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Introduction

This volume contains the elaborations of lectures at a
seminar held at the Courant Institute in the spring of ;977 on the
mathematical aspects of combustion. The purpose df the'seminar
was to put the achievements and problems of combustion theory'into
sharp focus and to bring them to the attention of the mathematical
commuﬁity, in the hope that, Jjust as in the past, mathematical
methods will shed light on these theories,»and that mathematical
ideas will lead to new and efficient computational procedures.

The first half of the semester was devoted to subjects that
were reasonably well understood és mathematics; the speakers were
mathematicians. After the spring recess the seminar was devoted
to subjects not yet mathematically digesteéed; among the speakers |
there were engineers, chemists, and physicists with sympathy in
their hearts for mathematics.

The first part starts with a paper by Peter D. Lax which is
a review of those numerical methods in fluid dynamics that are
especially promising for reacting flows. This is followed by a
report prepared by K. 0. Friedrichs for the Navy in 1946,
edited and presented by Gary A. Sod. The third paper by Peter D.
Lax is a brief introduction to chemical kinetics, followed by
papers by Alexandre Chorin, of the University of California at | ‘
Berkeley, on reactive flows, by Gary A. Sod on.a first stép to
modeling flows in an engine, and by Samuel Z. Burstein on combus-

tion instability.




The second part consists of two papers by William Sirignano
of Princeton University on flame spread and reactive flows in a
one-dimensional engine, followed Ey three papers by Irvin Glassman
of Princeton UniVérsity 6n the burning rate of single ég;i parti—
cles, on hydrocarbon oxidation in a flow reactor, and on flame
spreading.

We did not inclgde in this collection an interesting lecture
by Louis Howard of M.I.T.,on his work with Nancy Kopell on reaction
diffusion equations, the content of which is contained in these two
papers: '

N. Kopell and L.N. Howard, "Plane Wave Solutions to Reaction-
Diffusion Equations," Studies in Appl. Math., 52, 291 (1973).

L.N. Howard and N. Kopell, "Slowly Varying Waves and Shock
Structures in Reaction-Diffusion Equations," Studies in Appl.

Math., 56, 95 (1977).

Another interesting lecture not included was by James Muckerman of
the Brookhaven National Laboratory of the Department of Energy on
the calculation'of bimoleéular_rate constants based on the three

papers:
J. Muckerman and M.D. Faist, "Rate Constants from Monte Carlo
Quasiclassical Trajectory Calculations: The Use of Important
Samplings," to appear.

P.A. Whitlock, J. Muckerman, and E.R. Fisher, "Theoretical
Investigation of the Energetics and Dynamics of Reactions of
0(a) with H," submitted to J. Chem. Phys.

, "Theoretical
Investigation of the Energetics and Dynamics of Reactions of
0(3p d) with H, and c(d) with H,," RIES Technical Report,

Wayne State University, Detroit, Michigan (1976).
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The Numerical Solution of the Equations of Fluid Dynamics

Peter D. Lax

Courant Institute of Mathematical Sciences
New York University

Introduction

The equations of fluid dynamics

Theory of shock waves

The method of fractional steps

Difference approximation of conservation laws
The methods of Godunov and Glimm

7. Entropy and viscosity =~ T 77"

mmpumw

1. Introduction

The theory of Chapman and Juguet for detonatlons and

USSP

deflagrations describes reacting flows in the limit as the re-

~action rate goes to oo, viécosity, dig}usivity and heat conduc-
tion go to 0. In this theory the transition from burnt to unburnt
gas takes place instantaneously over an infinitely thin reaction
.zone. In many problems of combustion one is interested in a finer
resolution of the reaction zone; this is possiblé only by solving
flow equations which contain an adequate degcription of all rele-
vant chemical and physical processes: thé rates at which the
reactions proceed, the conVersion'of chemical energy to heat, the
conduction of heat, the diffusion of the various species, and the
effect of viscous forces; In the traditional engineering litera-‘
ture such problems are treated analytically, at the cost of
drastic Simplification which still retain shreds of the physico-

chemical processes responsible for the Phenomenon under investiga-



tion. This is the only avenue open, unless, as F.A. Williams

remarks in his treatise on combustion theory, "one is willing to
expend the labor required to obtain complete numérical'solutions"
With the advent of modern computers and modern numeriCal“methods
for calculating fluid flows, scientists.are willing — and able -
to expend such labor, although the complete modelling of a combus-
tion problem, tracing dozens of intermediafy products participating
in the reaction, is beyond the scope of present day numerical
methods. Muéh current research is directed at adoptingiexisting
methods for calculating fluid flows to the calculation of reacting
flows. Many of these existing methods employ stabilizing devices,
of which artificial viscosity is the mosf prevalent, that cause
only marginal and acceptable numerical inaccuracies for non-
reacting flows but would distort essential features of reactingi
flows such as flame_velocityithat depend on a balance between
transport, heat conduction, énd energy production. A. Chorin has
made the important observation thét»among the many available
methods the one deﬁeloped by Glimm, [ 9], is the freest of artifi-
cial encumbrances. In Section 6 of this lecture we describe how

e ———— e e e e,

and why Glimm's method works for nonreactlng flows; the adoption

e ettt v e o 6% o g 28

e et =TT

to reacting flows is described in a subsequent lecture by Chorin.
Another phenomenon of numerical schemes which are of higher
fhan minimal order of accuracy is oscillatory behavior near a
discontinﬁity, which results in an overshooting- of peak values.
This is present in iax—Wendroff type difference schemes, and also

in spectral schemes, on account of the Gibbs phenomenon. In
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ordinary fluid dynamics such an overshoot, when not excessive, is

merely an aesthetic blemish; in reacting flows, where the rate of
chemical reaction is so sensiti&e to temperature, an overshoot
would ‘prematurely trigger off ignition and would faisify the time
‘history of'bﬁrning. One cure for overshooting in IW or other
types of higher order schemes lies in hybridization combined with
artificial compression, as developed by A. Harten, [15]. The case

for spectral methods lies in applying some summation method.

2. The equations of fluid dynamics

A conservation law asserts that the changé in the amount of

a substance contained in any portion of space is due to the flux

of that substance across the boundary of the portion of space under
consideration. Iet's denote the density of the substance by u, its‘
flux by f, and the portion of space unde r consideration by G.

Then the conservation law says that

t t :
(2.1) J[ udx 4—Jf q[ fev dsdt = 0 ,

G S S aG

where v denotes the outward normal to the boundary oG of G. Using

the divergence theorem the boundary integral term can be written as
t ‘
Jf Jf div f dxdt .
s G '

Letting s tend to t and @ shrlnk to a point we deduce that at every
point where u and f are dlfferentlable, the differential conserva-

tion law
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(2.2) U, +div £ =0

is satisfied.

The rest of this section is devoted to a brief discussion of
the classical coﬁservation laws of mass, momentum and energy in
fluid dynamics. We shall show how various transport mechanisms can
be.expressed by a suitable choice of flux.

We shall use the notation

p = mass density

M = momentum density

=
1

energy density

Momentum and energy densities can be expressed as follows:
(2.3) | M=pV, E-=ope+tspV"

where

V = flow velocity

e = internal energy per unit mass

Since the fluid is streaming past G with velocity V, mass is

convected out of G at the rate

f pVevdsS .
oG

‘The mass flux due to'this convection is

(2'4)conv , fhass conv = PV = M.

An additional flux of mass is due to diffusion; this is propor-

tional to the negative gradient of mass density:




1-5

(2.4) = -D grad p ;

diff fmass aiff

D is called the coefficient of diffusion.

Momentum flux is.the sum of two kinds of term, each repre-
senting two distinct transport mechanisms: convection, and impulse
of forces exerted by the fluid. The convective term is entirely

analogous to (2.4) and is of the form

conv

i R
(2'5)conv fmom conv MV

where the superscript 1 refers to the ith Cartesian component,
i=1,2,3. To derive the impulsive terms, denote by B the force
per unit area exerted by the fluid across a surface element through
a point x and with outward normal v. It is a basic law of

continuum mechanics that F has the form
(2.6) F==%p,

where P, called the pressure tensor, is a symmetric matrix function
of x. The impulse of the force F of form (2.6) changes the

momentum of the fluid contained in G at the rate

—\/ﬁ Pvds .

oG

The 'rate at which momentum in the ith coordinate direction changes

-\/ﬁ Pl~v ds

oG

is thus

where p- is‘theith row of P. This shows that
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1

+ P

<2'7)P mementum P
For a nonviscous fluid the pressure tensor is scalar, i.e.

the identity multiplied by the scalar pressure p:

(2.8) ' . P =rpI

In this case the flux of the momentum in the ith direction is

i i i . . th L. .
f = pe~ , e’ = unit vector in i direction .
momentum p

(2.7),

For viscous fluids the scalar pressure tensor has to be augmented

by a matrix which for incompressible fluids takes the simple form

W BVi' avj .
(2.9) R - Prige © B (SEE + 52;) 5

L is called the coefficient of viscosity.. The flux of momentum in
the ith direction due to viscous forces can be obtained by setting

(2.9) into (2.7)P:

i W i
(2'7)visc fmomentum visc E[grad v '+in]

Energy flux is the sum of three terms; the first represents

the effect of convection and has the value

(2.10) f = EV .
conv energy conv

The work done by a force of form (2.6) changes the energy contained

in G at the rate

—‘/w V-FdS = —\/w V.PvdsS

oG oG
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Since P is a symmetric matrix, the right side can be written as

-nfv~mms;

this shows that the energy flux due to work done by the pressure

tensor is

(2.1o)P PV

fenergy P

If P is scalar, we have from (2.8) that

(2.1o)p fenergy b = pv

If viscosity plays a significant role, then (2.1o)p has to be
augmented by (2.lO)P, with P given by (2.9).

There is a third mechanism for transferring energy in and out
of G: heat conduction. Newton's law states that the energy flux
due to heat conduction is prbportional to the negative temperature

gradient:

(2.10) = -c grad T ,

h fenergy'heat

¢ is called the cdefficient of heat conduction.
Flux across boundaries is not the only transfer mechanisn;
an additional change in the amount of a given substance can be
caused by the continued creation or annihilation of substances due:
to sources or sinks distributed throughout space. Denote the rate
of generation of substance by S; S is called the source strength
(when S is negativé, it measures the sink strength). The total

amount created in a domain G during the time interval (s,t) is
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t

f dexdt ,
s G ‘

and this has to equal the left side of (2.1); thus we obtain the

equation: .

t

t t
+f ff'vdet =f deth
s s oG ‘ s G

From this we can derive as before the analogue of the differential

(2.11) d['udx
G

form (2.2), which for equation (2.11) is

(2.12) u, +div £ = 8

There are many processes in which source terms play an important
rble, par excellence chemically reacting flows; the chemical re-
action is a source of mass for the products of the reaction, and a
sink for the reactants. If the reaction is exothermic it is a
source of heat energy, if endothermic a sink of energy. These

source strengths will be denoted as follows:

. = T,
Smass i i’

where i labels the species participating in the chemical reaction
and rss called a reaction rate, is the‘réte at which the density
of the species i is changing as a result of the chemical reaction.
The reaction rates ri at x depend on the densities of the species
participating in the reaction at x. The strength of the heat:

source is denoted by

Senergy =q
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where q 1s the rate of energy release during the reaétion; g is a
function of the densities of the reactants.

- Another energy transfer mechanism that is described in terms
of sources and sinks is radiation; this mechanism becomes impor-
tant at high temperatures.

The foregoing discussion shows that the conservation laws of
fluid dynamics may contain a variety of fluxes and source terms.
In Section 4 we shall show how thé method of fractional steps can

e ——

be used to disentangle the various transfer mechanisms from each

other in the construction of approximate numerical solutions.

3. Theory of shock waves

It follows from the discussion in Section 2 that if diffusion,
viscosity, heat conduction and chemical reactions are neglected,

the laws of conservation of mass, momentum and energy are
pt-+div M=0,

(3.1) M%+mN(MW0+pK =0,
1

Et-+div (EV +pV) = 0

To make this system self-contained we have to adjoin relations
(2.3):

(3-2) ) M= pv, E = pe+—% pV2 s

and the equation of state, which relates three thermodynamic

variablesg, Say e, p, p:




(3-3) » P?p(e:p)
The simplest equatioh of state is the classical polytropic relation
(3.3)! p = (y-1)ep , vy = const.

. The system of conservation laws (3.1) supplemented by (3.2) and

(3.3) is of the general\form_

(3.4) WS rdiv £ =0, k=1,...,N,

where each fk is a function of the densities themselves:

(3.5) - =1

To simplify the discussion we turn now to one-dimensional flows;
a brief discussion of the two-dimensional case will be given at the

end. Dropping dependence on y and z in (3.4) leaves
(3.6) Coug +f =0

To analyze solutions of such a system we carry out the differentia-
tion with respect to x in (3.6); we get a first order system which

in matrix notation can be written as

(3.7) ut-i-A(u)uX = 0
1 N\t . _ . .
where u = (u,...,u ) and A is the matrix gradient of
f = (fl,..., N)t with respect to u:
‘ Kk
A = _ of
(3.8) A = (akj) , Syq = 533 .

This is a system of quasilinear equations; it is well known that

10
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in order for the initial value problem to be properly posed, (3.7)

*
has to be hyperbolic, i.e. the matrix A has to have real eigen-

values al,...,aN, themselves functions of U. The eigenvalues have

a very interesting physical interpretation: they are the local

velocities with which sharp signals propagate in the medium

described by equations (3.7). These are called the characteristic

velocities of the equation (3.7).
The onefdimensional'version of the system (3.1), (3.2),
(3.3) is hyperbolic in this sense, provided that pressure is an

increasging function of p at constant entropy. Since

é;-e ' = iL, when p is given as function of p and e
P lentropy=const PV
1ts derivative with respect to p at constant entropy is given by

' ap
.9) &

entropy=const

The increasing character is expressed by setting

(3.10) -g%

entropy=const

The quantity c¢ is called sound speed. In the polytropic case (3.3)

we have

(3.10)" c2=lpl_°. .

The characteristic velocities for the equation of gas dynamics are

If the eigenvalues are distinct, this condition suffices, in case
of a multiple eigenvalue additional conditions have to be imposed.

11



(3.11) _ V-¢c , = C, V+e

According to the general theory of nonlinear hyperbolic equa-
tions of form (3.7), we may prescribe the initial values u(x,O0)
arbitrarily; the corresponding solution U at the point x,t is
uniquely determined by fhe initial data,:in fact by the initiai

data on a fihite interval, called the domain of dependence of the

point (x,t) ; the domain of dependence is the smallest interval

containing the intersection of all characteristic curves through

X, t with the initial line t = 0O; a characteristic curve is one
which propagates with one of the'éharacteristic velocities, i.e.

satisfies one of the differential equations

(3.12) & = &K

u) , u=u(x,t) , k=1,...,N .
In general solutions of a nonlinear hyperbolic equation

develop singularities after a certain time has elapsed. The source

of this breakdown is easiest seen for a single conservation law:

(3.13) S ugtf(u), =0,

which can be written as

(3.14) utfa(u)ux=o, a=%

The left side of (3.14) can be interpreted as the derivative of u

in the characteristic direction:

(3.15) %% = 0, where %5 = a(u)

o

This equation says that u is constant along the characteristic

b ]

i2
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curve, but then the spéed a(u) is constant along the characteris-
tic curve, and so it follows that the characteristic.curve is a
straight line. Now let Xq and Xo denote any two points on the
initial line t = 0, u(x,0) the prescribed initial function. The
speeds of the characteristic lines.issuing from these points are
a; = a(u(xy)) and a, = a(u(x,)); if these two lines are on colli-
sion course, then at the point (x,t) of their intersection u(x,t)

has to be equal to both u, and u which shows that no solution

1 2’
can exist beyond that time, at least not a continuous one.
What does exist beyond that time? Experiments disclose the

appearance of discontinuous solutions. In what follows we outline

briefly the theory of these; For a mathematical definition of
discontinuous solutions we have to go back to the physical defini-
tion of a conservation law: we say that u is a solution of the
system of conservation laws (3.4) if the intégral relations (2.1)
are satisfied for all domains D and all times t and s. An entirely
equivalent formulation is to require that the equations (3.4) be

satisfied in the sense of distribution theory; that is, if we

multiply (4.4) by any smooth test function w(x,t) that vanishes
for |x| large, and if we integrate by parts, the resulting integral

relation

(3.16) klyﬁ(wtuk-kgrad . 5 )axdt
Q\/ww(x,T)uk(x,T)dx +\/ﬁw(x,0)uk(x,o)dx =‘O

holds for kK = 1,...,N.

13



Subpose that u is a piecewise smooth function in regions
separated by smooth surfaces. It is not hard to show that u satis-
fies (3;4) in the distribution sense (3.16) iff

i) u satisfies equation (3.4) pointwise in each smooth
region,

ii) across each surface of discontinuity the jump relations
(3.17) sful] = [f]-v

hold, where [ ] denotes the jump of the quantity in brackets
across the éurface of discontinuity, v the directioﬁ in which the
surface propagates, and s the speed with which it propagates.
These relatibns, called the Rankine-Hugoniot conditions and

abbreviated as R-H, are easily derived from (3.16), or from the

" more physical equation (3.1).

In case of one space dimension the jump relations take the

form
(3.18) s[u] = [, k=1,...,N,

where s 1s the speed with which the discontinuity propagates from
left to right. ‘

For small discontinuities the jump relation has a simple

consequence. Using relation (3.8) we can write

[f] =_A.[u] s

where A is very close to A(u) = graduf‘. Substituting the above

into (4.18) gives

14




1-15

(3.18)' s{u] = A[u] ,

which shows that for [u] small, s is very close to an eigenvalue
of A. Since these are the propagation velocities we conclude that
small diécontinuities propagate with velocities very close to the
velocities of sharp signals — a most plausible result.

For a good theory of discontinuous solutions two things must
be shown:

ca) that every inifial value problem has a solution in the
sense of (4.16) which exists for all times t > O.

b) that this solution is unique.

It turns out that b) is false! The following example shows

it so for the single conservation law

: 1 .2
(3.19) ut-+(§ u), = 0

Define the function uqy by

io for x/2 < 1/2
(3-20)1 U.1<X,t) = \ )
' (1 for 1/2 < x/t

Since a constant satisfies equation (3.19), we see that u, consists
of two solutions fitted together along the line x/t = 1/2. The
épeed of propagation of this line is chosen as s = 1/2, <¥e] that‘the
R-H relation (3.18), for [u;1 = 1-0 =1, [f] =1/2 - 0 = 1/2, 1is
satisfied. Thus u, is a solution of (3.19) in the distribution

sense. Next we define

15




0 for x/t < 1/4

(3.20)2 ; ug(x,t) = {1/2 for 1/4 <x/t <3/4

——

1 for 3/4 < x/t

\.

Here three constant states u = 0, 1/2, 1 are fitted together along
two lines, whose propagation speed is chosen as s = 1/ and s = 3/4
so that the R-H relation (3.18) is satisfied at both discontinui-

ties; thus u, satisfies (3.19) in the distribution sense. Finaily

we define

[ 0 for x/t < 0
: |
(3.20)3 u3(x,t) = {x/t for 0 =< x/t <1

L1 for 1 < x/t

Here the two constant states u = 0 and u = 1 are joined continu-
ously by the function x/t; this function satisfies equation (3.19)
pointwise. ' |

The three functions Uqs Yo, u3 have the same initial value:
u=0for x <0, u=1for 1 < x. Cleéfly many morérare possiblé.
We abstract from these examples a principle that eliminates all
but one of these solutions. |

Iet uﬂ and u,. be two constants denoting the state on the left

and on the right of a discontinuity. ILet

, fﬂ-fr
(3.21) S = =
uﬂ —U.rA

where

16




then

f/u for x/t < s
(3.22) u(x,t) = 3
l u, for s < x/t

1s a discontinuous solution of (3.13) in the integral sense. We

say that this discontinuity can be split if there is a value of v

between u, and ur such that

£
( ) fg -f(v) £(v) -fr
3.23 s, =4 - 5 -_ ' r
i . y/ uﬂ-v r v--ur
satisfy
(3.24) 5, < s,

In this case the split solution

cu, for x/t < s

)/ £

| usplit(x’t) =V for 5, < x/t < s,

U, for s < x/t

‘also satisfies the integral form of the conservation law (3.13),
and has the same initial-valué as the solution u defined by (3.22
We call a discontinuity that can be split unstable. Solutions
with unstable discontinuities are rejécted as physically not
realizable. Stability is - oppoSite of instability:

A disconfinuity (uz,ur) is called stable if it cannot be

split, i.e. if for all v between uz and u,.

17
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(3.25) | Sy 2 sr

Using the definitions (3.21) of s and (3.23) of sﬂ', s, we
can wfite

uﬂ -V v —ur
s = u u Sz + u u Sr
y r 2 r

Since v lies between uﬂ and U, this shows that s is a convex

combination of SE and 8.5 SO it followslfrbm (3.25) that

_(3-25)' : s, >s > 8

y/ r

Again using (3.21), (3.23) we can write this as

fz- f(v) fz"fr f(v)-—fr

v 2T u z
u, - -, - — VvV - U
£ 2 r r

(3.25)"

Ietting v tend to u,

df/du = a(u), we deduce that

or u, respectively, and recalling that

(3.26) a

> s > a
- = "r

ﬁ .
This expresses the fact that sound waves originating on either
side of the discontinuity propagate toward the discontinuity.

The theoretical significance of this condition emerges if we look
upon a discontinuousvsolution as a solution of a mixed inifial-
boundary Value problem, the discontinuility serving as an internal
boundary. Condition (3.26) guarantees that every characteristic
vdrawn backward froﬁ either side of the discontinuity feaches the
initial line. This shows that the initial data determine uniquely.

the solution on either side of the discontinuity§ the R-H

18
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condition (3.21) then serves as an ordinary differential equation
for the determination of the line of discontinuity x = x(t), with

s = dx/dt. We shall call (3.26) the characteristic condition.

If f£(u) has no inflection points, then (3.26) implies (3.25).
Suppose, e.g., that fuu > 0; then f'.= a 1s an increasing function
of u, so (3.26) implies that u, > u.. Since difference quotient
also are increasing funcfions of their arguments, (3.25)" follows.
When f has inflection points, the stability condition (3.25) is a
genuine additional restriction. |

It can be shown that every initial value problem for a single
conservation law (3.13) has a unique solution in the integral -
sense (3.16) that exists for all time t > O and all whose dis-
continuities are stable in the sense of (3.25). In Section 7 we
shall prove the uniqueness of such a solution, and construct solu-
tions with piecewise constant initial data.

We turn now from single conservation laws to sysfems. Here
we have not one but N signal speeds al(u),...,aN(u). We claim
that the appropriate extension of the characteristic condition
(3.26) to this case is:

There exists an index k, 1 =k < N, such that

(3.27), | Caf(u,) = s > af(u)
while
(3.27), aM(u,) <5 < a5 ))

A discohtinuity satisfying this condition is called a k-shock.

The left half of the two inequalities says that exactly N-k+1

19



characteristic curves impinging on the disgcontinuity from the
left; the right half of the inequalities say that exactly k impinge
from the right. So altogether the total number of characteristics
that impinge on the discontinuity from either side i1s N+1l. Each
‘of these characteristics carries one piece of information; these
N#l data, combined with the N-1 relations that can be obtained
from the N R-H conditions (3.18) by eliminating s, are needed to
determihe, iteratively, the 2N components of uﬂ and U

We proceed now to show that solutions whose discontinuities
violate the characteristic conditions (3.27) can be split into
rarefaction waves, and thus are in this sense unstable. Therefore
such solutiohs are rejected as not realizable physically.

The conservation laws (3.6) in both differential and integral
form are invariant under a uniform stretching of both the x and t
variables; it follows that (3.6) has so-called centered solutions,
~i.e. solutions that depend on x/t alone. We shall describe now
these solutions; there are two kinds: shocks and rarefaction

waves. A shock is of the form

u, for x/t < s

(3.28) u(x, ) =

u, for s < x/t

where the states-uﬁ and u, satisfy the R-H conditions (3.18). We

ask: given u describe the set of states u. that can be connected

ﬂ,

to uz through a single shock. This is easily answered if we are

looking for weak shocks, i.e. states u, close to uz. We claim that
they form N one-parameter families u, = u(e); we take now the jump

relation (3.18):
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= f(u) -f(ué)

s[u-—uz]

and differentiate twice, with respect to e. Denoting d/de by '

and recalling (3.8):

graduf = A

we get

(3.29)l s'[u]-+su' = Au' ,
(3.29)2 s"[u] +2s'u' +su" = Au" + A'Y'
Setting € = 0 in (3.29)l we get

su' = Au!

which shows that s(0) is one of the eigenvalues of A = A(uﬂ),
u'(0) the corresponding eigenvector r = r(uz). Setting € = 0 in

(3.29)2 and setting u' = r, s = a we get
(3.30) . 2s'r+au" = Au" +A'r .
Now take the eigenvalue relation

ar = Ar , u = u(e) ,
and differentiate at ¢ = 0O:
(3.31) a'r+ar' = Ar'+ A'y
Subtracting this from (3.30) gives

(2s' —a')r +a(u" -r') = A(u"- ')
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Multiplying this with the left eigenvector J of A gives

(3.32)A - 2s' = a!

Now

' _ u'egrad a = r. .
al' = u gradua r gradua
Let's assume that r-grad a # 0, then

(3.33) r-grad a =1

can be achieved by normalizing r. It follows from (3.32), (3.33)

and u! = r that.
(3.34) l1=a' =35 .

Note that when r is normalized by (3.33), the parameter's needs
rescaling in order to have u' = r. It is easy to see that, for £
small‘enough, the characteristic condition (3.27) is satisfied iff
€ 1s negative.

Since a is any one of N eigenvalues, we see that N one-

parameter families uf can be connected to u, by a single shock;

)/
exactly one half of each family satisfies condition (3.27).

We turn now to rarefaction waves; differentiable solutions

of (377) of form
(3.35) | u(x,t) =wp) , p=x/t.
Substituting this into (3.7) we get

-pw! + Aw' = 0 ,

which is solved by
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(3.36) W= er(w) ,  p o= a(w)

Differentiating the second relation with respect to p and usihg

the first we get
(3-37) 1= gradua-w = c gradua-r

In view of the normalization (3.33%), ¢ = 1. To obtain w(p) we

solve the ODE (3.36), with initial value

Now let e be a small positive quantity. We define the centered

rarefaction wave as the composite

u, for x/t < P,

(3.38) u(x,t) = 3 w(x/t) for .,p < x/t < pte

o)

W(po+8) for p_te < x/t

The state u,. = w(po+s) isrconnected to uz fhrough a rarefaction
wave; since a is one of N possible eigenvalues, we have N halves
of one-parameter families of states u, that can be connected to uz
by a single rarefaction wave.

Note that the two halves of the one-parameter families to

which uz can be connected through either a shock or a rarefaction

wave can be fitted together differentiably to form N complete one-

parameter'families'lir k(e), k =1,...,N. Given now any state us
- :

1t can be connected to a one-parameter family of states ul(el)

through a wave pertaining to the lowest speed al; Uy in turn can
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be connected to a one-parameter family of states ug(el,ez) through
a wave pertaining to the second wave speed 8ps etec. Continuing in
this fashion we see that by going through all available waves we

can connect any State‘uo to an N parameter family of states

_ _ . du _ .
N = uN(al,...,sN) = uN(e). We have shown earlier that EE; = Trp;

since the right eigenvectors r, are linearly independent it follows

u

that for & small the family u, (e) simply covers a full neighbor-

i
hood of u,- Thus we have shown:
Suppose condition (3.33) holds; then giﬁen any two states
Uy and u, sufficiently close, there exists a solution u(x,t) of
(3.6) with initial values |
u for x <0
(3.39) -u(x,0) =

u for 0 < x

This solution is centered, i.e. a function of x/t, and consists of
N+1 constant states separated by shdcks or centered rarefaction

waves:

Figure 3,1

An initial value problem of form (3.39), with initial data con-

sisting of two constant states, is called a Riemann initial valueb

problem.
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Condition (3.33) is a kind of a convexity condition; there
are some important cases where it fails to hold, e.g. for so-~
called contact discontinuities r-gradua = 0; in this case the con-
cept of shock and rarefaction wave éoalesce and the result still
holds.

For what systems does the above result hold in the large?
that is, if we do not restrict the parameters & to be small, how
large a neighborhood of_uO is covered by u(e), and is the covering
simple? if not, the initial value problem (3.39) has several solu-
tions and we need some criterion in addition to (3.27)_to identify
the physically realizable solutions.

Bethe and Weyl have shown, see [ 1] and [34], that if p is a
convex function of p_l at constant entropy, then the initial value
problem (3.39) has only one solution. Wendroff, [33], has
investigated the situation when this convexity condition is
violated. |

In an interesting sequence of papers [24], Liu has
analyzed the Riemann initial value problem when (3.33) is violated;
he has derived an analogue of condition (3.25) for systems, and

has applied it to the equations of gas dynamics.

4. The method of fractional steps

We are interested in approximating solutions of evolution

equations of the schematic form

(4.1) u, = L(u)

by employing approximate solutish operafbfgﬂéh(ﬁymwhiCh; when
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applied.to the initial value uj = u(0) of a solution u of (4.1)

furnishes an approximation to the value of the solution u at h:
(4.2) Sh(L)(uo) = u(h) + error

Here h is a small quantity; to approximate u(t), t not small, the

operator Sh is applied repeatedly:

(4.2) sg(L)(ﬁo) = u(t)-?error ) t‘= Nh .

N

The approximating operator Sh(L) is constructed so that the error

in (4.2) is small; this implies that the error in (4.2)N is also -

N
h

not magnify. If this condition is fulfilled, then the error in

(L).does

(M.E)ﬁ is, roughly, N times the error in (4.2). - This shows that we
must choose S, so that the error in (4.2) is O(hg).

The error in (4.2) can be appraised by Taylor's theorem:

2y

u(h) ="u(0) +hu,(0) +0(n?) = u_+hL(u ) +0(h

This shows that in order to make the error in (4.2), O(hg), Sh(L)

must satisfy
(4.3) _Sh(L) =‘I+hL +O(h2)

In many problems, par excellence in fluid dynamics the operator L

is the sum of several operatofs Li’ each describing a different

physical mechanism:

(4.4) | L=y _ L, -

The method of fractional steps constructs an approximate solution
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operator. for (4.1) as the product of approximate solution operators

Sh(Li) of the partial equations
(h.5), ug = L, (u)

Each Sh(Li) satisfies

(4.6), | Sp(Ly) = T+hL +0(n?)
We set
(4.7) Sp(L) =TT s, (1)

It is easy to show that if each L, satisfies (4.6)i then Sh(L)
defined by (4.7) satisfies (4.%3), with L = z::'Li.

The method of fractional steps has several distinct
advantages:

i) Each equation (4.5)i‘usually has its own special feature
(symmetry; invariance, etc.) which can be exploited to construct
an efficient scheme Sh(Li)‘ | |

ii) If each scheme Sh(Li) is stable in the sense that it does
not increase some norm, such as the L2 norm, common to ai; equa-
tions (4.5)i, then’likewise the product (4.7) does not increase

that norm and so is automatically stable. Even if each Sh(Li)

increase norm slightly

IS, (L)1l < 1+0(n)

1t only causes a similar slight norm increase by Sh(L). Thus

instead of having to check the stability of a complicated. composite
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scheme it suffices to check the stability of each of its factors.
'iii)‘Programming convenience: one cah write a program for

implementing a scheme of form (4.5) which consists of n distinct
packages strung together in series, each packagé solves an equation
of form (4.6)1. If one wants to incorpbrate an improved method
for solving the ith equation, only one of the packages has to be
rewritten.

iv) Yet another advantage is described in Section 5.

Relation (4.3) says that applying the approximation scheme
~ once leads to an error of size O(hg). Repeating‘the approximation.
N timés, where Nn = T = final time results in cumulative error of
size NO(hg) = 0(h), provided that the scheme is stable. To bring
the error down to acceptable size may require making h so small
that the time required to perform N = T/h steps is unacceptable.
In this case it is possible to reduce the number of steps required
by employing a scheme that 1is accurate'to second order, i.e. that
approximates u(h) with an error,O(hB); We explain how to do this

in case the operator L is linear; we allow L to depend on t.

We start with Taylor's theorem to second order:

h® 3
u(h) = u(0) +hu, (0) + - u,, (0) +0(n7")

The first derivative of u is given by (4.1); the second can be

obtained by differentiating (4.1) with respect to t:
u,, = ILu, +L,u = (L24—L Ju
“tt t Tt £/

Substituting into thé Taylor approximation gives
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2
(4.8)  u(h) = u(0) +hL(0)u(0) + I [17(0) +1,(0)]u(0) + o()

This shows that for second order accuracy we must have

2
h 2
(4.9) Sp(L) = I+hL(0) + o [L7(0)+ L (0)] + 0(r)
The reader may easily convince himself, in the simple case when all

Li are independent of t, that even if each Si 1s a second order

approximation to (4.5)i:

(4.10) Sh(Li) = I+hLi(O) + = L

the product (4.7) is still only a first order approximation to
(4.1), unless all the L, commute (which they don't in general).
Gilbert Strang, [32], has devised a variant of the method which
does not suffer from this restriction; we shall describe it for two

terms, i.e. when L is of the form
(4.11) L =A+B

Theorem (Strang): Suppose Sh(A) and Sh(B) are second order

approximations to

[
ct
I

Au  and up Bu ,

respectively. Then

(4.12) ~ 8,(L) = 5y, (B(0))s (A(0)) 5y 15 (B (3))

is a second order approximation to solutions of (4.1).

"The proof is a simple matter of algebré: By (4.9) we have,

modulo terms O(hB):
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2
Sh/E(B(O)) = 1+-2- B(0) + %— '[B2+ Bt] )

W2 o
shz_(,-A;(.o),) = I+hA(0) + — [A +2,1
2
Sh/E(B'(%)) I+5 B(%) + 98_ -‘[132 +By]
_ | -, |
=1 +% B(0) + % [B?+38t]

The triple product (4.12) is, mod 0(h’),

| 2 2
I +h[A(0) +B(0)] + %_ [A2+At+§- B +B, + B+ BA+AB] ,

and this by (4.11) is indeed equal to

> .
I +nL(0) + 3 [1°+ 1)

We turn now to nonlinear equations of the form (2.12), where

the flux f is the sum of fluxes fj:

. ' Ao s —
(4.13) u, + 53 div fj =S
The analogue:bf.the method .of fractional'steps constructs approxi-

mations to solutions of (4.13) as a product of operators approxi-

mating solutions of the partial equations

(4,14)1 \ ut—kdiv fj =0
and
(4.15) : ' | u, =S .

In practice ‘the equations (4.14)i are often further decomposed as
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1 2 5 _
ut-+axf 4-ayf -Fazf =0

and their solutions approximated by products of operators approxi-

mating solutions of the partial equations

1 2 S
(4.16) ut+8xf =0, uy +ayf =0, ut+azf = 0

If (4.13) stands for the equations of fluid dynamics, then
the partial equations (4.14)i might stand for equations of fluid’
dynamics in which the only transport mechanisms are convection and
those are due to scalar pressure, or might describe fluid flow
governed by diffusion, viscosity and heat conduction; (4.15)
describes the chemical reaction. Since these partial systems
evolve on different time scales, the way they are mixed together
is crucial to the success of the fractional step method. The
method of fractional steps has been developed by Godunov, [li],
Marchuk [25] and Yanenko [35]; it is an outgrowth of the alter-

nating direction method of Peaceman, Ratchford and Douglas, [28].

5. Difference approximation of conservation laws

We start with one dimensional conservation laws:

(5.1) ut-l—fX =0 .
We divide X-space into cells Ik cf length B,
(5.2) | I = ((k-1/2)6,(k +1/2)5)

We denote by VE an approximation to the average density of u over

n+l/2

. . ) v th
K+1/2 an approximation to | e

the cell Ik at time step n, and by g
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average flux f between time step n and n+l/2 at the boundary be-

tween Ik and I . The approximation to (5.1) then is

k+1

+1 n ¢ , ntl/2  n+l/2
(5.3) Vi =V T (Bgpa/o T Bl

where T is the time step from n to n+l. Since the fiux f is a
function of the density u, we take the approximate flux giiiég to
be a function of the approximate densities at a finite number of
points near the point_k+l/2‘and time n+l/2:

n+l/2 n : n n+l n+l
(5.4) Eei1/z = 8V ra1r ot o Vwr Vi1 © V)

We require g to be consistent with f, in the sense that

(5'5) g(u:""u—_) = f(u)
It is convenient to regard v as being defined for all x, t:

n . : '
v(x,t) = Vi for X in Ik s tn < t <'tn+6"

We show now that the éonsistency condition (5.5) guarahtées that

if a sequence of“solutionslof.(5.3) with initial values qo(x)

tends as 6,7 — O boundedly and almost everywhere to some function
u(x,t), then this 1imit u is a solution of the integral form (4.16)
of the conservgtion law with initial value uo(x). For let w(x,t)
be any smooth test function which is zero for x, t large; multiply

(5.3) by 6w(k6,tn), sum over-k and n and sum by parts; we get

Wl Wh G Wl ) 1/
k ~ 'k _k k ~ "k+1l/ nt _ 0,0
(5.6) 3 \—F—— Vnt — 5 &ks1/2 VBT =06} W -
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k' ' : ' n+l1/2 o
If v, tends to u boundedly and a.e., then 811 /20 defined by (5.4)
and satisfying (5.5), tends to f(u), boundedly and a.e., and (5.6)

tends to
-kzyi(wty-fwxf)dxdt -L/\w(x,o)uo(x)dx =0 .

This is precisely relation (3.16). ‘

Here are some examples of approximations to flux functions:

. n+l/2 f(uﬁ) t{uyyq
L) g1yp = 2 ’

n n
e uk+-uk+£\
) Bry1 /0 — 7

nt1/e £ 4 (ul)
1) gyayp = 2 ’
' f(n)+f(n ) n+ n
iv) gi:ijg -k 5 e 75 A EE;“;Eii (£ () - £(1)))

The followihg observations are obvious but useful.

a) If g is consistent with f, and if h is a function of v?
that vanishesrwggp all its arguments are equal, then gth too is
consistent with f. For example we can augment the approximafe flux

function in i) to

_ n n o\ ,
) n+l/2 _ flu ) + £ q) N C(u{{l'u{{lﬂ) ’

8x+1/2 2

another consistent flux. approximation.
b) Suppose the flux f is the sum of several fluxes
fl-+f2—+..; = ', and suppose we treat these fluxes by the method of

fractional.steps explained in Section 4. If at each step we employ
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a flux app?oximation consistent with the partial flux fi’ thep the
overall scheme will Dbe coﬂsistent with the total flux f. This
applies in particular to the important case when the number of
ispace variables is greater than 1, and the flux has an i and a y
component. |

c) The flux'approximation has to be so chosen that the scheme
(5.3) is stable. Our examples i) and ii) are unstable, iii) is
stable, iv) is stable if &/t exceeds the signal speedé, and v) is

stable if ¢ is large enough and 5/t is small enough.

6. The methods of Godunov and Glimm

These methods were devised for conservation laws 1in one space

variable:

(6.1) _ﬁt+f =0

As in Section 5 we divide the x-axis into cells Ik’ each of length
5, centered at x = kb, see (5.2). Given any initial data uo(x) we
can project it onto the space of functions which are constant on

each Ik by setting
d .o _ 1 : s
(6.2) v (x)‘— vy = gx/ﬁ-uo(x)dx , X in I

We define the functions vk+l/2(x,t) as the.solution of equation

(6.1) with the following initial values: -

VE' for x < (k+1/2)8
(6'3) Vk+l/2(X,O) = .
. V§+l for (k+1/2)6 < x
34
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This is a Riemann initial value problem of form (3.29); its solu-

tion consists of N+1 states separated by N waves centered at

x = (k+1/2)6, t = 0. Each wave travels with a speed that equals
or is bounded by one of the signal speeds a. Denote the maximum
signal speed by ’a,max; it follows then that the centered waves

issuing from two adjacent centers (k-1/2)8 and (k+1/2)6 don't

intersect each other as long . as

(6.4)

So during the time interval (6.4) the solutions Vies1 /2 with
initial values (6.3) can be fitted together to form a single exact
solution v(x,t) of (6.1) with initial value v° given by (6.2).
This solution consists of cohstant states ‘separated by centered

waves, see Fig. 6.1.

VAYAYAY

Figure 6.1

t

After time (6.4) the waves issuing from adjacent centérs start to
interact; in a numerical method developed in the fifties [11],

Godunov replaces v(k,t) at T =<§/2lalﬁax by its piecewise constant
projection defined by (6.2). Note that the integration indicated

by (6.2) need not be carried out explicitly; for v(x,t) is an exact

solution of (6.1), so the integral form of (6.1) gives
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T

u[‘v(x,r)dx =k/\v(x,0)dx +k/’ f(v((k-1/2)6,t))dt
I I 0 ,
kK k v
ft/w f(v((k+1/2)5,t))dt
0] ’ '
This can be rewritten as '
1_ o, 1 1/ 1/2
(6.5) Ve = Ve 5 (810 - 8l1/0)
‘Wwhere
1/2 :
(6.6) 8er1/2 = FVppnp(k+1/2)8,8)
since Vk+l/2(x’t)’ being centered at (k+1/2)56, is independent of t.

Once vl hags been determined as a pilecewise constant function,
the basic step is repeated; this is done as many times as necessary
to reach the times T at which the phenomena under investigation

are taking place. We denote by tl,...,tM the intermediate times

at which the projections (6.2) take place.

Note that if v° = then v ©

o
/o k = Vk+1’ k+l/2( Kk*
0\, . .

Y10 = f(vk), this proves that the approximate flux

X,t) = vi_; by (6.6) we
have then gi
(6.6) employed in Godunov's scheme is consistent with the exact
flux f.

Glimm's method'reeembles Godunov's inasmuch as the approxi-

mations v(x,t) employed are piecewise constant functions of x at

the selected times t., T ., and are exact solutions in the strips

IR
tn—l <t < tn’ and are discontinuous acroes t = tn' However Glimm

defined v differently at time ts instead of (6.2) Glimm sets

; n )
(6.7) : v(x,tn+0)-= v(kb+a 6,tn—O) s xe I ,
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where V(X,thi 0) denotes the limiting values of v as t —»tn from

- below and above th reSpectively, and {an} is a sequence of random

1 1
5 3)

variables chosen'ffom a sample uniformly distributed.in (-
Glimm showé that for almost all choices of {an},

v = v(x,t,a) converges fo an exact SOlution.as & - 0. Here is a

slightly modified form of his argumenti |

‘ Let w(x,t) be a smooth test function, = O for |x| large.

Multiply vt-‘rf(v)X =0 by.w, and integrate by parts in the strip

t =t =< tn;,We get

n-1

oo
\d[ [w(x,tn)v(x,tn-o)-w(x,tn_l)v(x,tn_l+O)]dX
-0 .

tn 00 ,
-Jf Jf [wtv +wa(v)]dth =0
tn-l -00

Sum over O = n < M; denoting tM = T we get

(6.8) Jf' [th-+wxf(v)]dxdt.
0 - :
co 0o |
—L/ﬁ w(x, T)v(x, T)dx +\/ﬂ w(x,0)v(x,0)dx = r
- ' -00
where
v
(6.9) r = Z%: r,
with
. . - 00 .
(6.10) r =k/\ w(x,tn)[v(x,tn—o) 7v(x,tn+o)]dx
-0 ’ .

Lemma 6.1: Denote by n an upper bound for the total variation of

v(x,t) as function of x. Then
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(6.11) . Irn| < const SnIWImaX .

Proof: Denote the variation of v(x,t. -+0) over the union of I

n-1

and et by Mk+1/2° Since v is constant over each ka
(6.12) 2 Mgy1/e SN

. Glimm shows that for x in Ik
(6.13) Iv(x,tn—O)-v(x,tn+O)l < const (nk—l/2'+nk+l/2) s

for detailéd proof we refer to [ 9 ]; here we merely observe that
if Me+1/2 and Me-1/2 are both zero, then v(x,tn_l+o) has the same
value in all three intervals I, 1, I, Ik+l’ SO that‘v(x,t) is
Aconstant in I fort , <t< b, 4q0 oend therefore V(x,tn—o)
= v(x,tn+0)'in I,. Thus if the right side of (6.13) is zero, so is
the left side; while this does not prove inequality (6.13), it
makes it plausible. | '

We multiply (6.13) by w(x,tn) and integrate over I ; since’

‘the length of I, is & we obtain

(6.14) ,k/wlw(x,tn)|lv(x,tn—o)— v(x,tn+O)|dx

Ik

= const 6(nk—l/2+nk+l/2)lwlmax :

Comparing (6.10) and (6.11) we conclude that

|r | < const 5lwl, e 22 M1 /o 5 2 const &nlwl| . >

where in the last step we used (6.12). This proves (6.11)-
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The approximate solution v(x,t) depends on the sequence of

‘random variables a. Next we show

Iemma 6.2:
(6.15) ,f r_da”

Proof: The function v(x,tn—o) does not depend on an, and

< const agn,wxlmaxv‘

v(x,tn+O) depends on oY through formula (6.7). So integrating

(6.10) gives

(6.16) k/\rndan =y \/ﬂw(x,tn)[v(g,tn-o)‘-Vk(tn)]dx ,

k
Ik
where
- 1
Vk(tn) = gk/ﬁv(x,tn—o)dx .
T
Since‘?k is the mean value of v over I,.» the integral of [v —Vk]_

over I 1is 0; therefore we deduce from (6.16) that

(6.17) k/wrndocn = Z%: L/’[w‘(x,tn) -w(k@,tn)][v(x,tn;O)-ﬁk(tn)]dx
I
k

It follows from (6.13) that for x in I,

(6.18) |v(x,t-0) -V, (t,)] =< const (”k-l/z'*”k+1/2) ;
furthermore,
(6.19) | w(x b)) -wxe, e )| < sl |

for all x in I.- Using (6.19) and (6.18) to estimate the integrand

shows

29



1.40

[ bt 5,) - ks, 6,01 0w (x, ,-0) =7, (£, )lax.
I | o
- "k

, | 5
= const <”1&-1/2"L“k+1/2)6 Wy e

Summing over all k we deduce from (6.17), using (6.12), that (6.15)
holds. '

Iemma. 6.3: For m # n,

2

' 2
(6.20) . L/‘rmrndoc < const 63n lwlmaxiwx'max

where dao = daldqg;..daM..

Proof: Suppose'm < n; then L is independent of an; so we get,

using (6.11) and (6.15) that

n
l rr dan = |r \/ﬂr da”
mn 1Tm n

Integrating with respect to the rest of the aj yields inequality
(6.20).

2
max 6'T]|Wx’max

< const &q|w|

We are now ready for the main estimate}-using (6.11) and

(6.20) we get

(6.21) fo-da —Jf gii r

= Jf r-da + S ‘r r do

m
n#m non

'.:‘>

da =\/\$ rmrnda

const MGQnQIW]EaX +éonst MOS0 2lemaXI x'max .

| A

M is the number of time steps, & the size of the space step. Since

the size of the time step, subject to inequality (6.4), is taken

4o
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to be as large as possible, i.e. 6/2lalmax, we have
T=ty=2_"t,-t ;> Mo/2lal .

Setting this into (6.21) we obtain the estimate

(6.22) d['era.: (o3}

where

(6.23) ¢ = const nglwlmaxlalmaXT{lwl } .

max-FT'almax,wxlmax

In [ 9] Glimm estimates for all t the total variation of the
approximate solutions v for all choices of a in terms of u total
variation of the initial data. This gives an estimate for n valid
for all a.

The quantity r, defined by (6.8), is the amount by which the
approximation v fails to satisfy the integral form (4.16) of the
conservation law. We call r the residual, with respect to the test
function w.

Given any e, it follows from (6.23) that
lr] < e

except possibly for an a-set of measure < 068-2. Given N conserva-
tion laws and K test functions wl,...,wK, all residuals are < g
except Possibly on a set which is the union of the exceptional

sets for each individual w and each conservation, and which may
therefore have as large a measure as CKNae_g; this estimate is
unduly pbessimistic, allowing for no overlap among the exceptional

“sets.
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What are the implications for realistic values of the
parameters? Let's take the case that the totai variation of the
initial data is 1; then we cannot expect a better estimate for q

Imax:=
= 1, and let's take as

than n = 1. Let's take a test function w with |w| =|w
- : Imax ~ Mx

Suppose the maximum sound speed |a|maX

final time T = 1. A realistic value for the constant in inequality
(6.18) is 1. Setting all these numbers into (6.2%) gives C = 2,
S0 we conciude, for a single conservation law and test function,

that

r] < €

except possibly on a set of o of measure 268—2. It is not un-

reasonéble to want to make g = 10'2, and ordinary prudence requires

making the measure of the exceptional set less than 10_2. To

satisfy this we must have
26 10° < 107° ,
i.e. the spatial step size & must be less than 5><1O'51' This 1is a
- very fine grid, hardly called for to achieve a resolution which,

with |w]| =

fw_ | = 1, is of the order of unity.
max x 'max :

It is illﬁminating to examine how Glimm's scheme treats a

particularly simple Riemann initial value problem

uz for i < 0

u(x,0) =

u.. for Q < X ,

where uz and u, are so chosen that the exact solution consists of

a single shock wave propagating with speed s:

L2
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/ (ﬁﬂ for x < st

(6.24) u(x,t) = |
u. for st < x

For this calculation it is convenient to take I, = (k8, (k+1)8);

with this choice Glimm's scheme reads

(6.25) ‘. v(x, t+0) = v(k6+—Bn6,tn—O)

where g = a"+1/2, n = 1,2,... . Note that the B's are uniformly
distributed in (0,1).

Since v(x,t-0) is the exact solution (6.24), we get from

(6.25) that
/ .
uz for x < Jl6
v(x, +0) = 1 ‘
\ur for Jlﬁ < X
where
1 if 651 < 87T
Jl = 1
O if BB~ > st .-

Repeating this M times we get

u for x < 4,06

J4 M
(6.26) v(x,Mt) = _
_ur for JM& < X
where
(6.27) : Jy = no. of Bd < st/5 , J=<M.

The location of the shock in the approximate solution at time

T = Mt is
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J dJ

' _°M M ., B
(6.28) JNa_-M-Na_—M-T-T-.

As M~ o, JM/M defined by (6.27) tends to st/6, so the shock

location tends to %} T % = 8T, the exact location of the shock at
time T. A simple calculation shows that the expected deviation

of JM/M from its expected value st1/6 = k is c//M, where

c =vx(1l-x) //2r. So using (6.28) and T

expected deviation of the calculated value of the shock position

Mt we see that the

from the true one is
‘é(T/T)l/QS .

let's take T = 1, 8/7 = 1, s = 1/2; then «

1/2. To make the

expected deviation < g, we must have

5 < 8res .

For ¢ = 10”2 this means 5 < 2.5x107>. This is not too bad but
gets worse as T increases. |

Note that the accuracy of Glimm's scheme applied to the
special Riemann problem above can be increased appreciably by
taking the sequence Bn not at random but as uniformlj distributed
as possible. From the point of view of equidistribution an attrac-
tive choice is B™ = n6 (mod 1), where 6 is an algebraic number,
say /FZ The error in shock position when applied to the special
Riemann problem above is O(}E%—E). The use of such sequences in.
Monte Carlo calculations has been suggested by R.D. Richtmyer in
the early 50's,'and'in connection with Glimm's scheme by the
author, [21]. Chorin has successfully introduced other types of

well distributed sequences.
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Recently Tai Ping Liu succeeded in showing the convergence
of Glimm's scheme to a solution for equidistributed sequences when
the initial data are arbitrary. The time rate of convergence is
an open problem; its determination will have to be, most likely, a
combination of theory and numerical experimentation.

| Godunov has successfully applied his method to systems of
conservation laws in seVéral space variables by using the method
of fractional steps. Glimm's method has been applied‘by Chorin
in several space variables, again using the method of fractional 3
steps. No analytical results are available in this case.
A. Harten has observed that when Glimm's method is used in frac-
tional steps to calculate the propagation of a contact discontin-
uity in two dimensions, the resulting one dimensional problems are
resolved in terms of shocks. This introduces a certain amount of

excess entropy production.

7. Entropy and viscosity

In Section 3 we saw that several solutions in the integral
sense of a system of nonlinear conservation laws could have the
same initial values. Since the initial configuration ought to
determine the flow in the future, only one of these several solu-
tions can occur in nature, andvall others have to be excluded on
the basis of some physical or mathematical principle. In Section

> we have formulated two such principles:
i) stability, ii) the characteristic condition.

In this section we formulate two further principles, and show

that, in sufficiently simple cases, all four are equivalent.
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We start with the following question: if u is a smooth solu-

tion of the system of conservation laws (3.6):

(7.1) u, +f(u), =0,

does u satisfy some other conservation law that is not merely a
linear combination of the equations (7.1). To answer this we write

(3.7) in the differential form (3.7):

7.2) u, +A(u)u, = 0, A = grad T
T X

Let U = U(u) be some function of u; multiplying (7.2) grad U

= (U 1,...,U ) we get
1 N
: u u

(7.3) . U, tegrad UAu = 0
If there is a function F(u) such that
(7.4) grad UA = grad F

then (7.3) can be written as a conservation law:
(7'5) Ut+EX,,= O .

Since in our derivatidn we used the differential form (7.2) of the
equation, we caﬁnot conclude that a solution of (7.1) in the
integral sense satisfies (7.5) in the integral sense; in fact,‘as
we shall see, the opposite of this is true.

We remark that (7.4) is a system of N linear differential
equations for the two functions U and F. For N < 2‘there aré
plenty of solutions; for N > 2 fhere are none in general, except in

special cases. For example, Godunov .has obSérvéd thafmﬁhéﬁ A is
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symmetric, i.e.

aort  £d
(7.6) of _ _f*
' du? dut
then
' - o
(7.7) U=>" u? and F =3 quJ-g

satisfies (7.4), where g is defined by

(7.8) %8 _pd 51,

du?

note that (7.6) is the compatibility relation for (7.8). The
equations of gas dynamics, discussed in Section 3, have an extra
conservation law, where U is entropy S. Generalizing this case we

define .U to be an entropy function for the system (7.1) if equation

(7T.4) can be satisfied, and if U is a convex function of u. Note

that U in (7.7) is a convex function; so is -8 in gas dynamics.
According to the laws of thermedynamics; entropy is a non-
decreasing function along a particle path; we shall deduce a
similar property of the generalized entropy functions defihed
above. We look at solutions of (7.1) which are limits of viscous

equations. We envisage here an artificial viscosity, of the form
(7.9) . ' u, +f._ = Au s A >0

Suppose that as A — 0, solutions u(X) of (7.9) tend boundedly, a.e.
to a limit u. Then u, (A) tends to u, (u(x)) to f( u) and the
right side of (7.9) tends to O in the sense of.dlstrlbutions;

therefore u‘satisfies in the distribution sense

g_t+fx(u) =0 .
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| Iet's rewrite (7.9) in nonconservation form:

(7.9)! | uti-AuX = A, "

Suppose”U is an entropy function; then multiplying (7.9)' by

grad U we get, using (7.4),

(7.10) U +Fy, = A grad U: u, -

Using the chain rule we get, differentiating Ux = grad U - Uy s that

T
(7711) U, = grad U-u, tu U U -

Since U is an entropy function, it is convex, i.e. the matrix of

its second derivatives is positive definite:

(7.12) Uy ~ © -

We deduce from (7.11) and (7.12) that

grad U- Uy = Uxx

Substituting this into (7.10) we get

(7.13) Ut'fo = 7\Uxx *

Suppose that u(A) is a sequence of solutions of (7.9) that tends
as A — O boundedly and a.e. to a limit u. Then U(A) = U(u(n)) and
F(7n) = F(u(n)) tend to U and F in the sense of distributions,
while the right side of (7.13) tends to zero in the sense of

distributions. So we have proved the

Viscosity Theorem: Let U be an entropy function for the system

(7.1). Let u be a limit, boundedly, a.e., Of a sequence u(A) of

L8




solutions of the viscous equations (7.9). Then u satisfies the

conservation laws (7.1), and the inequality

(7.14) U(u)t+F(u)X <0.

Suppose u is a piecewise smooth solution with discontinu-

ities; then U 4—FX = O in the smooth regions, while on a discon-

t
tinuity x = x(t)
(7.15) ' U +F, = 5(x —x(t)){s[Uz-Ur] —[Fz —Fr]}..

We draw two conclusions from this:
(7.15)! S[Ug"Ur]"[Fg' Fr] =< 0.

Denote by U(t) the total entropy at time t:

(7.16) T(t) =fu(x,t)dx,-
then
(7.16)! %g =) Udx =% S[Ug"Ur]' [Fz— F.]

This shows that the left side of (7.15)' is the rate at which

entropy is diminished at the discontinuity. (7.14) and (7.15)!

are called entropy conditions.

The viscosity theorem characterizes solutions of (7.1) thaf
are limits of viscous solutions without carrying out the limiting
pProcedure; tﬁe characterization is in terms of entropy. We connect
now this entropy condition to the stability condition stated in

Section 3:
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Entropy Theorem: Let u be a piecewise continuous solution of a

single conservation law that satisfies the entropy inequality

(7.15)' for all entropy functions. Then the discontinuities of u

Proof, due to Hopf [16] and Kruzkov, [19]:
Let (uﬂ,ur) be a discontinuity of u, say u, < u.; let v be

any value between the two:
We define U by

u-v for v < u .

Note that U is a convex function. Set U into the differential

equation (7.4); we get

0 for u=<yv
F (u) = |
Ka(u) for v <u
Integrafing gives
0 for u =<V
F(u) =

Uy, -U =v-u_, Fg“ Fr = fv —fr

Set this, together with definition (3.21) of s, into (7.15)'; after

a little rearrangement we get
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‘ ) u,-v v —uﬂ
(7.17) f(v > ————uf  t+ —_— f
—_ ur —uz y/ ur -uz r

which is equivalent with condition (3.25) when uz < U The case

uﬂ > u,. can be reduced to the previous case by using the conserva-
tion law, entropy and stability condition satisfied by -u.

If we combine the viscosity and entropy theorems, we deduce
that the following statements about discontinuous solutions of
single conservation laws are equivalent:

(I) u is the limit of ‘solutions of the viscous equation
(7.9). |

(II) u satisfies the entropy condition (7T.14) for every
éntropy function.

(III) The discontinuities of U are stable in the sense éf
(3.25). A

A direct derivation of (III) from (I) is contained in [18].

As remarked in Section 3 for convex f (III) is equivalent
with |

(IV) The discontinuities of ﬁ satisfy the characteristic
condition (3.26).

Next we show that discontinuous solutions that satisfy the

stability condition are uniquely determined by their initial data.

The proof is based on the

Contraction Theorem (Keyfitz, [18]): Let u and v both be solutions

of

and suppose that both satisfy the stability condition (3.25); then
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o
(7.18) a(e) -v(t)] = [ lulx ) -vix ) lat
-0 '
~is a decreasing function of t.
Proof: We write
(7.19) luev] =5 e, [ (u-v)ax
_ . _ I

n

where the intervals I —are chosen so that (u-v) is of sign e, over

In' Denote the endpoints of In as [an,bn]; of course bn = 8

Since u and v depend on t, so do an(t) and bn(t); we assume the

b
i }
a

n n

dependence is differentiable. Differentiate (7.19):

d

(1.20) g lwvl =TT sn[f (g -vy)ax + (uv)

- I

Replacing u, by —f(u)x, vy by -f(v), and carrying out the integra-

tion we get

b

d n

(7.29)’ T lu-v| =5 en[f(v) —f(u)-%(u—v)s]

-8
n

where s abbreviates dx/dt, x = a, or b .
If a, or bn is a point of continuity for both u and v, then
w = v there and so the contribution to the right side of (7.20)' is

zero. Suppose on the contrary that, say, bn is a discontinuity of

u but not for v, with say

(7.21) u, = u(b
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of s and the abbreviations

£, = f(ur) , f = f(uﬂ) R f = f(v)

we can write the corresponding term on the right of (7.20)'" as

£, -1,
(7.22) - f—fz+(uz-v)v_.u_r

According to condition (3.25)!

fﬁ - T T - fr

u v Z
-V -V -u
Y/ v r

This and (7.21) readily imply that (7.22) is nonpositive.
Condition (3;25) is invariant when u is replaced by -u, f(u)
by -f(-u), v by -v, f by -f; this proves that when the inequality
in (7.21) is reversed, the contribution to the right side of
(7.20)" is still nonpositive. Similarly, condition (3.25) is
invariant when x is replaced by -x and £ by -f; this proves that
the contributions to the right side of (7.20)" at the lower end-
points are likewise nonpositive. Finally, since u and v enter the
inequality symmetrically, contributions to the righﬁﬁside_of
(7.20)' at discontinuities of v are likewise nonpositive, as long
as these are distinct from the discontinuities of u; If the dis-
continuities of u and v intersect only at discrete times, we coh—
clude from (7.20) that lu-v] is a nonincreasing function of t; the
exceptional case can be reduced to this by changing slightly the
initial data of one bf the functidns. This completes the proof of

the contraction theorem.
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It follows that if u = v at time t = O, then u = v for all

t; this proves the

Uniqueness Theorem: Two solutions of a single conservation law

both of which satisry the stability condition and which are equal

at t =0 are .equal at all times t > O.

.

" We turn now to the question of existence of stable solutions
with prescribed initial values; we content ourselves with Riemann
initial values, consisting of two constant states

Z(W' for x < O
(7.23) u(x,0) = l

z for 0 < X .

We have remarked earlier that for u, <u, (3.25)" is equivalent
with (7.17); the geometric interpretation of this 1s that f lies
above the secant in the intervai (uﬂ,ur). When u, > ur, condition

)
(3.25) demands that f lie below the secant in (ur,uﬂ).

To solve the initial value problem in the case, say, W < Z

we construct the convex envelope g of between z and w defined as

the largest convex function g which is =< f, see Fig. 7.1, where g

appears as a dotted line. Denote by w = u_ < u, <...=< U = z the

Figure 7.1

-endpoints of intervals where'g = f. Then'the"solution'of‘the
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initial value problem consists of k+1 constant states connected
by k waves; if g = £ in (uj’uj+l)’ Uy and Ujyq are connected
through a centered rarefaction wave; if g < f there, the wave
connecting tﬁem is a straight shock. In the case depicted in Fig.

7.1, k = 2:

Figure 7.2

Clearly U, < u,. for each shock, and f lies above the secant g in
(u'e’ur)' l
We note the following general properties of solutions:
i) If f has ¢ inflection points k < g+1.
ii) If k = 2, then the shock is sonic on one side but not,

in general, on the other.

The occurrence of shocks wﬁich are sonic on one side whén f
has inflection points is analogous to detonation waves satisfying
- the Chapman-Juguet condition.

We turn now to systems, for which we have already defined the
entropy concept and have proved the viscosity theorem. Next we

state a local version of the

Entropy Theorem:v let u be a piecewise continuous solution of a

system of conservation laws that has an entropy function U.

Suppose further that the jumps of u. across discontinuities are
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small. Then the discontinuities of u are stable iff the entropy

condition (7.15)' is satisfied.

Sketch of proof: It was shown in Section 3 that the states u, that
satisfy the R-H conditions form N one parameter families ur(e)- the

>

states that satisfy the stability condition (3.25) make up half of

and u'(0) = r.

Abbreviate the left side of (7.15)' by R:

]

r

|

\

| this family, corresponding to e < O under the normalizations (3.33)
(7.24) . R=s[U,-U)-[F,-F

Obviously R(0) = 0; we show now that also R'(0) = 0. For differ-

entiating (7.24) we get’
R'(0) = -sU'(0) +F'(0)

Multiply (7.4) by u'(0); using the fact that u'(0) = r and there-

fore Au'(0) = ar we get
aU'(0) = F'(0) .
Since a(0) =.s8(0),-we deduce from the last two relations that
\
|

R'(0) = O.
A straightforward but slightly tedious calculation shows that
R"(0) = 0 and

m _ 1.7
R (o)_gruuur.

Since the entropy U is assumed to be a convex function of u, it
follows that R''"(0) > 0. This shows that for e small enough,
R(e) < O iff g < Q; This proves -that for small--diseontinuities the-

stability and entropy conditions are equivalent, as asserted.
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Notice that if R"(0) were # O then R(e) has the same sign
for all € small, regardless of the sign of . Therefore if we
assume the truth of the entropy theorem, it follows without any
tedious calculation that R, the rate of entropy production, is at
most cubic in the shock strength e.

The contraction theorem is most likely not valid for systems.
A uniqueness theorem for a special class of systems of 2 conserva-
tion laws has been given by Oleinik in [27]; a more general unique-
ness theorem, using entroby, has been given by Diperna, (71.

We close this section by remafking that the circle of ideas
described in this section remains an active area of research. The
concepts of entropy and stability are central in describing solu-
tions that are limits of solutions of equations with viscosity,
real or artificial. The characteristic condition, always necessary,
is not always sufficient and has to be supplemented by the first

two.

57



[1]

[2]

(3]

(5]
[6]

[7]

[8]
[9]
[10]

[11]
[12]
(131

[14]

[4]

1-58

Bibliography

Bethe, H., The theory of shock waves for an arbitrary equa-
tion of state, OSRD, Div. B, Report No. 545, 1942.

. Boris, J.P. and Book, D.L., "Flux-Corrected Transport. I.

SHASTA, A Fluid Transport Algorithm that Works", J. Comp.
Phys., 11, 1973, 38-69.

Chorin, A.J., "Random Choice Solution of Hyperbolic Systems",
J. Comp. Phys., 22, 1976, 517-533.

Courant, R. and Friedrichs, K.O0., Supersonic Flow and Shock
Waves, 1948, Wiley-Interscience, New York, reprinted by
Springer Verlag.

Dafermos, C.M., "Structure of solutions of the Riemann
problem for hyperbolic systems of -conservation -laws", -Arch.
Rat. Mech. Anal., 53, No. 3, 1974, 203-217.

Diperna, R.J., "Existence in the large for qguasilinear hyper-
bolic conservation laws", Arch. Rat. Mech. Anal., 52, 1973,
oLL-257. .

Diperna, R.J., "Uniqueness of solutions of quasilinear hyper-
bolic conservation laws", to appear.

Douglis, A., "The continuous dependence of generalized solu-
tions of nonlinear partial differential equations upon
initial data", Comm. Pure Appl. Math., 14, 1961, 267-284.

Glimm, J., "Solutions in the large for nonlinear hyperbolic
systems of equations", Comm. Pure Appl. Math., 18, 1965,
697-715. '

Glimm, J. and lax, P.D., "Decay of solutions of systems of
nonlinear hyperbolic conservation laws", Mem. Amer. Math.
Soc., 101 (1970).

Godunov, S.K. and Bagrynovskii, Y., "Difference Schemes fo
Many Dimensional Problems, D.A.N. 115, 1957, 431, -

Godunov, S.K., "On the uniquéness of solutions of the equa-
tions of hydrodynamics", Mat. Sb. 40, 1956, 467-478.

Greenberg, J., "BEstimates for fully developed shock solu-
tions", Indiana Univ. Math. J., 22, 1973, 989-1003.

Harlow, F., "The particle—in-cell method for fluid dynamics",
Methods of Comp. Phys., Vol. 3, B. Alder, ed., Acad. Press,
New York,. 1964, 319-343.




[15]

[16]

[17]

[18]

[19]
[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

1-59

Harten, A., "The Artificial Compression Method for Computing
Shocks and Contact Discontinuities", Comm. Pure Appl. Math.,
XXX, 1977, 611-638. ' :

1

Hopf, E., "The partial differential equation ﬁt+-uu = uu ",

Comm. Pure Appl. Math., 3, 1950, 201-230. X

Hopf, E., "On the right weak solution of the Cauchy problem
for a guasilinear equation of first order", J. Math. Mech.,

19, 1969, 4s83-487.

Keyfitz, B., (Quinn), "Solutions with shocks; an example of
an Ll contractive semigroup", Comm. Pure:Appl. Math., 24,

1971, 125-132.

Krushkov, N., "Results on the character of continuity of
solutions of parabolic equations and some of their applica-
tions", Math. Zametky, 6, 1969, 97-108.

Lax, P.D., "Weak solutions of nonlinear hyperbolic equations
and their numerical computation", Comm. Pure Appl. Math., 7,

1954, 159-193.

_» "Shock waves and entropy", Proc. Symp. Univ.
Wisc., 1971, E.H. Zarantonell, ed., 603-634.

, "Hyperbolic systems of conservation laws and the
mathematical theory of shock waves", 1972, SIAM, Phil., Pa.

Lax, P.D. and Wendroff, C., "Difference schemes for hyper-
bolic equations with high order of accuracy", Comm. Pure Appl.
Math., 17, 1964, 381-39k.

Liu, Tai-Ping, "The entropy condition and the admissibility
of shock", Math. Anal. and Appl., 53, 1976, 78-88.

» , "Solutions in the large for the equations of
nonisentropic gas dynamics", Indiana Univ. Math. J., 26,

1977, 147-177.

MacCormack, R.W., "Numerical solution of the interaction of
a shock wave with a laminar boundary layer", Lecture Notes
on Physics, No. 8, Springer Verlag, Berlin, 1971.

Nishida, T. and Smoller, J.A., "Solutions in the large for
some nonlinear hyperbolic conservation laws", Comm. Pure
Appl. Math., 26, 1973, 183-200.

Oleinik, 0.A., "On the uniqueness of the generalized solution

of Cauchy's problem for a nonlinear system of equations
occurring in mechanics", Uspehi Mat. Nauk, 73, 1957, 169-176.

59



[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

1-60

Peaceman, D.W. and Rachford, H.H. Jr., "The Numerical Solu-
tion of Parabolic and Elliptic Equations, Journ. Soc. Ind.
Appl. Math., III, 1955, 28-42.

Richtmyer, R.D. and Morton, W., "Difference Methods for
Initial Value Problems", Interscience,' New York, 1967.

Serrin, J., "Mathematical Principles of Classical Fluid
Mechanics", Handbuch der Physik, Vol. 8, 1959, 125-263.

Smoller, J., "A uniqueness theorem for Riemann problems",
Arch. Rat. Mech. Anal., 33, 1969, 110-115.

Strang, G., "Accurate Partial Difference Methods", Num.

Math., 6, 1964, 37-46.

Wendroff, B., "The Riemann problem for materials with non-
convex equations of state II; general flow", J. Math. Anal.
Appl., 38, 1972, 640-658.

Weyl, H., "Shock waves in arbitrary fluids, Comm. Pure Appl.
Math., 2, 1948, 103-122.

Yanenko, N.N., "The method of fractional steps; the solution

of problems in mathematical physics in several variables".
English translation, New York, Springer-Verlag, 1971.

60




ON THE MATHEMATICAL THEORY OF DEFLAGRATIONS AND DETONATIONS

K. 0. Friedrichs
Courant Institute of MathematicalASciences

New York University
New York, New York 10012

While the propagation of a shock wave is completely deter-
mined by the conservation laws, the boundary conditions of the
problem, and the additional condition that the entropy increase in
the process, the same is not true for the propagation of a detona-
tion wave and of the flame front in an ordinary combustion process.
More conditions must be added to the conservation laws in order to
provide sufficient data for the unique determination of the propa-
gation process. For detonations this necessity was recognized by
Chapman and Jouguet when they introduced their famous hypothesis.
For combustion processes this necessity was more or less tacitly
assumed by Jouguet and others when'they attacked the calculation
of the flame speed by taking heat conduction into account without
even trying to determine the flame speed from the conservation laws
and boundary conditions alone.

It is natural to expect that the needed additional conditions
could be derived from an investigation of the internal mechanism
of the combustion or detonation proceés. Thus v. Neumann [1] has
arrived at a justification of the Chapman-Jouguet hypothesis for
detonatiéns by taking into account that the chemical reaction takés
place over avzone of finite width; his arguments are based on the

assumption that a detonation is initiated by a shock. For combus-
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tion processes, which do not involve shocks, no unique determina-
tion can be achieved without taking heat conduction into account.

It is the intention of the present paper to offer a unified
and more complete discussion of the question of detérminacy for
detonations and deflagrationsl. In order to be able to point out
the contrast between these two kinds of processes we shall treat
both of them on thé basis of the same assumptions: We shall take
viscosity and heat conduction into account and assume a finite rate
of chemical reaction. (Accordingly, we shall not postulate that a
detonation process begins with a shock.)' From the discussion of
the internal mechanism of fhe detonation and deflagration process
on this basis we shall obtain the desired additional conditions
which make unique determination of the whole process possible by
excluding certain detonation or deflagration processes which would
be compatible with the conservation laws. In particular we shall
find as a result that a detonation bégins with a shock and that the
Chapman-Jouguet hypothesis furnishes the correct additional condi-
tion provided that for a given value of the reaction rate the vis-
~cosity and the heat conductivity are sufficiently small. If, on
the other hand, the reaction rate is very high, for given viscosity
and heat conductivity, the detbnation no longer begins with a

shock; and if the reaction rate is excessively high, the Chapman-

; We propose to use the term deflagration for those combustion
processes which take place in a very narrow zone of constant width
and which therefore in good approximation can be described by a
discontinuity. For detonation and deflagration processes we shall
employ the common name "reaction process'.

62




2-3

Jouguet hypothesis is no ionger correct; (see Abpendix II). The
additional condition for deflagrations is such that it prescribes
the flame speed dependent on heat conduction and reaction rate.

To fix the ideas we have'considered fhe problem of determin-
ing the flow undef the following circumstances: In an infinite
tube a piston moves in a prescribed manner beginning at an initial
time at an initial cross-section. At the same time a reaction
process begins at the piston and travels into the quiet unburnt gas.
This problem includes the important case that the tube is closed
at the initial cross-section; for, this case results when the
piston remains at its original place. 'The case of an open end
results when the piéton is withdrawn with sufficiently large speed.
Also the case is inéluded that 1n a doubly infinite tube containing
combustible and non-combustible gas, not separated by a piston, a
reactioﬁ begins at the interface. One needs only force the piston
to move in the same manner in which the initial cross-section would
move anyhow if there were no piston.

Before deécribing the results in greater detail we formulate

the basic assumption underlying our investigations, viz. that the

reaction process in question may approximately be considered as a

sharp discontinuity. More precisely the assumption is ‘that the

"reaction zone," across which chemical composition, pressure, -
temperature, and velocity change is very narrow and of nearly
constant width; (see Appendix I). By this we mean, firstly, that
the space rates of change of the pertinent quantities over a sec-
tion in the field of flow outside of the reaction zone are negli-

gibly small when compared to the rates of change of the same
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quantities inside the reaction zone and, secondly, that the time

rate of change of the width of the reaction zone is small when
compared with the average speed with which the gases cross the
reaction zone. This assumption appears to be justified only if the
coefficients of viscosity and heat conduction are sufficiently
small and the rate of reaction is sufficiently large. (We leave
aside the question whether or not under these circumstances the
aésumption ié always justified.) The pertinent quantities on both
sides of the "reaction front" are then connected by the same well-
known laws of conservation of mass, momentum, and energy that hold
for the quantities at both sides of a discontinuity surface.

Next we give a brief account of the indeterminacies that one

encounters when one tries to determine a flow involving a reaction
discontinuity solely by using the conservation laws and the bound-
ary conditions. To this end it is necessary to distinguish various
types of reactibnlprocesses. Among the detonations there ié, as is
well known, a particular one, the "Chapman-Jouguet" detonaﬁioﬁ,

which is singled out from others by the prdperty that the flow of

-the‘bdrnt gas is sonic when observed from the reaction front. We

have termed "strong" or "weak" a defonation if it involves a
pressure rise greatér or less than for a Chapman—JougUet detona-
tion.l Similarly, we have termed "strong" or "weak" a deflagration
if it involves a pressure drop greater or less than for a Chapman-
Jouguet deflagration, which again is characterized by the condition

that the flow burnt gas is sonic when observed from the reaction

~_For the following.see [2]}.. -
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front. A constant volume detonation is the limiting case of a
weak one, producing the least pressure rise (and the least tempera-~
ture rise) among all detonations for the same explosivé; a éonstant
:pressufé déflagration is also the limiting caée of a weak one,
producing the least drop in density (and the greatest temperature
rise) among all deflagrations. |

We now consider the flow of-gas in a half-finite tube re-
sulting, as indicated before, when a reaction front starts to move
from the finite end of the tube into the unburnt gas under the
influence of a piston which moves in a prescribed manner. We then
ask for the gas motions which are compatible with the conservation
laws and the piston motion. Mathematically speaking, we ask for
the solutions of the flow differential equations compatible with
the transition conditions at the discontinuity front and with the
boundary condition, which expresses that the gas adjacent to the
piston has the same velocity as the piston. This problem will be
referred to as the "external flow problem." The answer,.
explained in detail in [2] is -this:l Suppose the reaction
process is a detonation; if then the piston moves in the same
direction as the reaction front, and if.the velocity Up of the
piston exceeds the gas velocity up which would be produced by a
Chapman-Jouguet detonation, then there is just one flow_involving

a strong detonation in which the burnt gas has the prescribed

1 It should be emphasized that the theory as considered in this
report, based on the assumption that the reaction front be a sharp
discontinuity, does not offer any possibility of predicting whether
a detonation or a deflagration will occur in a given situation .
{except that under certain circumstances deflagration flow is not
possible).
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piston vélocity. If, however, the piston velocity u, is less than

P

u., adjustment of the velocity of the burnt gas to the piston

D’

velocity can always be achieved by a Chepman-Jouguet detonation

followed by an appropriate rarefaction wave, but it can also be

achieved by a set of weak detonations followed either by a shock

or a rarefaction wave. Thus, in case u, < u the solution of the

P D’
mathematical problem is not unique; there is a one-parametric set
of solutions.

For deflagration processesAthe degree of indeterminacy is

P one has still the choice

of a flame velocity arbitrary within certain 1imitsl and can

_ still higher. To any piston velocity. u

achieve.adjustment of the gas velocity to the piston velocity by'
sending ahead of the flame a shock of appropriate strength. Again,
there is a one-parametric set of solutions as long as the deflagra-

tion remains wéak. If the resulting deflagrations become strong

ones, the possibilities of adjustment become still greater and the
set bf solutions is two-parametric.

To express these determinacy statements in a simple form we
introduce as "Jegree of under—determinacy" of the external flow
prdblem the number t of conditions that must be imposed on the data
of the flow.problem in order to make the solution unique.

Summarizing we then have:

< The limiting case is the one in which the flame togethér with
the pre-compression shock are just equivalent to a detonation.
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Strong detonations t=0,
Weakbdetonations ot =1,
Weak deflagrations t =1,
Strong deflagratiqﬁs t =2 .

Chapman-Jouguet detonations and deflagratlons are here cl

strong detonations or weak deflagrations respectlvely

assed W1th

These peculiar under—determ1nac1es are a consequence of
Jouguet‘s important rule (cf. [2]); concerning the properties of
the gas flow observed from the reaction front:

A t A _
‘ Detonation Detonation
: front front
Weak detonation. \ Strong detonation.
¢ | Deflagration ¢ ) Deflagration
front: front
. X : X
Weak deflagration. _ Strong deflagration.

Particle paths. and sound paths /" at
detonation or deflagration fronts.

Figure 1
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The flow ahead of a detonation front is supersonic, and sub-

sonic ahead of a deflagration front. The flow is subsonic behind

a strong detonation and a weak déflagration front, supersonic

behind a weak detonation and a strong deflagration front. The flow

i§ here always understood relative to the reaction front.

We now proceed to discuss the chief aim of the present paper,
namely to decide which of the flow processes, still permitted by
the conservation laws, are excluded through the action of viscosity,
heat conduction, and chemical reaction. To this end we shall take
into account that the reaction zone has a finite extension. We
then shall set up the differenﬁial equations governing the transi-
tion across such a reaction zone and investigate under which cir-
cumstances these differential equations possess solutions satis-
fying the boundary conditions imposed at the two ends of the re-
action zone. These boundary conditions consist in prescribing the
chemical composition, pressure, temperature, and veloclty of the
gases at both ends of the reaction zone in such a way that the laws
of conservation of mass, momentum, and energy are satisfied by
these quantities. The differential equatibns in the interior of
the reaction zone express the same conservation laws, but take into
account chemical reaction, viscosity, and heat conduction.

Investigations of this kind for shocks not involving a
chemical reaction havé been made in detail by various authorsl.

The result was that a transition between the given quantities at

both sides of the zone is always possible provided that the

1 see e.g. Becker [3] and Weyl [4].
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direction of the flow corresponds to increasing entropy. Our

investigation will show that the same is true for strong detona-

tions and for Chapman-Jouguet detonations. For other modes of

reaction, however, the situation is cdmpletely different. Here are
the results of our analysis:

Unless the rate of reaction is excessively high, weak detona-

tions, though compatible with the conservation laws, are impossible.

The condition that the detonation be strong or of the Chapman-
Jouguet type is, therefore, the desired additional condition men-
tioned in the beginning. Consequently, a flow involving a detona-
tion is uniquely determined. For, if the piston velocity is high,
Up > Up, there is a unique solution involving a strong detonation,
as mentioned before; for lesser piston velocity, however, up < ups
there is now only one possible flow left in which the velocity of
the burned gas equals the piston velocity, and that is the flow
involving a Chapman-Joﬁguet detonation. In particular we see that
= 0, or open end, u

for a tube with a closed end, u << 0, a

P P
Chapman-Jouguet detonation is the only possible one. Thus the

occurrence- of this particular detonation is here deduced and no
additional hypothesis is required.

If, however, the reaction rate is excessively high, the
analysis yields the result that the Chapman-Jouguet detonation is
impossible. Instead, a particular weak detonation is possible
which travels with a well-determined velocity (depending on
pressure and temperature in the unburnt gas, reaction rate, viscos- ‘
ity, and heat conductivity). If the piston velocity is large

\

enough;” adjustment still réquires a strong detonation. For lesser
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piston velocities, for example for closed or open ends, adjustment
is effected by thé particular weak detonation followed by an
appropriate shock or an appropriate rarsfaction wave.

As to deflagrations the results of the analysis are that

strong deflagrations are impossible altogether.l ‘A weak deflagra-

tion is possible only.with a well-determined speed. We distinguish

the "flame velocity," i.e. the velocity of the reaction front
relative to the tube, from the "burning speed,” i.e. the speed of
the reaction front relative to the unburnt gas ahead of it. While
the flame velocity depends on the boundary conditions .of the.

problem as a whole, the burning speed depends only on pressure and

temperature in the unburnt gas, and also on reaction rate, heat

conductivity and viscosity. That the burning speed has this partic-

ular value is the desired additional condition for deflagrations.
As stated before, for a burning speed arbitrary within certdin
limits, a deflagration flow can be found which.is adapted to the
piston motion. A further limitation is impbsed by excluding strong
deflagrations. Thus we see: Within certain limits for the data of

the problem there exists a uniquely determined flow involving a

deflagration and adapted to the piston motion.

We cali attention to a number of detailed investigations of

the transition process in reaction zones. Detonation transitions

+ This result could also be established by v. Neumann's argument
ignoring viscosity and heat conduction and taking only the finite
rate of chemical reaction into account.
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have been detérmined in detail by Eyring and his collaboratorsl
Deflagration flame speeds have been calculated by Jouguet and
othersg, on the basis of various assumptions about the details of
the transition pfocéss. The aim of the present report is differ-
ent: it is notvintended to give'new methods for calculating such
transition processes. The intention is solely to decide the ques--
tion of determinacy by investigating such transition processes

systematically on the basis of the existing theory.

l. The internal mechanism of the reaction process.

We assume the process to be strictly one--dimensional3 and
observe the process from a frame moving with instantaneous flame or
detonation speed. We assume that the flow so observed is steady

at the time considered .in the neighborhood of the reaction zoneq.

1 See [5] for an excessively high reaction rate, [6] for actual
reaction rates. The latter Paper contains a great number of
detailed investigations concerning detonations primarily of solid
explosives.

2 Cf. Lewis and v. Elbe [7], Jost [8], Semenov [9] , further [10]
and [11l]; the latter report gives a survey of earlier work.

5 This assumption is no serious restriction for the discussion of
the internal mechanism since the flow in the neighborhood of a
point of a reaction front may.be considered one-dimensional to the
same degree of accuracy as the assumption is valid that the
reaction front is a sharp discontinuity.

The assumption of the one-dimensional character of the flow 1is,
however, a serious restriction for the external flow problem since
this assumption is known to be never quite satisfied for combustion
waves.

N The assumption of "local steadiness" does by no means imply that
we consider only reaction processes that proceed with constant
velocity into the unburnt gas. - See the discussion in the Appendix.

71




’This is in agreement with our basic assumption (p. 3) that the
reaction zone is very narrow and of nearly constant width. Con-
“sequently, all quantities depend only on an abscissa x, and not on
the time. At each place X, there is a mixture of burnt and unburnt
gas; we denote by e the fraction of mass of burnt gas in the mix-
ture. We denote préssure and specific volume by p and.T and intro-
duce the "reduced temperature" 6 = pt, a quantity which has the
dimension of velocity squared. We assume burnt and unburnt gas to
be ideal. Accordingly, 6 is propprtional to the temperaturel.

The internal energy e per unit mass of the burnt and of the unburnt
gas is assumed to be a function of & only, (actuélly e depends also
somewhat on the pressure p, see also footnotel: denoting by g the
energy of formation per unit mass (dt absolute zero temperature),

we introduce the total energy per unit mass
E=etg .

* Burnt and unburnt gas are distinguished by the superscripts (1) and

(0). The total energy per unit mass of the mixture is then
8(2)(6) = (1-e)E(®)(0) + eV (o) .

On the energy functions E(6) we require that

aele) o
-
or
E(O)(e) > E(l)(e)
1

The absolute temperature is given by R6/M where R is the gas
constant and M the molecular weight. We disregard the dependence
~of the molecular weight on the mixture ratio e.
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This condition implies that the "liberated energy"

. is positive. (It is convenient to méke'this assumption although
most of our conclusions hold without it.) our requirement is
satisfied if burnt and unburnt gas are "polytropic"; i.e. if the

energies are given by

(0 6 1
ol )(e) = 3.1 -+ 8, E( )(e) =——Iyle_ +8q

with constant Yo? yl, €, &7, Drovided that the temperature is

below a certain limitl.

By v we denote the velocity of the steady gas flow and by

m = T-lV the "mass flux" of mixture through a unit cross-section

1

per unit time. By S we denote the mass of burnt gas created per
unit mass of unburnt gas per unit time. We assume that the
"reaction rate," S, depends on 6 and p, (cf. footnote 1),

and that S vanishes below a certain "safety temperature":

S=0 for 6 <g, . 2
- 8
' (Y4=1)(y1-1)
< This limit corresponds to § < —2 1 (8 . -g,). If one
- Yo~ V1 0 1

assumes Yo = 1.4, Y~ 1.2, the molecular weight M§ = Ml ~ 30, and

the "liberated energy" 8,8 ~ T kcal/gr, then the limit is about

BQOOOK. This case is, however, unrealistic since for such tempera-
tures the value of y for combustible gases will hardly ever be as
high as 1.4, '

2 The latter assumption is made only to achieve mathematical sim-
plicity. 1In recent papers [6], [10], [11], the reaction rate is
assumed to be of the form '

(footnote continued)
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The transition between the two states on. both sides of the
reaction front is effected by the action of viscosity and heat
conductionl.,,We introdﬁce corresponding coefficients uw and A such
that

~-1L %X and =2\ %Q

are the viscoﬁs pressure and heat per unit mass conducted through
a unit cross-section per unit timeg; These coefficients depend on
p, T, and g; but we need pay only iittle atténtion td this depen-
dence of our general discussion.

We now formulate the laws governing'the process. The conti-

nuity equation simply assumes the form

(footnote continued)

S =8 e_A/6
@

where A, proportional to the activation energy, is so large that S
is negligible when 6 assumes values corresponding to a temperature

of 300°K. The reduced safety temperature 65 has no precise signif-

icance (as the ignition temperature has in the older llterature),
it is simply a value below which S can be set equal to zero for all
practical purposes. The maximal reaction rate, Soo’ may depend

on P.

1 We ignore diffusion and radiation. Diffusion should not be
neglected in the actual calculation of flame speeds according to
[11]. We felt that for the sake of simplicity we could disregard
diffusion since the additional terms due to it would not seem to
entail any essential change in the general results.

One might object to using the notions viscosity, heat conduc-
tion, and diffusion if the width of the transition zone is ex-
tremely small. It seems likely, though, that nevertheless our
results remain correct in qualitative respects, in particular as
far as determinacy is concerned.

2 The customary coefficients of viscosity and heat conduction are,
in our notation, 3/4u and A/R, R being the gas constant such that
R6 is the temperature. : -
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(0) ’ m = const.

The law of conservation of momentum is

(1) - g%-kp-#mv = P = const.

Conservation of energyl is expressed by

(2)! -A %%-Fm[E(S)(9)4—% v2]-+v[p-u %%] = mQ = const.

The balance between burnt and unburnt gaé is given by

(3)" - v 25+ (1-e)s(e) = 0 ,

assuming a firsf,order reaction from a unimolecular mechanisme.
The problem is to investigate possible solutions of these
differential equations if the values of the quantities v, p, T,
and € are given at the end points of the reaction zone. We modify
this problem by prescribing the same values of these quantities at
X = o and X = -00. That it is Justified with good approximation

to substitute the modified problem for the original one follows

1 If we were to consider diffusion we would introduce a coefficient
5 such that -5 de/dx is the fraction of mass of burnt gas diffusing
through a cross-section per unit time. Then we would have to add

the term td(6 de/dx)dx to equation (3)' and —6d[E(8)(e)-+% v2]/dx
to equation (2)' in order to express the diffusion of energy. The
resulting modified equation (2)' would differ somewhat from those

in the literature (see [11] where only the diffusion of the energy
of formation is'taken into account.

e If a diffsrent mechanism of reaction were assumed leading to
terms (1l-g)©S or (l-e)(l+ne)s, cf. [10] and [11], no change in the
general conclusions would result. .
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from our basic assumﬁtion (p. 3) that the width of the reaction
zone is very narrow. More specifically, the assumption was that
the rate of change of the pertinent quantities outside the reactién‘
zoné is negligibly small as compared to the rates of change of
these quantities inside the reacfion zone. Consequently, these
guantities appear to be nearly constant at the ends of the reaction
zone over a region whose extension is large compared with the width
of the reaction zone. It is then natural to assume that the
process inside the'reaction zone cah very well be approximated by a
process that extends over the whole field from x = - to X =.+40.
and in which the pertinent Quantities assume at oo those values
that are prescribed for the proper proceSs at the ends of the
'finite reaction zone.:L _
Accordingly we ask for solutions of the equations (1), (2)!',
and (3)"which are défined for -o0 < x < oo and which approach
finite 1limit values (with t # 0) as x — *o0; then the derivatives
approach zero as seen from (1)', (2)', and (3)'. Solutions which

behave in that way at x = @ or x = -oo will be called'"regular"

L This procedure, typical for the treatment of "boundary layer
phenomena" is always employed for differential equations in which
the terms of highest order are multiplied by small factors. (In

our case these factors are u, A, and S&i.)

No accuracy would be gained by trying to discuss the solutions
for a finite range X, 2 X 2 X3 for, the conservation laws (l)éO

and (2)&3 would not be accurately valid unless accidentally

dt _ dg _ de _ : _ =
T o&X © 0O at x = xo and x = Xq e

For the infinite range it follows from regularity (see Section 2)
that these derivatives vanish at the end points.
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there. The limit values for x — - are denoted by Py 7T 2]

o’ Yo’

and €53 those for x — @ by Pys Tqs 91, and €y The boundary

conditions then consist 1in prescribing these values; in particular

we prescribe

| expressing that the gas consists of unburnt gas at x = -0 and of
completely burnt gas at x = +o0o. From relation (3)'" we then deduce

that the flux m is positive:
00 00
m =InJF de =k/ﬁ (t-1)(1-e)s(6)dx > 0 .
- -00

From this fact it follows that the reaction begins in the unburnt
gas at X = - and ends in the burnt gas at x = .

The values po, TO, eo, Vo’ and pl, Tqs el, vl for unburnt and
burnt gas are those that are pﬂgscribed at both sides of the dis-
continuity front. These quantities. are not prescribed arbitrarily,

they are to satisfy the conservation laws: (0) and

(1)]

. po+mvO =p;tmv, = P,

(2)!

o0

2 1 2
o E. +6 tsvy =Q,

1
EO+6 +§\r 1 1

o

through which at the same time the values of the constants P and Q-

are determined. Here we have set

E(O)(e ) = E

. 1
o o, and E( )(el) =B

l L]
The conservation laws follow immediately for any regular

solution from the differential equations (1)' and (2)', since these
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equations reduce to (l)éo.and (2);o’for X = ® and X = -00.
A further assumption which we impose on our boundary values

is

expressing that no reéction can take place in the unburnt gas at
its initial temperature, and that reaction would take place at the
final temperature if unburnt gas were still left.l

For the following arguments it is convenient to eliminate v
and p by

v =mt and p = r‘le s

and to consider T, 6 and € as the only dependent variables; the
equations then become

dt 1 2

(1) - um EE-FT_ 9 +m“t = P,
(2) -2 LanE)e)- 50?2 4pr) = ma,
(3) ' -m %éi-T_l(l—e)S(e) =0 .

The constant coefficients m, P, Q, and the boundary values Tor 1o

2] 91, g = 0, and €, = 1l are subject to the conservation laws

o’ o)

(1), Tgleo-+m210 = 17te, +n°t = P,
(2)0 Eo+90+% mng = E1+61+% szi = Q.
1

Relation 90 > es wbuld imply S > O for 6 = eo.and'would hence not
be compatible with equation (3)' for a regular solution.
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We now consider the system of differential equations (1),
(2), (3) and ask whether or not it possesses regular solutions

assuming the prescribed boundary values.

2. Regularity and determinacy.

We shall introduce as "degree of regularity" for each end-
point a number r such that the manifold of solutions of the differ-
ential equations (1), (2), (3) which are regular at that endpoint
and assume the prescribed boundary values there depends on r
barameters.

Let us first consider the endpoint x = ® . To determine the
degree of regularity ry at the end x ='aa we shall introduce
characteristic exponents, a, by the following formal procedure. We
expand the differential equationé (1), (2), (3) with respect to
pcwers of T—Tl, 9—61, and E-gq = e-1l. The terms of order zero
vanish by definition of P and Q. The terms of first order consti-
tute a system of linear differential equations with constant coeffi-
cients, the "linearizéd” differential equations for x = . Upon
inserting into these equations multiples of an exponential function
e®* for T=Tq5 9-61, and e-1, we obtain three linear equations for
the three coefficients whose determinant is a cubic equation for a.
The three roots of this cubic equation are the three characteristic .
eprnents. We anticipate the fact, shown later on, that for our
equations these characteristic exponents are always real. Suppose
we have fl nggative and 3-rl positive characteristic exponents,

then Ty is the degree of regularity. This fact is implied by the

well-known theory of singular points of ordinary differential
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equations. The behavior of the rl'parametric set of regular solu-
tions can be characterized by the regular solutions of the.
linearized equations; the latter are a linear combination of expo-
nential functions e®® if the characteristic roots are different;
otherwise terms like xe®* or X2eax enter. In case one character-
istic exponent is zero, one cannot say off-hand what the degree of
regularity is; a special consiaeration is needed.

The linearized equations at x = oo for the quantities T-T15

6-61, g€-1 are immediately found to be

d(t-1,) , _
(1) mi ———a—i—'FT 291(T—T1) —mz(T—Tl) -Tll(e—el) =0,
' d(e-6,) o-0, 3
+ 1 1 -1 |
(2) 7\]_'—'-&52-—----mi§1-_—_-:[-AE}l(és—l) 1,761 (T-74 i =0,
(3)+ | ‘ o m -d-"-(—g—i)-'f'”fl Sl(e—l) = 0 ,

- | (e)
where we have set Yﬁl = oF 86(6)’ AE = E<o)— E(l), and the sub-

seript (1) indicates that these quantities and also u, A, and S

are to be taken for 6 = 61, T =7Tq, &= 1.

For the characteristic exponent a one then obtains the equa-

tion
mula-m2+-rizel -111 0
-1 m : o
—m'rl 91 7\1(1-_—}’—1—_—1 . mAEl =0
-1
. 0 - 0] _ maﬁ-Tl Sl
or
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The first bracket has evidéntly one negative root. As to the
second bracket, which we write in the form aag-ba-kc we observe

that it has real roots since the discriminant

2 2

2 202 22 LL:L P s ! 2 2

b® - lac = (m TiA= 6 +m ) ——73:1—— (ylel- m Tl)
= W TRy Ty e My I) + U T17‘1“1 1

(22 n2.2 Hy 2

is positive.

Since a > 0 we see that the second bracket has one positive
and one negative root if ¢ < 0. If ¢ = 0, we have
b = bO = (yl—l)elxli-V%%I 91“1 > 0 and hence the bracket has one
vanishing and one positive root. If ¢ > O we have b > bO > 0 and
hence the bracket has two_positive roots.

In\case ¢ < 0 we have ry = 2 and in case ¢ > O we have rl==l.
A detailed"investigation of the vectornfield corresponding to the
differential equation would show that in case ¢ = 0 a two parametric
set of regular solutions exists; hence r, = 2 also in this case.

> >

Since the condition ¢ %2 0 is equivalent with v101 <= mETi we have to

distinguish the following two cases
Case (Al) m-T

Case (Bl) m-t
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The.degree of regularity in these cases is:

I
—
-

Case (Al) ry

ro- =2 .

Case (B 1

1)

Employing the sound speed cq = ¢y191 for the burnt gas in
state (1) we can write the condition for cases (Al) and (B;) in
the form

Case (Al) v, > ¢y,
Case (Bl) vy 2 ¢ -

Thus the flow of the burnt gas in state (1) is supersonic in '
. case (Al) and subsonic or sonic in case (Bl)'
For the state (o) at the end x = -0 we obtain a similar
equation for a, the only différence being that S = 0 in state (o)

since 90 = GS was assumed. Thé equation for a then becomes

- o 2 2 2 2 2 M,
(4)" maE@Toxouoa - {(m T g~ B Mg T T ?;:I)a
m 22
VI (Yoeo"m'To)] =0,
T Vo1

where'ko, Wy v, refer to & = 0,, 7 = %o’ € = 0. The first factor

here has the root a = 0. The bracket always has one positive root

and in addition one positive, vanishing, or negative root depending

2 2
on whether Yoeo"m Ty 7 O{ = 0, or < O. |
To determine the degree of regularity r, at the end x = -0

we first recall that 60 < es wags assumed. Hence for every regular

solution assuming the prescribed boundary values at x = - we
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have ¢ < es i1f x is sufficiently negative, for -m < x = X4 say.
By virtue of S = 0 for o = 64 équation (3) entails ¢ = 0 for

-®» <X < Xg The investigation of the manifold of solutions
regular at x = -0 is thus reduced to the investigation of the
regular solutions of equation (1) and (2) with E(E)(e) = E(O)(e).
The characteristic exponents for this problem are the roots of the

bracket in relation (4)7. Hence we conclude: If both roots of the

the roots is zero, as a detailed investigation of the vector field
corresponding to the differential equation would show. If one of
the roots is negative, however, the other one being positive, we

|
\
|
\
\
|
\
bracket are positive we have r, = 2. The same is true if one of o
have ry = l. Accordingly, we distinguish the following two cases:

Case (AO) mgrg > yoeo s

Case (BO) mgrg < yoeo .
The degree.of_regularity is

ro=2 ' in Case (AO) s

ro=1 in Case (B) .

Employing the sound speed o in the unburnt gas we write the

condition for cases (AO) and (BO) in the form

Case (AO) Vo Z Cg s
Case (BO) Vo < g
Thus, the flow of the unburnt gas at x = -~ is supersonic or sonic

there in case AO, while it is subsonic in case B,-
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We see that four different cases are to be distinguished
according to'whether case A or case B obtains at x = c© or at
X = —o. It is now very interesting that by virtue of Jouguet's
rule (see [2], p. 215) these four cases just correspond to the
four cases of strong and weak detonations and deflagrations;
the Chapman-Jouguét detonation or deflagration, characterized by
vy = Cq» is here classed with the strong detonations or weak
deflagrations respectively.

We now shall determine in a formal way, simply by counting
the number of parameters, the manifold of solutions which are regu-
lar at both endpoints. The set of solutions which are regular at
X = o 1s rl—parametric. Among these solutions those are to be
selected which are regular at x = -®. Since all\solutions regular
at xA= -oo form a ro-parametric set in the three—parametric set of
all solutions, it is clear that the condition to be regular at
X = - is expressed by‘B—rO}relations. Thus B—ro conditions are
imposed on the ry parameters characterizing the solutions regular
at x = c0o. One of these parameters can always be chosen arbitrar-
ily (within limits), since from every solution satisfying the
boundary conditions one obtains a set of others by substituting
x+ const. for x. Thus 3—ro conditibns are imposed on rl—l parame-
ters. If rl-l > B-ro, an (ro+-r1-4)-parametric set of solutions
can be expected to exist. If rl—l = B-ro, one solution (or else a
finite number of them) can be expected to exist. ITf rl—l < 3-ro
‘more conditions are imposed than pérameters are,avaiiable. These
conditions will be satisfied only if the coefficients entering the

differential equations or the boundary values assume appropriate

8l




2-25

values. 1In other words, 4-—ro--rl conditions are imposed on

coefficients and boundary values. We term the number

the "degree of over-determinacy." From Jouguet's rule and the

determination of the values of r, and ry given before we find

Strong detonation, Case (AOBl) , s =0
Weak detonation, Case (AoAl) s -8 =1
Weak deflagration, Case (BoBl)-’ s =1

Strong deflagration, Case (BOAl) , s =2 .

Upon comparing this table with the table for the degree of
under-determinacy given in the Introduction (p. 7) we realize the

fundamental fact that the degree of over-determinacy resulting from

the internal mechanism of the reaction process equals the degree of

under-determinacy of the external problem flow. The number of

conditions needed to make the flow problem unique thus equals the
number of conditions imposed by the mechanism of the reaction
process.

This result‘may be interpreted as follows: All strong
detonations are possible. Weak or Chapman-Jouguet detonations are
only possible if one of the parameters of the process satisfies one
condition. As such a parameter we may considervthe flux m. As
we shall see later, weak detonatiOns exist just for such values of
the flux that lead to Chapman-Jouguet detonations except for

sufficiently high values of the reaction rate, for which a larger
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value of the flux leads to a possible weak detonation. Weak
deflagrations are also only possible if one of the parameters, the
flux m say, satisfies one cbndition. As we shall see later, weak
deflagrations exist indeed for only a particular value of the flux.
Strong deflagrations should exist only if two conditions are satis-
fied by the parameters; As we shall see later, strong deflagra-
tions do not exist at all.

It must be emphasized that these statemeﬁts are so far.
derived in a purely formal manner. They are obtained by balancing:
the number of available parameters with the number of conditions
imposed. A definite statement about the existence and uniqueness
cannot be made on this basis. As a mattef of fact these arguments
are not sufficient to exclude weak detonations and strong deflagra-
tions. More detailed considerations are needed for thié purpose.
In the following Sections (3 and 4) we shall first investigate
certain limiting cases of ﬁeak deflagraﬁions and strong detonations,

and then proceed to discuss in Section 5 the problem of existence

of solutions in general.

3. Weak deflagrations.

The degree of over-determinacy was found to be s = 1 for
weak deflagrations. As indicated above, such deflagrations can
therefore be expected to exist only if the coefficients of the
differential equations satisfy one condition. This condition may
be considered a condition for the coﬁstant m, the flux, or for the
burning velocity vO = Tom. The question arises whether or not to

given values of 7, 6, and given functions S(@) and E(E)(e) there
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really is a value of the flux m for which the problem has a solu-
tion. We shall deal with this question in Section 5.
Here we.shall consider only the limiting case of a constant

pressure deflagration in which this question can easily be

answered. This limit case results if elther heat conductivity A
and viscosity p approach zero, if the reaction rate S approaches
zerol, or if the pressure pg increases indefinitely while the
temperature eo remains fixed. This limit case, to which actual
situatibhs frequently come very near, has always been assumed for
numerical determinations of the flame speed (see [10], [11]).

To describe the limiting "constant pressure problem" we first

introduce dimensionless quantities

m = mTO//ég ,
0= usoo/poﬁ2 - X = S‘OO/POINH2 s
¥ = p/p, 4=/, ,
and intrdduce the new variables
X = xS /mrO
T = T/TO s 6 = 9/9O .

1 For example by letting S_ — O, (cf. footnote on p. 13).

The objection may be raised that for small values of the
reaction rate the basic assumption (pp. 3 and 12) cannot be satis-
fied. Nevertheless it is necessary to consider the limit S — 0
for the discussion of the mathematical implications of the problem
formulated in Section 1.
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The equations (1), (2), (3) then become

aV]

-imeaT/aX + 8/7 + mex =

ol

-Nd6/dx + E (eoe)/eO -zm

I
O

- dg/dx + ?-1(1-8)8(90“9’)/90

This system of differential equations depends on the parame-
ters %, X, a, %, 5, and eo. We obtain the limiting problem by
considering a set of such systems for which m approaches zero while
the other parameters are kept fixed. 1In other words: The differ-
ential equations of the limiting problem are simply obtained by
omitting the three terms involving the factor %2.

The fact that K and a,are fixed while m apprbaches Zero
evidently implies xsc)o/po — 0 and p.sOD/pO — 0. The limiting equa-
tions will therefore represent a good approximation if XSOO/pO,
uSa)/po, and m are small. In that case we can re-introduce the

original quantities. Thus we obtain the equations of the constant

pressure problem in the following form:

(’i) : . P=P=p,,

|

| (2) -7\%%+m[E(8)(6)+6] =mq ,
(3) -m Z€ + poTt(1-e)s(6) = 0 ,

where we have eliminated T from (2) and‘(}), using (1).
Relation (T) expresses the fact that under the conditions of
the limiting problem the pressure does not vary across the flame

front: we ‘have constant pressure combustion. ~Further we see that

88




the tefm representing the kinetic energy has dropped out from (é).
The boundary conditions are @ = el, e =1at x=w, and
€ =0 at x = -co. The constant Q is given by Q = El+-el. The
relation EO-FGO = Q, which holds for regular solutions determines
the value 9 = eo at x = ~m.
To investigate possible solutions of this problem one may
consider 6 as independent variable running from eo to el and com-
bine the equations to

a 28 E.1+91’E(8)(9)-9

It is immediately seen that this equation has a saddle-singularity
at the point 6 = 91, € = 1. There is‘just one solution curve that
enters this point from the region ¢ < 1, g < 91. If this curve is
followed backwards it will enter the axis & = O at g point with
6 > 6, provided po)\/m2 is sufficiently large; if po7\/m2 is suffi-
ciently small the curve will enter the line 6 = es at a point with
g > 0. It is thus clear that there is just one value of po?\/m2 for
which the curve enters the line 6 = GS with € = 0. Since
de/d6 = 0 for 6 < 6., the curve will enter the line ¢ = 6, also
with the value ¢ = 0. That for this solution the quantity x
apprcaches o as 6 —»ei and -® as 6 —»eo is immediately seen from
(Z) ana (3).

Thus it is shown that in the 1limit, as the quantities
ASQD/pO and usoo/po approach zero, a deflagration process exists

with a well-defined flux m and flame speed Vo As will be showh_

later (at the end of Section 5), the same is true. for small values
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of these quantities, in other words, for sufficiently small values

of 7\Soo/pO and uSOO/pO a deflagration exists which is nearly a

constant pressure combustion and which is characterized by a

uniquely defined burning speed Voo

Computations of the burning speed can be Carried_out by
solving equations (3) and (3) or (5) through interactions, (see
[ 9], and [10], in the latter report the term d(5 de/dx)dx was
added to equation (3) in order‘to take diffusion into account); it
was found in .the quoted reports that for the actual situations
considered the approximation involved in (2) and (3) was rather
accufate since the omitted terms turned out to be very small for
the calculated solution.

It is interesting that essentially only the combination

p?\/m2 or the dimensionless combination

(6) ~ nPe/mas = (v2/0,)/(AS /P)

enters the constant pressure problem, as seen from equation (5).
(More precisely, the problem depends only on the dimensionless

quantity (6) in addition to the functions S(e)/sCD and E(E)(e)/eo;

note E_+ 6, = El+-el.) The quantity (6) approaches a finite limit

value as 7\Soo/pO approaches zero. Therefdre, for small values'of‘
. . /—_—'7_ .

ASGD/pO, the flux m 1§ proportional to poxsoo 90 and the burning

speed Vs to yYANS_ 6 /P

w0 If in particular A, Saa’ and the reduced

o
initial temperature eo are kept fixed, the flux increases like

'/Sg37po and the burning speed decreases_like\/sa)7po as P

increéses. If SOO were independent of p or increased with Py of

less -than first order; the latter result would mean that the -
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burning speed should decrease with increasing pressure. This does

not seem to be confirmed experimentallyl. It is thus indicated
that SOD increases with po-of higher chan first order. What
happens when P, decreases cannot be derived by considering expres-
sion (6), since the approximation made is no longer valid if
po/xsa) is small. Whether or not deflagrations are then possible

will be discussed later on, in Section 5.

4. Strong detonations and Chapman-Jouguet detonations.

We next consider strong detonations, including Chapman-
Jouguet ‘detonation; according to Jouguet's rule they have it in
common with weak deflagrations that the flow of the burnt gaé_is
subsonic. The flow of the unburnt gas, however, is supersonic (or
sonic). The degree of over-determinacy was found to be s = Q.
Hence no conditions need be imposed on the data other than the
inequality szi =< ylel, or v, < cq. Whether or not it is true
under this condition that a unique solution exiéts will be dis-
cussed in the next Section, 5.

In the present section we shall consider a 11m1t1ng case
obtained by letting uS, /p and AS /p approach zero. We imagine,
in particular that viscosity p and heat conduétivity A approach
zero while Sa; and p_ aré‘kept fixed. This limiting problem
presents an analogy to‘the limiting problem considered in Section
5; the limiting behavior of tﬁe present limiting problem is, how-

ever, quite different from that encountered in Section 3.

1 See e.g. [8], p. 146, Table 27.
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Consider a sequence of solutions. There are two possibili-
ties: elther the terms . %% and A %% in equations (2) drop out in
dt a6

the limit, or % and = become infinite. For those values of x for

which the first case occurs, the equations

(1)OD T'le-+m21 =P,
(2) UE )-l m272+PT=_Q,
(3) _in EEM L(1-e)s(e) = 0,

are satisfied in the 1limit. If the second case occurs at a place
X, a discontinuity of © and 6 occurs in the limit while & remains
continuous. Such a discontinuity would simply be a shock not
involving a reaction.

A more detailed investigation (see Section 5) of the limit
process xSGD/pO, uSGD/pof# 0 will yield that a strong detonation
can in the limit be described as a shock, not involving a reaction,
immediately followed by a reaction proéess governed by equations
(1)

tion process, which was formulated more specifically by G.I. Taylor

®° (2)03, (3). This confirms the accepted idea about a detona-

and v. Neumann (see [1], e.g.).

The question arises whether to given values of To? eo,
1

. - l
1° and m with Ty Co M 2Ty Cq

a transition process exists which consists of a shock followed by

Tl,

2] satisfying the conservation laws,
a reaction. We assume that the temperature to which the shock
raises the unburnt gas is above safety temperature. Otherwise the

reaction process would simply be a deflagration process, which
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cannot exist in the present limiting casel. Denoting the quanti-

ties past the shock front by an asterisk we require

(2)

tion we determine 7 and 6 as functions of & from (1)OO and (2>ay’

To find out whether the equations (1) » (3) possess a solu-

oo’ leo)

and insert in (3). This is possible if the Jacobian

of (1)OO and (2)OD does not vanish. . Introducing quantities Y(e)

and C(s) by
ae®)/ae = 1/(y(¢) 1),

(e)g ,

2 —
“le) T
we find _
T = (m°-1"%P)/(y-1) ,

where 7, ¢, and y depend on e. Since the flow is subsonic in the
state (*) past the shock we have Jy < 0. 1In the neighborhood of
the state (*) we may therefore express T and 6 in terms of € and
the solution of the equation resulting from (3) is uniquely deter-
mined through the initiél condition € = 0 at x = 0, say, whefe we
may place the shock front. The question then is whether on con-

tinuing the solution one would obtain a value for which J changes

1 Expressing 1 and 6 through e by (1)OO and (2)03, equation (3)

becomes a differential equation for g, which yields de/dx = O for
e = 0 since 5(9_) = O for 6, < 65- The sole solution of this

differential equation vanishing for x = -0 is therefore e = O.
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sign. The final state is also subsoﬁic, Jl < 0, and the transi-
tions from the state (¥) to any of the intermédiate states between
(*) and (1) correspond, as regards the conservation laws, to a set
of weak deflagrations. All the intermediate states are thus sub-
sonic. Consequently, J remains negative throughoutl. |
The differential equation for e resulting from (3) possesses,
therefore, a solution with & = O for x = 0. Since for this solu-
tion, de/dx — 0 as € — 1, the final state (1) is approached as

x— ®». Thus it is seen that a iimiting type detonation consisting

-1 2
T{7Cy
(limit type) detonation

of the flux m, satisfying T;lC <m <

|

|

|

|

| of a shock followed by a reaction in possible for arbitrary values

0

|

\

The reaction process in a strong
following the shock has it in common with a weak deflagration that
unburnt gas in a subsonic state is transformed into burnt gas in a
| subsonic state. The two processes differ, however, in other
respects. The initial temperature in a deflagration is below
safety temperature while the reaction in a detonation begins with
“a higher temperature. Also in a deflagration the rates of change
dr/dx, de/dx, de/dx are zero initially while there is no such
restriction for the reactién process follqwing a shock; for small

values of A and p the rates of change undergo such great changes

L Wnether or not BE(S)/ae changes sign during this process 1s
immaterial, cf. however, v. Neumann's report [1], in which transi-
tion process are discussed on the basis of equations (1)Oo and (2%D.

2 For numerical determination of such processes and various de-
tailed discussions see the reports by Eyring and his collaborators,
[5] (where an excessively high reaction rate was assumed) and [6].
(The case shown in Fig. 10a, p. 44 in [6] and labeled "steady
deflagration" there is a "weak detonation" in our terminology. )
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in-the narrow shock zone that adjustment to any values of these

rates at the beginning . of the reaction zone is possible. It can
thus be understood that for the reaction brocess in a detonation
no definite value of the flux is required as for proper deflagra-

tions.

.5. Discussion of possible processes with the aid of the vector

field.

" It is very helpful for the further discussion to refer to the
vector field in the (1,0,¢c)-space generated by the differential |
equations (1), (2), and (3). It is convenient for our discussion
to consider as positive the direction of decreasing x; when we
speak of following a solution curve 2 we always imply that we
travel in direction of decfeasing X. All vectors of the field
point to smaller values of e except on the surfaces € = 1 and in
the regioﬁ 0 < GS, where they lie in the surfaces & = const. Every
solution curve that hits the surfacé 8 = GS will stay on the plane
g = const. from there on.

Further important properties of this vector field are these:
2 2

dt = O on the cylinder ¢ +m 7~ = Pt and d6 = O on the surface 5

given by the equation

‘E(E)(e) I Q

Points of intersections of the surface f with the cylinder
9-+m212 = Pt and the plane ¢ = const. will be denoted by A8 and Be‘
The conservation laws (l)OO and (2)OD are obviously satisfied at

such points. Any two such points on the plane g = const. with
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6 > 0 and T > 0 evidently represent the two states on both sideé
of a possible shock transition in the gas mixture characterized by
the valﬁes of & considered. Therefore, one of these two poinfs,
As’ corresponds to a supersonic, the other, Be’ to a subsonic flow.
We assume the values of the constants P and Q such that the surface
£‘ intersects the initial plane £ = 0 at two points AO and BO with
& >0, T > 0. From the discussion on p. 33 it follows that for
every e > 0 two points of intersection As'and Be exist as long as
A8 or B€ do not become sonic, or, what is equivalent, do not
coalesce. We assume that this is not the case for O < e <1; this
assumption is primarily a conditioﬁ on the flux m. .We also assume
that & > O, T > O at these points for O < e < 1. We then have two
curves A and ﬁ of points A8 and B8 along which 8 and T are con-
tinuous functions of the parameter e. (The last assumption made
here is somewhat stronger than necessary. For the discussion of
weak deflagrations, fof.example, only the existence of the curvejj
1s needed. Incidentally, the existence,of the supersonic state A
with 6 > 0, T > 0 always implies the existence of the subsonic
state B_ but..the .converse.is not trﬁe.)

At the points A_, B_ we have dt = d6 = 0, de/dx > 0 except
for ¢ = 1 or 6 < GS; hence the field vector points in the negative
g-direction at these points. The projections of the field vectors
on the planes e = const. have singularities at the points A8
and Bg. At a point A8 the projected field has a nodal point and
the solution curves of the projected field lead from the neighbor-
hood of this point into it. At the pdint B8 the projected field

has—a saddle-singularity; (s€e Figures 2 to 5). At the points A8
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Figure 2

Detonation

(Integral curves of the projected vector field
on the plane ¢ = 1 for a detonation)
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Figure 3
Detonation

(Integral curves of the projected vector field on
the plane ¢ = const. for a detonation)
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Figure 4

Deflagration

(Integral curves of the projected vector field on
the plane e = 1 for deflagration)
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Figure 5

Deflagration

(Integral curves of the projected vector field on
the plane & = const. for a deflagration)




2-41

and BE on the surface € = 1 and in the fegion 6 < es fhe three-
dimensional vector field has singularities.

If we are interested in a deflagration we must assume that
6 < 6 for the initial point Bo’ (see p. 31); if we are interested
in a detonation we must assume, (see p. 33 and Figs. 2, 3), that
6 > es at the point Bo’ which in thislcase is connected with the
initial poiht Ao through a curve representing a shock. We require
somewhat more for detonations, viz. that 96 > QS on\the Whole

line H. wWe first investigate which strong deflagrations and weak

detonations are possible. Both processes have it_in common.--that

the flow in the burnt gas 1s supersonic. The state (1) thus
belongs to the case (A), and corresponds to a point A,. As was
shown earlier there exists in case (Al) only a one-parametric set
of solutions which are regular at x = o0, and the values of the
parameter may be chosen arbitrarily.provided it is so chosen that
e decreases as x decreases. Thus there exists only one solution
curve, Cﬁ, starting at Al which could represent one of the
processes mentioned. If this solution curve & reaches the point
BO it represents a strong deflagration, if it reaches the point AO
it represents a weak detonation.

In the following we shall consider problems differing in the
reaction rate S, all other parameters being unaltered; we may, for
example, assume the factor SOO (cf. 1 on p. 13) to vary from 0
to . The'curves u% and J3 are evidently independent of S; the
curveva, however, depends on S. if we want to emphasize this

dependence we write ((S).
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If the reaction rate S is very high compared with po/x and

po/u, all vectors point nearly in negative e-direction except near

e =1 and 6 < es. In this case, therefore, any solution curve is
approximately a straight line in the negative e-direction until it
meets the surface 6 = 6,. Therefore, the curve ¢ that begins at
the point A4, i.e. at.e = 1, 6 = 615 T\= T, ends up on e = O
nearly with the values 6 = el, T =Ty hence with neariy e =el_>es.
Thus we see that C> ends up on e =0 at a point with 6 > es if S
is sufficiently high. At such a point de/dx > O and hence there is
no continuation of the curve on the plane & = 0 and hence none of
the desired initial states is reached.

Let us consider the opposite extreme that the reaction rate
S is very small; then the direction of the field vector lies every-

b]

where nearly in the plane e = const. except near the curves A
and f%: Consider any "cylindrical" neighborhood of the line A4 and
exclude from it an arbitrarily,émall neighborhood of the point Al'
If S is small enough then clearly the vector field on the lateral
surface of the "cylinder" points into its interior. The curve ¢,
beginning at A,, can therefore never lead far away from the curve
LQ ; for, as soon as.moved away from Cf, theirate of change de/dx |
would become much smaller than |dt/dx|+ |d6/dx| and therefore the
curve Cj would again be drawn nearer into the neighborhood of A .
Consequently, the curve € meets the surface 6 = Qs not far from
the intersection A® of this surface with the curve u%, remains

from there on the plane g = const; end soon enters the point Ae'

In general the course of the curve Cj can be delimited as

follows: Let~(wé,9€) be the coordinates of the point Ae' From the
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assumption BE(E)/BE > 0 made earlier (p. 23) it follows that Te
increases and 98 decreases with decreasing . 1 The statement then

is that the curve ¢ remains in the cell

ST 2T ST, 6. <8 < 91‘, O<e=<1

€ €

This follows from the fact that the field vector at'the boundary
of this cell points into its interior except on £ = O.

This statement implies thaﬁ the curve & never ends up at the
point Bo’ since BO is evidently not contained in the cell just

described. In other words, strong deflagrations are impossiblé.

Let us denote the points at which the curve (¢ enters either

the surface € = O or the surface 6 = 6, as "terminal points" Té?'

They form a "terminal line" 7 which connects the point 1 = Tl;'

o =0 = 0 (for finite 8) with the point A (for S = 0).

1’ ¢
The terminal point TC;depends continuouslyg‘on the reaction

rate S. Therefore, if we let S vary from o to 0, the terminal

1 From (1) and (2) we have
ae Caple)
£ oE o -1
Ve 1 T e de = o e AT
o 2 -1 ‘
des = -(m Te™ T Qs)dTE
where P = 1;1984-m218 has been used. Eliminating de8 one has
‘ see)

o 1
(78_1) e de = (m'Ts “YeTe es)de

whence the statement follows since the state A8 is supersonic and
2 2 ’
hence m .
© Te Z yses

2 e > 0 and

This follows immediately from d6/dx # O on 6 = @
de/dx # O one =0, g > 6,5 the continuity at 6 = ¢

shown by a more refined consideration.

e = 0 can be
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point will move continuously along the terminal line from the plane
g = 0 into the surface 6 = es. Consequently there is a particular
value of S of Soo for which the ferminal point lies on the inter-
section of‘the‘plahe g = 0 and the surface 6 = 95. We then speak
of the "extreme" situation and the "extreme" terminal point T .
Otherwise, if the terminal point lies on the surface 6 = GS we
speak of a "normal" situation, if it lies on e = 0, of an

"abnormal" one.

In the extreme situation a weak detonation exists; for,

since 6 = 6, at the extreme terminal point, the solution curve
stafting at this point remains on the surface e = 0. That this
solution curve ends up at AO follows from the fact that the field
has an attractive singularity at AO and that the terminal point

T" = (17,6") lies in the cell 7, <1’ <71, P, =P < p; and hence

0
belongs to those points that are attracted by Ao’ It is clear that

a solution curve can reach A  only if its terminal point lies on

e =0and 6 = 6,. Hence, a weak detonation exists iny in the
extreme situation, i.e. if fhe reaction rate S assumes a particular
high value S*.m

The discussion of the terminal line °J will also be useful
for the investigation of strong detonatibns. Before we enter the
discussion of strong detonations.and weak deflagrations we must
investigate the possible continuations of solution curves after
they have entered the region 6 < Qs'

In the region 6 < es the actual vector field agrees with the
projected vector field. Suppose the point Be = (Te,ee,s) on the

_.curve (3 lies below 6W=’Qéy”i1e: su-ppos-e~98 < es. Then the vector
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field has a saddle singularity at B> (see p. 36). Conse-
quently, two solution curves, {j: and [f;, leave B, (see

Fig. 3); and two solution curves, ﬁ}Z and f};, enter B s (the
curves with 6 > 6, are JEZMand f;;, the one with 9 < 6, are £};
and ?};). We see from the vector field (Fig. 3 and Fig. 5)

that £~ ends up at the point A_ on A

€
A solution curve gf can enter the region @ =< GS only at a
point whefe de/dx < 0, hence only on the section L of the sur-
face 6 = 6, cut out by the surface § (see p. 35). The inter-
section of ;Z\with a plane ¢ = const. will be denoted by‘iZ;,
(see Fig. 3 and Fig. 5). We consider the continuation of the

solution curve ff'after its entry into 6 =< es on the segment

it

K o+ There are two cases. Either, the point'B8 = (TE,QE,E)

lies above the plane 6 = 6> 1.e. 6_ > 6,. Then the continua-

tion of ' from nZ; on; ends up in the point Ae’ as seen from
the vector field (Fig. 3). oOr, the point B lies in the region

6 <6

o (see Fig. 5). Then the curve f?: entering B_ with de-

creasing 6 intersects the segment vZ; in a point GE. If,zf
enters ;Z; on one side of G, (on the side with larger 1), its
continuation ends up at A_ as before. If &f enters aZ; on the
other side its continuation ends up on v = 0 unless it has left
the region 6 =< QS before reaching v = 0. If g/)enters &Z; at G8
the continuation of g/'lgads along f}e to B_ and from there on
;ﬁ?can be either continued along I}; up to A8 or along Z}Z up to
T = 0 unless X?Z leaves 6 = 64 before reaching v = O.

We now enter the discussion of strong detonations. Strong

and Chapman-Jouguet detonations imply subsonic or sonic flow in
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the burnt gas at x = @ . Hence case (Bl) obtains, or the state (1)
corresponds to a point Bl‘ Conéequently, according to the state-
ments made earlier, (see Section 3, p. 21) there 1is a'two—parametriC'
set of solutions regular at x = @ . Hence there is a one-para-
metric sét of solution curves ,Eileaving the point Bl' We want to
show that among the curves {}there is a one }L*, which ends up at
Ao’ and thus represents a strong (or Chapman-Jouguet) detonation.

The set of curves Zf is limited by-two curves remaining on
the plane ¢ = 1. One of these two curves, Aﬁ;, leads to larger
values of 6, and ends up on the plane 7 = O at a point Hl (see
Fig. 2). The other curve, jfi, leads to smaller values of 6 and
ends up in.thé point Al; it represents the possible shock transi-
‘tion from state'Al to state Bl‘ The set of curvesv.ffmay'be
characterized by a parameter B, which for B = 0 yilelds i_{ and for
B = 1 yields ,(‘/1

On the basis of the assumption made earliér (p. 41) that the
curve ¢3 lies above the plane 6 = QS we see from the remarks made
before that all curves K} that enter the plane 6§ = es end up on a{;
none therefore meet :ﬁ below 6 = QS or end up on 8 = 0. Therefore
the curves Xﬂ end up either on v = 0, € = 0, or én ;{. The so
defined end points will be called "ultimate" points and denoted by
UB(S) or UB(S).

We investigate whether or not the point Uﬁ depends continu-
ously on the parameter B. The continuity of UB could be inter-
rupted only in three cases. The first case would be that UB were
the ultimate point of a curve {ﬂ‘which passes through a saddle

singularity of the differential equation. This possibility is
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excluded; for there is no saddle Singularity except on ¢ = 1 since
ﬁ%waS-assumed to lie above g = es. The second case would be that.
dT/dX.= 0 at a point U6 on v = 0; ‘this is excluded for 8 < O as
seen from the differential equation (1). The third case would be

A N

that ds/dx = 0 at a point UB on g = This case can afise-at

points on € = O with 6 = es.

Let B* be a value of B such that the coordinates e and 6 of

UB approach 0 and es respectively as B 1% Py (i.e. B approaches B,

from below). A more detailed investigation would show that then

-~ *
o= ABB* ends up at a point U = UB with € = 0 and 6 = O+
u . %

If, for values of B somewhat greater than Bx» the curve Aaﬁ

ends up on £ = 0 with 6 > es, the point UB

If, however, such a curve XJB does not reach & = 0 it will meet

is continuous at B,.

g = QS for a value ¢ > 0 and end up on it. Thus UB = Aé for such
values of B, and as B} B* (i.e. as B approaches B* from above),
UB-A-AO. Thus UB is not continuous at B = Bi.

These considerations make it evident that the ultimate points
UB vary continuously from the position UO = Hl on, until either B
reaches a value By for which U* is on e =0, 6 = QS or until for
B'= 1 a point Ul on € = 0 with 6 > GS is reéched without passing
through such a point U,. We maintain that the latter possibility
cannot arise in the normal situation S < g°.

To this end we investigate the curves [ﬁ for values of B
slightly less than 1. They remain near the curve [?1 until they
come near to the point Al; from then on they will remain near the
curve C}, which ‘leaves the point Al" In .the limit; B—1, we have

a curve [/ which coincides with A7 up to the point A, and then
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coincides with the curve & . The ultimate point U therefore,

1’
lies on € = 0 with 8 < es only if this is the case for the terminal
point of €, viz. in the "abnormal" situation. In the normal
situation no terminal point on £ = 0 with 6 > GS exists. Conse-
guently, in the normal situation there exists an ultimate point U,
€ =0 with 6 = 6.

The curve ﬁﬁ; £\, whose ultimate point is U, remains on the
plane € = O after having passed through Uy, énd enters the‘point

A . It is evident that the curve ,t* represents a strong detona-

tion. Thus we have established that in normal situations a strong

detonation is possible. It is not so easily seen whether or not

strong detonations aré possible in the abnormal case since it is
not obvious whether or not there are ultimate points on ¢ = 0 with
0 = es from which the continuafion leads into Ao.

Suppose the valﬁe of the reaction rate S is such that we are
in a nofmal situation but near to the extreme situation. Then the
ultimate point U* is-near to ﬁhe terminal ﬁoiﬁt Téféf the curve C.
Hence the curve tﬁiending up at U¥ will first lie near to the
curve 171 leading from Bl to Al and then near to the curve éf
leading from Al to TC' Thus we see: 1in the extreme case,  in whigh
~the point szfalls on T@’ the strong detonation is represented by
a curve consisting of the curve 131 in the plane £ = O from B, to

1

Al’ then by épleading from Al to Téfand finally by a section

leading from TG,to AO. In other words: in the extreme situation

not only a weak detonation exists but also a strong detonation

which consists of the weak detonation followed by a shock. In a

normal but nearly extreme situation the strong detonation will be
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appfoximately a weak deﬁonation followéd by a shock. The extreme
situation, however, will occur only for extremely high reaction
rates.

| Let us consider how a detonation looks in the limiting case
when the reaction rate approaches Zero; aé far as the curves in
the (t1,0,¢c)-space are concerned this is equivalent to assuming that
A and w approach zero since xséo/po and usoo/pO are the essential
dimensionless parameters. The field vectors in this cése lie
almost in the planes & = const. except on the lines <4 and 13. As
was stated earlier, the projection of the vector field in the
planes ¢ = cénst. has a saddle singularity at the points Be' Hence

there are two lines kﬁ and {i; depending on e, which lead out of

Bs' For € = 1 they coincide with AEI and 131. The curve Aﬁ:
leads to larger values of 6, while Kﬁ; leads to smaller values

of 8. In the limit S = 0, or, ‘in dimensionless form, uSOD/pO-» 0
and 7\Soo/po — 0, the solution curves u{fleaving the point Bl
consist of sections of the curve yﬁ followed by the curves [%Z or
ﬁ}; until these meet. the plane T = 0 or the line u%, From this
remark it is clear that the ultimatevpoints UB = UB<O) on the plane
€ = 0 consist of the curve XTZ on € = O from the point HO on the
bplane 1 = O to the point Bo’ then of the curve (ﬂ; up to the point
A . It is clear from this description that the curve Aﬁ*(o) con-
sists of the curve ) from By to B, followed by A}; on € = 0 up

to Aj. In the limit case p,S/pO - 0, xS/bo — 0, therefore, the

strong detonation consists of a shock followed by a reaction
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process, as expected.l

Finally we are going to show that weak deflagrations exist

unless the reaction rate exceeds a certain bound. To this end we
should find out whether or not any of the curves Vi starting at

the point B, can end up at the point Bo' The situation differs

1
from that for detonations in that it must now be assumed that

6 <6, at B, (see p. 41 and Fig. 5). As a éonsequence the . line
H(S) of ultimate points\Uﬁ(S) is modified for small values. of S.
For large values of S; the situatioﬁ is as before. For S = o, the
initial part of the ultimate line 7{(8) leads from the point H; on
T = 0 straight over to the projection of Hy on g = 0. For large
values of S, therefore, the ultimate line U(S) also begins at H;
and leads on the plane 7 = 0 over to the plane & = O. From,there
on U leads on £ = O to the point ETC if ¢ > 9, at Ay, or to a

point U* if 6 < 6, at Ay.

For small values of S, however, the situation is quite
different. We can no longer assert that the ulfimate line léads
over from Hl on the plane T = O to the plane £ = 0. As a matter
of fact, for small values of S the ultimate line stops on 7 = O at
a point with € > O and jumps discontinuously over to thevline JQ;
the reason being that a curve /Lfexists which enters the line

below 6 = 8 (this possibility was excluded for detonations, (see

S;
pp. 41,42). We first consider the case S = 0. In that case the

curves Kﬂ consist of sections of the curve jﬁ followed by sections

1 If this picture of a detonation is accepted, then V. Neumann's
result that no weak detonations exist 1s implied by the fact that
the curve {J connects the point B with B, and not with Aq-.
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of the curves ﬁﬁz or f}; (see Fig. L4). Since the curve £} now
meets the plane 4 = es before € = 0 is reached it is clear that
none of the curves AD will reach the plane & = O.

The ultimate line M (0) in this case consists of the inter-
sections of the lines [}Z with T = O from Hy on up to a value g = £q
for which fb interéects g = es; from there on of ﬁhe part of the
curve Jf with ¢ > g The ultimate line thus suffers é discontinu-
ity. Evidently we have ¢ < e, on the line 2(0). This confirms
the statement that 24 (0) does not reach the plane ¢ = O.

It is now clear that for sufficiently smdll values of S the

ultimate line 9/(S) will also not reach the plane £ = 0. As for
S

I

0, the_ultimate line will consist of one part on‘the'plane

T = 0 and another part which is a section of the curve JQ. The
vélues of the parameter B referring to these two parts are
separated by a value éO(S) such that the solution curve 19§ enters
the point G, for a certain valueVE(S) of ¢ and then enters ghe
point‘Bg. (We recgll that G8 is the point at which the solution
curve ffz through Be intersects the plané 6 = es, see p. 40.) For
sufficiently large values of S no such value £ of & exists since
then the ultimate line remains above g = GS until it ends at j%

or U*. Therefore, there is a largest value S° of S for which a
value € exists. It is then seen that this value is € = 0. Conse-
quently, there is a value BO of B such that the curve xﬂo = I?c
for S ='S° meets the plane ¢ = O at the point G, and ends up a% the

point Bo‘ This curve XDO then represents a weak deflagration.

Thus we have shown that for every value of the flux m and for an

appropriate reaction rate a weak deflagfation exists.
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The argument presented holds Jjust as well if the points Al
and Bl coalesce so that the flow corresponding to this point is

sonic. Thus we see that for an'appropriaté reaction rate Chapman-

Jouguet deflagrations are possible.

In the limiting case where m and SOo approach zero in’such a
way that s = Soo/m2 approachés a finite value, a deflagration is
always possible for an appropriate value of Soa/mz’ as was shown
in Section 3. In this limiting case d6 = O aﬁd de = o for the
vector field except on the plane 6 = PT,‘on which the vector field
is given by (), (3); (see p. 28). The points B, and By lie on
this plane 6 = pr. The line i} is the line 6 = 6, on e = 1 with

- decreasing 1. The line ';; is the line @ = Pt on ¢ = O with in-
creasing t. The point G  is then the intersection of 6 = Pt with
0 =6_. As is easily seen there is only oné line - on the plane

s
8

Pt and this line meets the point GO only for a special value
s, of s = S/me.

Suppose.we let m increase holding the initial state (TO,GO)
fixed. ILet S(m) be the value of S for which a deflagration exists.
We have not proved that S depends contihuously on m, but we can be
sure that a continuous curve of points (m,S) in a (m, S)-plane
exists representing pairs of values of m and S for which deflagra-
tions are possible. Eventually the flux m will reach a value m
for which the points Al and Bl coalesce and a Chapman-Jouguet
situation arises. Let SC be the corresponding value of the re-

action rate S. Then we can at least say that for every value of

the reaction rate S < S, deflagrations are possible with an

appropriate value of the flux m.
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APPENDIX I

On The Assumption About The Discontinuous Character

Of The Reaction Process

The considerations of this report rest on the "basic"
assumption (see p. 3) that the reaction process may be considered
approximately a sharp discontinuity; more specifically, that,
firstly, the rates of change of the pertinent quantities in the
field of flow outside of thé reaction zone are negligibly small
when compared to the rates of change of the same quantities inside
the reaction zdne and, secondly, that the rate of change of the
width of the reaction zone is small when compared with the average
speed with which the gases cross the reaction zone. It was further
‘assumed (p. 21) that the flow, when observed from a frame moving
with the instantaneous velocity of the reaction front, is steady
in the neighborhood of the.reaction froht at the time considered.

We first want to show that this latter assumption is con-
sistent with the assumption of the discontinuous Eharacter of the
reaction. Suppose we define the velocity X of a border of the re-
action zone,ut-i-)'cuX = 0, and suppose we chooée the velocity of Ouf
frame such that x = 0 at one point inside the reaction zone. Then
the assumption that the rate of change of the width of the re-
action zone is small compared with the average gas velocity in the
zone can then be formulated as |x] << u everywhere in the zone.
Consequently, lut, << luuxl everywhere in the zone. The term U,
can, thérefore, be omitted from the differential'equation which

expresses the fact that the accelerationwut+-uux'equais the total
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applied force per unit mass. For similar reasons one can omit the
terms Ty et, and €4 from the differential equétions expressing the
balance of mass flow, energy, and chemical reactioh. In other
words, to the degree of accuracy impliedrby our basic assumption,
the equations characterizing non-steady flow reduce to the equa-
tions (1)', (2)', (3)' in addition to m = const. Thus our assump-
tion of "local steadiness" is in agreement with our "basic"
assumption.

Secondly we want to mention that frequently reaction flow
processes occur in which our basic assumption 1is not satisfied.
Detonations, consisting of a chemical reaction process initiated
by a shock, are frequently followed by rarefaction waves. It is
clear that this rarefaction wave interferes with the reaction
process, but the interference can be ignored if our basic assump-
tion is satisfied and the changes whicﬁ the rarefaction wave pro-
duces in a section Qf the width of the reaction zone are signifi-
cant. If, howeVer, the reaction zone is so wide that this inter-
ference can no longer be ignored, then pressure and temperature in

" the reaction zone are diminished and the strength of the initiating

shock is reduced. In particular, the speed of the detonation wave
is then less than that Qalculated without interference and could
thus be less than that of a Chapman—Jouguet detonation. If the
interaction is strong the detonation may eventually cease.

The occurrence of a lower detonation limit may be explained
in this way, since the_reactionlrate is low, and hence the reaction
zone is wide, if the concéntration-of the combustible component in

the unburnt expiosive mixture is low. (See Wendlandt [12].)
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Spherical detonation waves maintaining the Chapman-Jouguet

. condition are possible inasmuch as the deﬁonation process can be
considered a,discontinuity, as Taylor has shown [13]. The rare-
faction wave following the detonation front begins, however, with
an infinite rate of change of the significant quantities, (see
[13]). Consequently,. this rarefaction wave always interferes with
the detonation wave noticeably and diminishes its strength and
speed. It can thus be understood why the speed of spherical
detonation waves is less than required by the Chapman—Jouguet
hypothesis. Calculations of such spherical detonation waves with
sub-Chapman-Jouguet speed were carried out by Eyring and his
collaborators [5], [6].

The gradual building up.of a detonation wave ignited at the
closed end of a tube may also be explained eS'due‘to the inter-
ference of a rarefaction wave with the reaction process. The
condition that the flow velocity vanish at the closed end requires
that a simple rarefaction wave follow the detonation wave. This
rarefaction wave, when it begins, involves,an infinite drop of
pressure, temperature and veloecity; thus a noticeable interference
is clearly indicated. (For numerical calculations of the gradual
building up of a detonation see [6]. ) |

As regards deflagration brocesses it would seem probable that
combustion processes occur in Wthh the width of the reaction zone
widens noticeably. OtherWise it would seem impossible to explain
how a flame could ever overtake a shoc£ front preceding it. Such

combustion processes would then be analogous to rarefaction waves

‘
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and not to shock discontinuities. 'No theoretical treatment of such
processes seems to exist.

. These remarks are intended to show that the frequently
observed deviations from the predictions of the discontinuity
theory are not due to the unsteadiness of'fhe process as such but
rather to the occurrence of a relatively wide reaction zone which
permits the interference of the butside flow with the reaction

process.

APPENDIX IT

It was shown in the text that for an "excessively" high
reaction rate S = S(p,6) a weak detonation occurs instead of the
Chapman-Jouguet detonation (see p. 44). It is of interest to know
how high a reaction rate must be in order to be "excessive" in this
sense. The excessive cases are separated from the regular ones by
"maximal" cases in which a Chapman-Jouguet detonation is Jjust
possible, while such a detonation is impossible for a reaction rate
higher than a maximal one. We shall present some such maximal re-
action rates numerically. From these results it will appear that
for maximal reaction rates the transition zone becomes extremely
small, of the order.of magnitude of bne mean free path, if viscos-
ity and heat conduction are those of air at'BOOOK and atmospheric
pressure. Under these circumstances the'hotions of Viscosity and
heat conduction in the transition zone become meaningless. If,

however, viscosity and heat conduction are ten times as large as
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for atmospheric air at BOOOK, excessive reaction rates may well be
possible. For example, S would then be excessive if it vanishes
up to 900°K and equals 16.10%° sec™t or more for higher tempera-
tures. The width of the'transition zone.would then be about ten
times as long as a mean free path.

We assume that unburnt and burnt gas are polytropic with

exponents = 1.4 and =1.2. For the mixture consisting of the
Yo Y1

fraction e of burnt gas and l-e of unburnt gas we define vy by

1 _ _e + _E
v=1  vg-l o oyg-T

Then we have for the energy per unit mass of the mixture the

expression

5(¢)(q) ='3r~ei + (l-e)F ,

in which the liberated energy per unit mass F i1s assumed to be
F =32.5 90

which corresponds to a value 665 cal/gm if the initial temperature
is MOQO/RO = BOOOK and the molecular weight of the unburnt gas is
Mo = 29.

About the heat conductivity A and viscosity p we have made

the assumption
A _ Yy
by

which was proposed by Becker [3]. We shall in particular consider

as reference value for p the value
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n

by = 2.44.107 "gm/cm sec

with y =y = 1.4, the corresponding value of A is then
P
A, = 8+54-10 gm/cm sec .

We recall that the customary coefficients of viscosity and heat
conductivity are %¢L, and R\ in our notation; (see fQotnote 2 on
p; 14). | »

The reaction rate S was assumed to be zero up to a safety

temperature 6 = QS; for 6 > es we have assumed
wS = const. ;

thus, if u is independent of temperature and pressure the same is
then assumed of the reaction rate for 6 > 90. This assumption is
rather unrealistic because both thévreaction rate and the viscos-
ity will increase with the pressure; but this assumption should be
sufficient to given information about the order of magnitude of
maximal reaction rates. in Fig. 6 we have plotted such maximél

reaction rates, or rather the values ﬁ#-s, in which uo‘is the
reference viscosity given above. For a safety temperature of

'9OOOK or es = 390, for example, we find as maximal value of the

" _ .
reaction rate S = 16-109 T?-sec 1 for 6 > OS, The velocity Vs with

which the detonation wave travels into the unburnt gas at rest,

solely determined by the Chapman-Jouguet condition, equals

Vo = 15‘71nsec'l. The width of the reaction zone is roughly given

by
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Maximal reaction rates S as functions of the temperature T.

(If the reaction rate exceeds a maximal one, a Chapman-
Jouguet detonation is not possible. p/u_ is the ratio

of actual viscosity to that for atmospheric air at room
temperature. )

L . ,
In the case 0, = 360, S = 16-109 i? sec"l, we therefore have

5 = 98-10"7 X cm
L‘LO

a length which for pu = K would be about equal to one free mean
path in air. \

To-determine maximal.reaction”rates we observe that the
Chapman-Jouguet conditibn cannot be satisfied if it would lead to
a situation called "abnofmal" in Section 5, p. 39. In abnormal
situations, the curve { starting at the point V€1, endé up on the

plane € = O with,a value 6 > QS.
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A maximal situation, in which the Chapman-Jouguet condition

can just be satisfied, therefore corresponds to what was called
an "extreme" situation, in which the curve ends up on £ = O
‘just with o ="QS. " To obtain a maximal reacﬁibn rate we then pro-
ceed as follows. To a-given initial state (To,po,eo) corresponding
to the point |, we determine the end state (Tl,pl,el) from the
Chapman—Jouguet éondition.‘ The flux m is then also determined.
We now assume any value for the reaction rate S, or rather for usS
and determine the curve ,.. The value of 6 with which ends
upon € = 0 is then taken as safety temperature es. We finally
select those values for the reaction rate S for which the safety
temperature turns out to be between 600°K and 900°K.

| The curve ﬁ: was characterized as the graph of that solution
of the differentiai equation which leaves the point .?1 with de-
creasing x. All other solution curves entering ‘ﬁi lie on e = 1.
Consequently, & can also be characterized as the only solution
curve leaving the point ‘{l without de = 0. Hence € can be intro-

duced as parameter; The differential equations then become, after

introducing t =,m21:

dt _
(1-e)us g2 = t(p+t -py-ty)
dpt 2 ,
(1-¢)yus a%‘ = t[pt - 5= t°+ (y-1)tt,

- -1 .2
+ (y-1)(1-e)fp ty -ty - 5= t7) .

The desired solution t = t(e), p = p(e) is then the one that

1 and permits expansion with

assumes the values (t ) for e

1°P1
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respect to powers of (1-e). It is easily obtained from this power

‘series for small values of (1-g) and by finite differences for

vlarger values of l-g up to e =0.

25,
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Egis is a reproduction of a NAVORD Report -79-46, dated June
1946.
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- Chemical Kinetics

‘Peter D.. Lax

Courant Institute of Mathematical Sciences
New York University

The propagation of chemical reactions in combustion is
governed by the rate at which energy is transported in and out of
the reaction zone, and on the rate at which the chemical reactions
proceed - In the simplest models the reaction is assumed to pro-
ceed at an exponential rate exp{kt}, k beihg a fﬁnction of tempera-
ture, changing from O to some high value beyond the so-called
ignition temperature. 1In reality chemical reactions are more
cbmplex, astonishingly compléx; a good understanding-of them 1is
necessary to gauge the limitations of simple models and to develop
more realistic ones. The purpose of this lecture is to present

the elements of chemical kinetics. For a more thorough treatment

we recommend a text on Physical Chémistry such as [5]; for the

state of the art the Symposium Proceedings contained in [6] should
be consulted.

A chemical reaction is the formation of one or several com-
pounds, -called products of the reaction, out of one or several
compouﬁds or elements called reactants. Household examples are

2H2+-02‘4 2H2O

or

+ I, — 2HI

Hy +15 . :

Generally, denoting reactants by Mj and products by Nj’

L0122
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1 LM, = N,
(1) EuJJ.ZvJJ
The coefficients Vj and uj, such as the factors 2 in the oxidation

of hydrogen, are called stoichiometric coefficients.

The products of a chemical reaction are built out of the same
ingredients aé tne reactants, i.e. the same nuclei and electrbns,
but their arréngement is different. The chemical reaction accom-
plishes the rearrangement as a continuous brocess starting with:
the reactants and ending up with the products. With each point in

configuration space along this path of deformation one can associ-

ate a potential energy, also called energy of formation, defined
as the energy needed to put the configuration together out of its
widely separated ingredients.

The initial and final states consist of the reactants and
products, respectively; these are stable elements and therefore are
local minima for the potential energy function. This shows that
along a path of deformation thé potential energy passes through é
peak. There are many possible paths of deformation; the actual
reaction is.channelled overwhelmingly along the path where the peak
value of energy is a minimum. The difference between the minimum

peak value and the initial energy is called the activation energy;

it 1is the minimum energy required for the reaction to take place.
" The above description of a chemical reaction as a rearrange-
ment in one step is an oversimplification and describes only

elementary reactions. Most reactions are complex, consisting of a

network of elementary reactions; these'elementary reactions lead

to the creation, and eventual annihilation, of a large number of
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intermediate products-atoms, free radical, activated states. This

network of elementary reactions is called the reaction mechanism.

In order to analyze a chemical reaction, one has to perform
three tasks:

a) Find all relevant reaction mechanisms.

b) Determine the rates at which the elementary reactions
éntering a mechanism proceed.

c) Determine the overall rate at which the reaction’

mechanism proceeds.

Typical reaction mechanisms may involve upward of 80 species;
finding all the relevant ones ié an art. We call the readers
attention to the on—goiﬂg controversy about the rate at which
fluorocarbons releagsed by spray cans are removed from the upper
atmosphere; the controversy is about possible reaction mechanisms
involving ozone and fluorocarbons. The most intriguing aspect of
reaction mechanisms is catalysis, where the presence of a small
ambunt of catalyst mékes possible a reaction mechanism which pro-
ceeds extremely fast, at the end of which the catalyst is restored.
'We remark that since elementary reaction rates are rapidly varying
functions of temperature, a reaction mechanism that is the relevant
one, i.e. the faétest, at one temperature may be irrelevant at a
higher temperature.

The defermination of rates of elementary reactions is a
collaboratiﬁe effort between experimenters and theorists. We shall
say a few words about the theory, a combination of statistical
mechanics and quantum chemistry. As remarked éaflier, an elemen-

tary reaction can take place only if energy, exceeding the
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activation energy, is supplied. The source of that energy is the
translational energy of sufficiently energetic molecules; upon
collision translational energy is converted into internal energy.
Assuming that particles are statistically independent of each
other, the familiar Stosszahl Ansatz, the number of collisions will
be proportional to the product of the concentration of reactions.

- Suppose the reaction is given by equation (1); let's denote the
concentration of species Mj by [Mj]’ of N. by [Nj]’ measured in

J
moles/cm3. Then the rate at which these concentrations change is

TR
(2) TR
T g0 = v TT (u] 9

This is called the law of mass action, and kf is called the forward

reaction rate. Many, theoretically ell, reactions go both forward

and backward; the forward reaction rate is denoted by kf, the back-

ward rate as k,, and the reaction (l) i1s written as

b
Ke
) —> E N.

Equilibrium is established at such concentrations where the forward
and backward reaction rates are equal. Since the law of mass

action for the backward reaction is

a | v,

d _ Vi
a‘f [NJ'] - 'ijb -’—r [NJ] 2

at equilibrium
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" V3
ke T T (M) 9 = Xy TT w9

These relations lead to an easy determination of the ratio kf/kb,
and only one of the two rate constants kf or_kb need to be
measured.

As we shall show below, the reaction rate is an exponentiélly
decreasing function of the activation energy. Since the activation
energy for the backward reaction equals thé activation energy bf
the forward reaction plus the enefgy released in the forward re-
action, it follows that for reaction in which a great‘deal of
energy is released, the backward reaction 1is negligibly slow.

Since the number of energetic particles whose collision leads'
to possible chemical reaction is a rapidly‘increasing function of

temperature, so is the reaction rate. Arrhenius! law states that

K = Be—E/RT

where E is the activation energy, R the gas constant and B a
constant. A more elaborate statistical collision theory, taking

internal degrees of freedom into account, gives

x = B(T)e E/RT

2

where B is a function of tempefature, typically a power of T. Rates
calculated this way are much higher than experimentally observed
valués. The reason is that not all collisions lead to a reaction,
only those where the colliding molecules are properly oriented.

This can be corrected empirically by cutting down k by a fudge

vfactor'called'a steric factor. A more satisfactory calculation can
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be based on a statistical theory involving reactants, products and

the so—called activated complex, defined‘as the configuration at
the min-max point along the optimal path deformating the reactants
into products. Note that the activated complex is in equilibrium,
although an unstable one. This method yields good results when the
structure of the activated complex is well known; this is a task
for quantum chemistry, which has been carried out only for the
simplest molecules.

Once a reaction mechanism has been proposed and the rates of
the elementary reactions occurring therein have been determined, |
the law of mass action tells the rate at which species are created
or consumed in each elementary reaction. The rate of change of
concentration of any specie is the sum of the rates of its crea—
tion minus the sum of the rates of its destruction. The resulting
system of ODE's together with the specification of all initial
concentrations, completely determine the time history of the re-
actibn mechanism. In some simple cases solutions can be expressed
in terms‘of special functions; but the only general way of solving
systems of ODE's is by numerical methods.

Rates of elementary reactions within a single mechanism can,
and typicallytdo,‘differ by many orders of magﬁitude; this has the
effect, called stiffness, that various éomponents grow or decay at
vastly different rates, which creates special difficulties in
finding solutions nhmericaliy. .We illustrate the difficulty on the

simple linear equation

d .
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k large positive, whose exact solution is e-kt. The crude forward
‘'scheme

x(t+5) - x(t)

5 = —kX(t) s

whose solution is

' x(t+8) = (1 -kB)x(t) ,
leadé to

(3) x(ng) = (1- k6)" .

When k is large, say 61104), the solutionv(B) is exponentially

unstable, unless & < % = d(lo-a), a prohibitively small time step.

A remedy is to use instead the implicit backward scheme

x(t+8) - x(t)

£ = -kx(t+5) ,
whose solution is
x(t+8) = T?lﬁ x(t) ,
so that |
x(nd) = (Tj%Eg)n .
kt

This is stable and approximates well e —~, t=nd, regardless of
the size of k.
We now try the implicit second order scheme

x(t)+ x(t+5)

x(t+6) -x(t)
® 2 ’

= -k

whose solution is
1l-k5/2
- /2 x(t) ,

x(t40) = 79575
so that
1- k6/2)n

X(n6) = (m
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This is stable, i.e. uniformly bounded, for all k and 65, but for.
k large is not a good approximation to e_kt, t=nb. What is true
for this simple example is true for systems, and shows that to
obtain accurate solutions of stiff systems one must use a specially
designed numerical scheme. The'most versatile and best known
method is due to W. Gear, see [2]. Gear's method is available as
a user-oriented packaged program, see [3]. |

At the end of this talk we will show how to exploit stiffness
by making use of asymptotic methods.

We now give some examples:

(I) Reaction: H +I, — 2HI

2

Reaction mechanism

Elementary reactions Rate constants
=)
I2 — 21 kf, k%
I+H2ﬁ}ﬂ+H ‘ k2
H+I, = HI +1I k3
H+TI -~ HI : k),

Differential equation:

o [Tp) = -kelT) +i (117 -y [H) [1]

% [Hy] = -ky[I1[H] ,

5 (0] = Ky [T1[H,] -k (H] (1]
1%

ax (11 =2k (1] -2k [1 ékg[IJ[H2]+k3[H][IQ] -k, [H][I] .
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(II) Reaction: A —=B+C

Reaction mechanism

Elementary reactions Rate constants
(4) A+A =A%+ A ke Ky
(5) A* = B+ C , s

A* is a so-called activated molecule, formed by collision of
energetic molecules A; the activated molecule A* decays spdntane-

ously into the fragments B and C.

Differential equations:

(6) 1Al = -k[8]° +i [A1[AF]
d ®q 2 *7 *

(ITI). Reaction: 205—»302

Reaction mechanism

Elementary reactions Rates

— ' .
('8) 03<_o2+o kes Ky
(9) . 0+05 =20, s

Differential equations:

(10) & 1051 = - k,[0,] + K [0,][0] -s[0][05]
(11) & 10,] = kp[05] -k [0,1[0]+ 25 [0][0]) ,
. |
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Examples (iI) and (IiI) are stiff systems in the sense that in both
systems the first reaction, (4) respectively (8), is much faster
than.the second, (5) and (9) respectively. Of course, since they
are of modest size, there is no difficulty in solving these systems’
numerically; we shall show now how to exploit the stiffness to give
an asymptotic analysis of tﬁe last stages of these reactions.
Assume in case (II) thét kf and k, are very much larger than

S; then the third term on the right in equation (7), s[A*], is very
much smaller than the'first two, kf[A]2 and kb[A][A*]. As a con-
sequence the effect of the third term is negligible until the first
two terms become very nearly equal. The»poinfs where the first two

terms are equal:

| (13) - S kf[A]g = kb[A] [A*] )

are called equilibrium states for the reaction (4), for at such
points the forward and backward reactions exactly cancel each other.
Once a neighborhood of equilibrium is reached, the third term in

(7) becomes important. We add (6) and (7) and obtain
(14) S = -s[A¥*]
dt
where m denotes the sum
(15) m = [A] + [A¥]
Since equilibrium (13) holds approximately, we deduce that

(16) ka[A] ~ Kk [AY]

which implies that
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k
£
(16)! [A*] A~ m .
= kf+ E%
Substituting this into (14) we obtain an equation of simple
exponential decay for m, giving

: /’skft 5
(17) m ~ const. exp | T

\ f b/

Using (15) and (16) we deduce from (17) that

| —sk
(17 )"  [A] ~ const exp <’ \>

We now turn to case (III); here too ke and kg are very much
larger than s; here too this fact can be exploited to give an
asymptotic analysis of the last stage‘of the reaction. As before,
the third term in all three equations (10)-(12), s[O][OB], is small
compared to the first and second‘terms, kf[OB] and kb[OQ][O];‘
therefofe the effect of this third term is negligible until the
first two terms become very nearly equal, i.e. until we come near

" equilibrium for reaction (8):
(18) kf[OB] = k, [0,]1[0] .

We also assume that ozone and oxygen atom concentrations are small
compared to that of oxygen moiecules. If so, we can calculate the
value of [02] since 3[03]4-2[02]41[0] is a constant in time.

Denote this value of [02] by Y; from (18),

(19) [05] ~ KY[O], K= kb/kf .
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To calculate the time histories of [03] and [0] add equations (10)

and (12); we get

d

(20) FE ™ = -2s[og][0] ,
where
(21) m = [03] +[0]

Using (19) and (21) we get

KYm _ m
(5] v oy > [0) = 15w
Substituting this into (20) gives
d 2KYs 2
m=- ——> _m
dat (l+~KY)2
whose solution is
1 2KYs
(22) m(t)=—_-—-—t—, H = .
Ht + cons (l+—KY)§

We now turn to an asymptotic method developed by chemists,

called the quasi-steady state approximation; it is applicable in

situations where one of the components is very nearly in steady
state, i.e. its concentration hardly changes with time. This is
the case e.g. in (II), where the value of [A*] is determined mainly
by the equilibrium of the reactions in (4); although A* decays
spontaneously, the rate of decay s is assumed to be small, so that
equilibrium is reestéblished. The method consists in assuming that
exact steady state has been reached, i.e. that the time derivative
of the component in question is zero. The resulting algebraic

relation is used to eliminate one of the concentrations from the
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system of differential equations; the remaining diminished system
of ODE's is free of stiffness.
We now apply this method to system (II); setting é% [A¥] =0

in (7) gives

(23) k(A% - k [A][A*] - s[&*] = O ,
from which

* kf[A]E kf
(24) . [A]zkbA +S:k—b[A],

i.e. A and A* are very nearly in equilibrium. Now add (23) to

(6); we get using (24)

sk
d
&[] = -s[A*] = - = [A)
b
whose solution is _
skf
(25) [A] = const exp { - —=t
fo)

This result agrees with (17)' when k, 1s very much larger than k.,
but disagrees otherwise. Which 1is gorrect?' numerical integration
of the systeml (6), (7) gives the nod to (17)'; this is not sur-
prising since one can prove rigorously that (17)' is true. 1In
their interesting article [1], "The Steady State Approximation:
Fact or Fiction?", Farrow and Edelson analyse a reaction mechanism
involving 81 elementaryAreactions; the ODE system describing the
reaction is stiff. They solve this system by Gear's method; this
solution differs signifiéanfly from previously obtained solutions
using the steady state approximation. Since Gear's method is reli-

able, this shows that the steady state method is not. Nevertheless
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we feel that there is need for asymptotic methods — provided that
they are valid — such as the one described earlier, or the one

expounded in [4] for studying inhomogeneous reactions, where con-

centrations are functions of space as well as of time. Combustion
processes, such as in fuel injected internal combustion engines,
are typically inhomogeneous; the detailed solution of complicated
ODE's at many points in space would be prohibitivel& expensive.
The reaction mechanisms in combustion can be complicated
indeed. 1In [6], Westbrook, Dryer et al. diécuss the reaction of
carbon monoxide and methane in the bresence of vapor; the reaction
mechanism they éstablish includes 20 chemical species and 56
reactions. PFor other examples we refer the reader to the litera-
ture of mechanisms for the burning of hydrocarbon fuels, see e.g.

[7] and I. Glassman et al. herein.
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RANDOM CHOICE METHODS WITH APPLICATIONS TO REACTING GAS FLOW

Alexandre Joé&l Chorin*

Department of Mathematics and Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Abstract

The random choice method is analyzed; appropriate boundary
conditions are described, and applications to reacting gas flow in
one dimension are carried out. These applications illustrate the
advantages of the method.

Introduction

The random choice method for solving hyperbolic systems was
introduced as a numerical tool in [2]. It grew from a construc-
tive existence proof due to Glimm [5]. In this method, the solu-
tion of the equations is constructed as a superposition of locally -
exact elementary similarity solutions; the superposition is carried
out through a sampling procedure. .The computing effort per mesh
point is relatively large, but the global efficiency is high when
the solutions sought contain components of widely differing time
scales. This efficiency is due to the fact that the appropriate
interactions can be properly taken into account when the elementary
similarity solutions are éomputed. The aim of the present lecture
18 to provide a further analysis of the method, and to illustrate
its usefuiness in the analysis of reacting gas flow. Examples are
given of detonation and deflagration waves, with infinite and

finite reaction rates.
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We begin by describing the method briefly. Consider the

hyperbolic system of equations

(1) ' ve = (£(¥))y z(x,b) given ,

when v is the solution vector, and subscripts denote differentia-

tion. The time t is divided into intervals of length k. Let h be.

a spatial increment. The solution 1is to be evaluated at the points

1
(ih,nk) and ((i%-g)h,(nrké)k), i=0,+1,%2,..., n = 1,2,... . ILet

n . . n+1/2 : c 1 1
Uy approximate v(ih,nk), and Y541 /0 approximate X((14-§)h,(nc%§)k).

he algorithm is defined if uoii/2 be found when uy, u-
The algori is defined 1 Ei+l/2 can be found when u,, U, .4 are

known. Consider the following Riemann problem:

Xt = (f(K))X’ t > O P - 00 < x < +GD s
n
Uiy, for x>0,
v(x,0) =
n
u for x < O

Iet E(x,t) denote the_solution of this problem. ILet Gi be a value

of a random variable 6, - % <0 < %. Let P, be the point (eih,%),.
and let

N~ k

% = w(p) = w(6;h,5)

be the value of the solution w of the Riemann problem at Pi' We

set
n+1/2
Yiv1/2

I
| =
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Iﬂ other words, at each time step, the solution is first approxima-
ted by a piecewise constant function; it is then advanced in time
exactly, and new values on the mesh are obtained by sampling. The
usefulness of the method depends on the Possibility of solving

Riemann problems efficiently.

Simple Examples and Partial Error Estimates

In order to explain the method further and analyze its limita-
tions, we consider in this section simple examples of its use; the

first one was already discussed in [7]. Consider the equation

(2) v, =V

in - <x < +4w, t > 0, with v(x,0) = g(x) given. One can readily
see that if a single ¢ is picked per half time step, Glimm's method

reduces to

n .
u. if eéh > -x/2
n+l/2 i+l -
Yip1/2 = N
uy if 6h < -k/2
.

It follows that

u? = v(ih+n,t) ,

where n = n(t)vis a fandom»variable which depends on t alone; i.e.,'
the computed sblution equals the exact solution with a shift inde-
pendent of x. The magnitude of n depends on the choices of 4.
Consider the following strategies for picking 4:

i) 6 is picked at random from the uﬁiform distribution on

[- 5.5
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ii) n is assumed known in advance; the interval [- %, %

" divided into n subintervals of equal lengths and ei is picked in

] is

the middle of the i subinterval;

iii) (A compromise between i) and ii)): [- %, %] is dividead
into m subintervais, m << n, and el is picked at random in the
first subinterval, 92 in the second subinterval, em+l in the first
subinterval, etc. |

A.fourth strategy which relies on the well-equipartitioned
sequences studied by Richtmyer and Ostrowski was suggested by Lax
[6], but is not useful in the present context. |

If strategy i) is used, we have

x+n = displacement of the initial value
2n _
where

h . ,

| 5 if he, < -k/2
Ny =

-8 yr ne, > -k/2

2 i—

The variance of n,; 1s readily evaluated:

2
var (ng) = - (1- §)(1+

the variance of n is thus

-9+

and the standard deviation of 7, which measures its magnitude is

@ {(L%)(H%)}l/g = 0 (/nh).
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If the second strategy is used,
n 1
u; = vix+tn,t) , |n| =55

ifn= O(h—l), n = 0(h). If the third strategy is uséd, and n is
a multiple of m, n = O(h/ﬁ7ﬁ),isince only in every mth half step
is the outcome of the sampling in doubt.

Assume v is of compact support. Following a suggestion by

Lax, we define the resolution of the scheme by

Q! = min Hu?-—v(ih+q,t)”
where || || denotes the maximum norm. The scheme has resolution of

order'm if @ = O0(h™™). The displacement d of the scheme is defined

by

Q—l

1

Jui - v(ih+a, t)]|

min Hu? - v(ih+q, t)||
q

The method applied to the present problem has almost first order
accuracy, almost first order displaéement, but infinite resolution.
There is no smoothing and no numerical diffusion or dispersion.

For any‘k/h, the domain of dependence of a point is always a single
point. The answers are always bounded. If the Courant condition
k/h = 1 is violated, the equation beihg approximated is

vy = (h/k)vx. Clearly, since these results are independent of k/h,
they generalize to hyperbolic systems with constant coefficients.

Consider now the equation

vy = a(x,t)vX ,

141



-6

in - < x < +o0, t > 0, v(x,0) = g(x) given, and a(x,t) a

Lipschitz continuous function of both x énd t. The method is not
well suited to the solution of such_an equation, both because the
solution of the Riemann problem requires a possibly laborious inte-
gration of a characteristic equatibn,'and because the errors will
turn out to be large compared with those incurred in other available
methods. The analysis is nevertheless illuminating.

Iet Cx be the characteristic
0

dx _ —
IF = ~a(x,t) s x(0) = Xq

For each i, we have

uf  if P = (eh,-g-) lies to the right of C
n+l/2 : (1 +'§)h
Yiy1/2 T |
n .
u, if P lies to the left of C .
v il (i+ Z)h
2
As before
u? = v(x+n,t) , x=1ih , t = nk ;

where n is a random variable which now depends on both x and t.

If 6 is picked at random from the uniform distribution on

[- 5, 3]

clearly yields an error O(1l). Strategy iii) is more advantageous;

(Strategy 1)) we have as before n = O(hy/n). Strategy ii)

the standard deviation of 7 is again bounded by O(h/n/m). However,
the mean of 1 is no longer zero. Assume k = O(h). Note that
a(x,t) may vary by O(mh) before this change affects the values of nq.

Thus, | = mean of n = O(mh), and n = O(mh)+0(h/n/m). If
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n = O(h-l)

and m = O(nl/B); then n = O(h2/3). We have less than
first order accuracy and.morevthan first ordef displacement.

We, now try to assess the relative displacément of two points.
Let us assume that the first sampling.strategy is used, i.e., 6 is

picked at each step from the uniform distribution on [- %-,%].

Consider first the quantity

An(h:k> = (T](X:t+k) ’T](Xfl'h:t'*'k)) - (T](X: t) - n(X+h’t)) )

i.e., the difference between the numerically induced translations
experienced by two-neighboring points ‘during one time step:—Tf
Aq(h,k) > 0, information is lost: one value of v(x,0) disappears.

If An(h,k) < 0, a false constant state is created. An(h,k) can
' k
2
left of the characteristic through one of the points (ih,nk),

take on the values 0, *h. An(h,k) # 0 if P = (6h,=) falls to the
((i+1)h,nk) and to the right of the other. This happens with
probability O(h), i.e., the variance of An(h,k) is o(h?); There-
fore, the variance of An(h) = n(x,t) - n(x+h,t) is no(h3)= O(hg) if
n = O(h_l), and the standard deviation of An(h) is O(h), i.e.,
neighboring values in the range of v do not.fly far apart. The

same estimate holds for the other sampling strategies.

Consider now the relative displacement An of two values far

apart. Iet n; = n(x,t), n, = n(x+X,t), and An = No-n7» and thus

u? = V(x+ql,t) = g(xl) , ih=x, nk=1t,
n 3 : 3 . N
ui+io = v(x+an2,t) = g(xg) > igh =X,

where g(x) = v(x,0). Let C, be the characteristic through (xl,O),
S 1
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and similarly for CX . Xp-Xg has increased by *th each time

2 ¢
,%) fell between the two characteristics. Assume the first

sampling strategy is used. There are two sources of error which

P = (6h

make An # O. There is the standard deviation of the sum of the
random variables which equal th when P is between the characteris-
tics, and are zero otherwise, (this is clearly O(h/n)), and there
is the uncertainty in the slope of the characteristics due to the
lateral displacement of the solution; this is again O(h/ﬁ) and
induces an error O(h3/2n3/4)~= O((h/ﬁ)B/g); if n = O(h—l), this is
O(hB/uj. Thus An = 0(h/n), and the resolution is not of higher
order than the accuracy. Similar results hold for the other ,
sampling strategies. |

We now turn to the nonlinear problem
y—t = <f(z))x ’

where f is a function of v but not explicitly a function of x

and t. The method of analysis we have used here is not applicable,
since values of v are_not merely propagated alqng characteristics.
Furthermore, we havé hére no way of taking into account properly
the fact that rarefaction or loss of information incurred in the
numerical proceés correspond to genuine properties of the differen-
tial equations. All we can provide here is a heuristic analysis.
Consider the third sampling strategy. Since the slope of the
characteristic depends on the values df v and not on x, the values
of v at neighborhing points remain attached to neighboring points,

we expect the term O(mh) in n to disappear, and have n = o(h/n/m).

144




4-9

~ Thus, the resolution should be at least O(h/n/m). Note that if
n =vO(h—l) and m = O(n), the random element in the method loses its
significance.

In the case of a shock separating two constant states, one
can readily see that d = O(h/ﬁ7ﬁ) but the resolution is infinite.
One can trivially define resolution in a neighborhood. Thus, what
we have 1s a rather awkward first order method, which resolves
shocks very sharply. We also know that it keeps fluid interfaces
perfectly sharp [2]. It is useful for the analysis of problems in
cartesian coordinates in which the dynamics of the discontinuities
are of paramount significance. We shall provide examples of such
problems in later sections. Recent results (see, e.g., [8]) show
-that in such problems substantially higher accuracy cannot be

achieved.

Boundary Conditions

The correct imposition of boundary conditions in our method:
requires careful thought, and was not adequately discussed in [2].
It is clear that even in the case of equation (2) the presence of
a boundary can detract fromvboth accuracy and resolution. The
lateral displacement of the solution may make some function values
disappear écross the boundary and care must be taken to ensure the
possibility of their retrieval. Additional storage across the
boundary and careful accounting‘of the lateral displacement proﬁide
a remedy.

The following procedure has been introduced in [2] to reduce

the lateral displacement of the solution (and thus reduce the loss
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of information at walls), when the third sampling strategy is used.
The goal is to obtain as fast as possible solution values on both
sides of whatever wave pattern emerges in the solution of the
Riemann problem, and thus rapidly offset a displacement to right
by a displacement to the left (or vice versa). We pick an integer
m!' <m, and m and m! mutually prime, and n, integer, Ny < M, and

construct the sequence of integers

(3) N, q = (ni+m')(mod m)

The subintervals of [- %.,%

rather than in the natural succession. One can

] are then sampled in the order
Ny 05055 e
further modify the sampling so that of two successive values of 9,
one lies in [- %,O] and one in [O,%]. These procedures do not
increase the error far from the wall, and are quite effective,
although no aﬁalytical assessment of their efficiency is available.
Suppose we are solving the equations of gas dynamics (equa-
tions (4) below), and using the third sampling strategy, modified
by (3) or not. Assume the velocity v is given at the boundary.
One can find a state (i.e., a set of values for the gas variables)
which hés the given Velocity and which can be connected to the
state one mesh point inté the fluid by a simple wave (see, e.g.,
[4]). This is equivalent to solving half a Riemann problem, and
provides an appropriate solution field which can be sampled. The
same result can be obtained by symmetry considerations. Consider
a bouﬁdary point to the right on the region of flow; let the |
- boundary conditions be imposed at a point-i h. A fake right state

0
at (io.+%)h is created, with
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pio+l/2 = pio—l/E ’

=2V -v

V. . - ’
1O+l/2 1, 1/2

D. =P, _ 2
1O+1/2 i, 1/2

where p, v; p are respectively the gas density, velocity and
pressure, and V is the velocity of the wall. The constant state in
the middle of the Riemann solution is the wall state, and it is
sampled to the left of the slip line %% =’V.

This‘procedure contains a pitfall, not noticed in [2]; let o

be chosen in accordance with our usual sampling strategy; let 91,

65 be the values of 6 at two successive time steps (el and 92 are

1 1

not independent). 61, 92, the values used at the wall, differ from

91 and 92 since only part of the interval [- %,-%] is sampled (or

else one does not remain to the left of the wall line %% =V).

6! and o can presumably be obtained by a linear change of

1 2
variables. Consider a specific part of the wave battern at the

wall., Siﬁce ei, Qé are not independent, the possibility exists
that whenever ei picks up the specific part we are considering, eé
is such that this information is lost to the wall. This possi-
bility was not noticed in [2], and its removal by the methods whose
description follows contributes to the sharpening of the results
obtained in [2]. |

!

It is always consistent to pick 6 Gé by a linear change of

l,
variables from two values picked independently from the uniform
distribution on [- %, %]. " On the average no. information will be
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lost to the wall, but the variance of the solution wiil be
increased. Better strategies canlbevdevised, but require thought
in each special case. If the walls are at rest, V = 0, one can
proceed as follows: 1impose the boundary condition on the right at
time nk and a point ilh, and on the left at time (n4—%)k at a point
1’ i2
chosen that 61 < 0 at time nk, and 6

(iE-F%)h, i integers. One can see that if 6, 6, are so
- > O at time (n4~%)k, then 6

o can be used at the boundary as well as in interior without

1
and 8

loss of resolution.

Detonations and Deflagrations in a One Dimensional Ideal Gas

our goal in this section is to present a quick'summary of'the
elementary theory of one dimensional detonation and deflagration
waves, (for more detail, see, e.g., [4] and [10], and then derive
some relations between the hydrodynamical variables on the two
sides of such waves for later use.

The equations of gas dynamics are

(4a) pot (p¥)y = O
(40) (pv), + (pv2+D), = O,
(4e) et+((e+p)v)X =0,

where the subscripts denote differentiation, p is the density of
the gas, v is the velocity, pv is the momentum, e is the energy per

unit volume and p is the pressure. We have
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(4d) e = pe + % pv2 R

where g = ei+-q, ey is the internal energy per unit mass,

(4e)

o |3

E, = =
i y-1

where yviS a constant, y > 1, and q is the energy of formation
which can be released through chemical reaction (see [4]). 1In the
Present section it will.be assumed that part of g is released
instantaneously in an infinitely thin reaction zone. Iet the sub-
script O refer to unburned gas (i.e., gas which has not yet under-
gone the chemical reaction) and let the subscript 1 refer to burned

gas. The unburned gas is on the right. We have

1 P
1 yl-I Py ql
1 Po
8 = — + -
0 Yo‘I Po qo

For the sake of simplicity, we shall make here the unrealistic

assumption y, = y, = y. (The case vy # Yo 1s more difficult only
because of additional algebra.) When Y1 = Yo = Y the reaction can
be exothermic (i.e., release energy) only if q > qp-
Iet U be the velocity of the reaction zone. ILet

Conservation of mass and momentum is expressed by
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(6) | Po¥o TP = P1W1 Py

(see [4]). From these relations one readily deduces

' p" - p
N O;Tl
To™t1

, where T = 1/p .

Define the function H by
| (19-75)
_ 1 0
H = 81—80 +.—T— (pl+po) .
Conservation of energy is expressed by

H = H(Tl’pl’TO’pO) =0 .

Define A = q,-d3, (A < 0 for an exothermic process), and ug = %ii;

we find

2u2H =0

(1-02)7 0y - (1-uB)tgpy -2uP8 + uB(1-7,) (1 +D,)
(7) <
= —pO(TO-ugfl)-+pl(11-u210) ~oufn .

In the (Tl,pl) plane the locus of points which can be connected to
(To,po) by an infinitely thin combustion wave is a curve which
reduces to a hyperbolé when A is independent of p and t. (See
Figgre 1.) The lines throﬁgh (To,po) tangent to H = 0 are called
the Rayleigh lines. Their points of tangency, Sl and 82, are
‘cailed the Chapman-Jouguet (CJ) points. The portion, Py > by and
T, > T '

0* of the curve is omitted because it corresponds to
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CJ point | ——

Figure 1. The Hugoniot curve for exothermic gas flow.
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unphysical events in which M2 < 0. The upper portion of the curve
corresponds to detonations; the portion above Sl to strong deténa-
tions and the portion below to weak detonations. The lower part
of the curve corresponds to deflagrations.

The velocity and strength of a strong detonationvare entirely
determined by the state of the unburned gas in front of the detona-
tion and one quantity behind the detonation, just as in the case
with shocks. Let_po, po; Ty €o and vo.bé given, as well as Pqs
and assume the unburned gas lies to the right of the detonation.

We have from (7)

2
P~HLTD 2
(8) T, =T 0 S . = Tl
1 0 2 2
WPstPy [ WPGTPy
and thus
2 Po=P1 Po~Py
M™ = - o = 2 ) :
0 "1 po+p, Py 21L Apo
TO 5 + o -1
: P1+M Pq L PO+P1

'

Let [p] = P1-Py; some algebra yields

- y=1 4 y+1 1 = (v-
(9) M = popo( 5 + 5 (56))/(1 (v l)POA/[P]) .
If A = O this formula reduces to the expression for M in a shock,

A > O; this can

as given in t2] or [9]. M is real if [p] - (y-l)po

be readily seen to hold in a strong detonation.
The states on the curve H = O located between the CJ point Sl

and the line T = 7. correspond to weak detonations. As described

0
in [4], the state behind a weak detonation is entirely determined

by the velocity U of the detonation and the state in front of it.

152




4-17

In fact, a weak detonation cannot occur and what does happen is a
CJ detonation followed by a rarefaction wave. Our next objective
is to derive an explicit criterion for determining whether a
detonation will be a strong detonation or a CJ detonation.

It is shown in [4] that at S1s lwll = ¢, where c; = /?5;751
is the sound speed, l1.e., a CJ detonation moves with respect to the
burned gas'with a velocity equal to the velocity of sound in the
burned gas. We now use this fact to determine the density Pog?
velocity Vag and pressure Pog behind a CJ detonation.

From equations (4) and (5) one finds

P,-p
10 _ 22 22 o
1T P T Roo = M

and thus in a CJ detonation

oty PipT T TYP/Ty s Ty = ey s
or
(10) Tl(pl(l+7)'po) = YTOpl .

Equating T, obtained from (8) to 7, in (10), we find

2
" p1+po\+ 2uh YRy

2 ; 2 - T+v )=
Pt P/ (pytutpy)  PiliHYI)-pg

Some algebra reduces this equation to

2
p14-2plb+-c =0,

where
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(11a) | b = -p, -2 (v-1)p,

2 2
(11b) Po +auPopd s

]
il

a trivial calculation shows that b2_c >01if y > 1 and A < 0. Thus

(11lc) Pog = P1 = —b-kag-c

where the + sign is mandatory since a detonation is compressive.
. _ _ _o-1 . : . :
Given Pyy = Pqys Pog = P = T; can be obtained from equation (10).

Since M = “pWqs and Wy = -Cy» we find

M = VyP1p1 = V¥PegPog

The velocity U

oy of the detonation is found from

Po(Vo-Ugg) = -
whlch.ylelds Usg = (povoi- YpCJpCJ)/pCJ’ and then

(12) Vog = UCJ -Cay -

Vaog depends only on the state of the unburned gas.

Suppose Vs the velocity of the burned gas, is given. If

v, X Vg & CJ detonation will appear, followed by a rarefaction

wave. If vy =V a CJ detonation will appear alone, and if

CJ
vy > Vg & strong detonation will take place.

If the unburned gas lies to the left of the burned gas
analogous relations are found; the only difference lies in the

signs of v, in particular,
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M= +pl(Vl—FJ) = +pO(VO-—U)

The velocity of a possible deflagration cannot be determined
within the context of a theory which assumes the gas to be non-
conducting; this point will be further discussed below. It will
turn out that for‘a'nonconducting‘gas the only possible deflagra-
tion is a constant pressure deflagration, by, = Py» which moves with
zero velocity with respect to the gas; i.e., it is indistinguish-

able from a slip line.

Application of the Method to Reacting Gas Flow:

One interesting feature of our method is. its applicability to
the analysis of gas flow in which exothermic,chemical reactione are
taking place and producing substantial dynamical effects. A
Riemann problem is solved at each time step and at each point in
time; this solution is then sampled. The advantage of this pro-
Icedure i1s that the interaction of the flow and the chemical re-
action can be taken into account when the Riemann problem is solved,
even when the time scales of the chemistry and the fiuid flow are
very different. As a result, the basic conservation laﬁs are
Satlsfled at the end of each time step. It can be readlly seen
that if the chemical reactlons and the gas flow were to be taken
into account in separate fractional steps, the basic conservation
laws may be violated at the end of each hydrodynamical step; thus
either indu¢ing unwanted oscillations and waves, Or requiring time
steps small enough for all changee to be very gradual — usually a

costly remedy. It is interesting. to note that the Riemann solu-
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tions with energy deposition in the flow field are equivalent to
the exothermic centers introduced by Oppenheim [3] and serve the
same purpose of accounting for the dynamical effects‘of the exo-
thermic reactions. These discrete exothermic centers correspond
to a physical reality whose origin can be ascribed to the fluctua-
tions to the levels of chemical species [1].

We consider here the simplest posSible description of a reQ

‘acting gas (see e.g. [9]):

(132) p£*-(pV)X =0
(13Dp) . .mv%+(m@+b%(=o
(13c) e+ ((e4p)V), ~ AT, = O

where, as before, p is the density, v 1s the velocity, e the energy

per unit volume,

(134d) e = pe + % pV2 s

e is the internal energy. In this section,

(13e) e=fr 2+ 2a

I3

where y is a constant, y > 1, q 1is the total available bonding
energy (q < 0), and Z is a progress parametervfor the reaction.

T = p/p is the temperature, and A is the coefficient of heat con-
duction. Z is assumed to satisfy the rate equation

(13f) %% = -KZ , z(0) =1

where
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K=0 if T=1p/p < Ty »

(13g)

K=Ky if T =p/p > Ty -

TO is the ignition temperature and KO is the reaction rate. The
equations of the preceding section are recovered if we set A = 0,
qQ =4, and K = . Equation (13f) is a reasonable prototype of the
vastly more complex equations which describe real chemical
kinetics. Viscous effects have been omitted here; their inclusion
in the present context has little effect and presents little
difficﬁlty. (Thus, we assume here a zero Prandtl number.)

The approximation of the dissipation term will be relegated
to a separate fractional step, where it is to be handled by
straightforward finite differences. 1In view of (13e), and the
perfect gas law T = p/p (in appropriate units), this fractional

step réquires merely the approximatién of

(14) . 3,T = (y-1)T_ .

The differencing of a heat conduction term alone introduces
negligible numerical dissipation. Several more sophisticated
approximation methods were tried, but did not seem to be worth
bursuing.

All that remains to be done is to describe the solution of

the Riemann problem for equations (13) with A = 0. This will be

done with the following simplifying assumption: whatever energy
may be released during the time k/2 in a portion of the fluid is

released instantaneously. This approximation is well in the spirit
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of our method (since it approximates Z by a plecewise constant

function); it also has some physical justification [1].

Solution of a Riemann Problem With Chemistry

Our goal is to solve equations (13) and the following data:

SE(P = Pﬁ: b= Pg, v o= Vg’ Z =2 ) for x < O

y) =
and |

; S.(p=pp P=p, v=v, Z=2,) for x>0
with A = 0. We begin by a partial review of the case KO = 0 (no

chemistry; see [2], [6], [9]). The solution consists of a right

state S, a left state S a middle state S, (p = Dy, V = Vi ),

z’
separated by waves which are either rarefactions or shocks. Sy is

diﬁided by the élip line %% = v, into two parts with possibly
differing values of p, Px to the right of the slip line_and Px g to
its left. To determine v, and p, we proceed as follows: define
the quantity |

pr_p*
r Vr—V*

(15) . M

If the right wave is a shock,

(16) B M, = -p (V,~U.) = —py (v,-U,)

where Ur is the velocity of the right shock. From the Rankine-

Hugoniot conditions one obtains

(17a) M. =/Bp b(p/p.) , pu/p,>1,

where
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(17p) . Cby(a) = (X Eas 1=

If the right wave is a rarefaction, we find

(18a) My =vDPupy $5(0e/P.) 5 pe/P. <1,
where

_y-1 l-a
(18p) by (a) 2/ T U

(18b) is derived through the use of the isentropic law pp ¥ =

constant and the constancy of the right Riemann invariant

Ty, = 2/v¥p/p/(y-1) - v. The function

(19) | b=
.I¢2(a) , ax<1,

is continuous at a = 1, with ¢(1) = ¢l(l) = ¢2(1) = /Y. Similarly,

we define

b,~-p
- 4 7*
(20) 7= V};V_* B
if the left wave is a shock,
(21) . ME = p,ﬂ<vﬂ-U,e) = P*I/(V*'Uz) >

where Uz is the velocity of the left shock. As on the right,
M£'='/pzp£ ¢(p*/p£)3 where ¢(a) is defined as in equations (17) and
(18). . From (15) and (20), |

(22) Pu = (wpmuy D, /M 40,/ /((LAL) + (1/1))

These considerations lead to the following iteration procedure:
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Pick a starting value pg (or values Mg, Mg), and then compute p¥+l,
My+1, My+l, g > 0 using
r Y/ —
~ v v Y v
(23a) P = (up-u, +p Mo+ M)/ ((1/M) +(1/M))
+1 Y
(23b) p:: = max (5: pV) 2
+1 +1
(23¢) | M = by b0y /p,)
: 1 +1
(234) | M, =Ype, b(px /p,) -

Equation (23b) is needed because there is no guarantee that in the

6

course of iteration P remains > 0. We usually set g1 = 10"°. The

iteration is stopped'when

v+l v v+l v
max (IMI- - l"" IME "le) : 82 ’
-(we usually picked ey = 10_6); one then sets M = M¥+l, Mz = M;+l,

+1
and p, = p: .

To start this procedure one needs initial values of either Mr
and Mz (or p*). The starting procedure suggested by Godunov
appears to be ineffective, and better results were obtained by

setting

o
Py = (Pptp,)/2 .

We also ensured that the iteration was carried out at least twice,
to avold spurious convergence when p,. = pz.
-As noted by Godunov, the iteration may fail to converge in

the presence of a strong rarefaction. This problem can be overcome
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by the following variant of Godunov's procedure: If the iteration
has not converged after L iterations (we usually set L = 20),
equation (23b) is replaced by

+1 ~
(23b)! px = amax (e1,3") + (1-a)p)
with o = Qy = %. If further L iterations occur without convergence,
we reset a, = ql/2. More generally, the brogram was written in
such a way that if the iteration fails to converge after gL itera-

tions (4 integer), a is reset to

a=a,s= az_l/Q .

In practice, the cases g > 2 were never encountered. The number of
iterations required oscillated between 2 and 10, except at a very
few points.

Once Dy s Mr’ Mg are known, we have
(24) V, = (pz—prﬂ—MrUr4-MzU£)/(Mr+ME)

from the definitions of M_ and M,

Consider now the case K # 0, (A = 0); the right and left
waves may now be CJ or strong detonations as well as shocks and
rarefactions. The task at hand is to incorporate these possibili-
ties into the solution of the Riemann problen.

The state S, will remain a constant state; v, and p,. are
fixed. The energy in Sr,must change at constant volume (and thus
can do no work). The change 6Zr in Zr can be found by integrating
equations (13f), (13g), with Z(0) = Z,. and Z(k/2) = Z,+82Z.,

62r < 0. The new pressure is
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(25) : . pr+6pr = pr+‘(y—l)62 ap,.

(see equation (7)). We write pgew = p, +6p,., and drop the super-

script new. (We shall need the old Zr again and thus refrain from
renaming ZrﬁrBZr.) Similarly, Z, changes to Zg+-6zz,
is found using the obvious analogue of equation (25).

and a new pz'

In S, the values of Z differ from the values Zr4-62r, Zz-+6zz.

Let Z,, be the value of Z to the left of the slip line and let Zy

*7
be the value of Z to the right of the slip line. The difference in

energy of formation across the right wave is A = (Z -(Zr-FBZr))q,

and across the left wave it is b, = (Z*z-(Z£‘+BZ£))q. We shall

A

*r

iterate on the values Z VA A . In the first’iteration, we

r’ =g
set Z*r = Zr4-6Zr, Z*z = ZZ-+6ZZ, and thus Ar = AE = 0O, and carry
out the -iterations (23). When (23) has converged, a new pressure

*

* g7

p* is given, and new densities Paeps p*z,can be found from equations

(16), (21) or the isentropic law. New temperatures Ty, = p*/p*r,

Ty, = p*/p*z_are evaluated, equations (13f), (13g) are solved, and

z‘are found. If A, =0 the right wave is

new values Z*r, Z*ﬁ’ A A .
either a shock or a rarefaction, and if Ar > 0 the right wave is

either a CJ detonation followed by a rarefaction or a strong
detonation.
Let v, be the velocity in Sy. Given Ar’ AE’ we can find the

velocities v v behind possible CJ detonations on the right

Cdr’ "CJY

and left (equation (12)). If v, < e

detonation followed by rarefaction, and if vy > v

the right wave 1s a CJ

CIr the right wave
is a strong detonation. The CJ state is unaffected by S, (since it
depends only on Sr) and as far as the Riemann solution is concerned

it is a fixed state. If the right wave is a CJ detonation, we re-

define Mr'
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_ PegPx

M s
r ViV

*

(pCJ from equation (llc)). Then

If the right wave is a strong detonation, we find from (9)

MI‘ = /@_I,_FE (bB(prAr:Pr:P*) P)

where 1%& . lii 32
2 a

(s (@, 0,05 ))% = 2.
5 L O2 O Oy ) v-17 4,

=%
Similar expressions occur on the left. The iteration starts with

M Mz from the previous iteration, and written out in‘full,

r’
appears as follows:
Wy N Y v v

+1 ~
py" = max (e,p’) ,

VN Vo Vo v v
Ve = (pﬂ- pr-+Mrvr+-M£v£)/(Mr-ka) s

where . .
((Pch’Pch:VCJr) if right wave = CJ detonation,
(?)Il,.’ rf)lr: vr) = ) . }
(pr’pr’vg) otherwise,
(<pCJ£’pCJz’VCJ£) if left wave = CJ detonation,

l(pz’pz’vg) otherwise,
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VPP, ¢3(prAr,p ,p¥+l) if right wave = strong detonation,

v+l _
Mr - :
~ +1 )~ .
Jﬁrpr $(py /?,) otherwise,
/D ¢3(p£ z,pz,pV+l) if left wave = strong detonation,
NS
MZ =

J pﬂ d(p %/pﬂ | otherwise.

The complexity of this iteration is more apparent than real. It is
stopped when it has converged, as before. New values of Z*r, Z*z

A Az are evaluated, and the iteration is repeated; this process

r’

is stopped when Ar’ Az change by less than some predetermined ¢

3
over two successive iterations. It can be readily seen that with
the present expression for the energy of formation, at most four
iterations on Ar’ Aﬂ are ever needed.

Once S, has been determined, the solution must Be sampled.
Iet P = (8h, k/2) be the sample point, and ?=p(P), B =p(P), etec.
Four Dbasic cases are to be considered:

A) P lies to the right of the slip line and the right wave is
eiﬁher a shock or a strong détonation;

B) P lies to the right of the slip line and the right wave is
elther a rarefaction or a CJ detonation followed by a
rarefaction; |

C) P lies to the left of the slip line and the left wave is
either a shock or a strong detonation, and

D) P lies to the left of the slip line and the left wave is

either a rarefaction or a CJ detonation followed by a

rarefaction.
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Case A. The velocity Ur of the shock or the strong detonation can

be found from the relationship

M, = 'pr(vr_Ur)
if P lies to the right of g% = U we have the sampled values E = Pps

v

P = Dy v = Vs 7 = Zr+-6zr. If P lies to the left of Ef U,., we
have B = Pxyp P = Py> v = Ves 4 = Z
Case B. Consider first the case of a rarefaction wave. The rare-
faction is bounded on the right by the line %% =V -kcr,

¢, =v¥p./p,» and on the left by E% = Vi + Cy,, Where c, can be
found by using the constancy of the Riemann invariant

-1 -1
r, = 2c¢* (y-1)" " - v, = 2cr(y—l) -V,

~

If P lies to the right of the rarefaction, E = pp P =D Vo=v

hiad r’
[a"]

Z =2,+8Z,. If P lies to the left of the rarefaction, p = py .
B =Dy V=v,, Z=2,+dZ . If P lies inside the rarefaction, we
equate the slope - of the characteristic %% = v+c to the slope of

the line through the origin and P, obtaining

~

V+¢ = 26h/k ;

the constancy of Ty the isentropic law pp"y = constant and the.
definition ¢ = ¢yp7p yield 5, %, and %. 7 = Zr4-6Zr. If the wave
is a CJ detonation, (pr’pr’vr) are replaced everywhere by
(pCJr’pCJ’VCJ)’ and 7 inside the fan and to left of its equals -
The cases C and D are mirror images of A and B, and will not

be described in full.
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Numerical Results

We begin by presenting some results for detonation waves with

very large K. (K. = 1000). These results verify the accuracy of

0 0
the programming rather than the general validity of the method,
since the solutions of the corresponding problems are an intrinsic
part of the Riemann problem solution routine.

To obtain Table I, I started with a gas at rest, p. =1, v = 0O,

p =1, and at t = O imposed impulsively on the left boundary condi-

tion v=V =1. I used h=1/7, k/h=.2, K., = 1000, T. = 1.1,

_ 0 0
g =1 énd vy = 1.4. The result is a perfect strong detonation.
In Table II a Chapman-Jouguet detonation is exhibited.
h =1/9, k/h = 2, Ky = 1000, T, = 1.1, g =12 and y = 1.4. m = 11.

The solution is exhibited at t = 2, n = t/k =9, i.e. n is not a
multiple of m and the solution is not at its most accurate. This
can be seen from the presence of a fake constant state (for x = 6/9
and 7/9), which was discuséed invthe section about errors, and
which is most likely to appear when n is not a multiple of m. The
last’dolumn presents the right Riemann invariant rr.which is of
course constant behind the CJ front.. The chemical time scale is
not resolvéd on the grid, and one should notice the small number

of mesh points required to display sharp variations in all quanti-

ties.
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Table I

Strong Detonation

oy
i

1/7, kx/h = .2, t = nk = .314, n = 11, K, = 1000, T

I

l.l,
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Table II

Chapman-Jouguet Detonation

0 0

q=12, y = 1.4

X v [ p T Z Iy

0 1.000 1.179 6.965 5.907 0.000 13.379
1/9 1.000 1.179 6.965 5.907 0 13.379
2/9 1.000 1.179 6.965 5.907 0 13.379
3/9 1.000 1.179 6.965 5.907 0 13.379
4/9 1.186 1.257 7.621 6.061 0. 13.379
5/9 1.251 1.287 7.862 6.115 0. 13.379
6/9 1.524 1.410 8.952 6.346 0 13.379
7/9 1.524 1.410 8.952 6.346 0 13.379
8/9 1.62% 1.457 9.373 6.4%0 0 13.379

1 0. 1.000 1.000 1 1.000 5.916

. 000
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We now precent some results for a problem whose solution is
not programmed into the solution algorithm — a deflagration wave
with finite reaction rate. For t < 0 a gas at rest lies in x > 0,
with p = 1, p=1, (v =0), and Z = 1; the left boundary is
maintained at zero velocity, V = 0. At t = 0O the gas in the first
cell to the left is raised to a temperature T = 2, (i.e. the
pressure is incfeased to p = 2). The resulting deflagratioh wave
is observed. It is known that the velocity of the wave is
asymptotically proportional to /ﬁﬁg (see e.g. [10], p. 99); thus,
the wave does not propagate unless A # 0, as one can readily verify
on the computer. This last justifies an earlier assertion to the
effect that when A = O the wave is indistinguishable from a slip
line. The results in Table III were obtained with h = 1/11,

k/h = .35, Ty = 1.6, K
presented at t = nk = .273, (n = q). One can clearly see the pre-

o=1 a=10, y = 1.4 and m = 11. They are
cursor shock, and the deflagration zone (characterized by Z < 1)

in which the density and pressure decrease. The small number of

mesh points should again be noticed.
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Table ITT

A Deflagration With Finite Conduction and Reaction Rate

1/11, k/h = .35, t = nk = .273, n = 9, Ky =1, Ty = 1.6, V = 0,

D" .
[ ‘

0
g =10, v = 1.4,
X v p P T Z
o 0. - .567 1.667 0.937 334
1/11 0.139 .650 1.781 2.739 .614
2/11 0.261 547 ,1'315 2.402 614
3/11 .385 1.074 1.726 1.607 1.000
4/11 | 575 1.550 15998 1.288 1.
5/11 544 1.519 1.800 - 1.185 1.
6/11 .023 1.016 1.058 1.041 1.
7/11 .002 1.001 1.003 1.002 1.
8/11 . 000 1.000 1.000 1.000 1.
9/11 o 0. 1. 1 1. 1.
10/11 0. 1. 1. 1. 1.
1 0. 1. 1. 1. 1.
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Conclusions

We have presented a numerical method capable of describing a
comﬁlex gas flow with chemical reactions. The relative complexity
of the method is balanced by economy in the representation of the
solution. Generalization of the method‘to problems in more space
dimensions is a straightforward application of the fractional step
method presented in [2], and the inclusion bf a more realistic
chemical process presents no difficulties other than the standard
difficulties of finding a plausible kinetic scheme and acceptable
numerical values for the corresponding coefficients. The inter-
esting and major difficulties in multidimensional problems arise
when one attempts to take into account boundary layers and turbu-
lence effects. In a forthcoming paper we shall show that boundary
layer effects at least can be incorporated into our method in a
natural and efficient way; once this has been explained, multi-

dimensional results will be presented.
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A NUMERICAL STUDY OF CYLINDRICAL IMPLOSION

Gary A. Sod

Courant Institute of Mathematical Sciences
New York University
New York, New York 10012

Abstract

A numerical procedure is introduced to solve the one-
dimensional equations of gas dynamics for a cylindrically or
spherically symmetric flow. The method consists of a judicious
combination of Glimm's method and operator splitting. The method
is applied to the problem of a converging cylindrical shock.

Introduction

The one-dimensional equations for an inviscid, non-heat con-

ducting, radially symmetric flow can be written in the form

(1) U
where

m m/r
(2) U=|m|, FU) =|n®/p +p|, and W) = (a-1) | n°/pr

e m(e+p)/p m(e+p)/pr

where p is the density, u is the velocity, m = pu is the momenfum,
P is the pressure, e is the energy per unit volume, t is time,

r is the space coordinate of symmetry, o is a constant which is 2
for cylindrical symmetry and 3 for spherical symmetry, and.the sub-.

scripts refer to differentiation. We may write

(3) e =P+ 1 2

N

173



5-2 -

where y‘is the ratio of specific heats'(a‘conStant greater than 1).

There are two major problems involved in solving the system
(1) directly. The first is the singular nature near the axis
(r = 0), that is, there are singular terms proportional to 1/r.

Thé éecond problem is that the momentum equation (the second compo-
nent equation of (1)) cannot be put in conservation form.

These problems cause major difficulties near the axis. These
are usually overcome by some ad hoc method such as extrapolation
(Payne 1956). Another approach has been to treat this as a problem
in Cartesian coordinateé in two space dimensions (Lapidus 1971).

In the method described below both of these problems have
been completely eliminated. Thus there is not need to resort to

any trickery in order to solve the system (1).

Outline of the Method

The first step in the problem is to use the method known as
operator splitting to remove the inhomogeneous terms -W(U) from

the system (1). Thus we solve the system

+'E(g)r =0

(%) Uy

‘which represents the one-dimensional equétions of gas dynamics in
Cartesian coordinates.

The method used to solve system (4) is the random choice
method introduced by Glimm (1965) and developed for hydrodynamics
by Chorin (1976). Details of this method will be given in the next

section, for completeness.
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Once system (4) is solved, the system of ordinary differen-

tial equations
(5) ' - Uy = -W(U)

is solved, where the solution of system (4) is used to determine
the inhomogeneous term -W in (5). There are several reasons for

this approach, which will be discussed in later sections.

Glimm's Method

Consider the nonlinear system of equations (4). Divide time
into intervals of length At and let Ar be the spatial increment.
The solution is to evaluated at times nAt where n is a nonnegative
"integer at the spatial points iAr, where i =0,%1,+2,... and at.

time (n+ %)At at (i+ %)Ar.

The method is a two step method. ILet §§ approximate

~n+1l/2
E(iAr,nAt) and E?+l§2 approximate H((i4—%)Ar,(@+-%)At) in (4). To
. . f\;l’l+l/2 R . .
find the solution Ei+l/2’ consider the system (4) along with the

piecewise constant initial data

n "
Uil 2 r>(1+§Mr,
(6) : U(r,nAt) = :
- o < ('+-E)Ar
e it 3
! \
|
This gives a‘sequence'of Riemann problems. If At < 5 ﬁr+_c) where

¢ 1s the local sound speed, the waves generated by the different
Riemann problems will not interact. Hence the solution v(r,t) to

the Riemann problem can be combined into a single exact solution.
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See Figure 1. Iet £ _be an equidistributed random variable which
n

is given by the Lebesgue measure on the interval [- %,-% . Define

(7) W2 = w1+ g )ar, (n+Flot) -

See Figure 2.

At each time step, the solution is approximated by a piece-
wise constant function. The solution is then advanced in time
exactly and the new values are sampled. The method depends on
solving the Riemann problem exactly and inexpensively.

Chorin (1976) (see also Sod (1976) and (1978a)) modified an
iterative method due to Godunov (1959) which will now be described.

Consider the system (4) with the initial data

. ' SZ = (pﬂ’u)@,pﬂ) ) r <0,
(8) U(I‘,O)‘ = v ’

7
n

r (Pr:ur:Pr) 3 r z o .

The solution at later times looks like Figure 3, where Sl and 52

are either a shock or centered rarefaction wave. The region S, is

a steady state. The lines El and 22 are separating ﬁhe states.

The contact surface %% = u, separates the region into two parts

with possibly different values of p,, but equal values of u, and p,-
| Using this iterative method we first evaluate Dy in the

state S,. Define the quantity

p,-P
_ 4
(9) M, = T,

If the left wave is a shock, using the jump condition Uﬂ[p]= [pul,

we obtain
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T T T L f L ; I=(n+‘)A'
. y ] A Y + Y + v t=(n+3)At
‘ $ + + 1=nAt

(-DAr (—DArG-0Ar iAr (+HAr (+DAr (+DAr

- Figure 1. Sequence of Riemann problems on grid.

/((H- EJAr, (n+hHAn

1 I o i
I 1 LI T

} t=(n+14) At

3 = { } t=nlAt

i-HAr iAr G+HAr G+DAr. +)Ar

Figure 2. Sampling procedure for Glimm's scheme.

—P

Figure 3. Solution of Riemann problem,
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(10) M, = pﬂ(uz-Uﬁ) = py (U, - Uﬂ) ,

where Uﬂ is the velocity of the left shock and p, is the density

in the portion of S, adjoining the left shock. Similarly, define

the quantity.

p_p*'
_ r

(11) | M, = oo
r

If the right wave is a shock, using the jump condition Ur[p]= [pul,

we obtain
(12) : M, = -p(u, -U.) = -py(ue-0U.)

where U, is the velocity of the right shock and p, is the density

in the portion of 5, adjoining the right shock.

1

In either case ((9) or (10) for M, and (11) or (12) for Mr)

_ 2
we obtain

(13) M, = /pﬂpz_¢(p*/pz) ,
(14) M, = /p P, $(py/D,) >
where p
jyglx+}'él , x>1,
(15) b(x) = <
y-1 1-X x < 1.
| 2y 1o E S

Upon elimination of u, from (9) and (11) we obtain
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b P
J r
, u)@—ur+ME+M—r
(16) By = >
Mﬁ Mr

Equations (13), (14), and (16) represent three equations in three

unknowns for which there exists a real solution. Upon choosing a

0] 0

starting value pS (or Mg and Mr), we iterate using these three

equations. We chose pg

- %(pz+‘pr) (for details see Chorin (1976)
or Sod (1976)).

After pg, Mz, and Mr have been determined we may obtain Uy,
by eliminating p, from equations (9) and (10),
_ Py M, Mo,

(17) u .
* ME-I-Mr

For a discussion of the method of choosing the random numbers most

efficiently see Chorin (1976).

Solution of the Ordinary Differential Equations

. Antl | .
Once the solution of (4) T, 1s obtained, we have to solve

a system of ordinary differential equations (5). We approximate

(5) by

un+l _ un 1
—i _.]_ _ ~n+
——gr— = Wy ),
or
. n+1l n ‘ An+l
(18) _ My T o= ug - AtW(U, )

This apprOXimation (18) is the basic Cauchy-Euler scheme which is

just first~order accurate. However, the Glimm scheme is at most
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first order accurate so there is no reason for using a high order
method for solving the system'of ordinary differential equations.

Since this system (5) is solved only at interior points and
the scheme (18) does not require values at r = 0, the singularity

at the axis is eliminated.

Boundary Conditions

Boundary conditions need only be applied to the system (4)
since the system of ordinary differential equations (5) use only
interior points. So that with the procedure described by Chorin
(1976) the boundary condition at the axis (r = 0) is readily
handled. The boundary condition is imposed on the grid point
closest to.r = 0, say i.Ar. A fake left stafe is created at

0
(io-%)Ar by setting

s

Pio-l/z = pio+l/2 ’

~N “~

u, = ~U, Yoy s
1,-1/2 1g+1/2

~ o

p. _ = P, .
i 1/2 1O+1/2

In this way the shock or rarefaction wave will reflect which on

the average is exact.

Application to a Converging Cylindrical Shock

Initially, a cylindrical diaphragm of radius r -separates two

_ 0
uniform regions of gas at rest as in a shock tube with the outer
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Time
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wave
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Figure 5. Pressure profiles at time intervals of 0.05.
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pressure and density being larger than the inner ones. After the
diaphragm is ruptured (t > 0), a shock Qave is created and travels
into the low pressure region followed by a contact discontinuity.
A rarefaction wave travels into the high bressure region. See
Figure 4.

Tt is known that a cylindrical shock wave in a compressible
fluid increases in strength as it converges toward the axis. This
can be seen experimentally in Perry and Kantrowitz (1951).

vIn the example given below the pressure and the density in
the inner region.were set egual to 1.0 and the pressure and density
in the outer region were set equal to 4,.0. This will produce a
shock with initial strength of 1.95, a contact discontihuify and a
rarefaction wave. We took Ar = 0.01. The time steb At is chosen

so that the Courant-Friedrichs-Lewy condition 1s satisfied, 1.e.
' At
max (Iul+—c)z? <1,

where ¢ is the local sound speed.

In Figure 5 the pressure distribution is displayed at ﬁime
intervals of 0.05. The shock appears as a rapid variation in p
"which is completely sharp, i.e. the number of zones over which this
variatioﬁ takes place is zero. As timé increases the shock propa-
gates toward the axis. It is observed that the strength of the
shock increases with time. After the passage of the shock, the
pressure behind the shock increases. When the shock arrives at the
axis it is reflected and rises to a large but finite value and a
diverging shock appears. It is also observed that the pressure at

a -given point behind the reflected shock décreases with time.
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Figure 6. Velocity profiles at time intervals of 0.05.
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Figure 7. Density profiles at time intervals of 0.05.
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/In Figure 6 the velocity of.the gés is displayed. The
behavior is similar to that of the pressure except that the con-
verging shock decreases the velocity from zero to a negative value.
When -the shock is reflected from the axis, the diverging shock has
the effect of producing a small positive (outward) velocity. As
in the case of the preséure profile, at a given point behind the
converging shock the velocity increases with time and behind a
diverging shock the velocity decreases with time.

The density and energy profiles are displayed in Figures 7
and 8 respectively. The basic properties of the shock are similar
to those of the pressure distribution, except thaf the rise in
density across the shock is smaller due tb a temperature increase.
In the density and energy profiles a contact discontinuity appears.
It is a result of using Glimm's scheme that the contact dis-
continuity (as well as the shock wave) is completely sharp. The
contact discontinuity propagates toward the axis behind the con-
verging shock and is traversed by the reflected (outgoing) shock.

In Figure 9 the density profile where the contact dis-
continuity and the reflected shock wave have crossed. For a poly-
tropic gas with the same values of v, higher sound speeds corre-
spond to higher densities (Courant and Friedrichs, 1948). The

interaction of a diverging shock wave and a contact discontinuity

‘propagating toward the axis results in a reflected (converging)

shock (represented by (B)), a contact discontinuity propagating

toward the axis (represented by ), and a transmitted (diverging)

‘shock (represented by @ ).
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In general the overall trend of the results agree with those
of Abarbanel and Goldberg (1972), Lapidus (1971), and Payne (1956).
There is, however, one major difference, the time at which the
shock reaches the axis. Our method is in agreement with the method
of Abarbanel and Goldberg. However, with the methods of Lapidus
and Payne, the shock reaches the axis sooner.

Tt should be noted that as a result of the randomness of
Glimm's method, at a given time, the position of the shock or con-
tact discontinuity may not be exact. Yet on the average their -
positions are exact. |

With the threé other metheds used in this comparison, the
shock and contact discontinuity are smeared. The smearing of the
shock is less dramatic. The contact diScontinuity obtained by
Payne's method is almost immediately smeared to such a degree that
it 1s barely visible. However, our technique produces perfectly
sharp shocks and contact discontinuities.

As discussed above, the interaction of the reflected shock
and the contact discontinuity will produce a contact discohtinuity,
a transmittal shock and reflected shock. The reflected shock is
produced by our technique (see Figure 9). However, the reflected
shock ié not produced by the methods of Abarnael and Goldberg,

Lapidus and Payne.

Conclusions

This method reduces the problem of solving the one-dimensional

equations of gas dynamics for a cylindrically or spherically
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t

symmetric flow to solving the one-dimensional eqﬁations of gas
dynamics in Cartesian coordinates and a single system of ordinary
differential equations, by using operator splitting.

The equations of gas dynamics are solved using Glimm's method
which keeps the shock waves and contact discontinuities perfectly
sharp. The ordinary differential equations are solved using the
Cauchy-Euler scheme at the interior points only and for one time
step. Thus, the singular nature of the~original system near the
axis is eliminated. Since the equations of gas dynamics are solved
in Cartesian coordlnates the momentum equation can be written in
conservation form.

It should be noted that the roughness in the rarefaction wave
is a result of the randomness of the Glimm scheme.

In all our calculations there were 100 spatial grid points, .
and it takes about 10.3 seconds on a CDC 7600 to complete 300 time
steps.

This method can be generalized to treat a two-dimensional
axially symmetric flow. This isg being developed to study the flow
in a motored engine chamber in two dimensions with a single
intake/exhaust valve along the axis. it is planned that boundary
layer effects be included also. See Sod (1978b).

Further it is planned that this method be coupled with
chemistry as in a modified version of Chorin (1977) or Sod (1978c).
It is hoped that this will represent a reliable model of a

cylinder of an akially symmetric internal combustion engine. This

method will not be directly applicable to three-dimensional engine
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flow. However, this can yield important information concerning
the relative effects on the flow field of valve size, swirl rates,

piston and head geometry, and engine speeds.

This work was supported in part by the National Science Foundation,
Grant MCS76-070%9 and the U.S. Energy Research and Development
Administration under Contract W-T405-Eng-48.
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COMBUSTION INSTABILITY

Samuel Burstein
Courant Institute of Mdthematical Sciences

New York University
New York, New York 10012

1. THERMALLY INDUCED VIBRATIONS

It has been known for well over one hundred years that there
is, under suitable conditions,‘a‘strong interaction between sound
waves and flames..lRayleigh describes a simple experiment by which
a high frequency sound, when applied to the point of efflux of a
"pressurized gas Jjetting into a quiescént‘environment, causes the
combustion process to increase in intensity. The flame roars and
the total distance required for complete burning to take place is
"substantially reduced so that the efflux region, also called a
"preheat" zone, is where diffusion of heat and molecules of the
‘intermediate products of reaction take place and doﬁinate all other
processes. |

Frém‘this simple observation (and also from jét engine
design) it is strongly suspected that a similar, although more
complex, process occurs in the internal combustion mechapism of a
liguid propellant rocket motor. In such a motor liquid jets of
fuel and oxidizer are discharged from an injector head at the base
of a combustion chambér, The location of the région of infense
combustion depends not only on the design parameters of the injec-
tion system, including fuel and oxidizer properties, but upon the

complex liquid and gas phase mixing processes occurring in the
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region near the injector head. The natural Presence of combustion
noise ih the combustion chamber leads to pressure waves traveling
from the éombustion zone towards the injection.region. This is
‘the sensitive "preheat" zone of the entire combustion process so
that pressure fluctuations in this flow zone can lead to disrup-
tions in the physicochemical processes. Thus, a mechanism is
available for the presence of a driving force which can cause an
oscillatory combustion instability'similar to an organ pipe type

i of resonance. Such observed high frequency oscillations in the
combustion chamber, called "screaming," are characterized by finite
amplltude bressure waves which cause large fluid motions which, in
turn, lead to extreme heat transfer rates to the walls of the
combustion chamber. The result is usually a catastrophic burnout
of the motor.

In this paper, we will consider nonlinear vibrations in a
combustion chamber which can support resonance and which simulates
some of the basic flow characteristics present in a liquid pro-
pellant rocket motor. To achieve a reasonable representation of
combustion, the equations of compressible fluid dynamics, written

as a quasilinear system of equations, i.e.,
(l) ' ) E AT'{'b:O,

is modified by replacing the right hand side by a vector source
term S which is assumed to be given. In this model § is a function
of the gas variables w and droplet variables w*. Thus, 8 is pre-

scribed by computing the-interaction-of the gaé~field with the
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droplet field, the former of which is generated from the burning

" of the fuel droplet field. The droplets are produced by breakup
of the sprays of liquid fuel and oxidizer Jets; the droplet burning
mechanisﬁ is assumed to be described by an evaporation rate
controlling proéess which is slower than the chemical kinetic
process by a significant time scale. 7

In addition to liquid propellant rocket motors, the method

described in this paper can be used as a basis for the analysis of

direct fuel injected engines, i.e., diesel or stratified charge

.engines.

2. FORMULATION OF THERMAL FORCING FUNCTION

Let the properties of the droplet be denoted by w*

(2) W =

The droplet velocity in the Xos X3 direction is u* and v* and the
liquid mass, m*. The fuel droplet is then completely specified if
e*, the internal energy is known; e* = czT*, cé is the specific
heat at constant volume of the droplet. The conservation laws for

the fuel droplet can be written in the convenient form .

’ *
(3) S+ s(wh,w) = 0

subject to the initial condition

(') w*(0,0,t) = WZ
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Here we use a lagrangian representation so that for an
annular coordinate system (Xl’XQ’XB) = (t,0,z), and the particle
derivative is

d 9 u* oy o

¥*
TR FBWTY o5z
The value of r* is the radius of the annular domain; it is taken
as a constant and for convenience r* = 1. The inhomogeneous term
S(w*,w), having dependence on droplet and product gas properties,

is given by

3 .

-EFm
(4) s=£§,- £9
fZ

L)

The rate of evaporation of the droplet is m* while the aerodynamic
drag forces acting on the droplet in the 6 and z directions are f6
and % respectively. |

The internal droplet temperature, T*, is computed from the

integrated Clausius-Clapeyron equation

-1 1

(5) T™* = T*" % 4 4 In é; .

Here 5* and %* correspond to the pressure and temperature of the
droplet at the critical point while. the gas pressure p = p(y-1)e

1s taken to be a function of the combustion gas density p and |
internal energy e; the constant a is the negative reciprocal of the
vapor pressure equilibrium curve when the natural logarithm of the
vapor pressure is plotted against the reciprocal of the vapor

temperature.
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The drag forces are assumed to be described by Stckes drag
laws so that fe and f% are proportional to the square of the rela-
tive velocity difference between the combustion gas and liquid
droplet,

£9 (u-u*) Ju-u*|

(6) | =20 Py : !

a
£2 P (v-v*®) |v-v*|

The proportionality factor is the coefficient of drag CD and
a = a(t) is the droplet radius which can be given in terms of the
droplet mass m* = (4/3 )TraBp*. The drag coefficient depends on the

droplet Reynolds number Re® through

(7) cp = o7/ (re? )"

In order to compute the time rate of change of m*, m* is

specified through an evaporation law given by

(8) ax = ke (BT(1 4y SR /FT)
| SIS

with the combustion gas Prandtl number defined by Pr = Cpu/k. The
diffusion of the fuel vapor from the spherical droplet is reflected
by the specific heat at constant pressure, Cp, of vapor and thermal
conductivity, k, of fuel vapor. The local Reynolds ngmber is
defined in terms of the difference of the magnitudes g of the local
gas and droplet velocities, i.e. Re* = 2palg-q*|/u. The constant
L, obtainéd empirically, is 0.276 and po is the initial uniform

pressure of undisturbed flow.
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\

If the local fuel oxidizer ratio is F, the number density of

the droplet spray is N,

process is AHR,

the heat of reaction of the combustion

and the latent heats of the fuel and oxidizer is

LF and LO then the source term 8§ for the conservation laws

deécribing the motion of the

(9) S =M

where drag forces on the gas

R |
}AHR-.(L + F LO))

combustion gas is

1+ 1)

o]
0 |

F

have been neglected. Tt is clear that

S = S(Q,z,t) through the arbitrary trajectories of the moving drop-

lets in the combustion gas.

In general the number density of droplets, N, in a Spray is

not a constant but is described by a dlstrlbutlon function that has

1n1t1al value

N =

0 N(t: 0, O,&,E*) =

defined at the injector face
in the above relation depend

The distribution function is

oN ANa

3EF T et Yy
The vectors u* and f are the
the drops while & = da/dt is

radius.

N
I

O. The constants K, w, Ku and Kv
upon the injector characteristics.

subject to the evolutionary equation

(M) vu*-(Ng).=

velocity and acceleration (Eq. 6) of

the rate of change of the droplet
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Here we have set the sburce term to zero under the simpli-
fying assumptions that the droplets will not collide with each
other (dilute spray) nor with the chamber wall. It is also assumed
that the drops will not be created by breaking through aerod&namic
shear forces nor be created by nucleation processes.

Then M* is given by

M* = Mvp*'JF J[ a2NédadEf
u* a

%, DIFFERENTIAL EQUATIONS FOR COMBUSTION GASES

Before we can write down the final form of'pur conservation
law we must describe how to produce a supersonic outflow condition
which simuiates the state of affairs in a converging-diverging
nozzle attached to the tail end of the combustion chamber.
lAlthough this is not the usual procedure, it turns out to be con-
venient. We assume that there is a converging-diverging duct .
‘pléced immediately after the unifbrm annular chamber. In this duct
we assume that the rate of changé of fluid properties normal to the
streamline direction is small compared_to the rate of change of
fluid properties along streamlines. If, in the duct, we allow for
a variable cross-sectional area A which depends only on the axial
distance z, then we would expect small errors in computing stream
properties if 4 Ln A/dz is small“compéred with unity.

We prescribe the schedule of‘area variation in the axial

direction through

A _ 2
e 14—al(z-zo)+ a2(z—zo) s
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wWhere zO is the terminal axial position of the combustion chamber
with radius r* = 1 and ares AO. The constants al and a, are chosen'

so that

dA 2 <z <g . GA

1z = 0> 0 %5 370, 2z <z =<z

The total length of the simulated nozzle is z_. and z, is the

L t
position of minimum area, the throat, of the nozzle. The only
condition imposed on the choice of A(z) is the réquirement that the
prescribed steady state flow, (design flow) be shock-free.

This is achieved by allowing the local Mach number, M, at
Z =z, to be unity for the asymptotically steady problem. The
other condition fixing the two coefficients specifying the area

variation is determined by providing for a large enough area ratio

between the throat and the point z = Z; SO that
(10) M(z;,0,t) > 1

This is the boﬁndary condition required so that characteristic
surfaces are pointing into the boundary from the interior of the
flow. Hence, in the z direction the three characteristics v+e,
V-c are all positive. | |

The differential system, Eq. (1), can now be writfen in -

divergence form

(11) wy +G,+H, +B = 0,

v

with the vector B given by
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pv
PVE

(12) . p =3B AT - s(ww)
' pvu
\Ev

The vector of unknowns w, axial flux H, and the iangential flux G,
is given by

-

) 8 oo }

2 \
L pu . pu+p pvu
W= | , H=| , G =
| . } i 2 l
ng ; pvu | pv +p
- 5oy |
E \\_(E+p)V_’; \ (E+p)u)

In Eq. (12) we emphasize the depéndence‘of the energy and
mass sources S on the interaction of the combustion gas with
properties w and droplet field with properties wr.
| EQuation (10) is equivalent to our prescription of extrapola-
ting from the interior to the boundary z = 21, the conservation

variables w via the forward difference approximation
(13) Dw=20

The necessity for introducing a rozzle into the calculation,
even though only a study of processes in the neighborhood of the
injector face of the combustion chamber is desired, stems from the-
inability to describe the correct nonlinear time dependent down-
stream pressure level in the combustion chamber.  Physically this
pressure is determined by flow being choked in the neighborhood of
the minimum area, Where the Mach number is unity; the flow then

accelerates to a supersonic state downstream of the throat. At the
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throat, or point of minimum area, the flow is sonic at steady state.
However, when time dependent‘perturbations exist in the combustor,
the sonic point can oséillate in some neighborhood of z = 2.

At the injector boundary, z = 0, the reflection rules

(14) Po =Py PL=DPL, u =u ., V=-v,

are used across the injector; here we denote p$ = (O,; Az, t), ete. ‘

4. COMPUTATIONAL PROCEDURE

We apply the following procedure for computing a solution to
the coupled set of partial differential equations, Eq. (ll), and
ordinary differential equations, Eg. (3):

. A steady state is achieved by first assuming a smooth dis-
tribution for w(6,z,0) and w*(6,2,0). Then generate w(t+At) by
solving Eq. (11) using a two step difference scheme given w*. The
first step is analogous to a predictor equation since the solution

is first order accurate while the second step is analogous to a

corrector equation and is second order accurate.. The approximation

i )1 = VI - -
to w(6,z,t) is represented by V(ei,zjfmhg, "Vﬁj" The two. steps are
given by
Step 1 ‘
ol . S +V ) AL e g
- l,j+-l Hx'l%l,J 1, J+1 7 Ti+l, j+1 1,3) 208 ( i+1, j i,
7z 2
n n At
T 041,547 %, 1) - Tap (H111+1, GH1 T Hril+1, g7t H?, 41T H?, 5)
At n n n n
(15) - By, ; B, ge1t By, je1t By )
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Step 2
n+l. At n n an+l . an+l
Vo= v, - (G~ -G 4G - G
T + - o1 L, 1 .01 L, 1
1,4 1,J AO i+1,J i-1,3 i+ _§,3+_2_ i- '§,J +_§_
n+1 an+1
. i ) oAt (i
o1 Sy e s
+ En—kll En+l ﬁn+l | - En+l1 . 1)
ivp ity 1+39-7 1‘?«”? i-pmd-3p
_ %; [% (Bn+ll + Bn+11 N + Bn+ll N
l+§,,_')+§ 1+-§,J——2- 1—-§,J+§-
wn+1 1 n n
(15') + BT 0 )45 (Buyg,y B, )
i-%:3-% J s d
where
B(V} 3 = Hy j’ H(vn+ll 1) = Hn+11 1 » ete.
’ ’ 1+5J+= it d+s

Obtain the first iterate to w*, i.e., w*(6,z,t+At), by‘solving Eq.
(3) using the analogue of system (15) and (15'), the modified Euler
method. The second iterate to w is now computed using (15) and
(15'). This process is continued until convergence of w and w* is
achieved. Thé‘asymptotic limit of nAt, thinking of time as an

iteration counter, defines the self-consistent steady state:

,
w(nat) ;’WO\\
l . — H 1
im ' \\ |-
DATZ®\ yx (nat) \w’é J

" To compute the evaporation and combustion process, at any
point (6,z,t) in the combustion chamber, one needs to keep track

of the previous history of the droplet. Since a Lagrangian
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representation of the droplet field has been adopted

each drop is

tracked from its point of 1n3ect10n into the combustor (eo,o,to)

to the p01nt(9*,z*,t*); the elapsed time of flight of the droplet

is t*-to, t, the time of droplet injection.
We have assumed a dilute spray approximation which means that
droplets do not interact. Also, as a result of this approximation

W* (6%, z* nAt*) can be evaluated at Eulerian mesh points

(Gi,zj,nAt), of the system (15) and (15'), by interpolation from
the Lagrangian mesh upon which w*(e*,z*,nAt*) is defined. The

tracking process ceases if
*
a(t -to) < .1 a(to)

since the mass associated with the drop would be less than one-
thousandth the original droplet mass; for these calculations the
initial mean droplet radius was a(to) = 50 microns.

"With the steady state established, the flow field is per-
turbed to observe the modes of resonance established and maintained
in the annular combustion chamber. Iet P, be the steady state

bressure; then the perturbed pressure p' is

T - . .
(16) P' = py+Dp; po(l+-A sdn ® sin 2)

where we scale 9 and gz by the functions

e(9) =p,0+B, , 6

Z(z) =,53Z‘+54" Z) <2 <z

so that the perturbation can be placed at an arbitrary position in
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the. annular chamber. However, jﬁst as Rayleighvdescribed the
importance of the placement of the sound source near the efflux
point of the gas jet, so do we observe that the_perturbation'must'
be placed in some neighborhood of the point of injection of the

- drops, z = 0, to have an appreciable effect on the flow field. The
" amplitude ofvthe perturbation, A, is taken to be proportional to
the total energy of the combustion gas in the annular chamber,
usually a few percent of the steady state chamber energy. For
these calculations, a value of A is chosen so that the total per-
turbed energy in the rectangle A8, Az centered about ((61+62)/2,
(z.+z,.)/2) is equal to four percent of the energy of the combustion

1 72
gas.

We found that the transients obtained by this disturbance
were SO sévere that strong éhock waves were generated. The differ-
ence scheme Egs. (15) and (15') did not remain stable in the
presence of"these steep gradients so thaf a smoothing operator Was
reqﬁired. A two step Qperator was used. ILet D_ denote the back-

ward difference operator

D Wp+1l = Y+l ™ Ym
then
oA~ At
(17) ' Y _.Wm-kk(Zﬁ)D-(lD-um+l|D—wm+l)

where uais'the‘velocity in the m-th direction, m is the step size
invthat direction;and'k is a constant. Equation (17) is first
applied to the solution w in m-coordinate direction to obtain a
temporary value w; replacing w with W, Eq. (17) is then applied

once more to yield the final solution. It was also found that Eq.
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(17) need not be applied each time cycle; as few as one applica-
tion every five time>steps was sufficient once the initial strbng

transient dissipated after about 100 time stepé.

5. RESULTS

We show below, in Figure 1(a), a typical nonlinear periodic
pressure trace of the pressure history near the injector face
z~ 0.15 z,.  For a value of T = 0.9 in Eq. (8),.Figﬁré»l(b) shows
the local energy release rate as a function of angular position &
and axial distance z downstream from the injector. The nonuniform
energyvrelease distribution is a result of the local variation of
W so that the greatest value of energy release coincides with the.
peak pressure of the spinning wave being traced in Figure 1(a).

An additional computation was carried out using a modified
model of  the combustion chamber; a set of acoustic baffles are
placed at varioﬁs angular positions in the annular chamber. The
baffles have arbitrary iéngth z, such that 0 <'zb < 2y- The
baffles are placed in the chamber to act as diffractors of the
spinning waves in the region of maximum energy release — in the
neighborhood of the injeétor face. Figure 2 shows a typicél non-
linear acoustic pressure trace when two baffles, at essentially
equal angular spacing, are placed in the champgr; here ZO.N w25’on
The energy release rate, after the initial tfanéientg is uniform;
at each value of 6 the energy releaseilaokéfsimilar to 6 = 0 at

Figure 1(b).
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I \ / \1=P1 (.152,, 3n/2)

", P, =P, (152, 7/2)

Py =P, (.60z, )

Figure 1(a).

Time

Pressure history at three positions in an
annular resonant cavity for a spinning wave.

Theta = 7/2

Theta = 37/2

Figure 1(b).

Driving energy source distribution at t = 3.
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‘Pressure

0 . 0.4 0.8 1.2 1.6 2.0 2.4 28 3.0

Time

Figure 2. Attenuated pressure history at the same three
positions as in Fig. 1(a)'in an annular resonant
cavity but with two equally spaced baffles

inserted near the injector.
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THEORY OF FLAME SPREAD ABOVE SOLIDS

W. A. Sirignano

Guggenheim Laboratories
Princeton University
Princeton, New Jersey

Abstract: o — ‘

A theory for flame spread above a solid fuel is presented.
The special case is considered whereby the oxidation is an exo-
thermic surface reaction. The spreading rate is predicted as a
function of the thermochemical properties, fuel-bed thickness, o
and convective velocity. Also, the theory predicts temperature,
mass fraction, and heat flux as a function of position.

Introduction:

The understanding‘of the method by which a flame propagates
above a solid fuel is necessary in order to solve the fire safety
problem. In ﬁarticular, we wish to know the most significaﬁt
mechanism (or mechanisms) bj which energy is transferred ahead of
the flame; gas-phase conduction, solid-phase conduction, and radia-
tion each play some rdle. Of course, this transfer of energy
ahead of the flame front is necessary for flame propagation. The
solid phase fuel must be heated and gasified in order for reaction
to décur in the flame frant.

A physical'desbriptidn of ‘the general phenomenon of flame
spread above condensed phase.fuels and a review of existing
theories has already been pfesehted by this aufhorQ(l) In this
presentatioh, we shall continue along the’geﬁeral direction
suggested'in that paper. The case of harizontal or vertically-
downward flame spraad is considered; that is, thevfire'plumé does

not move ahead of the propagating flame front and cause convective
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heating of the solid fuel. However, natural or forced convection
is allowed in a direction opposite to that of flame propagation.

Typically, the fuel might be a polymer. This polymer will
be assumed to gasify direetly; that is, no‘moiten layer exists.

The special case will be considered in this lecture whereby
the oxidationris an exothermic surface reaction. Most polymers,
of course; would not burn in thlS manner but rather in the gas
phase. However, this assumptlon reduces the mathematlcal complex-
ity in two weys: (1) the number of governlng partlal dlfferentlal
equations is reduced since the fuel species no longer exists in
the vapor phase and (2), as we shall later see, the two-dimensional
problem may be reduced to.a one-dimensional problem.

The case of steady propagation will be considered where the
spreading rate is to be determined as a function of ambient tem-
perature, pressure, and oxidizer concentration,_transport proper-
ties, and thermochemical properties. The velocity. of the incoming
flow‘due to forced orsnatural convection shall be assumed to be
known.

The method of solution to be proposed nere is original in

that it is the only one which allows for consideration of the non-
linearity due to chemical kinetics. Other approaches have either
taken an empirical value of{the spreading rate as known and calcu-
lated temperature flelds(g’B) or have determined the spreading rate
as a function of some heuristic parameter which is not readily
related to other fundamental proper1tes<4). One exceptlon is the
study by Tarifa, et a1(5) but there radiation is the only mechanism

by which energy is allowed to be‘transferred,ahead of the flame.
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The originality of the method caused the author to be cautious and
to attempt, in the first instance, to solve the case of surface
reactions rather than the more physically interesting case of gas-

phase reactions.

Theoretical Analysis:

The frame of reference will be fixed to the moving flame
front so that a steady—staté problem is obtained. The ambient
pressure is uniform and no pressure gradients exist throughout the
heat-up and reaction zones at the low Mach numbers involved. Due
to the temperature increases and density decreases associated with
the reéction, the streamliﬁes will diverge somewhat. However, this
effect is neglected in the governing equatibns and the Oseen
approximation is made with the convective terms. Radiation is
neglected in this model since it is.not expected to be important
for émall-scalé‘fires, at 1eas£. The flow in the flame-front
region is considered to be‘laminar. Also, the Prandtl number is
assumed to be negligible compared to unity so that the viscous
layer is much thinner than the thermal layer.' Then the momentum
equation may be considered trivial and the gas phase equations may

be written as:

Species:
BYO o o ' _ .
PV 5 = V-(pDvyY,) | (1)
Energy: ' ' '
pVCp%% = V. (AVT) : ' ' (2)

where p is the gas density, cp,is the specific heat which is
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assumed identical for all species, V is the velocity of thevaif
relative to the flame front, YO is the mass fraction for the

oxidizer, T is the temperature, D is the mass diffusivity, A is>

the thermal conduct1v1ty, X is the coordlnate parallel to the

direction of flame propagation and y is the coordinate normal to
the flame propagation direction.

In the solid phase, the energy equation is written as

oT . '
pVpCs S = Vo (AVTS) | - (3)

‘where the subscript s implies solid phase. V. is the flame

F
spreading rate relative to the solid. Note that in the absence of

natural or forced convection V = VF' ry = 0 is taken as thevsolid'

gas surface and the ratio of surface regression rate to'spreadihg

rate is neglected. AS =vconstant may be assumed.

Certain matching condltlons W1ll be applled at the solid-gas
interface. First of all, the combined flux of oxidizer due to
diffusion and convection at the interface must balance the oxida-

tion rate at the surface; i.e.,

oA, 1, : .
where m is the mass flux emitted from the surface and v is the
stoichiometric'mass ratio of fuel-to-oxidizer. The gasification

rate 1is glven by a kinetic law which assumes a first order depen-

dence upon local ox1dlzer concentratlon and an Arrhenlus dependence

.upon temperature.
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. -E/R(T-T_ )
m = ApY.e - ®

(5)

1Y

where A, B, and R are constants'and TGD is the ambient temperature.
The mass flux is conveniently taken to be zero at the ambient
temperature.

The energy balance at the surface is given by

T .
oT . , 1 _  oT ‘ ' .
XB?J’ m[Q-{(cp-cs)dTJ —xsb-y—s- (6)
: - ‘

where Q is the energy released per unit mass of fuel in surface
oxidation.

Furthermore, the ambient temperature and concéntrations are'
known providing the boundary conditions at infinity.

Note that the transformations £ ='pxx/¢p and n =‘/ﬁpdy (where
pA and cp are assumed to‘be conétént.throughout the gas phase)
result in a simplification of Equations (1) and (2); The above
assumptions.together with the assumption that an average transport
property mayvbe‘employed for diffusion in the x-direction, reduce
the above set of differentials equations, (1)-(4) and (6), to a
set of differential equafibns with constant coefficients.

After scaling the independentvvariables we fiﬁd the specie
and energy equations satisfy:

2

o _ o
V?E{Q:azoJrlia—;, - (7)
' o —p .2 |
T 3°T , AT 37T
v =S5+ = . (8)
k3 on Eg o€ : :
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In the above equations, unitary Lewis~number is assumed; however,
that assumption can be relaxed with some increase of complexity in
the calculations.

"The following nondimensional variables are emplbyed:

c_ 2 .
s = (£) v& = x/L
A

z —-chn'; poovcpfﬁdl'=f£_q_3_’_
%= CE 9L

| and -

:
D
I

e

where L = A/pooch is a characteristic thermal length. These lead

to the equations governing the gas phase

2 2
3 _ %9 , ¥ (
== o9 9)
S >z°. 3s°
and _
2 2
oY, 7Y, 97Y,

— = — (10)
LB BZE 652

For the solid phase, we define the nondimensional variables
‘and parameter

05 = Ts/Too ’

yS - y/L 2

~ KpSCSVF\

& =xop_cv -
sPoo Tp

This results in the following form of the energy equation for the

solid phase
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aes 5293 ages
a = — . (11)

Kk ays os”

The boundary conditions at infinity are that:

6—=1, ¥Y,—1l as z—0 or s=-o

93;’1 as y = © or s — -00 (12)

The boundary conditions (4), (5), and (6) may be combined and

transformed to

0]

Y. -6 /6-1 \
) e O (v +3) (13)

<l

and

h A

So a. Yo -6./6-1 c AL 6 |
Sr(dyRe e [—%-(1-(:—;)(9-1@=-<-z:>w:. (14)

The system of equations (9), (10), and (11) together with the
boundary conditions may be solved with the aid of the Green's
function which is developed in the Appendix. A system of nonlinear

integral equations with one independent variable are obtained as

follows:_
s* s-8 ‘
CE ls-¢1.\1( Q s\ Y 'ec/(e"l)
6(s) = 1+ A e 7 K. ( ) -(e-1)(1-=)= e de
[oo[ o .2 J{hoo cpge
2\ @ s-£
3 [ Pt e w
-00
s* _ 5=t Y. -6 /(6-1)
Yo =Yg - Af [eTKO(IS;Ql)](YO+VE) 2e © L (16)
-0 .
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and

1 Pres-E) .
o =1 +;T.f [2 T Ky(3 IS—il)Jud& (17)
-0 -

where the definitions have been made that

A
A—“W,
%
u"_By_S(S’O)

and s* is the positibn beyond which the surface oxidation no longer

occurs. For an infinitely thick fuel-bed, s* = .

Realize that the fuel is gasifying so that the surface is

- regressing as the flame moves along it. When the fuel-bed is very

thick, the position of fuel-bed burn-out is so far downstream of
the flame fronﬁ that the exact position of burn;out or the exact
thickness of the bed is not important. That is, above a certain
fuel-bed thickness, the spreading rate and the field solution in
the flame front region do not depend upon the”fuel-bed thickness f.
In this range of T, the results are independent of s*. For a thin
fuel-bed, on the othef hand, our,eqﬁétions are accurate if we
consider.the following situation. Assume a fuel, of thickness T,
is coated upon an inert substrate of thickness 5%. Furthermoré,
T << 8% so that thé total thickness T+ 8% §*%. Also, the sub-
strate and the fuel have identical thermal diffusivities.

The spreading velocity Vg (and therefare V) is still unknown

and must be considered as an eigenvalue. This implies that A is

‘an eigenvalue of the problem. Since (15), (16), and (17) form a

system of three equations for the temperature 6, oxidizer con-

centration Y and heat flux u at the surface. However, since A

O’
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is still unknown, we require another equation in order to obtain a
solution to the system. This equation is developed by considera-
tion of the conservation of mass in the solid phase.

Iet 7 be the thickness of the unburned fuel-bed. It follows

that
00

pSVFT =\/~ m dx

-00

since the mass flux of solid fuel into the flame zone must equal
the total gasification rate at the surface. Defining
‘ pSVSTC

B=_-58SD1
Wka)

and using (5) and previous notation, We obtain

S*
v, -6./(e-1) 7% .

—(I) a
Now (18) may be solved together with (15), (16), and (17) to obtain

6, Y and u along the surface together with A. Actually, since

0’
the Spréadihg rate not only appears in A but also appears in a and
B it is more convenient to consider the pre-exponential chemical
kinetic constant A as the eigenvalue since it appears only through
A. In that case the spreading rate VF is taken as known while the
constant A is taken as unknown. Once the results are obtained A
versus V may be plotted and ﬁhe appropriate inversion can Be |
readily made.

The advantages of formuléting the problem as a system of

integral equations rather than partial differential equations are:
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(1) there is only one independent variable instead of two variables
and (2) the nonlinear system is readily solved by the method of
successive substitutions. If, in addition to the spreading rate
and the surface values, one wishes to determine -the solution
through the gas and solid fields, they may be constructed frdm the

surface values through the use of Equation (A-4) in the Appendix.

Special cases:

Equations (16) and (18) for 6, Y

The system of three integral equations may be reduced under
special circumstances. In one special case, all of the energy is
conducted through the gas phase and none is conducted through the
solid phase. In this case the heéﬁ flﬁx ih the‘solid phase need
not be determined in a coupled fashion. Therefore, Equations (15),
(16) and (18) are solved together neglecting Equation (17) and
setting u = 0 in Equation (15).

‘This 1imit could be obtained by letting 5 — O in which case
the kernel in Equation (17) becomes infinite yielding the solution
u = 0. .Physically, this implies that as the‘fuel-bed becbmes very
thin nb'energy is conducted through'it. In this limit, we are left

with the following equation

» S Y. -8 /(6-1)
6 = 1+ ./\.f eTKO(E_?g—I){%—(G—l)(l—Z—;)}—QQ e © it (19)
- -0

which is the limiting form of (15) and must bevsolved together with

0’ and A.
A further special subcase occurs when Cp = Cq4 and v << 1 with

u = 0. Then Equations (16) and (19) yielad
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fgﬁ | Y | -6 _/(6-1) Yo - Y,
WQ%'; 2 [ e T rylestly Jo ®y—r5— = (20)
or
Y + foo (1-9) | (21)
Y, & — (1-
0 O%p  vQ .

which may be substituted into the integrals in (18) and (20) to

obtain
s* s-¢ -6 /(6-1) |
6 o~ l+§f [e e KO("séé", )} c Ce (q-6)dg - (22)
-@® )
and %
[ 57 Yot (hg, vQ)(1-6) -6,/ (6-1) J_l
‘A a~ B 5 e d& (23)
~®

where the definition has been made that

- vQ
1=1+g-7,
o0 0

~Here (22) and (23) may be solved together for 6 and A. Afterward,

Y, may be determined from (21).

Numerical Methods:

The nonlinear integral equatibns are SOIVéd by the method of
successive subsfitutions. A guess is made at-the solution and |
substifuﬁed into the integrals on the right-hand sides of the equa-
tions. The left-hand sides of the equaﬁions.as calculated become
the next guessvand are substituted into the integrals for the next

step in the iterative process. This continues until convergence

occurs.
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This téchnique'has béen-succéSSfﬁily emplOyed in‘the above-
: mentioned special subcase where Equations (22) and (23) have been
solved simultaneously. The technique has also been employéd in
" the special case where (16),.(18);:ahd (19) are solved together.
A modified form of this technique has been emplo&ed in the
sdlution of'the general case where (15), (16),_(17) and (18) are.
solved together. Some difficulty occurs because the ﬁnknown heat
flux appears only in the integrands of (15) énd (17); thereforé,.
the next value for u in the iteration procedure is not immediately
calculated. However, the linearity of Equation (17) may be used
to -advantage since it is possible -to invert that equation and
obtain u as a function of 6. This function may thén bebused to
substifute for u in (15). 'Then,-with u eliminéted, the method of
successive substitutions may be employed. The particular method
of inversion of;(i?) involved appfoximating the integral as a
finite summation over the discretized range of €. For each dis-
crete value.of s a’different linear algebraic equation applied.

This linear algebraic system was inverted.

Results and Discussion:

Calculéted results were first obtained for the special sub-
caée where Q << 1 and u = 0. In Figure 1, the surface temperature
profile determined from‘the solution of (22) and‘(23) is given;
Also, given are the_fesultsvobtained from the so;ution of Egquations
(15), (16) and (lé) with v = .1 . It is seen that &s long as
v << 1, the results of the two methods are iﬁ good agreement. We
see that the teﬁpérature increases through the flame front,

reaching a maximum, and then decreases. The increase occurs due
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to the exothermic reaction while the decrease occurs when the re-
action .is completed and just diffusion ef energy away from the
surface occurs. Actually, the temperature begins to decrease just
before_the point where the reaction is completed s* = 5. This de-
crease occurs because some diffusion of energy in the positive x-
direction occurs.

In Figure 2, the oxidizer mass fraction at the surface is
plotted versus position. One curve is the result of the solution
“of (22) aﬁd (23) followed by the use of (21) while the other curve
1s the result of the solution of (15), (16), and (18). Again the
two methods have results which are in excellent agreement. The
oxidizer mass fraction decreases as the reaction occurs and then
increases after the reaction ceases at s*¥ = 5 due to mass
diffusion.

It is seen therefore that in the case u = 0, the approxima-
tion given by Equations (20) and (23) is reasonable when v << 1.
It may be used in lieu of the more exact set of equations which
are larger. This approximation will be employed henceforth
wherever u = O.

In Figure 3,_we see the effect of increasing the energy
release on the surface temperature profiles. The.largervthe value
of Q/h , the higher is peak value of temperature and the faster
is the temperature rise (or the more narrow is the reaction zone

front. reglon) Since the independent varlable s depends upon a .

characterlstlc thermal 1ength which varles, we shall see later that

i the front reglons are even more narrow than indicated.
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+ As the fuel-bed thickness increases the overall length of
the reaction. zone will increase. Howevér, above a certain thick—
ness (or above a certain value of B) the.temperature profile in
the front region 1s essentially independent of ﬁ. This is clearly
seen in Figure 4, where the calculated température results are
superimposed for three different fuel-bed thicknesses. The front
region- thickness is of the order of a few thermal lengths and
disturbances far downstream do not propagaté upstream.

Nondimensional spreading rate versus energy release is shown
in Figure 5 and a nearly linear increasing dependence is seén.

Also spreading rate will increase with the nondimensional thickness
B up to a certain value of B beyond which A is independent of B.

It is also seen that an .increase in the nondimensional activation
energy results in a decrease‘in the spreading rate.

In Figure 6, we see temperature results for the case with
solid phase heat transfer (u = 0). The same characteristics exist
as. did for the no-solid-phase-heat-transfer case except that the
temperature values are significantly reduced by the cooling'effect'
of the solid. For the values of a = 1.0 and xs/%oo = 0.1 as given,
the main effect of the solid phase is to cool the reaction zone
- thereby decreasing the spreading rate; A = 3.7 here versus A = 1.6
~ with no solid phase heat transfer. Realize, of course, that with
lower vélqes of a (hight solid thermal diffusivity or greater
values of V/VS) the solid phase will begin to. play a more important
role in transferring energy ahead of the flame which WOﬁld tend to

enhance the spreading rate.
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The results shown in Figure 7 would indicate at first sight
that solid phase heat transfer makes only slight differences in
the results for oxidizer mass fraction. The difference would be
made througﬁ the temperaturé which modifies the reaction rate.
Realize that again the independent variable s is based on a
characteristic thermal length which depends‘upon the spreading
rate. Therefore, since the spreading rate depends significantly
upon solid phase heat transfer even the oxidizer mass fractions
are affected. This discussion also relatés to Figure 3,

In Figure 8, wé see the surface heat flux plofted versus
position along the surface. - The heat flux has its maximum in the
flame.front'region with another local maximum occurring just before
the bﬁrnout position s* = 5.0 . This last maximum coincides with
region of surface temperature decrease as would be expected.

The calculations are preliminary in the sense that no exteén-
sive parameter survey has yet been performed. However, it is felt
that the feasibility.of using this integral technique for such non-

linear calculations has been demonstrated.
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AFPENDIX
Consider the partial differential equation
L{u) = Au- ku = £(x,y) : (A-1)

where A = V.V (the Laplacian operator) and u is any unknown while
k is constant and f is known. Realize that Equations (9), (10)

and (11) are of this form where u = 6-1, Y.-Y. , or 6,~1. 1In

0 Oa>

those cases f = 0 identically. The more general case with gas
phase reactions would have a non-zero f. The boundary conditions
are that: u—0asy— or as x = - and g—; (x,0) = g(x) a
known function. | |

The adjoint operator is
M(v) = AV + kv ' (A-2)

so that application of Green's theorem yields

ff [vL(u) —uM(v)‘]dxdy = - f [v %; -u %;;]dx . (A-3)
along o
y=0 "

Let Q be a source point- (£,n) and .P be some other point (x,y7).

We wish that v = G(P,Q) be the Green's function whereby:

(1) M@e) =0 if Paq,
(2) G}—>§%'log r as r =0,

(3) %% = 0 along y = 0.

Note that r is the distance between P and Q so that
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r = [ (x€)%+ (y-1)° .

Then we have from (A-3)

0.0] , Qo .
aten) = [ [ clnysen)eey)axay (a-4)
0 - ‘ \
8.0)
+\/ﬂ G(x,0;€,n)g(x)dx .

-0

Now it onhly remains to determine the G which satisfies the

above three conditions.

‘Consider the adjoint equation (A-2) and let

w(xy) = vixy)e (/2%
Then
AV +kv = ef(k/g)[Au-%E ]l =0
so that

2
k_ .
Au-ﬂf w=20.
Considering the cyiindriCally symmetric solution for u we would

obtain

B~ 2
" d k

= 22 W= 0
dr2 r dr T

o

=
I_.J

-

which is a modified Bessel's equation of zero order. One solution
is the‘modified Bessel fﬁnction of zero order and second kind

kr
KO(TT) where

24
K(z)=—t.0(%2) {1ogiz+y-£l‘ .
0 7=0 (g1)° 2 Cm=T M

Note that y is Euler's constant 5772157 ... .
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Asymptotically we have

Ko(z) ~ - log z as z—-0
and

1/2 _,
Ko(z) ~ (%%) e as zZ— o .

O(%r) is a fundamental solution to the

Now v = é—(k/E)X K
adjoint equation so that condition (1) is satisfied. It remains

to satisfy conditions (2) and (3). Condition (3) is satisfied by

the symmetric reflection about the line y = 0. Defining

r'»=‘/(x—£)2—k(y+n32, we have

v = e (k/2)xy

0\? 5]

r)+ KO(2

which satisfies the boundary condition that %% (x,0) = 0 as well as
satisfying the partial differential equation (A-2).
Condition (2) is satisfied by multiplying by the constant

- ﬁ% e(k/?)ﬁ so that finally

1 k/2) (x- k k
v o= G(X,y;&,n) = - por=t _e'( / )( g)[KO(-Q—I’)'F Ko(gr")] - (A'B)
In particular
1 _(x/2)(x- Lo
6(x,03¢,0) = - £ (B/2)(x-E)y (15 ¢1) . (8-6)
The difference between "upstréam" and "downstream" influence

may be readily seen. ' Consider the region where |x-¢| >> |y| and

x-¢ >> [n]. Then
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1
Al
’?‘?
N
)
>
A
=
JI

=
-
.‘><
oo

so that if x > e,‘we have

1/2 o qx-
G- (—2— )" k|x-£]
Tk | x-€ |
and for x < €, we have
1/2
— 1 )/

(vklx-&l

The solutlon at the position x has some influence on the solu-
tion at the p01nt ¢ and the Green's function G is a measure of that
influence. When € is upstream of X (or x > £), the influence 1is
relatively weak since there is an exponential decay as |x—€| in-
creases. However, when £ is downstream of x (or x < €), the
influence is somewhat stronger since the decay goes as |x-€|_l/2.
On account of the convection, a disturbance to the field at the
position x would be felt mére stfongly in the downstream direction
than ih the upstream direction.

Suppose we were considering a solid fuel with a thickness 5
that is not very much lafger than a characteristic thermal thick-
ness. Then the boundary condition given by (12) is modified so
that gﬁ_ =0 at & - 5*/L. 1In the nomenclature of this appendix,
we must impose a fourth condltlon on our Green's functlon, namely
g%- (x,53€6,m) = O. By the method of images the Green's function is

found to be
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G(yseom) = - g o/ 8] i e

+ K r1) + %ii-{Ko(%[(x—€)2+-(2n6- y - 1)21/2)

+ Ko (5 [(x-6)2+ (2m0 +y - )21%/2) (a-7)
‘ +‘K (g [(x.-g)2+ (y - 2nd -T])E]l/g)

o‘2
k 2
" Ko(F [(x-6)+ (g 20 - )217/2)} ]
Therefore, we have that o

G(x,03¢,0) = - 2 e<k/é)(x'€)[Ko(k/2 |x-¢1)

' (A-8)
QO .
+ 2 Kolz

k 2 2.1/2

2 [-8)% 4 (2n0)2) /)]
Note that as 8 — w, the moldified Bessel functions in the summation
series above will tend towards zero so that (A-7) and (A-8) become

identical with (A-5) and (A-6).
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Figure 8
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One-Dimensional Analysis of Combustion

in a Spark-Ignition Engine

W. A. Sirignano

Guggenheim Laboratories
Princeton University

Abstract

K theory based upon a concept of turbulent flame propagation
has developed and has resulted in the calculation of pressure
versus crank angle and temperature versus both crank angle and °
chamber position as a function of various design parameters. k
Ultimately, the theory would result in the calculation of NO con-
centration. Turbulent mixing occurs to a significant extent
throughout the chamber especially for larger turbulent eddy sizes.
After burning is completed, the mixing tends to uniformize the
temperature distribution somewhat.

The calculation of.the concentgation of emissions of a spark
ignition (Otto) engine requires a kn@wledge of the pressure and’
temperature dependence upon space and time in the combustion
chémber. The reason fdr this is thaf such species, such as NO, are
formed in a nonequilibrium manner and their exhaust concentrations
cannot,be.qalqulated;SOlely from a knbwledge of the exhaust. tem-
perature diStribution and pressure. In order to determine bressure
and temperature histories by mathematical analysis, it is necessary
to understand the mechanism of flame propagation in such an engine.
The flame propagation,rate determines the rate of energy release
in the combustion cylinder. Together with the rate of compression
(or expansion) by the piston motion, the energy release rate
determines the pressure and temperature variations in the chamber

which in turn govern the NO kinetics.
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The interesting work of Lavoie, Heywood, and Keck (1970)

avoids the question of the mechanism of flame propagation.
Emperical pressure results‘are employed to calculate temperatures
and unburnt mass fraction as functions of space and time from
certain thermodynamic considerations. This use of empiricism made
a specific statement about the mechanism of flame bropagation un-
necessary or redundant. From their analysis, the flame propaga—
tion speed and the temperature variation could be calculated No
details concerning the propagation mechanism were deduced. As a
consegquence of their simplification, however, theyvcould not pre-
dict the complete dependencies of the NO concentrations upon par-
ameters which would enter through the description of the mechanism
of flame propagation. Such parameters include the rpm, mixture
ratio, spark advance, compression ratio, and displacement since
these parameters affect the pressure profile which is taken empir-
ically in that work.

It would be most useful, therefore, to -have an analysis.which
models the flame propagation mechanism and can predict the complete
dependencies of the NO concentration upon these critical parame-
ters. This paper discusses such a model. It is argued in this'
model that the flame propagation involves, in an essential manner;
the turbulent transfer of heat ahead of the flame. A calculation
of the Reynolds number (based upon bore and maximum piston
velocity) for a typical s1tuation gives O(lO ) which Justifies the

employment of a turbulent model. A Reynolds number based upon the

intake flow is also high.
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MODEL OF THE TURBULENT DIFFUSIVITIES

An analy31s of the combustlon process in an Otto engine has
been performed based upon the argument that a turbulent flame
propagates through the gaseous combustible mixture at a speed which
is controlled by the rate atgwhichvthe turbulent motion transfers
heat ahead of the flame. This heat-up proce,/s continually brings
the gas immediately before the flame to the ignition'point and
progressive combustion (or flame propagation) results. The turbu-
lent intensity associated with these eddies 1s related to both the
piston velocity and the velocity of the unburned gases through the
intake valve. Obviously, the turbulent intensity increases with
rpm. One expects, therefore, that flame speed would increase with
rpm'in this model. This trend, of course, has been experimentally
determined. The length scale of‘the'turbulence is related to the
cylinder bore and stroke dimensions and the valve openihg size.

It is assumed that spatially homogeneous, but time-varying.
turbulence exists in. the combustion cylinder. In particular, an
eddy diffusivity (assumed identical for both mass and heat trans-
fer) is taken to be the sum of two dlffu31v1t1es, one due to
plston-motlon—generated turbulence and the other due to intake-
flow—generated turbulence. By dimensional analysis, it can be
concluded that each’diffusivity is the product of a characteristic
length and a characteristic velocity; With one diffusivity, the
characterlstlc velocity equals 'the (absolute value of) piéton’
velocity at each instant, and, with the second d1ffus1v1ty, the

charactersitic velocity is proportional to the average intake gas
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velocity and decays with time‘after the closing of the intake
valve. The decay process is assumed to follcw an exponential law
and; by dimensiohal analysis, thevcharacteristic time for eddy.
break-qp is the ratio of the characteristic length to the intake
gas velocity.

In particular, we have for the eddy diffusivity

u

(1) a(t) = Lyuy(6)+ Loup exp (- £ (t-t7))

where t is time, up is‘the piston velocity, Ll is a characteristic
dimension fcr turbulent eddies produced due to shear of the gas
flowing over the cylinder walls and head and the piston,‘L2 is a
characteristic dimension for turbulent eddies produced by_the flow
of intake gases, uI_is the average intake gas velocity, and tI isv
the time at which the intake valve is shut. This relationship is
clearly over-simplified; for example, one would expect spatial
variation of the diffusiVity, a dependence upcnvthe‘history of the
piston velocity not merely the instantaneous valﬁe, and some break-
up of the eddies resulting in a distribution of the characteristic
length. It is felt, however, that (l)vcontains much of the
esseﬁtial physics which governs the turbulent transfer of heat and
mass and is an appropriate first representation of the cddy

diffusivity.
EQUATIONS OF FLUID MOTION AND THERMODYNAMICS

The equations goVerning:the fluid motion may now be written.

.The momentum equation may be replaced by the condition of uniform
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but. time-varying pressure. It 1s convenient in the first analysis
to chsider a one-dimensional unsteady problem.- Figure 1 indicates
two interesting models for flame propagation. On the left-hand
side of the figure we see a planar wave propagating from the
cylinder head (where the spark ignition occurs) towards the piston.
That is, variations across. the circular cross-section of the

cylinder are neglected in comparison to variations in the axial

direction. This is strictly valid only in the case where the bore-

to-stroke ratio is much less than unity and the primary direction
of flame propagatien is the axial direction. Although, this is

not realisticvwith regard to practical.automotive design, the
essential physics of the problem remain intact under this idealiza-
tion and basic trends shoﬁld be noteworthy. On the right-hand side,
we model a cylindrical flame propagating from the center of the
chamber (where‘ighition occurs) towards the cylinder walls; Here
gradients in the vertical directioh are neglected. This is perhaps
a somewhat more reaiistic model than the planar flame case but |
slightly more complex mathematically. The planar modei wasvchosen
as the first model in what is hoped to become an improving
succession of models. The primary intent here is to showvthe
feasibility of calculating the field properties in a combustion
chamber with turbulenf flame pfopagation. Once this feasibility

is demonstrated more realistic and more complex models may be
studied. In futuye analyses, one could treat’the two or three-
dimensional problem whefe the bore—to—stroke fatio eould be a more
realistic value. ‘ o

“The continuity equation is given as
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(2) %+ 2 (pu) =0
and the energy equatioh is given as

(3) gafh+yu§aih-%ad?p=%%(ap'cp%T)+Q

where p is the density, u is the gas velocity, x is the axial
dimension, p is the pressure, h is the enthalpy, T is the tempera-
ture, cp is the specific heat at constant pressure, and Q is the
energy released per unit time by the combustion process.

After the intake valve closes, the amount of mass m in the
cylinder is fixedf* The fixed mass, moving boundary problem is

most conveniently handled in a Lagrangian frame of reference. The

X
(' =f pdx!
0

is made where x = 0 and ¢ = O are at the cylinder head while ¥ o=

transformation

total gas mass divided by cylinder cross-sectional area occurs at
the piston face. 'This transformation essentially replaces the
continuity equation and leads to the following form of the energy

equation

3 o 1 d . D ,2 3 Q
(4) St T gy aE Pty (Pagy T o
where cp has been considered as constant. Furthermore, assuming

the pérfect gas relationship and realizing o and p are functions

* This mass m is generally a weak function of rpm according to
empirical results given by Lichty (1939).
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of time only, we can rewrite Eq. (4) as

3T y-1 ,1dpy _ p\2. 3 (142 3T, ., @
(5) B"f'lTT(f)"a“E)*(ﬁ) OLB—?!/_[(T) W]"‘E;

where y is the ratio of the specific heats and R is the gas
constant.
The first term on the right-hand side of Eq. (5) represents

the turbulent transfer of energy while the second term represents

~the energy release. If both of these terms were zero, no enﬁropy

is produced and the temperature and pressure follow the isentropicv
relationship. (Indeed, it is seen that setting the left-hand side
of the equation,to'zero and integraﬁing yields thgt pl;"/y T is a
constant. ) o '

The boundary conditions  on Eq. (5) are that negligible

energy is transferred through the piston face and cylinder head,

name ly

(6) 3% (t.0) = 0
and " '

(7) %% (t,m/A) = O .

Furthermore, the initial temperature distribution is specified;

some temperature exists in the neighborhood of the spark plug Jjust

after ignition with lower temperatures away from the spark plug.
The pressure can be related to the integral of the tempera-

ture distribution. In particular, from the perfect gas law we have
p = pRT = %% RT

or, integrating over the totalugas volume, we obtain

2u2
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(8) /}M:p/ﬁx=mp=wﬂ=R  Tdy

where xp is the piston face position, V is the instantaneous gas
volume, m is the total mass of gas in the cylinder and A = wB2/4
is the cross-sectional area of the cylinder. Substitution of Eq.
(8) into Eq. (5) implies that an integro-differential equation fof
temperatﬁre exists.

It is convenient at this point to nondimensionalize Eq. (5)

through Eq. (8). We define

6 = T/T,
P = p/p,
v = v/vo
n = yA/m
.C = wt

where ® i1s the angular frequency of the crankshaft and the zero
subscript implies conditions just prior to ignition. It is also
convenient to define K = gPL~V/7,

Now Eq. (5) throﬁgh Eq. (8) may be replaced by

K _ A2 a 2/v.d ,1 3,  opYY
(5a) B4 = (v;) v% P 2 3 (Eg-aﬁ) A

with the boundary conditions

(6a) - S (2,0) = 0
and ,
(7a) £ (e,1) -0

and the subsidiary condition
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(8a) Pv =k/\ edn .
0

Of course, now the initial condition on Eqg. (5a) amounts to the
specification of K just following ignition.

Note that Eq. (5a) now has the effect of the rate of change
of pressure concealed within_the definition of K. The variaﬁion
of K from unity occurs due to the nonisentropic processes of turbu-
lent diffusion of energy and chemical energy release.

It is realized that the energy release Q depends upon both
the temperature and concentration. Assuming a second order re-

*
action, we can show that with a stoichiometric mixture

(9) N 0 2 -E/RT

where E is the activation energy, & is the mass fraction of unburnt
gases, and a is a pré—exponential constant (whiéh could be assumed
dependent upon temperature if desired). Of course, it is poscible
to use.some other relationship for Q instead of Eq. (9) if so

desired.

SPECIES EQUATION

It is clear from Eq. (5a) and Eq. (9) that the mass fraction
of unburnt Species must be détermined as a function of space and

" time. The governing equation is

*

Equation (9) could be easily modified to account for off-
stoichiometric cases or could be replaced by a system of equations
to describe detailed kinetics.
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o€ ) (02 68) _ Q

(10) st Py -

where Q is the chemical energy per unit mass of unburnt gas. The:
first térm on the right-hand side represents the turbulent diffu-
sion of the unburnt species while the second term represents the
depletion of the species due to combustion. Note that the turbu-
lent diffusivity for mass transfer has been assumed equal to the -
diffusivity for energy transfer.

Using the perfect gas law and transforming to the non-dimen-

sional variables, Eq. (10) may be rewritten as

(1) E-@rer i@ -
O

The boundary conditions are

de

(12) B_T]- (C:O) =0
and
(13) $ (1) =0

which imply that no mass diffuses through the cylinder head or
piston face. The initial condition is giﬁen as € = 1 everywhere
throughout the combustion chamber when the value of ¢ is QO except
for a small region near the spark plug where ignition occurs.
Rather than integrating Eq. (5a) and Eq. (11) simultaneously,

it is convenient to define

(14) ‘ B=K+_—%c.

Then combination of Egs. (5a), (6a), and (7a) with Egs. (11), (12),

and (13) leads to the following equation:
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2 .
Lo g 3 By + 8 (plv/y q;

(15) v
. ot V)o@ o wcpTO

with the boundary conditions

(16) | £ (z,0) =0
and
(17) : %—i (¢,1) =0

The initial condition for B is readily determined given the initial
conditions for g and K.

In a constant preséure process it would follow that the Eq.
(15) and the boundary conditions Egs. (16) and (17) afe satisfied
by the solution B = constant. With varying pressure; however, some
variation in B occurs. The variation in P is substantially less
than the variation in ¢ énd, for.this reason, numerical errors are

minimized when Egs. (15), (16), and (17) are employed in lieu of

Egs. (11), (12), and (13). Therefore, the system of partial

differential equations which are to be solved numerically are Egs.
(5a) and (15) subject to the definitions Egs. (9) and (14), to the
boundary conditions EQS. (6a), (7a), (16), and:(17), and to the

appropriate initial conditions.

NUMERICAL INTEGRATION OF THE EQUATIONS

Since the coefficients of the second derivative terms in

~Egs. (5a) and (15) are strong functions of time or crank angle ,

the step-size Af required for accuracy could vary substaﬁtially
with €. In order to proceed with constant step-size, it 1s con-

venient to make a certain transformation; i.e.,
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| ¢
(18) ‘ 2= (2L [ ar?/vag
- |
%o

Now Egs. (5a) and (15) are transformed to

_ 2 -6./6
0K _ 3 ,1 9K, , Ae c
(19) 3z =3 (2a) Taxe e
and
| B > 1 By, a2 001 1
(20) 3z~ Zs Tor e [—P;iﬁ]

- *
subject to the definitions

=C -
2.q _ c, lsin Cl+¢1e o (L-C ) ,

gl

A
Q= ()
VO
y-1

c T
_ ) _ PO (a Y. _ N
6. = E/RT_; e = ) (B-K); 6 = KP ,

|
A= Q /(wcpTOVO) s | ,
|

€y = Cu(AL /)P = UBsx/(r(y-1)8, = 62;y(>l<—_’f-c'os t)°

B
5 = uI/ng =5, T 63)(/[6264#()(—1)] ,

AL V.
_ 71 x=1 "min B 1-X 2
3 Vo ) VO - 2/[6 X l—COS CO) ]

¥* . :
Note that the absolute value of the piston velocity is used to
determine the diffusivity. Also, x is defined as the compression
ratio, B is the bore, Vﬁin is the chamber volume with the piston
at top dead center, 61; is the stroke to bore ratio, 62 is intake

valve area to piston area ratio, 63 is the volumetric efficiency of
the cylinder, and 64 is the duration of time during which the in-

take valve is open d1V1ded by the time for piston traverse between
top dead center and bottom dead center.
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and the conditions

(22)  $E(,0) = (1) =8 (1,00 =L (5,1) -0,
(23) K(0,m) and B(0,n) specified ,

1 1
(24) (l/V)f pdn = [(1/v)f Kdn] .

o o -

Equations (19) and (20) have been placed into a finite

difference form by means of the method of quasi-linearization

(3,4,5).

representation of the first derivatives with respect to z.

A three-point formula is employed for the difference

This
allows second-order accuracy in Az. n and jvare integers such
that we have the relations z = nAz and n = JjAn. £ is an integer

denoting the step in the iterative scheme to be described. The

difference equations obtained are:

y) 2+1 Y z+1 4+1 Y/

2 A + . = D .
( 5) ) n, JKn: J+l Bn:J n, Jj n: J%:J 1 n, J
and |

J+1 ) 2+1 A 2+1 yA

26 o4+ QY .+ . . . = .

( ) ' n’ JBn: J+l n, JBn’J Hn: JBn’ J-1 Kn:J

where the definitions have been made that

1 . /A 1

57" [T LR oy
)n,J+l (K )n,j-l

els
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~o_/xp(y-1)/7]4

c T o 2 .
£ p o 21 (B-K)“e 1 2
B . = A ) (an) +
d q OKE. K . (p-k)? |
n,j| m,J n, J
6 2
c 2 ) (An)
- + £
2Ry y-L1/vy 7} 24 2 Az ’
(K )n,j(P )4 (K )n,J
L _ 2 1 1
Dn,j =2 2 @ -5
. n,J n, j+1 n, j-1
- £ .
2 'ec/KP(y Dy x?
2l (p-
+ A (—22) (am)? |48 K)eOKP {2+2 ?Eiii__
An, j - n, j
6 2
c (am)
(Py-l/y)ﬂKz }+ (qKn—l,J Kn—2,3) Az ?
nn, j
4+1 4+1
A Qlﬂ . Kn,J-%';f?,J+l
n,J + ?
(K7), i (K )n’J
2+1 4+1
o 1, B - K a
n, Jj n,J
- (y=1)/y ) £-1
c T 2 _plv-1)/y 8. /KP |
Gﬁ = o P o) (A )2 [1-P le
n, J ‘7 Q L CKP

n, J

_ | o
NYYS ] o 3 (An)
(K5 - Bo, ) (x2) 11 t5 Az ;

n, j
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-0 /KP(Y-l)/Y £+1
c ,

¢ _ %02, 2| - e/
Kn, g = M=g=) (@n) OKP .
n,J
) 2+1\2 2 IS )
[(By, 5 - Bn,5)" -2(Pn, 5 - Kq,5)Pn,

(48,5 - B, ) (60)/202

Note that when n = 1 the last terms in Dﬁ

. and Kz . are replaced
s d n,J o

by K j(An)g/Az and B j(An)Q/Az. Also when n = 1 the last term in .
b 3 .

each of Bﬁ 3 and Gﬁ p is replaced by (An)e/Az. The boundary condi-
2

3

. tions Eq. (22) are replaced by

TS R FS 1 g+l
| Ko, -1 = K19 B g4 = Ky, 5-1
(e7) o | ,
I+l _ gitl 441 4+l

n,-1~Pn,1%  Bn, g+l T Pp, -1

with the initial conditions K ., and B_ .
: O, d 0, d

interest. Equation (24) is represented by

given for all j of

‘ 1 1 =2 K
(28)  pT = [(1/Vn>ﬁn(§ (Kﬁ,o + K 5) t g Kﬁ,a‘)] '

The method‘of quasi-linearization is a techniéue for ;m-
proving the accuracy of the coefficients in Egs. (25) and (26) in
an iterative manner. At each value of n, the solutions‘for all J
are obtained in each step of the iteration until satisfactory con-
vergence occurs. Then, the solution for the next value of n is
determined. The iteration begins by choosing ( )1}’+l = ( )

| n,j
which is the final value from the previous iteration. The

n-1,j
coefficients in Egs. (25) and (26) have been defined such that,
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for each value of n and each value of f+1, the tridiagonal matrix

£ a? m ., and k¥ . are calculated

Eq. (25) is solved. Then F* | .
a. (25) n,3’ “n,j’ “n, i’ n, J

and the other tridiagonal matrix Eq. (26) is solved. Now the index
g is ihcreased by ﬁnity and the coefficients in Eq. (25) may be
calculated for the next step in the iteration and so forth.
The initial conditions were chosen such that, at ¢ = Co’
K had a Gaussian distribution near m = 0 but K = 1 for larger 7.
e also had a Gaussian distribution chosen in such a Way as to
relate thermal energy to chemical energy. This procedure was

intended to simulate spark ignition.

*
The calculations were performed on the IBM 360/91 computer.

RESULTS OF THE CALCULATIONS AND DISCUSSION

The calculations have been performed in a limited number of
cases and results for profiles of nondimensional pressure, non-
dimensional temperature and mass fréction of unburnt species have
been bbtained. Note that the pressure and temperafure are non-
dimensionalized with respect to the pressure and chamber tempera-
ture just prior to ignition. These reference conditions may be
determined from the known conditions at the end of intake by
assuming an 1lsentropic compression up to the point of ignition.
Thus, knowledge of the volumetric efficiency and maximum volume of
the chamber leads to the determination of the dimensional pressufe

and dimensional temperature profiles.

* The author wishes to acknowledge Mr. T.0. Williams for the
programming of this finite difference scheme.
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The parameters in the basic case (Case I) were chosen as

follows:
= N = 5 5. £ -
6, = 20.0, A = 1.28 x10° , 6, T~ 4o.0 ,
¢, = -20°, x = 10.0 , 5, = 0.1,
65 = 0.7 , By = 1.0, . 6, = -180° ,
Q ,
Y'—‘l.} =4.0, L, =1L, .
_ ’ cpTO 1 2

Note that A is directly proportional to the pre-exponential
constant in the chemical kinetic law and inversely proportional to
the rpm value. The given value of A represents a constant of the

13

order of 10 cmj/(mole—sec)‘and an rpm value of 2000. The value

of ec implies a value of the activation energy which is about 20

kcal
mole °

The results for the unburnt mass fraction versus chamber
position for various crank angles are presented in Figure 2. They
indicate that burning begins near the spark plug and propagates
towards the piston. The flame has a certain thickness and reaction
and turbulent mass diffusion are significant throughout some
portion of the chambef at each instant.

In Figure 3, K versus chamber position is plotted versus
various crank angles. Again, the propagatibn of a flame structure
is indicated. At the end of burning, K has a nearly uniform value
between 4.0 and 5.0 due to mixing effects. This implies that
temperature gradients tend to be eliminated by the mixing. Effects

of wall quenching and heat transfer are not included in this
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analysis, however. The nearly uniform and nearly time-independent
value of K- after the completioﬁ of burning at ¢ = 0° implies that
an isentropic expansion is occurring.

Temperature versus éhamber position for various crank angles
is plotted in Figure 4. The previously-mentioned treﬁds are also
demonstrated there but it is also indicated that after combustion
is completed the temperature decreases uniformly during the
expansion process.

Now, a study may be performed of the effects of changing
various parameters. A listing‘of the parameter survey is given in

Table 1.

Table 1 - Summary of the Parameter Survey

Case A 2] o)

I 1.28x10° 20.0 40.0 10.0 -20
II  1.28x 10° 20.0 50.0 10.0 -20°
IIT  1.60x10° 20.0 L40.0 10.0 -20°
IV 6.40x10° 25.0 40.0 10.0 -20°
vV  1.28x10° 20.0 k0.0 9.0 -20°
VI 1.28x10° 20.0 L0.0 10.0 -15°

The effects of changes in the ratio of stroke-to-eddy size
(Case IT) ére demonstrated in Figures 5 and 6. It is seen that an
increase (decrease) in the eddy size implies a decrease (an
increase) in the burning angle. This indicates that design modifi-
cations which can change eddy size should have a profound effect

upon burning angle. The effect upon peak pressures and tempera-

tures would not be as profound but significant. Another
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interpretation is that a decrease in the stroke (or maximum chamber
length) implies a shorter‘travel'distance for the flame and there-
fore a smaller burning angle. Realize that in these calculations,
the compression ratio was held '‘constant as the stroke was varied.
Again peak temperatures were not too sensitive to the parameter
change.

Figure 7 (Case III) shows the effect of increasing A to the
value of 1.60><105. This case can bé viewed either as an increase
in the#pre—exponential kinetic constant or a decrease in the rpm
value. Although the results indicéte some decrease in the burning
angle, it is not as large as would occur if the combustion process
were constént in duration. The results indicate that és the rpm
increases, the rate of turbulent mixing'increases due to increases
in the piéton velocity and in the velbcity of the mixture during
intake (if the mass of the charge were only weakly dependent upon
rpm). The burning angle is much less sensitive to the value of A
than to the value of.ec. Peak temperatures are not too sensitive
to the value of A or the value of ec.

In Figure 8, we see the effect of increasing the nondimen-
sional activation energy ec to a value of 25.0 and increasing A to
6.40x 10° (Case IV). Both parameters must be changed simultane-
ously if the burnihg angle is to remain at a realistic value.
Increasing ec tends to slow down flame propagation while increasing
A results in a faster flame propagation.

Note that in Figure 9, the results for Case V are plotted.
Here, the effect of decreasing the compression ratio y to the value

of 9.0 is considered. The decrease in the compression ratio
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results in an increase in the burning angle. It is found, however,
that the change in peak temperatures is not véry significant.

In Figure 10, the effect of spark advance is demonstrated.
In this Case VI, Co = —15O and, as expected, burning occurs later
relative to top dead center. Interestingly enough, the burning
angle 1s found to decrease as the spark is advanced.: Apparently,
this results from the larger value of the eddy diffusivity during
the burning period. The larger diffusivity and more rapid mixing
occur since the piston velocity during burning is larger when the
burning occurs significantly away from top dead center.

The effects of the parameters upon the pressure results are
indicated in Figure 11. It is seen that changes in the pre-
exponential chemical kinetic constants, or in the rpm value, can
prodﬁce somewhat significant variation in the pressure traces but
changes in the activation energy can producé large changes. A
modification in the eddy size is noticed; larger pressures are
obtained sooner due to the decrease in'burning angle as eddy size
increases. The peak pressure, however, is only slightly higher.
Also, it is noticed that the increased compression ratio results

- in an increase in the peak pressure. The spark advance modifica-
tion results in a relatively more significant increase in the peak
pressure. |

The results of the calculétions indicate that the primary

factor in the eddy diffusivity given by (1) is the term due to
piston motion. The term due to the intake is negligible in com-
parison. It should be noted, however, that interaction may exist

in reality; the turbulence generated during intake may provide the
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necessary initial conditions for the intensification of the turbu-
lence by the piston motion. |

The interesting results obtained are that the final value of
K and the peak value of temperature 6 were insensitive to paraméter
changes. Realize that K as defined before Eq. (5a) can be direct- |
ly related to the entropy, so that the impiication is that the
final entropy is insensitive to parameter changes. This is not
surprising since the combustion prdcess is very nearly a constant
volume process. That is, during combustion, the piston is near
top dead center and moving slowly so that very little wbrk is done
by (or on) the piston. Therefore, with the chemical energy to be
released given, it is found that the chemical kinetic constants,
the rpm vaiue, eddy-size, etc. have little effect upon temperaturé
and entropy at the end of the combustion process. The peak
temperature and the temperature at the end of the combustion
process were very similar in the cases calculated here.

At this point, it is possible to use these pressﬁre and
temperature results to calculate the concentration of NO as a
function of crank angle and chamber position. In particular, the
concentration in the emissions could be calculated. These calcula-
tlons are intended for the near future.

There is an earlier version of this paper (Sirignano (1971))
which comes to somewhat different conclusions. In the calcula- ‘
tions presented there, larger eddies and slower chemical kinetics

were employed. This resulted in "thick" flames. The present
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calculations which result in thinner flames are now felt to be
more realistic.* ‘

The model could be extended in the future by considering the
effects of heat transfer, dependence of the specific heat upon
temperature and concentration, and more realistic geometries for
flame propagation. An interesting application of a similar.model
of flame propagation to the Wankel combustion process is discussed
in another paper by Bracco and Sirignano (1973). There, in fact,
the combustion chamber is more reasonably modelled in a one-

dimensional manner than in the reciprocating engine case.

* Discussions with Drs. J. Heywood and F. Bracco on this point

were most useful.
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The Mass Burning Rate of Single Coal Particles

Irvin Glassman

Department of Aerospace and Mechanical Sciences
Princeton University
Princeton, N. J. 08540

Abstract
The burning rate of coal particles are examined under two
different sets of ideal conditions — (1) an ash-free material

undergoing quasi-steady burning in which the kinetics of oxidation
on the surface are fast with respect to the diffusional time for
oxidizing material to reach the surface and (2) an ash-forming

coal in which diffusion through the ash controls. Simple modifica-
tion of analyses already in the literature show that for the ash-
free condition, the mass burning rate per unit area is proportional
to the mass fraction of the free stream oxygen to the first power
and for the integral ash condition the burning rate is proportional
to the square root of oxygen mass fraction. The burning rate of

an ash-free particle is also shown to be a function of the chemical
transformation at the surface. If CO forms, the burning rate is
twice the value that would be obtained if CO2 formed. '

I. Introduction

The renewed interest in coal combustion motivated this paper
which is essentially a re-analysis of mass burning rate determina-
tions for certain unique properties of coal. There are two condi-
tions examined. The first concerns the burning of ash-free coal
under the assumption that the hetergeneous oxidation at the coal
surface is fast with respect to the rate at which the oxidizing
material is brought to the surface. This assumption is valid for
large particles at high temperatures — the most practical case of
coal combustion. Mulcahy and Smith [1] have shown that for pul-

verized coal even at high temperatures, the surface oxidation
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kinetics control. Nevertheless, as wiii-be showh, the burning rate
dependence on free stream oxygen mass fraction is the same.

Although most coals contain a modest amount of volatiles, they burn
rapidly‘and the coal burning rate is determined by the consumption
time of the carbon char. The second condition examined is the case

of an ash-forming coal.

IT. Ash-Free Coal

As described in the Introduction, the burning rate of coal
at high temperatures is determined by the burning of the carbon
char. Carbon is'essentially non-volatile at the temperatures that
can be created in coal combustion and thus its oxidation must teke
place hetergeneously; i.e., on the char surface. If the coal is
porous then, under these conditions, it is not likely that the
pores will'play a role since the oxidizing material will be removed
rapidly on the exterior surface before it can diffuse into the
pores. The problem then can be idealized into the surface burning
of a spherical particle of carbon. The generaltproblem of surface
(heterogeneous) oxidation has been treated by Frank-Kamenetskii
[2] . For surface oxidation, whether the chemical rate or'diffusion
is controlling, in the steady state rate which oxidizer is.being
consumed at the surface by chemical reaction must be equal to the
rate at which oxygen diffuses to the surface. Thus Frank- -

Kamenetskii writes the expression

(1) G, =k, C = h, (C -c‘ )
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G, is the mass consumption rate per unit area (g/sec cm2). k, is
heterogeneous specific reaction rate constant which includes the o
surface area and thus has units of velocity (cm/sec), k s = (k/8)

where k 1s the ordinary Arrhenius rate constant for a first order

Y

reaction (sec” and S is the surface area to volume ratio for the

solid pérticle (cmz/cmB). hy is the mass diffusion coefficient
and as defined must have the units of velocity (cm/sec). It is
inherent from Equation (1) that surface’kinetics are-assumed first
order with respect to the oxygen concentration. Co is the oxygen
concéntration (g/cmB). The further subscripts s and ® refer to

the surface and free stream respectively. The stoichiometric

relation betwéen‘the oxidizer and fuel can be written as

(2) G, = Gf/i

where Gf is the fuel consumption rate per unit area and i is the
mass stoichiometric index. Thus Equation (1) may be written as

(3) lGoz-lkspmo,S'=lth(mo,oo my s .

in which p is the total gaseous density and m, the mass fraction of
oxygen. It is, of course, desirable to express the mass consump-
tion rate Qf the fuel in terms of‘thevknownAfree stream condition,
mo,oa‘ This result can be.obtained by solving-the tﬁo middle terms

in Equation (3) for my oo The simple algebraic.result is
. 2

(4) m = [hy/(k_+hp)Im .

0,8 0, O

Substituting Equation (4) into (3), one obtains
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(5) Gp = 1p[khp/(ktnp)Im, = ip[n/(1+ (hy/k))Im .

It should be noted that (hD/kS) is a Damkohler number. When the
chemical rates are fast with respect to the diffusion rate, small

Damkohler number,

ks >> hD
then Equation (5) becomes
(6) ‘ Gp = 1phy s, oo
or from Equation (4)
(7) Mo,s =5 M oo

and My o May be assumed close to zero. When the chemical rates

3’

are slow compared to the diffusion rates, large Damkohler number,

Equation (5) gives
(8) Gp =1k pm
and Equation (4) shows that

(9)

m M ~ m L]
0,8 v "o,

Thus for the chemical rate controlling the mass consumption rate
is found to be first order with respect to the free stream oxygen
mass fraction and is a direct consequence of the assumption of

first order kinetics.
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Indeed, it appears from Equation (6), for diffusion control-
ling, that the consumption rate is first order with respect to the
free‘stream oxygen mass fraction as well. Although this indeed
will turn out to be the case for carbon, it is not apparent because
hD must be more clearly evaluated since there is diffusion of a
gaseous product from the surface to the free stream. However, for
carbon oxidation it will now be shown that thié flux from the
surface is small enough not to alter heét or mass diffusion to or
from the surface.

In order to elaborate'on this point it is interesting to
examine the burning rate of a volatile fuel droplet in a.quiescent
atmdsphere as initially.given by Spalding [3]. Spalding has shown
that | |

(10) - G =.(Dp/r)ln (1+ B)

where D is the molecular diffusion coefficient (cmz/sec), r the

particle radius (cm), and B the transfer number. It is convenient

to write B in a form first written by Blackshear [4] and reviewed

by the author [5]:

. . i m: + m
w fs
(11) B, = B ,
. fo L-Teg
C T T -m_., H
(12) By = —2 ( ?H(ms)_lgs ,
€ Lv fs °

C. (T _-T.)+im_ _H
(13) po-2@ s To®

of Lv

where H is the heat of combustion of the fuel (qal/g) and L is

the latent heat of evaporation (cal/g). These results evolve from
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solving the diffusion equations including the rate terms for heat,
oxidizer and fuel. The non-homogeneous rate term can be elimina-
ted by combining any of the two equations and writing the combined
equation in terms of a new variable b. The transfer number arises
when the equatlons are integrated and b is evaluated at the surface

and in the ambient,

(14) | ' B=b_ -b, .

Since there are three equations, there are three different forms of
B, but they aré equal It is assumed in these types of develop-
ments that heat and mass diffusivity are equal. The equations and
boundary conditions account for the mass efflux from the ;uel sur-
face and its subsequent effects on hear and mass diffusion.

For the case of coal burning on the surface the most con-~
venient form of B is that given by Equatlon (11) Mo for surface .

ox1datlon must be equal to zZero and thus

(15) - B=1im

and Equation (10) becomes

2

(16) | Gf=%91n (Avim ).

The éase for condensed phase burning in a convective stream
has been solved for a flat plate fuel surface by Emmons [6]

Emmons found
Re1/2

(17) | 6p = & j? [-£(0)]
X

where ¢ is the viscosity, Re the Reynold's number, x the distance
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from the leading edge of the flat plate, and [-£(0)] is a modified
Blasius function which is also a function of B. The oxygen de-
pendence is in [-f(0)] and will be discussed later.

The stagnant film case, which represents convective flow
parallel to the mass evolving from the-fuel surface, gives an

expression similar to Equation (10); i.e.,
(18) Gp = (Dp/8)In (1+ B)

where & is the boundary layer thickness. Of course, for the
quiescent case, as found in heat transfer, 6 = r. A definitionibf_
hD could be

(19) hy = D/6

The approximation given by Equation (18) is in reality quite good

because B is small.

To evaluate B from Equatign (15) the value of i must be
known. The model for éarbon éombustion at high temperatures
elaborated upbn by Coffin and Brokaw [7] has been generally
accepted. The concept is thét CO forms at the surface diffuses
away-and.is oxidized to CO2 in the gas phase. The CO2 diffuses to
the surface, is the essential oxidizing agent and is reduced to CO

by the Boudouard reaction

C+002—>200 .

No oxygen essentially reaches theisurface,Nit is consumed by the
CO in the gas phase. In this case it has been shown explicitly

[4,5] that the stoichiometric index is 12/16 or 0.75. This result
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may be seen by applying the Law of Heat Summation to the reactions
in the overall system, i.e.,

1 .
CO + 50, — o, (gas phase)

Co, + C —2C0 (surface)

1
.C + 50, — CO (overall)

If 002 forms heterogeneously at the surface ‘then the

stoichiometry is

1
CO + 50, = CO, .

For pure carbon, it is most likely that only CO forms at the sur-
face. However, impurities could heterogeneously catalyst some CO
to 002. Thus, although it is recommended that i be chosen equal

to 0.75 it must be realized that for practical coals its exact

value may be somewhat lower.

From either of the above results it is very apparent that B
is a number small compared to one for combustion with air. Since

My o = 0.23 for air then B = 0.086 to 0.172. Thus
2

(20) ‘ | In (1+B) ~ B

and Equation (18) becomes

(21) ' Gp = (Dp/6) B = (Dp/5) img o

which with Equation (19) takes the form
(22) - Gp =hpim o P

3

the same result as given by Equation (6). The physical meaning of
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Vs

small B is that the surface efflux does not have any effect on the
diffusional processes.

For small B, Equation (17) also can be reduced to the same
form as Equation (22). B appears in an analyticél manner in the
boundary condition for the Blasius function. Therefore, one may
assume [-f(o)] as analytic in B and, further, for the small B case,
directly proportional to B. Thus the mass burning rate has the
same oxidizer dependency for the particle burning in a convective
atmosphere as in a guiescent atmosphere_

From Equation (22), one observes that the burning rate is not
only directly proportional to the oxygen mass fraction but also
fhe stoichiometric index. Consequently whether CO or 002 forms on
the surface or not is crucial because the burhing rate changes by
" a factor of two. One could have intuitively predicted this result
because to form CO2 one must diffuse twice as much oxygen to the
surface. |

The result for the dependency with respect to oxygen has been
obtained by much more sophisticated analysesv[2,8,9]. Many
investigators have carried out detailed mathematical analyses of
the ablation of carbdn.and of heterogeneouély catalyzed systems.
The purpose here was to show that since the transfer number could
be shown smallvcompared to one, the simple analysesvby Frank-

Kamenetskii give the proper oxidizer mass fraction dependency.
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ITITI. Ash-Forming Coal

If a coal forms an ash while it is being oxidized, then it
is the diffusion of the oxidizer through the ash which controls the
burning. Diffusion of oxygen to the surface, whether in quiescent
or cdnvective atmospheres, will always be very much faster than the
diffusion through the asﬁ layer. Thus, following a procedure
similar to Knorre, et al. [10], the consumption rate of oxygen at
the fuel surface may be written as

. dm

(3) | o = Dy a5
where DA is the diffusion parameter for flow through the ash.

From Equation (2),

: dmo
(24) Gp = 1 Dpe g7 -
Since m, X mo,a) at the outer edge of the ash and m, X O at the

surface, an approximate form of Equation (24) is

m
O, ® .

(25) Gp = i Dyp

where xvis the thickness of the ash at any instant. Equation (25)
would hold well provided x is small compared to the particle radius.
In practical cases the tendency of the ash to separate from the
char prdbably doeS-keep X small. This analysis, of course, holds
when the ash breaks away from the particle. The rate of conversion

of the coal particle.can be written as

‘(26) | | Gp = p, (dx/dt)
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where Pe is the density of the coal. Equating Equations (25) and
(26), one obtains |

m
. 0,
(27) Pe (ax/dt) = i Dpp %

Integrating and solving for x, one obtalns

(28) . x=(2Dypim é)t/pc)l/2

since x = 0 at t = 0. Equation (28) is combined with Equation (25)
to give

(29) 6= (Dyp pg imy o /20)Y2

Thus in the case of an ash forming coal, the bﬁrning rate de-
creases with time and proportional to the oxygen mass fractioﬁ to

the one-half power. Similarly, it is proportional to il/g.

Iv. Conclusions

For the case of non-ash forming coal particles’burning at
high temperatures in either a quiescent or convective atmosphere,
it has been shown in a_simple manner that the burning rate is
_directly proportional to the oxygen mass fraction. For coal parti-
cles which form an ash, the burning rate is proportional to the
square root of the oxygen mass fraction. |

'The surface reaction is important in determining the burning
rate as well. If CO forms at the surface in the ash-free case, the

burning rate is twice as fast as if CO2 forms.
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Studies of.Hydrocarbon Oxidation in a Flow Reactor*

I. Glassman, F. L. Dryer and R. Cohen

Guggenheim Laboratories
and
Center for Environmental Studies
Princeton Universit
Princeton, N. J. 08540

TI. Introdudtion

‘Recent. concerns about energy needs and the associated envi-
ronmental problems has again focused attention on thé rather
startling fact that after burning hydrocarbons for about a century
a thorough understanding of their high temperature oxidation
characteristics still does not éxist. The éentral thrust of'a pro—'

gram at Princeton on the homogeneous gas phase'reaction kinetics
of hydrocarbons at high temperatures is to contribute to this
understandlng by use of a turbulent flow reactor Earlier work on

I RE—

methane and carbon monox1de ox1datlon klnetlcs (Dryer, 1972; Dryer

.

[

and Glassman, 1973, Dryer, Naegell and Glassman, 1971) has been
reported in the literature. All the experlmental work had been
pefformed on the Princeton adiabatic, high temperature, turbulent-.
flow reactor (Dryer, 1972). Some recent experimental work on this
reactor, albeit preliminary, and some further\understanding(of what
is necessary to quel complex chemical kinetic s&stems are thought

to be of great significance in further elucidating the hydrocarbon

This research effort was supported by the National Science
Division, Research Applied to National Needs, Division of Energy
and Resources Research and Technology, under Grant No. AER 75-09538.
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oxidation kinetic process. More specifically this work which is
\“"‘——-————-‘_—.._.——_.,,.,. P

reported here deals with some prellmlnary thinking and new results

with respect to the processes in paraffin hydrocarbon combustion.

IT. Experimental Apparatus

Basically, the Princeton flow reactor technique utilizes a
heated cylindrrcel quartz duot 10 cm in diameter through which a
hot inert carrier gas flows at velocities whioh yield Reynolds
numbers in excess of 3500 (Figure 1). The reactor assembly is
constructed so that the reactor walls rapidly equilibrate to the
local gas temperature. Rapid mixing of small amounts of pre-
vaporized reactants with the carrier is provided by radial injec-
tion at the throat of.a high velocity mixing inlet nozzle. Proper
adjustment of carrier temperature flow‘velocity and reactant con-
centrations result in a steady, one-dimensional, adiabatic reaction
zone extending over a length of approximately 85 cm. Simultaneous
thermal’and chemical data at discrete axial locations in the
reaction zone are obtained by longitudinal extension of an instru-
mented probe. Temperature measurements are made With a silica
coated Pt/Pt-Rh thermocouple, and gas samples are removed through
a water- cooled/expanS1on quenched stainless steel sampllng pbrobe.
Con51stent with the long range objective of more complex hydro-
carbon oxidation studies, a sophisticated gas chromotographic
chemical analysis procedure which was developed in this laboretory
(Colket et al. (1973)), permits measurements of all stable hydro-
carbon species (including partially oxidized compounds) as well as

H, and Oe'to 1% precision.
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The unique advantages of this flow reactor approach should be
emphaéized. By restricting experiments to highly diluted mixtures
of reactants, and extending the reactions over large distances,
gradients are such that diffusion may be neglected relative to con-
vective effects (Glassman and Eberstein, 1963); thus, the measured
specie profiles are a direct reéult of,chemicai kinetics only.
_This'type of spreading is in contrast to low pressure one dimen-
sional burner studies where diffusion effects must be determined
analytically before useful chemical kinetic data are obtained.
While these flame procedures have progressed significantly in their
refinement, estimation of diffusive correctidns remains very
difficult. |

Furthermore, in the flow reactor, uniform turbulence results_
not only in rapid mixing of the initial reactants, but radially
l—dimeﬁsional flow characteristics. Thus real "time" is related
to distance through the simple plug flow relations. However, the
relation of a specific axial coordinate to reai time is not well
defined since the initial time coordinate occurs at some unknown
location within the mixing region. One would suspect that initial
mixing hisfory could therefore alter reaction phenomenon occurring
downstream. 'However, the éxistence of very fast elementary kine—
tics, which initiate chemical reaction before mixing is complete,
permit rapid'adjustment of the chemistfy to local conditions as the
flow approaches radial uniformity. Furthermore, the 1arge dilution
of the reactahfs and rabidity of the kinetics reduce the coupling of
turbulence and chemistry to the point that local kinetics are func-

tionally related to the local mean flow properties (Glassman and
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Eberstein, 1963). This conclusion is also supported experimentally
by excellenf agreement of the derived chemical kinetic data with
that obtained from shock tubes and static reaction systems at other
temperatures. Agreément also substantiates that the reactor sur-
faces do not significantly effect the gas phase kinetics. Com-
parison of flow reactor data from reactor tubes of significantly
different surface to volume ratio also corroborates this conclu-
siqn. Finally and most important, the turbulent flow reactor
approach permits kinetics measurements in a temperature range (800-
1400K) generallj inaccessible to low temperature methods (fast flow
Electron Spin Resonaﬁce, Kinetic Spectroscopy techniques, static
reactors, etc.) and high temperature techniques (shock tubes, low

pressure post flame experiments).

IITI. Combustion of Paraffin Hydrocarbons

Combustion of paraffins above methane has always been thought
to be complicated by the greater ihstability‘of the higher alkyl
radicals and by the great variety of secondary pfoducts which can
form. The oxidation mechanism characteristically follows the
Semenov type. Minkoff and Tipper (1962) have reported some oxida-
tion mechanisms of specific hydrocarbons.

At higher temperatures most have accepted the primary.fe-
action in the system to be between the hydroxyl radical and the

fuel.

RH+OH — R+ HEO

Recent work at Princeton (Dryer, 1972) has suggested that other
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reactions in addition to this one were important; mamely, in fuel

lean and rich combustion

RH+0 — R+ OH

and in fuel rich combustion

RH+H—+I’{+H2 ;

It is interesting to review a geheral pattern for the oxida-
tion of hydrocarboné in flames as given by Fristrom and Westenberg
(1965). They suggest two essencially thermal zones: the primary
zone in which the initial hydrocarbons are attacked and reduced to
CO, Hy, H,O0, and the various radicals (H, O,'dH) and the secondary
zone in which the CO'and H2 are oxidized; The primary zone, of
course, is that in which the intermediates occur. In oxygen-rich
saturated hydrocafbon flames, they suggest further that initially

hydrocarbons lower than the initial fuel form according to

OH+ C_H —+ H,0+C_H

nfonsp 20 +CpHo g = G qHop ot CH

3

Becéuse hydrocarbon radicals higher-than ethyl are thought to be
unstable, the initial radical CnH2n+1 usually splits off CH3 and
forms the next olefinic compound as shown. With hydrocarbons
higher than-CBHB, it is thought there may be fission into an ole—.
finic compound and a lower radical. The radical élternately splits
off CH3.' The-formaldehYde which forms in the oxidation of the fuel
énd fuel radicals is rapidly attacked in flames by O, H, and OH, so
that formaldehyde is usually found as a trace substancé.

In fuel-rich saturated hydrocarbon flames, Fristrom and

Westenberg state the situation is mdre complex, although the
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initial reaction is simply the H atom abstraction analogous to the

preceding OH reaction: e.g.

Ht CpHoppp = Ho +C Hy g -

Under these conditions the concentration of H and other radicals
is large enough that their recombination becomes important and
hydrocarbons higher than the original fuel are formed as inter-
mediates.

The general features suggested bvaristrom and Westenberg
nave been confirmed in recent experiments. However, this new work
'permits more detailed understanding of the high temperature oxidaf
tion mechanism. As stated earlier this work shows that under
oxygen-rich conditions initial attack by 0 atoms must be considered
as well as thevprimary OH attack. More importantly however, it has
been established that the paraffin reactants produce intermediate
products which are primarily olefinic and the fuel ig consumed to
a major extent before significant energy release occufs. The'
higher the initial temperature the greater the energy release as
~ the fuel is being converted. This observation leads one to con-
clude thet the olefin oxidation. rate simply increases more appre-
clably with tempefature; i.e;, the olefins are being oxidized while
they are being formed from the fuel TheSe conclusions are based
on recent experlmental results as typlfled by Figures 2 6 which

represent the data taken throughout the reaction’ zone of ethane,

propane, butane, hexane and 2-methyl pentane
oo ——————

A summary of of the 1ntermed1ates formed from the oxidation of

e
et = A T

these four paraffin hydrocarbons is most revealing and is represen-

ted by Table I.
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‘Table I
IEEEE Relative Hydrocarbon .Intermediate Concentrations
ethane ethene >> methane
propane ethene > propene >> methane > ethane
butane ethene > propene >> methane > ethane
hexané_ ethene > propene > butene > methane

>> pentene > ethane
2-methyl pentane propene > ethene > butene > methane

>> pentene > ethane

It would appear that the results in Table I would contradict ele-

“ i TS

ments of Fristrom and Westenberg's suggestion that the initial

ontl usually splits off the methyl radical.

- If this type of splitting were to occur, one could expect to find

larger concentrations of methane. The large concentrations of
ethene and propene found in all cases would suggest that primarily

the initial C_H radical cleaves one bond from the carbon atom

n 2n+l
from which the hydrogen was abstracted. The bond next to this
carbon atom is less likely to break since this type of cleavage
would require both an electron and‘hydrogen transfer to form the
olefin. The abstraction of hydrogen from a second carbon atom
requires about 1.5 kcal less from the other carbon atoms (a terti-
ary carbon atom requires about 2.5 less). In a étraight chain
hydrocarbon there are, of course, more hydrogens on the first car-
bon atoms. -Eétimating relative probability of removal based on

number and ease of removal and considering the cleavage rule men-

tioned indicates the proper. trends designated by Table I and
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relatively large concentrations of ethene and propene. These
results suggest that oxidation studies of ethene and propene should
be particularly important.

Figures 2-6 show clearly that experimentally there appears

to be an initial iso- energetlc step in the overall process. Of

course, this step is not exactly iso-energetic. The conversion
process from paraffin to olefin is endothermic; however, some of
the hydrogen formed during what is-éssentially a pyrolysis step
does react and release energy. The two reactions are compensating
energetically. Thus, it is believed that this evidence suggests
that there are three distinct, but coupled zones, in hydrocarbon
combustion. i
1) Following ignition, primary fuel disappears with little or
no energy release and produces unsaturated hydrocarbons and
hydrogen. A little of the hydrogen is g;ncurrently being
oxidized to water.
2) Subsequently, the unsaturated compounds are further oxidized
to carbon monoxide and hydrogen. Simultaneoﬁsly ﬁhe hjafé-
gen p%esent and formed 1s oxidized to water.

3) ILastly, the large amount of carbon monoxide formed is

oxidized to carbon dioxide and most of the heat release from

the primary ééi /;ks obtained.

Each zone must have a different témperature—rate dependency
and thus at different temperatures the importance of a given step
above may change. ‘Again on the basis of some very préliminary
experimental evidence as given by Figure 7 it is possible to put

forth some interesting speculations. The initial conditions of the
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experiment whose results are depicted in'Figure 7 were such that
not only was the stoichiometry nore fuel rich than the examples of
Figures 2-6 -but also the initial temperature was higher. Examina-
_tion of Figure 7 reveals that the maximum concentratien of ethene
is found earlier in the system. Essentially this trend indicates
that the exothermic ethene oxidation step has become faster. 'This
conclusion is supported by the fact that the'temperature profile in
Figure 7 rises continually and does not appear flat (iso-energetic)
throughout most of the process as found for the conditions given

in Figures 2-6.

The flow reactor permits highly reproducible accurate runs

and analyses to be obtained. All the data points presented in
Figures 2-7 are actually points.and not smoothed data. Although
present sampling technigues permit only stable species to be ‘
measured, estimates of radical reaction rates and rate constants
can be made. For example, sample data during methane (Dryer and
Glassman, 1973 ) oxidation as depicted in Figure 8 shows the
presence of ethane and the subsequent transfermation of thie ethane
to ethene. The ethane indicates the presence of and gives the clue
to the'methyl radical reaction rates and concentrations. Further,
it is interesting to note in fuel rich, pre-mixed ethane oxidation
system (Figure 7) that acetylene (ethyne) can be identified
readily.

| These results permitAthe conclusion that the tnrbulent flow
reactor is a particularly valuable tool to study hydrocarbon oxida-

tion processes.
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SOME PRECEPTIONS ON CONDENSED PHASE FLAME

SPREADING AND MASS BURNING

I. Glassman
Department of Aerospace and Mechanical Sciences

Princeton Universitz
Princeton, N. J. 08540

I. Introduction

Interest in problems associated with fire safety, particu-
larly as related to the combustion characteristics of plastic
materials, has arisen over the past years. Sﬁpposedly non-flammable
plastic materials have been found not only to burn but also to
emit relatively large quantities of_toxic combustion products. Yet
this result should nbt have been too surprising When one considers
that flame spread was the primary test criterion for non-flamma-
bility. Materials with spreading rates so low that they are
classified non-flammable will burn in fires supported by other
combustibles. The phenomena which control rate of flame spread and
rate of mass evolution are distinctly differgnt.. The‘purpose of
thié paper is to review certailn fundamental concepts related to

flame spreading and mass burning.

II. FPlame Spreading

- It is almost superfluous to review the field of flame spread
after the recent publication of the excellent review by Williams
(1976). 1In this most comprehensive conceptual review Williams

treated almost every aspect of flame . spreading — discrete and
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continuous materials, orientation, phase change before combustion,
etc. In this paper, only flame Spreading across continuous media
will be treated. By considering the Spreading process only in the
horizontal orientation, it is not necessary to distinguish between
melting and non-melting material. Indeed because of the experience
of the author, the subject of horizontal spreading across liquid
fuels will be reviewed first and the insights gained from this work
will be used to contribute to the understanding of flame spread
across solid materials.

The approach is somewhat different than that used by. Williams,
but this subtle difference may help some in interpreting the dis-
agreements which still exist in the field. The authors and their
colleagues (Glassman, et al. 1976) recently reviewed the state of
knowledge of flame spreading across liquid fuels. What follows‘are
| the basic physical concepts taken from this review with comparison
to the case of flame propagation across solid materials.

The relationship between the flash point and bulk temperature
of a liguid fuel determines the type and order of magnitude of the
flame spread. The flash poiht temperature is indeed a relative
concept, nevertheless it permits an important differentiation be-
tween two flame spread processes. When the bulk temperature of a
liquid is above its flash point temperature, there exists above the
liquid fuel a mixture ef fuel vapor and air that lies with the
flammability limits. It.is generally assumed that equilibrium
conditions prevail. In the actual open cup flash point test the
height of the small flame ignition source above the “liquid surface

specifies that at that point when a flash is observed the fuel-air
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mikture is Just within the flammability limits. The températuré

of the liquid when the flash occurs is the flash point temperature.
It is obvious and it has recently been shown (Dryer and Neuman,
1976) that the flash point téemperature varies with the ignition
flame height over the liquid surface. The closer the source is to
the fuel surface, the lower the flash point temperature. However
a minimum must exist eéither because at some point the fuel surface
exerts a quenching effect. Thus, in the flame spreading process a
unique flash point temperature for the fuel cannot be specified,
but the conceptual use is obvious.

In the case as mentioned above when the bulk liquid tempera-
ture is above the fire point, a flammable mixture exists everywhere
above the surface. In the presence of an ignition source, a flame
forms and spreads across the liquid surface. Under these tempera-
ture definitions the liquid does not contribute to the flame
process. The flame that propagates is for all intents and purposes
the same és a pre-mixéd laminar flame. Its velocity is very large
due to the stratification of air/fuel mixture above the surface
(Feng, et al}, 1975). The flame continually heats the cold un-
burned gases ahead of it until it begins'to,react (in Williams'
context to an ignition temperature) and releases heat to continue
the proéess. |

When the bulk temperature is below the fiash point, a flame
will étill propagate across the liquid fuel, but other mechanisms
must coﬁtrol since a flammable mixture does not exist everywhere
above the surface. Given that this fuel has been ignited and 1is

bufning, then there must exist some process which heats the liquid
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ahead of the flame to a flash point condition ahead of the flame
through‘the gas, or threugh the liquid. Or,; there can be radiative
heating.from the flame.

In the context of Williams (1976) the burning fuel would have
to heat ahead to the same ignition temperature, which in the termi-
nology used here is the same as the flash point temperature. There
is one important, subtle difference, however. In considering the
flash point concept, we are essentially defining the flame
spreedingbproblem as a lean flammability limit problem for a
gaseous fuel-air mixture. Following this reasoning there must be
laminar gas phase flame propagation in all cases. Analyses dealing
with the ignition temperature concept have the flame moving Qith
the ignition temperature.

The lean limit flame propagation idea is important, because
it says that if there is an opposing air flow eo strong that the
velocity near'the surface were greater than the lean limit flame
propagatioﬁ velocity, then there could be no flame propagetion. If
one analytically follows the ignition temperature, then there can
be no restriction.

In the case of high flash point liquids, the discovery was
made (Mackinven, et al., 1970) that convection currents in the
liquid were the dOminant heat transfer mechanism. These currents
were found to arise due to surface tens1on varlatlons caused by the
presence of the flame. The surface below the flame is obviously
hotter than the liquid ahead of the flame. Since surface tension
varies inversely with temperature, a surface tension.gradient is

established and draws hot liquid from behind the flame to a point
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ahead. This liquid is obviously hotter than the flash point
temperature.
For a viscous fluid, such as the fuel, under a surface ten-

sion gradient, it is well known that
(1) T =W (au/ay)S =0, = (dc/dT)(BT/ax)s

where T is the sheer stress, u the viscosity, u the velocity
parallel to the éurface, y the direction normal to the surface,

o the surface tension, T the temperature and x the direction along
the surface. (do/dT) is a physical characteristic of the 1iquid?
One can readily deduce the foilowing proportionality for shaliow

pans:

(2) ‘ ug m.oxh/u

where uS is the surface velocity and h is the depth of 1liquid in
the pan. For deep pools and other analytical considerations with
respect to the surfade tension problem, one should refer to the
review (Glassman, et al. 1976) mentioned eariier and the references
therein.

From Equation (2), one would expect that the flame propaga—
tion veloc1ty would also be proportional to pan depth and inversely
proportional to the viscosity. Indeed these 1mportant trends were
verified experimentally (MacKinven, et al., 1970). The experi-
mental results show an almost linear variation of flame propagation
with 1/p with slight thickening of the fuel by a chemical additive.
However it is important to mention that as the liquid 1is made very

"viscous the linearity breaks'down and the flame propagation

304




11-6

velocity asymptotically approaches a value of 0.3 cm/sec. For
conventional kérosene, the propagation velocity is about 3 cm/sec.
The asjmptotic trend could indiéate the onset of another ﬁype of
controlling mechanism. Indeed, the propagation velocity of 0.3
cm/sec is similar to that obtained for many solid materials
(Friedman, 1968). |

Not only do the viscosity experiments validate the concept
that convection currents in the liquid are the dominant heat trans-
fer mode, but they also verify that heat transfer is the control-
ling mechanism. Indeed, the processes of>fuel vaporizing, of the
fuel vapor diffusing from the surface and mixing with the air, and
of the flame propagating through this mixture must have character-
istic rates faster than the heat transfer rate. In the case of
flame propagation across solid materials, whether the dominant mode
is heat conduction through the gas or solid, the rate must be slower
than the con&ective rate in liquid. Thus if the convective rates
are slower than the other stéps in the lean limit propagation
process, then indeed the conductive steps are. Even though the
rate of evaporation of solid materials are kinetically controlled
whereas liquids maintain evaporation equilibrium at their surfaces,
the evaporation rate of solids are relatively fast, high tempera-
ture, high activation energy processes.

Williams (1976) deduces that for thermally thin solid
material, conduction through the gas phase is the dominant heat
transfer mechanism and that for thermally thick materials, conduc-
~tion through the éolid is the dominant heat transfer mechanism. 1In

the spreading process across thick materials, the flame induces air
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currents in the direcfion opposite to the propagation. The effect
of these currents is still open to debate. For large fires radia-
tion can play a dominant role in flame propagation across solids,
however radiation is not nearly as important in liquids (Mackinven,
et al., 1970). Considering flame propagation as a lean flamma-
bility process, permits one to expiain the effects of flame retar-
dants added to plastics. indeed, one should again recall, that
flame retardants limit flame spread, bﬁt retarded materials will
burn. The three most common means of retarding flame propagation
are to add chlorine (or other halogens), antimony or phosphorous
compounds to the polymer structure. It is well known that halogens
affect (narrow) flammibility limits. The presence of a halogen in
the polymer would require the polymer to be heated to a high
temperature before a flammable mixture could be createdvdue ﬁo the
présence of the chlorine atom. Antimony is fbund to be effective
only when in halogenated compounds. Antimony chloride is a gaseous
compound and it appéars that the role of the antimony is to facil-
itate the presence of chlorine atoms in the gas phase: In contrast,
phosphorous alters the surface characteristics of the polymer,
causes a melt and effectively increases the'heat of gasification.
Condensed phases must burn as diffusion flames and the flame
must be essentially at the stoichiometric mixture ratio. Inhibi-
tors such as halogens are only effective at the flammabilityvlimits
where the radicals affecting the chain propagation are scarce. In
stoichiometric flames, radicals are abundant and any removal by
inhibition is ineffective in altering the mass burning process..

Thus materials with flame retardants will alter the rate of flame
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spread but when they are involved in a mass1ve flre, they burn
and emlt toxic compounds

—

ITI. Mass Burning

The mass burning rate of plastic materials is inherently no
different than the burning of a liquid or any other volatile solid,
material. Some materials under a high heat fiux form a self-
generated flame or'due to external radiative source give off com-
bustible gases and leave a char material. The gases burn quickly,
however, the restrictions on the burning of thé char are very
similar to those associated with the burning of a porous carbon
particle; that is, it is similar to coal oombﬁstion. Many small
samples of plastios will not sustain their own combustion in air
unless an external radiative source 1is applied. Since attempts are
being made to develop tests to determine the mass burning rates of
plastic materials in order to determine the so-called "burning
intensity" of the plastic, it seems appropriate to review the
parameters which control the maés burning rate of condensed phases.
This topic is an old one, so the attempt here will be to deal with
the subject with the test methods in mind.

The burning rate of the simple spherical droplet or volatile
particle in a quiescent atmosphere will be-considered first.
Following Blackshear's (1960) adaptation of Spalding's approach

(1955) as reported in detail recently by Kanury (1976) and Glassman
(1977), one derives the following relation for the burning rate of

the spherical pafticle:
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(3) Gp = Ihf/Lhrri = (Dp/r ) 1n(1+B) = (7\/Cpr) In(1+B)

(b/r) In(1+B)

where Gf is the mass flux g/sec cmg,'fnf the mass burning rate g/sec,

r, the particle radius, B the transfer number, and D, A, C L,

p}
and p the normal physical properties.. Equation (3) is obtained
under the assumptions_that a quasi steady state exists and the
particle is 1like a porous-sphere fed with fuel at a rate equal to

the consumption rate, Le = 1 and constant physical properties. The

transfer number can take any of the following forms, all of which

are equal:

(4) B = (1mow~+mfs)/(l-mfs)
(5) B = (Cy(T, -Ty) -me H)/I + Hmy - 1))
(6) B B = (Cp<Too —TS) +imowH)/va

where mg and M arevthe mass fraction of the oxidizer and fuel
respectively; T, the temperature, H, the heating valiue of the fuel
in cal/gm; Lv’ the latent heat of evaporation; i, the mass
stoichiometric index; and the subscript s and « refer to the éondi—
tions at the surface and in the ambient atmosphere respectively.

Equation (3) may be interpreted in terms of an actual droplet

burning, 1i.e.

(7) ' S

an/dt = (a/at)[(4/3)r p r]

(8) | o = - 27rprs(dr2/dt) .

Combining Equations (3) and (8), one obtains
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(9) dr2/at = - (2Dp/py) 1n(1+B) .

The right hand side of the Equation (9) is constant and thus the
rate of change of r2 with time is constant. This result, of
course, corresponds to the so-called d2 (or r2) law that is found
experimentally.

It is interesting to note that the spherical particie burning
in a quiescent atmosphere is the only mathematically tractable
broblem. The one dimensidnal burning of a strand of fuel or pool
of liquid is not mathematically tractable unless one assumes that
at a fixed distance, say &, above the surface ambient conditions |
exist. In this case, referred to as the stagnant film case, iﬁ is

readily shown that
(10) Ge = (Dp/8) 1n(1+B)

A burning pool of liquid or a volatile solid will establish
a stagnant film height due to the natural convection which ensues.
From analogies to heat transfer without mass transfer, a first

approximation to this liquid pool burning problem may be written
(11) dG,/u 1In(1+B) ~ Gr®

where Gr is the Grashof number; d is the diameter of pool or
strand, a equalsbl/4 for laminar conditions and 1/3 for turbulent
conditions. If air is forced concentrically around the pool or
strand, very much like the Burke-Schumann gaseoﬁs fuel jet problem,
then again, one can assume a stagnant film problem.

When the convective flow of air is normal or dpposed to the

ma.ss evolving from the surface, the solution is more complex and
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the stagnant film analysis does not hold. Emmons (1956) solved

' thevproblem of a burning longitudinal surface with forced conven-
tion. The fuel is esséntially a flat plate witﬁ a leading edge.
The problem is also described by Williams (1965) and is similar to
the Blasius problem for the growth of a boundary 1ayer ovef a flat

plate. The Emmons result for Prandtl number equal to one takes the'

form

(12) Gp = u.(Re)l{/g/x v2)[- £(o)]

Gox/u = Rel/2 [~ £(0)1/A/2

where ReX is fhe Reynold‘s numﬁer based on the distance x from the
leading‘edge of the longitudinal fuel surface. and [- f(o)] is a .
Blasius type variable which is a function of the transfer B.
~Williams (1965) gives the graphical relation between [- f(o)] and

Glassman (1977 ) has shown empirically that
(13) [- £(0)] x 1n(1+B)/B" "

over a large range of B values.
It would appear to follow that data for spherical particles

burning in a convective atmosphere could correlate as-

(14) (Gpr/u) (3°25/1n(14B)) = £(re}/?)

where Rer is the Reynold's number based on the droplet. Even

though a wake may exist in which very little burning occurs,

0.15

Spalding (1955) has shown that Equation (14) without B corre-

_ lates data relatively well.
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It is interesting to note that one may deduce from Equations
(7) and (14) that in a constant Gelocity stream (or for constant
relative velocity between stream and particle) that the particle
will follow a d3/2 (r3/2) law rather than a d° law as found in the
quiescent case.

If in the maés burning process there is flame radiation, or
any other imposed radiation, as is frequently used in pléstic mass
burning tests, then a convenient expression for the burning rate
caﬁ be obtained provided it is assumed that only the gasifying
surface absorbs the radiation, i.e. there can be no absorption by
the gaseous species present between the radiation source and the
surface. In this case Fineman (1962) has shown that the‘étagnant

film expression takes the form

(15) Ge = (A/C8) In[1+ (B/(1-E))]
where
(16) E = QR/Gf'LV

and QR 1s the radiative flux. This simple form for the burning
rate expression arises because the conservation equations are
developed for conditions in the gas phase, and the mass burning
rate enters ekplicitly in the boundary condition to the problem.
Since the assumption is made that ho radiation is absorbed by the
'gases,‘the radiation term appears only in the boundary condition
to the problem. |

Notice that as the radiént flux increases, E increases and

the term [B/(l-E)] increases. When E = 1, the problem blows. up
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because the equation haé developed in the framework of a diffusion
analysis, and E = 1 means that the solid 1s gasified by the radi-
ant flux alone.

AS mentioned earlier, currently there are many investigators
seeking to establish tests which determine the mass burning rate
of plastics. One of the best of these'procedufes is that given by
Tewarson and Pion (1976). In their experiment, an 02/N2 mixture
passes arouﬁd the burning plastic and the rate of flow is held
constant; The gss flow is concentric with the circular cylinder
sample and holder and is in the same direction as the mass evolu-
tion from the gasifying sample. The gas flow is contained within
a quartz circular cylinder. Radiant heaters outside the quartz
cylinder permit an external flux to be imposed on the sample.
Tewarson and Pion report some excellent data and one of the inter-
esting findings is that a linear relation exists between the mass
burning rate of the plastic and'the mass fraction of oxygen in the
free stream, mow. The linearity breaké down at higher wvalues
of mow. Glassman (1977a) ﬁas attempted to explain these results
by arguing that the order of B and [B/(1-E)] must be much less than
one and that indeed the B values for most plastic material are

smaller than previously egstimated. For such small values

(17) ' In(1+B/(1-E)) » B/(1-E) .
From Equation (15) then

(18) - omg x_(x/cp'é)(B/(l—E)) .

Substituting Equation (16)
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(19) ' ' m, = (x/cpa)B +QR/LV .
Taking the form of B given by Equation (6)

(20) ﬁf = (A/Cpﬁ)i.Hmom4-(Cp(Tw-TS)/LV)4-(QR/LV) .

Equation (20) shows the linearity with respect to mow. Since A,
Cp and & probably do vary substantially for a fixed convective
condition and vafious materials, it is possible to berform experi-
ments with liquids of known values of B to determine (k/Cp&) from
a plot of me Vvs. B or more correctly Me VS. In(1+B). Then ffom a
measured ﬁf of a plastic, its B value can be determined.

Tewarson (1977) has shown for plastics that the term
Cp(T-TS) is a relatively large negative number and cannot be
ignored in comparison to imOmH as it is often done for liquids.
This fact and large values of LV contribute to making B values of
blastics small.

It is difficult to determine whe@her the non-linearity of
Tewarson's mOoo plots breaks down due to the fact that at higher mOQ
values B may not be small. Tewarson (1977) reports that for larger
values of M oo black char formation oﬁ the surface of the PMMA was
found. Such changes in pyrolysis mechanism could, of course,
cause the observed trends.

In dealing with‘charring cellular plastics the mass evolution
and burning process appears to be different. These materials are
difficult to "burn" excépt under very large external radiant
fluxes. Under such radiant.fiukes, there is the initial evolution

~of relatively large amounts of combustible gases which will burn
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when an ignition source is present. The rate of evolution of
gases decreases with time as the pyfolysis gases must come from
gfeater depths within the cellular plasticf It ié these gases
which contribute to room fires and ére probably a factor in the
so-called flashover problem.

The burning of the char certainly would not contribute in
the early stages of fire, but the char'will burn very much like a
porous carbon (or coal) particle. In a major fire the surface
- temperature of char'would be high enough so that the surface oxida-
tion of the char was kinetically fast and controlled byvthe diffﬁ;
’sion of oxygen to the surface. Under these circumstances it is

again interesting to observe that

(21) ~ In(1+B)

Ihf
where ﬁf would be the mass burning rate of the char. If Equation
(4) is used as the form of B, then a simple expression results

since for this type of diffusion controlled heterogeneous surface

burnlng,mfs = 0.and
(22) 3: im
For burning in air ‘1mo°o is small with respect to one, and again

since 1n(14B) = B. for small B, one has that .

(23) me XM e

the same result that one obtains for the porousbcarbon (coal)

particle as Glassman (1977) has recently discussed.
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IV. Postscript

This paper has déalt with the problem of flame spreading and
mass -burning. The embhasis was placed bn achiéving greater under-
standing of how these processes occur with Plastic maferials. With
respect to flame Spreading, the review was limited compared to the
recent work of Williams (1976), however it does suggest that flame
Spreading across condensed Phases be considered a lean flammability
limit problem. The mass burning cohsiderations are in actuality a
simple extension of the earlier work of Spalding (1955) and Emmons
(1956). How fhe effects of flame and external radiation can be
handled within the present simple analyses were given. In particu-
"las the case of analyses in mass burning rate/fests of plastics was

explored.
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