7)-PO

Some algebra reduces this equation to

2
Pl + 2Plb +  c  =  0,

where
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(lla) b = -PO -8(7-1)Po

22
(llb) c  =  PO  +211  POPOA     ;

a trivial calculation shows that b2-c Z O i f y l l and A < 0.  Thus

(llc) P    = Pl = -b +  b2- cCJ

where the + sign is mandatory since a detonation is compressive.

Given p   = pl' PCJ = pl = Tll can be obtained from equation (10).C3

Since M = -plwl' and wl = -cl' we find

M = JYPlpl = J1PCJPCJ '

The velocity U of the detonation is found from
C3

Po(vo-UCJ) = -M

which yields UCJ = Cpovo  ' *CJPCJ /PCJ' and then

(12)                      V =U -C
CJ (3 CJ .

v   depends only on the state of the unburned gas.CJ

Suppose vl' the velocity of the burned gas, is given.  If

vl 1 vCJ a CJ detonation will appear, followed by a rarefaction

wave. If v  =v   a C J detonation will appear alone, and if
1   CJ

Vl > V a strong detonation will take place.CJ

If the unburned gas lies to the left of the burned gas

analogous relations are found; the only difference lies in the

signs of v, in particular,
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M = +Pl(vl-U) = +PO(V -U)

The velocity of a possible deflagration cannot be determined

within the context of a theory which assumes the gas to be non-
conducting; this point will be further discussed below. It will
turn out that for a ·nonconducting gas the only possible deflagra-
tion is a constant pressure deflagration, Pl = Po, which moves with
zero velocity with respect to the gas; i.e., it is indistinguish-
able from a slip line.

Application of the Method to Reacting Gas Flow

One interesting feature of our method is its applicability to
the analysis of gas flow in which exothermic chemical reactions are

taking place and producing substantial dynamical effects.  A

Riemann problem is solved at each time step and at each point in

time; this solution is then sampled. The advantage of this pro-
cedure is that the interaction of the flow and the chemical re-

action can be taken into account when the Riemann problem is solved,

even when the time scales of the chemistry and the fluid flow are

very different. As a result, the basic conservation laws are
satisfied at the end of each time step.  It can be readily seen
that if the chemical reactions and the gas flow were to be taken

into account in separate fractional steps, the basic conservation
laws may be violated at the end of each hydrodynamical step, thus
either induding unwanted 6scillations and waves, or requiring time
steps small enough for all changes to be very gradual - usually a
costly remedy.  It is interesting. to note that the Riemann solu-
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tions with energy deposition in the flow field are equivalent to

the exothermic centers introduced by Oppenheim [3] and serve the

same purpose of accounting for the dynamical effects of the exo-

thermic reactions. These discrete exothermic centers correspond

to a physical reality whose origin can be ascribed to the fluctua-

tions to the levels of chemical species [1].

We consider here the simplest possible description of a re-

acting gas (see e.g. [9]):

(13 a) Pt +  (pv,x  =  O

( 13b) (p v)t  +  (pv2  +  p )x=    0

(13 C) et + ((e+p)v)x- ATxx = 0

where, as before, p is the density, v is the velocity, e the energy

per unit volume,

(13 d) e = ps +2 pv  ,
1   2

s is the internal energy. In this section,

(13 e) , =-9-1-T f + Z q

where y is a constant, y > 1, q is the total available bonding

energy (q < 0), and Z is a progress parameter for the reaction.

T = p/p is the temperature, and A is the coefficient of heat con-

duction.  Z is assumed to satisfy the rate equation

(13 f) TE = -KZ ,  Z(0) = 1
dZ

where
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K=O if T=p/p<TO,
(13g)

K = Ko  if  T = P/P > TO .

T  is the ignition temperature and K  is the reaction rate.  The
equations of the preceding section are recovered if we set A = 0,
q= 6, and K= 00. Equation (13 f) is a reasonable prototype of the

vastly more complex equations which describe real chemical
kinetics. Viscous effects have been omitted here; their inclusion

in the present context has little effect and presents little

difficulty. (Thus, we assume here a zero Prandtl number.)

The approximation of the dissipation term will be relegated

to a separate fractional step, where it is to be handled by

straightforward finite diffe rences.  In view of (13e), and the

perfect  gas  law  T  =  p/p (in appropriate units), this fractional
step requires merely the approximation of

(14) 8tT = (y-1)TXX

The differencing of a heat conduction term alone introduces

negligible numerical dissipation. Several more sophisticated

approximation methods were tried, but did not seem to be worth

pursuing.

All that remains to be done is to describe the solution of

the Riemann problem for equations (13) with A = O.  This will be
done with the following simplifying assumption: whatever energy

may be releaded during the time k/2 in a portion of the fluid is
released instantaneously.  This approximation is well in the spirit

157



4-22

of our method (since it approximates Z by a piecewise constant

function); it also has some physical justification [1].

Solution of a Riemann Problem With Chemistry

Our goal is to solve equations (13) and the following data:

SE(P = pf, p =pE, V =VE, Z = ZE) for X<0

and

Sr(p = Pr' p =pr' v=vr' z = zr) for X>0

with A = 0.  We begin by a partial review of the case K  = 0 (no

chemistry; see [2],  [6],  [9] ). The solution consists of a right

state S.a left state Sf, a middle state S* (p = p*, v= v*),
r'

separated by waves which are either rarefactions or shocks. S* is
dxdivided by the slip line TE = v* into two parts with possibly

differing values of p, p*r to the right of the slip line and p*f to

its left.  To determine v* and p* we proceed as follows: define

the quantity

(15) M =
pr-P*

r  vr-V*

If the right wave is a shock,

(16) Mr = -Pr(vr-Ur) = -P*r(v*-Ur)

where U  is the velocity of the right shock. From the Rankine-r

Hugoniot conditions one obtains

(17a) Mr = JPrpr (P /pr) '    P*/pr 1 1,

where
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(17b) 41 (a) - j»a + 18.1 .

If the right wave is a rarefaction, we find

(18 a) Mr = dPrpr 42(P*/Pr) '   P*/Pr 1 1,

where

(18b)  2(a) =
1-1 1-a

2/  1-al-1/27 .

(18b) is derived through the use of the isentropic law pp-7 =

constant and the constancy of the right Riemann invariant

Er = 2/yp/p/(7-1)- v. The function

<41(a)
, a-il,

(19) t =i

l02(a)
, all,

is continuous at a = 1, with *(1) = +1(1) =  2(1) =  /9. Similarly,

we define

(20) M  = PE-P* .
2     V 2-V*  ,

if the left wave is a shock,

(21) Mf = pf (vf -Uf) = P*.e (v*-Uf) '

where Uf is the velocity of the left shock.  As on the right,

M.2    =      FFI    4(p*/pf),    where     (a) is defined   as in equations    (17)    and

(18).  From (15) and (20),

(22) P* = (ul-ur +pr/Mr +PZ/ME)/((1/Mr)+(1/M£)) .

These considerations lead to the following iteration procedure:
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Pick a starting value p* Cor values M.M) , and then compute p*0, 0 0, V+1
r'

M     M     q Z O using
V+1 V+1
r'  8'

(23 a) P  = (uE-ur +pr/Mr+p£/Mv£)/((1/Mvr) +(1/MY)).V\'1

8          3

(23b)                  p*   = max (E, pv)   ,V+1

(23 c) Mv+1 = '/Prpr +(Pv+1/Pr) 'r

(23 d) Mf  = v/pfpf 4(pv+1/Pf) .
V+1

Equation (23b) is needed because there is no guarantee that in the

course of iteration D remains z O.  We usually set 61 = 10-6.  The

iteration is stopped when

, ' V+1 v+1 vt,
max (IMr  -Mv|, |ME  -ME') 1 62 '

V+1(we usually picked s2 = 10-6); one then sets Mr = MV+1  M  -Mr  ' E- 2 ,
V+1

and p* = p*  .

To start this procedure one needs initial values of either Mr

and Mf (or p*).  The starting procedure suggested by Godunov

appears to be ineffective, and better results were obtained by

setting

   = <Pr+PZ)/2 0

We also ensured that the iteration was carried out at least twice,

to avoid spurious convergence when P  = P£.

As noted by Godunov, the iteration may fail to converge in

the presence of a strong rarefaction. This problem can be oveicome
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by the following variant of Godunov's procedure: If the iteration

has not converged after L iterations (we usually set L = 20),
equation (23b) is replaced by

(23b)'
V+1p*  = amax (El,DV)+ (1-a)pv

with a = al = 7· If further L iterations occur without convergence,
we reset a2 = al/2.  More generally, the program was written in
such a way that if the iteration fails to converge after EL itera-
tions (£ integer), a is reset to

a=ag = ag-1/2

In practice, the cases f>2 were never encountered. The number of

iterations required oscillated between 2 and 10, except at a very
few points.

Once p*, Mr' M  are known, we have

(24)
v*    =    (PE-pr +  Mrur +  MEUZ )/(Mr+Mf )

from the definitions of Mr.and Mf.

Consider now the case K  0 0, (A = 0); the right and left
waves may now be CJ or strong detonations as well as shocks and

rarefactions. The task at hand is to incorporate these possibili-
ties into the solution of the Riemann problem.

The state Sr will remain a constant state; vr and Pr are
fixed.  The energy in Sr·must change at constant volume (and thus

can do no work).  The change 6 Zr in Zr can be found by integrating         I

equations (13 f), (13g), with Z(0) = Zr and Z(k/2) = Zr + 6 Zr,
5Z < 0.  The new pressure isr-
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(25) pr + Bpr = pr+ (7-1)8Z qPr

new(see equation (7)). We write pr  = pr + Bpr' and drop the super-

script new.  (We shall need the old Zr again and thus refrain from

renaming Zr + 6 Zr 0 ) Similarly, Z  changes to Zf + 5 Zf, and a new p 
is found using the obvious analogue of equation (25).

In S* the values of Z differ from ·the values Z  + 5 Z,  Z  + 8 Z  .r r 2 Z
Let Z be the value of Z to the left of the slip line and let Z*8 *r

be the value of Z to the right of the slip line. The difference in

energy of formation across the right wave is Ar = (Z*r - (Zr + 6Zr) )q,
and across the left wave it is A f = (Z*f- (Z.e +6 Zf))q. We shall

iterate on the values Z Z 8 8 In the first iteration, we*f' *r' r'   8.0

set Z    =Z +B Z Z        =   Z    + B Z   .    and   thus   A      = 8 = 0, and carry*r         r         r'     * 8         2,         g'                          r         2
out the iterations  (23 ) .   When  (23 ) has conve rged, a new pressure

p* is given, and new densities p*r' P*  can be found from equations

(16), (21) or the isentropic law.  New temperatures T*r = P*/P*r'

T*. = P*/P*f are evaluated, equations  (13 f)',  (13g) are solved,  and
new values Z*   Z  -8   8  are found.  If Ar 1 0 the right wave isr' *21 r'   8

either a shock or a rarefaction, and if Ar , 0 the right wave is

either a CJ detonation followed by a rarefaction or a strong

detonation.

Let v* be the velocity in S*.  Given A.A.w e can find ther'    8

velocities v behind possible CJ detonations on the rightCJr' vCJE

and left (equation (12)). If v <V the right wave is a CJ* -  Cjr

detonation followed by rarefaction, and if v >v the right wave* -  CJr

is a strong detonation.  The CJ state is unaffected by S* (since it

depends only on Sr) and as far as the Riemann solution is concerned

it is a fixed state. If the right wave is a CJ detonation, we re-

define M .r
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pCJ-P*M  =r v -V  'CJ *

(pCJ from equation (llc)).  Then

(26) Mr = JPCJPCJ 42<P* PCJ  ' P*/PCJ 11,

If the right wave is a strong detonation, we find from (9)

Mr = i/prPr 03 C P]:Ar' pr' p* ) '

where

'il + » 1         1
C 413 (al' 02" a.3 ) )2

=

(1-1) al '1-
03-02

Similar expressions occur on the left. The iteration starts with

M . Mf from the previous iteration, and written out in full,r

appears as follows:

  - ( £- r +  r/4 +S£/S)/(1/4 + 1/5 ) 'v,0,
V+1
p*   = max (E, V) ,

v  = (P.- P + Mvv + M 19£)/(Mv+Mv )L rrr rv'

where
<(PCJr'PCJr'vCJr)  if right wave = CJ detonation,

(Pr'  r' *r ) = '

,<Pr'Pr'v£) otherwise,

'(PC JE ' pc JE' VC JE ) if left wave = CJ detonation,

(pE, 3,g, 9.g ).   =   .

, . C P z ,  p.e ,  VE
) otherwise,
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V+1,
/PrPr     43  (P I A r'  P r' P* )  if right wave = strong detonation,

v+1M    =r
l .tprpr    + cp:;+1/pr ) otherwise,

v+1,
Jp Ep E *3.(Pfaf'P,2'P*  )  if left wave = strong detonation,

Mv +1 =
2

JPE'P£ 4(p +1/PE) otherwise.

The complexity of this iteration is more apparent than real. It is

stopped when it has converged, as before. New values of Z    Z
*r'  *f

6 . Af are evaluated, and the iteration is repeated; this processr'

is stopped when Ar' Af change by less than some predetermined E3

over two successive iterations. It can be readily seen that with

the present expression for the energy of formation, at most four

iterations on Ar' 8£ are ever needed.

Once S* has been determined, the solution must be sampled.

Let P = (eh, k/2) be the sample point, and p = p(P),   = p(P), etc.

Four basic cases are to be considered:

A)  P lies to the right of the slip line and the right wave is

either a shock or a strong detonation;

B)  P lies to the right of the slip line and the right wave is

either a rarefaction or a CJ detonation followed by a

rarefaction;

C)  P lies to the left of the slip line and the left wave is

either a shock or a strong detonation, and

D)  P lies to the left of the slip line and the left wave is

either a rarefaction or a CJ detonation followed by a

rarefaction.

164



-

4 -29

Case A.  The velocity Ur of the shock or the strong detonation can

be found from the relationship

Mr = -Pr (vr-Ur) ;

dxif P lies to the right of · E = Ur we have the sampled values   = Pr'
r. dxp=p,v=v.Z=Z+B Z.  If Pliestotheleft of = U . wer               r'               r         r ZE r'

r. r. ./

have p = p* r' P = P*' v = v*, Z = Z*r.

Case B. Consider first the case of a rarefaction wave. The rare-

dxfaction is bounded  on the right by the  line TE =v  +C.r    r'

Cr = Jypr/Pr'  and on the  left by .  = v* + c*r' where c*  can be
found by using the constancy of the Riemann invariant

Fr = 2c*(1-1)-1-v* = 2cr(7-1)-1-vr .

If P lies to the right of the rarefaction, p = Pr' 3 = Pr' 9 = vr'

Z = Zr+ 8 Zr.  If P lies to the left of the rarefaction, p = p*r'
r. r.

P= P*,  v= v*,Z=Z  + dzr.   If P lies inside the rarefaction,  wer
dxequate the slope· of the characteristic 22 =  v. +c  to the slope  of

the line through the origin and P, obtaining

r.

v+c = 2eh/k ;

the constancy of Er' the isentropic law pp-Y = constant and the
ru              +

definition c = lipTp yield p, v, and p.  Z = Zr+ 8Zr.   If the wave

is a CJ detonation, (Pr'Pr'vr) are replaced everywhere by

CPCJr'PCJ' vCJ)' and 2 inside the fan and to left of its equals Z*r.

The cases C and D are mirror images of A and B, and will not

be described in full.
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Numerical Results

We begin by presenting some results for detonation waves with

very large K  (K  = 1000).  These results ve rify the accuracy of

the programming rather than the general validity of the method,

since the solutions of the corresponding problems are an intrinsic

part of the Riemann problem solution routine.

To obtain Table I, I started with a gas at rest, p = 1, v = 0,

p=1, and at t=0 imposed impulsively on the left boundary condi-

tion v=V=1.  I used h= 1/7, k/h=.2, KI = 1000, TO = 1.1,
q = 1 and y = 1.4.  The result is a perfect strong detonation.

-          In Table II a Chapman-Jouguet detonation is exhibited.

h = 1/9, k/h = 2, K  = 1000, T  = 1.1; q = 12 and y = 1.4.  m = 11.
The solution is exhibited at t = 2, n = t/k = 9, i.e.  n is not a

multiple of m and the solution is not at its most accurate. This

can be seen from the presence of a fake constant state (for x = 6/9

and 7/9), which was discussed in the section about errors, and

which is most likely to appear when n is not a multiple of m. The

last column presents the right Riemann invariant rr which is of

course constant behind the CJ front. The chemical time scale is

not resolved on the grid, and one should notice the small number

of mesh points required to display sharp variations in all quanti-

ties.
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Table I

Strong Detonation

h = 1/7, k/h = .2, t = nk = .314, n = 11, KO = 1000, T  = 1.1,
V = 1, q = 1, y = 1.4.

X V P P T Z

0     1. 1.814 3.228 1.779 .000

1/7 10
-

1.816 3.228 1.779 .000

2/7    1. 1.816 3.228 1.779 .000

3/7    1. 1.816 3.228 1.779 .000

4/7    0. 1.000 1.000 1.000 1.000

5/7    0. 1.000 1.000 1.000 1.000

6/7    0. 1.000 1.000 1.000 1.000

1     0. 1.000 1.000 1.000 1.000
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Table II

Chapman-Jouguet Detonation

h = 1/9, k/h = .2, t = nk = .2, n = 9, KI = 1000, TO = 1.1, V= l,
q = 12, y = 1.4.

X      V       p       p       T       Z        rr

0 1.000 1.179 6.965 5.907 0.000 13.379

1/9 1.000 1.179 6.965 5.907     0.        13.379

2/9 1.000 1.179 6.965 5.907 0.                 13.379

3/9 1.000 1.179 6.965 5.907     0.        13.379

4/9 1.186 1.257 7.621 6.061     0.        13.379

5/9 1.251 1.287 7.862 6.115        0.             13.379

6/9 1.524 1.410 8.952 6.346        0.             13.379

7/9 1.524 1.410 8..952 6.346        0.             13.379

8/9 1.623 1.457 9.373 6.430        0.             13.379

1      0. 1.000 1.000 1.000 1.000 5.916
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We now present some results for a problem whose solution is

not programmed into the solution algorithm - a deflagration wave

with finite reaction rate. For t<O a gas at rest lies in x>0,

with p = 1, p = 1, (v = 0), and Z = 1; the left boundary is

maintained at zero velocity, V=0.  At t=0 the gas in the first

cell to the left is raised to a temperature T = 2, (i.e. the

pressure is increased to p = 2).  The resulting deflagration wave

is observed. It is known that the velocity of the wave is

asymptotically proportional to ,/'Ti  (s.ee e.g. [lo], p. 99); thus,
the wave does not propagate unless A 0 0, as one can readily verify

on the computer. This last justifies an earlier assertion to the

effect that when A=0 the wave is indistinguishable from a slip

line.  The results in Table III were obtained with h = 1/11,

k/h = .35, TO = 1.6, KQ = 1, q = 10, y = 1.4 and m = 11.  They are

presented at t = nk = .273, (n = q). One can clearly see the pre-

cursor shock, and the deflagration zone (characterized by Z < 1)

in which the density and pressure decrease. The small number of

mesh points should again be noticed.
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Table III

A Deflagration With Finite Conduction and Reaction Rate

h = 1/11, k/h = .35, t = nk = .273, n = 9, K  = 1, TO = 1.6, V = 0,

q = 10, y = 1.4.

x v p p T Z

0        0. ·567 1.667 2.937 .334

1/11 0.139 .650 1.781 2.739 .614

2/11 0.261 ·547 1.315 2.402 .614

3/11 ·385 1.074 1.726 1.607 1.000

4/11 .575 1.550 1.998 1.288      1.

5/11 ·544 1.519 1.800 1.185      1.

6/11 .023 1.016 1.058 1.041      1.

7/11 .002 1.001 1.003 1.002      1.

8/11 .000 1.000 1.000 1.000      1.

9/11      0.          1.          1.          1.          1.

10/11      0.          1.          1.          1.          1.

1        0.          1.          1.          1.          1.
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Conclusions

We have presented a numerical method capable of describing a

complex gas flow with cherbical reactions. The relative complexity

of the method is balanced by economy in the representation of the

solution. Generalization of the method to problems' in more space

dimensions is a straightforward application of the fractional step

method presented in [2], and the inclusion of a more realistic

chemical process presents no difficulties other than the standard

difficulties of finding a plausible kinetic scheme and acceptable

numerical values for the corresponding coefficients. The inter-

esting and major difficulties in multidimensional problems arise

when one attempts to take into account boundary layers and turbu-

lence effects. In a forthcoming paper we shall show that boundary

layer effects at least can be incorporated into our method in a

natural and efficient way; once this has been explained, multi-

dimensional results will be presented.
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Abstract
A numerical procedure is introduced to solve the one-

dimensional equations of gas dynamics for a cylindrically or
spherically symmetric flow. The method consists of a judicious
combination of Glimm's method and operator splitting. The method
is applied to the problem of a converging cylindrical shock.

Introduction

The one-dimensional equations for an inviscid, non-heat con-

ducting, radially symmetric flow can be written in the form

(1)
Ut  +U(U):r    =    -W (U)     ,

where

/p\        /   m 3 , m/r    \

(2)  .U= 111  ,  F(U) = 1112/p +P, and W(U) = (a-1)  m2/pr

\e / ,m(e+p)/p, im(e+p)/pr,

where p is the density, u is the velocity, m = pu is the momentum,

p is the pressure, e is the energy per unit volume, t is time,

r is the space. coordinate of symmetry, a is a constant which is 2
for cylindrical symmetry and 3 for spherical symmetry, and the sub-.

scripts refer to differentiation. We may write

2(3 ) e - 981 +   pu
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where  y  is the ratio of specific heats (a 'constant greater  than  1).

There are two major problems involved in solving the system

(1) directly.  The first is the singular nature near the axis
(r = 0), that is, there are singular terms proportional to 1/r.

The second problem is that the momentum equation (the second compo-

nent equation of (1)) cannot be put in conservation form.

These problems cause major difficulties near the axis. These

are usually overcome by some ad hoc method such as extrapolation

(Payne 1956).  Another approach has been to treat this as a problem

in Cartesian coordinates in two space dimensions (Lapidus 1971).

In the method described below both of these problems have

been completely eliminated. Thus there is not need to resort to

any trickery in order to solve the system (1).

Outline of the Method

The first step in the problem is to use the method known as

operator splitting to remove the inhomogeneous terms -W(U) from
the system (1).  Thus we solve the system

(4)                       ut + F(u)r = 0

which represents the one-dimensional equations of gas dynamics in

Cartesian'coordinates.

The method used to solve system (4) is the random choice

method introduced by Glimm (1965) and developed for hydrodynamics

by Chorin (1976).  Details of this method will be given in the next

section, for completeness.
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Once system (4) is solved, the system of ordinary differen-

tial equations

(5·) Ut.= -3(N)

is solved, where the solution of system (4) is used to determine

the inhomogeneous term -W in (5).  There are several reasons for

this approach, which will be discussed in later sections.

Glimm's Method

Consider the nonlinear system of equations (4).  Divide time

into intervals of length At and let Ar be the spatial increment.

The solution is to evaluated at times nat where n is a nonnegative

integer at the spatial points iar, where i =0,+1,12,... and at.

time (n+·2)At at (i+· )Ar.

The method is a two step method.  Let U  approximate
#n+1/2-2( iar, nbt) and ui+1/2 approximate U((i+·1)Ar, (n+ l)&t) in (4).  To

...n+1/2
find the solution ui+1/2, consider the system (4) along with the

piecewise constant initial data

/n
-i+1 ' r>

(i + 7)Ar   ,
(6)                                                      U(r,n a t)    =   1.

n
U. r < (i+ l)Ar .C -1

ArThis gives a sequence of Riemann problems. If At < where
2(lul+c)

c is the local sound speed, the waves generated by the different

Riemann problems will not interact.  Hence the solution v(r, t) to

the Riemann problem can be combined into a single exact solution.
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See Figure 1.  Let En be an equidistributed random variable which
1  1.is given by the Lebesgue measure on the interval [- 2, 21. Define

(7)            Bi+1/2 = 1·((i+En)Ar, (n+-· )At) .
.n+1/2

See Figure 2.

At each time step, the solution is approximated by a piece-

wise constant function. The solution is then advanced in time

exactly and the new values are sampled. The method depends on

solving the Riemann problem exactly and inexpensively.

Chorin (1976) (see also Sod (1976) and (1978a)) modified an

iterative method due to Godunov (1959) which will how be described.

Consider the system (4) with the initial data

f
Sf = (pf, uf,Pf) ,   r<0,

(8) y (r,  0)            4.

,Sr = ( Pr' ur' pr ) '   r 1 0.

The solution at later times looks like Figure 3, where Sl and S2

are either a shock or centered rarefaction wave. The region S* is

a steady state.  The lines 21 and 22 are separating the states.
dr

The contact surface TE = u* separates the region into two parts

with possibly different values of p*, but equal values of u* and p*.

Using this iterative method we first evaluate p* in the

state S*.  Define the quantity

(9) M = PE -P*

f    UE- U*

If the. left wave is a shock, using the jump condition u.g[P]= [pul,
we obtain
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1/-1\ t=(nt t) At

1 / \   1 t=(ntl)at

I   11/ 1 1 1=nAt

(i-4) A r (i-I)Ar (i-*)Ar idr (it*)Ar (itl)Ar (iti)Ar

Figure 1. Sequence of Riemann problems on grid.

(Cit &„) A r, (n + *) At)t
| 1      1.    1     |  t=(n+PAL

| |               t-ndt
(i- f) A r idr (it*)Ar (itl)Ar (i + *Ar

Figure 2. Sampling procedure for Glimm's scheme.

A
dx
·-=U
dt

l2

4               s

U

\\ P
S,  2

St                                        S-
I.

Figure 3. Solution of Riemann problem.
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(10) Mf  =  P (uf- Uf)  =  P*(u* - Uf)  ,

where Uf is the velocity of the left shock and p* is the density

in the portion of S* adjoinidg the left shock.  Similarly, define

the quantity

pr - P*
(11) M =

r    u  - U*

If the right wave is a shock, using the jump condition Ur I Pl = I pu],
we obtain

(12) Mr    =    -P r(u r  -  U r)    =    -P* (u* -   Ur)     3

where U  is the velocity of the right shock and p* is the densityr

in the portion of S* adjoining the right shock.

In either case ((9) or (10) for Mf and (11) or (12) for Mr)

we obtain

(13) ME = '/PZPE 4(P*/PE) '

(14) Mr = JPrPr 4(P*/Pf) '

where                    f

j 161  x  +  181         ,       x,  1  ,

(15) 4(X) = <
1 7-1 1-x x<1.
l 2¥/g 1-xY-1/27 '       -

Upon elimination of u* from (9) and (11) we obtain
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u -u
+ PE +  rf r M

(16) P* =
1    1

8          r

M +ME          r

Equations (13), (14), and (16) represent three equations in three

unknowns for which there exists a real solution. Upon choosing a

starting value pO (or M  and MO), we iterate using these three
equations. We chose PO = 7(pf + pr) (for details see Chorin (1976)
or Sod (1976)).

After p*, Mf, and Mr have been determined we may obtain u*

by eliminating p* from equations (9) and (10),

p -p +M u +M u
(17) u* . 8  r  8 8  r rM +M2     r

For a discussion of the method of choosing the random numbers most

efficiently see Chorin (1976).

Solution of the Ordinary Differential Equations

.n+1
Once the solution  of  (4 )    ui is obtained,  we  have to solve

a system of ordinary differential equations (5).  We approximate

(5)  by

n+1    n
.ui         -   u.

At -1 = =..H.( +1 ) ,
or

(18) u. =    u. -  Atw (1.          )     .

n+1    n      ·n+1
-1 -1 - -1

This approximation (18) is the basic Cauchy-Euler scheme which is

just first order accurate.. However, the Glimm scheme is at most
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first order accurate so there is no reason for using a high order

method for solving the system of ordinary differential equations.

Since this system (5) is solved only at interior points and

the scheme (18) does not require values at r = 0, the singularity

at the axis is eliminated.

Boundary Conditions

Boundary conditions need only be applied to the system (4)

since the system of ordinary differential equations (5) use only

interior points. So that with the procedure described by Chorin

(1976) the boundary condition at the axis (r = 0) is readily

handled. The boundary condition is imposed on the grid point

closest to r = 0, say i Ar.  A fake left state is created at

(i  -  )Ar by setting

r.

Pi -1/2 = Pil+1/2 '

r.

uil-1/2 = -uil+1/2 '

./

Pi -1/2 = Pil+1/2 '

In this way the shock or rarefaction wave will reflect which on

the average is exact.

Application to a Converging Cylindrical Shock

Initially, a cylindrical diaphragm of radius r  separates two

uniform regions of gas at rest as in a shock tube with the outer
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Figure 4. Flow pattern for converging cylindrical shock.
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Figure 5. Pressure profiles at time intervals of 0.05.
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pressure and density being larger than the inner ones. After the

diaphragm is ruptured (t > 0), a shock wave is created and travels

into the low pressure region followed by a contact discontinuity.

A rarefaction wave travels into the high pressure region. See

Figure 4.

It is known that a cylindrical shock wave in a compressible

fluid increases in strength as it converges toward the axis. This

can be seen experimentally in Perry and Kantrowitz (1951).

In the example given below the pressure and the density in

the inner region were set equal to 1.0 and the pressure and density

in the outer region were set equal to 4.0. This will produce a

shock with initial strength of 1.93, a contact discontinuity and a

rarefaction wave. We took Ar = 0.01. The time step At is chosen

so that the Courant-Friedrichs-Lewy condition is satisfied, i.e.

max   (l u l +  c )At   <  1   ,

where c is the local sound speed.

In Figure 5 the pressure distribution is displayed at time

intervals of 0.05. The shock appears as a rapid variation in p

which is completely sharp, i.e. the number of zones over which this

variation takes place is zero. As time increases the shock propa-

gates toward the axis.  It is observed that the strength of the

shock increases with time.  After the passage of the shodks the

pressure behind the shock increases. When the shock arrives at the

axis it is reflected and rises to a large but finite value and a

diverging shock appears.  It is also observed that the pressu
re at

a given point behind the reflected shock decreases with time.
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Figure 6. Velocity profiles at time intervals of 0.05.
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Figure 7. Density profiles at time intervals of 0.05.
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In Figure 6 the velocity of the gas is displayed.  The

behavior is similar to that of the pressure except that the con-

verging shock decreases the velocity from zero to a negative value.

When -the shock is reflected from the axis, the diverging shodk has

the effect of producing a small positive (outward) velocity.  As

in the case of the pressure profile, at a given point behind the

converging shock the velocity increases with time and behind a

diverging shock the velocity decreases with time.

The density and energy profiles are displayed in Figures 7

and 8 respectively. The basic properties of the shock are similar

to those of the pressure distribution, except that the rise in

density across the shock is smaller due to a temperature increase.

In the density and energy profiles a contact discontinuity appears.

It is a result of using Glimm's scheme that the contact dis-

continuity (as well as the shock wave) is completely sharp.  The

contact discontinuity propagates toward the axis behind the con-

verging shock and is traversed by the reflected (outgoing) shock.

In Figure 9 the density profile where the contact dis-

continuity and the reflected shock wave have crossed. For a poly-

tropic gas with the same values of y, higher sound speeds corre-

spond to higher densities (Courant and Friedrichs, 1948).  The

interaction of a diverging shock wave and a contact discontinuity

propagating toward the axis results in a reflected (converging)

shock (represented by ® ), a contact discontinuity propagating

toward the axis (represented by ® ), and a transmitted (diverging·)

shock (represented by  © )
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Figure 8. Energy profiles at time intervals of 0.05·
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Figure 9. Density profile after interaction of divergingshock and contact discontinuity at time t = 0.6.
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In general the overall trend of the results agree with those

of Abarbanel and Goldberg (1972), Lapidus (1971), and Payne (1956.).

There is, however, one major difference, the time at which the

shock reaches  the· axis. Our method is in agreement with the method

of Abarbanel and Goldberg. Howeverr with the methods of Lapidus

and Payne, the shock reaches the axis sooner.

It should be noted that as a result of the randomness of

Glimm's method, at a given time, the position of the shock or con-

tact discontinuity may not be exact. Yet on the average their

positions are exact.

With the three other. methods used in this comparison, the

shock and contact discontinuity are smeared. The smearing of the

shock is less dramatic. The contact discontinuity obtained by

Payne's method is almost immediately smeared to such a degree that

it is barely visible. However, our technique produces perfectly·

sharp shocks and contact discontinuities.

As discussed above, the interaction of the reflected shock

and the contact discontinuity will produce a contact discontinuity,

a transmittal shock and reflected shock. The reflected shock is

produced by our technique (see Figure 9).  However, the reflected.

Shock is not produced by the methods of Abarnael and Goldberg,

Lapidus and Payne.

Conclusions

This method reduces the problem of solving the one-dimensional

equations of gas dynamics for a cylindrically or spherically
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1  .       symmetric flow to solving the one-dimensional equations of gas
dynamics in Cartesian coordinates and a single system of ordinary
differential equations, by using operator splitting.

The equations of gas dynamics are solved using Glimm's method
which keeps the shock waves and contact discontinuities perfectly
sharp. The ordinary differential equations are solved using the

Cauchy-Euler scheme at the interior points only and for one time
step. Thus, the singular nature of the-original system near the
axis is eliminated. Since the equations of gas dynamics are solved
in Cartesian coordinates the momentum equation can be written in
conservation form.

i It should be noted that the roughness in the rarefaction wave
1

is a result of the randomness of the Glimm scheme.

In all our calculations there were 100 spatial grid points, .
:

and it takes about 10.3 seconds on a CDC 7600 to complete 300 time

steps.

This method can be generalized to treat a two-dimensional
axially symmetric flow. This is being developed to study the flow
in a motored engine chamber in two dimensions with a single
intake/exhaust valve along  the  axis.     It is planned that boundary
layer effects be included also.  See Sod (1978b).

Further it is planned that this method be coupled with
chemistry as in a modified version of Chorin (1977) or Sod (1978c).

It is hoped that this will represent a reliable model of a
cylinder  of an axially symmetric internal combustion engine.    This
method will not be directly applicable to three-dimensional engine
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flow. However, this can yield important information concerning        -  

the relative effects on the flow field of valve size, swirl rates,

piston and head geometry, and engine speeds.

This work was supported in part by the National Science Foundation,
Grant MCS76-07039 and the U.S. Energy Research and Development
Administration under Contract W-7405-Eng-48.
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COMBUSTION INSTABILITY

Samuel Burstein

Courant Institute of Mathematical Sciences
New York University

New York, New York 10012

1. THERMALLY INDUCED VIBRATIONS

It has been known for well over one hundred years that there

is, under suitable conditiods, a strong interaction between sound

waves and flames. Rayleigh describes a simple experiment by which

a high frequency sound, when applied to the point of efflux of a

pressurized gas jetting into a quiescent environment, causes the

combustion process to increase in intensity. The flame roars and

the total distance required for complete burning to take place is

substantially reduced so that the efflux region, also called a

"preheat" zone, is where diffusion of heat and molecules of the

intermediate products of reaction take place and dominate all other

processes.

From this simple observation (and also from jet engine

design) it is strongly suspected that a similar, although more

complex, process occurs in the internal combustion mechanism of a

liquid propellant rocket motor. In such a motor liquid jets of

fuel and oxidizer are discharged from an injector head at the base

of a combustion chamber. The location of the region of intense

combustion depends not only on the design parameters of the injec-

tion system, including fuel and oxidizer properties, but upon the

complex liquid and gas phase mixing processes occurring in the
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region near the injector head. The natural presence of combustion

noise in the combustion chamber leads to pressure waves traveling
from the combustion zone towards the injection region. This is

11the sensitike preheat" zone of the entire combustion process so
that pressure fluctuations in this flow zone can lead t6 disrup-

tions in the physicochemical processes. Thus, a mechanism is
available for the. presence of a driving force which can cause an

oscillatory combustion instability similar to an organ pipe type
of resonance. Such observed high frequency oscillations in the

11combustion chamber, called " screaming, are characterized by finite
amplitude pressure waves which cause large fluid motions which, in
turn, lead to extreme heat transfer rates to the walls of the
combustion chamber. The result is usually a catastrophic burnout
of the motor.

In this paper, we will consider nonlinear vibrations in a
combustion chamber which can support resonance and which simulates
some of the basic flow characteristics preaent in a liquid pro-
pellant rocket motor. To achieve a reasonable representation of

combustion, the equations of compressible fluid dynamics, written
as a quasilinear system of equations, i.e.,

aw(1) I-A. - +b=0,--      1   dx.1 1

is modified by replacing the right hand side by a vector source
term S which is assumed to be given. In this model S is a function

of the gas variables w and droplet variables w*.  Thus, S is pre-
scribed by computing the interaction. of the gas ·field with the
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droplet field, the former of which is generated from the burning

of the fuel droplet field. The droplets are produced by breakup

of the sprays of liquid fuel and oxidizer jets; the droplet burning

mechanism is assumed to be described by an evaporation rate

controlling process which is slower than the chemical kinetic

process by a significant time scale.

In addition to liquid propellant rocket motors, the method

described in this paper can be used as a basis for the analysis of

direct fuel injected engines, i.e., diesel or stratified charge

engines.

2. FORMULATION OF THERMAL FORCING FUNCTION

Let the properties of the droplet be denoted by w*

/   \

m*1
*

U

(2) W* =  V*
*

e

\  /

The droplet velocity in the x2' X3 direction is u* and v* and the

liquid mass, m*.  The fuel droplet is then completely specified if
*

e*, the internal energy is known; e  = c T*, c  is the specific

heat at constant volume of the droplet. The conservation laws for

the fuel droplet can be written in the convenient form,

(3) - + S(W*,W) = 0
dw*
dt

subject to the initial condition

(3' ) w*(0,8, t) = wo .
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Here we use a Lagrangian representation so that for an
annular coordinate system (xl'x2'x,3) = (t, e, z), and the particle
derivative is

d _ 8 + u* 8 + v* F z- 0TIE -32   7=

The value of r* is the radius of the annular domain; it is taken
as a constant and for convenience r* = 1.  The inhomogeneous term         I
S(w*,w), having dependence on droplet and product gas properties,
is given by

/\
3  .*

1 - Irlm
(4) S =-T    f

le
9

Zf f  /
The rate of evaporation of the droplet is m* while the aerodynamic
drag forces acting on the droplet in the e and z directions are fe
and fz respectively.

The internal droplet temperature, T*, is computed from the

integrated Clausius-Clapeyron equation

(5)
T*-1 = T*-1 + a In   .

-* -*Here p  and T  correspond to the pressure and temperature of the
droplet at the critical point while the gas pressure p = p(y-1)e
is taken to be a function of the combustion gas density p and
internal energy e; the constant a is the negative reciprocal of the

          vapor pressure equilibrium curve when the natural logarithm of the
vapor pressure is plotted against the reciprocal of the vapor
temperature.
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The drag forces are assumed to be described by Stokes drag

laws so that fe and fz are proportional to the square of the rela-

' tive velocity difference between the combustion gas and liquid

droplet,

//(U-U*)    lu-U*l )

(6 )                                  -(ff:  =  38-  CD
-aBT

C (v-v* )    I v_v* 1,  I

The proportionality factor is the coefficient of drag CD and

a= a(t) is the droplet radius which can be given in terms of the

droplet  mass  m*   =   (4/3 )Tra  p*.      The drag coefficient depends   on   the

droplet Reynolds number Re* through

.84

(7)                      CD
- 27/ ( Re*  )

In order to compute the time rate of change of m*, m* is

specified through an evaporation law given by

(8)                                              41*       1.1,  :a   (. PO) · , (1  + 1  ,/Re*-   3'/F-r-)

with the combustion gas Prandtl number defined by Pr = C 
W/k.  The

diffusion of the fuel vapor from the spherical droplet is reflected

by the specific heat at constant pressure, C , of vapor and 
thermal

conductivity, k, of fuel vapor. The local Reynolds number is

defined in terms of the difference of the magnitudes q of the local

gas and droplet velocities, i.e.  Re* = 2pa|q-q*|/W.  The con
stant

8, obtained empirically, is 0.276 and p  is the initial uniform

pressure of undisturbed flow.
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If the local fuel oxidizer ratio is F, the number density of
the droplet spray is N, the heat of reaction of the

combustion           process is AHR' and the latent heats of the fuel and oxidizer is
L  and L then the source term S for the conservation lawsF 0

describing the motion of the combustion gas is

C              -1 31+F

*                0(9)                 S=M

0   1                            1\3 HIR  -   (LF  +  F       LO )/

where drag forces on the gas have been neglected. It is clear that
S = S(e, z, t) through the arbitrary trajectories of the moving drop-
lets in the combustion gas.

In general the number density of droplets, N, in a spray is
not a constant but is described by a distribution function that has
initial value

CU*- 11 72    /v*- v*\21N  = N(t, e, 0, a, u*) = Ka2 exp- a +1 Eu  .11 +   Ev /j'           101 k

defined at the injector face z = 0. The constants K, cD, Ku and Kv
in the above relation depend upon the injector characteristics.
The distribution function is subject to the evolutionary equation

BN   3NA35         7-a-   +   7x '(N.2* )    +   Vu*'(NI)    =   0.

The vectors u* and f are the velocity and acceleration (Eq. 6) Of-                       -

  the drops while A = da/dt is the rate of change of the droplet
radius.
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Here we have set the source term to zero under the simpli-

fying assumptions that the droplets will not collide with
 each

other (dilute spray) nor with the chamber wall. It is also assumed

that the drops will not be created by breaking through aerodynamic

shear forces nor be created by nucleation processes.

Then M* is given by

* r  r  2
ie    =   4·,r p                    a   Ne.dadf     .

u* a

3. DIFFERENTIAL EQUATIONS FOR COMBUSTION GASES

Before we can write down the final form of our conservat
ion

law we must describe how to produce a supersonic outflow 
condition

which simulates the state.of affairs in a converging-diverging

nozzle attached   to   the   tail  end   of the combustion chamber.

Although this is not the usual procedure, it turns out to be con-

venient. We assume that there is a converging-diverging duet

placed immediately after the uniform annular
chamber. In this duct

we assume that the rate of change of fluid properties n
ormal to the

streamline direction is small compared to the rate of change of

fluid properties along streamlines. If, in the duet, we allow for

a variable cross-sectional area A which depends only on
 the axial

distance z, then we would expect small errors in comput
ing stream

properties if d Ln A/dz is small compared with unity.

We prescribe the schedule of area variation in the
 axial

direction through

1<02 = 1+ al(z-z )+ a2(z-ZO)2 ,
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where z  is the terminal axial position of the combustion chamber
with radius r* = 1 and area A .  The constants al and a2 are chosen
so that

dA dA
dz, 1 0, Z O<Z l z t; 52>o,  zt<z ZzL.

The total length of the simulated nozzle is zL and zt is the
position of minimum area, the throat, of the nozzle. The only
condition imposed on the choice of A(z) is the requirement that the
prescribed steady state flow, (design flow) be shock-free.

This is achieved by allowing the local Mach number, M, at

z = zt to be unity for the asymptotically steady problem.  The
other condition fixing the two coefficients specifying the area
variation is determined by providing for a large enough area ratio
between the throat and the point z = zL so that

(10)
M(zL'e, t) >1.

This is the boundary condition required so that characteristic
surfaces are pointing into the boundary from the interior of the
flow. Hence, in the z direction the three characteristics v+c,
v-c are all positive.

The differential system, Eq. (1), can now be written in '
divergence form

(11) w+G+H+B=0,tez
Z„

with the vector B given by
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/pv \1

d  In  A    pv2 
(12) B=

1
-    S(W,W* )    ,dz

pvul

 Ev J

The  vector of unknowns w, axial  flux  H,   and the tangential  flux G,

is given by

ip \ C  pv 1 /         p u       .\

1 2
pu          .; pu +p pvu

w =      ,   H=!        ,   G=     2
py    1 pvu PV +P

E t,(E+p)v) (E+p)u
C /              \ -1.

In  Eq.   ( 12) we emphasize the dependenceof the energy  and

mass sources S on the interaction of the combustion gas with

properties w and droplet field with properties w*.

Equation (10) is equivalent to our prescription of extrapola-

ting from the interior te the boundary z = zL the conservation

variables w via the forward difference approximation

(13) D w=0.+

The necessity for introducing a dozzle into the calculation,

even though only a study of processes in the neighborhood of the

injector face of the c6mbustion chamber is desired, stems from the

inability to describe the correct nonlinear time dependent down-

stream pressure level in the combustion chamber. Physically this

pressure is determined by flow being choked in the neighborhood of

the minimum area, where the Mach number is unity; the flow then

accelerates to a supersonic state downstream of the
throat. At the
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throat, or point of minimum area, the flow is sonic at steady state.
However, when time dependent perturbations exist in the combustor,
the sonic point can oscillate in some neighborhood of z = zt.

At the injector boundary,    z   =   0, the reflection   rule s

(14) P- = P+ ,   P- = P+ , U_ = Ut , V = -Vt ,

are used across the injector; here we denote p_ = (O,j Az, t), etc.+

4. COMPUTATIONAL PROCEDURE

We apply the following procedure for computing a solution to
the coupled set of partial differential equations, Eq. (11), and
ordinary differential equations,  Eq.  (3 ):

A steady state is achieved by first assuming a smooth dis-
tribution for w(e, z, 0) and w*(e, z, 0). Then generate w (t+At) by
solving Eq. (11) using a two step difference scheme given w*.  The
first step is analogous to a predictor equation since the solution
is first order accurate while the second step is analogous to a
corrector equation and is second order acc.urat:'e·.. The approximation

to w(e, z,t) is represented by V(e., z.,.tt. )) =.VP.:..   The  two-. s.teps  are1     J: rn' l.J

given by

Step 1

- +1 1 „ n.vn 1
= P,7 4+ +  I  + vn       )_     At    (Gn              -Gn1            IP.' ·    i+.1,  j             1, j+1 i+1, j+1   i, J 2Ae i+1, j 1, ji+7'j+7

+  Gi+1, j+1 - Gi, j+1 ) -2KE  (H +1, j+1 - H +1, j + H. , j+1 - H , j)

(15) -   (8: + En   Bn   E n     4   1+1, j i, j+1 i+1, j+1   i, J
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Step 2

n+1 „n At I n     n    Nn+1 -n+ 1
_G   1    1Vi' j =  vi, j-lIKe  cGi+1, j- Gi-1, j +G     1       1i +  7, j +7 i-   7,  j   +2

#n+1 -n+1 ,  At (Hrl - Hn+G -G

i, 2.1  -  1                    1            1        44
z i, j+1 i, j-1i-7-,j-2

#Il+1 31+1 5.n +1
-n+ 1                          )+H 1-n 1 1+H 1-H 1  1

i+ 7, j +7 i+P, j- 2-
i-  , j, 7 i - 2-' j -2

At      .1       .mn+1 #n+1 xn+1
-   1-   LIT (B 1+B 1  1+B

i +   , j. +2 i+  VE,j- IT i -  , j .1- i 

(15') + B.  1 :  1)+P (Bi+1, j + Bi- 1, j)] '
run+ 1 1,n

1 -2, J-' 

where

H(VO .) = HO . , H( n+1 1) =  n+11 1 , etc.
1, J 1,  J                             i +   ,  j  + Pr

i + 2-, j +2

Obtain the first iterate to w*, i.e., w*(e, z, t+At), by solving Eq.

(3) using the analogue of system (15) and (15'), the modified Euler

method.  The second iterate to w is now computed using (15) and

(15').  This process is continued until convergence of w and w* is

achieved. The asymptotic limit of nbt, thinking of time as an

iteration counter, defines the self-consistent steady state:

w(nat) f w0 1
/... 7,

lim
Mt»co     w* ( Mt )        - <w*   /j      .

. 0/

To compute the evaporation and combustion process, at any

point (e,z, t) in the combustion chamber, one needs to keep track

of the previous history of the droplet. Since a Lagrangian
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representation of the droplet field has been adopted, each drop is

tracked from its point of injection into the combustor (eQ, O, t )
to the point (6*, z*, t* ) ; the elapsed time of flight of the droplet

is t*-t , t  the time of droplet injection.
We have assumed a dilute spray approximation which means that

droplets do not interact. Also, as a result of this approximation
/

w*(e*,z*,nat*) can be evaluated at Eulerian mesh points·

(ei, zj,nat), of the system (15) and (15'), by interpolation from
the Lagrangian mesh upon which w*(8*,z*,nbt*) is defined.  The
tracking process ceases if

a(t*-tl) < .1 a(t )

since the mass associated with the drop would be less than one-
thousandth the original droplet mass; for these calculations the

initial mean droplet radius was a(tQ) = 50 microns.

With the steady state established, the flow field is per-
turbed to observe the modes of resonance established and maintained
in the annular combustion chamber.  Let p  be the steady state
pressure; then the perturbed pressure p' is

(16) P' = Po +Pl = PO<1+ A sine sin Z)

where we scale e and z by the functions

e(e) = Ble + B2 ' e  <e<e1- -2

Z(z) = Blz +04 ,    zl < z Z z2
so that the perturbation can be placed at an arbitrary position in
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the annular chamber. However, just as Rayleigh described the

importance of the placement of the sound source near the efflux

point of the gas jet, so do we observe that the perturbation must

be placed in some neighborhood of the point of injection of the

drops, z = 0, to have an appreciable effect on the flow field. The

amplitude of the perturbation, A, is taken to be proportional to

the total energy of the combustion gas in the annular chamber,

usually a few percent of the steady state chamber energy. For

these calculations, a value of A is chosen so that the total per-

turbed energy in the rectangle Ae, tz centered about ((el+82)/2,

(Zl+z2)/2) is equal to four percent of the energy of the combustion

gas.

We found that the transients obtained by this disturbance

were so severe that strong shock waves were generated. The differ-

ence scheme Eqs. (15) and (15') did not remain stable in the

presence of these steep gradients so that a smoothing operator was

required. A two step operator was used. Let D denote the back-

ward difference operator

D w - wm+1 - wm- m+1
then

(17)  m = wm+k( )D-(ID_um+1 1 D_wm+1)

where u, is the velocity in the m-th direction, m is the step size

in that direction and k is a constant.  Equation (170 is first

applied to the solution w ih m-coordinate direction to obtain a
/.

temporary value Q; replacing w with w, Eq. (17) is then applied

once more to yield the final solution. It was also found that Eq.
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(17) need not be applied each time cycle; as few as one applica-

tion every five time steps was sufficient once the initial strong
transient dissipated after about 100 time steps.

5. RESULTS

We show below, in Figure 1(a), a typical nonlinear periodic

pressure trace of the pressure history near the injector face

z - 0.15 zO.  For a value of T =.0.9 in Eq. (8), .Figure 1(b) shows
the local energy release rate as a function of angular position e
and axial distance z downstream from the injector. The nonuniform

energy release distribution is a result of the local variation of

w so that the greatest value of energy release coincides with the.

peak pressure of the spinning wave being traced in Figure 1(a).

An additional computation was carried out using a modified
model of· the combustion chamber; a set of .acoustic baffles are

placed at various angular positions in the annular chamber. The

baffles have arbitrary length zb such that 0 < zb Z z .  The
baffles are placed in the chamber to act as diffractors of the
spinning waves in the region of maximum energy release - in the

neighborhood of the injector face. Figure 2 shows a typical non-
linear acoustic pressure trace when two baffles, at essentially
equal angular spacing, are placed in the chambfr; here zl - .25 zo
The energy release rate, after the initial transient, i,s -uniform;
at each value of e the energy release Ile.oks :similar to e=O a t

Figure 1(b).
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Figure 1(a). Pressure history at three positions in an
annular resonant cavity for a spinning wave.

1 1 1    1 1 1
Theta = 0 Theta = T2  »--·

1             Theta = 1r/2

Theta = 37r/2

1 1 1    1 1 1

Figure 1(b).  Driving energy source distribution at t = 3.
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Figure 2.  Attenuated pressure history at the same three
positions as in Fig. 1(a)'in an annular resonant
cavity but with two equally spaced baffles
inserted near the injector.
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-                     THEORY OF FLAME SPREAD ABOVE SOLIDS

W. A. Sirignano

Guggenheim Laboratories
Princeton University
Princeton, New Jersey

Abstract:                    _
A theory for flame spread above a solid fuel is presented.The special case is considered whereby the oxidation is an exo-

thermic surface reaction.  The spreading rate is predicted as a
function of the thermochemical properties, fuel-bed thickness,and convective velocity. Also, the theory predicts temperature,mass fraction, and heat flux as a function of position.

Introduction:

The understanding of the method by which a flame propagates

above a solid fuel is necessary in order to solve the fire safety

problem. In particular, we wish to know the most significant

mechanism (or mechanisms) by which energy is transferred ahead of

the flame; gas-phase conduction, solid-phase conduction, and radia-

tion each play some role. Of course, this transfer of energy

ahead of the flame front is necessary for flame propagation. The

solid phase fuel must .be heated and gasified in order for reaction

to occur in the flame front.

A physical description of the general phenomenon of flame

spread above condensed phase .fuels and a review of existing

theories has already been presented by this author. In this(1)

presentation, we shall continue along the general direction

suggested in that paper. The case of horizontal or vertically-

downward flame spread is conside red; that is, the fire plume does

not move ahead of the propagating flame front and cause convective
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heating of the solid fuel. However, natural or forced convection --

is allowed in a direction opposite to that of flame propagation.

Typically, the fuel might be a polymer.  This polymer will

be assumed to gasify directly; that is, no molten layer exists.

The special case will be considered in this lecture whereby

the oxidation is an exothermic surface reaction. Most polymers,

of course, would not burn in this manner but rather in the gas

phase. However, this assumption reduces the·mathematical complex-

ity in two ways: (1) the number of governing partial differential

equations is reduced since the fuel species no longer exists in

the vapor phase and (2), as we shall later see, the two-dimensional

problem may be reduced to.a one-dimensional problem.

The    case of steady propagation   will be considered   whe re    the

spreading rate is to be determined as a function of ambient .tem-

perature, pressure, and oxidizer concentration, transport proper-

ties, and thermochemical properties.  The velocity,of the incoming

flow due to forced or natural convection shall be assumed to be

known.

The method of solution to be proposed here is original in

that it is the only one which allows for consideration of the non-

linearity due to chemical kinetics. Other approaches have either

taken an empirical value of.the spreading rate as known and calcu-

lated temperature fields or have determined the spreading rate(2,3 )

as a function of some heuristic parameter which is not readily

related to other fundamental properites One exception is the(4)

study by Tarifa, et al but there radiation is the only mechanism(5)

by which energy is allowed to be transferred ahead of the flame.
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The originality of the method caused the author to be cautious and

to attempt, in the first instance, to solve the case of surface

reactions rather than the more physically interesting case of gas-

phase reactions.

Theoretical Analysis:

The frame of reference will be fixed to the moving flame

front so that a steady-state problem is obtained. The ambient

pressure is uniform and no pressure gradients exist throughout the

heat-up and reaction zones at the low Mach numbers involved. Due

to the temperature increases and density decreases associated with

the reaction, the streamlines will diverge somewhat. However, this

-        effect is neglected in the governing equations and the Oseen

approximation is made with the convective terms.  Radiation is

neglected in this model since it is not expected to be important

for small-scale fires, at least. The flow in the flame-front

region is considered to be laminar.  Also, the Prandtl number is

assumed to be negligible compared to unity so that the viscous

layer is much thinner than the thermal layer. Then the momentum

equation may be considered, trivial and the gas phase equations may

be written as:

Species:
BY

pV  .33-2  = 9.·(pD*YO) (1)
Energy:

3T
pVcp   =. V·(AVT)                            (2)

where p is the gas density, c .is the specific heat which is
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assumed identical for all species, V is the velocity of the air

relative to the flame front, Y  is the mass fraction for the

oxidizer, T is the temperature, D is the mass diffusivity, A is

the thermal conductivity, x is the coordinate parallel to the

direction of flame propagation and y is the coordinate normal to

the flame propagation direction.

In the solid phase, the energy equation is written as

3T
psvfcs 33E  = V·(AsvTs) (3 )

where the subscript s implies solid phase.  VF is the flame

spreading rate relative to the solid. Note that in the absence of

natural or forced convection V= VF.  Y=O i s taken as the solid

gas surface and the ratio of surface regression rate to-spreading

rate is neglected.  As = constant may be assumed.

Certain matching conditions will be applied at the solid-gas

interface. First of all, the combined flux of oxidizer due to

diffusion and convection at the interface must balance the oxida-

tion rate at the surface; i.e.,          -

3Y

PD '3Y  - 6(YO +  ) (4)

where m is the mass flux emitted from the surface and v is the

stoichiometric mass ratio of fuel-to-oxidizer. The gasification

rate is given by a kinetic law which assumes a first order depen-

dence upon local oxidizer concentration and an Arrhenius dependence

upon temperature.
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-E/R(T-Tw )i = APYIe .(5)

where A, E, and R are constants and T is the ambient temperature.0D

The mass flux is conveniently taken to be zero at the ambient

temperature.

The energy balance at the surface is·given by

T -
BT                                BTA BY + lil Q - J   (cp- cs)dT'  = As Jy -               (6)

- T
0D

where Q is the energy released per unit mass of fuel in surface

oxidation.

Furthermore, the ambient temperature and concentrations are

known providing the boundary conditions at infinity.

Note  that the transformations  E  =  PAx/c   and  n  = U  pdy(where

pA and c  are assumed to be constant throughout the gas phase)

result in a simplification of Equations (1) and (2).  The above

assumptions.together with the assumption that an average transport

property may be employed for diffusion in the x-direction, reduce

the above set of differentials equations, (1)-(4) and (6), to a

set of differential equations with constant coefficients.

After scaling the independent variables we find the specie

and energy  equations satisfy:

BY    82Yo   A2 82YO0
V MT=   9 +-2 (7)

an- c  842

ir   = 4 + -7 -    '                                       (8)
x-2 82T

an    cp 34
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In the above equations, unitary Lewis,number is assumed; however,
that assumption can be relaxed with some increase of complexity in

the calculations.

The following nondimensional variables are employed:

c 2
s   =    (-P)   VE    =   x/L

A

VcpT| ,  Poo Vcp f dy· _f l d y
Z =

T   -       T    J  7---J  e Tand

e = T/Tcn

where L = A/p  c V is a characteristic thermal length.  These lead

to the equations governing the gas phase

be _ 828    828+- (9)ZE - .SF    382
and

bY    32Yo   32YO0 + (10)3--- =   2    8s2   .az

For the solid phase, we define the nondimensional variables

and parameter

es = Ts/Too '

Y  = - Y/L  ,S

ApscsvF'
a=

A P C V.
S CO p

This results in the following form of the energy equation for the

solid phase
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ae be a e
22

S s s
-

a. 3---
- +

2 (11)«   Bs ,
The boundary conditions at infinity are that:

8  -+  1   ,      YO -+  1     as      z  -+  co      or     s  -+  -00

8  -+1  as  y = co or S  -+ -00 (12)S                 S

The boundary conditions (4), (5), and (6) may be combined and

transformed to

BY        Y    ec/8-10 _ (A)  O e-BE-  -   cv /   -e (Yo   + 1) (13)
and

Be , ,A, Yo  -ec/8-ir n        c               x    ae
32   -r   f 17 )     -5--

e
le--(1  -cs)(8-1 )1      -                 s      )             s                      (14)-co       p -  - ('TZ   '3F   .

The system of equations (9), (10), and (11) together.with the

boundary conditions may be solved with the aid of the Green's

function which is developed in the Appendix.  A system of nonlinear

integral equations with one independent variable are. obtained as

follows:

S*  S-4r  F -7-  .Is-gl'.1/ 0           cs )Y  -ec/(e-1)
8(s)  =  1+ A      Le      Kol    2     )]lh     -(e-1)(1 -c--) e  e                  dE- CO 00                         P

A
Co S-E

1    s     /     F -2-    .Is-4 1,1
FA J Le.  :Kol  2p )Juedg , (15)

00
- 00

*

Y =YO - A«''f [e -C-KO(|s 41)14(YO+vl) Y O
-ec/(8-1)

0                                         e         dE        (16)00
- OC)

213



7-8

and 00 a ..

e =:1+- 1 K  (5   ls-41 )]udg (17)
IT J 0 21 r [27(»-c)

- CO

where the definitions have been made that

A
A = :IF:V '

be
U         (S,0)= - .3=

and s* is the position beyond which the surface oxidation no longer

occurs.   For an infinitely thick fuel-bed,  s* - co 1

Realize that the fuel is gasifying so that the surface is

regressing as the flame moves along it. When the fuel-bed is very

thick, the position of fuel-bed burn-out is so far downstream of

the flame front that the exact position :of burn-out or the exact

thickness of the bed is not important. That is, above a certain

fuel-bed thickness, the spreading rate and the field solution in

the flame front region do not depend upon the fuel-bed thickness T.

In this range of T, the results are independent of s*.  For a thin

fuel-bed, on the other hand, our. equations are accurate if we

consider the following situation. Assume a fuel, of thickness T,

is coated upon an inert substrate of thickness 8*.  Furthermore,

T << 8* so that the total thickness T+ 5* 2 8*.  Also, the sub-
strate and the fuel have identical thermal diffusivities.

The spreading velocity VF (and therefare V) is still unknown

and must be considered as an eigenvalue. This implies that A is

an eigenvalue of the problem.  Since (15), (16), and (17) form a

system of three equations for the temperature e, oxidizer con-

centration Y , and heat flux u at the surface.  However, since A
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is still unknown, we require another equation in order to obtain a

solution to the system. This equation is developed by considera-

tion of the conservation of mass in the solid phase.

Let T be the thickness of the unburned fuel-bed. It follows

that

00

pv'r=F m dx
s F   J

- 00

since the mass flux of solid fuel into the flame zone must equal

the total gasification rate at the surface. Defining

p V TC_SS  pB=
7T A ED

and using (5) and previous notation, we obtain

*

   YO  -ec/(8-1)  --1A=B / -  e                      dE          .                                (18)e
-  - (30

Now (18) may be solved together with (15), (16), and (17) to obtain

8, Y , and u along the surface together with A.  Actually, since

the spreading rate- not only appears in A but also appears in a and

B it is more convenient to consider the pre-exponential chemical

kinetic constant A as the eigenvalue since it appears only through

A.  In that case the spreading rate VF is taken as known while the

constant A is taken as unknown. Once the results are obtained A

versus V may be plotted and the appropriate inversion can be

readily made.

The advantages of formulating the problem as a system of

integral equations rather than partial differential equations are:
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(1) there is only one independent variable instead of two variables

and (2) the nonlinear system is readily solved by the method of

successive substitutions. If, in addition to the spreading rate

and the surface values, one wishes-to determine·the solution

through the gas and solid fields, they may be constructed from the

surface values through the use of Equation (A-4) in the Appendix.

Special cases:

The system of three integral equitions may be reduced under

special circumstances. In one special case, all of the energy is

conducted through the gas phase and none is conducted through the

solid phase. In this case the heat flux in the solid phase need

not be determined in a coupled fashion.  Therefore, Equations (15),

(16) and (18) are solved together neglecting Equation (17) and

setting u=O i n Equation (15).

This limit could be obtained by letting 5 -+ 0 in which case

the kernel in Equation (17) becomes infinite yielding the solution

U = 0. Physically, this implies that as the fuel-bed becomes very

thin no energy is conducted through it. In this limit, we are left

with the following equation

S* s-4
c , Y.  -ec/(e-1)7 - 41                                 dE   (19)e   =   1+  A

 
e K

O,  ' s2         ) <hK-  - (e-1) (1  -  .E )1  -81    e00
-CO

which is the limiting form of (15) and must be solved together with

Equations (16) and (18) for e, Y , and A.

A further special subcase occurs when c =c and v << 1 with
P    S

u = 0.  Then Equations (16) and (19) yield
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s-4   .                          Y   -Y
r 7--    s-    Yo  -ec/(8-1)      0     0

Q Al  . =  A J   e        KO ( |   24 1 )  7-  e                        dE X (20)
CO

1/v

or
h              '

Yo 2 Yo + _21 (1-e) (21)co YQ

which may be substituted into the integrals in (18) and (20) to
obtain

S* S-
_ec/(e-1)

e   %   1 +            -1--KO C '     241)                  e                    (q- e) dE                              (22)
s-     e

-OD

and

+  **  YO    +  (hco/vQ)(1-e)
A-% 8 j  "   0 e-ec/(e-1)   -1dE              (23)

-   -OD

where the definition has been made that

St-lt» Y0
00           CD

Here (22) and (23) may be solved together for e and A. Afterward,
Y  may be determined from (21).

Numerical Methods:

The nonlinear integral equations are solved by the method of
successive substitutions. A guess is made at the solution and

substituted into the integrals on the right-hand sides of the equa-
tions. The left-hand sides  of the equations. as calculated become
the next guess and are substituted into the integrals for the next

step in the iterative process. This continues until convergence
occurs.

217



7-12

This techni·que has been successfully employed in the above- --

mentioned special subcase where Equations ( 22 ) and ( 23 ) have bden

solved simultaneously. The technique has also been employed in·

the· special case where  (16 ),  (18 ), and (19) are solved together.

A modified form of this technique has been employed in the

solution of the general case where (15), (16), (17) and (18) are

solved together.. Some difficulty occurs because the unknown heat

flux appears only in the integrands of (15) and (17); therefore,
the next value for u in the iteration procedure is not immediately

calculated.  However, the linearity of Equation (17) may be used

to·advantage since it is possible·to invert that equation and

obtain  u  as a function  of e. This function may then be used to

substitute for u in (15).  Then, with u eliminated, the method of

successive substitutions may be employed. The particular method

of inversion of ·(17) involved approximating the integral as a

finite summation over the discretized range of E. For each dis-

crete value of s a-different linear algebraic equation applied.

This linear algebraic system was inverted.

Results and Discussion:

Calculated results were first obtained for the special sub-

case where v << 1 and u = 0.  In Figure 1, the surface temperature

profile determined from the solution of (22) and (23) is given.

Also, given are the results obtained from the solution of Equations

(15),  (16) and (18) with v = '.1 .  .It is seen that as long as

v << 1, the results of the two methods are in good agreement. We

see that the temperature increases through the flame front,

reaching a maximum, and then decreases. The increase occurs due
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to the exothermic reaction while the decrease ocdurs when the re-

action.is completed and just diffusion of energy away from the

surface occurs. Actually, the temperature begins to decrease just
before the point where the reaction is completed s* = 5.  This de-

crease occurs because some diffusion of energy in the positive x-

direction occurs.

In Figure 2, the oxidizer mass fraction at the surface is

plotted versus position. One curve is the result of the solution

of (22) and (23) followed by the use of (21) while the other curve
is the result of the solution of (15), (16), and (18).  Again the

two methods have results which are in excellent agreement. The

oxidizer mass fraction decreases as the reaction occurs and then

increases after the reaction ceases at s* = 5 due to mass

diffusion.

It is seen therefore that in the case u = 0, the approxima-
tion given by Equations (20) and (23) is reasonable when v << 1.

It may be used in lieu of the more exact set of equations which

are larger. This approximation will be employed henceforth

wherever u = 0.

In Figure 3, we see the effect of increasing the energy

release on the surface temperature profiles. The larger the value

of  Q/h(j, the higher  is peak value of temperature  and the faster

is the temperature rise (or the more narrow is the reaction zone

front region).  Sihce the independent variable s depends upon a

characteristic thermal length which varies, we shall see later that
-  the front regions   are  even more narrow than indicated.
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As the fuel-bed thickness increases.the overall length of

the reaction. zone will increase. However, above a certain thick-

ness (or above a certain value of B) the.temperature profile in

the front region is essentially independent of B. This is clearly

seen in Figure 4, where the calculated temperature results are

superimposed for three different fuel-bed thicknesses. The front

region·thickness is of the order of a few thermal lengths and

disturbances far downstream do not propagate upstream.

Nondimensional spreading rate versus energy release is shown

in Figure 5 and a nearly linear increasing dependence is seen.

Also spreading rate will increase with the nondimensional thickness

B up t9 a certain value of B beyond which A is independent of B.

It is also seen that. an.increase .in the nondimensional activation

energy results in a decrease in the spreading rate.

In Figure 6, we see temperature results for the case with

solid phase heat transfer (u = 0).  The same characteristics exist

as. did for the no-solid-phase-heat-transfer case except that the

temperature values are significantly reduced by the cooling effect

of the solid.  For the values of a = 1.0 and As/A 00 = 0.1 as given,

the main effect of the solid phase is to cool the reaction zone

thereby decreasing the.spreading rate; A = 3.7 here versus A = 1.6

with no solid phase heat transfer. Realize, of course, that with

lower values of a (hight solid thermal .diffusivity or greater

values of V/Vs) the solid phase will begin to play a more important

role .in transferring energy ahead of the flame which would tend to

enhance the spreading rate.
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The results shown in Figure 7 would indicate at first sight

that solid phase heat transfer makes only slight·differences in

the results for oxidizer mass fraction. The difference would be

made through the temperature which modifies the reaction rate.

Realize that again the independent variable s is based on a

characteristic thermal length which depends upon the spreading
rate. Therefore, since the spreading rate depends significantly

upon solid phase heat transfer even the oxidizer mass fractions
are affected. This discussion also relates to Figure 3.

In Figure 8, we see the surface heat flux plotted versus

position along the surface. The heat flux has its maximum in the

flame front region with anothe·r local maximum occurring just before
the burnout position s* 6 5.0 ·  This last maximum coincides with

region of surface temperature decrease as would be expected.

The calculations are preliminary in the sense that no exten-

sive parameter survey has yet been performed. However, it is felt

that the feasibility of using this integral technique for such non-

linear calculations has been demonstrated.
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APPENDIX

Consider the partial differential equation

L(u) E Au-kux = f(x, y) (A-1)

where & 5 V·V (the Laplacian operator) and u is any unknown while

k is constant and f is known.  Realize that Equations (9), (10)

and  (11)  are  of this form where u = 8-1,  Y0 - Y0   ,  or 8 -1.   InS
00

those cases f=0 identically.  The .more general.case with gas

phase reactions would have a non-zero f. The boundary conditions

are that:  U -+ 0 as y -+OD or as x -* -co and .  (x, 0) = g(x) a
known function.

The adjoint operator is

M(v)    s   Av  + kv (A-2)X

so that application of Green's theorem yields

ff [vL(u)-uM(v)]dxdy  =  -   f   [v · -u ·· ]dx . ( A-3  )
along
Y=0         '

Let Q be a source point- ( C, 71) and. P be some other point (x, y).
We wish that v = G(P, Q) be the Green's function whereby:

(1.) M(G)    =   0       if      P   0  ·Q   ,

1
(2)         G  -+ -   log   r as r -+ 0,271-

3G
(3)    BY = 0 along y = 0.

Note, that r is the distance between P and Q so that
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r= (x-4)2 + Cy-71)2 .

Then we have  from  (A-3 )

00   00

11(E,TI) =u  ,   G(x, y;E,n)f(x, y)dxdy ( A-4 )
0·        -CO

1

00

+         G(x, 0 4 4,7 1)g(x)d x    .
- 00

Now it ohly remains to determine the G which satisfies the
above three conditions.

F(X, y) E v(X, y)e(k/2)x ,

Consider the adjoint equation  (A-2)  and  let

Then

Av +:v  = e-(k/2)[81.1.-. 7 11] = OX

so that

8 11   -        Al     =     O      .

Considering the cylindrically symmetric solution for A we would
obtain

2                2d 11 + 1 dti   kdr2   r dr - r 11 = 0

which is a modified Bessel's equation of zero order·. One solution
is the modified Bessel function of zero order and second kind

KI (·k2r)    where

KI(z) = -  .2 (· z)2·2 (   1        /  17
£=0 (81)C m=1  J

n     ·2 l o g    ·2    z  +  7     -    I   5  7

Note that y is Euler's constant .5772157... ·
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.--- Asymptotically we have

K  (z)   +  -   log   z     as     z  -+  0
and

KO(z) 4 (· )1/2e-z as Z -+ 00  .                          A

Now v = e-(k/2)x K (k r ) is a fundamental solution to the
adjoint equation so that condition (1) is satisfied. It remains

to satisfy conditions (2) and (3). Condition (3) is satisfied by
the symmetric reflection about the line y = 0.  Defining

r, ='1111(x-4)2 + (y+n)2, we have

v=e
I K (&r) +  Ko(jr')]

-(k/2)x

3vwhich satisfies the boundary condition  that ---  (x, 0)  = 0 as well  asey
satisfying the partial ·differential equation (A-2).

Condition (2) is satisfied by multiplying by the constant
1 -(k/2 ) E

EF C so that finally

v = G·(x, y;E,n) = - -1 e.(k/2)(x-E)[  (k
27r Ko F r)+ KO (pr ' )]   .     (A-5 )

In particular

G(x, 0;4,0) = -1 e(k/2)(x-E)K (Ix-gl).. (A-6)0

The difference between "upstream" and "downstream" influence

may be readily seen.  Consider the region where Ix-El >> ly| and

x-E >> 191·  Then
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G X- 1 e-(k/2)(x-E)K (k Ix-El)                                 -02

1 e-(k/2)(x-E)(  T   1/2e-(k/2)|x-41r\' -
Tr                                             k Ix- E  1

so that if x > 4, we have

G '9 - (       )1    1/2e-kix-El
Trk | x- E  1

and  ·for  x  <  E,   we  have

G 4_ (   1    1/2Trk Ix- E  1

The solution at the position x has some influence on the solu-

tion at the point E and the Green's function G is a measure of that

influence.  When E is upstream of x (or x > 6), the influence is

relatively weak since there is an exponential decay as |x-El in-

creases.  However, when E is downstream of x (or x < 4), the
-1/2influence is somewhat stronger since the decay goes as |x-41

On account of the convection, a disturbance to the field at the

position x would be felt more strongly in the downstream direction

than in the upstream direction.

Suppose we were considering a solid fuel with a thickness 8*

that is not very much larger than a characteristic thermal thick-

ness.  Then the boundary bondition given by (12) is modified so
3e

that 29 - = 0 at 6 = 8*/L.  In
the nomenclature of this appendix,

we must impose a fourth condition on our Green's function; namely
BG .  Cx, 5;4,71) = 0.  By the method of images the Green's function is

found to be
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G(x,y;E,n)   =-1     e(k/2 ) (x-4 )   K    <kr  )
2T                                L  O l 2      '

00

+  KO(·k  r')  +  F--I- · KI(k[(x-E)2+  (2n8-  y -Ti)211/2 )
n=i

+   Ko (·k    [  (x-4  )2  +   (2n5   +y-   n)2 1 1/2 ) (A-7)

+ KO(k [(x-4)2 + (y-2n8 -n)211/2)

+ Ko (·  [(x-4)2 + (-y -2n5 - T))211/2 ) '    0

Therefore, we have that

G(x, 0;4,0) = - 1 e(k,/2)(x-E) 0(k/2 Ix-41)
(A-8)CO

+   2       KO (·    [ (x-6 )2  +  (2n5)21 1/2 )       .

Note  that  as  5 - 00, the modified Bessel functions  in the summation

series above will tend towards zero so that (A-7) and (A-8) become

identical with (A-5) and (A-6).
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One-Dimensional Analysis of Combustion

in a Spark-Ignition Engine

W. A. Sirignano

Guggenheim Laboratories
Princeton University

Abstract
A theory based upon a concept of turbulent flame propagation

has developed and has resulted in the calculation of pressure
versus crank angle and temperature versus both crank angle and
chamber position as a function of various design parameters.
Ultimately, the theory would result in the calculation of NO con-
centration. Turbulent mixing occurs to a significant extent
throughout the chamber especially for larger turbulent eddy sizes.
After burning is completed, the mixing tends to uniformize the
temperature distribution somewhat.

The calculation of the concentration of emissions of a spark

ignition (Otto) engine requires a knowledge    of the pressure    and'

temperature dependence upon space and time in the combustion

chamber. The reason f6r this is that such species, such as NO, are

formed in a nonequilibrium manner and' their exhaust concentrations

cannot. be .calculated ·solely from a knowledge  of the exhaust. tem-

perature distribution and pressure. In order to determine pressure

and temperature histories by mathematical analysis, it is necessary

to understand the mechanism of flame propagation in such an engine.

The flame propagation. rate determines the rate of energy release

in the combustion cylinder. Together with the rate of compression

(or expansion) by the piston motion, the energy release rate

determines the pressure and temperature variations in the chamber

which in turn govern the NO kinetics.

236



8-2

The interesting work of Lavoie, Heywood, and Keck (1970)

avoids the question of the mechanism of flame propagation.

Emperical pressure results are employed to calculate temperatures

and unburnt mass fraction as functions of space and time from

certain thermodynamic considerations. This use of empiricism made

a specific statement about the mechanism of flame propagation un-

necessary or redundant. From their analysis, the flame propaga-

tion speed and the temperature variation could be calculated. No

details concerning the propagation mechanism were deduced.  As a

consequence of their simplification, however, they could not pre-

diet the complete dependencies of the NO concentrations upon par-

ameters which would enter through the description of the mechanism
of flame propagation. Such parameters include the rpm, mixture
ratio, spark advance, compression ratio, and displacement since

these parameters affect the pressure profile which is taken empir-

ically in that work.

It would be most useful, therefore, to have an analysis which

models the flame propagation mechanism and can predict the complete

dependencies of the NO concentration upon these critical parame-
ters. This paper discusses such a model. It is argued in this

model that the flame propagation involves, in an essential manner,
the turbulent transfer of heat ahead of the flame. A calculation

of the Reynolds number (based upon bore and maximum piston
velocity) for a typical situation gives 0 ( 104 ) which justifies the

employment of a turbulent model.  A Reynolds number based upon the
intake flow is also high.
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MODEL OF THE TURBULENT DIFFUSIVITIES

An analysis of the combustion process in an Otto engine has

been performed based upon the argument that a turbulent flame

propagates through the gaseous combustible mixture at a speed which

is controlled by the rate at',which the turbulent motion transfers

heat ahead of the flame. This heat-up proce/s continually brings

the gas immediately before the flame to the ignition point and

progressive combustion (or flame propagation) results.  The turbu-

leht intensity associated with these eddies is related to both the

piston velocity and the velocity of the unburned gases through the

intake valve. Obviously, the turbulent intensity increases with

rpm. One expects, therefore, that flame speed would increase with

rpm in this model. This trend, of course, has been experimentally

determined. The length scale of 'the turbulence is related to the

cylinder bore and stroke dimensions and the valve opening size.

It is assumed that spatially homogeneous, but time-varying

turbulence exists in. the combustion cylinder. In particular, an

eddy diffusivity (assumed identical for both mass and heat trans-

fer) is taken to be the sum of two diffusivities, one due to

piston-motion-generated turbulence and the other due to intake-

flow-generated turbulence.  By dimensional analysis, it can be

concluded that each diffusivity is the product of a characteristic

length and a characteristic velocity„  With one diffusivity, the

characteristic velocity equals the (absolute value of) piston

velocity at each instant, and, with the second diffusivity, the

charactersitic velocity is proportional to the average intake gas
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velocity and decays with time after the closing of the intake

valve. The decay process is assumed to follow an exponential law

and, by dimensional analysis, the characteristic time for eddy

break-up is the ratio of the characteristic length to the intake

gas velocity.

In particular, we have for the eddy diffusivity

U
(1) a(t) = Llup(t)+ L2uI exp {- ·L  (t-tI))

where t is time, u  is the piston velocity, Ll is a characteristic

dimension for turbulent eddies produced due to shear of the gas

flowing over the cylinder walls and head and the piston, L2 is a

characteristic dimension for turbulent eddies produced by the flow

of intake gases, uI is the average intake gas velocity, and tI is

the time at which the intake valve is shut. This relationship is
'

clearly over-simplified; for example, one would expect spatial

variation of the diffusivity, a dependence· upon the history of the

piston velocity not merely the instantaneous value, and some break-

up of the eddies resulting in a distribution of the characteristic

length.  It is felt, however, that (1) contains much of the

essential physics which governs the turbulent transfer of heat and

mass and is an appropriate first representation of the eddy

diffusivity.

EQUATIONS OF FLUID MOTION AND THERMODYNAMICS

The equations goVerning.the fluid motion may now be written.

The momentum equation may be replaced by the condition of uniform
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but. time-varying pressure. It is convenient in the first analysis
.Tr

to consider a one-dimensional unsteady problem.  Figure 1 indicates

two interesting models for flame propagation.  On the left-hand

side of the figure we see a planar wave propagating from the

cylinder head (where the spark ignition occurs) towards the piston.

That is, variations across the circular cross-section of the

cylinder are neglected in comparison to variations in the axial

direction. This is strictly valid only in the case where the bore-

to-stroke ratio is much less than unity and the primary direction

of flame propagation is the axial direction. Although, this is

not realistic with regard to practical automotive design, the

essential physics of the problem remain intact under this idealiza-

tion and basic trends should be noteworthy. On the right-hand side,

we model a cylindrical flame propagating from the center of the

chamber (where ignition occurs) towards the cylinder walls.  Here

gradients in the vertical direction are neglected. This is perhaps

a somewhat more realistic model than the planar flame case but

slightly more complex mathematically. The planar model was chosen

as the first model in what is hoped to become an improving

succession of models. The primary intent here is to show the

feasibility of calculating the field properties in a combustion

chamber with turbulent flame propagation. Once this feasibility

is demonstrated more realistic and more complex models may be

studied.  In future analyses, one could treat the two or three-

dimensional problem where the bore-to-stroke ratio could be a more

realistic value.

The continuity equation is given as
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(2)                     ZE +  E (pu) = 0
an

and the energy equation is given as

(3 ) A ht. * h -,i A P - .i- . E (aesp .6 T) .. 

where p is the density, u is the gas velocity, x is the axial

dimension, p is the pressure, h is the enthalpy, T is the tempera-

ture, c  is the specific heat at constant pressure, and Q is the
energy released per unit time by the combustion process.

After the intake valve closes, the amount of mass m in the
*

cylinder is fixed. The fixed mass, moving boundary problem is

most conveniently handled in a Lagrangian frame of reference.  The,

transformation
X

, - f »,
0

is made where x=0 and 9=0 are at the cylinder head while 9=

total gas mass divided by cylinder cross-sectional area occurs at

the piston face. 'This transformation essentially replaces the

continuity equation and leads to the following form of the energy

equation

(4)     8  1 d 8.2 3
WE  T   -  lic;;  a E  p  =  5FCP   a  ·*  T)   +  .aQ

P

where c has been considered as constant. Furthermore, assumingP

the perfect gas relationship and realizing a and p are functions

*
This mass m is generally a weak function of rpm according to

empirical results given by Lichty (1939).
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of time only, we can rewrite Eq. (4) as                                    ,  _ 

(5 )                       ·         -Ti   T(1  .22 )    =    (pR) 2 a  .SF    [(T )       3 ]     +   4L
A   1.2 BT

p dt

where y is the ratio of the specific heats and R is the gas

constant.

The first term on the'right-hand side of Eq. (5) represents

the turbulent transfer of energy while the second term represents

the energy release.  If both of these terms were zero, no entropy

is produced and the temperature and pressure follow the isentropic

relationship. (Indeed, it is seen that setting the left-hand side

of the equation to zero and integrating yields that pl-y 7 T is a

constant.)

The boundary conditions· on Eq.   (5)  are that negligible

energy is transferred through the piston face and cylinder head,

namely

BT
(6)                          (t, o) = 0.Bip

and

(7) 3T
-Eip (t,m/A) =0.

Furthermore, the initial temperature distribution is specified;

some temperature exists in the neighborhood of the spark plug just

after ignition with lower temperatures away from the spark plug.

The pressure can be related to the integral of the tempera-

ture distribution. In particular, from the perfect gas law we have

39 RTp =pRT =33E

or, integrating over the total .gas volume, we obtain
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m/A
(8)     9 1  =  p       dx=   91. -   93 /A  =  R           Tdp

0

where x  is the piston face position, V is the instantaneous gasP

volume, m is the total mass of gae in the cylinder and A = T82/4
is the cross-sectional area of the cylinder. Substitution of Eq.
(8) into Eq. (5) implies that an integro-differential equation for

temperature exists.

It is convenient at this point to nondimensionalize Eq. (5)

through Eq. (8).  We define

e   =   T/TO

p= P/Po

V    =   N /VO

9 = PA/m

C  = cot

where co is the angular frequency of the crankshaft and the zero

subscript implies conditions just prior to ignition. It is also
convenient to define K = epl-7/1.

Now Eq. (5) through Eq. (8) may be replaced by

(5a) 5    =     (-A-)2    2     .02/y      3        (   1       BK      +    4 pl- 7/7

vo       CD   r          .Bii   'K2 3£ cud TPO

with the boundary conditions

(6a) RK ,
3£ (4,0) = 0

and

(7a) BK ,
371-   C C,1)   =   0

and the subsidiary condition
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1

(Ba)                                                                     Pv   =       edn    .

Of course, now the initial condition on Eq. (5a) amounts to the

specification of K just following ignition.

Note that Eq. (5a) now has the effect of the rate of change

of pressure concealed within the definition of K..  The variation

of K from unity occurs .due to the nonisentropic processes of turbu-

lent diffusion of energy and chemical energy release.

It is realized that the energy release Q depends upon both

the temperature and concentration. Assuming a second order re-
*

action, we can show that with a stoichiometric mixture

2 -E/RT
(9)                        Q =apee

where E is the activation energy, s is the mass fraction of unburnt

gases, and a is a pre-exponential constant (which could be assumed

dependent upon temperature if desired).  Of course, it is posLible

to use some other relationship for Q instead of Eq. (9) if so

desired.

SPECIES EQUATION

It is clear from Eq. (5a) and Eq. (9) that the mass fraction

of unburnt species must be determined as a function of space and

time. The governing equation is

*
Equation (9) could be easily modified to account for off-

stoichiometric cases or could be replaced by a system of equations
to describe detailed kinetics.
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BE _ B t 2  86,   4(10) KE  -  3   i p  a ·3 ,  _  . 

where Q is the chemical energy per unit mass of unburnt gas. The

first term on the right-hand side represents the turbulent diffu-

sion of the unburnt species while the second term repre sents the

depletion of the species due to combustion. Note that the turbu-

lent diffusivity for mass transfer has been assumed equal to the

diffusivity for energy transfer.

Using the perfect gas law and transforming to the non-dimen-

sional variables, Eq. (10) may be rewritten as

BE    ,A,2 a  2 3 /1,2 be(11)
.=   =    cv- ,      E   p      3£    I cl,      3£1    -   &    ·0

The boundary conditions are

BE ,
(12)

Zi (4,0) = 0
and

(13)  --   (4,1)   -  0

which imply that no mass diffuses through the cylinder head or

piston face. The initial condition is given as 8-1 everywhere

throughout the combustion chamber when the value of C is CQ except

for a small region near the spark plug where ignition occurs.

Rather than integrating Eq. (5a) and Eq. (11) simultaneously,

it is convenient to define

(14) B =K+  Q  =c T  w
P O

Then combination of Eqs. (5a), (6a), and (Ta) with Eqs. (11), (12),

and (13) leads to the following equation:
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(15)   =, ( A)2 3 P2/1  a r k  80]  +    4    [Pl-y/Y -1]mi L.F .3Ti a)c T
o                                p o

with the boundary conditions

(16)
371- CC,0) = 0
8  t

and

80 t
(17) 371- (4'1) =0.

The initial condition for B is readily determined given the initial

conditions for s and K.

In a constant pressure process it would follow that the Eq.

(15) and the boundary conditions Eqs. (16) and (17) are satisfied

by the solution B = constant. With varying pressure, however, some

variation in B occurs. The variation in B is substantially less

than the variation in s and, for this reason, numerical errors are

minimized when Eqs. (15), (16), and (17) are employed in lieu of

Eqs. (11), (12), and (13).  Therefore, the system of partial

differential equations which are to be solved numerically are Eqs.

(5a) and (15) subject to the definitions Eqs. (9) and (14), to the

boundary conditions Eqs. (6a), (Ta), (16), and.(17), and to the

appropriate initial conditions.

NUMERICAL INTEGRATION OF THE EQUATIONS

Since the coefficients of the second derivative terms in

Eqs. (5a) and (15) are strong functions of time or crank angle C,

the step-size AC required for accuracy could vary substantially

with C. In order to proceed with constant step-size, it is con-

venient to make a certain transformation; i.e.,
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+ (18) Z=
( A)2        f,   a p2/744 ,     .

.

0
0

Now Eqs. (5a) and (15) are transformed to

2    -0 c/e
(19) 3K   _     3      tl     B K)         A s        -

32   -   3ii    (2   3ii'          o KP   »
and

(20) BB  _   3    c 1   BB    +  A€2  e-ec/e[l _   1    1
32    -    399      'IF .3ii OK \7           pl/-1  1

*
subject to the definitions

-C2(4-43)0 = (3-)22= C Isin CI+Clea) 3 '
0

c T Y-1

ec = E/RT ;   s=  pQ 0 (0-K);   e=K P 7   ,

A  =  Qm/(CocpTovo)  ,

(21)

1+XCl = (2(AI,2/Vo)2 - 483x/[71-(y-1)51 ·   6 4( - cos 40)21 ,2 y  ZI

(2 = uI/I'2 ) = 51   63 X/[ 6 264 r(x-1)1 ,

ALl X-1 Vmin B  , 1+X

(3 = -7-- 1--- Vo  = 2/[61 Llix-1
- cos 40)21 ,

*
Note that the absolute value of the piston velocity is used to

determine the diffusivity.  Also, X is defined as the compression
ratio, B is the bore, V . is the chamber volume with the pistonmin
at top dead center, 51, is the stroke to bore ratio, 62 is intake

valve area to piston area ratio, 63 is the volumetric efficiency of
the cylinder, and 64 is the duration of time during which the in-
take valve is open divided by the time for piston traverse between
top dead center and bottom dead center.
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and, the conditions                                                     /

(22)
371 (4,0) -371 (4,1)=371 (C,o)=371 (C,1)=0,
aK ,       BK        ·80         80

( 23 ) K(0,9)  and  B(0,9)  specified ,

1                   1

(24) P = (1/V) f  edn =  (1/V) f  Kdl   ·
1Y

0                  0

Equations (19) and (20) have been placed into a finite
difference form by means of the method of quasi-linearization

(3,4,5).  A three-point formula is employed for the difference

representation of the first derivatives with. respect to z. This

allows second-order accuracy in Az.  n and j are integers such

that we have the relations z = nAz and n = jtn· f is an integer

denoting 'the step in the iterative scheme to be described. The

difference equations obtained are:

(25) A K
+ Brl, jKrl, j  +  Cn, jAn, j-1  =  Dn, j

8 2+1 8 £+1 1   8+1
n, j n, j+1

and

(26) F B +  GE   ·BZ+1  +  HZ    B,2+1      =  K
1   8+1                              f
n, j n, j+1 n, J n, J n, j n, j-1 n, j

where the definitions have been made that

1            8           1A   = -
n, j

(K2)f n, j   (K2)8
n, j+1 n, j-1
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c T 2 2 (0-K)2e
_ec/KP(y-1)/7-8

\

88    .  =  A(   PQI)   (An )                                                                 (    1                   2n, J OKP 22+
_                                 _n, j l Kn, j     (0-K)n, j

e

_        c       ; +   2    + 3 (671)2(I 2)£ .(py-1/y)ij (1(2)8 2 Az  '
n, J n, j

.-

D   j  -  2    22      -     2 1        -     2 1

Kn'  
KKn, j+1 n, j-1-

-

C T 2
2 (B-K)ce                          K

n -ec/KP(Y-1)/7-8   r         

+ A( PQ 0) (871) OKP   2 +2       n, j

(B-K)£ .
n, j L n, J

ec          + (4K )   (An)2  ,(Py-1/7)LK'  . i n- 1,  j-   Kn- 2,  j          A z
n, J ''

8+1 £+1K   -K
FE   = _    1      n, j-1 n, j+1
n, j

(K2)8+1 -    (K2)8+1     'n, j n, J

8+1 8+1K      -K
HE   = _1    +  n, j-1 n, j+1
n, j

(K2)8+1 (K3 ) 8+1         'n, J n, J

c T  n

Gi' j = 2Af PQ 0)«'(871)21 [1- P(y_1)/7 1) P             jn, j
_ec/Kp(7-1)/7   8-1

· (KE+1 - BE+1) +    2    + 3 (84)2n, J n, J (E2)8+1
2 Az   '

n, j
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Kf    = )(cPQTO)2(89)2 [1-P(7-1)/7]e-ec/KP(7-1)/7   1+1
n, J OKP   n, j

I     f  (BI       .     -    K£+1)2   -2(BZ      .     -     KE +1)Of       .]n, J n, J n, J n, J n, J

+ (40 - B  n .)(671)2/2Az .n- 1, j n-d, J

Note that when n=l the last terms in Df and KE . are replaced
n, j n, J

by K  ·(89)2/Az and B  .(89)2/Az.  Also when n=1 the last term in
0, J 0, J

each of BE . and Gf . is replaced by (89)2/Az. The boundary condi-
n, J n, J

tions Eq. (22) are replaced by

vE+1  = KE+1 .   KE+1   = KE+1Ib,-1 n, 1 ' n, j+1 n, j-1

(27)

0  =08+1 8+1 . 08+1   = 08+1n,-1 n, 1
'

n, j+1 n, J-1

with the initial conditions K . and B . given for all j of
0, J 0, J

interest.  Equation (24) is represented by

(28) pn         =    L( 1/Vn )A'1 (7   (Ki, O   +   K''  j )    +  Xs:   Kn, j )         '
£+1 r :i-l f 17

J-1

The method of quasi-linearization is a technique for im-

proving the accuracy of the coefficients in Eqs. (25) and (26) in

an iterative manner. At each value of n, the solutions for all j

are obtained in each step of the iteration until satisfactory con-

vergence occurs. Then, the solution for the next value of n is

determined.  The iteration begins by choosing (   )Z+1 = (   )
n, j n-l, j

which is the final value from the previous iteration. The

coefficients in Eqs. (25) and (26) have been defined such that,
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for each value of n and each value of £+1; the tridiagonal matrix
1.                                                                             f           f           .8                    8Eq. (25) is solved.  Then F  .. G .H ..   and K . are calculated

n, J. n, j. n, J. n, J

and the other tridiagonal matrix Eq. (26) is solved.  Now the index

8 is increased by unity and the coefficients in Eq. (25) may be

calculated for the next step in the iteration and so forth.

The initial conditions were chosen such that, at < =C,0
K had a Gaussian distribution near n=0 but K=1 for larger n.

s also had a Gaussian distribution chosen in such a way as to

relate thermal energy to chemical energy. This procedure was

intended to simulate spark ignition.
9.

The calculations were performed on the IBM 360/91 computer.

RESULTS OF THE CALCULATIONS AND DISCUSSION

The calculations have been performed in a limited number of

cases and results for profiles of nondimensional pressure , non-

dimensional temperature and mass fraction of unburnt species have

been obtained. Note that the pressure and temperature are non-

dimensionalized with respect to the pressure and chamber tempera-

ture just prior to ignition. These reference conditions may be

determined from the known conditions at the end of intake by

assuming an isentropic compression up to the point of ignition.

Thus, knowledge of the volumetric efficiency and maximum volume of

the chamber leads to the determination of the dimensional pressure

and dimensional temperature profiles.

*
The author wishes to acknowledge Mr. T.0. Williams for the

programming of this finite difference scheme.
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The parameters in the basic case (Case I) were chosen as

follows:

e  =20.0 , A   =   1.2 8  x 105 , 5     -0.-  40.0   ,c                                               l L1

C  = -200   X = 10.0 , 52=0.1 ,0

5  = 0.7 , 54= 1.0 , 5  = -1800 ,
3                                             1

7 - 1.3  ,    c     = 4.0 , Ll=L2'
PO

Note that A is directly proportional to the pre-exponential

constant in the chemical kinetic law and inversely proportional to

the rpm value. The given value of A represents a constant of the

order of 1013 cm3/(mole-sec) and an rpm value of 2000.  The value

of ec implies a value of the activation energy which is about 20
kcal
mole '

The results for the unburnt mass fraction versus chamber

position for various crank angles are presented in Figure 2. They

indicate that burning begins near the spark plug and propagates

towards the piston. The flame has a certain thickness and reaction

and turbulent mass diffusion are significant throughout some

portion of the chamber at each instant.

In Figure 3, K versus chamber position is plotted versus

various crank angles. Again, the propagation of a flame structure

is indicated. At the end of burning, K has a nearly uniform value

between 4.0 and 5.0 due to mixing effects.  This implies that

temperature gradients tend to be eliminated by the mixing. Effects

of wall quenching and heat transfer ar6 not included in this
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analysis, however. The nearly uniform and nearly time-independent

value of K·after the completion of burning at C = 0  implies that
0

an isentropic expansion is occurring.

Temperature versus chamber position for various crank angles

is plotted in Figure 4.  The previously-mentioned trends are also

demonstrated there but it is also indicated that after combustion

is completed the temperature decreases uniformly during the

expansion process.

Now, a study may be performed of the effects of changing

various parameters. A listing of the parameter survey is given in

Table 1.

Table 1 - Summary of the Parameter Survey

Case      X        ec   81 Ll     X     CO

B

I       1. 28  x 10 20.0 40.0 10.0 -2005

II 1.28 x 105 20.0 50.0 10.0 -200
III 1.60 x 105 20.0 40.0 10.0 -200
IV 6.40 x 105 25.0 40.0 10.0 -200

V        1. 28  x 10 20.0 40.0 9.0 -205                                0

VI 1. 28 x 10 20.0 40.0 10.0 -150
5

The effects of changes in the ratio of stroke-to-eddy size

(Case II) are demonstrated in Figures 5 and 6.  It is seen that an

increase (decrease) in the eddy size implies a decrease (an

increase) in the burning angle.  This indicates that design modifi-

cations which can change eddy size should have a profound effect

upon burning angle. The effect upon peak pressures and tempera-

tures would not be as profound but significant.  Another
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interpretation is that a decrease in the stroke (or maximum chamber
C.
4

length) implies a shorter travel distance for the flame and there-

fore a smaller burning angle. Realize that in these calculations,

the compression ratio was held 'constant as the stroke was varied.

Again peak temperatures were not too sensitive to the param'eter

change.

Figure 7 (Case III) shows the effect of increasing A to the

value of 1.60 x 105.  This case can be viewed either as an increase
in the pre-exponential kinetic constant or a decrease in the rpm

value. Although the results indicate some decrease in the burning

angle, it is not as large as would occur if the combustion process

were constant in duration. The results indicate that as the rpm

increases, the rate of turbulent mixing increases due to increases

in the pibton velocity and in the velocity of the mixture during

intake (if the mass of the charge were only weakly dependent upon

rpm).  The burning angle is much less sensitive to the value of A

than to the value of ec.  Peak temperatures are not too sensitive

to the value of A or the value of e .C

In Figure 8, we see the effect of.increasing the nondimen-

sional activation energy ec to a value of 25.0 and increasing A to

6.40 x 105 (Case IV). Both parameters must be changed simultane-

ously if the burning angle is to remain at a realistic value.

Increasing ec tends to slow down flame propagation while increasing

X results in a faster flame propagation.

Note that in Figure 9, the results for Case V are plotted.

Here, the effect of decreasing the compression ratio X to the value

of 9·0 is considered. The decrease in the compression ratio
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results in an increase in the burning angle. It is found, however,

that the change in peak temperatures is not very significant.

In Figure 10, the effect of spark advance is demonstrated.

In this Case VI, C  = -15' and, as expected, burning occurs later

relative to top dead center. Interestingly enough, the burning

angle is found to decrease as the spark is advanced. Apparently,

this results from the larger value of the eddy diffusivity during

the burning period. The larger diffusivity and more rapid mixing

occur since the piston velocity during burning is larger when the

burning occurs significantly away from top dead center.

The effects of the parameters upon the pressure results are

indicated in Figure 11. It is seen that changes in the pre-

exponential chemical kinetic constants, or in the rpm value, can

produce somewhat significant variation in the pressure traces but

changes  in the activation energy can produce large changes.    A

modification in the eddy size is noticed; larger pressures are

obtained sooner due to the decrease in burning angle as eddy size

increases. The peak pressure, however, is only slightly higher.

Also, it is noticed that the increased compression ratio results

in an increase in the peak pressure. The spark advance modifica-

tion results in a relatively more significant increase in the peak

pressure.

The results of the calculations indicate that the primary

factor in the eddy diffusivity given by (1) is the term due to

piston motion. The term due to the intake is negligible in com-

parison. It should be noted, however, that interaction may exist  -

in reality; the turbulence generated during intake may provide the
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necessary initial conditions for the intensification of the turbu-
/

lence by the piston motion.

The interesting results'obtained are that the final value of

K and the peak value of temperature e were insensitive to parameter

changes.  Realize that K as defined before Eq. (5a) can be direct-

ly related to the entropy, so that the implication is that the

final entropy is insensitive to parameter changes. This is not

surprising since the combustion process is very nearly a constant

volume process. That is, during combustion, the piston is near

top dead center and moving slowly so that very little work is done

by (or on) the piston.  Therefore, with the chemical energy to be

released given, it is found that the chemical kinetic constants,

the rpm value, eddy-size, etc. have little effect upon temperature

and entropy at the end of the combustion process. The peak

temperature and the temperature at the end of the combustion

process were very similar in the cases calculated here.

At this point, it is possible to use these pressure and

temperature results to calculate the concentration of NO as a

function of crank angle and chamber position. In particular, the

concentration in the emissions could be calculated. These calcula-

tions are intended for the near future.

There is an earlier version of this paper (Sirignano (1971))

which comes to somewhat different conclusions. In the calcula-

tions presented there, larger eddies and slower chemical kinetics

were employed. This resulted in "thick" flames. The present
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calculations which result in thinner flames are now felt to be
*

more realistic.

The model could be extended in the future by considering the

effects of heat transfer, dependence of the specific heat upon

temperature and concentration, and more realistic geometries for

flame propagation. An interesting application of a similar model

of flame propagation to the Wankel combustion process is discussed

in another paper by Bracco and Sirignano    (1973)·       The re,     in   fact,

the combustion chamber is more reasonably modelled in a one-

dimensional manner than in the reciprocating engine case.

*
Discussions with Drs. J. Heywood and F. Bracco on this point
were most useful.
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The Mass Burning Rate of Single Coal Particles

Irvin Glassman

Department of Aerospace and Mechanical Sciences
Princeton University
Princeton, N. J. 08540

Abstract
The burning rate of coal particles are examined under two

different sets of ideal conditions - (1) an ash-free material
undergoing qoasi-steady burning in which the kinetics of oxidation
on the surface are fast with respect to the diffusional time for
oxidizing material to reach the surface  and  (2)  an· 'ash-forming
coal in which diffusion through the ash controls. Simple modifica-
tion of analyses already in the literature show that for the ash-
free condition, the mass burning rate per unit area is proportional
to the mass fraction of the free stream oxygen to the first power
and for the integral ash condition the burning rate is proportional
to the square root of oxyged mass fraction. The burning rate of
an ash-free particle is also shown to be a function of the chemical
transformation at the surface. If CO forms, the burning rate is

twice the value that would be obtained if CO2 formed.

I. Introduction

The renewed interest in coal combustion motivated this paper

which is essentially a re-analysis of mass burning rate determina-

tions for certain unique properties of coal. There are two condi-

tions examined. The first concerns the burning of ash- free coal

under the assumption that the hetergeneous oxidation at the coal

surface is fast with respect to the rate at which the oxidizing

material is brought to the surface. This assumption is valid for

large particles at high temperatures - the most practical case of

coal combustion.  Mulcahy and Smith [1] have shown that for pul-

verized coal even at high temperatures, the surface oxidation
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kinetics control. Nevertheless, as will be shown, the burning rate.

dependence on free stream oxygen mass fraction is the same.
Although most coals contain a modest amount of volatiles, they burn
rapidly and the coal burning rate is determined by the consumption
time of the carbon char. The second condition examined is the case
of an ash-forming coal.

II. Ash-Free Coal

As described in the Introduction, the burning rate of coal
at high temperatures is determined by the burning of the carbon
char. Carbon is essentially non-volatile at the temperatures that
can be created in coal combustion and thus its oxidation must take

place hetergeneously; i.e., on the char surface. If the coal is

porous then, under these conditions, it is not likely that the

pores will·play a role since the oxidizing material will be removed
rapidly on the exterior surface before it can diffuse into the

pores.  The problem then can be idealized into the surface burning
of a spherical particle of carbon. The general problem of surface

(heterogeneous) oxidation has been treated by Frank-Kamenetskii

[2]. For surface oxidation, whether the chemical rate or diffusion
is controlling, in the iteady state rate which oxidizer is being

consumed at the surface by chemical reaction must be equal to the

rate at which oxygen diffuses to the surface. Thus Frank-

Kamenetskii writes the expression

(1)               G  =k C = hD (C -C )0·      S   0, S 0, CD 0, S
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G  is the mass consumption rate per unit area (g/sec cm2).  ks is

heterogeneous specific reaction rate constant which includes the

surface area and thus has units of velocity (cm/sec), ks = (k/S)

where k is the ordinary Arrhenius rate constant for a first order

reaction (sec-1) and S is the surface area to volume ratio for the

solid particle (cm2/cm3).  hD is the mass diffusion coefficient

and as defined must have the units of velocity (cm/sec).  It is

inherent from Equation (1) that surface kinetics are assumed first

order with respect to the oxygen concentration. C  is the oxygen0

concentration (g/cm3 ). The further subscripts s and oD refer to

the surface and free stream respectively. The stoichiometric

relation between the oxidizer and fuel can be written as

(2)                         G  =G/io           f'

where Gf is the fuel consumption rate per unit area and i is the

mass stoichiometric index.  Thus Equation (1) may be written as

(3 ) i  Go  =  i  ks p mo, s  =  i  hD P (mo, co- mo,s)  =  Gf

in which p is the total gaseous density and m  the mass fraction of

oxygen. It is, of course, desirable to express the mass consump-

tion rate of the fuel in terms of the known. free stream condition,

m       This result can be obtained by solving the two middle terms
O, a)

in Equation  (3)  for m The simple algebraic result is
0, S

(4)              m   = [hD/(ks+hI))]mo,co .0, S

Substituting Equation (4) into (3), one obtains
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(5)       Gf =  i p [kshD/(ks+h]))]mo, 00  =  i p [hD/(1+ (hI)/ks))]mo

It should be noted that (h )/ks) is a Damkohler number.  When the
chemical rates are fast with respect to the diffusion rate, small
Damkohler number,

k  >> hs D

then Equation (5) becomes

(6)                                                                                Gf   =    iphD   m o,c o

or from Equation (4)
R

(7)                       m    << m0, S 0, CO

and m may be assumed close to zero. When the chemical rates0, S

are slow compared to the diffusion rates, large Damkohler number,

k< <h,· s            D
Equation (5) gives

(8)                                                                Gf   =   i   ks  p mo, co

and Equation (4) shows that

(9)                        m    # m0, S #    0,00

Thus for the chemical rate controlling the mass consumption rate
is found to be first order with respect to the free stream oxygen
mass fraction and is a direct consequence of the assumption of
first order kinetics.

273



9 -5

Indeed, it appears from Equation (6), for diffusion control-

ling, that the consumption rate is first order with respect to the

free stream oxygen mass fraction as well. Although this indeed

will turn out to be the case for carbon, it is not apparent because

hD must be more clearly evaluated since there is diffusion of a

gaseous product from the surface to the free stream. However, for

carbon oxidation it will now be shown that this flux from the

surface is small enough not to alter heat or mass diffusion to or

from the surface.

In order to elaborate on this point it is interesting to

examine the burning rate of a volatile fuel droplet in a quiescent

atmosphere as initially.given by Spalding [3]· Spalding has shown

that

(10) Gf   =   (Dp/r)ln   (l t  B)

where D is the molecular diffusion coefficient (cm2/sec), r the

particle radius (cm), and B the transfer number.  It is convenient

to write B in a form first written by Blackshear [4] and reviewed

by the author [5]:                     
'

i m +m
O,00 fs

(11) Bfo
= 1-m    'fs

C    (T% -T  ) -m   H
(12)               B   =

P S    fs
fg          L  + H(mfs - 1)     ,

Cp    (Tco  -  T s)  +  i   m           H
(13) Bof =           Lv           '

0,00

where H is the heat of combustion of the fuel  (cal/g) and L  isV

the latent heat of evaporation (cal/g).  These results evolve from
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solving the diffusion equations including the rate terms for heat,
oxidizer and fuel. The non-homogeneous rate term can be elimina-

ted by combining any of the two equations and writing the combined
equation in terms of a new variable b. The transfer number arises
when the equations are integrated and b is evaluated at the surface
and in the ambient,

(14) B-b -b00           S

Since there are three equations, there are three diffe rent forms of
B, but they are equal. It is assumed in these types of develop-
ments that heat and mass diffusivity are equal. The equations and
boundary conditions account for the mass efflux from the Zuel sur-
face and its subsequent effects on hear and mass diffusion.

For the case of coal burning on the surface the most con-
venient form of B is that given by Equation (11).  mfs for surface
oxidation must be equal to zero and thus

(15) B=i m
0, CD

and Equation (10) becomes

(16) G     =  RE  ln   (1+ i  m           )    .f    r 0,00

The case for condensed phase burning in a convective stream
has been solved for a flat plate fuel surface by Emmons [6].
Emmons found

Rel/2
(17)                  G  -F x

[-f(0)]f-px./2
where F is the viscosity, Re the Reynold's number, x the distance

275



9 -7

from the leading edge of the flat plate, and [-f(0)] is a modified

Blasius function which is also a function of B. The oxygen de-

pendence is in [-f(0)] and will be discussed later.

The stagnant film case, which repre sents convective flow

parallel to the mass evolving from the fuel surface, gives an

expression similar to Equation (10); i.e.,

(18) Gf = (Dp/6)ln (1+ B)

where 5 is the boundary layer thickness. Of course, for the

quiescent case, as found in heat transfer, 5 = r.  A definition of_

h  could beD

(19) hD = D/8 .

The approximation given by Equation (18) is in reality quite good

because B is small.

To evaluate B from Equation (15) the value of i must be

known. The model for carbon combustion at high temperatures

elaborated upon by Coffin and Brokaw [7] has been generally

accepted. The concept is that CO forms at the surface diffuses

away and .is oxidized to CO2 in the gas phase.  The (02 diffuses to

the surface, is the essential oxidizing agent and is reduced to CO

by the Boudouard reaction

C + (02 -+ 2Co  .

No oxygen essentially reaches the surface, it is consumed by the

CO in the gas phase. In this case it has been shown explicitly

[4,5] that the stoichiometric index is 12/16 or 0.75.  This result
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may be seen by applying the Law of Heat Summation to the reactions*

in the overall system, i.e.,

1
CO + -0 -+ CO (gas phase)2 2     2

C O          +          C         - 2 C O (surface)2

C + 702 -0 CO (overall)

If C02 forms heterogeneously at the surface "then the

stoichiometry is

1CO + -0  -+ CO  .2 2 2

For pure carbon, it is most likely that only CO forms at the sur-
face. However, impurities could heterogeneously catalyst some CO

to CO2.  Thus, although it is recommended that i be chosen equal
to 0.75 it must be realized that for practical coals its exact

value may be somewhat lower.

From either of the above results it is very apparent that B

is a number small compared to one for combustion with air. Since

m     = 0.23 for air then B = 0.086 to 0.172. Thus0,00

(20) ln (1+ B) 2 B

and Equation (18) becomes

(21) Gf   =    (Dp/5 )   B   =   (Dp/5 )  i m
0, OD

which with Equation (19) takes the form

(22)                      G  =h i mf      D     O, CD P

the same result as given by Equation (6).  The physical meaning of
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.-,

small B is that the surface efflux does not have any effect on the

diffusional processes.

For small B, Equation (17) also can be reduced to the same

form as Equation (22). B appears in an analytical manner in the

boundary condition for the Blasius function.  Therefore, one may

assume [-f(0)] as analytic in B and, further, for the small B case,

directly proportional to B.  Thus the mass burning rate has the

same oxidizer dependency for the particle burning in a convective

atmosphere as in a ·quies©ent atmosphere.

From Equation (22), one observes that the burning rate is not

only directly proportional to the oxygen mass fraction but also

the stoichiometric index.  Consequently whether CO or CO2 forms on

the surface or not is crucial because the burning rate changes by

a· factor   of two. One could have intuitively predicted this result

because to form CO2 one must diffuse twice as much oxygen to the

surface.

The result for the dependency with respect to oxygen has been

obtained by much more sophisticated analyses [2,8,9].  Many

investigators have carried out detailed mathematical analyses of

the  ablation of carbon .and of heterogeneously catalyzed systems.

The purpose here was to show that since the transfer number could

be shown small compared to one, the simple analyses by Frank-

Kamenetskii give the proper oxidizer mass fraction dependency.
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III. Ash-Forming Coal

If a coal forms an ash while it is being oxidized, then it

is the diffusion of the oxidizer through the ash which controls the

burning. Diffusion of oxygen to the surface, whether in quiescent

or convective atmospheres, will always be very much faster than the

diffusion through the ash layer. Thus, following a procedure

similar to Knorre, et al. [10], the consumption rate of oxygen at

the fuel surface may be written as

dm
( 23)                                                                                     0Go = DAP ZF

where D  is the diffusion parameter for flow through the ash.

From Equation (2),

dm
(24)                       G  =i D     0

f     AP Er  '

Since m  . m at    the    outer    edge    of    the    ash   and   m.-    0    at    the0 ·w
O, a) O  N

surface, an approximate form of Equation (24) is

m
(25) O, a)

Gf =i D P   x

where x is the thickness of the ash at any instant.  Equation (25)

would hold well provided x is small compared to the particle radius.

In practical cases the tendency of the ash to separate from the

char probably does keep x small. This analysis, of course, holds

when the ash breaks away from the particle. The rate of conversion

of the coal particle can be written as

(26) Gf = Pc (dx/dt)
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where Pc is the density of the coal.  Equating Equations (25) and

(26), one obtains
m

(27) pc   ( dx/dt )   =  i  DAP     oxco    ·

Integrating and solving for x, one obtains

(28) x  =   (2   DAP
i m t/9 */20, CO      C

since x=O a t t=0.  Equation (28) is combined with Equation (25)

to give

(29) Gf = (DAP pc imo,00/2t)1/2 .

Thus in the case of an ash forming coal, the burning rate de-

creases with time and proportional to the oxygen mass fraction to

the one-half power. Similarly, it is proportional to il/2

IV. Conclusions

For the case of non-ash forming coal particles burning at

high temperatures in either a quiescent or convective atmosphere,

it has been shown in a simple manner that the burning rate is

directly proportional to the oxygen mass fraction.  For coal parti-

cles which form an ash, the burning rate is proportional to the

square root of the oxygen mass fraction.

The surface reaction is important in determining the burning

rate as well. If CO forms at the surface in the ash-free case, the

burning rate is twice as fast as if CO2 forms.
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*
Studies of Hydrocarbon Oxidation in a Flow Reactor

I.· Glassman, F. L. Dryer and R. Cohen

Guggenheim Laboratories
and

Center for Environmental Studies
-

Princeton University
Princeton, N. J. 08540

I. Introduction

Recent concerns about energy needs and the associated envi-

ronmental problems has again focused attention on the rather

startling fact that after burning hydrocarbons for about a century

a thorough understanding of their high temperature oxidation

characteristics still does not exist. The Central thrust of a pro-

gram at Princeton on the homogeneous gas phase reaction kinetics

of hydrocarbons at high temperatures is to contribute to this

understanding by use of a turbulent flow reactor. Earlier work on
<-----.-I.-........,-,=.M--....

methane and carbon monoxide oxidation kinetics (Dryer, 1972; Dryer
-r-*-„*.----

and Glassman, 1973; Dryer, Naegeli and Glassman, 1971) has been

reported in the literature. All the experimental work had been

performed on the Princeton adiabatic, high temperature, turbulent-

flow reactor (
Dryer, 1972).  Some recent experimental work on this

reactor, albeit preliminary,  and some further' understanding' of what

is necessary to model complex chemical kinetic systems are .thought

to be of great significance in further elucidating the hydrocarbon

*
This research effort was supported by the National Science

Division, Research Applied to National Needs, Division of Energy
and ·Resources Research and Technology, under Grant No. AER 75-09538.
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oxidation kinetic process. More specifically this work which is
.........

reported here deals with some preliminary thinking and new results/---------......

with respect to the processes in paraffin hydrocarbon combustion.

II. Experimental Apparatus

Basically, the Princeton flow reactor technique utilizes a
heated cylindrical quartz duct 10 cm in diameter through which a
hot inert carrier gas flows at velocities which yield Reynolds
numbers in excess of 3500 (Figure 1). The reactor assembly is
constructed so that the reactor walls rapidly equilibrate to the
local gas temperature. Rapid mixing of small amounts of pre-
vaporized reactants with the carrier is provided by radial injec-
tion at the throat of a high velocity mixing inlet nozzle. Proper
adjustment of carrier temperature flow velocity and reactant con-
centrations result in a steady, one-dimensional, adiabatic reaction
zone extending over a length of approximately 85 cm. Simultaneous
thermal and chemical data at discrete axial locations in the

reaction zone are obtained by longitudinal extension of an instru-
mented probe. Temperature measurements are made with a silica
coated Pt/Pt-Rh thermocouple, and gas samples are removed through
a water-cooled/expansion quenched stainless steel sampling probe.
Consistent with the long range objective of more complex hydro-
carbon oxidation studies, a. sophisticated gas chromotographic

chemical analysis procedure which was developed in this laboratory
(Colket  et  al. (1973)), permits measurements  of all stable hydro-
carbon species (including partially oxidized compounds) as well as
H2    and    02    to    1%   p r e c i s i o n.
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The unique advantages of this flow reactor approach should be

emphasized. By restricting experiments to highly diluted mixtures

of reactants, and extending the reactions over large distances,

gradients are such that diffusion may be neglected relative to con-

vective effects (Glassman and Eberstein,  1963);  thus, the measured

specie profiles are a direct result of. chemical kinetics only.

This type of spreading is in contrast to low pressure one dimen-

sional burner studies where diffusion effects must be determined

analytically before useful chemical kinetic data are obtained.

While these flame procedures have progressed significantly in their

refinement, estimation of diffusive corrections remains very

difficult.

Furthermore, in the flow reactor, uniform turbulence results

not only in rapid mixing of the initial reactants, but radially

1-dimensional flow characteristics. Thus  real  " time" is related

to distance through the simple plug flow relations. However, the

relation of a specific axial coordinate to real time is not well

defined since the initial time coordinate occurs at some unknown

location within the mixing region. One would suspect that initial

mixing history could therefore alter reaction phenomenon occurring

downstream. However, the existence of very fast elementary kine-

tics, which initiate chemical reaction before mixing is complete,

permit rapid adjustment of the chemistry to local conditions as the

flow approaches radial uniformity. Furthermore, the large dilution

of the reactants and rapidity of the kinetics reduce the coupling of

turbulence and chemistry to the point that local kinetics are func-

tionally related to the local mean flow properties (Glassman and
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Eberstein,  1963). This conclusion  is also supported experimentally

by excellent agreement of the derived chemical kinetic data with

that obtained from shock tubes and static reaction systems at other

temperatures. Agreement also substantiates that the reactor sur-

faces do not significantly effect the gas phase kinetics. Com-

parison of flow reactor data from reactor tubes of significantly

different surface to volume ratio also corroborates this conclu-

sion. Finally and most important, the turbulent flow reactor

approach permits kinetics measurements in a temperature range (800-

140OK) generally inaccessible to low temperature methods (fast flow

Electron Spin Resonance, Kinetic Spectroscopy techniques, static

reactors, etc.) and high temperature techniques (shock tubes, low

pressure post flame experiments).

III. Combustion of Paraffin Hydrocarbons

Combustion of paraffins above methane has always been thought

to be complicated by the greater instability of the higher alkyl

radicals and by the great variety of secondary products which can

form. The oxidation mechanism characteristically follows the

Semenov type.  Minkoff and Tipper (1962) have reported some oxida-

tion mechanisms of specific hydrocarbons.

At higher temperatures most have accepted the primary re-

action in the system to be between the hydroxyl radical and the

fuel.

R H+O H- + R+H  0
2

Recent work at Princeton (Dryer, 1972) has suggested that other
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reactions in addition to this one were important; mamely, in fuel

lean and rich combustion

RH+0 -+ R+OH

and in fuel rich combustion

RH + H -+ R +H2

It is interesting to review a general pattern for the oxida-

tion of hydrocarbons in flames as given by Fristrom and Westenberg

(1965).  They suggest two essentially thermal zones:  the primary

zone in which the initial hydrocarbons are attacked and reduced to

CO, H2' H2O' and the various radicals (H, 0, OH) and the secondary

zone in which the CO and H2 are oxidized.  The primary zone, of

course, is that in which the intermediates occur. In oxygen-rich

saturated hydrocarbon flames, they suggest further. that initially

hydrocarbons lower than the initial fuel form according to

OH + CnH -+ H 0+C H -+C H + CH2n+2 2    n 2n+1 n-1 2n-2    3

Because hydrocarbon radicals higher than ethyl are thought to be

unstable, the initial radical C H usually splits off CH and
n 2n+1 ·                    3

forms the next olefinic compound as shown. With hydrocarbons

higher than C H it is thought there may be fission into an ole-3 8'

finic compound and a lower radical. The radical alternately splits

off CH  .  The formaldehyde which forms in the oxidation of the fuel

and fuel radicals is rapidly attacked in flames by 0, H, and OH, so

that formaldehyde is usually found as a trace substance.

In fuel-rich saturated hydrocarbon flames, Fristrom and

Westenberg state the situation is more complex, although the
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initial reaction is simply the H atom abstraction analogous to the

preceding OH reaction:  e.g.

H+ C H -+H  +C Hn 2n+2    2   n 2n+1 '

Under these conditions the concentration of H and other radicals

is large enough that their recombination becomes important and

hydrocarbons higher than the original fuel are formed as inter-

mediates.

The general features suggested by Fristrom and Westenberg

have been confirmed in recent experiments. However, this new work

permits more detailed understanding of the high temperature oxida-

tion mechanism. As stated earlier this work shows that under

oxygen-rich conditions initial attack by.0 atoms must be considered

as well as the primary OH attack. More importantly however, it has

been established that the paraffin reactants produce intermediate

products which are primarily olefinic and the fuel is consumed to

a major extent before significant energy release occurs. The

higher the initial temperature the greater the energy release as

the fuel is being converted. This observation leads one to con-

clude that the olefin oxidation. rate simply increases more appre-

ciably with temperature; i.e., the olefins are being oxidized while

they are being formed from the fuel. These conclusions are based

on recent experimental results as typified by Figures 2-6 which

repre sent the data taken throughout the reaction zone of ethane,

propane, butame, hexane and 2-methyl pentane.0--.. .- -.*U..%.=---I.<.-I.I.-I-- ..0.----«...ir.4...... ........

A summary of the intermediates formed from the oxidation of„

these four paraffin hydrocarbons is most revealing and is represen-

ted by Table I.

287



10-7

Table I

Fuel Relative Hydrocarbon .Intermediate Concentrations

ethane ethene >> methane

propane ethene > propene >> methane > ethane

butane ethene > propene >> methane > ethane

hexane ethene > propene > butene > methane

>> pentene > ethane

2-methyl pentane propene > ethene > butene > methane

>> pentene > ethane

It would appear that the results ln Table I would contradict ele-
i-».-----.........

ments of Fristrom and Westenberg's suggestion that the initial

hydrocarbon radical
CnH usually splits off the methyl radical.2n+1

If this type of splitting were to occur, one could expect to find

larger concentrations of methane. The large concentrations Of

ethene and propene found in all cases would suggest that primarily

the initial C H radical cleaves one bond from the carbon atomn 2n+1

from which the hydrogen was abstracted. The bond next to this

carbon atom is less likely to break dince this type of cleavage

would require both an electron and hydrogen transfer to form the

olefin. The abstraction of hydrogen from a second carbon atom

requires about 1.5 kcal less from the other carbon atoms (a terti-

ary carbon atom requires about 2.5 less).  In a straight chain

hydrocarbon there are, of course, more hydrogens on the first car-

bon atoms. Estimating relative probability of removal based on

number and ease of removal and considering the cleavage rule men-

tioned indicates the proper trends designated by Table I and
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relatively large concentrations of ethene and propene. These

results suggest that oxidation studies of ethene and propene should

be particularly important.

Figures 2-6 show clearly that experimentally there appears

to be an initial iso-energetic step in the overall process. Of
-*-I.-..

course, this step is not exactly iso-energetic. The conversion

process from paraffin to olefin is endothermic; however, some of
the hydrogen formed during what is. essentially a pyrolysis step
does react and release energy. The two reactions are compensating

energetically. Thus, it is believed that this evidence suggests

that there are three distinct, but coupled zones, in hydrocarbon

combustion.

1)  Following ignition, primary fuel disappears with little or

no energy release and produces unsaturated hydrocarbons and
-

hydrogen.  A little of the hydrogen is concurrently being

oxidized to water.

2)  Subsequently, the unsaturated compounds are further oxidized

to carbon monoxide and hydrogen. Simultaneously the hydro-

gen present and formed is oxidized to water.

3)    Lastly, the large amount of carbon monoxide formed  is

oxidized to carbon dioxide and most of the heat release from

the primary 46 14js obtained.

Each zone must have a different temperature-rate dependency

and thus at different temperatures the importance of a given step

above may change. ·Again on the basis of some very preliminary

experimental evidence as given by Figure 7 it is possible to put

forth some interesting speculations. The initial conditions of the
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experiment whose results are depicted in Figure 7 were such that

not only was the stoichiometry more fuel rich than the examples of

Figures 2-6 but also the initial temperature was higher.  Examina-

tion of Figure 7 reveals that the maximum concentration of ethene

is found earlier in the system. Essentially this trend indicates

that the exothermic ethene oxidation step has become faster. This

conclusion is supported by the fact that the temperature profile in

'-  Figure 7 rises continually and does not appear flat (iso-energetic)

throughout most of the process as found for the conditions given

in Figures 2-6.

The flow reactor permits highly reproducible accurate runs

and analyses to be obtained. All the data points presented in

Figures 2-7 are actually points and not smoothed data. Although

present sampling techniques permit only stable species to be

measured, estimates of radical reaction rates and rate constants

can be made.  For example, sample data during methane (Dryer and

Glassman, 1973) oxidation as depicted in Figure 8 shows the

presence of ethane and the subsequent transformation of this ethane

to ethene. The ethane indicates the presence of and gives the clue

to the methyl radical reaction rates and concentrations. Further,

it is interesting to note in fuel rich, pre-mixed ethane oxidation

system (Figure 7) that acetylene (ethyne) can be identified

readily.

These results permit the conclusion that the turbulent flow

reactor is a particularly valuable tool to study hydrocarbon oxida-

tion processes.
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SOME PRECEPTIONS ON CONDENSED PHASE FLAME

SPREADING AND MASS BURNING

I. Glassman

Department of Aerospace and Mechanical Sciences
Princeton University

Princeton, N. J. 08540

I. Introduction

Interest in problems associated with fire safety, particu-

larly as related to the combustion characteristics of plastic

materials, has arisen over the past years. Supposedly non-flammable

plastic materials have been found not only to burn but also to

emit relatively large quantities of toxic combustion products. Yet

this result should not have been too surprising when one considers

that flame spread was the primary test criterion for non-flamma-

bility. Materials with spreading rates so low that they are

classified non-flammable will burn in fires supported by other

combustibles. The phenomena which control rate of flame spread and

rate of mass evolution are distinctly different..  The purpose of

this paper is to review certain fundamental concepts related to

flame spreading and mass burning.

II. Flame Spreading

It is almost superfluous to review the field of flame spread

after the recent publication of the excellent review by Williams

(1976).  In this most comprehensive conceptual review Williams

treated almost every aspect of flame.spreading - discrete and
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continuous materials, orientation, phase change before combustion,
etc. In this paper, only flame spreading across continuous media
will be treated. By considering the spreading process only in the
horizontal orientation, it is not necessary to distinguish between
melting and non-melting material. Indeed because of the experience
of the author, the subject of horizontal spreading across liquid
fuels will be reviewed first and the insights gained from this work
will be used to contribute to the understanding of flame spread
across solid materials.

,

The. approach is .somewhat different -than-that used by. Williams.,
,but this subtle difference may help some in interpreting the dis-
agreements which still exist in the field. The authors and their
colleagues (Glassman, et al. 1976) recently reviewed the state of

knowledge of flame spreading across liquid fuels. What follows are
the basic physical concepts taken from this review with comparison
to the case of flame propagation across solid materials.

The relationship between the flash point and bulk temperature
of a liquid fuel determines the type and order of magnitude of the

-          flame spread. The flash point temperature is indeed a relative
concept, nevertheless it permits an important differentiation be-
tween two flame spread processes. When the bulk temperature of a
liquid is above its flash point temperature, there exists above the
liquid fuel a mixture of fuel vapor and air that lies with the
flammability limits. It is generally assumed that equilibrium

           conditions prevail. In the actual open cup flash point test the

height  of the small fla,me ignition source above the 'liquid surface
specifies that at that point when a flash is observed the fuel-air
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mixture is just within the flammability limits. The temparature

of the liquid when the flash occurs is the flash point temperature.

It is obvious and it. has recently been shown (Dryer and Neuman,

1976) that the flash pointtemperature varies with the ignition

flame height over the liquid surface. The closer the source is to

the fuel surface, the lower the flash point temperature. However

a minimum must exist dither because at some point the fuel surface

exerts a quenching effect. Thus, in the flame spreading process a

unique flash point temperature for the fuel cannot be specified,

but the conceptual use is obvious.

In the case as mentioned above when the bulk liquid tempera-

ture is above the fire point, a flammable mixture exists everywhere

above the surface. In the presence' of an ignition source, a flame

forms and spreads across the liquid surface. Under these tempera-

ture definitions the liquid does not contribute to the flame

process. The flame that propagates is for all intents and purposes

the same as a pre-mixed laminar flame. Its velocity is very large

due to the stratification of air/fuel mixture above the surface

(Feng, et al., 1975).  The flame continually heats the cold un-

burned gases ahead of it until it begins to react (in Williams'

context to an ignition temperature) and releases heat to continue

the process.

When the bulk temperature is below the flash point, a flame

will still propagate across the liquid fuel, but other mechanisms

must control since a flammable mixture does not exist everywhere

above the surface. Given that this fuel has been ignited and is        '

burning, then there must exist some process which heats the liquid

302



11-4

ahead of the flame to a flash point condition ahead of the flame

through the gas, or through the liquid. Or, there can be radiative

heating from the flame.

In the context of Williams   ( 1976) the burning fuel would have
to heat ahead to the same ignition temperature, which in the termi-
nology used here is the same as the flash point temperature. There

is one important, subtle difference, however. In considering the

flash point concept, we are essentially defining the flame

spreading problem as a lean flammability limit problem for a

gaseous fuel-air mixture. Following this reasoning there must be

laminar gas phase flame propagation in all cases. Analyses dealing

with the ignition temperature concept have the flame moving with

the ignition temperature.

The lean limit flame propagation idea is important, because

it says that if there is an opposing air flow so strong that the

velocity near the surface were greater than the lean limit flame

propagation velocity, then there could be no flame propagation. If

one analytically follows the ignition temperature, then there can

be no restriction.

In the case of high flash point liquids, the discovery was

made (Mackinven, et al., 1970) that convection currents ih the

liquid were the dominant heat transfer mechanism. These currents

were found to arise due to surface tension variations caused by the

presence of the flame.  The surface below the flame is obviously

hotter than the liquid ahead of the flame. Since surface tension

, varies inversely with temperature, a surface tension gradient is

established and draws hot liquid from behind the flame to a point
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ahead. This liquid is obviously hotter than the flash point

temperature.

For a viscous fluid, such as the fuel, under a surface ten-

sion gradient, it is well known that

(1) T=W (au/By)s = ax =
(da/dT)(BT/Bx)s

where r is the sheer stress, B the viscosity, u the velocity

parallel to the surface, y the direction normal to the surface,

c the surface tension, T the temperature and x the direction along

the surface. (da/dT) is a physical characteristic of ,the liquid.

One can readily deduce the following proportionality for shallow

pans:

(2)                                                                           us   m   axh/F

where u  is the surface velocity and h is the depth of liquid inS

the pan. For deep pools and other analytical considerations with

respect to the surface tension problem, one should refer to the

review (Glassman, et al. 1976) mentioned earlier and the references

therein.

From Equation (2), one would expect that the flame propaga-

tion velocity would also be proportional to pan depth ana inversely

proportional to the viscosity. Indeed these important trends were

verified experimentally (MacKinven, et al., 1970).  The experi-

mental results show an almost linear variation of flame propagation

with 1/W with slight thickening of the fuel by a chemical additive.

However it is important to mention that as the liquid is made very

viscous the linearity breaks down and the flame propagation
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velocity asymptotically a#proaches h value of 0.3 cm/sec.  For

conventional kerosene, the propagation velocity is about 3 cm/sec.

The asymptotic trend could indicate the onset of another type of

controlling mechanism. Indeed, the propagation velocity of 0.3

cm/sec is similar to that obtained for many solid materials

(Friedman, 1968).

Not only do the viscosity experiments validate the concept

that convection currents in the liquid are the dominant heat trans-

fer mode, but they also verify that heat transfer is the control-

ling mechanism. Indeed, the processes of fuel vaporizing, of the

fuel vapor diffusing from the surface and mixing with the-air, and

of the flame propagating through this mixture must have character-

istic rates faster than the heat transfer rate. In the case of

flame propagation across solid materials, whether the dominant mode

is heat conduction through the gas or solid, the rate must be slower

than the convective rate in liquid. Thus if the convective rates

are slower than the other steps in the lean limit propagation

process, then indeed the conductive steps are. Even though the

rate of evaporation of solid materials are kinetically controlled

whereas liquids maintain evaporation equilibrium at their surfaces,

the evaporation rate of solids are relatively fast, high tempera-

ture, high activation energy processes.

Williams (1976) deduces that for thermally thin solid

material, conduction through the gas phase is the dominant heat

transfer mechanism and that for thermally thick materials, conduc-

tion through the solid is the dominant heat transfer mechanism. In

the spreading process across thick materials, the flame induces air
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currents in the direction opposite to the propagation. The effect

of these currents is still open to debate. For large fires radia-

tion can play a dominant role in flame propagation across solids,

however radiation is not nearly as important in liquids (Mackinven,

et al., 1970).  Considering flame propagation as a lean flamma-

bility process, permits one to explain the effects of flame retar-

dants added to plastics. Indeed, one should again recall, that

flame retardants limit flame spread, but retarded materials will

burn. The three most common means of retarding flame propagation

are to add chlorine (or other halogens), antimony or phosphorous

compounds to the polymer structure. It is well known that halogens

affect (narrow) flammibility limits. The presence of a halogen in

the polymer would require the polymer to be heated to a high

temperature before a flammable mixture could be created due to the

presence of the chlorine atom. Antimony is found to be effective

only when in halogenated compounds. Antimony chloride is a gaseous

compound and it appears that the role of .the antimony is to facil-

itate the presence of chlorine atoms in the gas phase. In contrast,

phosphorous alters the surface characteristics of the polymer,

causes a melt and effectively increases the heat of gasification.

Condensed phases must burn as diffusion flames and the flame

must be essentially at the stoichiometric mixture ratio. Inhibi-

tors such as halogens are only effective at the flammability limits

where the radicals affecting the chain propagation are scarce. In

stoichiometric flames, radicals are abundant and any removal by

inhibition is ineffective in altering the mass burning process.

Thus materials with flame retardants will alter the rate of flame
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spread, but when they are involved in a massive fire, they burn
and emit toxic compounds.

III. Mass Burning

The mass burning rate of plastic materials is inherently no
different than the burning of a liquid or any other volatile solid,
material. Some materials under a high heat flux form a self-
generated flame or due to external radiative source give off com-
bustible gases and leave a char material. The gases burn quickly,

however, the restrictions on the burning of the char are very             
similar to those associated with the burning of a porous carbon
particle; that is, it is similar to coal combustion. Many small
samples of plastics will not sustain their own combustion in air
unless an external radiative source is applied. Since attempts are
being made to develop tests to determine the mass burning rates of
plastic materials in order to determine the so-called "burning
intensity" of the plastic, it seems appropriate to review the
parameters which control the mass burning rate of condensed phases.
This topic is an old one, so the attempt here will be to deal with
the subject with the test methods in mind.

The burning rate of the simple spherical droplet or volatile
particle in a quiescent atmosphere will be considered first.
Following Blackshear's (1960) adaptation of Spalding's approach
(1955) as reported in detail recently by Kanury (1976) and Glassman
(1977), one derives the following relation for the burning rate of
the spherical particle:
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(3)       Gf = I lf/11·u-r2 = (Do/r ) ln(1+B) = (A/C r) ln(1+B)• S

= (A/r) ln(1+B)

where Gf is the mass flux g/sec cm2, mf the mass burning rate g/sec,

rs the particle radius, B the transfer number, and D, A, Cp, A,

and  p the normal physical properties. Equation  (3 ) is obtained

under the assumptions that a quasi steady state exists and the

particle is like a porous sphere fed with fuel at a rate equal to

the consumption rate, Le = 1 and constant physical properties. The

transfer number can take any of the following forms, all of which

are equal:

(4)           B = (im +Ih )/(1-m )
0°° fs fs

(5)              B = (Cp(Tp -Ts) -mfsH)/Lv + H(mfs - 1) )

(6)          B = (Cp(To-Ts)+imiwH)/Lv

where m  and mf are the mass fraction of the oxidizer and fuel

respectively; T, the temperature, H, the heating value of the fuel

in cal/gm; L ' the latent heat of evaporation; i, the mass

stoichiometric index; and the subscript s and 00 refer to the condi-

tions at the surface and in the ambient atmosphere respectively.

Equation  (3 ) may be interpreted in terms  of an actual droplet

burning, i.e.

(7) -af. = dm/dt = (d/dt)[(4/3 )71-p r3]

(8)             Thf = - 27T p rs(dr2/dt) 0

Combining Equations (3) and (8), one obtains
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(9)            dr2/dt = - (2Dp/pl) ln(1+B) .

The right hand side of the Equation (9) is constant and thus the
2

rate of change of r  with time is constant. This result, Of
22course, corresponds to the so-called d  (or r ) law that is found

experimentally.

It is interesting to note that the spherical particle burning

in a quiescent atmosphere is the only mathematically tractable
problem. The one dimensional burning of a strand of fuel or pbol
of liquid is not mathematically tractable unless one assumes that

at a fixed distance, say 6, above the surface ambient conditions
exist. In this case, referred to as the stagnant film case, it is

readily shown that

(10) Gf = (Dp/6) ln(1+B) .

A burning pool of liquid or a volatile solid will establish

a stagnant film height due to the natural convection which ensues.

From analogies to heat transfer without mass transfer, a first

approximation to this liquid pool burning problem may be written

(11)
dGf/#   ln< 1+B)  #  Gra

where Gr is the Grashof number; d is the diameter of pool or
strand, a equals 1/4 for laminar conditions and 1/3 for turbulent

conditions. If air is forced concentrically around the pool or

strand, very much like the Burke-Schumann gaseous fuel jet problem,
then again, one can assume a stagnant film problem.

When the convective flow of air is normal or opposed t-0 the
mass evolving front the surface, the solution is more complex and
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the stagnant film analysis does not hold.  Emmons (1956) solved

the problem of a burning longitudinal surface with forced conven-

tion. The fuel is essentially a flat plate with a leading edge.

The problem is also described by Williams (1965) and is similar to

the Blasius problem for the growth of a boundary layer over a flat

plate. The Emmons result for Prandtl number equal to one takes the

form

(12) Gf - #(Rel/2/x 4&)[- f(o)]

Gfx/A  =  Rel/2   [ -   f(o) ] / /7

where Re is the Reynold's number based on the distance x from theX

leading edge of the longitudinal fuel surface and [- f(o)] is a

Blasius type variable which is a function of the transfer B.

Williams (1965) gives the graphical relation between [- f(o)] and

Glassman (1977) has shown empirically that

(13 ) [- f(o)] 2 ln(1+B)/B'15 .

over a large range of B values.

It would appear to follow that data for spherical particles

burning in a convective atmosphere could correlate as

(14) (Gfr/\1 )(8·15/ln(1+B)) = f(Rer  )
1/2

where Rer is the Reynoldls number based on the droplet.  Even

though a wake may exist in which very little burning occurs,

Spalding (1955) has shown that Equation (14) without B corre-0.15

lates data .relatively well.
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It is interesting to note that one may deduce from Equations
(7) and (14) that in a constant velocity stream (or for constant

relative velocity between stream and particle) that the particle
will follow a d3/2 (r3/2) law rather than a d2 law as found in the

quiescent case.

If in the mass burning process there is flame radiation, or

any other imposed radiation, as is frequently used in plastic mass

burning tests, then a convenient expression for the burning rate

can be obtained provided it is assumed that only the gasifying

surface absorbs the radiation, i.e. there can be no absorption by
the gaseous species present between the radiation source and the
surface. In this case Fineman (1962) has shown that the stagnant

film expression takes the form

(15) Gf = (A/Cp5) ln[1+ (B/(1-E))]

where

(16) E = QR/Gf LY

and Q is the radiative flux. This simple form for the burningR

rate expression arises because the conservation equations are

developed for conditions in the gas phase, and the mass burning

rate enters explicitly in the boundary condition to the problem.

Since the assumption is made that no radiation is absorbed by the
gases, the radiation term appears only in the boundary condition

to the problem.

Notice that as the radiant flux increases, E increases and
the term [B/(1-E)] increases.   When E = 1, the problem blows· up
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because the equation has developed in the framework of a diffusion

analysis, and E=1 means that the solid is gasified by the radi-

ant flux alone.

As mentioned earlier, currently there are many investigators

seeking to establish tests which determine the mass burning rate

of plastics. One of the best of these procedures is that given by

Tewarson  and  Pion  (1976). In their experiment,   an 02/N2 mixture

passes around the burning plastic and the rate of flow is held

constant. The gas flow is concentric with the circular cylinder

sample and holder and is in the same direction as the mass evolu-

tion from the gasifying sample. The gas flow is contained within

a quartz circular cylinder. Radiant heaters outside the quartz

cylinder permit an external flux to be imposed on the sample.

Tewarson and Pion report some excellent data and one of the inter-

esting findings is that a linear relation exists between the mass

burning rate of the plastic and the mass fraction of oxygen in the

free stream, m . The linearity breaks down at higher values
0oo

of m     Glassman (1977a) has attempted to explain these results
000

by arguing that the order of B and [B/(1-E)] must be much less than

one and that indeed the B values for most plastic material are

smaller than previously estimated. For such small values

(17) ln(1+ B/( 1-E)) 2 B/(1-E) .

From Equation (15) then

.(18) mf 2 (A/Cp5)(B/(1-E)) .

Substituting Equation (16)

312



11-14

(19)
 f   =   (A/CP5)8   + QR/Lv

Taking the form of B given by Equation (6)

(20) &f   =    (A/Cp8)  i  an    -+   (C p(T o  -  Ts)/Lv )  +   (QR/Lv)oou

Equation (20) shows the linearity with respect to m _.  Since A,0-
C  and 8 probably do vary substantially for a fixed convectiveP

condition and various materials, it is possible to perform experi-

ments with liquids of known values of B to determine (k/C 5) from
a plot of mf vs. B or more correctly mf vs. ln(1+B).  Then from a
measured mf of a plastic, its B value can be determined.

Tewarson (1977).has shown for plastics that the term

C (T-Ts) is a relatively large negative number and cannot be
ignored in comparison to im _H as it is often done for liquids.0".

'

This fact and large values of L  contribute to making B values of
plastics small.

It is difficult to determine whether the non-linearity of
Tewarson' s m I plots breaks  down due  to  the  fact  that at higher mO                                                                                                                                                      000values B may not be small.  Tewarson (1977) reports that for larger
values of m _ black char formation on the surface of the PMMA was0-

found. Such changes in pyrolysis mechanism could, of course,
cause the observed trends.

In dealing with charring cellular plastics the mass evolution
and burning process appears to be different. These materials are
difficult to "burn" except under very large external radiant
fluxes. Under such radiant fluxes, there is the initial evolution
of relatively large amounts of combustible gases which will burn
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when an ignition source is present. The rate of evolution of

gases decreases with time as the pyrolysis gases must come from

greater depths within the cellular plastic. It is these gases

which contribute to room fires and are probably a factor in the

so-called flashover problem.

The burning of the char certainly would not contribute in

the early stages of fire, but the char will burn very much l
ike a

porous carbon (or coal) particle. In a major fire the surface

temperature of char would be high enough so that the surface
 oxida-

tion of the char was kinetically fast and controlled by the diffu-

sion of oxygen to the surface. Under these circumstances it is

again interesting to observe that

(21)  f  -   ln(1+B)

where mf would be the mass burning rate of the char.  If Equation

(4)  is  used  as  the  form  of  B,   then a simple expression results

since for this type of diffusion controlled heterogeneous surface

burning m = O.and
fs

(22) B = im
00

For burning in air im - is small with respect to one, and again
0

since ln(1+B) % B. for small B, one has that

( 23 ) mf % mow

the same result  that one obtains  for the porous carbon   ( coal)

particle as Glassman (1977) has recently discussed.
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IV. Postscript

This paper has dealt with the problem of flame spreading and
mass ·b urning . The emphasis was placed on achieving greater under-
standing of how these processes occur with plastic materials. With
respect to flame spreading, the review was limited compared to the
recent work of Williams (1976), however it does suggest that flame
spreading across condensed phases be considered a lean flammability
limit problem. The mass burning considerations are in actuality a
simple extension of the earlier work of Spalding (1955) and Emmons
(1956).  How the effects of flame and external radiation can be
handled within the present simple analyses were given. In particu-
las the case of analyses in mass burning rate ,tests of plastics was
explored.
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