CAT: A Computer Code for the
Automated Construction of Fault Trees

NP-705
Research Project 297-1

Interim Report, March 1978

Prepared by

School of Engineering and Applied Science
UNIVERSITY OF CALIFORNIA
Chemical, Nuclear and Thermal Engineering Department
Los Angeles, California 90024

Principal Investigators
G. E. Apostolakis
S. L. Salem
J. S Wu

1R E It
: s ast available
oo L.uadzzi possible avail

Prepared for

Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, California 94304

EPRI Project Manager
Boyer B. Chu
Nuclear Power Division

DISTRIBUTION CI THIS DOCUMENT IS UNLIMITED »
= : T 4

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

LEGAL NOTICE

This report was prepared by the University of California, Los Angeles (UCLA),
as an account of work sponsored by the Electric Power Research Institute,
Inc. (EPRI). Neither EPRI, members of EPRI, UCLA, nor any person acting

on behalf of either: (a) makes any warranty or representation, express or
implied, with respect to the accuracy, completeness, or usefulness of the
information contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not infringe
privately owned rights; or (b) assumes any liabilities with respect to the
use of, or for damages resulting from the use of, any information, apparatus,
method, or process disclosed in this report.

FOREWORD

Recent attempts have been made to develop an automated algorithm for
constructing the logic models of fault trees. In a previous report, NP-288,
a decision table method was introduced and applied to model component be-
havior. This report is an extension of report NP-288. It presents the ap-
plication aspect of the decision table method for fault tree construction.
Several nuclear subsystems are analyzed to demonstrate various usages of
the CAT computer code. The report is also intended to serve as a CAT Code
Users Manual; the code may be obtained from Electric Power Software Center.

System reliability analysis has been increasingly recognized as an
integral part of design safety evaluations for nuclear power generation
plants. Fault and event tree analysis has been extensively applied to
quantify the systems and subsystems reliability both by the industry and
regulatory agencies. The analysis generally involves the construction and
evaluation of system logic models which describe various interconnections
among components and their operation requirements. Several computer codes
have been developed for the numerical evaluation of a given logic model.
Model construction has still remained a manual task which usually contri-
butes the bulk of time to probabilistic system analysis. The objectives of
this automated fault tree construction could perhaps speed up the entire
reliability analysis process. Several other concepts have been examined
for computerized fault tree construction; it appears that the CAT code
approach could provide a more adequate modeling capability to nuclear systems
and subsystems.

Boyer B. Chu
Project Manager
Nuclear Safety & Analysis Dept.

ABSTRACT

This report presents a computer code, CAT (Computer Automated
Tree), which applies decision table methods to model the components
behavior for systematic construction of fault trees. The decision
tables for some commonly encountered mechanical and electrical com-
ponents are developed; two nuclear subsystems, a Containment Spray
Recirculation System and a Consequence Limiting Central Systems, are
analyzed to demonstrate the applications of CAT code.

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION . . . v v v v v v o v e e .
CHAPTER 2. BASIC OPERATION OF THE CAT CODE
2.1 Terminology and Basic Concepts
2.2 Input Data « o . 0o e e e e .

2.2.1 Outline of Input Data

Organization
Data Deck Setup and

General Input Considerations
Program Control Data
Library Data o 0. ..
Component Cards
Top Event Definition
Boundary Conditions
Failure and Repair Data
Multiple Jobs « « o . o ..

2.2.

NN NN
NN NN
woo~NOTOTPA W N

2.3 CAT Output« v v v v v ot e e e e e e e
CHAPTER 3. DEVELOPMENT OF DECISION TABLES

3.1 Introduction &« ¢ v v v e 0 e e e e e e e e e
3.2 Inductive Method of

Decision Table Development
3.3 Deductive Method of

Decision Table Development
3.4 The Use of Decision Tables in the

Construction of Fault Trees « . .

CHAPTER 4. APPLICATIONS ¢ v v v v v v v v v v v v v

4.1 Containment Spray
Recirculation System (CSRS)
4.1.1 Description of CSRS
4.1.2 TOP Event and Preliminary Considerations . . .
4.1.3 Discussion of Fault Tree

4.2 o

sequence Limiting Control System (CLCS)
.2.1 Descriptionof CLCS« o o ..
.2.2 Top Event and Preliminary Considerations

4.2.3 Discussion of Fault Tree

CHAPTER 5. CONCLUSIONS o v v v v v v v v v v

Con
4,2
4.2

CREFERENCES v o e v v e e e e e

vii

TABLE OF CONTENTS (Continued)

Page

APPENDIX A. CODE STRUCTURE AND SUBROUTINE FUNCTIONS 64
A.l Code Structure « ¢ ¢ . 0 000 e e 64

A.2 System and Component Node Organization 67

A.3 MAIN Program and Program Dimensioning 69

A.4 Subroutine DRIVER and Sub-Array Allocation 71

A.5 Subroutine LIBR « . . . o o . o . 77

A.6 Subroutine INDEX « .« . .« o o o o . 80

A.7 Subroutine STEVE« « « « ¢ v o o 84

A.8 Subroutine DO IT « . ¢ o o v v v o o 89
A.8.1 Gate Construction 89

A.8.2 Intermediate Editing 96

A.8.3 Final Editing 103

A.8.4 Error Messages from DO IT 105

A.9 Subroutine XCHECK o . .. 107

A.10 Subroutine REDUCE« 110

A.11 Subroutine OUTPUT « . « « « v v v « o . . 112
References. v v v « v v v i v e e e e 118

APPENDIX B. DECISION TABLE MODELS e e 119
References « ¢ ¢ v o o 0 0w e 130

APPENDIX C. SAMPLE CASE« & « v ¢ v v v v v v v o« o 131
References « ¢ v v o v 0 e e e . 141

APPENDIX D. SAMPLE INPUT « ¢« v v v v v v v v o 142
APPENDIX E. SAMPLE QUTPUT « « « v v v v v v v v & 147
References « & ¢ v v v v i v e e e e . 154

APPENDIX F. PROGRAM LIST FOR CAT « ¢« v v o v o . 177

viii

Figure
Figure

Figure

Figure

Figure

Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure
Figure

Figure

LIST OF FIGURES

1. Mini-Fault/Success Tree 1 for Pump
2. Mini-Fault/Success Tree II for Pump
3. Simplified Flow Diagram for the

Containment Spray Recirculation System
4. Upper Level Structure of Fault Tree for CSRS
5. Development of Lower Events for CSRS

Fault Tree o o o o o v v o oo
6. CLCS Simplified Diagram (5)
7. CLCS Signal Flow Diagram (5)
8. Fault Tree of Consequence Limiting

Control System
A-1 Subroutine Calling Sequence
A-2 Flowchart for CAT Code« .« o . .
A-3 Flowchart for Subroutine LIBR
A-4 Flowchart for Subroutine INDEX
A-5 Flowchart for Subroutine STEVE
A-6 Flowchart for TOP Event and OR Gate Algorithm

of Subroutine DO IT oo ..
A-7 AND Gate Construction Flowchart of Subroutine DO IT
A-8 Flowchart for Intermediate Editing Loop of

Subroutine DO IT o o o oo ..o
A-9 Sample Tree for Intermediate Editing
A-10 Flowchart for Final Editing Phase of

Subroutine DO IT« o . oo oL
A-11 Flowchart for Subroutine XCHECK
A-12 Flowchart for Subroutine REDUCE

A-13 Flowchart for Subroutine QUTPUT

ix

38
42

44
48
49

59
65
66
78
81
85

91
92

97
101

104
108
111
113

LIST OF FIGURES (Continued)

Page

Figure C-1 Sample System « . ¢« o o o .. 132

Figure C-2 Fault Tree for Sample System 136
Figure C-3 Fault Tree for Sample System With Good

States Removed 139

Figure D-1 Data Deck for Sample Case 145

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

(o T - T - - - A -

O OO O OO

LIST OF TABLES

Page
Representative System States 6
General Failure State Categories 8
Decision Table Failure States 8
Input Data Deck for CAT v v o v v .. 11
Original Decision Table of Pump 29
Reduced Decision Table of Pump 31
Final Decision Table of Pump 32
Decision Table for Pump by Deductive Method 35
Logic Model for Inhibit Condition 40
Component Index Input Printout for CSRS 43

TOP Event Decision Table for: "Containment Pressure
Normal, but Hi Signal Sent by Malfunction of CLCS" . . 53

Decision Table of Operator 55
Component Index Input Printout for CLCS 57
Integer Arrays ¢ « v i 0 i e e i e e e e e e 73
Alphanumeric Arrays « ¢ v 4 4 v e e .. . 75
Diagnostics Produced by Subroutine LIBR 79
Diagnostics Produced by Subroutine LIBR 82
Diagnostics Produced by Subroutine STEVE 87
Signal (101) v . o e e 131
On/0ff Switch (102) 133
Relay Switch (103) « . . v v v v v v .. 134
Junction (OR Gate, Type 104) wo... 134
Operator (106) « . v v v v v v v e e 135
Relay Switch with Good States Removed 140

xi

SUMMARY

The CAT (Computer Automated Tree) methodology is a systematic
approach to the construction of fault trees, based upon the use of
decision tables. This approach consists of a scheme which utilizes
these decision tables to model component behavior, a method of describ-
ing the specific system configuration including initial system states,
and a means of defining a top event (or events) of interest. Given
these inputs, the decision table models are used for the appropriate
components within the system, and are combined and edited to form a
completed fault tree for the TOP event desired. This fault tree may
then be analyzed, either by hand, or by any of several fault tree
analysis codes, in order to obtain the desired reliability (availability)
information for the TOP event.

The current approach has several important features which make it
especially useful in the analysis of nuclear systems, as well as of
other, general types of systems. The decision table methodology is
capable of modeling complex components of essentially any type,
including mechanical, electrical and hydraulic. It can incorporate
models for human interactions, environmental influences and provides
a number of ways of treating common cause effects. Furthermore, the
specific approach developed here also allows the analysis of systems
containing feedback Toops, such as may be found in many types of control
circuits in use in nuclear plants.

This report documents a slightly newer version of the CAT code
than presented by Salem, Apostolakis and Okrent in EPRI NP-288. This

version has been updated by the incorporation of a new subroutine

xiii

(*OUTPUT'), which produces the fault tree in a punched output format
directly compatible with the PREP-KITT codes. This output will provide
the complete data deck required as input for the PREP code, if desired.
However, the input requirements for this version are identical with
those of the previous one if the new output is not desired. Thus, the
same data decks may be utilized with either version of the CAT code.

If the new output option is to be utilized, however, additional failure
and repair data must be provided.

EPRI NP-288 has presented the CAT methodology from a somewhat
theoretical point of view. In the following chapters, those aspects
most important to the user of the code itself will be emphasized.
Actual details of the code itself will be included in the appendices.

In order to provide a general introduction to the CAT methodology,
Chapter 2 begins by presenting some basic concepts and terminology used
in this approach. The general organization of the input deck, and the
specific requirements for all input data are then presented. Finally,
the output produced by the code is briefly described.

Chapter 3 discusses the methods of developing the decision tables
to be used by the code. Each method is illustrated by an example in
order to familiarize the user with some of the techniques useful in
decision table modeling. Also, the way in which such decision tables
are used by the code in constructing fault trees is described. In
combination with Chapter 2, this chapter completes the discussion of
input required for operating the CAT code.

In Chapter 4, the use of the CAT code is illustrated by two

applications: a Containment Spray Recirculation System, and a

Xiv

Consequence Limiting Control System. These systems have been chosen

to provide additional examples, complementing those of References [1,2],
and will help to display various features of the code. New features
illustrated by these examples include maintenance, TOP event logic
which is a function of time, and the use of inhibit conditions.

Finally, Chapter 5 summarizes these results and provides a few
concluding suggestions for the user.

This report is supplemented by several appendices, useful in
running the CAT code. Appendix A describes the functional organization
of CAT, and its specific subroutines. Appendix B provides a number of
decision tables, many of them developed during the past year, as
examples to guide the user in constructing his own tables. Appendix C
presents a simple example system which, together with the sample input
and output of Appendices D and E, provides a complete sample case which
can be used to check out the operation of the code and to obtain
familiarity with it. Finally, Appendix F contains a complete listing
of the updated version of CAT for those interested in becoming more

familiar with the actual mechanics of the code.

XV

1. INTRODUCTION

With the increasingly important role being played by probabilistic
risk assessment in the electric power industry, and the interest being
expressed both by commercial groups and regulatory bodies, the develop-
ment and improvement of methods of safety and reliability analysis are
currently of great interest in the nuclear field. Fault tree analysis
(FTA) is one of these techniques which is especially useful because of
its advanced state of development, and acceptance and use by large
segments of the technical community. The usefulness of FTA has been
greatly augmented by the development and application of a number of
computer codes for the numerical analysis of fault trees. However, the
rapid analysis of a complex system using such codes has, until recently,
had to await the much slower process of constructing the fault tree
itself. This construction phase has traditionally been a manual task,
relegated to the analyst himself, due to the lack of a systematic fault
tree methodology which could be readily programmed on the computer.

In Tight of the relatively advanced state of fault tree analysis
codes, the current effort was devoted to automating this one remaining
phase. The benefits of this automation would include the speeding up
of the entire fault tree analysis process as well as the freeing of
much of the analyst's time for other tasks. Furthermore, an automated
fault tree construction code would allow the preparation of additional
fault trees for investigating other events of interest, or for evaluat-
ing various system modifications. The development and implementation
of such an approach has been the goal of this work. The methodology

has been described elsewhere [1,2]; the operation and use of the CAT

code, which implements this methodology, will be presented in detail in
the following chapters of this report.

In order to see some of the other significant characteristics of
such a methodology, a few of the features incorporated into the CAT
code itself will be enumerated here. These include:

1) a simple, tabular decision table form for modeling component

behavior,

2) capability of multiple state and multiple failure mode decision

table models,

3) ability to develop both simple and highly detailed component

models to produce fault trees of varying complexity,

4) ease of defining multiple TOP events for the construction of

both fault and success trees for various events,

5) provision to define TOP events of any logical complexity,

6) ability to define initial states to specify initial system

configurations,

7) simplicity of changing or modifying systems to analyze

differences between various configurations,

8) essentially unlimited numbers of components, complexities of

systems or sizes of fault trees produced,

9) specification of various levels of editing, and printout,

10) capability of interfacing with the PREP-KITT analysis codes,

11) repeatability of fault trees produced for identical input, and

12) ability to "pre-structure" fault trees by varying TOP event
definitions and component models.

This report documents a slightly newer version of the CAT code than

presented by Salem, Apostolakis and Okrent [1,2]. This version has
been updated by the incorporation of a new subroutine ('OUTPUT'), which
produces the fault tree in a punched output format directly compatible
with the PREP-KITT codes. This output will provide the complete data
deck required as input for the PREP code, if desired. However, the
input requirements for this version are identical with those of the
previous one if the new output is not desired. Thus, the same data
decks may be utilized with either version of the CAT code. If the new
output option is to be utilized, however, additional failure and repair
data must be provided.

Internally the only changes in the code have been to incorporate
a call to the new subroutine, add input and error-checking sections for
the new data, delete one array which was no lTonger needed, and change
one variable in common.

In addition to a discussion of the fundamentals of the CAT method-
ology, this report presents sufficient material to allow the reader to
understand and operate the code itself. Thus, Chapter 4 includes two
examples of actual reactor systems analyzed by the code, and several
appendices have been added to further help the potential user. These
appendices contain a discussion of the code itself, with flowcharts,

a library of sample decision table models, a complete example case with

input and output listings, and a listing of the CAT code itself.

2. BASIC OPERATION OF THE CAT CODE

The CAT code has been developed as a systematic method of fault
tree construction utilizing the methodology of decision table model-
ing [1,2]. Sufficient detail has been presented to allow the user to
understand the basics of decision table modeling, and to construct
fault trees by hand identical to those produced by the CAT code. This
chapter will briefly review some essential terminology, and will dis-
cuss, in detail, the data required to actually operate CAT. A further
discussion of specific subroutines and their functions will be found
in Appendix A of this report. Furthermore, examples of input and
output will be found in Appendices D and E.

2.1 Terminology and Basic Concepts

A number of definitions and fundamental ideas will first be
presented. More detailed discussions will be found elsewhere [1,2].
The basic function of the code is to analyze a system, starting from
a specific initial state, and to produce a fault tree for the TOP event
of interest. This system can be any collection of units, known as
"components", which performs some certain defined function or functions
under specified conditions. These functions will be defined as the
output of the system, and the specified conditions the inputs. Al-
though the systems used here will generally be mechanical in nature,
others, such as economic systems, corporate organizations, etc., are
all equally valid.

Each system is first broken down into a set of components, which
are the smallest elements to be individually modeled. With the CAT

methodology, a component may actually consist of an entire system or

subsystem, as long as the features of interest can be accurately
modeled by a single decision table. For a complex component or
system, however, a number of coupled decision tables may be desirable.
Since there are often a number of similar or identical components
within a single system, it is advantageous to employ a single model to
describe the behavior of all such similar components. This introduces
the concept of a component type. A component type is a unique descrip-
tion of the operational and failure modes of a component, represented
by a single decision table. Any components which can be described
by a single model will be considered as a single type, even though
they may represent different physical components; thus, simple models
for a fuse, resistor and circuit breaker might be represented by the
same decision table. On the other hand, similar components with
different characteristics (e.g., valves with different modes of opera-
tion), would be considered different types, each with a unique decision
table representation. In either case, the models should be independent
of the system itself in order to allow the development of libraries
of component types to be used in systems of general interest.
Given a set of components, modeled by various component types,
a system is then described in terms of the interconnections between
these components. Each of these connections shall be defined as a
node, or any point at which an output from one component is connected
to the inputs of succeeding components. Note that one output may be
connected to any number of succeeding inputs at a node; however, only
a single output may exist at any one node. If outputs are to be

connected together in parallel, they should be connected to the inputs

of a gate (junction), modeled by a decision table which represents the

logical state formed by various combinations of the outputs to be con-

nected.

At each node of a system, a system state may be defined to describe

system conditions or signal states at that point. This state may have
been set as an initial condition, or defined by later fault tree
development, and must be consistent with all component inputs and out-
puts connected to that node. That is, this state must satisfy these
two conditions:
1) it must exist as a valid output state in the decision table
for the component output connected to that node, and
2) it must exist as a valid input state, or be allowed by don't
care entries, in all decision tables of components whose in-
puts are connected to that node.
Table 1 contains a number of system states as examples of typical
input, output and system states. These will be used in many of the
models developed in Appendix B.

Table 1. REPRESENTATIVE SYSTEM STATES

STATE DEFINITION

-1 “Don't care" (signal state irrelevant or undefined)

0 no signal, or signal too low

1 normal signal

2 overload (signal too high)

3 Tow signal (used if separate states are desired for “"no"

and "low" signals)
101 ground (zero) or short to ground
102 floating (open, undefined)

An internal mode represents an internal function of a component,

and is represented by an "internal" column in a decision table. Since
there may be several internal functions, or sub-components, within a
complex component, a decision table may have several internal columns,
each labeled by a specific sub-component function. For example, the
motor-operated valve in Appendix B has the internal modes "posi-
tion", "mechanical", "slip-clutch" and "relay". For each internal

mode, or column, a component state may be defined to describe the

internal state. The simplest states are simply "good" and "failed".
However, since the mode of failure may determine the output state, it
is often necessary to provide several failure states, such as "failed
open" and "failed closed". Finally, it is important to consider all
combinations of failure states of the various failure modes (columns)
of a multiple-column component.

In order to utilize consistent decision table models, Table 2
was developed to systematically categorize failure states. This
numbering scheme was then used to define a representative number of
basic failure states, as shown in Table 3. Although use of such schemes
is highly recommended, any similar categorization may be employed by
the user.

Boundary conditions may now be described as system or component

states which have been predefined as existing or not existing "initial"
or "boundary" conditions within the system. These states exist ini-
tially, and continue to exist throughout the construction of the

fault tree. In general, they will be used to determine the initial

system configuration or operating conditions, and may be used to

TABLE 2. GENERAL FAILURE STATE CATEGORIES

i

. STATE DEFINITION
% -1 don't care (internal mode irrelevant)
! 0 good
; 1-1000 general faults
- 1001-2000 electrical (shorts, surges, etc.)
i 2001-3000 mechanical
§ 3001-4000 fluid (leak, rupture, plugged, etc.)
; 4001-5000 electronic (logic errors, etc.)
' 5001-6000 human
6001-7000 environmental (temperature, pressure, stress, etc.)
TABLE 3. DECISION TABLE FAILURE STATES
STATE DEFINITION
1 failed open (fails to close; fails to transmit signal)
2 fails closed (shorted; fails to open; welded shut)
3 internal failure (general, undefined)
4 fails to start (fails to actuate or change position)
5 fails to operate properly (fails during operation)
6 operates prematurely (starts without signal to start)
1001 short to ground
1002 short to power
1003 power surge (power supply failure mode)
3001 leak
3002 rupture
3003 plugged
3004 stuck
5001 calibration error
5002 design error
5003 general operator error

specify certain components as being failed at the start. Furthermore,
they may be used to qualify the TOP event description.

Finally, the TOP event is that event which defines the failed
(or successful) state of the system for which the fault tree is to be
constructed. The basic requirement for the TOP event is that it be
definable in terms of system states at specific nodes, which then serve
as starting points for the fault tree construction process. Further-
more, if more than one event (or state) is used in the TOP event defi-
nition, these must have some logical relationship to each other in
order to structure the tree beneath. For example, the TOP event
“failure of systems A and B" might be represented by simultaneous states
of zero at two nodes, logically connected by an AND gate. The result-
ing fault tree would then have a top AND gate connecting these two
events.

2.2 Input Data
2.2.17 Outline of Input Data Organization

The input to the CAT code consists of the following informa-

tion:

1) Program Control Data,

2) Decision Table Models,

3) System Configuration,

4) TOP Event definition,

5) Initial or Boundary Conditions,

6) Failure and repair data (for use with PREP-KITT output option).
The first of these inputs, as described below, consists of program

dimensions used to define the sizes of the component library and system

configuration,and flags to control the printing and editing options to
be used. The decision table models comprise the bulk of the input,

and will be described in detail in Chapter 3. The system configuration,
initial conditions and TOP event definition will all be described later
in this chapter.

Qutput from the code consists of two parts. First is the printed
output of all input data, cross-references and the fault tree itself.
Secondly, if desired, is a punched deck (or tape or disk file) consist-
ing of the fault tree and failure data in a format compatible with the
PREP-KITT codes. This is produced by a separate subroutine, 'OUTPUT',
which can be modified or replaced to interface with any code of the
user's option. This routine will be discussed later in this chapter,
and in the appendices.

2.2.2 Data Deck Setup and General Input Considerations

The input data deck is arranged as shown in Table 4. Each set
of data will be described individually; general information is pro-
vided below.

Each card (except the failure and repair data) begins with a
four character code which identifies to the computer what type of
information is to follow. This also facilitates later runs in which
the input must be modified on certain cards. On all except the 'DAT'
cards, the four character field can be followed by up to six columns
of information. Thus, the 'ROW' cards can be numbered in column 5,
the 'LIBR' codes can be followed by the appropriate type number, etc.
(see sample input data). This information is for the user's conveni-

ence and is not read by the code. It is important to note that, on

10

TABLE 4. INPUT DATA DECK FOR CAT

TITLE
&DAT

(Data cards)

END
&LIB

(Library cards)

END
&CMP

(Component cards)

END
&TOP

(TOP event description)

_END
&BC

(Boundary conditions) if necessary

L.END
&0UT

—Jl

(Failure and repair data) if necessary

LEND
&END

TITLE (optional)
&DAT

DAT1 if necessary | cards for
| END additional
&TOP runs

(New TOP)

_END
&BC

(New boundary conditions) if necessary

_END
%0UT

il

(New failure data) if necessary

| _END -
&END

11

certain cards, the four column code begins with a blank column.

The major sections begin with '&---' cards and terminate with
'END' cards. These codes allow the program to search for the next
set of data if terminal errors occur in any section. The '&DAT' sec-
tion contains the basic parameters for the job. This consists of
four cards, format (A4, I1, 12I5). However, cards ‘DAT1' and ‘'DAT4’
may be omitted if default values of all parameters so skipped are
desired.

The second section, beginning with the '&LIB' card, contains the
library of component type decision tables. Each table begins with a
'LIBR' card which contains the basic information for that table. There
follows a 'MOD' card which lists the names of that component’'s internal
failure mechanisms. The decision table itself is input on a set of
'ROW' cards, concluded by an "END' card.

The components themselves are described by the '&CMP' section, one
card per component. On them are given the component name, type number
and input/output node numbers.

The '&TOP' segment begins with a 'TTOP' card defining the size of
the TOP event decision table and the node numbers referring to the
columns of the table. This is followed by the 'TOP' cards, on which
the rows of the table are input.

If any boundary conditions are to be included, they foliow the
'&BC' card. Both internal component modes and system nodes may be
initialized by use of cards coded 'INT' and 'EXT' respectively.

Should fault tree output be desired for use by the PREP-KITT

codes, a section labeled '&0UT' follows. The first two cards contain

12

control data to be used by PREP, followed by failure and repair data.
Since the input formats are similar to those used by PREP, the initial
four letter codes are not used on these cards.

The last group of input cards must be followed by both its own
'END' card and a final '&END' card. These signify the end of the
data section and the end of the job. Following the '&END' card,
second and succeeding jobs may begin. Although each job of a multiple
run uses the same library and system description, new boundary condi-
tions and parameters from the 'DAT1' card may be defined, as well as
the required redefinition of the TOP event. Furthermore, new failure
and repair data must be provided, if necessary.

2.2.3 Program Control Data

The CAT input deck begins with a title card (20A4), followed by
the program control data, in the '&DAT' section. This data section
consists of four sets of program flags and dimensioning information, and
is contained on cards labled ' DAT1' - ' DAT4'. These cards have the
formats (A4, I1, 12I5), and the four character code field 'DATn' must
be preceeded by a blank. This group of cards must be preceeded by an
'&DAT' card and followed by an 'END ' card. The data on these cards

are as follows:

Title Card

&DAT

DAT1 1JOB IPRINT KOuT IEDIT 10T
DAT?2 NLIB LNROW MAXINT MXNROW

DAT3 NNCMP NNODE

DAT4 MROW

END

The parameters on these cards are described below. Note that the

parameters on cards 'DAT1' and 'DAT4' have default values. In the

13

event that all parameters on the 'DAT1' card are to be set to the default
values, the 'DAT1' card may be omitted. Similarly, if MROW = 1, the 'DAT4'
card may be eliminated. However, if the DAT1 card is used, all values
must be defined, since a blank location will be read as 'zero.'

The following is a description of the program control parameters used
for CAT.
1J0B

IJ0B is the identification number of the first job of a particular
sequence, and is incremented by 1 for each succeeding job. This value is
merely for the convenience of the user.

Default = 1.
IPRINT

This parameter determines the amount of printout from the fault tree
construction and editing phases. Any integer from -1 to 4 may be specified,
with each increasing value producing additional output. For an absolute
minimum of output, code IPRINT = -1; however, a value of IPRINT of O or
larger is suggested to provide the most useful information. Values of 1
or 2 allow the complete construction and editing phases to be followed
step by step. IPRINT = 3 or 4 produces printouts of certain intermediate
arrays during editing. A value of 4 includes the maximal number of arrays.
This Tast value is not suggested, since large amounts of output will be
produced. The most useful printouts will be obtained by setting IPRINT =
0, 2 or 3, as needed.

Default = 0.
KOUT

The KOUT parameter determines whether output is to be produced for

use by PREP-KITT. KOUT = 0 for no output, and KOUT = 1 for output to be

14

produced on output device (unit) I0T. Note that KOUT = 1 requires
additional CAT input in input section '&0UT'.

Default = 0.
IEDIT

This parameter is used to omit certain editing phases. Values below
98 produce full editing. IEDIT = 98 will bypass the search for transfers
within the tree. 1IEDIT = 99 skips the intermediate editing stage. A value
of IEDIT of 100 or above will omit both these editing sections.

Default = 0.
10T

I0T is the unit number for fault tree and data output produced for
PREP-KITT when KOUT = 1. This can be punched, or written onto disc or
tape, depending upon the specification of I0T, and the user's installation.
This output is also printed, along with other editing information, as
part of the CAT output. If IOT is left blank for the first job of a multi-
ple job run, it is set equal to the default value. If it is left blank
in a subsequent job, it is set equal to IOT of the previous job in that
run.

Default = 10.
NLIB

NLIB defines the number of component types to be input into the
library section. A number which is erroneous may produce one of two
effects. If the number is too large a warning will be produced, but the
program will continue. If NLIB is too small, the extra component types will
be skipped. However, the program will continue unless the system itself

requires one of the component types so bypassed.

15

LNROW

LNROW should be set to the maximum number of columns of any of the
decision tables, including that of the TOP event.
MAXINT

Set the value of MAXINT to the largest number of internal failure
mode columns of any component table. This value is used to determine the
number of failure mode names to be read by the program.
MXNROW

This variable is the total number of rows of all decision tables to
be input. It need be only an estimate, and is used in determining whether
sufficient space has been allocated for the total decision table library.
NNCMP

NNCMP defines the number of components in the system, as input by
block 3 of the program. This value must be exact.
NNODE

NNODE is the largest node number used in the system flowchart. If
NNODE is greater than the largest node number, its value will be correctly
redefined later in the program. If modifications in the system being
analyzed will change the numbering of nodes in later cases, NNODE may be
set to the largest value anticipated and not changed for any of the
runs.
MROW

MROW is set to the largest number of rows in any of the TOP event
decision tables for one group of jobs. If any TOP event table exceeds
MROW, that tree will be terminated and the next job begun.

Default = 1.

16

2.2.4 VLibrary Data

The second section of program data is the decision table library input
group. This consists of one set of cards for each component type (there

will be NLIB sets in all). Each set is input in the following order:

LIBR NAME1 NTYPE NIN NINT NOUT NROW (A4, 6X, A8, 2X,
MOD NAME2 NAME3 -) (A4, 6%, 7(A8, 2X
ROW1 il i2 13 een (A4, 16X, 1215)
ROWn nl n2 n3

END

The 'LIBR' card contains the basic information for the component type,
NAMET is the 8 character name of the component type, NTYPE is a unique 5
digit type number, and NIN, NINT and NOUT are the numbers of inputs,
internal failure mechanisms and outputs of the component. That is, NIN +
NINT + NOUT is the length of each row of the decision table which is to
follow. Furthermore, NIN + NOUT is the number of nodes assigned to that
component type. Finally, NROW is the number of rows of the decision table.

The 'MOD' card lists the 8 character names of the component internal
mechanisms. There should be exactly NINT of these. Note that, even if
NINT = 0, this card is required.

Finally, the decision table itself will be input on the 'ROW' cards.
There will be 'NROW' of these, one for each row of the decision table. The
columns must be arranged in the order: inputs - internals - outputs, and
must have exactly NIN + NINT + NOUT entries. A "don't care" state will be
indicated by a '-1' in the appropriate column. Note that each component
type group must end with its own 'END' card.

As pointed out previously, any library entries in excess of the 'NLIB'
groups specified on 'DAT2' will be ignored. However, as it is not

necessary that every library type be used in the system itself, the program

17

1
)

215)
)

will not terminate unless one of the extra types is specifically required.
Furthermore, if several different models will be used for one component in
various runs, it may be convenient to include all models in the library
using different type numbers. In each run, only the specific component type
desired will be used.

2.2.5 Component Cards

Following the '&CMP' card is the group describing the system itself.
This consists of a total of NNCMP cards, one per component. The format

is (A4, 6X, A8, 2X, 1215), and the input is as follows:

COM NAME ITYPE NODE1 NODE2 NODE3

Notice that the code 'COM' begins in column 2, and that the following six
column field has been used, in the sample inputs, to number the component
cards. This is solely for the convenience of the user, since the six
columns following 'COM' are not read by the code. 'NAME' is the 8
character name of the component, and must be unique. In setting later
boundary conditions, this will be used to identify the specified components.
ITYPE is the component type number of the decision table to be used for
this component. Finally NODE1, NODE2, etc., are the input/output node
numbers of the component. Referring to component type ITYPE, there must
be a total of NIN + NOUT node numbers, the first NIN of which will be
inputs, with the final NOUT as outputs.

The requirements for the node numbers are that:

1) A11 output node numbers be unique. This refers to multiple

outputs of a single component, and to all outputs of other

components.

18

2) No component output may be connected directly to an input of the
same component. However, an output and input may be connected
to each other through any other component, including a simple
"piece of wire."

3) A1l inputs must be connected to valid output nodes from other
components; that is, no component may be left with undefined
inputs. However, any output may be left unconnected. If a
particular input node is not going to be used, it may be connected
to a "dummy" component. For example, if it is desired to set a
boundary condition at the input of a component such as a sensor,

a dummy component must still be connected to that node. A
simple dummy component that is of often used would have the follow-

ing decision table inserted into the library:

ROW Internal Output
1 0 0
2 1 1

Note that this component type has no inputs and only one output. A 'COM'
card would then be set up for the dummy component of this type, whose single
output node would be connected to the input node in question. Finally,

the boundary state could be defined at this node, as in Section 2.2.7.

With a boundary condition defined at that node, the dummy decision table
would never be used, and its exact form is irrelevant. However, the NIN

and NOUT parameters on the "LIBR' card for the dummy decision table (0 and

1 in this example) must agree with the number of nodes defined on the

dummy ‘'COM' card.

2.2.6 TOP Event Definition

The TOP event 1is input in much the same way as the decision tables

for the component types. After the '&TOP' card, the basic data for the TOP

19

is input on the 'TTOP' card, followed by the decision table itself, on the

'TOP' cards. i
TTOP NAME NROW NIN NODE1 NODE2 ... (A4, 6X, A8, 2X, 12I5)
TOP] I1 12 .en (A4, 16X, 1215)
TOP2 Ji J2
TOPn
END

The 'TTOP' card contains an 8 character identification ('NAME'), for
the TOP, followed by the number of rows and number of columns of the deci-
sion table (NROW and NIN). It is important to remember that NROW must
be less than or equal to MROW given by the 'DAT4' card. Finally, the
system nodes at which the TOP event decision table is defined (one per
column) are input, up to a maximum of 10. The decision table is input on
the 'TOP' cards. Note that the code 'TOP' begins in column 2, and that
the numbers directly following are for the user's convenience, and are not
read by the code.

2.2.7 Boundary Conditions

This data group, if required, contains the specification of the
boundary conditions. If this group is needed, it begins with an '&BC'
card and is followed, in any order, by 'INT' and 'EXT' cards defining
the boundary (initial) values of internal component modes and external

system states respectively. The form of the data is thus:

&BC
INT NAME MODE1 MODEZ2 ... (A4, 6X, A8, 2X, 12I5)
EXT NODE1 STATEl ... NODE6 STATE6 (A4, 16X, 12I5)

END

Each 'INT' card specifies the predefined states for one component's
internal modes. NAME is the 8 character identification of the component as
given by NAME on the appropriate 'COM' card. Then one value is defined

for each internal mechanism (column) of the component, including a -1 for

20

any mode which is not to be set as a boundary condition. Note that no
state should be left as a blank, even if only one state is to be defined.
Any blanks will be read as zeros, and thus a "good" state will be set,
rather than being left undefined (i.e., set equal to -1).

The 'EXT' cards set the boundary conditions at system nodes. Each
card can define up to 6 node conditions, by first specifying the appropriate
node, followed by the state to be set. Notice that any number of 'EXT'
cards may be used and may be intermixed with the 'INT' cards. This data
group must be followed by an 'END' card.

2.2.8 Failure and Repair Data

If output is desired to be used with the PREP-KITT codes, one final
data group is required. This data begins with an '&0UT' card, and
contains the control information and failure and repair data. This infor-
mation, combined with the fault tree produced by CAT, is output to a card
punch (or disc or tape file) in a format suitable for input to PREP-KITT.

The input in this data group is as follows:

&0UT
NG MIN MAX IDEX1T IDEX2 NPROB (6110)
MC NREJEC NTR IREN TAA (4110,F20.3)
NAME] Al t1 INT1 STATEINAMEZ A2 12 INT2 STATE2
2(A8,2X,F10-6,F10-3,215)
NAME i Al ti INTi STATEiNAMEj AJ tj INTj STATE]
END

The first two cards contain the control information for PREP, 1in
the same format as used by that code. A description of these variables

may be found in the PREP-KITT manual [3]. (Note that NPROB is an extra

21

variable, used only by the UCLA version of PREP, and may be omitted for other
versions.) Since NG, the number of gates, is supplied by CAT, it may be
left blank.

The remaining cards contain the failure and repair data for the
components, supplied one or two sets to a card, at the user's option.
Since each component may have several failure modes, with several states
for each mode,several sets of data may be required for each component.

Each set contains the following information:

rfData Format Description
Name A8, 2X 8 character name of component,
same as used on 'COM' card.
A F10.6 Failure rate (per 10 hour).
Note: A 3_10'9, or A <0
T F10.6 Repair time (hours) 100> < 3_10'3
INT I5 Internal failure mode (column of
decision table)
STATE I5 Failure state

Note that each A and t represent the data for one specific failure

state of one internal failure mode (column), where 'INT' is the column
number and 'STATE' is the failure state. (For a component with only one
internal column in its decision table, INT will always = 1.) Then, for
each column, one set of data is required for each state which appears in
that column in the decision table, unless it is known that a specific
state will not appear in the final decision table. The use of a component
as an inhibit condition is also allowed as an input option to PREP by
setting » < 0, and t as a number between 0 and 1 (see reference 3, page
31 for definitions).

As an example of the above, the following two rows of a decision table

22

will be used to represent a simple system:

Internal
Input Maintenance Failure Qutput
- - 5 0

- 101 -

Internal failure 5 represents a failure to run, and maintenance = 10}
means system unavailable due to maintenance. Assuming a failure rate of
5x107% | -6y

500x10 » 24 hour repair time, and 1% maintenance unavailability,

the input data for 'SYSTEM-A' would be:

SYSTEM-A 500.0 24.0 2 5
SYSTEM-A -1.0 C.01 1 101
These sets may be input in any order and intermixed with other components.
However, all data in this input data group must obey the following FORTRAN
rules:
1) all names must be left justified, and
2) all integers must be right justified.
Finally, the last data card must be followed by an 'END' card.
2.2.9 Multiple Jobs

The data for the first job terminates with an '&END' card, and may
be followed by further jobs. Each job must utilize the same system and
library, but may define a new TOP and boundary conditions, as well as new
failure data. We will see, however, that changes in a system may often
be made simply by appropriate changes in boundary conditions.

The new job may begin, if desired, with a new title (20A4). Further-
more, the parameters of the DAT1 card, may be redefined, again as an optional

feature. This would be done with the following setup.

23

&DAT
DAT1 1J08 IPRINT KOUT IEDIT I0T

END
If the DATT card is included, all values must be defined. If DAT1 is not
used, neither the &DAT nor END cards are needed.

The TOP definition is the only required data for the new run, and is
input exactly as before. For the new run, all boundary conditions will be
reset to undefined states. A1l boundary conditions must be set, as before,
by the '&BC' section following the TOP event definition. If KOUT is set
to 1 (or left from the previous run), new PREP-KITT data is required, even
if identical to the previous run. This is input in the '&0UT' section, as
described in section 2.2.8. Finally, an '&END' card terminates this new
run, which may be followed by further jobs.

Although the system may not be redefined in succeeding jobs, one may
use switches, set by different boundary conditions, to switch in new sub-

systems, different component models, etc., at any points in the system.

Consider the biock diagram below:

A
1
—_——
2] Swl
B

By defining switch 1 to be in position 1 or 2 in successive runs,
components (or systems) A and B are alternately switched into the overall
system. Other capabilities include the possibility that A and B are
simply different models for the same component. Both would be defined

as part of the original system on 'COM' cards, and the appropriate one

24

would be chosen by the switch position.
2.3 CAT Qutput

The output from the CAT code consists of five phases illustrated in
more detail in the sample output in Appendix E. First is a listing of
all input data, excepting the PREP-KITT data (if any). This includes
extensive error checking and diagnostics to pinpoint input errors,
inconsistencies or missing data.

Second is a set of cross-references, listing input and output nodes,
and specific component names for all inputs to each component.

Next is the step-by-step construction of the fault tree. The output
of this phase is controlled by the IPRINT flag on the 'DAT1' card. This
is followed by the final fault tree printout itself.

Finally, if KOUT = 1, CAT produces the PREP-KITT output. In addition
to the punched (or tape or disc) output,is an identical printed output of
the tree. This includes the '*' cards required by the PREP code. This
printed output also includes error messages to indicate extra or missing
data. Note that the fault tree output will be produced in all cases where
KOUT = 1, even if the failure data is missing. However, in this case,
the output will not contain the required failure data for PREP.

Since PREP can only accept a single failure mode for each component,
CAT must construct a unique name for each component-failure mode-failure
state set. This is listed in a final table, along with the original
component name, failure mode and state. This name is simply an eight
digit code consisting of the internal mode number (4 digits) and the
failure state (4 digits). Using the example in Section 2.2.8, assume
that the internal (computer generated) mode number for maintenance for

SYSTEM-A was 123, and for internal failure was 124 (corresponding to

25

columns 1 and 2 of the table). Then, the code for: SYSTEM-A, internal
failure, state 5 would be:
01240005,
and the code for: SYSTEM-A, maintenance, state 101, would be:
01230101.
Notice that, in this case, the "component" 01230101 would represent an
inhibit condition (see Section 2.2.8) and 01240005 would represent a

primary component faijlure.

26

3. DEVELOPMENT OF DECISION TABLES

3.1 Introduction

The development of accurate decision table models is a central
requirement in the current approach. However, since the components and
systems of interest are so diverse, and models of various levels of
sophistication are desirable, an effective method of constructing such
tables is needed. Two general methods for developing decision tables
of components will be described in the following sections, and a number
of decision tables which have been studied and used previously will be
outlined in Appendix B and will serve as a reference to the users.

Two ways of generating decision tables will be described in this
report. The first approach (inductive) consists of systematically
constructing the decision table by enumerating all possible combinations
of input states and internal modes, and then finding the appropriate
output state for each combination. This is a typical method of cons-
structing decision tables which assures a complete, though complex
table. The second approach begins by considering all possible output
states and tracing back to all possible input states. This deductive
method is similar to that used by CAT itself in constructing fault
trees.

The advantage of the first method, as pointed out, is the assur-
ance of completeness, at the expense of complexity. For example, a
component with 2 inputs, each with 3 states, and 3 internal modes, each
with 3 states, would result in a table with 6 columns and 35 = 243 rows
before reduction. The reduction itself, although tedious, is a process
amenable to computer implementation. The second method, although not

as straightforward, has the advantage of allowing one to immediately

27

concentrate on the output states of most interest. It has the serious
drawback, however, of allowing the possible oversight of some important
features unless a careful check of completeness is made.

3.2 Inductive Method of Decision Table Development

The first step in this method is to enumerate all combinations
of input states and internal modes of the component. Then, the output
state(s) for each combinationare determined essentially by a failure
modes and effects analysis. Finally, a decision table reduction method
may be utilized to produce a compact table, suitable for use with the
code. A step by step description of the process of generating decision
tables by this method is given in following paragraphs. As an example
a decision table for a pump is developed.
Step 1. First, an investigation must be made of the physical charac-
teristics and design considerations of the component, in order to deter-
mine all of its possible input states and internal modes. For a pump,
there are two inputs, one internal mode and one output:
Input 1: Main flow (pressure) input
0 - no pressure in or pressure too Tow
1 - normal pressure
Input 2: Power input
0 - no power in
1 - power in

Internal
Mode: Condition of pump

0 - pump in good condition
4 - pump fails to start

5 - pump fails to run normally

28

Output: Main flow (pressure) output

0 - no pressure out or pressure out too Tow

1 - pressure out
Note that in other analyses, these states may differ, depending upon
the specific nature of the pump, and the depth of analysis desired.
For example, the state "fails to run normally” could further be broken
down into specific failures such as impeller failure, shaft failure,
etc., if specific data on these are available, and it is desired to
separate out these failures. This could be especially useful in try-
ing to isolate potential common mode failures, etc.
Step 2. An initial decision table is then constructed by listing these
combinations of input states and internal modes, along with the output
state which results. For the pump as example, there are 2 x 2 x 3 = 12
possible rows:

TABLE 5. ORIGINAL DECISION TABLE OF PUMP.

Input 1 Input 2 Internal
Row Main flow Power Mode Output
1 0 0 0 0
2 0 0 4 0
3 0 0 5 0
4 0 1 0 0
5 0 1 4 0
6 0 1 5 0
7 1 0 0 0
8 1 0 4 0
9 1 0 5 0
10 1 1 0 1
11 1 1 4 0
12 1 1 5 0

29

Table 5 is the original decision table of the pump. Row 1 of
Table 5 shows that if there is no fluid input, no power input, and the
pump is good, there will be no flow at the output. Row 10 shows that
if the flow (pressure) input is high enough, the power is on, and the
pump is good, there will be flow at the output side of the pump. The

other rows can be understood in a similar manner.

Step 3. The decision table is now ready to be reduced. Although the
decision table developed in the previous steps can be used as the
input data for CAT code, it is very lengthy. A modification can be
made by introducing "don't care" states into the table, in order to
make it simpler, as well as to save computer time and memory in the
process of constructing the fault tree.

The basic rule for reducing decision tables is as follows. If
several rows have identical output, input, and internal states except for
one input or internal mode, and if this exception includes all possible
states which can occur, then these rows can be combined into a single
row with a "don't care" state. For example, in Table 5, rows 1, 2
and 3 all have 0 as output, O main flow input, and O power input.
Furthermore, the remaining column, the internal mode, includes all
three states possible (0, 4 and 5). This implies that, regardless of
the internal state, the output will be O as long as the flow input is
at Tow pressure and no power is present at input 2. Thus, rows 1, 2
and 3 can be combined into a single row with a 'don't care' state, i.e.,

0 0 -1 0
Similarly, rows 4, 5 and 6 in Table 5 can be reduced to

0 1 -1 0,

30

and rows 7, 8 and 9 can be reduced to

1 0 -1 0.
Finally, similar reduction can be done to rows 2, 5, rows 3, 6, rows
8, 11, rows 9, 12, and a reduced decision table of the pump can be

obtained as shown in Table 6.

TABLE 6. REDUCED DECISION TABLE OF PUMP.

Input 1 Input 2 Internal
Row Main Flow Power Mode Qutput
1 0 0 -1 0
2 0 1 -1 0
3 1 0 -1 0
4 1 1 0 1
[5 1 -1 4 0
6 1 -1 5 0
7 0 -1 4 0
8 0 -1 5 0

If we look at rows 1 and 2 in Table 6, both of them have 0 as output,
0 as flow input and -1 as the internal mode; furthermore, the power
input includes both 0 and 1, the only possible states of that input.
In this case rows 1 and 2 of Table 2 can be combined again into:
0 -1 -1 0.
Similarly rows 1 and 3 in Table 6 can be combined into:
-1 0 -1 0.
Similar reductions are done to rows 5, 7, and rows 6 and 8. The decision

table of the pump is further reduced as Table 7.

31

TABLE 7. FINAL DECISION TABLE OF PUMP.

Input 1 Input 2 Internal
Row Main Flow Power Mode Qutput
1 0 -1 -1 0
2 -1 0 -1 0
3 1 0 1
4 -1 -1 4 0
5 -1 -1 5 0

Table 7 is much simpler than the initial decision table as shown
in Table 5. A discussion about this reduced form of decision tables
has been worked out in reference [1] which indicates the reduced form
is equivalent to the original decision table in the sense of probability
considerations in the construction of fault trees, but with the advan-

tage of being simpler than the original form.

3.3 Deductive Method of Decision Table Development

One should bear in mind that the purpose of the decision tables
is to supply information for constructing the fault trees of various
systems. Each system fault tree starts from the TOP event and is then
traced back to the primary events. In this way, the decision table is
actually used in the reverse direction. For instance, in the pump
example, the information desired will be of the following type: "What
causes can produce 'no pressure or pressure too low' at the output?",
or "What events are required to obtain 'normal pressure' at its output?”
From such investigations, we can obtain a mini-fault/success tree [4] for
each possible output state. By collecting these trees for all possible
outcomes, one obtains the decision table for the component. A pump is

again used as an example in this case.

32

Step 1. First, the investigator must become familiar with the physical
characteristics and design purpose of the component. From these, the
analyst then finds different source reasons for malfunctions (this
is essentially a FMEA process). The analyst should also collect the
avajlable failure history of each component in actual industry experience.
For the case of a pump, the only situation in which there will be
output 1is when the pump is good, there is power input to the pump, and
the flow input has 'pressure in'.
The internal mode of the pump can either be 'good', 'fails to start'
or 'fails to run', each with a different probability; the total, however,

will sum up to one.

Step 2. Define all the possible states of inputs, internal modes and

outputs of the component. For a pump, there are two inputs, one internal

mode and one output as described previously.

Step 3. Construct the mini-fault/success tree. As an example,

Figures 1 and 2 show the mini-fault/success trees for a pump.

Step 4. Construct the decision table by using the mini-fault/success
trees, treating blank spaces as 'don't care' states. Table 8 shows the
decision table for a pump obtained in this way. Notice the equivalence

between Tables 7 and 3.

33

PRESSURE OUT

AND

POWER IN PUMP GOOD

FIG. 1 MINI-FAULT/SUCCESS TREE 1 FOR PUMP

NO PRESSURE oUT
OR TOO LOW

NO POWER PUMP FAILS PUMP FAILS

NO P’I‘ESSURE N T0 START T0 RU'

FIG. 2 MINI-FAULT/SUCCESS TREE II FOR PUMP

34

TABLE 8. DECISION TABLE FOR PUMP BY DEDUCTIVE METHOD.

Input 2 Internal
Row Main Flow Power Mode Output
1 0 -1 -1 0
2 ! -1 0 -1 0
3 1 4 -1 0
4 -1 -1 5 0
5 . 1 1 1

Step 5. Check the completeness of decision tables. Make sure each
mode of operation of the component has been included in the decision

table unless it is impossible or negligible.

3.4 The Use of Decision Tables in the Construction of Fault Trees

In order to construct fault trees for general systems, information
is required both to describe the system itself, and the operation of
the specific components within the system. The decision table methodology
has been used to describe the operation of the specific components of
the system. The use of such decision tables in constructing fault
trees will now be illustrated referring to Table 8 of Section 3.3. The
event "no output from pump" will be used as an event to be analyzed.
This might be the TOP event of a tree, or some intermediate event which
would be required to produce a zero input to a succeeding component.

Given the desired output state, a search is made for rows with the
correct state, in this case Rows 1 through 4 of Table 8. Since any one
of these rows has the correct output, they are connected by an OR gate,

each row being a single input (see the mini-fault tree used for the pump).

35

Since in all rows, two of the three signals are of the '"don't care"
type, each row is replaced by a single event. Thus, Row 2 is replaced
by the event "no power," which must be developed further with the use
of another decision table. Row 4 is replaced by the event "pump
fails to start", which is a primary failure and thus becomes a direct
primary input event.

If the desired output state were "normal output from pump", then
a search of the rows reveals that only row 5 gives the correct output.
Here, there are three states defined, all of which must be true for the
output state to be 1. The result, then, is an AND gate with the three
appropriate inputs. In this case, one input represents a primary
event (pump good), and thus terminates that branch. However, the other
inputs to the AND gate are component input states, and must therefore,

be traced backwards to the previous components and developed further.

36

4. APPLICATIONS

Using the preceding methodology, the CAT Code was developed, and
used to construct a number of fault trees for various systems. As each
system illustrates different features of this approach, two new
examples will be used to complement the pressure tank system, and
reactor Residual Heat Removal System, described in Reference [1].
These new systems are a Containment Spray Recirculation System and a

Consequence Limiting Control System.

4.1 Containment Spray Recirculation System (CSRS)

4.1.1 Description of CSRS

The Containment Spray Recirculation System (CSRS) is described in
WASH-1400 [5]. For purposes of illustration, this system has been
simplified slightly and its flow diagram is shown in Figure 3. The
intended function of the CSRS is the recirculation of the containment
sump water through the heat exchangers of the Containment Heat Removal
System to spray headers inside the containment, thus removing energy
and fission products from the containment in the event of a LOCA.

The following are important features of the system:

1. The system is comprised of four trains. During the first
twenty-four hours following a LOCA, the logic of the system
for successful operation is two-out-of-four; it becomes
one-out-of-four after that period.

2. Each train consists of a pump, a heat exchanger and a spray
header. Two of the pumps are inside the containment.

3. A1l valves in the two trains which have the pumps outside

the containment are normally open.

37

Spray A Spray B Spray € Spray D

2 K 3 9 16 J 3 |
L - . ! i - - 1
' K52 53 ' T ksa ssq |
< = S a |
&) = I & |
z g z g
: MOV D7
23
=] Pipe D2 CHY D | Pipe D3 36 37 Pipe D4
+3 } + t
B L
32 Pipe C2 N CHI v l
L]
19 20

8¢

INSIDE CONTAINMENT

Fiqure 3.

. 49
w Ta &
°l £ 1 Pipe 6
2 N
& |
1 Pipe 7
II

Simplified Flow Diagram for the Containment Spray Recirculation System

4. The CSRS is actuated by a signal from the Consequence
Limiting Control System which turns on the pumps and also
opens the motor-operated valves if they had been inadvertently
left closed after maintenance.
5. The electrical power supply is common to one inside and
one outside train. The other pair of trains also have a
common electrical power supply to the motors of their pumps.
6. A train can be disabled due to maintenance. However, only

one leg is allowed to be down for maintenance at any time.

4.1.2 TOP Event and Preliminary Considerations

In order to construct the fault tree for this system, the decision
tables and TOP event definition had to be developed. Many of the tables
had been used for previous examples [1,2]. However, new models were
developed for the spray headers, heat exchangers, and pump motor
(see Appendix B). Furthermore, the model used for the motor-operated

valve [1] was modified by deleting a slip clutch failure mode.

The model for the pump motor was included in order to separate the
failures of the pump and pump motor into two components. Thus, the
motor itself received power from the power supply, and a signal to turn
on or off. The "power" for the pump (Table 8) was then actually the
mechanical coupling from the motor.

The TOP event for this system was defined as failure of the
recirculation system to supply adequate spray cooling to the containment
following a LOCA. This requires operation of at least two of the four
legs for the first twenty-four hours, and one-out-of-four legs thereafter.

Thus, the logic of the TOP event changes after twenty-four hours, and

39

this situation must be developed explicitly. This was done using
inhibit gates modeled by the following decision table (Table 9) as
part of the TOP event:

TABLE 9. LOGIC MODEL FOR INHIBIT CONDITION.

Leg Leg Leg Leg Inhibit System

Row A B C D Condition Qutput
1 0 0 0 -1 1 0
2 0 0 - 0 1 0
3 0 -1 0 1 0
4 -1 0 0 0 1 0
5 0 0 0 2 0

In this table, zeroes represent the condition "no flow" from the
appropriate leg, or "insufficient flow" as a system output. The
inhibit condition is treated as an internal mode, with state 1
representing the condition 0 < t < 24 and state 2 as t >24. Only those
rows leading to the system state "insufficient flow" are shown; that is,
only those combinations in Table 2 will allow system fajlure. Thus, it
is seen that for 0 < t < 24, either three or four leg failures will
lead to TOP fajlure, while for t > 24, four failures are required.

An additional complication in this system is the inclusion of
maintenance. Any single one of the four legs is permitted to be under
repair for a period of up to twenty-four hours. Thus, should the

system fail while one leg is under maintenance, during the first

40

twenty-four hours, only two subsequent failures would be needed, or
three subsequent failures thereafter. Since only one Teg may be under
maintenance at a time, this situation represents an "exclusive OR" type
of logic, and is modeled analogously to the inhibit conditions in

Table 9. The TOP event is defined as "insufficient output with no

leg under maintanance OR insufficient output with one leg under
maintenance"; "one leg under maintenance" is further divided into

"leg A under maintenance", "leg B under maintenance", etc. Since each
of these maintenance conditions is treated as if it were an inhibit
condition, the "exclusive" nature of the TOP OR gate is retained
without explicitly requiring such a gate. Thus, the resulting tree

can be analyzed by any of the existing computer codes (such as PREP-KITT).
This structure is seen in the upper level structure of the completed
fault tree, Figure 4.

Finally, as an example of the input used in the CAT Code, Table 10
reproduces the component node-numbering table for this system.
Referring to this table and Figure 3, and using heat exchanger A as an
example (component 3 in the table), the input defines this component
as "type 2" (i.e., using decision Table number 2), with input node 4
and output node 3. This output node is connected to the input of the
pipe (component 2), whose output (node 2) is ultimately connected to
spray header A (component 1). Components 47-52 represent the inhibit
gate models as shown in Table 9 for the TOP structure, including both
the maintenance modeling and time switching logic.

4.1.3 Discussion of Fault Tree

The previously described input to CAT was used to produce the

41

A

INSUFFICIENT
FLOW

NO FLOW

FROM &

‘ " NO FLOW
FROM C

O FLOW
FROM O

O FLOW
FROM A

VNV V.

E

Figure 4.

Upper Level Structure of Fault

AFTER

HOURS.

Tree for CSRS

COM CARD FOUND.

Table 10.

Component Index Input Printout for CSRS

DATA VALIDATICN CONTINUING.

CONTAINMENT SPRAY RECIRCULATION SYSTEM

COMPCANENT INDEX INPUT PRINTOUT

CCMPCNENT CARD PRINTOUT

INDEX CODE NAME TYPE INPUT/QUTPRUT NODES
1 COML SPRAYA 1 2 52
2 COM2 PIPEAL 39090 3 2
3 COM3 HTEXA 2 4 3
4 COM4 PIPEA2 3500 5 4
s cOoMS PUMPA 4300 o} i S
6 COM6 PIPEA3 3900 8 6
7 COMm7 WATER 3 8
8 COM8 MOTORA 4 S0 23 7
9 COM9 SPRAYH 1 Q 53
10 CCM10 PIPEBI 3500 10 9
11 COM11 HTEXB 2 11 10
12 Com12 PIPEB2 3900 12 11
13 COM13 PUMPH 4300 13 14 12
14 COM14 PIPEB3 3900 8 13
15 COM15 MOTCRB 4 S1 23 14
16 COM16 SPRAYC 1 16 Sa
17 CCM17 PIPEC] 3900 17 16
18 (CCMm1e HTEXC 2 18 17
18 COM19 PIPEC2 3900 19 18
20 <COm2e CHVC S 20 19
21 COM21 PIPEC3 3200 21 20
22 CQCM22 MCovCl 68190 22 23 21
23 COM23 CONT S1IG 3 23
24 COM25 PIPECA 3900 25 22
25 CCM26 PUMPC 43900 27 26 25
26 COM27 MOTORC 4 50 23 26
27 C€OM28 MavCz 6810 28 23 47
28 (COM31 SPRAYD 1 31 55
29 COM32 PIPEDY 3909 32 31
30 CO0OM33 HTEXD 2 33 32
31 CGCM34 PIPED2 39090 34 33
32 COM35 CHVE S 35 34
33 _ COM36 PIPED3 3900 36 35
34 COM37 MQovLll1 6810 37 23 36
38 COMa0 P IPED4 3900 40 37
36 CCmatl PUMPD 43C0O 41 42 49
37 _CCM4a2 MOTORD 4 51 23 42
383 CCMa3 PIPEDS 39C0 43 41
39 COMa4 MOVDZ2 68190 44 23 43
4¢ COMA7 PIPECS 3900 47 27
4] COM48 OR1 6 48 49 28
42 CQ0mag OR2 5 48 49 44
43 CCM50C PIPEE 39C0 8 43
44 COMS1} PIPEY? 3900 8 49
45 CCMS52 PCWER] 3 s1¢]
46 COMS53 POWER?2 3 51
47 COMS4 TaPC 101 Se 3 S4 35 15
48 CCMSS TOPD1 162 S3 54 S5 56
49 COM56 TaPC2 102 €2 S4 S5 57
§¢ CCMS57 TCPC3 1C2 52 53 &5 38
51 CCMmsa TOPC4 102 €2 S3 54 59
82 COMS5sS TCTAL i03 15 56 87 58 £9
FND

43

NO_FLOW FROM

TRAIN D
0 WATER YO SPRAY P
SPRAY D PLUGGED RUPT-
REQ

[

NO WATER TO
PIPE DY

29

O
N0 WATER TO
HEAT X B
30
[
NO_WATER TO PIPE
PIPE D2 D2
LEAK
31

r

N0 WATER TO
CHY D

32

I

NO WATER TQ
PIPE D3

—

N0 WATER TO
MoV DT

Figure 5. Development of Lower Events for CSRS Fault Tree (page 1)

44

PIPE
NO WATER TO 04 P[I,Z’E
PIPE D4 PLUGGED LEAK
NO WATER TO NO_POWER TO
PUMP D PUMP D
TR D
PIPE
NO WATER TO D5 F%’-
PIPE 05 LEAK RUN

NO WATER TO
MoV D2

72

PIPE
6
PLUGGED

PIPE
7

Figure 5. Development of Lower Events for CSRS Fault Tree (page 2)

45

fault tree discussed here. The program was run on the IBM 360/91
computer at UCLA. A core storage of 150K bytes was used which would
be sufficient for 800 gates in the tree before editing (a core storage
of 114K bytes would be sufficient for 200 gates). The code produced
656 gates which were reduced to 77 in the final tree, mainly through
the use of transfers. A total of 6.5 CPU seconds was used.

The upper-level structure of the tree is shown in Figure 4.
The branch of the tree beneath gate 2 assumes no maintenance, while
the branches beneath 9, 15, 21, and 41 assume that one train is
disabled for maintenance. Since these four branches are similar, only
the branch beneath gate 9 is developed further in the figure.

The houses at the next Tevel of the tree show whether the tree
is developed assuming system failure when all trains fail (after
24 hours following a LOCA), or when any three out of the four trains
fail (before 24 hours). The branches of the tree beneath this level
are produced in a straightforward manner by the CAT code, utilizing
Table 9 for the modeling of inhibit gates. For illustrative purposes,

the development of the event “no flow from D" is shown in Figure 5.

4.2 Consequence Limiting Control System (CLCS)

4.2.1 Description of CLCS

The Consequence Limiting Control System is designed to measure
the containment pressure and, if specific pressure levels are exceeded,
initiate operation of equipment designed to control the containment

environment [5].

46

A simplified block diagram of a Consequence Limiting Control System
is shown in Figure 6, and a more detailed system diagram is shown in

Figure 7. A general description of the system is given as follows:

1. The system is designed to detect out-of-tolerance conditions
within the containment by measuring containment pressure, and to
initiate operation of equipment and systems designed to limit and
counteract these conditions.

2. There are two output signals that will activate the safety
devices. A containment pressure rise to 1.5 psig produces signals
which initiate the HI containment pressure phase and the containment
vacuum pumps are tripped; certain containment isolation valves are
closed and back-up signals are sent to the safety injection control
system. A further rise of containment pressure to 10.3 psig will
initiate the HI HI containment pressure phase of the CLCS. This will
start the containment spray injection system and the containment spray
recirculation system, close the remaining containment isolation valves,
initiate start-up of two diesel generators and activate the appropriate
motor-operated circulating and service water valves to divert service
water to the containment spray heat exchanger.

3. The CLCS is made up of four logic trains (two for HI and two
for HI HI), and four measurement channels. Each logic train trips when
three-out-of-four measurement channels sense a trip pressure signal.
Each measurement channel contains its own transducer to sense the

pressure,and a comparator to detect different pressure levels. Upon a

47

MEASUREMENT
CHANNEL A

MEASUREMENT
CHANNEL B

MEASUREMERT
CHANNEL €

HI HI f

HI
HC

MEASUREMENT
CHANNEL D

i

H

i

Figure 6.

HHA

TRAIN A

HI HI
3 of 4
TRAIN B

ks Qs

HA

HI
3of 4
TRAIN A

il
3 of 4
TRAIN B

TOIT 177

CLCS Simplified Diagram (5)

48

HI HI
ouTPUT

HI OUTPUT

‘ Power - 120 V AC Bus 11 ‘ J Powsr - 126V DC Bus 1A l
7
i Wi-H1 Signel Comparstor R\ ciom 77 304
I A N Voltags: Pressure " (M100 ot 4 7 Mowix J—
Module T VAC Mo b Mo And AUTO Required
27 00r 117 Y AC 8 € dot2 5 CS-CLCS-R-8-A
Output 1 Clowre Ot 78 PO-CLCSTR-2A 6
Compu NO Contacw ¥ \R reclcSTRI8 | 59 -
O [i 0 23 CLCS Troin 24
"] 0.3 PS1G
i furrent * ot s voe |7 125 V DC On Latch (LY
E% v HI Signal Comperator ANN CKT 71 15| 78 A L i o
Main Board [& -® Reley 3CLCS-2AM s
Panel VACI | n . 9 A6
incficator Output LM100 Opening Of N 1 g 80 Fowv
B 00 117 Y AC A4/ NG Contacts o cics Components
ol . Py ANN CKT $+72 uBA 248
Voltage: 0 5 15P8IG a)
Toout Prasme, Input 61 LM100) Quening Of_ |
= Module A5 /WO Contacts 1
§ 65 10
g ‘ Power - 120V AC Bus 11} l $ Power - 126 V OC Bus 18 ‘ D
(¥
HI-HI . Presmurs HI-HI Signal Comparat -
ML Voitage: P parater of 81 Jote [s
Module "z Clogure atrix]
Vv AC 3) NO Contacs + A Manual Roont- Manusi o !
Output 001117V AC u"‘“’o, 2 " And, :gg Required &%
B i i e o 12| 22 Reeny vs »)
o ot o5 03756 82 /) NOContact 8 60 . £Bis) cies Tmin28
Sensor . (nput HHB ») {HI-HL Y
Eieconica Curmnt npu R\ Ciosre Of m 83 125 V. 0C . 125 V DC On Latch &h
Hi Signal Comperator LM100 - 16 t t 24
NO Contacts Rel
Main Board "7 82 .@ 43 3 Output Relays
Indieator vacr a p Reley 3.CLCS-28M
] 66 Contacts
oo & 20 84 <8 AT
Voltage: ol ! 00r 117 VAC L.@ eLC L ywious
" oere 05 157516 _
toput Input
Conwinment Power - 120 V AC Bus 1-11} Power - 125 V DC Bus 1A 1
gonwinn
No 105 ‘ #
| HI-Hi Signal Comparator
! - ;P 304
: Hi-HI Voitage: Premure " 9 85 3ore @
: V AC + A
00r 117V AC _
Ou
Froseurs i 13 86 Ve 55 5.5 CLCS Train 1A
’ —+ 4 (HI)
. 0 10.37SIG X -—@ atch Monual Resst
. e input no P Bk | [Puth Bumon | 000 125
I Signal Comparator domyre O 7, 87 o On :‘;g‘;";‘co" 125 v 0C I(OOn @
- NO Contacts HCA ’@ Trip 39 L8 | The 1012 ~ m'"n-‘ Lms) Output Relays
Vac[T Opening Of PBCLCSTR2A CSCLCSRB-
i NO Contacts 2] 88 PB-CLCS TR.28 A
Output| ¥
< 00r 117V AC q ’@ 13 Contect
0) ANN C
HI :m 05 15PSIG Components
L— inpu(" input Qpening 5 l"
L
Power - 120 V AC Bus 1-IV * r Powsr - 125V DC Bus 18 ‘
i + HI-HI Voltage: P Hi-HI Signsl Comparator
. Pressure
' = i 17 10 89
3 v A€ ' _®
4
Output
Prewue Comoutar o 00 117V AC 1% 90 58 & CLCS Train 18
Comant: ™ o g 103 PSIG A — 182 t Releys
@ ‘ e l Signel Comparstor - e -.® Push Buttons °3' D‘Cz‘
oy) Restores S—
£ - Main Boerd " 91 126 v OC Yo on
™ t icator m s At Resrt ") ~ 13 Contacs
rd VAc 50 F To Verkow
' CSCLCS-A-B-A Componens
ouput | § ¢ 92 s -
HI Yo <. 22 1812
Lol thout L . o1 00r 117V AC ,.@
Module £ 1.6P8iG l—"'
Input
Figure 7. CLCS Signal Flow Diagram (5)
A

49

pressure of 1.5 psig, each measurement channel will send a HI contain-
ment pressure signal, and at 10.3 psig, each channel will send a HI HI
signal. There are two logic trains for each pressure level, in a one-
out-of-two configuration, to provide redundancy in initiating the
equipment.

4. The operator can initiate either of the two sets of trains
manually.

5. When containment pressure is reduced to -0.5 psig, following
an increased pressure above either or both set points, the CLCS circuits
signal the operator that the reset point has been reached, permitting
him to reset the logic trains. This reset function occurs for all four
logic trains at the same time. The equipment can be returned to the
pre-accident configuration only after the reset signal has been received
by the operator.

6. The HI HI signal trains were designed to be harder to trip
than the HI signal trains, in order to minimize the chance of inadvertent
spray actuation by a HI HI signal. The logic channels and sensors
are designed to trip on loss of power to a HI signal state, but
are prevented from tripping to the HI HI state. Also, manual trip by
the operator requires the operation of two push buttons for a HI HI
signal, but only one button for a HI signal.

7. The measurement channels can be tested monthly, one at a time.
The system logic trains trip when two-out-of-three measurement channels

reach certain pressure levels under test conditions.

51

8. The logic trains are also testable. While in the test mode,
a logic train will be automatically pulled out-of-test and returned
to normal operation if the train not being tested trips. Thus, testing
does not negate the function of any portion of the CLCS during its
testing.

4.2.2 Top Event and Preliminary Considerations

Four different failure modes of the Consequence Limiting Control

System have been considered as TOP events in the fault tree
construction:

1. Containment pressure between 1.5 psig and 10.3 psig, but no
Hi signal is sent by the CLCS .,

2. Containment pressure above 10.3 psig, but no HI HI signal
is sent by the CLCS.

3. Containment pressure normal, but HI HI signal is sent because
of a malfunction of the CLCS.

4, Containment pressure normal, but HI signal is sent by a
malfunction of the CLCS.

In this example, the TOP event "containment pressure normal, but
Hi signal sent by malfunction of CLCS" has been further investigated
in detail. The upper level logic of this TOP event has been developed
as required by the CAT Code. It includes the maintenance of the
measurement channels and also shows the logic of the maintenance scheme,
which allows testing of only one at a time. Table 11 shows the decision

table of this TOP event.

52

TABLE 11. TOP EVENT DECISION TABLE FOR: "CONTAINMENT PRESSURE
NORMAL, BUT HI SIGNAL SENT BY MALFUNCTION OF CLCS".

Row Node 1 Node 54 Node 73 Node 74 Node 75 Node 76
1 ~1 1 0 0 0 0

2 -1 1 1 0 0 0

3 -1 1 0 1 0 0

4 -1 1 0 0 1 0

5 -1 1 0 0 0 1

Node 1 in this table is the HI HI signal output node, and node 54
is the HI signal output node (see Figure 7). Nodes 73, 74, 75, and 76
are those nodes which indicate maintenance of measurement channel
A, B, C, or D, respectively; that is, a '1' under one of these nodes
indicates that channel is under maintenance. The only TOP event we
present here is the one with HI pressure signal output; thus, no
attention is given to the HI HI signal channels, and a '-1' is assigned
to node 1 in all cases; however, for other TOP events, node 1 would be
set to zero or one, depending on the specific event. Row 1 represents
the situation when no channel is under maintenance. Thus, all four
maintenance columns have been set to '0'. The 'T' at node 73 in row 2
indicates that measurement channel A is under maintenance. Rows 3, 4
and 5 similarly represent maintenance of channels B, C, and D.

Under this TOP event, the only boundary condition necessary is
normal pressure in the containment. Other TOP events would be accompanied
by different boundry conditions; however, the component library of deci-
sion tables and the system description would remain the same throughout

the analysis. This characteristic points out one convenience of using

53

such a methodology for constructing fault trees for multiple TOP events
of a system.

Components in the consequence l1imiting control system include
pressure transducers, comparators, relays, circuit breakers,
annunciators, "OR" logic gates, etc. Furthermore, the Operator has
been treated as an additional component of the system in this example.
The decision table of an operator is given as Table 12. The input to
the operator is the information transmitted to him in order to allow
him to take action. In this example, we assume that the basic informa-
tion he receives is from the annunciator. An input signal of '0'
indicates normal pressure signal, '1' is a HI pressure signal and '2'
is a HI HI pressure signal. The internal mode is separated into two
states. A zero means that the operator takes the correct action.
'5003' for the internal state of the operator represents an incorrect
action by the operator. The output of the operator in this example is
connected to the four trains of the CLCS system; a 'O' represents no
action by the operator, '1' means that the operator has initiated the
HI signal trains, and '2' means the HI HI signal trains have been
triggered by the operator. The assumption has been made here that the
operator takes the same action on both trains in the same set, e.g., if
the operator has pushed the button of the HI signal train, he will push
the button of the other HI signal train at the same time; however, this
table could be very simply expanded (by the addition of more rows) to

include other possible combinations of train actuation.

54

TABLE 12. DECISION TABLE OF OPERATOR

To HI Signal Train To HI HI Signal

Row Input Operator Out 1 Qut 2 Qut 3 Out 4

1 0 0 0 0 0 0

2 1 0 1 1 0 0

3 2 0 0 0 2 2

4 0 5003 1 1 -1 -1

5 0 5003 -1 -1 2 2

6 1 5003 0 0 -1 -1

7 2 5003 -1 -1

8 1 5003 -1 -1 2

9 2 5003 1 1 -1 -1

With this basic information, the decision table of the operator,
as shown in Table 12, can be interpreted as follows: Row 1 to row 3
represent correct operator actions, e.g., if no signal is sent to the
operator, he will not send a signal to any of the four trains. Rows 4
through 9 are those cases in which the operator 'fails', (those cases in
which the operator does not take the correct actions).

Finally, Table 13 shows the component node-numbering table for the
consequence limiting control system as input to the CAT code. Since the
four measurement channels are composed of the same set of components, only
channel A has been further developed in the system fault tree. It is
assumed the other three measurement channels have the same fault tree
construction as channel A. Referring to this table and Figure 7,
and using the HI-HI signal comparator in measurement channel A as an

example (component 12 in the table), the input defines this component

as "type 017" (i.e., using Decision Table number 17), with input node 27
and output node 23. This output node is connected to the input of the
relays (components 5, 6, and 71). Several of the components are con-
sidered as “dummy"” components, (e.g., compdnents 28-31 and 36-52), as
discussed in Section 2.2.5. This is due to the requirement that each com-
ponent input node be connected to a valid output node from some component.
Component 2, for example, requires an input at node 6 to represent

the reset signal for the CLCS. Since no detailed treatment is given this
signal, and it is not required for evaluation of the TOP event of interest,
the output from a dummy component (Component 28) is connected to this node.
This provides the required output at node 6; furthermore, since this

dummy component type (type 009) has no inputs, component 28 requires no
further connections. Notice that all dummy components are of type 009 and

are treated in the same manner.

4,2.3 Discussion of Fault Tree

Figure 8 shows the fault tree of the Consequence Limiting Control
System constructed by the CAT code for the TOP event "containment pressure
normal but HI signal sent by malfunction of CLCS". The inhibit gates
below gates 2, 12, 24, 38, and 54 represent the five maintenance possi-
bilities. The branch below gate 72 represents a HI signal sent by the
operator, which may be caused by human error or by a malfunction of the
system. This branch can be seen beneath a number of gates (as transfer
symbol 72).

One of the features of this fault tree can be seen by comparing the
two different subtrees under gates 7 and 17, which represent the same

event "0 VDC at node 49". Gate 7, under the inhibit gate "no measurement

Table 13. Component Index Input Printout for CLCS

"CONSEQUZNCE LIMITING CONTROL SYSTE
COMPONENT INDEX INPUT PRINTCUT

COMPONENT CARC PRINTOUT
INDEX COCE NAME TYPE INPJUT/OUTPUT NOIDES
1 coMml OR2A c1a 2 31 R
2 Camz SR2A 016 59 5 2
3 ZamM3 MANN2A c14 4 5 59
4 ZoMa 3768 zA ¢1s 77 73 7% 80 4
——— 5. CQMS _RAL LN06 23 7
& COM6 RA2 024 23 g
7 ZOM7 RA4 cos 61 E]
8 Zowms BAS 004 B1 10
9 _COM9 . 374 23 015 8) 82 83 84 43
10 ZoMi0 3/4 1A €c03 85 a6 €7 887 &9
11 <OM11 3/4 183 003 89 90 91 s2 53
12 coMm12 COMPAHH c1?7 27 23
13 ZQML3__ CuMPAHI . ._._.005 65 _ &)
16 TICM14 TRANSA c1e 731 27
15 ZOM15 TRANEAHT co6 31 o8
16 COM1é SINCKTA 007 35 3%
17 ZOM17. PTA 008 3¢ 35
15 Com1s SENA cos 33
19 C3M1¢ SR28 616 50 &5 3
20 COM20 MANNZ3 14 43 44 60
21 COMzi OX1A €01 ___4& 50 54
22 Cdmz2 SR1A 01277747 56 86
23 COMz23 SR1E c12 51 53 50
24 COMzZ& MANNT A 011 48 55 a7
25 COM25 MANNIB 011 52 57 s
26 7 ZOM2E BCK1A 613 a9 AR
27 Zom27 BCK 18 ¢13 53 82
2B ZOMz& DUM1R 009 6
_. 29 _C0oMgs _DuMer GO9 45
30 TCOM3T pUM 3R 00% T 5¢E
31 Com3l DUM4R cos 58
3z COM3: OPZRATOR c02 59 885 57 5 aa
.33 ZOM33 ANNC HII 023 70 71
38 COowM36 BUM11 €29 11
35 COM37 cuM1S co9 15
36 COM3s8 DUM12 ¢es 1
————aZ.. SOM3e __ DLMIZ2 0 009 1z
38 COM&0 DUMIE 603 16
3G CCM41 DUM20 009 20
4G COM4Z DUM13 c0s 13
a) Z0M&3 DUM17 60S vz
«2 IaMmas ouM21 029 21 —
43 -0Ma5 pUM1a 09 14
&8 ZOMGE puMm1g cCS 18
. 43 oM&e7 _DuMzz 009 = 22
46 COMay CUMAG - 00e T TTI
47 ZOMSC SCM5E 00 74
48 ~0OMS51 DUMS1 €09 75
_ 49 <ouvs2 DUMS2 609 76
50 Z0M53 TTESTE ©21 H A o- Sy & i —
51 <CGMS4 TESTY 021 8 73 81
52 COM55 TEsTa 021 11 74 78
33 COoM3o TZST9 c21 12 74 32 .
54 Z0OMS57 TEST1O0 c21 15 75 79
55 COMS8 TESTI1 ozl 16 73 a3
56 CaM5% TEST12 ¢21 15 75 89
- B7..20M&Q ___TEST12 _ £21 .20 . .74 .._B4
58 COM61 TEST14 cz2 s 73 EE;
59 LOM62 TZST1S €22 13 74 a6
60 COM63 TEST1S g22 17 75 57
e 61 COMS4& TZST17 .Q2e 21 .7 €8 __ .. ____
62 CCMéE T£57T18 0z2 10 73 23
&3 ZOME6 TESTLS 022 14 74 50
€4 TOMET7 TEST20 cz22 18 72 51
.65 _lOM&8 __TeS¥2l . .._ §2¢ ..22.. 75 32 .
66 COMES ANNCHIHI 010 97 10 72
&7 TIMTC AND ANG c24 71 72 £3
i ZoM71 RA3 04 23 70
END

(&2}
~I

channel under maintenance," will send a 'HI' signal whenever three-out-
of-four measurement channels send a 'HI' signal to it. As shown in
Figure 8, gates 18, 30, 44 and 60, under gate 7, represent a 'HI'
signal sent by any three of the four measurement channels. Gate 30,
for example, receives 'HI' signals from channels A, C and D, where only
channel A has been further developed (see transfer 76). On the other
hand, gate 17 under the inhibit gate "measurement channel A under
maintenance", will send a HI signal if any two of measurement channels
B, C and D send a 'HI' signal to it. Since channel A is already under
maintenance, the boundary condition "signal = 1 at node 73" has already
been set by row 2 of the TOP event Table 10. Thus, the three-out-of-

four logic becomes two-out-of-three.

58

'HI' Signal
at node 54

False 'HI' Signal
Input Pressure Normal

Ov DC
at node 47

ov D¢
at node 50

v DC
at node 48

Ov OC
at node 49

Ov DC Ov DC
at node 46 at node 51

v X
at node 52

/\

Ov DC
at node 53

*HI' Signal
at node 54

Ov DC
at node 46

Ov OC
at node 50

Ov DC Ov DC
at node 47 at node 51

Ov OC
at node 48

ov D0
at node 49

29

Ov DC
at node 53

Circuit
Breaker
fafl

Qv DC
72 at node 48

Qv DC
at node 52

'HI' Signal
at node 54

Qv DC
at node 46

Ov OC
at node 47

Ov DC
at node 49

LE

ov OC
at node 50

Ov X
at node 51

Ov DC
at node 52

72

‘HI' $ignal
at node 54

Qv OC

at node 48

Ov DC
at node 53

Circyit
Breaker
fai)

-9

Ov OC
at node 49

Ov DC
at node 51

'HI' Signal
at node 54

Ov OC
at node 46

Ov DC

Ov DC
at node 52

at node 47 @

[+

2 /r2\

Ov OC
at node 48

Ov DC

Ov OC
at node 53

at node 49

Circuit
Breaker
fall

Figure 8.

K

Ov 0C
at node 50

Ov DC
at node 51

Ov DC
at node 52 72

Ov DC
at node §3

Fault Tree of Consequence Limiting Control System (page 1)

59

Figure 8. Fault Tree of Consequence Limiting Control System (page 2)

61

5. CONCLUSIONS

This report has presented a discussion of all of the basic infor-
mation needed by a user of the CAT code. The applications included
here, in combination with those of ref. [1], will serve as examples
to guide the user in setting up a system, and developing his own compo-
nent models. Further details of the code, the modeling of decision
tables, and a complete sample case with input and output will be found
in the appendices as additional aids.

The simple, tabular decision table form for modeling component
behavior allows the user to develop both simple and highly detailed
component models to produce fault trees of varying complexity. This
is the stage of the analysis in which much care must be exercised and,
in fact, this represents a major area in which errors may be introduced
via faulty or incomplete tables. Furthermore, the user must always
bear in mind that faiture rates for many specific failure modes of
components are generally not available and must use judgment in order
to avoid the development of too detailed decision tables, which will
prohibit a probabilistic analysis of the fault trees so produced.

The flexibility of the CAT methodology in defining TOP events of
any logocal complexity was demonstrated via specific examples. Thus,
the modeling of inhibit gates showed a general technique for dealing
with mutually exclusive events, such as are encountered in test and
maintenance schemes of redundant systems. This approach was also
shown to be useful in situations where the basic configuration of the
system changes as a function of time. This is especially important

in nuclear reactor applications where decay-heat levels, and therefore

62

cooling requirements, are reduced with time. Another example of the
flexibility of the code is the option of producing the fault tree in
a punched output format directly compatible with the PREP-KITT codes.
One final point must be emphasized to the prospective user of
CAT. Although the computer automation of fault tree construction can
greatly speed up this phase of FTA, and readily allow the construction
and investigation of very detailed fault trees, it should not be
viewed as a replacement for the analyst's efforts. The insight and
understanding provided by the analyst himself in carefully setting up
the system and component decision tables, as well as in choosing the
appropriate TOP events, cannot be supplied by the computer. Further-
more, the fault tree so produced can only be as accurate and complete
as the input provided by the analyst. If the CAT code is viewed in
this 1ight, it can be seen as a useful tool in assisting the fault
tree analyst, and will become even more effective when combined with

care and foresight in its use.
REFERENCES

1. Salem, S. L., G. E. Apostolakis and D. Okrent, A Computer-Oriented
Approach_to Fault-Tree Construction, EPRI NP-288, Palo Alto,
November 1976.

2. Salem, S. L., G. E. Apostolakis and D. Okrent, "A New Methodology
for the Computer-Aided Construction of Fault Trees," Annals of
Nuclear Energy, 4 (1977) 417-433,

3. Vesely, W. E., and R. E. Narum, PREP and KITT: Computer Codes for

the Automatic Evaluation of a Fault Tree, Idaho Nuclear Corporation,

Idaho Falls, Idaho, IN-1349, 1970.

4, Fussel],_d. B., "A Formal Methodology for Fault Tree Construction,"
Nucl. Sci. and Engr., 52 (1973) 421-432.

5. U.S. Nuclear Regulatory Commission, Reactor Safety Study, WASH-1400
(NUREG-75/014), October 1975.

63

APPENDIX A

CODE STRUCTURE AND SUBROUTINE FUNCTIONS

A.1 Code Structure

The basic operation of the CAT code can be broken down into the
following functions:

1) Input data, check for errors, and set up basic array structure.

2) Construct and edit fault tree.

3) Print input edit, fault tree construction and editing phases,

and final tree.

4) Punch output (if desired) for use with PREP-KITT codes.

The code consists of a main program and eight subroutines,
organized as shown by the subroutine calling sequence in Figure A-T.
Notice that the major operations of the code are actually performed by
subroutine DRIVER. The functional organization of the code is illus-
trated by the flowchart in Figure A-2, which is essentially a flow-
chart of this subroutine. The function of each of these routines will
be discussed in the remainder of this appendix. In addition, flowcharts
for the major functions of each subroutine will be provided in order
to illustrate the basic structure and operation of each subroutine.
These flowcharts will contain program statement numbers for use when
referring to the actual FORTRAN program itself. Although these flowcharts
are not intended to illustrate the specific programming details of each
routine, they can be used, along with the comment cards contained in the
program itself, to assist the user in following the FORTRAN programming,

if desired.

64

(START)

MAIN
i
DRIVER
LIBR INDEX STEVE DO IT OUTPUT
1
3 4
XCHECK REDUCE
Figure A-1. Subroutine Calling Sequence

65

CSTARD)

MAIN Dimension
Program arrays
]
Read DAT1-DAT4
Set arrays for
‘LIBR' and 'INDEX'
Call ERRSET
read and validate Subroutine
CALL LIBR decision table LIBR
Tibrary
Set indices I8-112
for arrays
Sufficient array :
space allocated Write
in MAIN? message
yes read, error check)
Call INDEX and index system } S eEn "
configuration
input error or Write (TP)
insufficient array message (S10p)
space allocated
in MAIN?
Subroutine
DRIVER
Allocate remaining
array space to
fault tree
Read, validate and .
Call STEVE set TOP event }Sug;gvé1ne
and boundary conditions
rror in .
yes | Write |
TOE EV?QE or message
no
Construct, edit :
Call 00 IT and print fault tree } Suggo?¥1ne
No fault tree Check nodes reduce zero|] Subroutines
constructed for 'OR' gate and single XCHECK
or KOUT=0? edit input gates| J REDUCE
no Punch fault tree and :
Tall OUTPUT failure data in }gg?;ﬁ#“"e
PREP-KITT format

—(CS108)

Read new title
and DAT1Y and

DAT4 cards
(if any)

\ b.___.__._——‘
Figure A-2. Flowchart for CAT Code

66

A.2 System and Component Node Organization

Before discussing the program structure itself, it will be useful
to describe how the CAT code utilizes the system node numbering scheme
(Section 2.1) and integrates the component internal modes into this
scheme. As can be seen from Sections 2.1 and 2.2.7, states and bound-
ary conditions can be described analogously for both system nodes and
component internal modes. This suggests an identical method for treat-
ing both within the code.

The approach employed within CAT is to combine both system nodes
and component internal modes into a single numbering scheme, and to
define program variables which can then represent both of these. The
first step is to determine the largest system node used by the system
(as input on the 'COM' cards). This is defined by the variable MNODE.
The first internal mode (internal column of the decision table) of the
first component is then assigned the node number MNODE +1. If there
are NNCMP components, with a maximum of MXINT2 internal columns per
component (as determined by subroutine LIBR) then there will be
NNCMP*MXINT2 nodes required to index all internal modes, producing a
total of MNODE + NNCMP*MXINTZ nodes in all. This number is defined as
the variable NODES. Notice that each component will be assigned exactly
MXINT2 internal nodes, even though it may not require this many. For
components with fewer internal columns, only the first of these nodes
will actually be used, with the remainder left blank. This simplifies
the numbering scheme, by allowing the jth internal column of the ith
component to be assigned the node number:

MNODE + (i-T)*MXINT2 + j.

67

Referring to the sample case in Appendix C, MNODE = 11 and MXINT2
= 2. As seen from the seventh page of the output (Appendix E), the
single internal column of component 1 is given node number 12, with
node number 13 not used; the single internal column of component 2 is
then numbered 14, etc.

With all inputs, internal modes and outputs of each componernt now
numbered, the array INODE (j,i) is used to store the j node numbers
of the ith component. For component 1 of the sample case, which has
no inputs, one internal node (12) and only one output (node 1),

INODE (j,1) = (12, 1).
For component 6, which has two inputs (nodes 5 and 6), two internal

nodes (22 and 23), and one output (node 7),

INODE (j,6) = (5,6,22,23,7).

Finally, the array X is used to indicate the state existing at
any system or internal node. Each node is represented by two entries:
X(1,i) is set to the state existing at node i, and X(2,i) indicates the
gate beneath which this state was set. A1l entries are initialized to
-1, which indicates no defined state in existence. Boundary conditions
are indicated by X{(2,i) = 0. Whenever a branch of an OR gate is com-
pleted, all states set by events beneath that branch must be reset to
-1 (see Sections 3.3.2 and 3.4 of reference A-1). Since higher numbered
gates are always input into Tower numbered gates, this corresponds to
resetting only those nodes for which X(2,i) is greater than or equal
to the number of the current OR gate. Thus, boundary conditions will
never be reset, nor will the events set by higher order gates (gates

above the OR gate in question).

68

A.3 MAIN Program and Program Dimensioning

The MAIN program has only two functions: to set up the program
dimensions and to call subroutine DRIVER, which effectively controls
the rest of the code operation. The CAT code has two basic arrays:

1) array MAT (Dimension = NSIZE):

an integer array which contains all program integer array
elements, and

2) array NAME (Dimension = LSIZE):

a double precision array which contains all alphanumeric
names within the program.
These two arrays will be split up into 15 and 3 arrays respectively in
subroutine DRIVER and, by means of variable dimensions, these sub-
arrays can be redimensioned within each job. However, the two arrays
within the MAIN program itself must contain fixed dimensions. This is
done by the following three cards in MAIN:
DIMENSION MAT (nnnn)
DOUBLE PRECISION NAME (222%)
DATA LSIZE, NSIZE/2222, nnnn/
where 'nnnn' is the (fixed) dimension of MAT, and '#22%' is the (fixed)
dimension of NAME. These two dimensions must be set by the user before
the code is compiled (nnnn = 3000 and 2222 = 200 are sufficient for
small systems and fault trees). If any systems or fault trees are
encountered which are too large for these dimensions, suitable warn-
ings will be printed out by the code. The user need only change the
three cards shown above and recompile the MAIN program (6 FORTRAN
statements) in order to run any size job. Note that nnnn = 20,000

will accomodate the largest fault tree shown in this report. However,

69

the only limits to system and fault tree sizes are those of the user's

own computer installation itself.

70

A.4 Subroutine DRIVER and Sub-Array Allocation

Subroutine DRIVER reads the program control data (see Section 2.2.3),
sets the dimensions of the sub-arrays, and calls the remaining sub-
routines. Its flowchart is basically that shown in Figure A-2.

Once the program control data have been read in, the dimensions
for the first seven integer arrays and the three alphanumeric arrays
are determined. In order to conserve space, all major program arrays
(15 in all), are combined in the one large fixed-dimension array of
the MAIN program with the dimensions of the individual arrays expand-
ing at times to fill all available space, and contracting later to
the exact size necessary as determined by the program. This also allows
the program to determine at any point whether sufficient space has been
allocated by the main program. As an example, the figure below
represents the complete array area required by subroutine LIBR, which
uses only the first 7 of the 15 total arrays:

C()(2)(3)(4)(5)(6)(7)

% TOTAL ARRAY AREA FOR ALL 15 ARRAYS I
(dimension = NSIZE in MAIN)

The exact dimensions of the first 6 arrays are known and are thus fixed.
However, the size of array 7, which stores the component type library,

is only an estimate, and thus the program allows this array to expand

and fill the space which will be required for arrays 8-15 later. Once
subroutine LIBR has finished, and the component type library is completed,
its exact size will then be known, and array 7 will be appropriately
redimensioned downward, thus allowing maximal room for the remaining
arrays.

At this point, arrays 8-11 can now be dimensioned, as needed for

input of the system diagram by subroutine INDEX. Furthermore, the pro-
per dimension for array 12 is returned from subroutine INDEX. The
last three arrays, which will contain the fault tree itself, can now

be dimensioned to fill up the remaining space. These three arrays,
IGATE, JGATE and GATE require 1, 1 and (5 + 2*XX) entries per completed
gate, where XX is the average number of inputs per gate (XX = 3 in
subroutine DRIVER). Thus each gate will require 13 storage spaces,

and the three arrays are appropriately dimensioned to use up the total
remaining array space.

In a similar manner the three alphanumeric arrays (double pre-
cision) are dimensioned to partition the available array space. Table
A-1 contains a listing and definition of the 15 integer arrays and
dimensions while A-2 contains a similar Tisting for the alphanumeric
arrays.

At this time all library and system data have been read in and
checked for errors. If any fatal errors have been detected, (JERR # 0),
or if no space was left to allocate for arrays IGATE, JGATE and GATE,
the program will terminate. If no errors have been found, subroutine
DRIVER will call subroutine STEVE, which inputs the TOP event and boundary
conditions.

In the event that STEVE detects a fatal error in the TOP or boundary
conditions (IERR < 0), this specific tree cannot be constructed. How-
ever, if the Tibrary and system data were correct (JERR = 0), DRIVER
will proceed to any subsequent job input, and search for a new TOP event
and boundary conditions.

Whenever a valid TOP event and boundary conditions are found, sub-

routine DO IT is called to construct the actual fault tree. Should a

72

No. Name
1 NTYPE
2 IROW
3 NINT
4 NIN
5 NOUT
6 NROW
7 JROW
8 NCMP
9 MouT

TABLE A-1 INTEGER ARRAYS

Dimension

NLIB*

NLIB

NLIB

NLIB
NLIB

NLIB

LNROW, MXNROW

NNODE

NNODE

Description

The 'type number of the ith component
type. In the sample case (Appendix C),
NTYPE(1) = 101.

Location of first row of ith component
type decision table in array JROW.
IROW(1) = 1. 1If table 1 has M rows,
IROW(2) = M+1, etc. Note: IROW(NLIB)
= location of first row of decision
table for TOP event.

Number of internal failure columns for
ith component type.

Number of inputs for ith component type.

Number of outputs for ith component
type.

Number of rows in ith component type
decision table.

Two-dimensional array which contains
the rows of the decision tables. There
are 'MXNROW' rows, each with < 'LNROW'
entries. Location of first row of ith
table is given by IROW(i). Thus the
first entry in the ith table is JROW
(1,IROW(1)).

Number of component whose output is
connected to node "i". In the sample
problem, NCMP(2) = 4 (the output of the

4th component is connected to node 2).

For components with multiple outputs,
MOUT (i) specifies which output of
component NCMP(i) is connected to node i.

*NLIB = 1 + NLIB from DAT2 card, to allow TOP event decision
table to be stored following the last component decision table.

73

Table A-1 (Continued)

No.

10

11

12

13

14

15

Name

ITYPE

INODE

IGATE

JGATE

GATE

Dimension

NNCMPp**

LNRPT, NNCMP

(LNRPT =
LNROW + 1)

(2, NODES)

MGATE

MGATE

NGSIZE***

Description

Component type of ith component.
ITYPE (NNCMP) = “type" number of TOP
event decision table (last table in
library).

Two dimensional array which contain
the node numbers for each input,
internal column and output of each
component. (See Appendix A.2)

Two dimensijonal array which contains
the system states existing at all
nodes. x(1,i) = state at ith node;
x(2,1) = gate beneath which state
was set. (See Appendix A.2).

Location in array GATE of start of
entries for ith gate. IGATE(1) = 1.

Gate into which ith gate is input.
JGATE(1) = 0; JGATE(2) = 1; in sample
case, JGATE(3) = 2, JGATE(4) = 2, etc.
(JGATE is redefined during final
editing).

Array GATE contains all entries for

fault tree. The location of the first

entry for the ith gate is given by
IGATE(i). The entries for the ith
gate are defined and illustrated in

Appendix E, and are briefly: gate type

(1 = AND, 2 = OR), number of gates

input, number of primary inputs, event
signal state and node number developed

by gate, and pairs of inputs for each
input.

** NNCMP = 1 + NNCMP from DAT 3 card to allow for TOP event.

*** NGSIZE is total remaining space of integer array 'MAT'.

74

No.

Name

NAME

MODNAM

CMPNAM

TABLE A-2

Dimension

NLIB

(MAXINT, NLIB)

NNCMP

ALPHANUMERIC ARRAYS

Description

NAME(i) is the name of ith component
type; NAME(NLIB) is 'TOPEVENT'.

MODNAM(j,i) is the name of the jth
internal mode (column) of the ith
component type.

CMPNAM(i) is the name of the ith

component; NAME(NNCMP) is the name
of the TOP event from 'TTOP' card.

75

complete tree be produced (IERR = 0), subroutine OUTPUT is called if
PREP-KITT output is desired. Otherwise, DRIVER will produce any appro-
priate messages, and search for any input data for a subsequent job.
Note that there are a number of reasons that may preclude construction
of a complete fault tree by subroutine DO IT. These include defining

a TOP event which cannot occur or is "sure to occur" under the stated
boundary conditions, or allocating insufficient array space for

completion of the tree.

76

A.5 Subroutine LIBR

After the program control data is read by DRIVER, subroutine LIBR
is called to set up the component library. A simplified flowchart of
this subroutine is shown in Figure A-3. Since this subroutine has its
own extensive error checking routine, LIBR first overrides the IBM
IHC215I error message with a call to the IBM routine 'ERRSET'. This
call will suppress the "illegal character" message which results from
reading input with the wrong format (such as when an extra card has
been inserted). Note that the parameters in this call must be changed
in order to run on a CDC computer.

The remaining functions of this subroutine, as shown by the flow-
chart, are as follows. Following the '&LIB' card, loop 200 is performed
once for each of the 'NLIB' decision tables. For each table, the 'LIBR'
card, containing the name, type, numbers of inputs, internal columns,
outputs and rows of the table, is first read. If this card is missing,
appropriate action is taken to search for the next valid card. When a
valid 'LIBR' card is encountered, the data contained on it are then
validated. This is followed by the 'MOD' card, containing the names of
the internal failure columns. Next, the row cards are read by loop
120 followed by an 'END' card, if present.

As indicated by Figure A-3, a large number of error checks are
performed by this subroutine. Table A-3 lists the diagnostics produced

by subroutine LIBR, along with the FORMAT number and probable cause.

77

SUBROUTINE LIBR CALL ERRSET
- Suppress error message
THC2151 (i11egal character)

es ‘8LIB' card already
ERR < 02 read by DRIVER

Read '8LIB' card |
&
% D0 200 for 1
r_' 211 library entries

unknown card
read for 'LIBR’
or 'END' card

Validate data
on 'LIBR' card

- write error

- set error flag

- reset JROW to
first row

8Gfficient room
for component in
array ‘JROW'?

yes

101
alidate number of
inputs, internal
modes and outputs
DO 120 for all 1 unknown card
I decision table rows read for 'LIBR'
or "END' card
=41 @
ye yes
Writel—<END' card?PecBOMP' card N
error
no
CONTINUE unknown card
read for 'LIBR'
r 'END' card

A1l decision
table rows have
been read in.
check for 'END'

. Read any
remaining cards

. search for '&CMP'
or 'COM' card

. write fipal
messages

st

Figure A-3. Flowchart for Subroutine LIBR

78

TABLE A-3. DIAGNOSTICS PRODUCED BY SUBROUTINE LIBR

FORMAT PROBABLE
MESSAGE STATEMENT CAUSE

CARD MISSING OR 1003 Card missing, out of order,
MISPUNCHED extra card, or four letter
: code mispunched.
ONLY -- COMPONENT 1005 Component Tlibrary incomplete,
TYPES INPUT NLIB incorrect, or error in

previous library components.
NO VALID HEADER CARDS 1011 Missing system data and TOP
FOUND event input.
NUMBER OF COMPONENT ROWS 1012 Dimension NSIZE in MAIN
EXCEEDS NUMBER ALLOCATED program too small.
COMPONENT -- HAS -- 1013 Component has more internal
INTERNAL MODES. THIS columns than specified by
EXCEEDS THE 'MAXINT' '"MAXINT' on 'DAT2' card;
MODES ALLOWED. '"MAXINT' or 'NINT' in error.
COMPONENT -- HAS -- 1014 Rows for current decision table
INTERNAL MODES + INPUTS + - too Tong; error in 'LNROW' on
QUTPUTS. THIS EXCEEDS THE - card 'DAT2', or in 'NIN',
"LNROW' ALLOWED. 'NINT' or 'NOUT' on 'LIBR'

card.
EXTRA COMPONENT TYPES INPYT. 1016 Error in 'NLIB' on card 'DAT2'

extra decision tables in
library, or extra 'LIBR' or
'END' cards found.

79

A.6 Subroutine INDEX

Subroutine INDEX reads the system flow chart as input in the '&CMP'
section. Its flowchart is shown in Figure A-4, and its basic operation
js as follows. After reading the '&CMP' card (or immediately, if
'&MP' is missing), INDEX reads and validates each 'COM' card, one at
a time. Block 100 validates the input which is Tisted there, and
Table A-4 Tlists the error messages which are produced. If any error is
detected, an error flag is set for that component (component i), by
setting: INODE (LNRPT, i) = -2.

If the component has no errors, the correct node numbers are stored
in array INODE (see Section A.2). Finally, extra or missing 'COM' cards
are indicated by further error messages (Table A-4), and indexing and

cross-referencing tables are printed out.

80

| susrouTINE INDEX |

'COM' card already
read by LIBR

PO [wWrite 10
- error
yes

Read card

'COM' card

yes Error: COM cards
100 missing

Validate COM card: é
- valid type number
- number of inputs,

outputs
- node numbers <

NNODE
- unique name

- output nodes not
previously defined

- output nodes not
repeated

- no output connected
back to input

€S TIERR = IERR+] Write appropriate

@ INODE (LNRP1,1) =-2[error message(s)

150 no
Set node numbers

into array INODE

F
200 [Read next card [

unknown card type:
write error
1IERR=IERR+1

Components missing
write error
IERR=IERR+1

too many
components?

components
read?

yes
201

read extra
cards

|y

300

X
Write component
indexing printout

400 Write output node
cross-index

500

[Write final outpuq

(RETURN)

Figure A-4. Flowchart for Subroutine INDEX.

81

TABLE A-4.
FORMAT
MESSAGE STATEMENT

CARD MISSING OR MISPUNCHED 1002
NO COMPONENT TYPE -- 1005;
FOUND IN LIBRARY 1022
COMPONENT NAME "--" HAS 1007
PREVIOUSLY BEEN USED BY
COMPONENT --.
TOO FEW NODES, OR NON- 1008
POSITIVE NODES.
TOO MANY NODES. 1009
ONE OR MORE OUTPUTS IDENTICAL 1010

WITH ONE OR MORE INPUTS

OUTPUT NODES NOT UNIQUE

OUTPUT NODE -- HAS ALREADY BEEN
ASSIGNED TO COMPONENT --

MORE THAN THE -- COMPONENTS
SPECIFIED HAVE BEEN INPUT

1011

1012

1013

82

DIAGNOSTICS PRODUCED BY SUBROUTINE LIBR

PROBABLE
__CAUSE_

Card missing, out of order,
extra card, or four letter
code mispunched.

TYPE number on 'COM' card in
error; TYPE number in component
library in error; other error
in component library or library
incomplete.

Duplicate component name, or
name mispunched.

Current component has too few
nodes, or a blank or negative
entry was found; an input or
output node has been left
undefined; wrong decision

table (wrong TYPE number) chosen.

Current component has too many
node numbers defined on 'COM’
card, or wrong decision table
(wrong TYPE number) chosen.

An input and output for the
current component have the
same node number: no component
may have an output directly
connected to one of its inputs.

Two or more outputs of one
component have same node
number: output nodes must
be unique.

Two or more components have
the same output node number,
all output nodes must be unique.

Extra components included, or
NNCMP on 'DATS' card in error.

Table A-4. (Continued)

FORMAT
MESSAGE STATEMENT

NODE TOO LARGE. MAXIMUM 1016
NODE ALLOWED = "NNODE"

ONLY -- COMPONENTS INPUT. 1017

-- COMPONENTS EXPECTED.

END CARD FOUND WHERE 1026
COMPONENT DATA EXPECTED.

--INPUT NODES REFERENCE 1028

UNDEFINED OUTPUT NODES

83

PROBABLE
__CAUSE_

A node number for current
component exceeds 'NNODE'
on 'DAT3' card; node number
or 'NNODE' in error.

'COM' card missing or mis-
punched; 'NNCMP' on 'DAT3'
card in error.

Component cards missing, or
'"END' card following '&CMP'
card.

One or more input nodes have
no component input into them
(see Section 2.2.5); error in
node numbering; other error
in a component which should
have had the node in question
as an output node.

A.7 Subroutine STEVE

Subroutine STEVE has three main functions, as shown in the simpli-
fied flowchart of Figure A-5. These are:

1) number internal nodes,

2) set the TOP event, and

3) set boundary conditions.

First, loop 102 numbers the internal component columns, as discussed in
Section A.2. Then, before setting the TOP event and boundary conditions,
loop 201 initializes array X (see section A.2). Then, the input is
searched for a 'TTOP' card to input the TOP event. Should '&END' be
found, or later errors occur, this subroutine will terminate, and sub-
routine DRIVER will attempt to find a subsequently valid '&TOP' or

'"TTOP' card for a succeeding job.

Once a 'TTOP' card has been found, the input parameters shown in
block 302 will be validated and, if no errors are found, subroutine
STEVE will then read and input the row cards for the TOP event.

If a valid TOP event is found, the final step is to input the
boundary conditions, if any. Since both internal and external boundary
conditions (component columns and system nodes) may be set, either of
two loops, 320 and 330, is used, determined by the code 'INT' or 'EXT'
on the card being read. The subroutine then concludes by printing any
final messages before returning.

Although the flowchart in Figure A-5 does not present a detailed
picture of all the error checks performed, Table A-5 can be consulted
for a list of the error messages which may be produced along with their

causes. Furthermore, in order to more easily trace the succession of

84

SUBROUTINE STEVE

DO 102
number internal columns

and insert into array INODE

1

201 L

Initialize array x (=—1)]

300 Z

Read '&TOP' card and
search for 'TTOP' card

302

Validate TTOP card:
- MROW < LROW
- NIN < LNROW
- TOP nodes valid
and unique
2999
write read to
imessage | |'&END' RETURN
Set TGP node numbers
into array INODE
311/ Read TOP event
row cards
2001
write search for
message ['] '&END' RETURN

320

set internal
nodes

Validate and

write error

Validate and

write final

FIGURE A-5.

85

set external messages
nodes
l RETURN

Flowchart for subroutine STEVE.

program statements executed when an error is encountered, the follow-

ing states of the program flag 'ISET' are set at various stages of

the subroutine to indicate the point at which an error occurred:

ISET
ISET
ISET
ISET
ISET
ISET

i]] i] 1
= w N

0
]

Beginning of subroutine

'&TOP* or 'TTOP' card has been read
'TTOP' card has been read and validated
TOP event has been validated

'&C' has been read

First 'INT' or 'EXT' card has been found.

86

TABLE A-5.
FORMAT
MESSAGE STATEMENT

CARD MISSING OR MISPUNCHED 1003
-- CARD EXPECTED: DATA CARDS 1008
MISSING OR MISPUNCHED
NUMBER OF ROWS OF TOP EVENT 1009
EXCEEDS SPACE ALLOCATED
NUMBER OF NODES OF TOP EVENT 1010
EXCEEDS SPACE ALLOCATED
NODE -- IS NOT UNIQUE 1011
NODE -- IS NOT BETWEEN 1 AND 1012
MNODE
NODE -- HAS NOT BEEN DEFINED 1013
END CARD FOUND WHERE "--" 1017
CARD EXPECTED
MORE THAN THE -- 'TOP' CARDS 1018
SPECIFIED HAVE BEEN INPUT
COMPONENT "--" DOES NOT EXIST 1020

NODE -- IS A TOP EVENT AS WELL 1021

AS A BOUNDARY CONDITION.
BOUNDARY CONDITION WILL BE
IGNORED.

87

DIAGNOSTICS PRODUCED BY SUBROUTINE STEVE

PROBABLE
CAUSE

Card missing, out of order,
extra card or four letter code
mispunched

End of file read where data
expected: '&TOP', 'TTOP' or 'TOP'
cards missing.

‘MROW' on 'DAT4' card or ‘NROW®
on 'TTOP' card in error. 'MROW'
must be > 'NROW' for all jobs.

'LNROW' on 'DAT2' card or 'NIN’
on 'TTOP' card in error: 'LNROW'
must be > 'NIN' for all jobs.

Duplicate node numbers on 'TTOP'
card.

Non-positive node number, or
node number larger than maximum
node.

Node number refers to non-
existant node; error on 'TTOP'
card or error on previous 'COM'
card.

Cards missing, out of order,
previous error, or extraneous
'"END' card.

Too many TOP event row cards;
error in 'NROW'; also check
'MROW' on 'DAT4' card.

Attempt to set internal boundary
condition for nonexistant com-
ponent, or one with no internal
columns; error in name on 'INT'
or error on previous 'COM' card.

Attempt to set a boundary condi-
tion at a node defined as the
TOP event; error on 'TTOP' or
'EXT' card.

TABLE A-5.

MESSAGE

"&END', '&0UT' OR END
OF FILE FOUND

UNEXPECTED '&0UT' READ
(KouT = 0)

"&END' OR END OF FILE
REACHED WITHOUT '&0UT'
CARD. REQUIRED PREP

DATA MISSING (KOUT = 1).

FORMAT

STATEMENT

1023,
1025,
1026

1027

1028

88

DIAGNOSTICS PRODUCED BY SUBROUTINE STEVE (Continued)

PROBABLE
CAUSE

"END' or data cards missing
or mispunched; extra or mis-
placed '&END' or '&0UT' card.

Unexpected PREP data input;
erroneous '&0UT' in data;
KOUT omitted or in error on
'DAT1' card.

'&0UT' missing or mispunched;
PREP data missing; KOUT in
error on ‘'DAT1' card.

A.8 Subroutine DO IT

The actual construction of the fault tree is done by subroutine
DO IT, along with two subsidiary subroutines, XCHECK and REDUCE. DO IT
employs a top-down construction algorithm, which begins with the event(s)
defined by the TOP event and constructs the fault tree in a down-
ward direction, by searching through the system for events which may
lead to the TOP.

A.8.1 Gate Construction

The construction methodology is identical to that developed in
Chapter 3 of Reference 1, and illustrated in Section 3.4 of the current
report. The basic features of the CAT methodology, as implemented in
subroutine DO IT, include the following:

1) The construction and editing of the fault tree are broken down into
three phases: construction and preliminary editing, intermediate
editing, and final editing.

2) The preliminary fault tree construction stage will result in an alter-
nating series of AND and OR gates; however, many gates will later
be eliminated by editing, often resulting in a series of identical
gate types.

The reason for this alternating sequence stems from the method of
utilizing decision tables for the construction of the fault tree.

When, at any point in the fault tree, a decision table is being

searched for rows which match the necessary conditions, an OR gate

will be produced with each matched row as an input. Then, when one of

these inputs (a specific row of the table) is being further developed,

it will Tead to an AND gate, with each entry in the row as an input.

39

Finally, should any of these entries require further development, this
will lead to another decision table with those rows matching the proper
state conditions forming an OR gate. Thus, the OR-AND-OR nature of

the fault tree construction is a specific result of the nature of the
decision tables, in which any "TRUE" row results in a "TRUE" result

(OR 1logic), while each "TRUE" row requires all entries to be "TRUE"
(AND Togic).

The development of the TOP event and the OR and AND gate construc-
tion and preliminary editing phases of subroutine DO IT are illustrated
by the flowcharts in Figures A-6 and A-7. Since the TOP event is
basically a decision table used to start the fault tree construction
process, the initial phases of DO IT merely determine the nature of the
TOP gate, and send it to the proper location for further development
(Loop 200 for an OR gate, loop 300 for an AND gate). Note that a TOP
OR gate automatically implies a multiple input TOP gate (i.e., the
TOP event decision table has multiple rows). However, a TOP AND gate
might consist of only a single entry, of the form: "state j at node i."
This single input gate will be immediately replaced by an OR gate,
whose entries are the rows of the decision table of the component
whose output is connected to node i, and whose output states are j.

Once the proper gate type for the TOP event has been determined,
the construction phase itself begins, and sections 200, 300 and 400
of DO IT will be executed repetitively for each gate. For each OR
gate, Toop 200 will be performed as follows (Figure A-6). First,
the index 'JDEX' will be set to the number of the gate above the

current OR gate ("INDEX" is the number of the current OR gate itself).

90

| SUBROUTINE DO IT |

101

[Set entries for OR gate |

Set entries
for AND gate

200

OR LOOP

[im'tiah'ze].

i

1

®

check component rows

for matches

— 2040
eliminate gate: P
current gate ho fault
cannot occur tree RETURN
backtrack to
previous gate
single input OR
gate: develop AND L
as AND gate
gate
yes
develop first 219 ves_«ing 14
branch as e11minatq input
AND gate gate ate?
|i no
yes urrent branch
= last input}
gate fTinished
—1 217
start ne reset inputs to
gate eliminate branch

Figure A-6.

91

!

start new
branch

Flowchart for TOP Event and OR Gate Algorithm
of Subroutine DO IT

@)

AND LOOP

Check for preset nodes
and set system states for
events beneath AND gate

inputs alll| delete gate: yes 2060
| preset gate always JOP2. RETURN

340 true b__ici::>
o
backtrack to
341 , previous gate
350 reset nodes beneath no_~AND
gate to undefined gate gate?
fget gate inputq y
342 _ptimary~Yes [gate yes
nOmput omplete .. ’:”91i 3
es, . inpu
develop gate| <
as gRg no @ gate?
develop backtrack to no
first ‘ gate above 334
yes
branch @ Yrent brandl
gate Tinishe last input?
gate . no
finished Start new
gate reset inputs to 335
| eliminate branch
start new
branch

Figure A-7. AND Gate Construction Flowchart of Subroutine DO IT

92

Then the component whose output is connected to node "JNODE" (as

stored in location "KDEX" of gate "JDEX") will be Tocated, and its

rows searched for those with the proper output state, "IMODE." Those

rows having the correct output state will also be searched, and any

whose entries do not contradict any system or component states in

existence, will be input into the OR gate. Thus, each row input into

the final OR gate will match all current system states in existence.

Three situations may be encountered at this stage:

1)

Several rows match the necessary conditions: in this case,
the current OR gate has multiple inputs, and the first input
will be developed as an AND gate, numbered "INDEX + 1," in
section 301.

Exactly one row matches: the current OR gate has only one
input, and thus will be deleted and replaced by its single
input. That is, its single input row will be developed in
section 300 as an AND gate, numbered "INDEX," which replaces
the single input OR gate, which was numbered "INDEX."

No rows match the necessary conditions: that is, the OR gate
cannot occur and must be eliminated. If this is the TOP gate,
then the TOP can never occur under the stated boundary
conditions, and no fault tree can be constructed. If there
is an AND gate or a single input OR gate above, this, too,
cannot occur, and must be deleted, along with any AND or
single OR gate it may be input into. If this leads back to
the TOP, then no fault tree can be constructed. However, if
a multiple input OR gate exists anywhere above the current

OR gate, then only the single branch containing the current

93

gate need be deleted as a "cannot occur" branch. If this is the final
branch of the gate, then the gate is finished, and is sent to location
410 for intermediate editing. If further branches remain to be con-
structed, the OR gate is set to location 401 to reset its indices and
begin development of the next branch.

Thus it is seen that development of an OR gate can lead to develop-
ment of lower gates (cases 1 and 2), or to removal of gates and dele-
tion of branches of gates above (case 3).

Several of these concepts are also utilized in loop 300 (Figure
A-7) for constructing AND gates. Loop 300 is entered each time a row,
input into an OR gate, is to be developed. As such, it has already
been checked for contradictions, and the first step of the AND loop
is to check for any row entries which match existing conditions. Since
entries which duplicate existing system states are "sure to occur" (they
have "already" occurred), they are treated as TRUE inputs into the AND
gate which need neither be shown nor developed. However, should any
entry in the row refer to a node ("KNODE") at which no state has yet
been defined, the following will occur:

1) X(1,KNODE) will be set to the state required by the row

entry, and
2) X(2, KNODE) will be set to "INDEX" (the number of the current
AND gate).
This is done to assure that all events developed beneath this gate are
mutually compatible with (i.e., do not contradict) all other events
below, as required for an AND gate. Since all succeeding events occurr-
ing at this node will be checked against array X, this compatibility

is assured.

94

Once all entries in the row have been checked against system and

component states, those entries which represent previously undefined

events will remain as inputs into the gate. As in the OR gate construc-

tion, three possibilities now exist:

1)

2)

Several new events have been found (i.e., states at several nodes
have been found): thus, a multiple inbut AND gate exists. If all
of these inputs are primary events, the gate is complete, and
location 410 will be executed (post-gate intermediate editing).

If one or more undeveloped inputs exist, they will be developed
as OR gates (section 202).

A single input has been found: the gate is not a true AND, and

the single entry set into array X must be reset to -1 ("undefined").
If the single input is an undeveloped event, it will be sent to
location 203 to be developed as an OR gate, replacing the current
AND gate. If the single input is a primary input, it will be
directly inserted into the gate above. If the gate above is thus
completed, it is sent to location 410 for intermediate editing; if
further branches remain, location 400 is entered to reset indices
and begin the next branch.

No previously undefined states have been found: thus the AND gate
is automatically TRUE and will be deleted. If this is the TOP gate,
the fault tree has no entries (is always true under the stated
boundary conditions). Otherwise, section 331 will delete any OR,
or single input AND gates above, up to the lowest multiple input
AND gate, as "sure to occur." If no such multiple input AND gate

is found above the current AND, the top event is always TRUE.

95

However, if such a multiple input AND occurs above the current
gate, only the current branch is deleted, and the next branch can
then be begun (location 400). If there are no further branches,
then that AND is finished, and loop 410 is entered for intermediate
editing.

A.8.2 Intermediate Editing

This completes the construction and preliminary editing phases of
subroutine DO IT. The Intermediate Editing phase is then entered, as
is illustrated by Figure A-8. This Toop is entered (Tlocations 400 or
401) any time a branch of a gate is completed. If further branches
remain to be completed, section 401 sets indices for the next branch
and sends it to the proper (AND/OR) loop to construct the next branch.
Notice that if the current gate is an OR, and the last branch completed
was an AND gate, system nodes will have been set which must be reset
(set to "undefined") before the next branch of the OR is constructed.
These nodes will be indicated by:

X(2, NODE) > JDEX,
(where "JDEX" is the number of the current OR gate), since all gates
below the current OR will have larger indices.

If the current gate has been completed, and more than one input
exists, the intermediate editing phase for the appropriate gate type
will begin. (If only one input remains, see section 485).

The intermediate editing algorithm for AND gates (reference A-2)
is required because the removal of single input OR gates may lead to
contradictory events beneath an AND gate. Such a situation is illus-

trated by the following figure:

96

Figure A-8.

SUBROUTINE DO IT
INTERMEDIATE EDITING

401

Set indices for
next branch

ICurrent gate is OR.
Reset any nodes which
have been set by AND

gates beneath previous
branch.

Develop next branch,
which will be OR gate

3
Develop next branch,

400 ‘?%
{ Current branch of gate 'JDEX' complete
her branches:
n_be developed?
410
Bypass
Intermediate |
Editing

hich will be AND gate

455 OR GATE
INTERMEDIATE EDITING
[)
436 Reset any nodes which

dictory inputs

DO 454 over all gates input
into gate 'JDEX'

- check second level gates ('JDEX2')
and third level gates ('JDEX3')
for primary inputs which duplicate
or contradict themselves or inputs
into first Yevel gate (JDEX')

- eliminate duplicate or contra-

Gate “sure|
ito occur”

[Backtrack to
(previous gate

457

have been set by AND gates
beneath final branch

CALL XCHECK:
check for redundant
primary inputs

DO 458 over all OR

gates input into gate 'JDEX'
- check for redundant inputs

DO 461 over all third level
OR gates input into second
level OR gates

i
DO 478 over all second and
third level AND gates

478

1
Reset nodes set by OR
gate edit

directly into gate above

Current gate has single input.
Delete gate and insert its input

Gate 'JDEX'
cannot
Ag2] EDIT occur
COMPLETE
LoPyes Backt(ack to
Tree @ @ previous
finished_" gate
no

Backtrack to gate above

Gate 'JDEX' fimished.

to begin next branch

@

start next branch
lof gate above

Removal of DR gate has
produced chain of AND
gates, or direct primary
inputs into AND gate above.
Set primary component node
states for these into AND
gate above.

Flowchart for Intermediate Editing Loop of Subroutine DO IT

Start new gate

97

Since primary events Ai and Bi are beneath separate OR gates,

these primary inputs do not affect one another. However, once branch
2 of OR gate 3 has been eliminated, gate 3 itself can be removed and
primary event B] becomes input into AND gate 1. In the resulting
tree, event B] is forced to occur for gate 1 to be true, and thus
both A] and B] should be compatible with it. That is, if the original
tree is represented by:

(A]LJ AZ)m (B]\J Bz) F oo,
then A]B2 # ¢ or A282 # ¢ would satisfy it, even if A]B] = ¢ and

AZB1 = ¢. However, the elimination of B2 leaves:

(AU A,) N By 7 4.

17 ¢, Or A2A1 = ¢ then A1 or A2 may be removed

without affecting the tree. The effect of this elimination is a more

In this case, if A]B

compact tree, although the previous form would still be correct. If,

however, A]B] = ¢ and AZB1 = ¢, then

98

(A UA)N B = 4,
and the entire subtree 1 should be eliminated.
A third situation arises if, in the original tree, A1 or A2 was
identical with B1. In this case, the reduced tree would become:
Thus gate 1 becomes a single input gate, and is replaced by the input

B, itself.

1

In Subroutine DO IT, this type of editing is performed by loop 454
each time an AND gate is completed. For any AND gate "JDEX", all
second level gates (gates directly input into JDEX) and third Tevel
gates (input into the second level gates) are searched for such redun-
dant or contradictory events (all primary inputs to all three levels
of gates are checked against each other). Note that this may lead to
zero or single input gates beneath the current AND gate, which will be
edited out by calls to subroutine REDUCE.

When the AND gate edit is completed, and multiple inputs remain,
loop 482 is entered to begin the next gate. If only a single input
remains, section 485 is entered to delete the gate. Finally, if no
inputs remain, the AND gate either cannot occur (go to 213 to edit
gates above) or is "sure to occur " (go to 331 to edit gates).

Although intermediate editing is not required for OR gates, it can
be useful in simplifying some fault trees. The basis for the OR gate
intermediate editing is the concept of minimal cut sets, as follows.
If an event occurs as a direct input to an OR gate, and to an AND gate

below, the AND gate is redundant and can be deleted, along with any

AND gates above, up to the lowest OR. This can be seen by referring

99

to the figure below and using the definition of minimal cut sets [A-31].
The cut sets for gate I are (A) and (A,B). However, since (A) is
minimal, (A,B) can be eliminated and gate I replaced by the single

event A.

The more general situation is shown in Figure A-9. This tree
represents the upper three levels of a typical sub-tree beneath an OR
gate, and illustrates the level of editing actually performed in
section 455 of DO IT.

First notice that all events Ai’ B and C are equivalent, lying beneath
direct OR gates. That is, any one of these events represents a
minimal cut set for gate 1. Thus each of these must be checked
against the primary inputs to the AND gates 4, 5 and 7, as well as
against the inputs to OR gate 6, whose events are not minimal, since
they lie beneath AND gate 5. This cross checking is performed at
each gate level by subroutine XCHECK.

Additionally, it is seen that primary events D, E and G are equi-
valent, since each lies beneath an AND or chain of AND's and is input

to the top OR or chain of OR's. Thus, should any of the events A, B

100

Lot

2
3
Lower Lower
Gates Gates
‘ |
l |
|
Figure A-9. Sample Tree for Intermediate Editing

s
o @
S

Lower
Gates

Lower
Gates

or C be identical to D, E or G, the appropriate AND would be deleted
and, in the case of event G, both gates 7 and 5 would be eliminated.
Event F presents a different situation. Each individual event beneath
gate 6 couples with gate 7 and event E to form a different cut set.
If event F is itself minimal, only that cut set containing F need be
removed from beneath gate 5. Thus event F would be deleted from gate 6,
leaving any other branches intact. If this leaves gate 6 with a single
input, then that gate would be eliminated and the lower events would
input into gate 5. However, this could result in a direct primary
input, or AND gate input to gate 5, requiring further editing which
could eventually lead to the removal of gate 5 itself. Specifically,
in DO IT, section 458 checks for events B identical to events A, loop
461 checks events C against A and B, and loop 478 checks events D, E,
F and G. In order to do this, section 456 resets any nodes set by AND
gates below the current gate, and sets nodes for each event found by
the successive Toops. Thus, for example, should loop 458 find an event
B which matches an event A already set, that event will be deleted as
redundant. However, any events B not already found will then be set
in array X, to be checked by later loops for C, D, E, F and G.
Following the OR gate edit, the number of inputs remaining is
checked, as in the AND edit, and similar actions are taken. Finally,
when either type gate is completed (step 482), it is checked to see if
the TOP gate. If so, the tree is finished (step 500). If a further
gate remains above, it is sent to location 401 if other branches remain,
or to location 410 if that gate itself has been completed.

If in the process of the intermediate editing, a single input

102

gate is produced, section 485 is also executed. The first step is to
delete the gate and insert its single input into the gate above. Then,
if the gate deleted is an OR, and the gate above is an AND, nodes must
be set by the AND gate above in the event any AND gates or primary
events are directly input into it. That is, since any events directly
input into an AND (or into a chain of AND's) must be set into array X
to assure no contradictory events beneath, sections 490-4999 check all
direct sequences of AND gates, down to 5 succeeding levels, for primary
events which must be set for the AND gate above.

A.8.3 Final Editing

The flowchart for the final editing phases of DO IT is shown in
Figure A-10. This consists primarily of writing fault tree output and
producing gate transfers. First, if the TOP gate has only a single
input, it is replaced by the gate input into it (or is left as is if
the input is a primary event). Then, following a preliminary gate
printout, a search is made for transfers (if IEDIT has been properly
set).

This transfer search proceeds from the bottom up using the follow-
ing algorithm:

1) Search for gates with only primary inputs into them (these are
the Towest level gates). If any gates have identical inputs,
remove the duplicate gate and replace by a transfer (this is
done by using the same gate number for both gates).

2) Search for gates with only primary inputs and gates input
which have already been checked for transfers. Note that

since higher numbered gates are always input into lower

103

Fault Tree
completed

510
ingle input?

Single input is gate.
Replace single input TOP
gate with input gate.

3

[Write preliminary gate printout |

700

IEDIT = 9 yes

or IEDIT > 1007

SEARCH FOR
TRANSFERS

DO 710 over all gates
from bottom up:

- Search for pairs of
gates with identical
inputs, delete dupli-
cate gate and replace
by transfer

yes
IPRINT < 27

no
| Write intermediate gate printout |

720

|Renumber gates consecutively |

721

| Write final gate printout)

RETURN

Figure A-10. Flowchart for Final Editing Phase of Subroutine DO IT

104

numbered gates, by starting the search from the highest
numbered gate, it is guaranteed that all inputs to a higher
level gate will have been checked by the time that higher
level gate is reached. Then, for each gate, check to see if
its type (AND/OR) and numbers of gate and primary inputs
coincide with any other gate. If so, and if all inputs are
identical, the gates are duplicates, so a transfer can be
produced.
Finally, after transfers are checked, the gates are renumbered
consecutively to fill in any gaps left by the editing phases, and
final printout is produced.

A.8.4 Error Messages from DO IT

In addition to a Targe number of messages produced during the
fault tree construction phases, several error messages may be produced
by subroutine DO IT. Most are self-explanatory, and concern fault

trees which "cannot occur", are "sure to occur," or are too large for
the current dimensions of array MAT (Section A.3). One additional

message, produced by FORMAT 1, has the following form:

* k k k k k k k k k k k k % %

* ERROR NUMBER nnn *

k k k k k k k k k k k k k k %

This message will not occur with the present version of the code un-
less certain programming modifications are made which produce internal
code errors within DO IT. In these cases, this message will serve as

a debugging aid, pointing to one of 13 Tocations where the error was
detected. The number "nnn" refers to a program statement number either

just before or after this message was printed (a double row of asterisks

105

in the program indicates the location of each of these). If such a
message ever occurs, the program logic should be checked at that

point to determine what caused the message, and any program modifi-
cations which affect the variables in question can then be searched

for errors.

106

A.9 Subroutine XCHECK

As pointed out in Section A.8.2, subroutine XCHECK is called by
DO IT in the intermediate OR gate edit, in order to check and set
nodes to eliminate redundant events beneath OR gates. The input flag

ISTART is set by DO IT as follows:

ISTART = 1 check and set nodes for check of direct primary
inputs (A, B and C of figure A-9).

ISTART = 0 check, but do not set nodes for OR-AND-OR gates
(inputs F).

ISTART = -1 check, but do not set nodes for OR-OR-AND/OR-AND-

AND gates (inputs D, E, G).
Internal variable ISET is then set to ISTART.

This subroutine then cross checks all primary inputs to the current
gate with any primary component states already set into array X. If
no preset state is found, the current input is not redundant, and the
next input is checked (after setting the current state into X if
ISET = 1). If the current state has already been preset into array X,
it is redundant and the current input will be deleted. Note that if
ISET = -1, the current event inputs an AND gate, and subroutine XCHECK
returns to DO IT where the entire gate will be deleted (Figure A-11).

Finally, if a state different from the current state has been
preset at the same component node "JNODE" in array X, this means that
multiple states of the same component exist beneath the OR gate (a
valid situation). In this case, array location X(2, JNODE) is set to
the negative Tocation in array GATE where a further state for that

node may have been set (if X(2, JNODE) > -1, no further states exist).

107

[SUBROUTINE XCHECK |

]

DO 110 over all inputs:
check all component
states against preset
nodes in array x

Set current component

mode into array X I
-reset state?
105 ne no
3§?§§er§3322i2t' [state not a dup11caté*1

primary input

ISET

Set this state as an
additional state of
current component

110 | CONTINUE
L_.JISTART = -1 ::::::]

((RETURN)

Figure A-11. Flowchart for Subroutine XCHECK.

108

This Tocation in array GATE may point to additional locations where
further states have been set. Thus several different component states
may co-exist under the same OR gate, and each must be compared with

the current state. If a redundancy exists between the current state and
any of these, the current input is treated as before. However, if it

is different from each of the others, a new location is set (if ISET = 1)
by setting the Tast location checked in array GATE equal to the negative
location of the current state, thus pointing to the new additional mode
of node JNODE. This, then leads to a chain of indices, each pointing

to the location of the next state of node JNODE. (Note that the final
Tocation is indicated by a positive number which may later be set to

a negative pointer if further states are found).

109

A.10 Subroutine REDUCE

Subroutine REDUCE is called by DO IT in order to delete zero and
single input gates. Its flowchart is shown in Figure A-12. LLDEX is
first set by DO IT to the number of inputs (0 or 1) of gate "JDEX2,"
which is input into gate "JDEX." If JDEX2 has no inputs, that input
location in gate JDEX is eliminated, the number of gates input is
reduced by one, and the empty location is filled by moving up sub-
sequent inputs.

If LLDEX = 1, the single input into gate JDEX2 is input directly
into JDEX. Note that if the single input is a primary input, this
means that a gate input into gate JDEX is being replaced by a primary
input. Thus, entries must be switched to assure that the new primary input
in JDEX follows all gate inputs.

A special situation may arise if this subroutine was called from
the OR gate intermediate edit region of DO IT, where negative gate
entries serve as pointers (section A.9). In this case, moving entries
to fill deleted inputs may move a pointer. Thus, inputs so moved must

be checked, and the pointer changed to indicate the new location.

110

204

201

{ SUBROUTINE REDUCE

|

LLDEX = 19>—Y&S

o 200

Current gate (JDEX2) Current gate (JDEX2
has no inputs. Delete this has single input.
input from gate above (JDEX) this directly into

(RETURD)

gate above (JDEX)

)
Input

Single input is a
primary input. Input
this directly into
gate (JDEX) above,
following any gate
inputs.

If REDUCE was called from
OR gate edit region, reset
primary input pointer

(_LRETURN)

Figure A-12. Flowchart for

Input this gate
idirectly into gate
above

RETURN

Subroutine REDUCE.

111

A.11 Subroutine OUTPUT

The final routine to be called by DRIVER is subroutine OUTPUT.
Its function is to produce the fault tree along with failure data and
control information, required as input by the PREP code. By using the
CAT input parameter "IQOT" to specify the device number to which the
output is to be sent, either punched cards, tape or disk output may be
produced, in the input format required by PREP. In addition, this
identical output, along with further information in the form of cross
references, and error messages, is printed by this subroutine following
the output from the fault tree construction and editing phases. A
simplified flowchart of subroutine OUTPUT is shown in Figure A-13,
and is described below. It should be noted that, if a fault tree
analysis code other than PREP is desired to be used with the CAT code,
the basic structure of this subroutine may still be used in many
cases, with suitable changes in input/output formats, naming or
numbering conventions, order of output, etc.

Since the PREP input data required is of three types, subroutine
QUTPUT has been programmed in three sections. These correspond to
statement numbers 100-150, 200-400 and 500-590 in the program listing,
and produce the output for the "DATA," "TREE" and "RATES" input
sections for the PREP code, respectively. Additional pre- and post-
processing is done in other sections of the subroutine. For example,
integer array "IDUM" and alphanumeric arrays "INAME" and "JNAME" are
initially cleared in sections 10-30, along with setting certain flags
and writing output headers.

The first output produced by the code is the control data for

112

SUBROUTINE OUTPUT

READ PREP control data

Set IREAD > 0

140

1
[Compute NG = numoer of gates |

150
Write title and control data
onto device ‘10T’
DO 400 over a1l gates

[Find valid gate (GATE(NDEX) > 0)

Set gate name and type

Split current gate inta
multiple gates with < 7 inputs

DO 399 over all new gates

[220

{Set number of gate and primary inputs

240-260 Set name of gate and
[Set names for gates and components 1
290 375-
385 [Tet names for gatés

[(Write current gate on device '107'] and components

[Write current gate on 'I107")

399

Sort component code numbers
into ascending numerical order

PREP data missing.
Skip failure data sectiol

Validate st half o
input data card
Yalid
component and "% Jwrite
mode? message

yes

Write last
half line

<>

no) =
Write component crossindex]

700

Read extra cards until
'8END' or end of file

Figure A-13. Flowchart for Subroutine OUTPUT

113

PREP. This is read between statements 100-110, and stored in array
IDUM and as variable TAA. Should one or both of the two control data
cards be missing from the '&UT' section of the CAT input data, the
PREP "DATA" output would still be produced, but with zeroes in place
of any missing data. In this case, error messages would also be
produced and the flag, "IREAD" would also be set, to suppress further
attempts to read or crosscheck the missing data. Note that if an
"&END" or end of file has already been read by subroutine STEVE, flag
"IREAD" will be set immediately, and the initial read statements in
OUTPUT will also be bypassed. Since the value of "NG" (the number
of gates in the fault tree) is not known beforehand, its value need
not be input to CAT. This number will be set in Toop 150, and all
control data will then be written onto device "IOT."

Loop 400 is executed once for each gate, in order to write out
the fault tree itself in the required PREP input format. This is
done by storing gate and component names letter-by-letter (and digit-
by-digit) in arrays INAME and JNAME. INAME stores the current gate
name as eight characters, in the form "GATEnnnn" (except for the
first gate, which must have the name "TOP"). This is followed by
the gate type, AND or OR, (stored in NKIND), the numbers of gates
and primary components input (INGATE, IPRIME), and the names of the
gates input, followed by the primary components (stored as eight
character groups in array JNAME).

The majority of loop 400 is concerned with generating the required
names, character-by-character. For components, as discussed in
Section 2.3, this consists of combining the four digit "internal node

number" with the four digit component state into one eight digit

114

number which serves as the name of that component failure state.

Gate names are simply the word "GATE" plus the gate number itself (up
to 9999 gates can be accomodated with the eight character name).
However, should CAT produce a gate with more than the seven inputs
allowed by PREP, Toop 399 is entered, to split the single large gate
into several smaller gates. This is done by creating seven (or
fewer) new gates of the same type, and inputting them into the large
gate above, each of the newer gates taking up to seven of the original
inputs. For an original gate named "GATEnnnn," these new gates would
be named “GAT1nnnn," "GAT2nnnn," up to "GAT7nnnn" if necessary. Note
that if the TOP gate has more than seven inputs, the additional gates
would be named "GAT10001," "GAT20001," etc., even though the original
gate would retain the name "TOP."

Following the fault tree printout, subroutine OUTPUT will then
produce the failure data output. The first step is to arrange the
newly created component state numbers into numerical order, in order
to have a rapid means of checking the failure data for either extra,
or missing components or failure states. This is done in sections
410-460. Since the fault tree is no longer needed, array GATE is
used for this table: Tocations 1-NCOUNT store the component state
numbers, and locations (NCOUNT + 1) - (2*NCOUNT) will be set to 1 when
the appropriate input data are later validated. Then the failure
data can be read in (statement 500), checked against this table, and
output to PREP if this component and state actually appear in the
fault tree. Again, flag IREAD is used to bypass the input operations

if data are missing.

115

Since each input and output data card contains data for two
components, each half of these cards is treated essentially indepen-
dentally, permitting one half of a CAT input card to be written into
the opposite half of the PREP data card. This is done utilizing two

flags with the following states:

ILOOP = 1 currently validating first half of input card

ILOOP = 2 currently card validating second half of input card
JLOOP = 1 first half of current output card available

JLOOP = 2 first half of current output card filled, second

half available.

The program then proceeds as follows. Both halves of an input
card are read (statement 500), ILOOP is set to 1, and the first com-
ponent is validated. If valid, the component data is stored in the
first half of the output locations if JLOOP = 1, and into the second
half if JLOOP = 2. If JLOOP = 2, the output locations are now full,
and a complete output card is written onto 'IOT.' In either case,
both ILOOP and JLOOP are set to the opposite states, and the vali-
dation of the second half of the input card begins. After repeating
the above sequence, one full input card has been validated, and the
next input card is read.

The validation itself consists of the following. First, the
current half-card is checked to see if blank (although PREP requires
both halves of each card to contain data, CAT will accept cards with
either one or two sets of data). If input is present, array "CMPNAM"
is searched to see if that component exists. If it does, its index
number "NDEX" is used, along with the internal column number "INT"

and failure state "STATE" (as input on the data card) to generate

116

the required eight digit reference number (see Section A.2). This
number is checked to see if it appears in the ordered table (the first
half of "GATE"), generated in 410-460. If so, then the current data
are stored in the correct output locations, and a flag is set in the
second half of "GATE" to indicate that data for this state has now
been input. However, if the component name, as input, does not exist,
the specific failure state reference number does not appear in the
fault tree or data for that number has already been input, an approp-
riate message is written, and no values are stored.

When no failure data cards remain (as indicated by "END," "&END"
or "end-of-file,") statements 580 and following will write any remain-
ing half of an output data card onto device "IOT." This completes
the PREP output phases, and loop 620 of subroutine QUTPUT then
searches the second half of array "GATE" to make sure that data has
been read for all component failure states. If data is missing, each
component and state without failure data will be listed. Then, a
cross reference of the eight digit component failure state numbers,
with their corresponding input names, node numbers and failure states,
is produced in section 700. Finally, section 900 is executed,
depending on the state of the flag IREAD, to read or bypass any
remaining input. If an "&END" or end-of-file was already read
(IREAD = 0, 2, 3, 5 or 7), no data remains. However, if "END," or
an unknown card type was last read, the subroutine will search for

an "&END" or end-of-file before returning.

117

A-T1.

A-2.

A-3.

REFERENCES

Salem, S. L., G. E. Apostolakis and D. Okrent, A Computer-
Oriented Approach to Fault-Tree Construction, EPRT Report

NP-288, Palo Alto, Ca., November 1976.

Salem, S. L., G. E. Apostolakis and D. Okrent, "A New
Methodology for the Computer-Aided Construction of Fault
Trees," Annals of Nucl. Energy, vol. 4, pp. 417-433,
1977.

Vesely, W. E., "A Time-Dependent Methodology for Fault Tree
Analysis," Nucl. Engr. and Design, vol. 13, No. 2, pp. 337-360,
August 1970.

118

APPENDIX B, DECISION TABLE MODELS

In order to make effective use of the CAT code, it is desirable
for the user to develop a basic library of component models for the
types of systems he expects to analyze most frequently. Chapter 3
of this report has discussed two methods by which decisjon table models
may be readily constructed. As a further aid to the user, this
appendix will present a number of decision tables which may serve as
examples for subsequent decision table development.

The decision tables which follow are not intended to be completely
detailed component models. Rather, they are intended to represent
the basic feature of a number of varied components. Thus, quite often
several failure modes have been combined into one when their effect on
the output is identical. Furthermore, several of the simpler decision
tables may be used to model a wide range of components either
unchanged, or by means of a few simple additions or deletions.

Two special modeling considerations have been illustrated in
these examples. First, a method of treating common cause failures
has been introduced in the three-state amplifier model. This approach
can be useful for producing decision tables which treat such common
cause mechanisms as calibration errors, operator errors, design errors,
design deficiencies, etc. Secondly, the manner of including external
power sources into component models has been shown in the general
pump table.

If the user desires to develop more complex decision table models,
or to add to these samples, the recent IEEE Std 500-1977[B-1] may

serve as a good reference for the failure modes and failure rates of

119

electrical components used in nuclear systems. In addition, Appendix
III of the Reactor Safety Study [B-21 contains failure modes and rates
for many types of nuclear components.

The sample tables presented here include the following component
models:

1. Amplifiers/sensors

2. Annunciator

w

Batteries/power supplies
4, Cables/resistors

5. Circuit breakers/contacts (normally closed)

6. Contacts (normally open)

7. Fuse/circuit breaker

8. Pipe/fitting

9. Pump/general active component

10. Signal source

11. Switch

12. Valve (motor-operated)
AMPLIFIERS/SENSORS

These amplifiers model a three state "unity gain", or isolation
type amplifier, and a very simple, two state inverting amplifier. Note
that the first model could be easily extended to represent an amplifier
with positive gain. Notice also that this model is a very simple exten-
sion of the decision table for cables and resistors which, themselves,
can be considered unity gain amplifiers. The only change has been the
addition of the states 5001, 5010 and 5011 (calibration errors) to the
amplifier model. This amplifier model could also be used to represent a
sensor circuit which produces an output proportional to the measured

variable.

120

THREE STATE AMPLIFIER

Internal

Row Input Mode Qutput
1 0 -1 0
2 -1 1 0
3 -1 1001 0
4 -1 5010 0
5 1 0 1
6 -1 5001 1
7 -1 1002 1
8 2 0 2
9 -1 5011 2
10 -1 1002 2

Using the above model for several identical amplifiers in a system
would produce a fault tree with independent calibration errors for each
amplifier. It is, however, possible to include common mode calibration
errors via an additional external input. If a common "signal" were
sent to the calibration inputs of several amplifiers using the table
below, all amplifiers would simultaneously fail due to this common
mode error. Furthermore, both independent and common mode failures
could be included in this model by adding rows 4, 6 and 9 from the

previous model (with '0' for the second input column).

121

THREE STATE AMPLIFIER WITH COMMON MODE
CALIBRATION ERROR

Signal Calibration Internal

Row Input Input Mode Qutput
1 0 0 -1 0
2 -1 0 1 0
3 -1 0 1001 0
4 1 0 0 1
5 -1 0 1002 1
6 2 0 0 2
7 -1 0 1002 2
8 -1 1 -1 0
9 -1 2 -1 1
10 -1 3 -1 2

The decision table for the calibration input "component" would

have the following form:

Internal
Row Mode Output
1 0 0
2 5010 1
3 5001 2
4 5011 3

A single "component" using this model could be defined as input
to all amplifiers; alternatively, several different components could
be used, each as input to a specific group of amplifiers which would
be calibrated at the same time or by the same person. Finally, such
a model would be useful for comparator circuits, sensor circuits,
trip logic, etc.

The above models could be also extended by the addition of a

122

power supply input, whose failure would produce the zero output state.
A final amplifier is the following highly reduced model for a
two state invertor:

INVERTOR AMPLIFIER

Internal
Row Input Mode Output
1 1 0 0
2 -1 1 0
3 0 0 1
4 -1 1002 1

This model is useful for representing sensor circuits which produce
an output when the measured parameter falls below a preset value. In
this case, calibration errors could be included, as before. Further-
more, this can be useful for driving such circuits as the annunciator

which is described below.

ANNUNCIATOR

The function of this communicator is to produce an alarm (output)
on receipt of a signal. If an alarm on a zero signal is desired, an
inverting amplifier (such as described previously) may be inserted

before the annunciator.

Internal
Row Input Mode Output
1 0 0 0
2 -1 4 0
3 1 0 1
4 -1 6 1

123

BATTERIES/POWER SUPPLIES

This model provides a signal (voltage) source to those components
which explicitly include a power supply input. Since a single power
supply may be used by many components, this may provide a major common

cause failure mechanism.

Internal
Row Mode Qutput
1 3 0
0 1
1003 2

CABLES/RESISTORS

This decision table can be used to represent any general type of
transmission device (cable, resistor, connector, etc.). It is very
similar to the previously described unity gain amplifier with the
omission of the calibration errors. It is also similar to the decision
table for a pipe, with the addition of "short circuit" failure modes.
If the cable or resistor cannot withstand an overload, the fuse model

should also be consulted.

Internal
Row Input Mode Qutput
1 0 -1 0
2 -1 1 0
3 -1 1001 0
4 1 0 1
5 -1 1002 1
6 2 0 2
7 -1 1002 2

124

CIRCUIT BREAKERS/CONTACTS (Normally closed)

This model represents a circuit breaker which trips on an external
signal. Note that this is identical in operation to normally closed
contacts which open on a control signal. A protective circuit breaker

(trips on overload) will be described later as the fuse model.

Voltage Control Internal
Row Input Input Mode Qutput
1 0 -1 -1 0
2 -1 1 0 0
3 -1 -1 1 0
4 -1 -1 6 0
5 1 0 0 1
6 1 -1 2 1
7 2 0 0 2
8 2 -1 2 2

CONTACTS (NORMALLY OPEN)
The function of this component is to close on an appropriate

signal. This model is essentially the inverse of the previous one.

Voltage Control Internal
Row Input Input Mode Qutput
1 0 -1 -1 0
2 -1 0 0 0
3 -1 -1 1 0
4 1 1 0 1
5 1 -1 2 1
6 1 ~1 6 1
7 2 1 0 2
8 2 -1 2 2
9 2 -1 6 2

125

FUSE/CIRCUIT BREAKER
This table represents a component (such as a fuse, fusible resistor,

or circuit breaker) which is designed to fail on an overload.

Internal
Row Input Mode Qutput
1 0 -1 0
2 -1 1 0
3 2 0 0
4 1 0 1
5 1 2 1
6 2 2 2

PIPE/FITTING
The pipe decision table is a mechanical equivalent to the electri-
cal cable model. Note, however, that there is no equivalent to an

electrical short in this model.

Internal
Row Input Mode Qutput
1 0 -1 0
2 -1 3001 0
3 -1 3002 0
4 -1 3003 0
5 1 0 1

PUMP/GENERAL ACTIVE COMPONENT

This is the pump model developed in Section 3.2. A Jarge number
of components can be represented by a model such as this, which requires
both a source of power and a signal (fluid) input in order to operate
(produce an output). Note that this can also be used to represent a

two state amplifier with external power supply.

126

Fluid Power Internal
Row Input Input Mode Output
1 0 -1 -1 0
2 -1 0 -1 0
3 -1 -1 4 0
4 -1 -1 5 0
5 1 1 1

SIGNAL SOURCE
Since CAT requires all component input nodes to be connected to
a preceding component output node, this signal source may be connected
to any component input (Section 2.2.5). Since this model has no in-
puts, any backtracking by the code will terminate here. A signal
source may be used for the following purposes:
1) To connect to component inputs such as amplifier or sensor
inputs. Often the state at such a node will be preset by a
boundary condition.

2) To connect to component inputs which will not be used.

Row Internal Qutput
1 0 0
2 1 1
3 2 2
4 3 3
etc.

SWITCH

This is the model for the ON-OFF switch developed in Section 3.5

of reference B-3. It has been generalized to a three-state table.

127

This switch has two internal modes: Position (1 = off, 2 = on), and
mechanical(0= good, 1 = failed open, 2 = failed closed). Note that
the position column could be treated as an external input, and would

then behave as a relay.

Row Input Position Mechanical OQutput
1 0 -1 -1 0
2 -1 1 0 0
3 -1 -1 1 0
4 1 -1 2 1
5 1 2 0 1
6 2 -1 2 2
7 2 2 0 2

VALVE (MOTOR-OPERATED)

This decision table models a motor-operated isolation valve with
slip clutch. This valve is designed to remain closed (isolate) as long
as its input is under high pressure (input = 1). A discussion of this
valve model has been presented in section 4.2.1 of reference B-3. The
first input is the fluid input, followed by the control signal and
maintenance override inputs (the latter used to bypass the externally
interlocked control signal). The four internal modes include an initial
position (1 = left open, 2 = left closed), mechanical state, slip
clutch and relay failure states, followed by the output. Note that
the slip clutch is used to prevent the valve from opening while under
pressure, and that the relay is designed to "lock in" on a control

signal and assure that the valve opens and closes fully.

128

Fluid Control Maint.
Row | Input Input Input Position Mech. Clutch Relay Output
1 0 -1 -1 -1 -1 -1 -1 0
2 1 -1 -1 -1 1 -1 -1 1
3 1 -1 -1 1 -1 -1 -1 1
4 1 1 -1 -1 -1 1 -1 1
5 1 -1 1 -1 -1 -1 1
6 -1 -1 -1 2 0 0 -1 0
7 -1 0 0 2 0 -1 0 0
8 1 -1 -1 -1 -1 1 1

129

B-1

B-3

REFERENCES

IEEE Std 500-1977, "IEEE Guide to the Collection and Presentation
of Electrical, Electronic and Sensing Component Reliability Data
for Nuclear-Power Generating Stations".

U.S. Nuclear Regulatory Commission, Reactor Safety Study, WASH-1400
(NUREG-75/014, October 1975.

Salem, S. L., G. E. Apostolakis and D. Okrent, A Computer-
Oriented Approach to Fault-Tree Construction, EPRI NP-288,

Palo Alto, November 1976.

130

APPENDIX C
SAMPLE CASE

A simple example system has been developed in order to illustrate
the use of the CAT code. This example is an extension of the system
used in Section 3.5 of reference C-1 to demonstrate manual fault tree
construction techniques.

This system, shown in Figure C-1, is a simple electrical circuit
with an operator in a feedback loop. Signals 1 and 2 are simple two
state inputs, defined to be in existence as boundary (initial) conditions.
These signals will feed through switches 1 and 2 into a terminal where,
if either signal is present, it will appear at node 5. If the contacts
of the relay switch are closed, the signal will be transmitted to node 7.
If no signal is present at this node, an invertor will send a signal,
via an annunciator, to the operator, who will check to assure that
switches 1 and 2 are closed (or will close them, if necessary).

The input signals will be described by decision table C-1, listed
as type 101 in the sample input. This table indicates that an output
will be produced if the signal is "good;" (note, however that a signal
will always exist due to the boundary conditions defined).

TABLE C-1. SIGNAL (101)

Row Internal Output
1 0 1
2 1 0

Switches 1 and 2 will be two position (on/off) switches similar to
the table in Appendix B but with two changes:

1) input/output states of 2 have been deleted, leaving 7 rows.

131

Signal 1
(101)

Signal 2

(101)

Switch 1
(102)

1 10 Terminal
| (104)
(102) (103)
D—"—'—"'T 4 Invertor
3 11 (107)
l : 5
I | Annunc.
ll (105)
]l
- — — — 4 op. ——
L — — | «os ;

Figure C-1. Sample System

132

2) the internal "position" column has been changed to an external
operator input. The states of this column have been changed
to be:

0: operator leaves switch open
1: operator closes switch.
This switch is defined as type 102, and is shown in Table C-2.
TABLE C-2. ON/OFF SWITCH (102)

Signal Operator
Row Input Input Internal Output
1 0 -1 -1 0
2 -1 0 0 0
3 -1 -1 1 0
4 1 -1 2 1
5 1 1 0 1

The relay switch is identical to that developed in section 4.3.2
of reference C-1 and operates as follows. The relay contacts are
normally open unless held closed by a signal input to the coil. If
power is input to the coil, and if the coil and contacts are good, the
contacts will close and transmit a signal. The contacts will also remain
closed if they have failed shorted (state 2), or if the coil has
shorted (state 2). However, if no power is present, or if the coil or
contacts fail open, no signal will be transmitted. This relay switch

is modeled by Table C-3 (type 103).

133

TABLE C-3. RELAY SWITCH (103)

Row Signal Coil Internal Output
No. Input Input Coil Contacts Signal
1 1 -1 -1 2 1

2 1 1 0 0 1

3 1 -1 2 0]

4 0 -1 -1 -1 0

5 -1 -1 -1 0

6 -1 0 -1 0 0

7 -1 -1 1 0 0

As described previously, the junction (nodes 2, 4 and 5) acts as

a simple OR gate defined by Table C-4 (type 104).

TABLE C-4. JUNCTION (OR gate, type 104)

Row Input 1 Input 2 Qutput

1 0 0 0
2 1 -1
3 -1 1 1

The Annunciator model is that shown in Appendix B, and is defined
as type 105 in this example. Its function is to produce a signal in
the presence of an input. Failure states are 4 (fails to operate on
demand) and 6 (operates spuriously).

The operator is modeled very simply in Table C-5 (type 106)
receiving an input from the annunciator, and sending outputs to (open-
ing or closing) switches 1 and 2. This model assumes complete common
mode action by the operator: if he takes correct action, he will close

both switches. Operator error (state 5003) will imply leaving both

134

switches open (row 2). However, for this example, it will be assumed
that, even if the operator has left the switches open, a signal from
the annunciator will cause him to close them correctly (row 3). A more
detailed model might include other operator failure modes to represent
closing only one switch, or leaving switches open even in the presence
of an alarm.

TABLE C-5. OPERATOR (106)

Row Annun. Operator Output Output
No. Input Mode 1 2

1 -1 0 1 1

2 0 5003 0 0

3 1 5003 1 1

The jnvertor (type 107) is modeled by the Invertor Amplifier in
Appendix B. This model produces a positive signal when no input is
present, and can fail in either of two modes: 1 (fails open), or 1002
(shorts to power-always produces an output).

Finally, the power supply model (type 108) is identical to the
battery model in Appendix B, with the failure modes 1 (fails open) and
1003 (power surge). Note that, even though this model has an output
state of 2, not used by the relay coil input, this row has been left in
the table to show that unused states in a decision table can be
left without any difficulty.

The preceding decision tables were used to construct a fault tree
for the TOP event "No output at node 7," under the stated boundary con-
ditions "signals present at nodes 1 and 3." This tree is shown in

Figure C-2. The explicit manner in which these decision tables were

135

TOP Event:
Signal = 0
at node 7

[

Signal = 0
at node 5
2 Power
failed
| |
Signal = 0 Signal = 0
at node 2 at node 4

at node 11

Signal = 0
at node 9

Annunc
failed

Invertor

Figure C-2. Fault Tree for Sample System

136

used in the fault tree construction process can be seen, for example,
by considering the structure of gate 1.

The construction of gate 1 begins by first locating node 7, at
which the TOP event is defined, as the output of the Relay Switch,
type 103. Thus, the TOP event becomes "output = 0 from Relay Switch"
which, as seen from Table C-3 (type 103) corresponds to rows 4, 5, 6
and 7. Thus gate 1 becomes an OR gate with these four rows as inputs.
Specifically, these four rows correspond to the following events:

row 4: no input to Relay Switch (i.e., signal = 0
at node 5),

row 5: relay contacts failed open,

row 6: no power input AND contacts good,

row 7: coil failed open AND contacts good.
Thus, row 4 requires further backtracking, leading to the events
beneath gate 2, and rows 6 and 7 become AND gates 10 and 11 when these
rows are eventually developed. (The reason rows 5 through 7 are re-
arranged in the final tree is that CAT structures all gates so that
gate inputs precede primary inputs.)

The explicit appearance of good components in the fault tree results
from the specific decision tables used. Referring to the above example,
row 7 requires the coil to fail open and contacts to be good in order
to assure no output at node 7. That is, coil failure will not lead to
signal loss if the contacts have failed shorted. However, the proba-
bility of contacts failing shorted is generally negligibly small compared
to the probability of being good so that, in the interests of simplify-
ing fault trees, analysts generally leave such states out. This is also

useful in computer analyses since roundoff errors may greatly reduce the

137

accuracy of numbers such as (1-Q) where Q is a small number. Further-~
more, fault tree analysis codes such as KITT may not be able to correctly
treat such good states (which are examples of NOT gates), except when
using fixed probabilities.

Although these good states may be removed at this stage of the
analysis, it is generally simpler to eliminate them from the decision
tables before constructing the tree. This can be done by replacing 'Q'
states by '-1' in the internal columns; however, some caution should
be used to insure that no potentially significant errors be introduced.
Furthermore, it must then be remembered that success trees cannot be
constructed using these tables.

In this manner, a set of decision tables was derived by removing
good states from the originally developed tables. For example, Table
C-6 is the table which results for the Relay Switch (type 103). This
set of tables was used with the identical system configuration, TOP
event and boundary conditions as before, to produce the fault tree in
Figure C-3. This is the example which has been used for the sample in-
put and output of Appendices D and E. These appendices can be consulted
to see the form of the new decision tables. In addition, the output
in Appendix E may be used to trace the full construction of the fault

tree, as was done above for the upper gate of Figure C-2.

138

TOP Event:
Signal = 0
at node 7

Signal = 0
at node 5 POWER
failed
llill
Signal = 0 Signal = 0
at node at node

Signal = 0 OP.
at node 9 error

NVERTOR ANNUNC
failed failed

Figure C-3. Fault Tree for Sample System with Good States Removed

139

TABLE C-6. RELAY SWITCH WITH GOOD STATES REMOVED

Row

~NOY O BN

No.

Signal Coil Internal
Input Input Coil Contacts
1 -1 -1 2
1 1 -1 -1
1 -1 2 -1
0 -1 -1 -1
-1 -1 -1 1
-1 0 -1 -1
-1 -1 1 -1

Output
Signal
1

O O O O = —~

A comparison of Figures C-2 and C-3 shows them to be identical,

save for the deletion of the good states.

smaller and easier to analyze, either by hand or by computer.

Figure C-3 is significantly

Further-

more, it corresponds more closely to manually constructed fault trees

used in safety/reliability analyses.

The final step in this analysis was to use the computer code PREP

to find the minimal cut sets for the fault tree produced by CAT. As

shown by the PREP output in Appendix E, these cut sets were:

1:

2:

(o) B S L e

(Power failed)

(Relay coil failed open)

(Relay contacts failed open)

(Switch 2 failed open, switch 1 failed open)
(Annunciator failed, operator error)

(Invertor failed, operator error).

That these are, in fact, the complete minimal cut sets can be seen by

a careful evaluation of Figure C-3.

140

REFERENCES

C-1 Salem, S. L., G. E. Apostolakis and D. Okrent, A Computer-Oriented
Approach to Fault-Tree Construction, EPRI-288, Palo Alto,
November 1976.

141

APPENDIX D
SAMPLE INPUT

This appendix contains the complete input used to produce the
sample fault tree (Figure C-3) in Appendix C. A1l cards follow the
organization and formats as described in Section 2.

The input begins with a title card, followed by the control data
in the '&DAT' section. The 'DAT1' card specifies IJOB = 1, IPRINT = 2
(intermediate level of printout), KOUT = 1 (PREP output desired), IEDIT
= 0 (full editing desired), and IOT = 10 (write PREP output on I/0
device 10). 'DAT2' specifies NLIB = 8 (eight decision tables in
library), LNROW = 5 (length of longest decision table row), MAXINT = 2
(maximum number of internal columns in any table), and MXNROW = 40
(approximate number of rows in total decision table library). The
'DAT3' card specifies NNCMP = 10 (10 components in system) and NNODE = 11
(highest node number in system). Finally, 'DAT4' indicates MROW = 1
(1 row in the TOP event table). Notice that the '&DAT' section is the
only one in which the numbers in column 5 (e.g., 'DAT1', 'DAT2', etc.)
are required for identification.

The next section, beginning with the '&LIB' card which follows the
END card, contains the decision table 1ibrary itself. Referring to the
models discussed in Appendix C, the first library entry ('LIBR0O101')
identifies component type 101, named "SIGNALON," which has 0 inputs,

1 internal column, 1 output and 2 rows. The single internal column is
named "SIGNAL" on the 'MODE' card. This is followed by the two 'ROW'
cards which contain the entries for the decision table itself, termi-

nating with an 'END' card. A1l other decision tables are input similarly.

142

Note that component type 104, which does not have an internal column,
still requires a 'MODE' card, which has been left blank. Furthermore,
the numbers in columns 5-8 of the 'LIBR' and 'ROW' cards are for user
identification and are not required. Finally, the specific library

type numbers, and order of entry, are completely arbitrary; the library
itself may contain any number of component types in any order, including
some which may not be required by the specific systems being analyzed.

The '&CMP' section specifies the system components, types, and
node numbers as shown in Figure C-1 of Appendix C. For example,
component 1, named "SIGNAL 1" is defined as type 101, having a single
node, numbered 1. Using the library as input in the '&LIB' section,
type 101 is seen to have no inputs and a single output; thus this out-
put has been assigned to node 1. Referring to component 4, "SWITCH 1"
type 102 (2 inputs and 1 output), node 1 is seen to be an input in this
case, along with input node 10 and output node 2.

The following data, beginning with '&TOP' define the TOP event.
The 'TTOP' card specifies the event name "SAMPLE 1," the number of rows
(1) and nodes (1) of the TOP event decision table, and the node number
itself (7). The single row of this table is input on the card labeled
'TOP1' which indicates a state of zero to be defined at node 7 as the
TOP event.

Next, the '&BC' data section includes the boundary conditions as
discussed in Appendix C. Since the boundary conditions are defined at
system nodes, an 'EXT' card is used. This card specifies two sets of
boundary conditions: (1,1) - node 1, state = 1, and (3,1) - node 3,

state = 1.

143

Finally, the PREP data are input following the '&0UT' card. The
first two cards include the PREP control information, as discussed in
Section 2.2.8. For this specific job, 1000 Monte Carlo simulations are
specified. Note that NG (input arbitrarily as 1) will be replaced by
the actual number of gates produced by CAT.

The final PREP inputs are the failure and repair rates. .Although
only those components and failure modes are included which actually
appear in the fault tree, all components and modes could have been
included, and only those actually needed would have been used. Should
any data have been omitted, the full fault tree and all but the missing
data, would be output on I/0 device 'IOT.' Thus, any missing data
could be included at a later time. An example of this input can be
seen by referring to the relay switch, which has two internal failure
columns (1 = coil and 2 = contacts), and a failure state of 1 (failed

6 hr']

open) specified for each. Note that a failure rate of 1.0x10°
has been assigned to the coil, and a rate of 0.1x10'6 to the contacts,
while a repair time of 2.0 hours has been used for both. Note also

that no failure rates have been included for failure states of 2

(failed shorted). Additional examples are the separate input data shown
for SWITCH 1 and SWITCH 2. This illustrates that, although the types

of two components may be identical, the failure data are specified

separately, and may, in fact, be different.

144

SAMPLE CRESE FOR (R1 COILE

GDAT
CAT1
DAT2
CAT3
DATUY

END

ELIB

LIBFC101
MODE
EOW1
ROW2

END

LIBEC1D2
MODE
ROW1
ROW2
RKO®3
ROWY
ROW5S

END

LIBRC103
MODE
ROW 1
ROW?2
ROW3
ROwWY
BOWS
ROW6
ROW7

END

LIBPO10OUY
MODE
ROW1
BROW2
ROW 3

END

LIBEO1CS
MODE
ROW1
ROW2
FOW3
ROWY

ERD

LIBR0106
HODE
BOu1
ROW2
ROW3

END

LIBEKO1C?
BODE
ROW1
ROW2
ROu3
ROWY

END

LIBEC 108

Figure

SIGNALCN
SIGNAL

SE=-TYPE!?
INTEENRL

SW=-TYPEZ
CCIL

JUONCTICN

ANNUNC.
INTERNAL

OFEERATOF
CP EEFOFR

INVERTCF
INTEERAL

FOWER

D-1. Data Deck for Sample Case

0 10
40
101 C
0 1
1 0
192 2
0 -1
-1 0
-1 -1
1 1
103 2
CCNTACT
1 -1
1 1
1 -
0 -1
-1 -1
-1 0
-1 -1
104 2
o c
1 -1
-1 1
105 1
0 -1
-1 4
1 -1
-1 6
106 1
-1 =1
¢ 5003
1 5003
107 1
1 -
-1 1
0 -1
-1 10C2
108 0

145

-1
-1

-1

-1
-1

-1
-1
-1

-

-, OO

-y - O -t

P Yo Yol

-

2 OO

-1
-1
-1

-1
-1

- O -

DO QO s s

w

(page 1)

MODE INTERNAL

ROW1 -1 1

ROW2 3 0

ROW3 1003 2

END
ECMP

cont SIGNAL 1 101 1

conz SIGNAL 2 101 3

con3 TERMINAL 104 2 4 5

cont SEITCH 1 102 1 10 2

coms SRITCH 2 102 3 1 4

coneé FELAY S& 103 S 6 7

comn? EONER 108 6

cons INVERTOR 107 7 8

com9 CP. 106 9 10 1

Ccon1o ANNURNC, 105 8 9

END
ETOP
TTOF SAMPLE 1 1 1 7

TOPY 0

END

&BC

BXT 1 1 3 1

END
&00T

1 0 0 0 0
1 1 100¢C 2 0.0

SWITCH 1 1.0 1.0 1 1
SWITCB 2 1.0 1.0 1 1
RELAY S8 1.0 2.0 1 1

RELAY SW C.1 2.0 2 1PONWER 3.0 5.0 1 3
INVERTOR 1.0 2.0 1 10P. 0.0 0.001 1 5003
ANNUNC, 1.0 1.C 1 4

END
&END

Figure D-1. Data Deck for Sample Case (page 2)

146

APPENDIX E
SAMPLE OUTPUT

The following 18 pages contain the complete output for the sample
fault tree of Appendix C. This printout was produced with IPRINT = 2
so that an intermediate amount of printout during the fault tree con-
struction was produced. In addition, 4 sample pages from the PREP run
made using the CAT output have been included.

The first 4 pages represent essentially a direct printout of the
input, with certain headings and messages added. These pages can be
compared with Section 2 (input description) and the sample input in
Appendix D for reference. This output was produced directly by the
sample input shown in that appendix.

The fifth page, "Component Indexing Printout," is a cross-reference
of the components which were input on page 4. Following the index number
and name of each component is the type number of the corresponding
decision table, as input for that component (see column 3), and the type
name itself. Furthermore, for each input node of a specific component,
the component which is input to that node has been looked up and printed
out. In the case of a component with no inputs, the statement “This
component has no inputs” is printed instead. For example, component
number 4 (switch 1) has two input nodes, numbered 1 and 10 on page 4.
Here the components whose outputs are connected to these nodes have also
been printed: 'SIGNAL 1' and 'OP.'. This is an aid to error-checking
to the user, as well as a quick reference when modifying a system.

A further cross reference follows on page 6 ("Output Node Cross-

Index"). Each node which has been defined is referenced, along with

147

the index and name of the component whose output has been assigned to
that node. Finally, for use with components with multiple outputs, the
specific output connected to the node of interest is listed. Here the
only multiple-output component is the operator, assigned to nodes 10
(output 1) and 11 (output 2). The message at the bottom of the page
tells the amount of storage already used by the library and system in-
puts. The amount of space remaining and the number of gates it will
store are computed here, and the appropriate arrays are so dimensioned
within the program.

The final cross reference is produced on the page labeled "Internal
Node Index." This is a listing of the internal nodes, as numbered by
the program, and is used to interpret the numerical inputs to gates pro-
duced in the remaining output (see Appendix A.2). Notice that, for this
case, 11 nodes were defined in the system itself. Thus, number 12
was assigned by CAT as the first of the internal component failure
mechanisms. As an example, the numbers 22 and 23 refer to the two fail-
ure mechanisms of component 6, the relay switch.

The last page of input information is the definition of the TOP
event and specification of boundary conditions. This page is essentially
a listing of the input cards with additional information. In the event
of errors, appropriate messages would be produced here. As noted in
Appendix D, the TOP event is defined as a state of zero at a single
node, node 7. This, the TOP event decision table has a single row,
defining state '0' at this node.

Pages 9-13 ("CAT Gate Printout Section") represent the construction

and preliminary and intermediate editing phases of the actual fault tree

148

construction for IPRINT = 2. As an example, the first two blocks of
information on the first of these pages represent the preliminary
development of gates 1 and 2; an initial negative value within a set
of parentheses indicates an input which has not yet been developed.

In order to understand the undeveloped inputs, a distinction must
be made between AND and OR gates. Each input to a gate consists of a
pair of numbers. The inputs to AND gates consist of a node number,
followed by the signal state to be traced at this point. Thus gate 1,
as defined by the TOP event, will investigate a signal state of 0 at
node 7. The preliminary inputs to OR gates contain a component index
number, followed by the specific row to be developed. Since the TOP
event of the sample case is a single input gate (no signal at node 7)
this can be immediately traced to the appropriate component (component
6), and the TOP event thus becomes: “no output from component 6."
Since the decision table for component 6 (RELAY SW, type 103) has four
rows with zero outputs (rows 4-7), the TOP event can be replaced by
an OR gate, with rows 4-7 of component 6 as undeveloped inputs (see
Section 3.4). Thus the preliminary printout of gate 1 shows inputs
(-6,4), (-6,5), (-6,6), (-6,7), corresponding to undeveloped inputs
from rows 4, 5, 6 and 7 of component 6.

In addition to gate construction, editing phases are included
here, as indicated by asterisks. Thus, for example, the first input
to gate 1, consisting of row 4 of decision table type 103, is seen to
have only a single entry other than -1. This entry is signal = 0 at
node 5. Since single input gates can be eliminated and directly re-
placed by their input in the gate above, gate 2 (an AND gate) is replaced

by the input "signal = 0 at node 5" as the first entry in gate 1.

149

Backtracking further, node 5 is the output from component 3 (type 104).
Since only row 1 of type 104 has a zero output, this becomes a single
input OR gate, which is then eliminated, and its input inserted into
gate 1. Thus "signal = 0 at node 5" is replaced by an AND gate with
inputs: "signal = 0 at node 2 AND signal = 0 at node 4." This is
shown by "GATE 2 TYPE = AND" with the inputs: (-2,0), (-4,0), indicat-
ing undeveloped entries of states 0 at nodes 2 and 4.

As each branch of a gate is completed, an intermediate printout
of that gate appears. For example, on the second page of the fault
tree construction printout, branch 1 of gate 5 is completed, followed
by the printout:

GATE 5: -2 1190 (26, 1), (-10, 2),
The initial *-2' indicates an OR gate (-1 = AND), and the negative sign
implies that the gate has not yet been completed. The four succeeding
values are the numbers of gates and primary events input, followed by
the event being developed by gate 2. In this case it is "signal = 0
at node 9" and is the event which will be placed in the rectangle above
the OR gate in the final fault tree. Finally, the two inputs to gate 2
are printed. The first has been completed (26, 1), and is the primary
input "invertor failed;" that is, input 26 is the internal state of the
invertor, (see Internal Node Index), and state 1 is the failed state.
Notice that the second input to gate 2, (-10, 2), has not yet been
developed and so is the same as before.

Skipping to the final page of the construction phase it is seen
that gate 9 is the last to be constructed. It, in fact, is a single

input gate which is reduced to a direct primary input, leaving only 8

150

gates. This leads back to gate 1 which, when completed, signals the
completion of the fault tree.

The next three pages are printouts of the completed fault tree.

The first shows the fault tree following the preliminary and intermediate
editing. The second page reproduces the tree after transfers have been
removed. In the sample case, it is seen that gates 4 and 5 have been
eliminated and replaced by gates 7 and 8 (which are identical to the
replaced gates). Finally, the third page lists the final tree after

the gates have been renumbered consecutively to fill in the missing gap.

The gate listings on these three pages consist of the following
information, which is similar to the intermediate information produced
during gate construction: first, the gate type, (1 = AND, 2 = OR);
second and third, the number of gates and primary events input to the
gate; fourth and fifth, the event developed by the gate. This event can
be of two types. For numbers below 10,000, the first is a node number
and the second is a signal state to be evaluated at that node. For a
number over 10,000, the first minus 10,000 is the component number,
and the second is the row number of the corresponding component type
being evaluated. (This does not occur in the sample case.)

Finally, the inputs to the gate are of two kinds. First are the
succeeding gates input, as indicated by a -1 in the second position.
Then come the primary inputs: first the internal component node (see
Internal Node Index), followed by the failure state itself.

Since KOUT = 1, this output is followed by the PREP output print-
out and cross index (see Section 2.3). The first of these two pages

is an exact printout of the data to be written or punched on I/0 device

151

"IOT." This includes three sets of data:

1) * DATA, followed by the control data for PREP [E-1];

2) * TREE, followed by the fault tree just constructed;

3) * RATES, followed by failure and repair data as required by PREP.
This data is described in Sections 2.2.8 and 2.3, and reference E-1.

Two special considerations must be discussed here. First, PREP
can accept a maximum of only seven inputs per gate. Should the CAT
code produce a gate with more than seven inputs, this gate will be
split into two smaller gates here, and input into a single gate above.
Thus, should "GATEOOnn' have too many inputs, gates numbered 'GAT100nn'
and 'GAT200nn' would be created, each containing half the total gates,
and each input into 'GATEQOnn'.

A second consideration is that the PREP code allows only a single
failure mode for each component. As discussed in Section 2.3, a
unique component name is constructed for each failure state of each
internal column of each component which occurs in the fault tree. This
"component" is then incorporated into the tree, wherever needed, and
is included in a crossindex on the next page. Thus, failure state 1
(state "0001") of component 4 (internal column node number 18) becomes
component "00180001," and the failure and repair data for component 4,
internal column 1, state 1, is included in the '* RATES' section. If
data is included in the '&0UT' section of the CAT input for components
or states not included in the final fault tree, a message will be printed
and the data will not be output to PREP. If data is missing, a similar
warning will be printed.

The final four pages show some of the PREP output actually produced

152

using the CAT output. The first page shows the control data, and the
second the fault tree as input by CAT. This is followed by a Tisting
of the component names and failure rates, and finally the minimal cut
sets found by the code. For the sample case there were six minimal cut

sets, as expected.

153

REFERENCES

E-1 Vesely, W. E. and R. E. Narum, "PREP and KITT: Computer Codes

for the Automatic Evaluation of a Fault Tree,” Idaho Nuclear

Corporation, Idaho Falls, Idaho, IN-1349, 1970.

154

gql

- FROGRAM CAT, VERSION CF 10/75S
- FECGFAM FOF THY AUTCMATEL CCNSTFUCTICN CF FAULT TREES.

- SAMPLE CASE FOE CAT CCDE

D D AP DN D D D D D YD P WD D AP D P e D D W D T D D UD wn WGP WD A D S Am WD D D W YD WD WD R D AU ML N D an WP W WS A W W

*%x%x CATA VALILRTICN SECTION *»x*»*

& CAT
DAT?Y 1 2 1 0 10
DAT2 8 € 2 4¢
DAT3 10 11
DATAY 1
END

40 ROWS.
1589 ROWS.

NUMBER OF LIEFERY RCWS ESTIMATFL (MXNROW)
ALLOCATED SEACF REMAINING (MXKOW?2)

o

991

evs SANELE CASE EOR CAT CO

LIBRARY INEUT PRINTCUT

GLIB

LIBRARY DATA PEINTOUT FCF

[F1.3] TYEE

LIBRCI101 SIGNALCN 101
#CcDE SIGNAL

Bow1 0

8C2 1

LIERABY [ATE PEINTOOT ECF

TYFPE
LIBEO102 S®~-1YPE1 102
aopk INTRENAL
o1 0
ROW2 -1
RON3 -1
BCUS 1
kows 1
] 1]

LIBRARY DATA PEINIOUT XCR

NANE TYE?

LIPRO10) SHE-TYPR2 103
nODE cors CCATAC
rCEY 1
ROW2 1
RO¥3 1
ROW& 0
ROWS -1
BOBE -1
ROU7 -1

END

LIERAFY CATA PIINTOUT ECP

NAME TYFE

LIBRO104 JUNCTICN 104
MCDE

ROW1 C

RCW2 1

(e} X} -1

ENL

TE

CCHEONENT 1
NIN NINT NOUT MNECHw
0) 1 2

1
0

CCRPONENT 2
BI¥ WINT NOUT NRCH
2) 1]

-1 -1]
0 -t [}
-1) 0
-1 2 1
1 -1 1

COMECHNENT J

RIN WINT NOUT MERCH

2 2 1 7

1

-1 -1 2 1

1 -1 -1 1
-1 2 -1 1
-1 -1 -1 0
-1 -1 1 [4

] -1 -1 [
-1 1 =1 <

COMFONENT 4
NIN WINT NOUT NBCH
2 k)

0 n
-1 1
1 1

LS1

LIBRARY DATA PFIRTOUT FCE CCHMEONENT 5
NIN NINT NOUT NRCw

NAME TYPE
LIBRO10S ANNUNC. 105
MODE INTEENAL
ROW1Y C
RON2 -1
RCW3 1
ROWY -1

BNL

LIBRARY DATA EFINIOUT FCR

NAME TYEE
LIBR0106 OFEFITOR 1C6
MCDE OF EFSCR
ROW? -1
ROM2 1]
RCW3 1
BND

LIBRARY LATA PEINTOUT ECF

NAME TYFE

LIBRO107 IMVEFTOER 17
BODE INTEENAL

RON 1

RCH2 -1

ROW3 [}

ROWY -1

END

LIBRARY L[ATA PEINTOUT FCF

NAME TYFE
LIBR0O1C8 FCHWEF s
MGDE INTEENAL
FOW1 -1
KCW2 K]
ROW3 10C3
ENC

5CMP CPUD FCQUNT. TATE VALTLATION

1

-1
y
-1
6

1 1 4

- -

CCMEONENT 6
NIK NINT NOUT NRCW

1

-1
5003
€003

1 2 3
1 1
0 0
1 1

COMEONENT 7
NIN NINT NOUT NECW

1

-1

1

-1
1002

1 1 4

- - O

COMPCNENT 8
NIN NINT NOUT NECH

0

1
0
2

1 1 3

CONTmNIING,

841

SAMPLE CASE FCF (AT CCCE

COMPCNENT INCEX INPUT PRINTCUT

COMPONENT CABL FEINTICUT

INDEX

VWL WNME WK =

-t

CODE

conm
CCM2
COoM3
CoMu
CCM5
camé
comn?
COM8
COMS9
comicC
END

NAME

SIGNAL 1
SIGNAL ¢
TERMINAL
SWITCH 1
SWITCH =z
FELAY Sh
FOWER
INVELRTOF
CE.
BRNUNC.

TYPE

101
101
104
102
102
103
108
107
10€
10£

INPUT/CUTPUT NODES

OV OO WNWa N w=

S &

11

66l

COMPONENT INDEXING PRINICUT FOF:
SAMPLE CASE FCF CAT COILFE

INDEX NAME TYPE# TYPE
1 SIGNAL 1 1017 SIGNALON
2 SIGNAL 2 101 SIGNALON
3 TERMINAIL 104 JUNCTION
4 SWITCH 1 102 SW-TYPF1
5 SWITCH 2 102 SW-TYFE1
6 RELAY SW 103 SW-TYPE2
7 POWER 108 FOWEEF
8 INVEFRIOF 107 INVEETOR
9 oP. 106 CPEFATOR
10 ANNIONC, 105 ANNUNC.

INFUIS FECM: NODE/NAME

THIS CCMECNENT

THIS CCMEONENT
2/SWITCH 1
1/SIGNAL 1
3/SIGNAL 2
5/TERMINAL

THIS CCMECNENT
7/FEFLAY SW
9/ANNUNC,
8/IMVEFIOK

HAS
HAS

HAS

NO INPU1IS
NO INPU1S

4/SWITCH 2

10/0P.
11/0P.
6/PONEGR
NO INPUIS

091

OUTPUT NCDE CFCSS=-INDEX FOF:
SAMELE CASE FCF CAT CODE

OUTPUT NODE CCMECNERT: INLEX NAME OUTEUT NO.

SIGNAL 1
SWITCH 1
SIGNAL 2
SWITCH 2
TERMINAL
POWEF
FELAY 5N
INVERTCR
ANNUNC,
oP.

oPp.

-t
QWO ANWWNNE =

Py
S, OO NANE WN -

B b ok b od d ok o d b

EREEAERHKEBE NS GRS A AR AR R DR AR IR KRR AR R AR KSR RN R KRR R B R AR R E R R SRR RN RN R G ERE R RN AR R RN B R RRRE KD
* STOKAGE SEME SUFMRRY
* ARFAY YMAT® HAS USED 375 WCRES,

* REMAINING 9€25 WORLS WILL ACCOMMODATE 740 GATES WITH AN AVERAGE CF 3.0 INPUTS PER GATE.
ERARERS AR B R E P AR B AR R A DB BRI AR R RIS DA A AR AR A AR N R PR R B R AR R R AR R AR R SRR R SRR R R KRR KR SRR R R KD

Lot

INTERNAL NOLE INLEX FOF:
SAMELE CASE FOF CAT COLE

INDEX NAMEF TYPE# TYPE INTERNAL NCLES

1 SIGNAL 1 101 SIGNALON 12: SIGNAL

2 SIGNAL 2 101 SIGNALCN 14: SIGNAL

3 TEFMINAIL 104 JUNCTION

4 SWITCH 1 102 SW-TYEE1 18: INTEENAL
5 SWITCH 2 102 SW-TYPE1 20: INTEENAL
6 RELAY Sh 103 SW-TYPE2 22: CCIL 23: CONTACT
7 POWER 108 FOWEF 24: INTERNAL
8 INVERTOR 107 INVERTICE 26: INTEENAL
9 o°p. 106 CPEFRATOR 28: CE EREKOR
10 ANNUNC. 105 ANNUNC, 30: INTERNAL

291

(132 I3 SIS SRR RS2 SRR R R RS RS SRESRRRRE SRR RIS E R F 224 23
* EROGFAM CAT, VERSICN CP 10/75

* TOP EVENT ANL EOUNLMFY CONCITICN PFINIOUT FCE JOB 1

1

* SAMPLE CASE ¥OF CAT CCDE
CRABERSBEERN RS AR R AR AR IR PR AR KRR RN R R SRR AR AR R R R RN KR

&TOP
TOE EVENT FOR SAMELE CASE FOF CAT COCE
EVENT: SAMELE 1
NUMBER OF RO&S

NUNBER CF NGCLES
T10P EVEMT NODES

"o
-

NODE COMECNELT OUTEUT

7 6 FEILAY SW 1

TABLE FOR TOF IVENT:

TTOP NODE (S) : 7
TCPA1 c
END
&BC

BOUMDARY CONDITICNS FOR SAMELF CASE FOR CAT CCDE

EXT 1 1 3 1
END

€91

SAHPLB CASE P06 CA1 CCiB

CAT GATE PBINIOUT SECTICH.

I I B A)

ese PRELISINIFY CAIB PRIDTCOT oeoe

GATE 1 TIEY = O
WUMERE OP GATES IVPUT = § NURBER C! PRIMANY INPUTS = O
EVENT: TOP RWRMT
1#P0TS: -6, LI -6, S)el -6, 6). -6, Nt
GATE 2: ¥ODE 7 PEESIT 10 NODER = 0 BY INITIAL CONDITICNS.
¢ GATE 2 TYPE = AND MAS SINGLE INPUT, GATE BEING BLISINATEG AND INPUT DIRECTLY INTO GATE 1.
® GATE 2 TYRPI = OB &S SINGLE INPUT, GATE BBING SLININATEC 4uD INEUT DIBRCTLY INTO GATE 1.

6413 3 1YER = OF
NUBERD OF GATRS JMPUY = 1 NUNBES CP PRINAWY INPUTS = 0

peENT: SIGBAL = 0 AT NODS
INPLYS: | -3, Nl
GATE 2: #0DE 5 PEESET TO BODR o 0 bY GATE 1V,

['1%4] 3 TIPE = AND
BUNERE OF GATES JMPUT = 2 MUMUBR C? PRINARY INPUTS = O

BVENT: SIGNAL = 0 it pocB
INROTS: -2, 0.0 ~4, 0}, 1
GATB 3: COMECHWBNT *SWITCH 1! TYPRP 2, BCN 1 WODE 1: aong = O CONTRADICTS HOLK = 1, SET BY INJTIAL COWDITIONS,

GATE 3 YYEE = OB
WURERE OF GATES INPUT = 2 WURBER CF PRINABY INPUTS = 0
EVEMT: SIGNAL = 0 AT wODE
INPOTS: | -4, Bl -4,),

GATH 4; NODE 2 PSESET T0 a0DR = 0 EY GATE 2.
* CATE 4 TYPR = AND MAS SINGLE INPUT, GATE BEING BLISINATEC AND IJPUT DIRECTLY INTO GATE 3.
* AT 4 JYPE = OB BAS SINGLE INPUT. GATE BEING ELININATEC SuD IJPUT DIREBCTLY INTO GATH 3.
GATS 4 1Yée = QB
WUBEER OF GATES INPUT = 1 NUMHER COF PRINABY LNPUTS =

BVENT: SIGNAI = G AT NOUE 10
TNEETS: -9, .t

GATSE 4: MODE 10 PBESET TO MODE = O EY GATE 3.

GATE & TYPE = AND
MUNEER OF GATES IMPUT = V NUFLER CE FRINABY INPUTS = 1
EVENT: SIGMAL = 0 AT BOLE 10
INPUTS: (-9, 0),(28, 5003), ¢

GAIE 5 1¥ee = OR
NUNEEB OP GAYES IMPUT = 2 MUPBEW CF PRINARY INPUTS = 0
EVENT: SIGNAL = 0 AT NOLE 9
INELIS: (=10, 1), =10, 25,4

1211

Gagx

GATE
GAT2
GATE
G)TE

]

GATE

GATE
CATR

GATR

GAYR
GATR

GATS

GATE
GATE
GATR

6; MDE 9 PBHESET TO nODE =» 0 BY GATE 4.
6 TYPEB = MWD HAS SINGLE INPUT, GATE BBING BLININATED MND INPUT ODIBEBCTLY INTO GATE S.
6: CCHMICHNENT *INYELTOB® TYPE 7, S04 1 NODE 7: noDe = 1 CONTRADICTS RODE =

6 TIPE = OB HAJ SINGLE INPUT. GATE BBING ELIRINATEL MND INPUT DIBECTLY LNTO GATE S

TYIPE = OF

MUNEER OF GATES INPUT = 1 NUNBEE OFf PRIMABY INPUTS = O

BVENT: SIGNAL = 0 AT NODB [}

INEDIS: -8, .1

#: WODB @ PHESET TO BODE = 0 BY GATH S,

6 TYPE » AND HAS SINGLE INPUT, GATE BEING ELININATEL AMD IMPUT DIBBCTLY INTO GMTE 5.
i 2 VY 9 [} 26, .t -to,).

6: NODB 9 PBESET TO HODE = 0 BY GATE 4.

6 TYPR = MKD HAS SINGLE INPUT. GATE BEING ELIMIWATEL AND JNPUT DIRBCTLY INTO GATE 5.
5: -2 0 2 9 o 26, .t 30, 4)ad

S CCBELBTRD., FRELIAINAEY GATE BDI1Y FOLLOWS eeos

$; 2 0 2 9 0 26, 0. 0, 4y,
$: 2 0 2 9 [N 26, .t 30, 4),
5: 3 0 2 9 0 26, 0. 30, LIy

PRELINIBASY BLIT OF €ATR 5 COBPLETED ¢e¢»

GATS

GATE
€A1l
GATE
GATE

4 CCHFLBTED, EBEBLININABGY GATN EDIYT FCLLOWS ®es

R 10 0 5, . 28, 5003),(
s 11 10 0 (s, =1, (23, 5001),¢
51 2 0 2 9 o 26, el 30, 4),(
@ 1 1 10 0t Se), ¢ 28, 5003),(

PHELININABY RLIT OF GATL 4 COBPLEIBD ¢*e

GATE

GATZ
G 1R

GAIR

GATE
GATE
GATE
GATE
GATE

é; wors 2 PBESET TO HODE = 0 BY GATE 2.

6 TYPE = AND BS SINGLE INPUT. GATE BEING ELIRINATEL AND INPUT DIRSCTLY INTO GATB 3,
i .2 1 2 0 (4, Nt 18, Hed

3 CCHELETED, ERELIMINABY GATE EDIT FCLLOWS woe

3: 2 1 1y 2 [I 4, “h. ¢ 19, Nt
3: 2 1 2 0 { 4, 1), ¢ 18, N
5: 2 0 2 b 0 { 26, V.t 3o, 4).(
3 2 11 2 0 (4, =N, 18, Vet
3 2 11 2 [4, =N 18, Nt

PKELININABY RDIT GF GATE 3 COBELLTED *7e

O, SBT #Y IMITIAL COMDITIONS,

GATE

GATE 6

GATE
* GATE
* Gt

GA1R 7

GATE

GATR 7

GAYER 8

GATR

¢ Gty

g9l

GATR
* GATR

GA1lR 9

GATSE

® GATE
GATE

GATR

® GATE
GATR

ek¢ GATR

GATER
GATE
GATE

¢+¢ PRELIMINIFY RCIT OF GATE

6: CCHEONENT *SWITCH 2' TYPR 2, BO¥ 1 MODE 3: a0DY - 0 CONTBADICTS NUOR =
11PE = OB

NUNEER OF GATES INPUT = 2 NUWBER CF PEINARY INPUTS = 0

EVENT: SIGNAL = 0 AT NOLE 4

INECTS: | -5, 2),(~5, N

7: MODE 4 PFESET 10 mODE = 0 BY GATE 2.

7 TYPE = AND BAS SIRGLE INPUT. GATE BEING ELTAINATEC AND IMNPUT DIBECTLY INTO GATE 6.

7 TTPE » OR BAS SINGLE INPUT. GATER BEING ELININATEC MNP INPUT DIBECTLY INTO GATE 6.
TYEE = 08

NUMEER OF GATRS INPUT = t WURBER CF PRIMABY INPUTS = O

BYRNT: SIGNAL = O AT NODE "

IWELTS: (-9, 2) ,

T7: MODE 11 PRERSET TO MODE = 0 BY GATE 6.

TYPE = AND

NUMEPE OF GAT?S JMPUT = 1 NU#BER CP PRIBARY INPUTS = 1
EVENT: SIGNAL = 0 AT NoOE n

INPOTS: (-9, 0) .t 28, S0C3), ¢

1IPE = OB

SUNERE OF GATES INPUT = 2 MUNBER CF PRINARY INPUTS = 0
EVENT: SIGNAL = 0 AT NOLE 9

18P0TS: (-10, Nt -10, 2.1

$: KODER 9 PBESET TO NODE = 0 BY GATE 7.

9 TYPE = AND HAS SINGLE INPUY, GATE BREING ELIMINATED AMD XIMPUT DISBCTLY INTO GATE 8.

9: CORECMENT *'INVERTOR' TIPB 7, &ON 1 WODE 7: WODE = t CONTRADICTS HODE =

9 TYPE = OF BAS SINGLR INPUT, GATE DEING BLININATEL AND INPUT DIRECTLY INTO GATE 8.
TIPE = OR

WUMEES OF GATES INPUT = 1 NURBEE CF PRINARY INPUTS = 0

EVENT: SIGMAL = 0 LT NODE

INEOTS: (-8, 2).(

9: woDB 8 PRESET TO NODB = 0 BY Gate 8.
$ TYPPE = AND HAS SINGLE INPUT, GATE BRING ELININATEL AND INPUT DIRECTLY INTO GATE 6.
8: -2 1 1 9 0 (26, N, -, 2.0
9: wopR 9 PRESET TO NODE = 0 BY GATR: 7,
9 TYPE = AND HAS SINGLE INPUT. GATE BRING ELIAIMATEC AMD INPOT DIRBCTLY TNTO GATE 8,
8: -2 0 2 9 0 (26, Nl 30, 4y,
8 CCWELETED, FRELINIWAFY GATE EDIT FCLLOWS #%*
8: 2 0 2 9 0 { 26, 1M, ¢ 30, 9.
8: 2 0 2 9 0 ¢ 26, N, 10, 4.t
: 2 0 2 9 0 (26, .t 30, 4t

8 COMPLETED %e*

1, SET 8Y INITIAL CONDITIONS,

0, SET BY INITIAL CONDITIONS,

991

ses GATE 7 CCHMELETEU, $RBLININARY GATE EDIT FCLLOWS v**

GATE LA B I | AR 0
GATE LA T B | " 0
GATE 8: 2 0 2 9 0
GATR RE TN N R | 1" o

=N, 28, 5003),¢
.t 28, 50013),¢(

.t i, 4y,
-.¢(28, 5003),¢(

eee PHELINIMAEY ILIT OF GATE 7 COBPLB1ED *»e

GATR 9: soLE 4 PRISET TO

* GATS 9 TYPE = ANL bAS SINGLE
(Y211 6: <2 1 1t L] [}

BODE =

1¥PUT,
(

0 BY GATE 2.

GATE BEING ELIAIMATEL AMD INPUT DIRBCTLY INZO GATE
.t 20, Nt

9se GATS 6 CCHELETED., FRILIAINAMY GATE EDIT FCLLOWS eo¢

GATE 6: 2 1V 1 4 0
GATS 6: 2 vV 1 L)]
GATE 8: 2 0 2 9 0
GATE 6: 2 v 1 4 0
6ATR 1 2 Vv 1 L] [

(
(
{ 2
{
{

7.
7.
6,
7,
7'

=, 20, .t
=N, 20, Y, (

V.t 30, 4.t
=Nt 20, N.¢
=Wt 20, Hel

eve PEELININAGY RDIT OF GATER 6 CCHPLRTED ®oe

e GATE 2 CCHELETRD. PRELIBIMABRY GATE EDYT POLLOWS eee

GATS 22 v 2 ¢ 5 0
Gars 4 V1 9 10 0
GATR i 02 1 2 0
Gars LA B | " 0
GATS 6: 2 1 1 [] 0
GATE 2: v 2 0 S 0

-~

=N 6, =1,
RN 28, 5003},
“N.t 18, Nt
-1}, (28, 5001, ¢
b PN 20, N,
=Nt 6, =W.d

¥o% PRELIMINAFY RCIT OF GATER 2 CONPLETRD sve

GATER 9; scre 7 PRESET TO

* GATR 9 TYPE = ANL HAS SINGLE
GAIR 1 -2 3 1 ? 0

GATR $: wooe 7 PEESET T0
¢ GATR 9 TYPR = ANC HAS SINGLE

* GATR 9 TYPE = QR HAS SIMGLE

nops =

INPUT,
t

RODE =
INPUT.

IupUT,

2,

0 BY INITIAL COMDITICHS,

GATE BBLNG ELIAINATEC AMD INPUT DIRBCTLY INTO GATE
.t 23, el =6, 6)el -6,

0 BY INITIAL COMDITIONS,
GATE BELNG ELIAIMATEC AND IMPUT DIXRECTLY INTIO GATE

GATE BBING ELIMINATEL AND INPUT DIRECTLY INTO GLATE

6.

i,
7

1
1.

L91

GATE

k¥

*** PRELIMINAEY EDIT OF GATE

PR X

9

GATE

GATE
GATE

GATE

GATE
GATE

GATE

GATE
GATE
GATE
GATE
GATE
GATE

*TOP?

1YFE = OF

NUMEEEK OF GATES INPUT = 1 NUMBEK CF PHIMARY INPUTIS = 0

EVENT: SIGNAL = 0 AT NOLE 6

INPCIS: -7, 2) o |

9: NODE 6 PFESET TC MODE = 0 BY GATE 1.

9 TYPE = AND HAS SINGLE INPUT. GATE BEING ELIMINATEL AND INPUT DIRECTLY INTO GATE
1: =2 2 2 7 0 2, -1, (23, 1), (24, ., -6,
9: NOLE 7 PRESET TO MODE = 0 BY INITIAL CCNDITICNS.

9 TYPE = AND HAS SINGLE INPUT. GATE BEING ELIMINATEL AND INPUT DIRECTLY INTO GATE
1: =2 1 3 7 0 (2, =1, (23, 1), ¢ 24, 3)((22'

1 CCMELETEC. PRELIMINAFY GATE EDIT FCLLOWS *x*x

1 2 1 3 7 C {(2, -1, (23, 1. (24, 3) . (22,
12 2 1 3 7 0 (2, 1), ¢ 23, 1), (24, Nt 22,
3: 2 1 1 2 0 (4, =), { 18, Y. (
62 2 1 1 4 0 (7, =), (20, 1. (
1: 2 1 3 7 o 2, =1)., (23, 1), (24, 3.0 22,
1: 2 1 3 7 0 (2, =1, (23, 1) .4 24, 3.t 22,

1 COMELETED »*x

HAS EFEN CCHMELETEL #*x*x

7.

LN

1. (
. (

891

- EECGEAM CRT, VERSICN CF 1C/7S
- PROGKAM FOR THE AUTOMATED CCNSTRUCTICM CF FAULT THEES.
- OUTPUT BEGICH

SAMPLE CASE ECF (AT CCIE

- = - R MR T = R W WS R B WP A T A M . D M B L AR W S S D WD ey wh A D W G YD D w ED Y D A e D e N D T D A e R D e e we B YD GBS HR W R WP T s

%% GATE PRINTCUT SECTICK #*¥

GATE 1: 2 1 3 7 0 2, -1) ., (23, 1), (24, 3), 22, 1. (
GATE 2: 1 2 0 5 0 { 3, -1), (6, =1, (
GATE 3: 2 1 1 2 0 ¢ 4, -1, (18, LR
GATE 4: 1 1 10 0 { S, -1, (28, 5003),
GATE 5: 2 0 2 9 0 26, 1), (30, 4y, (
GATE 6: 2 1 1 4 0 (7, -1, 20, 1), (
GATE 7: v+ 11 11 0 8, -1, (28, 5003), (
GATE 8: 2 0 2 9 0 26, 1), ¢ 30, 4y,

691

**#% GATE TEANSFEFS CCMELETEL **%

INTERMEDIATE EFFINTOUT FCR SAMPLE CASE FOR

GATE
GATE
GATE
GATE
GATE
GATE

O~NONIN -

33 *% o8 s se gy

[N SN SRy Y

0 b ot N i

N ot b O

O - nnny

DOOOO0O

—— o~~~

CAT CODE
2, =),
3, =1), (
7, -1),
7, =1}, (
8, =Nt

26, LA P

1, (
=1}, (
1. (
1),
5003), (
4) ., (

24,

3.

22,

LN

0LL

- B B - D D W - WD W G b D S W WD W A ND hp e S YD An A P R 4 D TR W P A Y D WD T W D D W N P S S M em M 4R WD M e e A B e T me WD W W WS B AP W e W a

- EBOGFAM CAT, VERSICN CEF 1C/7°%
- FROGRAM FOF THE AUTOMATED CCNSTRUCTION OF FAULT TREES.
- CUTPUT REGICN: EFINAL GATE ERINTOUT

- SAMPLE CASE FOF CAT CCIE

- - - T D T R - = W T e U =BG R P W A W e W W e D D M D W b 4 N L A D WS W W D A WS b W M W s W S A S S AF D D W W e ek R T R TS D W W D %R @

#*% PINAL GATE FFINTICUT SECTICN **=*

GATE 1: 2 1 3 7 0 (2, =1) . (23, Nt 24, 3.t 22, 1.
GATF 2: 1 2 0 5 0 (3,) P 4, -,
GATE 3: 2 1 1 2 0 (5, =1, (18, 1.0
GATE 4: 2 1 1 4 0 { 5, =1, { 20, 1) . (
GATE 53 1 11 1M 0 { 6, -1, { 28, 5003), ¢
GATE 6: 2 0 2 9 0 (26, LN 30, by, (

LLL

-~ FROGRAM CAT, CUTELT KREGICKN
- CUTPUT TO I,/,C L[EVICE 10 IN FCRMAT FOR PREEF-KITT CODES

= SAMPLE CASE ICF CAT CCTE

SAMFLE CASE FCF CAT COILE

**%x FAULT TFEE CCNSTRUCTER BY CAT, VEFSICN OF MAY 1977 *x*x»
* CATA

6 0 0 0 0 0
1 1 1000 2 0.0
ENLC
* TREE
10P OF 1 3 GATECCCZ2 (€0230001 C0240003 (0220001
GATEO002 AND 2 0 GATEOCC3 GATEN0O04
GATEOO003 OR 1 1 GATECCCS 0C180001
GATEOOO4 OR 1 1 GATEQCCS 00200001
GATEOO05 ANL 1 1 GATECC(C6 0C285C03
GATEOO0Q06 OF ¢ 2 C026CC01 0OC3000CUH
ENTC
* FRATES
00180001 1.000 1.000 €0200001 1.000 1.000
002200C1 1.000 2.000 00230001 0.100 2.000
00240003 3.000 5.0CC0 002€0C01 1.000 2.000
00285003 c.0 0.C01 00300004 1,000 1.000

ENT

AN

- FEFOGFAM CAT1, SUERCUTINE CUTFUT, VFESTCN OF MAY 1977
- CFOSS-INDEX CF COMPCKEKNT NAMFS USEL FCk PREE/KITT INPUT

- SAMFLE CASE FCF CAT C(CLE

EREP CCMECNENT CCMECNENT INTEFNAL: IMNTERNAL: INTERNAL FAIILURE
NANME INLEX NAME CCLUMN: NUMEER: NAME STATE
00180001 4 SWIICH 1 1: 18: INTEEKNAL 1
00200001 5 SHWIICH 2 1: 20: INTEPRNAL 1
00220001 6 GBELAY SW 1: 22: COItL 1
60230001 6 FELAY SW 2: 23: CCNTACT 1
C0240003 7 ECWER 1: 24: INTEPNAL 3
00260001 8 INVERICH 1: 26: INTEGRNAL 1
00285003 9 OEF. 1: 28: OF ERKOR 5003
c0300004 10 ANNUNC, 1: 30: INTEENAL 4

€L1L

0 340 3 3K ok o ok ok ok ok R R ok Ak ko K e ok ok A ook R o Xk R R R 3 A s ROK XN X % K kol ok ok oo K ok ook ok o R ok K 5 K R KR K k)

*TREBIL FAULT TREF BUILLCING FECGFLM
e ok ok i ok K ko ke o R b e ok e ook ki 3k Ok ko nc sk Kk K ¥ ke o kA Kk R kK o % ok X 3Ol ko i ke e a3k i e B ok ok i ak K a0k xRk oK ok K ok koK X 3 s

SAMPLE CAS¥Y FCF CAT COILE

*%xx FAUJLT TREE CCNSTFUCTFD BY CAT, VEKSICN OF MAY 1977 *x*x

NUMBER OF GATES,NGe=~wmmo=cvemcccnwa i tad)
COMBO STARTING VALUE,MIN=-====-- e e—— - --- 3
COMBO ENDING VALUE,MAY===~-==c=ecceacc~-- el 0
CUT SET - PATH SET SWITCH,IDEY1===<e=ecmce=- c
PRINT - DISC SWITCH,IDEX2===<=- kit el 0
MONTE CARLO STARTEER ,MCS==w<ew==e=- ik 1
NO, OF RANLCOM NUMBEFS TO BREJ®CT NIEJIC===-=-= 1
NO, OF MONTE CARIO TRIALS,NTR=e-ev-ex -==~== 1020
MIXING PAFRAMETEE SWITCH,TREN=eseccacouo- -—- 2

MONTE CARLO MIXING PAFAMETIEF,TAl=e-cocaeaa-~ e.n

vLL

o o okok kK Ak k0 ok ok ko ok ok ak ok 3k k2K KR ak 3K ok ok K ok K o 3K R 3k K R N R R koK oK 3 Ok

*TEEBIL FAULT IREXY BUIITLING FROGERM
Moo o ok o ok Rk kR sk o ok ko ok b ok K K sk R Kk R Kk ok O o 2 ok Ok KK K K K

SAMPLE CASE FCF CAT CO2DE

NAME TYPE INPUT Sem=-

TOP 6} 1 3 GATENZ02 00237001 £0240003 0C22n0 M
GATEQ0G2 ANLC 2 C GAT®FN0C3 GATTOCOW

GATEOCO3 OF 1 1 GATZCCCS 90137001

GATEOOCU OF 1 1 GATECN(CS 00232001

GATEOOCS AND 1 1 GATE(CQO6 3285003

GATEQ006 OF C 2 DJ202CCY 0C3D09004

END ccC

G/l

A0 i e ok e Kk 3k ko akook ko ok s ok o 3 dk i ko ok ok ok ool ok o KK 3K ok 3k R K v e dk A i i 3 8 A K I N o R KOk i K 3K R OR XK ol 3k e e 3k e e kK e KoK o

*TPEBIL FAULT TREEX BUHILLING ES0GEAM

1 2k ok 3k ok A ok o ik kR K ok sk Kk ok ok ok 3 sk ok aie ok ka0 ok Rk ook ok K ok o ok i sk R ke 3 ok ok ke e N e i ke W ok ok i ook ok kK ek ok o Kk K K e ok oK ok kol K K ik

SAMPLE CASE FCF (AT CODE

COMPONENT INDICES, NAMES, ANC FAILUPE LRATES

TREE INDEX

D@~ DO W

CCHMECNENT NAME
00260CN1
no3nNConNy
00285023
00203071
nN0180001
00230021
00240003
00220001

(EEF HOUF) -

LAMBLR (FATLURE INTENSITY/HF,)

1,00000D-C6
1,30000D=-36
0.0

1,000C9D=06
1.00000LC=06
1.00000D-07
3.009n0L-06
1.00000D-06

TAU

*

2.09000D+00
1.00700D+00
1.0000CD~-03
1.00000D+00
1.00%00C+00
2.00000D+00
5.00000D+00
2,00000D+00

9/l

A R K R K K ok ok oK b ok o ok ok e K o ok ook o ok ok ok o o kKo K W X K % koK K X oAk Xk ok ok ok A K xc K K Aok o R bk o ok ok ok ok kR ok

PINIMAL SETS ECX THTIS TF¥ET
sk 3o 0K K o oK e ok o K kW b ok ok i K ok e kR ok ok o ko ok K ok R s sk i ok ok ok i ok kR ak ko ok i ok i ok xe sk ok ik KOk K Ok K e 3k Kk ok i 2 kO R ok ok ok ok ke

FINIMAL CUT SE1I 1 rt242003
FINIMAL CUT 5E1T 2 rL22007
MINIMAL CUT SET 3 ro23n201
MININMAL CUT SF1 4 r32023801 €d18C21
MINIMAL CUT SET 5 CC3CCQCy 0C235003

FINTMAL CUT SET £J326239C1 CC285003

o

sxxkkkkkax END OF OUTPUT PEOM KINSET #xesaxkdsxx

PO

APPENDIX F

Program List for CAT

The following is the complete listing of the FORTRAN source deck
for the CAT code, including all comment cards. This 1isting contains
the current version (as of December, 1977) and incorporates the following
changes to the version described in reference 1:

1) Addition of subroutine OUTPUT, and call statement in subroutine

DRIVER, to produce PREP-KITT output; this necessitates addi-
tional input in new '&0UT' section of data input if KOUT = 1;

2) deletion of array 'AMAT' and dimension 'MSIZE' from MAIN

program and subroutine DRIVER;
3) replacement of paramater 'IGOOD' by 'KOUT' and addition of
"IOT' on DAT1 card and in COMMON;

4) addition of parameter 'NGATE' in calling sequence for'DO IT';

5) addition of error checking statements for new input in '&OUT'
section. This requires changes in DRIVER, LIBR, INDEX and
STEVE to recognize and differentiate between input sequences
for KOUT = 0 and KOUT = 1. Also, changes in DO IT and DRIVER
have been made to bypass PREP-KITT input and output if no fault
tree is produced by CAT (e.g., if TOP event cannot occur in

the fault tree desired).

177

CREREFEFARFARERRIF SRR IR RIS RS BR AR R R IRk R Rk Aok gk Rk ook ok o Kok Kok kK

EBCGEAM (21

FROGEAM FOF THE AUTOMATED CCNSTRUCTICN QOF FAULT TREES
VEFSICN CF M2Y,1977

EEOGRAMMED EY S. L. SALEM, 825-2792

CHEMICAL, NUCLEAR, AND THERFPAL ENGINEERING DEPAFIMENT

££32 BCELTEF HALL

SCHOOL OF ENGINEERING ANL AFELIED SCIENCE

CNIVERKSITY CF CALIFOENIA, LCS ANCGELES

I0S ANCELES, CARLIFCENIA 90C24

L BRI BN BE BE SR AR B 2 AR)

e ok ok ok ok ok ok ook o koK oK ok b ok 2 3k ok ok ok ak ok ok ok ok ok ok ok ok o ok i ok 3k b ook ok ok ok ok ok K o ok ok o e ok ok ok KOk Rk R ko Kk

MAIN ECCUTINE (TUMMY)
RCUTINE TC SET MAIN ARRAY DIMENSIONS ANL CALL LFIVER
DIFENSICN MAT (10000)
DOUBLE PRECISICN NAME(200)
CATA LSIZE,NSIZE/ 2C0,10000/
CAIL DRIVEEF (N2ME,MAT,LSIZE,NSIZE)
STCE
ENT
SUEFCUTINE L[RIVER (NAME,MAT,LSIZE,NSIZE)

eNeNsNaXeRsXe ke NN EeEsNsKe N

MAIN L[RIVER EBECUTINE OF PECGRA¥ CAT
FOUTINE TO REAL MAIN PAEAMETEEFS, SET UP PROGRAM DIMENSIONS
ANI CRLL ERCGFRM SURROUIINES
VARIABIES I1 - I15 AFE STARTING INDICES OF SUBAERAYS
CF MAIN INTEGER ARRAY 'MAT!
VARIABIES J1 - J3 AFE STARTINKG INDICES FOR DOUBILIE PRECISION,

[sNsNsNeNsEe XeKe!

DIFENSICN KAT(NSIZE)

CCUBLE PRFCISICON NAME(LSIZE),NNAKE

CCFMCN TITLE(20) ,¥XXX(20) ,IERR,I¥DIT,IDUM(12Z) ,NNAME,IPRINT,KOUT

[AT? LCAT,MLAT,LEND,LLIB/'&LAT',* IAT','ENL ','6LIE'/

DATA LTOE,MENC,XCUT/'6TCPE','EENLC','60UT"/

LATA IJCE,NECH/1,1/

IPFINT

IFTIT

KCLT

IC1T

INGATE

IFFFR =

JEFE =

FERAC (5,10CC) TITLE

WRITE (6,1C001) TITLE

REAL (5,1002) XXXX,NCOLE,I,1DUM

IF (NCODE .EC. LLCAT) GC TO 90
89 WRITE (6,1003) LCAT

WRITE (6,1C04) XXXX

0
0
0
10
11

OO W R

C INEUT ERRCR L[ETECTED. PEROGEAK WILL ATTEMPT TO CONTINUE.

178

[eNeNaNeNe!

JF {(NCODE .NE. MILAT) IERF = 1
IF (NCODE .EC. LENL) GC TO 6CO
IF (NCODE .EC. MLCAT) GOC TO 93
GC TC 9

90 WRITE (6,1004) XXXX

READ INEUT IN GENERAL FOEMAT.
91 RE2C (5,1002) XXXX,NCODE,I,IDUM
IF (NCODE.EC.MCRT .CF. NCOLE,EQ.LENL) GC TC 92
WRITE (6,1003) MCDAT
WRITE (6,10C4) XXXX
1EEF = IERE + 1
GC TC 2000
92 WEITE {(6,1004) XXXX
IF (NCODE .EC. LEND) GG TO 600
93 GC TC (100,2€0,3CC,400,5€C0),I
100 CCHTINUE
I1F (ITUM(1) .GTI. C) IJOB
TEFINT = ILCM(2)
KCTT ITUM(3)
IECIT IDTM(4)
1F (I1DUM(5) .GT. 0) IOT
GC 1TCc 91
200 CCNTINUE

ICUM (1)

ICUM(5)

EFOGFAM SE¥T1S PARAMETERS OF ARRAYS FOR 'LIER' ROUTINE

NIIB = IDUK(1)
INECH = ILUM(Z)
MAYINT = ILCUE(3)
MXFRCW = ILUM(Y)
LKEE1 = LNECH + 1
GC IC 91

300 COMNIINUE

EROGFAM SEIS FARAMETEERS OF ARF2YS FOR INDEX ROUTINE
NRCME = ILCUM (1)
NNCDE = IDUX (2)
GC IC 91
4C0 CCYNIINUE
IF (IDUM(1) .GT. 0) NROW = ILCUM(1)
GC TIC 91
500 COXTINUE
600 CCNTINUE

ALL EABAMETERS HAVE BEEN INPUT.

CCHEUTE INLCICES ANL LCIMENSIONS FOR ARFAYS.

INDICES HAVE ADDITIONAL INCREMENTS OF 1 TO ALLOW FOR
INSERTICN CF TCP EVENT.

I1=1

12 = I1 + NLIB ¢+ 1
I3 = I2 + NIIB + 1
I4 = I3 + NLIB + 1

179

(o NeNe]

(s X sNeNsg!

[sEeKeEsNsEe K2 Ks!

70¢C

I5 = I4 + RIIB + 1

I6 = IS5 + NLIE + 1

I7 = I6 +# K1IB + 1

J1 = 1

J2 = J1 +# NIIB + 1

J3 = 32 + MAXINTI*{NLIE + 1)

CCMPUTE BFEMAINING ARFAY SEACE
AND ALLCCATE ENTIRELY TO AKRAY 'JECW'
MXEOW2 = (NSIZE = I7 +1) /LNEOW
IF (MXROW2 .IE. 0) GO TO 2200
1F (33 .GT. LSIZE) GO TO 2350
WRITE (6,1CC7) MXNRCW,MXEOW2
IF ((10*MXFOW2) .LT. (9*MXNFOW)) WRITE (6,1008)
PXNRCW = MXEFCW2

AL1 INDICES ¥CE LIER KOUTINE BHRVE EEEN CCMPUTED.
EEGIN EXECUTICN CF LIER ROUTINE.

CAIL LIBF(M2T(I1),MAT(I2),MAT(I3),MAT (I4),MAT(I5) ,MAT(I6),

1 MAT(I7) ,NAME(J1) ,NAME (J2) ,NLIE,LNFOW,MXNRCW,MAXINT,
2 MXINT2,MXRONZ2)

JEER = IEFRE

I (IEBR .171. 0) JERR = -IEFF - 1

I1IBR HAS FETUFNED: MXINT2 = M2X NO. INTERNAL MODES PER TYPE
MXROW2 = TCIAL NUMBER CF LIBRAFY FOWS.
NOTE: IERR LESS THAN 0 IMELIES 'CCM' CARD HAS ALREADY BEEN
REAT EY SUEROUTINE °'LIBR' (RUN WILL CCNTINUE).
IEGE GEEATER THEAN O IMPLIES FATAL CATA ERROF LETECTED
EY SUBROUTINE 'LIBF' (BUN WILL ABOET).
¥CW SET IFCW (NLIR + 1)
MAT(I3 - 1) = MXEQOW2 + 1
MXFOW2 = MXFCWz + NRCW

I8 = I7 + LNBCW*MXEOW2

I3 = I8 + NNCLE

I1C = I9 + XNCDE

I11 = 110 + NNCMF + 1

I12 = I11 + LNEET*(NNCHF + 1)

1F (112 .GT. (NSIZE + 1)) GO TO 2300

I ((J3 + NNCME) .GT. LSIZE) GO 1IC 2350

CCNTINUE

CAIL INDEX (MAT(TI1),MAT(I3),MAT(I4),MAT(I5),NAME(J1),¥AT (I8),

1 MAT (I9) ,MAT(I10) ,MAT (111) ,NAME(J3) ,NLIB,NNCHP,
z KNCDE,LNEP1)

JEBR = JERF + IEFE

I¥FR = C

MNCDE = IDCM (1)

NOLES = MNOLEF + MXINTZ2*NNCHP

NLIB = NILIE + 1

NNCME = NNCME + 1

I13 = I12 + 2*NODES

180

[sEeNeKeNs!

eXe e ReNeNeKe!

[sNaRsNeoNe e

CCMPUTE FEMAINING ARRAY SPACE BND ALLOCATE TO GATES

1F {NSIZE .LT. {(I13 + 2%INGATE + 3)) GO IO 2400
MGATE = (NSIZE - I13 + 1)/ (INGRTE + 2)

NGSIZE = NSIZE = I13 = 2*MGATE +1

XX = (1.C*INGATE - 5.0) /2.0

I14 = I13 -1

118 = NSIZE - I14

WRITE (6,1010) I14,I15,MGATE, XX

114 = I13 + MGATE

I1E = I14 + MGATE

1F
Ip
Ca

I1F
1E
(oF

(JERR .NE. 0) GO TO $S8
tM(1) = IJCB
1L STEVE (MAT(I1) ,MAT(I2),MAT(I3),MAT(I4),MAT(IS) , MAT(I6),
MAT (I7) ,MAT(I8) ,MAT (I9),MAT (I10),MAT (I11),
MAT (I12),NAME (J1) ,NAME (J2) ,NAME (J3),
NLIB,LNFCW,MXROW2,NNODE, MNOLE, NNCMP,LNRE1,MXINT2, NODES,MAXINT)

SUBRCUTINE "STEVE' RETURNS IEFRK LESS THAN 0 FCR FATAL
EEFOFS, AND IEER GREATEF THAN 0 FORE LESS SEVERE EEROKS.
JOB WILL ABOFT FOR IERR LESS THAN 0, BUT SUESEQUENT JOBS
WILL BE BUN IF NO 'LIBR' CR 'INDEX' ERRORS WEFE FCUND.
(IERR .L1. C) GC TO 810
FR = 0
IL DO IT (MAT(I1),MAT{(I2),MAT(I3),MAT (I4) ,MAT (I5),HAT (I6),MAT(I7)
MAT (I8) ,MAT (I9),MAT (I1C) ,MAT (I11) ,MAT(L12),MAT {113},
MAT (I14) ,MAT(I15),NAME (J3) ,NLIE,INROW,MXECW2,NNCLZ,

1,
2
3 ¥KNODE,NNCME,LNRP1,MGATE, MXINT2,NGCSIZE, NOLES, NGATE)
IF (1%RR .NF. 0 .OR. KOUT ,EQ. 0) GC TO 810

SUEROUTINE *LC IT' RETUENS IERE = 1 IF NC FAULT TEEE
CE ONLY FARTIAL FAULT TFEE wAS FEODUCEL.

SCEREOUTINE 'OUTPUT' WKILL WEITE EREP INPUT ONTO
TATASET *IOT® IF IERR = 0 ANL KOUT = 1,

CAILL OUTFUT (MAT(I'0),MAT(I13),MAT(I14) ,MAT(I15),NAME(S32),
1 NAME (J3) ,NLIB,MNODE,NNCMF, MGATE , MXINT2,MAXINT,
pi NGSIZE,NGATE,IQT)

GC TC 998

810 CCHTINUE

FAULT TREE NCT ERODUCEL BY SUEECUTINE 'LO IT',

FE2L PAST EREP-KITT LATA (IF ERESENT).

IXYX CCNTAINS LAST CAKD REAL EY SUBROUTINE 'STEVE!
("6END', °*§CUT', OR END-OF-FILE).

IF (KOUT .FC. © .OK. XXXX{1) .NE, XOUTI) GC TO 998
820 REXD (5,10C2,EXD=999) XXXX,NCODE

WEITE (6,1004) XXXX

IF (NCODE .NE. MEND) GC TO 820
998 I1F (IERINT .1T. C .OR.

181

99¢

899
900

901
910
911
920

921

930

931

940
3§50

1

(IEFRE .EQ. O .AND, TIPRINT .LT. 3)) GC TO 930
WRITE (6,9CCC) MAT
WRITE (6,9C01) NAME
WRITE (6,9C02)
1F (JEER .NE. C) GO TO 3¢9
IEFR = 0

NOW REAL INEUT FCE NEXT EFUN
IJCE = IJOE + 1
READ (5,10CZ,END=999) XXXX,NCCDE
ISIT = 1
IF (NCODE .EC. LLAT) ISET =
IF (NCOLE .EC. LTOP) ISET =
IF (NCODE .EC. MEND .OE. NCO
6C TC (910,$20,920),ISET
WRITE (6,1004) XXXX
GC 1IC 900
IC 911 I = 1,2¢

TITLE(I) = XXX¥X(I)
WEITE (6,1011) TITLE,IJOR
IF (ISET .EC. 3) GG TO 800
REAL (5,100Z,END=999) XXXX,NCODE,I,IDUM
WRITE (6,1004) XXXX
IF (NCODE .®C. LTIOP) GO TO €00
I¥ (NCODE .EC. LDAT .OF. NCCDE .EC., LENL) GC TO 921
1F (NCODE .EC. MENL) GG TO $CO
IF (NCODE .EC. MDAT) GC TO 930
IF (ISET .EC. 0) GO TO 921
WRITE (6,1003) LCAT
WRITE (6,1C04) ¥XXX

2
3
DE .EC. LENL) GC TO 901

ISET = 0

GC IC 921

CCNTINUE

FEAL NEW PARAMETERS FROM °*LAT' CAERD.

IFFIKT = ILCUM(2)

KCCT = JTUM(3)

IELIT = IDCKE(4)

IF (IDUM(5) .GT. 0) IOT = IDUM(E)
ISET = 1

RERL (5,10C2,END=940) XXXX,NCODE
WRITE (6,1004) XXXX

1F (NCOLE .EQ. LTICP .OB. NCOLE .EQ. LEND) GO TO 800
IF (NCOCE .EC. MENLC) GC TO 950
IF (ISET .EC. 0) GO TO 931

WRITE (6,1003) LEND

WEITE (6,1004) XXXX

ISET = 0

GC TC 931

WRITE (6,1012)

FETUEN

WRITE (6,1C13)

182

GC TIC 899
999 RETUEN

C EFFOF REGICN,
2000 CCKTINUE
I¥ (NCODE .EC. LLIE) GC TC 2100

FETUEN
2100 IEFF = <~IEFRF
GC TIC 60C

2200 ISEACE = I7 + LNECW*MXNECW
WRITE (6,100%5) ISPACE,NSIZE
GC TC 23%0
2300 ISEACE = I12 - 1
WRITE (6,1CCS) ISPACE,NSIZE
2350 J3 = J3 + NKCME
IF (J3 .GI. LSIZE) WRITE(6,1006) J3,LSIZE
JEER = JEREF + 1
GG TC 998
2400 ISEACE = I13 = 1
WRITE (6,1CC9) NSIZE,ISPACE
JEER = JEERF + 1
GC TC 998

c
C FOEMAT FEGION

1000 FPCEMAT (2024)

1001 FOEFMAT (1H1,€65('--') /,' - PROGRAM CAT, VERSION OF 10,75%,T131,'=*/

1, * - LROGFAM FOR THE AUTOFATEC CONSTFUCTION OF FAULT TREES,'
2, T131,1=¢ ,,% =¢,T131,%=%/ ,' = *,20A4,T131,'=* /,1X,
3 65(*'==*)///,1%,t#%% TATA VALIDATION SECTICN *%%t//)

1002 FOFMAT (2024,T1,A4,I1,12I5)

1003 FCEMAT (1HC,'*** INPUT ERROR ***'/ 1X,A4," CARD MISSING CF MISPUNC
1HEL*,,7X,*CAED IN EFFOF IS:'/)

1004 FOEFMAT (1X,20A4)

1005 FCEMAT (1HQ,'*** EFROR *#*%%,5X, *PREAY SPACE REQUIKEL EXCEELS SEACE
1 PLLCCATEL.*/5X,YARRAY MAT BEQUIEKES ESTIMATED!,I6,' WORDS FOR ROUT
2INEF LIER, PLUS ALDITIONAL SPACE FCR REST CF JOB.'/5X,°'CNLY',I6,

3 ' WCEDS ALLCCATED, '/" **% JOB TEFMINATING **%%x?)

1006 FOFMAT (1HO,'*** EFROR **%',5%,'ARKAY SPACE REQUIREL EXCEELDS SEACE
1 ALLCCATED."'/5X,"ARKRAY '*NAME'' FECUIRES',I6,' DOUBIE PRECISICN WO
2RDS.*/5X,'CNLY"* ,16,' WCERDS ALLCCATEL.'/

3 v *%% JOB TERMINATING **%V)

1007 POFMAT (1HO,'NUMBER CF LIBRARY ECWS ESTIMATED (MXNRGCW) =',I5,
1 * FOWS.'/' ALLCCATED SPACE REMAINING (MXROW2Z2) =',1I5,
< ' FCWS.')

1008 POEMAT (1HO,"*** WARNING ***'/5)%,'REMAINING SPACE MAY BE INSUFFICI
1ENT FOR JOE. JCB CONTINUING.')

1005 POFMAT (1HO,'*** ERROR **%x*/5X, *INSUFFICIENT ARRAY SPACE REMAINING
1 FCE GATE STORAGE.'/5X,'ARRAY SEACE ALLOCATED =',I6,' WORDS.'/
25X ,*AKRAY SEACE FEQUIRED =',I6,' ELUS 13 WORDS FOR EACH GATE GENE
3BRATEL.'/* **%% JCB TERMINATING **%1)

1010 POEMAT (////¢1%,129("'**) /" * STCEAGE SPACE SUMMARY',T130,'%x%/

1 ' % AFRAY '"MAT'' EAS USED',I6,* WCRDS.'!,T130,°%%',

183

[sNeNeNeEeNa)

[eNeXs]

2 ' ox

REMAINING',T6,?

WORLS RIL

L ACCCMMODATE®',I6,' GATES WI

3TH AN AVERAGE C¥?,F4,1,' INEUTS FER GATE.',T130,'**,1X,129('*")/)

1011 FCEMRET (1H1,65(%~=1)/,"

- PROGRAM CAT,

VEESION OF 10,75, T131,!'=2,/

1012
1013

90CC
9001
9002

1, ' - FFOGRAM FOR TEE RUTOKATED CONSTIFUCTICN OF FAULT TREES.®
2, T131,%=% /,' =',T131,'-%/ ,* = ',2044,T131,'-* /,1X,
3 €5("==") /771X, " ¥x* JOB! ,I5," *¥*1,/)

FCEM2T ('0%** END CF FILE REACHEL WITH NO TOP EVENT LEFINED ***x'/
t *%% JOB TEEMINATING ***'/1H1)

POFMAT ('0#** INPUT ERROF ***¢,/5X Y¢IgEND** CARD REACHED WITH NO T

10F EVENT DEFINED.'/5X,'DATA FOR NEXT JOB WILL BE READ.'/1H1)

1

FCIMAT (1H1,'AER2AY MAT:'/,/20(1X,I5))

FCFMAT (1H1,'AERAY NAME:'//(1X,10(28,2X)))

FCEMAT (1H1)

ENC

SUEROUTINE LIBR (NTYPE,IROW,NINT,NIN,NOUT,NROW,JKOW,NRME, ECLNAN,
NITB,LNFOW,MXNEFCW,MAXINT ,MXINT2,MXEOW2)

SUERQUTINE
SUEFOUTINE TO READ LIBRARY ANL VALIDATE ENTRIES
NTYPE IS TYPE NUMBEER CF CCMEICKNENT TYPE I
IRCW PCINTS TO BEGINNING ROK CF COMECNENT TYPE I

LIEE

DIMENSICN NTYPE(NLIB),IFOW(NLIB),NINT (NLIE),NIN(NLIE),NOUT(NLIE),
NFOW (NLIE) ,JROW (LNROW ,MXNFOW)
REZL*8 NAME (NLIB),MCLCNAM (MAXINT ,NLIE),NNAME
CCFMCN TITLE (2C),XXXX(20) ,IFRR,IEDIT,IDUM (12) ,NNAME,IFRINT,KCUT
CATA LIB,LFCW,L¥CD,LEND,LLIE,LC¥E,LCCM/*LIEEF’,* ROW',
* MOL','ENL *,'&LIE',"SCMP',' CCM'/

1

1

FIFST SUEPRESS EFROR MESSAGES FOR IHC215I (ILLEGAL CHAR.)
CAIL EREKSET(215,0,-1,0,1)

IFCH (1) = 1
ISET = 0
JSICE = 1
PXIKTI2 = 1
MYINT2 WILL BE SET TC MAX NO. CF INTERNAL MODES USED
WRITE (6, 10CC) TITLE
IF (IEFE .I1. 0) GC TO 94
FEAD FPIRST CARLC, WHICH SHOULD EE '6LIB' CARD.

IF *£LIB' CAFD IS MISSING, COKKECTIVE ACTION WILL BE ATTEMPTED.,
READ (5,1001) X¥XX,NCODE,NAME(1),NTYPE(1),NIN(1),NINT (1),
1 NCUT (1) ,NROW (1)
IF (NCODE .EC. LLIB) GG TO S5
WKITE (6,1003) LIIB
WRITE (6,1002) XXXX
IEFF = IEEF + 1
1F (NCODE .KE. LIE) GO T0 $6
IEFR = IERF - 1
ISET = 1

184

[eEeXs el aOao aOao

[eNeXg!

anon

94

96

97

98

99

100

101

102

WRITE (6,101C) 1IB

1P '§LIB' CARLC IS MISSING AND °*LIER' CAERL HAS BEEN READ,
SKIP TO L2TA VALIDATION SECTICN WITHOUT READING NEXT CAEL.
GC TIC <6

'6LIB' CAFD HAS 2LEEALY EEEN FEAD BY CRIVER PROGEAN,
ENL IERR EAS EEEN SET NEGATIVE.
FOCTINE KESETS IERR AND CCNTINUES.,
IEFR = =IFFR = 1
WFITE (6,1002) XXXX
CCETINUE
DO 2C0 I=1,NIIE
1F (ISET .FQ. 1) GO TO 7
READ(5,10C1) ¥XXX,NCODE,NAME(I),NTYPE(I) ,NIN(I),NINT(I),
KCUT (I),NRCE (I)
ISET = 0
1F (NCODE .EC. LIB) GO TO 1C0
IF (NCODE .EC. LCME) GO TC 3998
WRITE (6,1C03) LIB

EEFCE FCUNI
EOUTINE LICCES TO FIND NEXT VAIIL COMPCNENT HEALER CARL.
IF NCNE FCUNL, EOUTINE TERMINATES,

IEFE = IERF + 1

WRITE (6,1002) XXXX

IF (NCODE .EC. LENL) GC TC 130

1SET = 2

Go IC 129

SRITE (6,1C015) I, XXXX

VALID 'IIBR' CAED FCUND FCR CCMEONENT I.
FOUTINE NOW VALICATES INPUT LATA FOR CCMPONENT I,
FRCW = NECW(I)
I1F(I .GT. 1) IROW(I) = IECW(I~1) + NECW(I=1)
IF (IROW(I) .IT. I) IRCW(I) = I
1F (IBOW(I) + MROW .LE. MXNROW + 1) GC TIC 101
WRITE (6,1012) NTYPE(I)

IF ALLCCATEL NUMBEF CF FOWS IN ARFAY JECW IS EXCEEDED,
SET EFRCEF FLAG AND OVERLAP EXTKA ROWS CNTO ROW IKOW = 1.

IFCH(I) = 1

IEFF = IFFF + 1

FNINT = NINT(I)

MXINT2 = MAXC(MXINT2,NNINT)

NMOT = NNINT + NIN(I) + NCUT(I)

IF (NNINT .LE. MAXINT) GO 10 1C2

WRITE (6,1013) NTYPE (I),NNINT,¥AXINT

1EFE = IEFE + 1

IP (NTOT .IE, LNECHW) GC TC 103

WRITE (6,1C14) NTYPE(I),NIOT,LNECW

185

aaon

(e NeNe]

1EFR = TIEEF + 1
103 CCNTINUE

NOW FEAL IN KAMES CF INTERNAL FAILURE MCDES.
FEAD(S,1004) 3XXXX,NCODE, (MCDNAM {(J,I),Jd=1,H8AXINT)
JF (NCOLE .EG. LMOL) G6C 1IC 11¢C
1CS WRITE(6,1003) LNCD

ERROF FCUNL CN *MOD' CASL.

WEITE (6,1C0Z) XXXX
IEFR = IEEF + 1
1F (NCODE .EC. LENL) GO TC 13¢
IF (NCODE .EC. LCME) GC TC 3999
ISET = 2
GC 1IC 129

110 WRITE(6,1002) XXXX

NOW EEAL IN CCMECNENT TAELE EROWS.
JSTART AND JSTCE MAEK EEGINNING AND END OF COMPONENT I IN ABRRAYS,
111 JST2ET = IEFOW(I)
JSTICFE = JSTART + MEOW -~ 1
[0 120 S=JETAFI,JSIOP
READ(5,1001) XXXX,NCODE,NNAME,(JFOW (K,J),K=1,LNEOW)
IF (NCCLCE .EC. LFOW) GO I0 118
118 WRITE (€,10C3) LECW

ERRCE FOUNLC CKN 'KOW®* CAREL.
WRITE (€,1CCZz) XXXX
JERE = IERF + 1
IF (NCCLE .FC. LENT) GO TC 130
1F (NCOIL¥ .EQ. LCMP)GO IO 35¢¢
If (IEBRF .GE. 100) GC TC 20400

ISET = Z

GC TC 129
119 WRITE (6,10CZ) XXXX
120 CCNTINUE

CHECK FPCE ENLC CARD AFTER EACH COMECNENT.
FROUTINE WILL TAKE CORRECTIVE ACTION IF END CAFD IS CMITTED.
129 IF (I .EC. NLIE) GC IO 121
READ (5, 1001) XXXX,NCCDE, NAME (I+1) ,NTYPE(I+1) ,NIN(I+1),
1 NINT (I+1) ,NOUT (I+1) ,NROW (I+1)
1F (NCODF .NE, LIB) GO TO 122
IF (ISET .NE. Z) WRITE (6,1003) LEND
8RITE (6,1002) XXXX
1S T = 1
GC TC 200
121 CCNTINUE
READ (5,1006) NCODE,XXXX
122 IF (NCCDE .EC. LENIL) GO TO 124
123 I¥ (ISET .EQ. 2) GO TO 124
WRITE (6,1003) LEND

186

eNoNesNeNeNe]

ISET 2
IEEE TIEFF ¢+ 1

124 RRITE (6,1002) XXXX
IF (NCODE.¥Q.LCHP .AND. I.LT.KRLIB) GO TO 3998
IF (NCODE .EQ. LCHME) GC TC 3999

130 I1F (NCOLCE.NE.LIB ,AND., NCODE.NE.LEND) GO 10 129
WRITE (6,1C07)

200 CCNTINUE

LIERIRY HAS EEEN REAL IN AND VAIILRTED.
FINAL ERFCF MESSAGES FCLLCW.,
FIRST BCUTINE SETS MAX NUMBER OF INTEENAL MODES,
AND NUMBEF CF EFOWS ACTUALLY USEL.
THEN FCUTINE CHECKS TO MAKE SURE NO EXTRA CARDS REMAIN
MXINT2 = MINC (MYINT2,MAXINT)
REAL (5,10C1,END=9999) XXXX,NCOLE,NNAME,IDUN
IF (NCODE,NE.LCME ,AND. NCOLE.NE.LCCM) WRITE (6,1016) NLIB
201 IF (NCODE .EC. LCME) GO TO 210
IF (NCODE .NE. LCOM) GC TO 2C2
WEITF (6,101C) 1cCM
1F (IERR .NE. C) WRITE (6,1CC8) IERRK
IEFF = -IEFF = 1
MXECW2 = JSICP
EETUFN
202 WFITE (6,1002) XXXX
READ (5,1001,E¥D=9999) XXXX,NCOLF,NNAME,IDUM
GC IC 201
210 WRITE (6,101C) LCHME
1F (IBBR .NE. 0) WRITE (6,1008) IEKF
MXFO®2 = JSTICE
FETUEN
2000 WRITE (6,1CCS) IERE
GC TC 202

3666 T = I - 1
WRITE (6,1CC%5) I1,NLIR
3999 WRITE (6,1CC8) IERF
WRITE (6,101C) LCME
MXFO%2 = JSICP
FETUFN
9999 WRITE (6,1011)
IFER = 2
BETUEN

FORMAT REGION.

1000 FOFMAT (TH1,'%#% ¢ _Q0AY4,* **xxV,/, 5X,'LIBKARY INPUT ERINTQUT'//)

1001 POFMAT (20A4,T1,A4,6X,RA8,2X,121I%)

1002 FCEMAT (1X,2CA4)

1003 PCFMAT (1HO,'*#** INPUT ERROE *#*#%%,/,1X,A4,' CARD MISSING OF MISFUNC
1HEL*,,7X,*CRAED IN EFFOF IS:%/)

1004 FOFMAT (2024,T1,A4,6X,7(A8,2X))

1005 FOFMAT (1HO,"**% WARNING **#%',, 5%, *CNLY',I4,* COMPONENT TYPES INPU
17.%,15,* CCMECNENT TYPES EXPECTED?)

187

1006 FOFM2T (A4,T1,2CA4)

1CC7 FCEMAT (//)

1008 FPCIMAT (1HO,'LIERARY ROUTINE TEFEMINATING. NUMBER OF INPUT ERROFS =
1 ,14,/,1X,*VALICATION CP REMAINING LATA WILL BE ATTEMPTED. '/)

1009 FCEMRT (1BO,'LIERARY ROUTINE TEFMINATING AENORMALLY DUE TO*,I4,
1 * OF MORE INPUT EEBORS',/,1X,'VALIDATION OF EEMAINING INPUT
Z WILL BE ATTEMETELD. /)

1010 FCEMAT (18O,24,' CARLC FCUND, DATA VALILATICN CCNTINUING.'//)

1011 FOFMAT (1HO,'*** END OF INPUT LCATA STREAM ***'/,1X,*NC VALID HEADE
15 CERL FCUNI'/,1X,'JOB TERMINATING'//,1X,'*%% ENLD OF PROGEAM **x%!)

1012 FCEMAT (1HO,'*#* INPUT ERROFR **%?'/ S5Y,'NUMBER CF COEECNENT FOWS EX
YCEEDS NUMBEE AMALLCCATED.'/,5X,'ECwWw INLCEX BEING RESET TO 1 FCR COMPO
2NENT ', 16//)

1013 FORMAT (1HO,%**%%* INPUT EEKOR ***%/ 5 YCOMECNENT',I€,* HAS',IZ2,
1 * INTEENAL MCLES.'/,5X,'THIS EXCEEDS THE',I2,' MODES ALLCRED,‘/)

1014 FOEMAT (1HQ,'*®*#** INPUT EFEOF #*#%#%,/, 5X,*COMECNENT’,I6,' HAS',I3,
1 ¢ INTEENAL MCLES + INPUTS + GUTFUTS.'/,5X,'THIS EXCEEDS THE',I3,
2 ' BLIOWEL.'))

1015 POFMAT (1H0,//,' LIBEARY CATA PFINTCUT FOR COMEONENT',I4y
1, 11X, 'NAME?, 7X,*TYPE*,1X,?' NIN NINT NOUT NEOW'/,1X,20A4)

1016 FOFMAT (1HQ,'Y*»% WAFNING *»#1, cX C¢EYTRA CCMPONENT TYPES INPUT.
1CNIY?,I5," CCMECNENT TYPES EXPECTIED'/,5X,'EXTRA CARLS FOLLOW'/)

ENC
SCEROQUTINE INDEX (NTYPE,NINT,NIN,NOUT, NAME,NCMP,6MOUT,ITYPE,INODE,

1 CMENAM,NLIE,NNCMP,NNODE,LNEP1)

SUEFQUTINE TO REAL ANL INLDEX CCMECNENT FLOW CHART

[eNeNe]

DIYENSION NTYPE(NLIB),NINT(NLIB),NIN(NLIB),NOUT(NLIE) ,NCME (KNCLE),
1 ¥CUT (NNODE) ,ITYPE (NNCFE), INODE(LNEP1,NNCME),
p; 1EE6 {12), IER7 {12)
CCUBLE PRECISICN NNAME,CMPNAM (NNCMP) ,NAME (NLIB) ,MNAME(12),LERR
CCFMCN TITLE (20),X¥XX(20),IERK,IEDIT,IDUM(12),NNAME, IPRINT,KOUT
LATA 1CC¥,LEND,LTOP,LERR,
1 * CCM','END *,'6TOE", ' ***EFRCE'/
IATA I1ERE/12%0y
DC 1C IZEKC=1,NKCLE
10 NCMP(IZEEC) = O
I=2¢C
WRITE (6,1CCC) TITLE
FEAD FIFST CARL, WHICH SHOQUIL BE ' COM*' CARE.
IF ' CCM' CARD HAS ALREALY EEEN KEAT BY LIBR RCUTINE,
IDUM AEFAY CCNTAINS CCMECONEMT 1, SO READ IS SKIEPED.
1F (1ERR .IT. 0) GO TO 98
IEFR = 0
97 REAL (5,10C1) X¥XX,NCOLE,NNAME,ILUM
IF (NCODE .EC. LCOM) GO TO S9
IF (NCODE .EC. LEND) GO TO 1999
WEITE (6,10CZ) LCOM
WEITE (6,1014) XXXX
1EFR = TEFF + 1
GC 1IC §7

[eNeNge!

188

98

100

110

120

129

130
131

1EFE = 0

WEITE (6,1003)
I=1I4+1

ISET = 0

WEITE (6,1004) I,XXXX
CMENAM(I) = NNAME
INCDE(LNRE1,TI) = O

COMECNENT TATA IS NOW VALILCATEL AND STOREL IN ARRAYS
JDIM = IDUM(1)
LC 110 3 = 1,NLIE

IF (JDOUM .NE. NTYPE(J)) GC TC 110

ITYPE(I) = J

G6C 10 120

CCNTINUE

ERROR ENCOUNTEFED: NO CCMEOKENT TYPE *I' IN LIBRARY
WEITE (6,10C%) JDUM,NNAME
1EFR = IEEE + 1
ITYPE(I) = JLUM
INCDE (LNRP1,I) = =1
GC TC 200
IN = NIN(J)
ICUT = NCUT(J)
ITCT = IN + ICUT
ITCTEY = IT0T + 1

SIGN, NUFBER AND VALIDITY CF KCDES NOW CHECKED.

FIRST, CEECK FCR COFFECT NUMBEE AND SIGN CF INEUIS/CUTPUTS.
1EF1
1FE2
1EF3
1FE4
1EFS
1FE8
1EE9
Lo 13¢C IT = Z,1Z

JDCM = IDGM(IT)

I1F (I1. LE. ITOTP1) GO TO 129

IF (JDUM .EQ. Q) GO TC 131

EFROR: CCMECNENT HAS TOO MANY NCDES

IEF2 = 1

IF (JDUM .GI. NNOLE) IER9

1F (JDUM .IT. 0) IER1 = 1

€C IC 13

IF (JDUM .IE. 0) IER1 = 1

1F (JDUM .GI. NNODE) 1ERY

CCNTINUE
CCXTINUE
IF (I .EQ. 1) GC TO 133

[T T TR T 1]
QOO OOO

1

1}
-

NOW CHECK FCE UNIQUENESS CF CCMECNENT NAME
M1t =1 -1
DC 132 I8=1,IM1

189

anon

a0n

1F (NNAMF .NE. CMENAM(IS)) GO 1C 132
IER3 = IS
€0 10 133

132 CONTINUE

133 IfF (IERt + IER2 + IER 9 .NE. O0) GC TO 140

NOW CHECK THAT ALL OUTPUTS HAVE UNICUE NCLE NUMBEEFS
15T IS INCEX OF FIRST CUTEUT NOLE
IST = IN + 2
LC 137 IS=1S1,IT0TP1
NTEST = ILTM(IS)
1F (NCMB (NTEST) .EQ. 0) GG TO 134
EFFCR: OUTPUT NODE HAS BEEN EFEVIOUSLY LEFINED
1FF6(IS) = NTESI
IEE7(IS) = NCME(NTIEST)
1FF8 = 1
GC 10 135

NO® SET COMECNENT INDEY AND CUTFUT NUMEER
CORRESECNLING TO NOLE NUMBEGF
134 NCME(NTEST) = I
PCUT (NTEST) = IS = (IN + 1)
135 IF (IS .1E. 2) GO TO 137
NOW CHECK TEAT EACH OUTIPUT IS DIFFERENI
FECM AIL CTHEF INPUTS/CUTPUTIS
ISsM1 = IS = 1
LC 136 IT = 2,IsM1
1F (ICUM(IT) .NE, NTEST) GO 1C 136
I? (IT ,1T. IST) IER4 = 1
IF (IT .CE. IST) IERS = 1
136 CCNTINLE
137 CCNTINUE
140 IEFTOT = IEF1 4 IEK2 + IER3 + IEF4 + IERS + IERS + IEE9Y
IF (JERTOT ,EC. C) GO 1IC 15¢C
IEFR = IERF + 1

INPUT CABL *'I' HAS CNE OFK MOBF ERRORS, WEITE MESSAGE(S).
WREITE (6,1C0€) I
INCDE (INRE1,I) = =2
1F (1ER3 .NE. C) WRITE(6,1007) KNAME,IEE3
1F (IER9 .NE. 0) WKITE(6,1016) NNODE
IF (IER1 .NE. 0) WRITE(6,10C8) IDUM (1),ITOT
1F (1ER2 .NE. C) WRITE(6,1CC9) 1CUM(1),ITOT
1¥ (IER4 .NE. 0) WRITE(6,1010)
1F (I1ER5 .NE. 0) WRITE(6,1011)
I¥ (IER8 .EC. 0) GO TO 150
IC 141 IS = 2,12
17 (IER6(IS) .EC. 0) GO TC 141
KRITE (6,1C12) IER6(IS),IER7(IS)
IEE6(IS) = 0
141 COMNTINUE
GO TC 160

190

s NeNe]

150

151
152

153
160

200

201

202

203

204

300

CCNTINUE
CARD NOW FEATL AND VALILATEL, SET NODE NUMBERS.
IF (IN .EG. C) GO TO 1%2
DC 151 Is = 1,IN
INCLCE(IS,I) = ILUM(IS+1)
ISZ2 = NINT(J)
INEY = IN + 1
DO 153 IS = INE1,ITOT
INCLCE(IS+1582,I) = IDUM(IS+1)
CONTINUE
1F (JERTOT .NE. Q) WRITE (6,1C29)
READ (5,10C1,END=9999) XXXX,NCOTE,NNAME,ILUM
IF (NCODE .NE., LCOM) GC TO 202
IF (ISET .EC. 1) WRITE (6,1029)
IF (I JLT. XNCNME) GO 10 10C

FEFOR ENCCUNTERED: TOO MANY CCEECNENIS
WRITE (6,1C13) NKCNME
1EEF = IERE + 1
WEITE (6,1014) XXXX
REAC (5,1001,END=9999) XXXX,NCOLE,NNAME,ILUM
IF (NCODE.NE.LENC .2ND. NCOLE.NE.LTCP) GO TC 201
WRITE (6,1015) NCODE
GC 1C 300
IF (NCODE.EC. LENL .OF. NCODE.EC.LIOP) GO TG 203

EFKECRF ENCOUNTEREL: UNKNOWN CARL TYPE
LCCDE = LEND
JF (1 .LTI. NNCMF) LCODE = LCOHM
I® (ISET .EC. C) WEITE (6,1002) ILCCDE
WRITE (6, 1014) XXXX
IF (ISET .EC. 0) IERE = IEEF + 1
ISET = 1
6C TIC 200
IF (I <EQ. NNCMF) GO TO Z04

FFEOR ENCCUNTEEELC: TOO FEW COMECNENTS
WRITE (6,1C17) I, NNCMP
1EFF = IERF + 1
ISET = 1
GG TC 300
WRITE (6,1C14) XXXX
GC TC 300

0o

ALL CCMPCNENIS H2VI BEEN INPUT ANC VALILCAIRD
INEDT EDIT FCLICHS

CCNTINUE

IEND = NNCME

IF (ISET .GTI. 1) IEND = ISET

ISET = 0

WRITE (6,1019) TITLE

DC 400 I = 1,IEND

191

IF (INODE(LNEE1,I) .EQ. =1) GO 10 330
STYPE = TT1YPE(I)

1F (INODE(LNFF1,I) .KE. 0) GO TC 340
IN = NIN(JTIYPE)

IF (IN .EC. 0) GO TO 320

IC 310 4=1,1IN

FINC CCMPCNENT NUMBERS/NAMES FOR EACH INPUT NCDE
JDUN = INCDE(J,I)
ECMP = NCME (JDUM)
IDUM(J) = JDUNM
IF (MCME .1E. 0) GO TO 309
MNAME(J) = CMENAM (MCNMP)
¢C TO 310
309 MNAME(J) = LERF
1EFR = IERE + 1
ISET = ISET + 1
310 CCNTINUE

INLEX ECIT CCMPLETE FOK COMEONENT Is WRITE CORBRECT CUTFUT FCRMAT
WRITE (6,102C) I,CMPNAM(I) NTYFE{(JTYPE),NAME(JTYPE),

1 (IDOM({J) ,MNAME (J) ,3=1,1IN)
GO TO 400
32¢0 §RITE (6,1021) I,CMPNAM(I), NTYEE(JTYPE) ,NAME(JTYPI)
€C 10 40¢C
330 SRITE (6,1022) I,CMENAX(I),ITYEE(I)
€C TO 400

340 SRITE (6,1023) I, CMENA¥(I), NTYEE(JTYPE) ,NAME(JTYPE)
400 CCNTINUE
IF (ISET .NE. 0) WRITE (6,1028) ISET

NOW DO CUTEUT NODE ELIT
WRITE (6,1024) TITLE
DC 5CC I=1,NNOLF
I1F (NCMP(I) .EC. 0) GO TO 500
JCFE = NCME(I)
KNCTE = I
WRITE (6,1025) I,JCME,CMENAN(JCME),MOUT (I)
500 CCHMTINUE
IDUM (1) = FNCDE

EDIT CCNCLUDED. WRITE PINAL CUTPOT
600 IF (IERR .NE. 0) WRITE (6,1C18) IEKR
RETURN
1999 WFITE (6,102€)
IEFR = 1
WRITE (6,1C18) IERF
BETUEN
9999 IFFR = 9999
WEITE (6,1C27)
FETUEN

192

FCEMAT EECGION

1000 FCFMAT (1H1,20A4//,1X,'CCMECNENT INLCEX INPUT PRINTOQUT'//)

1001 FCEMAT (2024,11,R4,6X%X,R8,2%X,121°5)

1002 FCEMAT (1HO,**** INPOUOT EEROE **#',,7%X,A4,' CARD MISSING OR MISPUNC
1EEL. CARLC IN EFROF IS:?)

1003 FOFMAT (//,1HO, '*COMPCNENT CARL ERINIOUDT',,/,1X,'INDEX',2X, *CCDE',5X
1, * NAME?®,7%,'TYEE',2X,*INPUT/CUTPUT NOLES'/)

1004 POFMAT (1X,15,1%,2034)

1005 FOFMAT (1H ,***+* INPUT ERBQF **4',/,5X,"NO CCMEQONENT TYPE®',I6,
1 ' FCUNC IN LIERARY.',2X,A8,' IN ERECE, OFK LIERARY INCOMPLET
2E.'/)

100€¢ FOBMAT (78 ,'*** INPUT EEROF ***'/,5X,'COMPONENT',I4,* HAS ERRORS
1IN INFUT RS FOLLOWS:?')

1007 FCEFMAT (7X,°COMECNENT NAME ®!',A8,'" HAS PEEVIOUSLY EEEN USED BY CO
TMECNENTY ,I4)

1008 FCFMAT (7X,'700 FEW NOLES, OFE NCK~POSITIVE NODES. CCMECNENT TYPE',

1 16, RECUIRPES',I3,! POSITIVE NODES?!)
1009 FCEMAT (7X,'TOC MANY NODES. COMECNENT TYPE!,I6,' RECUIEFES?,
1 I3,' NCDES')

1010 FOFMAT(7X,'CNE® CE MCFE CUTPUTS ITCENTICAL WITH CONE OR MORE INPUTSY)

1011 FCIMAT (7X,°'CUTEUT NODES NOT UNICUE?)

1012 FOEMAT (7X,°'CUTEUT NODE®',IS5,' HAS ALFEALY EBEEN ASSICNED TC COMPONE
1NT?,15)

1013 FOFMAT (1HQO,'*** INPUT EFFEOF ***!/,5X,* MOKE THAN THE',I5,* COMPONE
ANTIS SPECIFIIL EAVE BEEN INPUT. EXTRA CARDS FOLLOW:?')

1014 FCEMAT (7X,z2CAU)

1015 ¥OFMAT (1HC,24,* CARD FCUND, VAIILATION AND FINAL ELIT FOLLOW.')

1016 FCEFM2T (7X,'NOLCE TCC LAFGE. MAXIMUM NODE ALLOWED =?',I5)

1017 FOFMAT (1HO,"*#*% INEUT EEFROEF **#%', S5X fCNLY*',I4,' CCHECNENTS INPUT
1.',I5," COMECNENTS EXPECTEL.')

1018 FPOEMAT (1HO,*INCEX ROUTINE ITERMINATING, NUMEER OF IKPUT EBEFCRS =?,
1 I14/,1X,'VAITIDATION OF REMAINING DATA WILL BE ATTEMPTED. /)

1019 FCFMAT (181,°*CCMEONENT INDEXING FRINIOQOUT FOEK:'/,1X,20A4//,1X,
1 'INCEX',2X, " MNAME' ,6X,"TYEE#' ,2X,'TYPE?,6X,YINPUTIS FEOM: ?,
P 'NOLE/NRME' /)

102¢ FOFMAT (1X,I5,2%,A8,2X,15,2%X,4A8,5Y,(5(I5,%/',A8,2X)/))

1021 PCEMRT (1X,15,2%,A8,2%,15,2X,38,5%,'THIS CCMPONENT HAS NO INPUTS?')

1022 FCEMRT (1X,1%,2%,A8,2%X,15,2X,***%?,10X, v*** EREOR: NC SUCH COMECNE
1NT TYPE FCUND IN LIBFARYY)

1023 PFCEMAT (1X,1%,2%,A8,2X,I15,2X,A8,5X,'*%* EFERCR: INPUT EAS EFBROES SP
TECIFIEL PREVICUSLY?)

1024 PCEFMAT (1H1,'OUTPUT NODE CKCSS-INLDEX POR:'/,1%,2074,/,1%,
1 *OUTEUT NOCE®* ,2X,'CCEPCNENT:Y,1X,*INLEXY,2X,"NAME?,3X,
z 'OGTEUT NO.'))

1025 FCIMAT (1X,17,1€X,15,2%¥,A8,15)

1026 FCEFMAT (1HO, **** INPUT EEFEROR **#'/_1X,*END CARD FOUNL WHEEE COMPON
1ENT LCATA EXFECTEDY)

1027 FCEMAT (1HQ, **%** END OF INPUT DATA STREAM **%xt/ 1X,*NC VAIID HEADE
1R CAFD FOUND'/,1X,'J0B TERMINATING'//,1X,t%%% END OF PROGEAM **x?)

1028 FCEFMAT (,///' *** EFROR:',IS5,' INEUT NODES EREFERENCE UNDEFINED OQUTP
10T NODES.',,1X,'FRINTOUT SEECIFIFES NODE NC,.,/***xERROR!/)

1029 FCEMRT (1X)

193

INI
SUEROUTINE STEVE (NTYPE,IKOW,MNIKT,NIN,NOUT,NROW,JROW,NCHP,NCUT,
1 ITYPE,INOLE,X,NAME,MODNAM,CMENAN,
2 NIIB,LNECW,MXFOW2,NNOLE,MNCDE, NSCME,LNFP1,MXINT2, NODES,MAXINT)
Cookeokok o b ok o 3ok ko ook o o a3 ko ok ok ok o ok ak 2k 3k ok ok o ok ok koK ok ok ok o 3 ok ek o ok ok ook R Kk 3 ook koK Kk ok

c *
C SUEFOUTINE TO °*SET TCP EVENT VALUES, ETC.® *
C S T E v E *
C SUERQUTINE TC SET UP INTERNAL XODE NUMBERS, SET AFRAY X, *
C BND SETI TCF EVENT ANL SYSTEM ECUNLCARY VALUES, *
C *
CHFRAAF AR AR A AR RR R U XA AR B R B R AR R R AR Sk R R SRR kRO ok ok ki ok 3k Rk R Rk Kok Rk

CCMMCN TITLE (20),XXXX(20),IERR, 1EDIT,IDUM (1Z) ,NNAME,IERINT,KOUT
INTEGER X(Z2,XNOLES)
DIPENSION NINT (NLIB) ,NIN(NLIB),NCUT (NLIB),JEOW (LNROW,MXRON2),

1 INODE (LNEP1,NNCMP) , ITYFE (NNCMP) ,NTYPE (NLIE) ,IRCH (NLIE),
2 NECOW (MLIB) ,NCMP(NNCEDE) ,KOUT (NNODE)

DCUBLE PRECISICN NNAME,NAME (NLIE) , MCDNAM(MAXINT,NLIE),
1 CMENAM (NNCNP) , NAME

DATA LICF,MTOF,NTOP,LEND,MEND, NEC,NNT, NEXT ,NAME1, LCUT/*&TOP",

1 *ITCP*,* TOP',"ENL','SEND®,*6BC®,* INT',' EXT','TOEEVENT®,'50UTY/
WRITE (6,100C) TITLE

NAME (NLIE) = NAME?

c
C FIKST SET UOP NODE NUMBERS FOR INTERNAL NGLES.
NNCM1 = NNCME - 1
IC 102 I = 1,NNCM1
IT = ITYEE(I)
INT = NINTI(IT)
IF (INT .EC. C) GO TC 101
c
c CCMPONENT I HAS INTEFNAL MODES WHICH MUST HAVE NODE NUMBERS.
IN = NIN(IT)
NODE = MNCDE + (I~1)*MXINT2
1S = IN + 1
ITOT = IN + INT
IC 100 J = IS,ITOT
100 INODE (J,I) = NODE + J = IN
WRITE (6,1001) I,CMPNAM(I),NTYPE(IT),NAME(IT),
1 (INODE (IN+J,T) ,MCCNAN(J,IT) ,Jd=1,1INT)
€C TO 102
101 &RITE (6,1001) I,CMPNAM(I),NTYPE(IT),NAME(IT)
102 CONTINCE
c
c NOW INITIALIZE X ARRAY
pc 201 I = 1,NOLES
I(1,I) = =1
201 X(2,I) = =1

CRESSFXB AR B R BB BB RN SRR BN R KB 230k ok 0ok ko op o kkokk Rk ok kokk kokkk kK kk

C *
C SECTICN TO BREAL AND VALIDATE TICE EVENT ANLC BOUNDARY CONDITIONS *
C FIRST SET UP LIBRARY ENTRIES FOR TOP (I = NLIB), THEN VALIDATE *

194

C

*

Coe ko ok 2 0k ook bk koK ok ok K ko ok ok ko K ok K 3k ok ok kK ok koo Kok Kok Ak ok o K ok 2 ok ok R K A kK ok ok K b ok ok kR kKoK

[eReNe]

naoo

300

301

302

303

304

WRITE (6,1C06)
ISET = 0
NTYPE (NLIB)
ITYPE (NNCME)
NIFT (NLIE)
NCUT (NLIB)

[T T [

FEAL FIRST CA
IF CARD 1S NI

IDUM (1) ,TITLE

c
NLIE
v
¢

BRI, WHICH SHCULD BE

SSING, SEARCH FOF

'§TOE' CAERD.
*TTOP' CAKL.

REXL (5,10C2,END=696) XXXX,NCODE,NNAME,ILUM

IF (NCODE .EC.
IF (NCOLE .EC.
IF (NCODE .EC.
IF (NCCDE .EC.
WRITE (6,1C03)
WEITE (6,1004)
IEFR = IEFE + 1
G6C TC 2000
WRITE (6,1CC7)
ISET = 1

IF (NCODE .EC.
REAL
IF (NCODE .EG.
IF (NCOLE .EC.
1F (NCODE .EC.
IF (NCOLE .EC.
WBRITE (6,1€03)
WEITE (6,10CU)
IEFR = IERR + 1
GC TC 2000
CCNTINUE

{5,10Cz,END=947)

LTCF .OF. NCCDE
MENL) GO TO S9¢C

« EC.

LENL) NCODE = LTCE

LENI)
ILICE
XXXX

KCCDE,TITIE
MTOF) GC TO 302

MICP) GO TO 302
MENT) GO TO €91
1ENT)
LENT)
FICE
XXXX

GC T0 1999

NCODE = MTCE
GO TO 1999

MTOP) GO TO 301

XXXX,NCODE,NNAME, IDUM

I0F EVENT CARD *TITOP*' HAS EEEYN EKEAL.
WRITE ANL VALICATE CATA.

CMENAM(NNCME) = NNAME

MECW = ILUM(1)

NIN(NLIB) = IDLCNM(2)

NFCW (NLIB) = MFCW

LRCW = MXEOW2 = IRCW(NLIB) + 1
1F (MROW .LE¥. LEOW) GO TO 303

IEER = =1

WRITE (6,1€09) LECW,MEROW,XXXX

IF (NIN(NLIE) .
IFEF = =1
WRITE (6,1010)

IE. LNECW) GC TC 304

INROW,NIN(NLIB),XXXX

NIN(NLIE) = LNECW

CCETIRUE

NOW CHECK THAT ALL NCDES HAVE EEFN DEFINEL AND ARE UNIQUE.

IN = NIN(NLIE)

195

DC 3¢S I = 1,IN
JLUM = ILUM(I + 2)
1F (JDUM .GT. MNODE .CR, JDUF .LE. 0) GO TO 307
I1F (NCMP (JLUM) .EQ. 0) GO TO 3(8§

VALIL CUTPUT NCDE FOUND. NOW CHECK FOF UNIQUENESS.

I¥ (I .EC. 1) GO TC 309

M1 =1 - 1

LC 305 J = 1,IM

1F (JDUM .EC. ICUM(J + 2)) GC TC 306

305 CCNTINCE

¢O0 TO 309
306 SRITE (6,1C005) XXXX

WRITE (6,1C11) JDUM

I1EEE = =1

¢C TC 309
307 WRITE (6,1005) XXXX

WRITE (6,1C12) JDUM,MNODE

IEFE = =1

€C TO 309
308 &RITE (6,1C05) XXXX

WRITE (6,1C€13) JDUM

IEER = =1
369 CCNTINUE

I¥ (IERR .I1. 0) GO TO 2999

ITTOP' CAEL HAS BEEN VALILATEL. ENTEBR INTO INODE AND WRITE.
ISET = 2
WRITE (6,1014) NKNAME,MFORW,IN
pc 310 1 = 1,IN
JDUM = IDUM(I + 2)
INCLE (I, NNCME) = JDUN
ICCHMP = NCME(JLUWM)
310 WRITE (6,1C15) JDUM,ICCMP,CMPFAM (ICOMP) ,MCUT(JDUM)

NOW INPUT TCP EVENT ROWS FECM * 1T0P' CAEDS.
INE2 = IN + 2
WRITE (6,101€) (ITUM(I),I=3,INP2)
I =20
311 FEAD (5,10C2,END=¢S8) XXXX,NCCLE,NNAME,ICOM
1P (NCOLE .EC. NTCPE) GC TC 313
IF (NCCLCE .EC. MENI) GO TO 99z
IF (NCODE .EC. LEXD) NCODE = NTCP
1F (NCOLE .EC. LFNI) GO TC 19¢S
WRITE (6,1003) NTOF
WEITE (6,1004) XXXX
GC 1IC 20¢C¢C
313 I =3I+ 1

VALIC ' T0OP' CARL FCUND.

KRITE (6,1005) XXXX
IECH = IBCWK(NLIE) + I = 1

196

Oonoaoa

314

3158

31¢

317

318

319

Ic 314 J =
JF (I .LT.

TOP EVENT

AND SET BOUNDARY CONDITICKS

MAKE SURE
ISFT = 3

RERL (5,10C2,END=2201)

IF
1F
ir
ir
IF

(NCODE
(NCODE
(NCODE
(NCODE
(NCODE

.Ec.
+«EC.
«EC.
«EC.
« NE.

EXTRA °
IEFE = =1
WRITE (6,1018)
GC TC 2000
WRITE (6,1003)
WEITE (6,1004)
I¥ (IERR .GE.
GC TC 2000
WRITE (6,1005)

TCE?

RERL (5,100Z,8ENL=2203)

IF
IF

(NCODE
(NCODE .EC.
I¥ {(NCODE .E(.
IF (NCOLE .EC.
WRITE (6,1003)
WRITE (6,1004)
IF (NCOLE .EC.
IF (IERR .GE.
GC TC 2000
CCKTINUE

+EC.

YEECH
WEITE (6,1003)
WRITE (6,1004)
WEITE (6,1(19)
1F {NCODE .EC.
6C TC 330
CCMTINUE

‘GEC!
WRITE (6,1C19)
ISET = 4

READ (5,10C2Z,END=22C1)

IF (KCODE
1F (NCOLE
IF (NCODE
IF (NCODE

.EQ.
. EQ.
+EC.
+EC.

CAKLC FCUND.

1, 1IN
JEOW(J,LECH) =

IDUM{J)

MECH) GO T0 311

FOWS HAVE BEEN BEAD. SEARCH POR END CARD
(IF ANY),

NC EXTRA ' TOP' CARLS REMAIN.
XXXX,NCOLE,NNAME,IDUM
LENRD) GC TO 316

NBC) GO T0 318

MEND .CF. NCODE .EC., LOUT) GO TO 2201
NNT .OR. NCOLE .EQ. NEXT) GO TO 317
NTOP) GC TO 315

CARDS FCUND. AECET JOCB.

MFOW, XX XX

LEND

XXX
0) IERR = IEFF + 1

LEND

XXXX,NCOLE,NNAME,ITOUM
NEC) GC TO 318
LENL .OF. NCOLE
LENL) GC TO 2000
MENLT .OR. NCODE
NBC
AXXX
NNT .OR.

0) IERF =

+EQ. MEND) WRITE (6,1004) XXXX

.EQ. LCUT) GO TO 2203

NCODE
IERF + 1

+.EC. NEXT) GO TO 317

CABD CMITTED.

NEC
XXXX
TITLE

NNT) GO TO 320

SEAECH FOR VALID BCUNLARY CCNDITICNS,
TITLE

XXXX,NCOLE,NNAME,ICUN
LEND) GC TO 2300
MENT .OE. NCODE
KNT) GC TO 320
NEXT) GO TO 330

«EC. LCUTI) GO TO 2201

197

WRITE (6,1003) NEXT
WEITE (6,1CC4) XXXX
1F (1ERE .GI1. 0) IERR = IERR + 1
GC 1TC 2200
320 ISFL = 5
WRITE (6,1CCS) XXXY

INTEFENAL KCDES TC BE SET. FIFST FIND COMPONENT.
IC 321 J = 1,NNCME
IF (CHMENAM(J) .EC. NNAME) GC TC 322
321 CONTINUE

NC NAME MATCH FRCM ' INT' CARL.
IEER = =1
329 WRITE (6,102C) NNAME
GC TC 319
322 CCKTINUE

VALIC NAME FCUNLC. SET NOCES.
INT = NINT(J)
1F (INT .EC. 0) GO T0 329
NODE = MNODE + (J = 1) *MXINT2
LC 323 K = 1,INT
IF (IDUM(K) .1T. 0) GC TG 323
KNCDE = NCLE + K
¥ (1,KNCDE) = IDUM (K)
X (Z,KNCDE) c
323 CCKTINUE
GC TC 319
330 ISET = 5
WFITE (6,1005) XXXX

EXTERNAL NCDES TO EE SET. CHECK EACH NODE FOR VALIDITY.
pc 335 3 = 1,6

od = 2%3 - 1

JDUM = IDCE(JJ)

1F (JCUM .EQ. C) GO TO 336

I (JDUM .GT. MNODE .OF. JILUM ,LE. 0) GO TO 333

1F (NCMP(JLUM) .EQ. 0) GO TO 334

VALILC NCLDE FCUNL. CHECK AGAINST TOP EVENT.
IN = NIN(XLIE)
IC 331 K = 1,1IN
IF (INCDE(K,NNCMF) .EQ, JLUPF) GO TO 332
331 CCNTINUE

NOLDE VALII. SET MODE.

1(1,JDUN) = IDUN(JJ + 1)
X(z,JDUM) = C
GO To 335

332 CCNTINUE

198

e e Xe]

333

334

335
336

990
991
992
995
99¢
997

938
999

1999
2000
2001

2009

2018
2029
2039

2002

EOUNLCARY CCNLITICN IS ALSGC TOP EVENT.
NEGLECT ECUNDAFY CCNDITION.

SRITE
¢C TO 33%

{6,1021) JDUM

KRITE (6,1C12) JDUM,MNCDE

JEFF = =1
GO 1IC 335

WRITE (6,1C13) JLUM

IEFF = -1
CCHTINUE

CCNTIINUE

GC

GC

NC(CLE =

GO

NCCLE =
WRITE
IEEF =

TC 319

FINAL REGICN.
EERORS CHECKED, EXTRA CARLS RIRAL,
NCCDE =

LTCE
955
MTCE
995
NTQE
(6,1025)
-1

1C

IC

BETUEN

KCCLE =

GC

NCCLE =

GC

NCCLE =
WRITE
1E¥F =

LIOE
999
MTOE
999
NTOE
(6,1CC8)
-2

IC

1c

EETUEN

WRITE (6,1C17)

IF

JSEIT =

IF

GC
IF
iF
GC
IF
GG
IF
GC
IF
IF
1F

{IERR .GE.

(NCODE .EC.

(NCODE

(NCODE

TC 2002
{NCODE .EC.
TC 2002
(NCODE

TC 2002
(NCODE .EC.
(NCOCE ', EC.
(NCODE .EC.

oEQn
uEC-

«EC,

WRITE (6,1C0%)

IF

(NCODE .NE.

C) IEER =
ISET + 1

NCCDE

NCCDE ,XXXX

NCODE
LOUT

LTOP)
MTOE)
MTOE)
NIOE)
NBC) GO TC
NNT .OR.

LCUT)
XXXX

«ANL.
RERL (5,1002,ENL=2258)
TO (2009,2019,2029,2039) ,JSE1
GC TO 301
GC TO 301

EFOGEAM ENTEERS THIS BEGICN WHENR ISET =
IERE + 1

ISET .EC.
XXXX ,NCOLE,NNAME,IDOH

GG TO 302

GC TO 313

318
NCOLE

GC TC 2299

MENL) GO TO 2001

199

ETC.

0,1,2 OR 3.

3) GG TO 2296

.EQ. NEXT) GO TO 317

[eNeXg]

2297
2298
2299

2200

2201

2203

2202

23600

2301

2302

2303

2304
2310

*GEND', *5CUT' CE ENL OF FILE EKEAL.
GO0 T0 (99C,$91,992,2299) ,JSET
GC 1IC (9%6,9¢7,998,2299) ,JSET
WRITE (6,1C2€)
¥FITE (6,1022)
I1F {(NCOLE .EC. LOQUT) GO TO 2301
I? (IEBR .17. 0) WEITE (6,1024)
FETUEN

EFCGFAM ENTERS TEIS REGION WHEN ISET = 3 CR ISET = 4,
REBD {5,100Z,END=2201) XXXX,NCOLE,NNAME,IDUM
IF (NCOLE .EC. NNT) GO TO 320
IF (NCODE .EC. NEXT) GC TO 330
1F (NCCLCE .EC. LENI) GO TO 2300
IF (NCODE ,NE. MEND .AND. NCOLE .NE. LOUT) GO TO 2202

YGEND', 'ECUT' CF END CF FILE FEAL (ISET = 3 OR &)
JF {(ISET .EQC. 4) WRITE (6,1(22)
WRITE (6,1C23)
JIF (ISET .¥C. 3) WRITE (6,1022)
IF (NCOLE .EC. LCUT) GO TO 2301
I¥ {(IERR .17. 0) WFITE (6,1024)
FETUEN
WRITE (6,1CCE) XXXX
IF (IERR .€E. C) IERE = IEERR + 1
GC TIC 2200

ENDC CARD EXNCCUNTERED, NO CAEDS MISSING (TEANSFER FROM 319)
SEARCH FOF '6END',50UT OR END CF FILE.

WRITE (6,1005) XXXX

REML (5,10C2,END=2301) XXXX,NCOTLE,NNAME,IDUM

I¥ (NCODE .EC. MEND .OF. NCODE .EQ. LOUTI) GO TO 2301

IF (IEER .GE. C) IEER = IEFF + 1

IF (NCODE .NE. NNT LANC. NCODE .NE. NEXT) GO TO 2300

WRITE (6,1C17) NCCDE

IF (NCOTE .EC. NNT) GO TO 320

G6C TC 330

IF (ISET .EC. 4) WRITE (6,1022)

ISIT = 6

IF (IERR .LT. O .ANL. NCOLE .EC. LGUT) GC TO 2300

IF (KOUT .FC. 1) GO TO 2310

IF (NCODE .EC. LCUT) GC TC 2302

1F (IEFR .L1. 0) WRITE (6,1C24)

RETUEN

WEITE (6,1027) XXXX

IEFR = IERF + 1

REAL (5,100Z,END=23C4) XXXX,NCOLE

WRITE (6,1C05) XXXX

IF (NCOLE .NF. MENL) GC TO 2303

FETUEN

1F (NCODF .NE. LCUT) GO TO 2311

FETUEN

200

2311 WRITE (6,1028)
IF (IERR .GE,
IF (1ERR .17.
FETUEN '
WEITE (6,1024)
RE2L (5,1002,END=2902)
WRITE (6,10C5) XXXX
1F (NCODE .NE. MENL) GO TO 2901

2902 EBEITUEN
CoAcdeak ok ok 2 ok o % 3k ok koo ob 3 3k ok 3k ook ok ok ok ok ok ok ok R o 3 ook o ok kR Kk R OR KRR K Ok R R kR koK Rk ok ok ok kK

0) IERE = IERF + 1
0) WRITE (6,1024)

2999

2901 XXXX ,NCOLE

C *
C FCFHMAT FEGION *
c *

Lok b oo ok ook b 30 0k kb Rk o R R R R K R R R K R AR oK R Ok R ok ok ok Rk Rk Kk
1000 FPCEMAT (1H1,'INTERNAL NCDE INDEX FOR:'/1X,20A4//,1X,

1 YINDEX',2X,"NAME',6X, " TYPE#?,2X,*TYPE® ,6X, '"INTERNAL NODES'y)

1001 FCEMAT
1

1002 FCEMRT

1003 FOERMAT
1 <CAFL

1004 FCEMAT

1005 FCEM2T

1006 FOFMAT

W AY

1007 FOEMAT
1008 FOERMAT
1 LCATA

Z 'Y JOB TEFMINATING'//*

1009 FCEMAT

1EEIS SPACE ALLCCATEL,',T131,0%8 1 %t T4 o

(1X,I%,2X,A€,17,2X,A8,5%,5(15,":
{38X,5(15,"':

(20R4,71,A4,6X,A8,2X,121¢5)

{(*O*** INFUT ERROF ***¢/7X,A4,"

IN EFFOF IS:?)

(7X ,2CA4)

(1X,2024)

(1E1,€5("#%') /¢ * PROGEAM CAT, VERSION OF 10/75%,T131,1%v/

' * TCP EVENT AND BCUNLAFY CCNDITICN PRINTOUT FOR JOB',IS,

T131, %1,

CoRY T3, 0k 0 % € 204 ,T131, 0% /1K, 65 (T*%1) //)

(1X,24//* TCE EVENT FOR ',20B4/)

(*0*#*% ENC OF INPUT L[ATA STREAM *%%¢/7¥,A4,% CARD EXPECTED:

CAEDS MISSING OF MISPUNCEFL, LAST CAFD READ WAS:'/1X,20A4/

*%%x END CF EFEOGEAM **%1//)

',60("**1) /1t * NUMBER CF ROWS OF TOP EVENT EXC

FCWS ALLCCATED (**NROW'!

',38,2X)/
',28,2X)))

CARL MISSING OR MISPUNCHED.

(*O**+ ERROF

2 FECM LAT4 CARD).',T131,

3 '#l/l
4oro#
1010 FOERMAT

1CEELS SPACF ALLCCATED.',T131,1%t /1
FROM DATZ CAEL) .',T131, % 1
CRED.',T131,'*%t /v %

201
3'1

*eTIOR! !

*%,I4," KCWS SPECIEIED QK **TTQP'' CARD,',T131,'%',

CAEL REALS: ',20A4,T131,"%'/1X,65 ('**%) /)

(fC*** EEROR ',60('*#*')/' * NUMBEE CF NODES CF TOP EVENT EX
*¢,I4,' NODES ALLOCATELD (''LNRO
#' I4," NCDES SPECIFIED CN *'TTOP

YITTCP'* CAELC READS: ',20A4,T131,'x7%,

4 X,E5('**) /)

1011 FORMAT
1012 FOEFMAT
21,16,
1013 FOEMAT
2.%/)
1014 FCEMAT
1
2
1015 PCEMAT
1016 FCEMAT
1017 FOERMAT

(' *** INEUT
(' *** INEUT
{MNOLE) . ')

(* *%% INEUT

IS NOT UNIQUE.'/)
IS NOT BETWEEN 1 AND

ERECR *#%4/1X,VNODE',I6,"
EREGK **%%/1X,9NODE',16,"
ERKOR ***'/1X,'NCDE',I6,' HAS NCT BEEN DEFINED
(*OEVENT: ',A8/' NUMBEE CF ECWS =',I3/

* NUMBEFF OF NOLES =?,13/' TOF EVENT NOLDES ='//

" NCLCE',3X, 'COMECNENTI', 5X,'OUTPUT! /)

(I5,16,3%,A8,I4)

(//*0OIAELE FOR TOP EVENT:'s/' TTOP',6X,'NODE(S):*,2X,10I5/)
(*O*** INEUT ERKCE #*#*%%/' ENLC CABD FOUND WHEEE '9¢,A4,%%¢ C

201

[eNaKel

1ARI EXPECTFL.'/' DATA EEFOK, PREVIGCUS MISPUNCH, OR CARD MISSING OR
2 CUT CF OFLCER.'/' CORRECTIVE ACTICN WILL EE ATTEMPTEL.'/)

1018 FOFMAT ('O%%* INEUT ERRCE *#*%',/% MOFE THAN THE',I4,* *' TOP'' CARD
1S SPECIFIEL BAVE BFEN INPUT. EXTRA CAKDS FCLLOW.'/' PROGRAM TERNI
INATING; VALITATICN OF EEMAINING CAEKDS WILL BE ATTEMETED.'//

Z 1X,20R4)

1019 FCEM2T (//'0&BC'y/' BOUNLCARY CONLITIONS FCE *',20A4//)

1020 FOBMAT (' *** INEUT ERKCR **#*%/¢ CCMEONENT *'',A8,'*' DOES NOT EXI
1ST OF HAS NC INTERNAL NODES.'))

1021 FOFMAT (* *#*%* RARNING **%%,% NCLE',16,' IS A TOP EVENT AS WELL AS
12 ECUNL2BY CCNLITION., FEOUNCARY CCNDITICN WILL BE IGNORED.'/)

1022 FOEM2T ({(,38HCNC BOUNLARY CONDITICNS HAVE BEEN SET.//)

1023 FCEMAT (16H *** WARNING **%,52H &END, £OUT OR END OF FILE REACHED
IWITH NO ENT CARC.,/28H CATA MAY EAVE BEEN CMITTED./

Z Z3HO*** JCB CCNIINUING *%*#/)

1024 FOEMAT (/47EC*** JOB TEEMINATING CUE TO PREVIOUS ERFOES *#*%/)

1025 FOFMAT (/20HC**% INEUT ERROB **%/1X,27H £ENC OR 60UT FOUNL WHERE !
1 ,Al,16F' CARD EXPECTED./1X,2UH *** JOB TERMINATING *%%/)

1026 FCEMAT (16HO*** WARNING ***/46HCUNEXPECTED &END, £0UT OR END OF FI
1LE REACHED./28H CATA MAY HAVE BEEN CMITTED./

Z Z3EQO**x JCB CCNTINUING *%%,)

1027 FCFMAT (16HC*** WAKNING **%,33H UNEXPECTED &£0UT REAL (KOUT = 0)./
1 38F EXTRA FAILURE LATA WILL BE NEGLECTED./

2 20H EXTRA CARDS FOLLOW:z,//1X,20A4)

1028 FCEMAT (16HO%%* WARNING ***/47H &END OR END OF FILE REACHED WITHOU
1T &0UT CARI./39H REQUIREL PKEP LATA MISSING (KOUT = 1)./

1 48H FAULT THEEE WILL BE CUTEUT WITHOUT FAILURE LATA./)
ENI
SUERCUTINE DC IT (NTYPE,IEOW,NINT,NIN,NOUT,NROW,JROW,NCMP,NCUT,
1 ITYPE,INODE,X,IGATE,JGATE,GATE,CHENAN,
2 NLIB,LNRCW,MXECW2,NNOLE,MBODE, NNCMP,LNRP1,MGATE,
3 MXINT2,NGSIZE,NCDES,NGATE)

SUEROUTINE TO GENERATE FAULT 1EEE
DIMENSION NTYPE(NLIB),IFCW (NLIB) ,NINT (NLIE),NIN(NLIE),NOUT{NLIB),
NFCW (NLIRBR) ,JROW (LNROW,rXR0OW2) ,NCMF (NNODE) ,MCUT (NNCDE),
ITYPE {(NNCMEF) ,IJNODE(LNFE1,NNCMP) ,IGATE (MGAIE),
JGATE (MGATE) ,KIND (2)
CCEMCN TITLE(20),XXxX(20),IERR,IEDIT,IDUM(12) ,NNAME,JERINT,KOUT
DOUBLE FRECISICK NNAKE,CMENRM(NKCMF)
INTEGER X (2,ROLES) ,GATE (NGSIZE)
CATA KIND{(1) ,KIND(2)/'AND *,'OR '/
DC ¢ I = 1,NGSIZE
98 GATE(I) = C
DC 99 I = 1,MGATE

tad) wd

IGATE(I) = 0
99 JGATE(I) = O
ILUM1 = NUMBER OF FOWS OF TABLE
IDUM2 = KUMBEEF OF COLUMNS (NGDES)
ILUM1 = NFOW(NLIB)
IDCMZ = NIK(NLIB)

202

OO0 00n

ana

aaon

IFFINT = JPRINT
IF (IPRINT .GTI. 0) WRITE (6,1000) TITLE

EEGIN TC GENEFATE TREE WITH TCE EVENT.
1F 1pUm? = JLUM2 = 1, T0P GATE MUST EBE DEVELOEFED FURTHEE.

1F IDUM1 «GI. 1, TOP GATE IS CE GATE.

IGATE(1)
JGATE (1)
INLEX
JDEX
GRTE (3)
GATE (4)
GATE (5)
IFCWI IFCK (NLIB)

IF (ILUMY .EC. 1) GO TC 101

OO0 ada

W otwnw ok

TO0P GATE IS OF GATE WITH IDUM1 INPUIS
NOW® FILL IN ENTRIES OF TCE GATE.
GATE(Y) = =2
GATE(2) = ILCUM1
oC 100 JLUM = 1,ICUM1
JJDUM = 2%JDUM + 4
CATE (JJDUM) = ~NNCME
10¢ GATE(JJDUX+1) = JDUM
IGRTE(2) = z*ICUM1 + 6
G0 1C 110
101 IF (IDUM2 .EC. 1) GO TO 104

TOP GATF IS ANLC WITH ILUMZ INEUIS.
GATE(1) = -1
GATE(2) = ILUMZ
DO 103 JDUM = 1,IDUM2
SILOM = Z#3DUM + 4
JNCDE = INCDE (JDUM,NNCNP)
IMCDE = JECW (JTLUM,IROWI)
102 X(1,JNCDE) = IMGCDE
X(z,JNODE) = 1
GATE (JJDUEK) ==-JINODE
103 GATE(JJDUM41) = IMODE
IGATE (2) = 2#IDUNM2 + 6
GC TO 110
104 CCNTINUE

TOF GATE REQUIRES FURTHER DEVELCPMENT AS CR GATE.
SET TOP NCLE ANL FINL FIEST CCMEONENT TO CHECK.
JNCDE = INCDE(?1,NNCNE)
INCDE = JRCW(1,IROWI)
1¢5 X(1,JNODE) = IMCDE
X{Z,JNCDE) = 0

203

C €0 TO CE LCOP TO CCNSTIRUCT TOE GA1IE.

GC TC 203
110 CCKTINUE
JGATE(2) = 1
INLEX =z
JDEX =1
C 0P G2TE EAS BEEN CENERATEL.
c ERINT OUTPUT, IF DESIRED, AND ENTEE PROPEF GATE LOOP.
KK = IGATE(Z) = 1

IKIND = ~GATE(1)
1P (IPRINT .GT. 0) WRITE (6,1003) KIND(IKIND),GATE(2),GATE(3),

1 (GATE(II),TII=6,KK)
GATE(KK 4+ 4) = C

LDEX = 1

KDEX = 6

GC TO (202,300),IKIND
CHRERBARAARE AR R R AR AR R AR ARFFRA N RN R R R bR kR KRRk kR K kR Rk

C
C EEGINNING CF¥ CF LCCP.

C THIS LOCF IS ENTEREL FEACH TIME

C A ERANCH CF AN AND GATE IS BEGUN.

C FIFST LOCRTE FEOPER ERANCH T0 SEAKRCH,
C
C

* R % K K X

FAK R R) 2 350K Kk S K kRO R KR A KK Rk R KRR R R RO R R R R AR ARk R R Rk
200 CCXTINUE
JLEX = JGATEF (INLEX)
KDEX = IGATE (JDEX) + 3
LLLEX = GATE(KLEY - 2) + GATE(RILEX - 1)
pc 201 3 = 1,LIDEX
KDEX = KLEX + 2
IF (GATE(KDEX) .LT. 0) GO TO 202
201 CCNTINUE
GC 1IC 2030
202 CCNTINUE

C
C KLCEX HAS BEEN SET TO LOCATION OF BRANCH IC BE DEVELCPED.
C GATE(KDEX) CCNTAINS NCDE TIC BE CHECKEL.
JNCDF = ~G2TE(KLEX)
IMCDE = GATE(KLDEX + 1)
GATE(KDEX) = INTCEX
GATE (KDEX + 1) = =1
C
C SINGLE~INEUT GATES TRANSEER TC THIS PCINT.
C TO CENEK2TE *CE' GATES.
C FIRST CHECK FCF AFBAY SPACE LEFT.
C TEEN CBECK CCMECNENT RKOWS FOR MATCEES.

203 CCRTINDE

ICCME = NCME (JNCLE)
IOLT = MOUT (JNCLE)
JIYPE = ITYPE(ICCME)

IDEX = IGATE (INDEX)
LLECW ICEX + 4 + 2*NROW(JIYPE)

204

(o Re}

205

206

IF (LLECH .GT. NGSIZE) GC TIC §2¢C

IPLUS = NIN(JTYEFE) + NINT(JTYPE)
ISECT = IFLCS + IOUT

ITCT = IPIUS + NCUT(JTYPE)

IS¥T =0

IDEXP1= IDEX
GATE (ITEX)

GATE (IDEXPY)
GATEF{IDEX+2)

N

nuu +

DO) -

KOW SEARCE FOER VALID CUTPUT MCLE.

IBCWI = IRCW(JTYEE)

NFCWI = NECW(JTYFE) + IRCHI - 1

DO 210 IE = IRCWI,NBCWI
JF (JROW(ISPCT,IP) .NE. IMODE) GO 10 210
ISET = 1

OCTPUT MATICH., NCW CHECK FCF CCMELETE MATCH.
IC 205 1Is = 1,1T01

KNCDE = INCDE(IS,ICCMP)

JMCDE = X(1,KNQLE)

JF (JMCDE .EC. =1) GC TC 205

IF ((JECW(IS,IR) .NE. ~=1) <AND.

(JECW(IS,IR) .NE, JMODE)) GO TO 20¢€
CCNTINUE

CCMELETE FOW MATCH. SET GATE INPUT
GATE(IDEXE1) = GATE(ILCEXE1) + 1
IILEX = Z*GATE(IDEXP1) + 3 + ITEX

GATE(IIDEX) = =ICCHME
CATE(IIDEX ¢ 1) = IF + 1 = IRCWI
GC IC 210

NODE CCNTRADICTICN IN FCW IF. WRITE QUTPUT
1F (IPEINT .LT. 1) GO TO 210
NGATE = X (2,KNCDE)
KECW = IF + 1 - I1FOWI
I¥ (KNODE .GT. MNOLE) GO TC 207

IF (NGATE .GT. 0) WRITE (6,1010) INDEX,CMENAM(ICOKPF),JTYEE,
KECW ,KNCDE,JECW (IS, 1IR) ,JMODE, NGATE
1F (NGATE .ECG. O) MWRITE (€,1C1%11) INDEX,CMENAM(ICOMP),JTYEE,

KECW,KNCDE,JRCW (IS,IF) ,JMODE
¢C IC 21¢C
KNCDE = IS = NINT(JTYPE)

I¥ (NGATE .GT, 0) WRITE (6,1012) INDEX,CMPNAM(ICOMNP),JTYPE,
KFOW,KNCDE,JECW (I5,1IkK) ,JMODE,NGATE
IF (NGATE .EC. 0) WRITE (6,1013) INDEX,CMENAM (ICOMP),JTYPBE,

KEOW,KNODE, JECW (IS,IE) ,JMODE
CCNTINUE
IF (ISET .E¢. 1) GC TOo 211

¥O OUTPUT MCDE MATCH FCUNL,.

205

C EFINT MESS2GYI BANL LCELETE GATE.
IF (IPRINT.GT.0) WRITE(6,1004)IXCDE,JNODE,CMPNAM(ICCHP),JTYPE,IOUT
GC TC 212

211 1IF (GATE(IDEXP1) .NE. 0) GC TO 220
C****#*###1#**#*********#************#*******t*t##*#*****#**#**t#***#***

C *
C MC CCMPLETE FOW MATCE FOUNL. *
C CELETE GATE ANLC EDIT PBREVICUS GATES. *
C *

CHARBIAR A AR RRRR R AR AR R A AR A AR DA B R ARk R AR kAR R R & Rk ko ok kR Rk ok
IF (IPBINT .GT. 0) WRITE (6,1005) CMENAM(ICCMP) ,JTYEE
212 IF (INDEX .E¢. 1) GC TC 2020
IF (IPRINT .GT. 0) WRITE (6,100€) INDEX

GATE IS DELETED SIMPLY BY NOT INCEFEMENTING INDEX.
EACKTRACK TO FREVIOUS GATE. TCELETE IF 'AND',
CELETE IKEUT IF 'CR'.
213 I1F {JDFX .EC. 0) GO TO 2040
NCEX = IGATE(JLEX)
IKIND = =GATE(NTEX)
I¥ (IKIND .EC. 2) GO TC Zz14

aOOno

C
C EREVIOUS GATE IS *AND' ANL WIIL EF DELETEL.
1F (I1BBINT .GT. O) WEITE (6,1007) INDEX,KIND(1) ,JDEX,JDEX
INLEY¥ = JDEX
JLEX = JGATE(INLEX)
GC TC 213
C
C PREVIOUS GATE IS *OR'. ELIMINRTE EFRANCH.

214 ILTEX = GATE(NLCEX + 1) + GATE(NLCEX + 2)
IF (LLDEX .EC. 1) GO TC 219
KDEX = NLEX + 3
LC 215 K = 1,LLLEX
KDEX = KDEX + 2
1F {(GATE(KDEX) .EC.INDEX L.ANLD. GATE(KDEX+1).EQ.~-1) GO TO 216
215 CCRTINUE

C
C KDEX IS LCCATICN OF ERANCH TC BE ELIMINATED.
C FOVE UP SUCCEELING ENTRIES (IF ANY).
C CTHERWISE, GATE IS FINISHED.
IE = 215
ERINT 1,IB

C*#**#**1*‘*"#**‘**##*#*****##*******##***#*#**#*#******‘**##**‘**#****
CRRERBAEARAARRRRRBARE N AR R IR AR ARBERR RS Bk k kRN KR B2k gk ok ok ko ok ok o kR ok kokk
216 LDEX = (KDEX - NLEX = 3),2
KK = NDEX + 4 + 2%LLDEX
1F (IPRINT .GT. 0) WRITE (6,1008) INDEX,KIND (IKIND), JDEX,LDEX,LLDEX
CATE (NCEX + 1) = GATE(NDEX + 1) = 1
IF (LDEX .17. ILDEX) GG TO 217

C GATE HAS NC FUFTHEE ENTBIES. GATE COMPLETED,
1F {(IPRINT .GT. 1) WRITE (6,102C) JDEX, (GATE (II),II=NDEX,KK)

206

GC TO 410
217 LLLEX1 = LIDEX - 1
L0 218 K = LLEX,LLDEX1
GATE(KDEX) = GATE (KDEX + 2)
CATE(KDEX#+1) = GATE(KDEX + 3)
218 KDEX = KDEX + 2
IF (IPRINT .GT. 1) WRITE (6,1020) JDEX, (GATE(II),II=NDEX,KK)
GO T0 401

C EREVIOUS GATE IS SINGLE INPUT *CR"' AND WILL BE ELIMINATED.
219 1F (JERINT .GT. 0) WRITE (6,1009) INDEX,KIND(IKIND),JDEX,J3LEX
INCEX = JDEX
JDEX = JGATE(INLEX)
GC 1IC 213
220 CCITINUE
CAR kb 28 o 22 3k Aok ok ok ok K b ok ok oK ok ok b o ok ok ok ok ok oK A 3k ok 3k ok ke ook ok ok ale o e ok ek ok ko Kok ok oK 3 R ok K K K kKoK

C *
C FOW MATCH FOUND (TEANSFER FECFK STATEMENT 211). *
C NCW EFOGEAM GENERATES *OR'Y GATE INBUTS, *
C *

CRRBAR RN S # AR AR R AR R AR AR AR AR F KRR KR AR R AR KRR AR AR H WKk KRk
IF (GATE(IDEXP1) .GI. 1) GO TO Z21

'OR' GATE HAS CNLY CNE EOW, TBEUS IS NCT TRUE GATE.
FETURN TO PREVIOUS GATE AND DEVELOP CUREENT BRANCH
AS AN 'AND* GATE. LDEX,KLCEX,ICCME,GATE (KDEX)
EAVE ALRE2LY EEEN SET.
IF (IPRINT .GT. 0) WRITE (6,1019) INDEX,KIND(2),JDEX
MECR = GATE(IITEX + 1)
221 CONTINUE

s NeNesNsXKs!

'OE' GATE HAS MUITIPLE FCHS.
SET GATE ERRAMETERS AND INLICES FOE FIRST ROW.
1IF (GATE(IDEX+3).LT.10000 .AND, GATE(IDEX+3).NE.D) GO TO 222
CATE (IDEX+3) = JNODE
GATE (IDEX+4) = IMCDE
222 KK = ICEX + 4 + 2%GATE(IDEXE1)
KG = ILEX + ¢
IF (IPRINT .GT. O ,LAND. JDEX .GT. 0) WERITE (6,1002Z) INDEX,
KIND(2) ,GATE{IDEXP1) ,GATE(IDEX+2) ,INODE,JNODE,
2 {GATE (II) ,II=KG,KK)
IF (IPRINT .€T. 0 . AND. JLDEX .EG. 0) WRITE (6,1003) KINL(2),
1 GATE (2) ,GATE(3), (GATE(II),II=6,KK)
IF (GATE(IDEXP'1) .EQ. 1) GC TO 301
JDEX = INLEX
INCEX = INDEX + 1
IF (INDEX .GT. MGATE) GO TO $S00

ano

=3

IGATE(INDEX) = KK + 1
JGATE (INDEX) = JLEX
GAIE (KK + 4) = 0

LLEX = 1
CREEFDEN A A A kokak k) 4o fokokok ok Bk ok K kb 3 2630 o b 3 35 2 0 3Kk oK o ok ok 3 3 Ok K ko ek oK ok kol ok Kok ok

207

30¢

301

an

[eNeNaNe]

BEGINNING CF *AND' LCCE.

THIS LOCF IS ENTERED EACH TINE

P} ERANCH CF AN *CR' GATE IS BEGUN.

ERESET VAKIAELES:
INDEX
JGATE(INIEX)
IGATE(INDEX)
LDEX

GATE NUMEER CF CUERENT *AND' GATE
INCEX OF GATE ABOVE CUBKENT GATEF

i non

ERANCH OF GATE 'JGATE' BEING EVALUATED

VARIAELES 10 EE SET:
LROW = BCW IN TYPE IIERARY TO EE SEARCHED

L ES R EE SR RS SRR R RS SRR S SRR RS SRS 2R RS RS RS RS RRE RS2 S R RS R R R R L2 R 2 L S

CCXTINUE
JDEX
NDEX
KDEX

JGATE {IXCEX)
IGATE(JLEX)

NDEX + 3 + 2=*LLEX
ICCME ~GRTE(KTEX)

MECH GATE(KDEX + 1)
GATE (KDEX) = INDEX
GATE{KLEX+1) = =1

JIYPE = ITYEE(ICCME)

LECH = IRCW (JTYFE) + MRCW = 1
INET NIN(JIYEE)

INT NINT(JTYEE)

JCUT NOCT(JTYEE)

[T I I I

FIRST CHECK FCE ARFAY SPACE LEET,
LIFCW = IGATE(INLEX) + 4 + 2% (INFI + INT)
IF (LLECW .G1., NGSIZE) GC TC 920

NODES WERE CEECKED FCF CONTRALICTIONS WITH PRESET VALUES
IN LOOE 205, NOW CHECK FCE OTEER PRESET VALUES, SET NOLES,
AND GENEFRTE 'ANL' GATE.

IC¥X = IGATE (INCEX)

GATE (IDEX) -1

GRIE(ICEX + 1) 0

GATE (ICEX + 2) C

CHECK COMECNENT INPUTS FIEST.
IF (INPT .EC. C) GO TO 311
LC 310 IN = 1,INET

KMCDE = JFCH (IN,LECH)

JF (KMOLE .EC. =1) GO TO 31¢C

KNCDE = INCDE(IN,ICCME)

JMCCE = X (1,KNCLE)

IF (JMCDE .NE. -1) GG TC 309

NODE NCT PFESET, SO SET NODE AND GATE INPUTS.
3(1,KNCDE) = KMCLE
X(2,KNCDE) INDEX

[

208

STARTING PCINT OF CURRENT GATE IN ARRAY *GATE?

*
*
*
*
*
*
*
*
*
*
*®
*
*
*

GATE(IDEX + 1) = GATE(IDEX + 1) + 1
IIDEX = IDEX + 3 + 2#GATE(IDEY + 1)

CATF(IITEX) = =KNODE
GATE(IIDEX+1) = KMODE
GO0 10 310
309 CCNTINUE
C
C NODE PRESET. [O NOT SET GATE INFUT.
IB = 3¢9

IF (JMOLCE .NE. KMODE) PRINT 1,IE
C ok b ok o b ok ob ok ok ook ok ok 3k ok ok o ok ok ok b ok o ok ko 2 ok ok ok b o o oK o 2k k2 3k 3 o o o ke K Ok Ok ke o 3k 0K A KK 3 ok Kok ok ok K Kok
CR Mok 2 % 8 o) 4 b ok ok koK o ok akok ok ok o o kK kA ok ok ol o ok ik ke ok ok i ok e 0Ok ok 3 ke akoR e ok K ok ok K oK oK kK 3 o ok ok kKK ok
IF (IPRINT .1T. 1) GC TO 310
NGATF = X (2,KNOLE)
1F (NGATF .NE. 0) WRITE (€,1014) INDEX,KNCDE,JMOLE,NGATE
IF (NGATE .EC. 0) WRITE (6,1015) INDEX,KNCDE,JMODE
310 CCATINUE
c
C NOW CHECK INTEENAL NODES,
311 I? (INT .EC. 0) GO To 321
INETP1 = INET + 1
TEICS = INET + INT
LC 320 IN = INETE1,IPLUS
KMCODE = JBCW(IN,LECW)
IF (KMCLE .EC. =-1) GO TO 320
KNCDE = INCDE (IN,ICOME)
JMCCE = X (1,KNCLE)
1 (JMODE .NE. -1) GC TO 319

c

C NCDE NCT PFESET. SET NCDE.
¥ (1,KNCDE) = KMODE
%(2,KNCDE) = INDEX

c

C THIS IS A PFIMARY INEUT. SET GATE INBUTS,
CATE(IDEX + Z) = GATE(IDEX + 2) + 1
IIDEX = IDEX + 3 + 2% (GATE(IDEX+1) + GATE (IDEX+2))
GATE (IIDEX) = KNCDE
GATE (IIDEX+1) = KMCDE
¢C T0 320

319 CCKTINUE
C
c NCLCE PEESET. L[O NOT SET GATE INFUT.
1B = 319

IF (JMOLE .NE, KMODE) PRINT 1,IE
CHRAFAA AR A F kAR AR AR DR AR 4000k 30k o 0K K ROk ok o R Rk KRRk R K K kK
CHRABHAF 100 30 A AR 88 oo ok oKk R3Ok Ak K kOB b R OR R RK sk R R Kk o kR kX kK
IF (IPEINT .171. 1) GC TC 32¢C
KGATE = X (2,KNCLE)
IF (NGATE .NE. 0) WFITE (6,101€) INDEX,KNCDE,JMOLE,NGATE
I¥ (NGATE .EC. 0) WRITE (6,1017) INDEX,KNCDE,JMODE
320 CCNTINUE

209

c NOW CHECK OUTPUTS AND SET NCDES. (DC NOT SET GATE INPUTS.)
321 IPLUS = INET + INTI + 1
ITCT = IEITS ¢ JCUT - 1
IF (ICOMP .EC. NNCME) GC TO 330
DC 329 IN = IPLUS,ITOT
KMCLE = JECW{IN,LROW)
1P (KMCDE .EC. -1) GC TO 329
KNCDE = INCDE (IN, ICOME)
JMCDE = X(1,KNCDE)
IF (JMODE .NE. -1) GO TO 328
3(1,KNCDE) = KMODE
X (2,KNODE) INCEX
GO 10 329
328 CCKTINUE
IB = 328
I1F (JMCDE .NE. JEOW(IN,LEOW)) PRINT 1,IB
o 2R XS X sho kool ool 3 ok 3ok % 3 ok ok o o) kK o o Ak ok o ok ok Ak 30 3% 2 3 3k ok o 3k ok ok 2 3k ok 3k oKk ok e kR 3 ok K ol K ok kR OK K

CRABRF AP AR AARKRARN AR N AR AR KRR AR TR KRR TR R AR AR AR R R AR RN RRE A B KR H Rk
IF (IPRIKT .11. 1) G6C TO 329
NGATE = X (2,KNOLE)
IF (NGATE .NE. 0) WEITE (6,1014) INDEX,KNCDE,JMOLE,NGATE
1P (NGATE .EC. 0) WRITE (6,1015) INDEX,KNCDE,JMODE
329 CCRTINUE

C
C ALL NOTDES CHECKED. CETERMINE TOIAL INFPUIS.
330 LLDEX = GATE(IDEX + 1) + GATE(ILEX + 2)

IF (LLCEX .GT. 0) GO TO 340
CHERRAF B A AR RFokkRERRE A SRR R RN RN R R R0 220 ROk A ko ok o ok koo 3 o ok o ok ok ok

C
C ALL INPUTS HRVE BEEN PRESET: GATE IS ALWAYS TRUE, *
C LELETE GATE ANIL ELIT PREVIOUS CATES. *
C LELETE PEEVICUS "OR' GATES ANLC ERANCH OF LAST PREVIOUS *AND', *
C *
C *

AR R A AR KRR ARRR AT RP AR DA ARE R AR IR A SRR R R AR R R B RR KRR A R RR KRR KKKk
1F (IPRINT .GI. Q) WRITE (6,1018) CMENAM(ICOMP) ,JTYFE,MRONW,INDEX
331 IF (JDEX .EC. C) GO TC 2086C
NLEX = IGATE(JDEX)
JKINL = ~GATE(NLEX)
IF (IKIND .EC. 1) GO TC 332

C
C FREVIOUS GATE IS *OR' AND WILL EE DELETED.
JF (IPRINT .GT. O0) WRITE (6,1007) INDEX,KIND(IKIND),JCEX,JDEX
INCEX = JDEX
JDEX = JGATE(INLEX)
GC TC 331
C
C PREVIOUS GATE IS *AND', LCCATE ANL ELIMINATE CUBRRENT BRANCH,

332 LLTEX = GATE(NLEX + 1) + GATE(NLEX ¢ 2)
I¥ (LLDEX .EC. 1) GC TC 337
KLCEX = NLEX + 3
pc 333 K = 1,LLDEX
RDEX = KDEX + 2

210

1F (GATE(KLCEX) .EQ. INDEX .ANL. GATE(KDEX+1) .EQ. =-1) GC TO 334
333 CCNTINUE

C
C KDEX HAS BEEN SET TO LOCATICN CF ERANCH TO BE ELIMINATED.
C MCVE UP SUCCEECING ENTEIES ({IF 2ANY).
C CTHEEWISE, GATE IS FINISHED,
I1E = 333
PEINT 1,IB

CANAAN 000K 0k o A KR o AR ok ok 3 o Kok Ok o kK 3 KRR R kK kR ROk R Kk
o R R s R T P P e ey
334 LDEX = (KDEX = NLEX = 3)/,2
KK = NDEX + 4 + 2*%LLDEX
IF (IPRINT .GT. 0) WRITE (6,1008)INDEX,KIND(IKINL),JDEX,LDEX,LLDEX
GRIE(NDEX+1) = GATE(NDEX + 1) = 1
1F (LDEX .17. ILDEX) GC TO 335

c GATE HAS NC FUFTHER ENTRIES TC EE MOVED. GATE COMPLETED.
IF (IPBINT .CI. 1) WRITE (6,1020) JDEX, (GATE(II),II=NDEX,KK)
GC 1IC 410
335 LILEX1 = LLLEX - 1
DO 336 K = LLEX,LLDEX1
CATE (KCEX) GATE(KDEX + 2)
GATE (KDEX+1) = GATE (KDEX + 3)
336 KDEX = KLEX + 2
1P (IPRINT .GT. 1) WRITE (6,1020) JDEX, (GATE(II),II=NDEX,KK)
6C TC 400

C EREVIOUS GATE IS SINGLE INPUT 'AND' AND WILL BE EIIMINATEL.
337 IF (IPRINT .GT. 0) WRITE (6,1009) INDEX,KINC (IKIND),JDEX,JDEX
INLIEX = JCEX
JDEX = JGATE{INDEYX)
GC TC 331
340 COKRTINUE
CREEARB RSN 230k % ok % 33k k ook kKoK ok ok ok oK ook ok 30K Ak ok ak ko o Kk Rk A ok ak ok k ok ok ok ok o ak dk Rk Kok K KK
Cc *AND' GATE INEUTS HAVE BEEN FCUND (TRANSFER FEOM 330).
Cc FIRST, CHICK 1TC SEE IF GATE HAS MCEFE THAN ONE INPUT,
C IF NOT, GRATE IS NOT TIFUE GATE: FETIURN TO FREVIOUS GATE
C AND DEVELCE CUERENT EFANCH,
C
C

* N R X %

LRI RS R REE RS EREREE R SRR R RER R R RE SRS RS RR R SR S22 SR R R 2R E R RSP R TS E R E R TS
1F (LLDEX .GI. 1) GC TC 350 ’

CATE HAS CNLY CNE INPUTI. DELETE GATE ANL RESET NCDES.
FIRST LOCATE AND SFT NCDES EACK INTO PREVIOUS GATE.
1F (IPRINT ,GT. 0) WRITE (6,1019) INDEX,KIND (1) ,JDEX
KNCDE = IAES (GATE(IDEX+5))
IE = 340
IF (X(2,KNCDE) .NE. INDEX) PRINT 1,1IB
CREFBAR BN B AR RIRF R ARk AR R R o oK o o ook oo o ok oK 3k ok ok oo ook koK o ok sk ok ok ok ko
CRXERDRR AR AR RN AR 300K R ok AR Rk A ok ok Rk ok b ok kRl ok ko ok bk R ok

¥ {2,KNODE) = JDEX

(s NeXe!

C

211

[e X2 Ns]

aao

[eNeXe!

[eNeNe!

341

342

343

350

1

351
1
352

NO% SEARCH CUTFUT NODES, IF MCEE THAN ONE EXIST.
IF {JOUT .17. 2) GO TO 342
DC 341 IN = IPLUS,ITOT

KNCDE = INCDE(IN,ICONME)

IF (X(2,KNCDE) .EQ. INDEX) X(2,KNODE) = JDEX

ALL NCLES HAVE BEEN RESET, NOW KESET GATE INPUIS,
I¥ (GATE(IDEX+1) .EQ. 1) G6C TO 343

CURRENT GATE HAS CNLY FRIMARY INPUT,

INSERT ENTRIES OF CURRENT GATE INTO PREVIOUS GATE.
IF (JDEX .EC. 0) GO TO 500
NDEX = IGATE(JLEX)

GATE (NDEX+1) = GATE(NDEX + 1) = 1
GATE (NDEX+2) = CATF(NDEX + 2) + 1
GATE (KDEX) = GATE(IDEX + 5)
GATEF (KDEX+1) = GATE(ILEX + €)
GATE (IDEX+3) = 0

KK = NLCEX + 4 + 2% (GATE(NDEX+1) + GATE(NDEX+2))
IF (IPRINT .GT., 1) WRITE (6,1020) JDEX, (GATE(II),II=NDEX,KK)

NOX RETURN TC EREVIOUS GATE, JLEX, SENDING KDEX, 1DEX, INDEX,
ANL CEVELCP NEIW FRANCH., FIRST CHECK IF GATE JDEX IS FINISHEL.
I¥ (LDEX .EC. (GATE(NDEX+1) + GATE(NDEX+2))) GO TO 410
LDEX = LTEX + 1
GO TIC 400
CCNTINUE

CUFFENT GATE EAS SINGLE GATE IKEU1.
SET PARAMETERS AND DEVELCFE AS 'Ck' (LDEX & KDEX HAVE BEEN SET).
JNCLCE = =GRATE(ILEX + 5)
IMCDE = GATE(ILEX + 6)
IF (C€ATF(ICEX+3).LT.10000 .AND. GATE(IDEX+3) .NE. 0) GO TO 203
GATE(ICEX+3) = JNOLE
GATE(IDEX+4) = IMCDE
GC TC 203
CCXTINUE

*AND GATF HAS MULTIPLE INPUTS. IF ANY UNDEVELOPED INPUTS EXIST,
EEGIN TC LEVELCP FIEST ERANCH; OTEERWISE, GATE IS FINISHEL.

KK = IDEX + 4 + 2*I11IDEX

KG = JLEX + £

IF (GATE(IDEX+3).LT.10000 .AND. GATE(IDEX+3).NE.O0) GO TO 351

CATE4IDEX+3) = 100C0 + ICOMF

GATE (IDEX+4) = MEOW

1F (IBRINT .GT. 0) WRITE (6,1001) INDEX,KIND(?1),GATE(IDEX+1),
GATE(IDEX+2) ,MROW,ICCMP, (GATE{(II),II=KG,KK)

GC TC 3£2

1F (IPFINTI .GT. 0) WRITE (6,100z) INDEX,KIND(1) ,GATE{IDEX+1),
GATE (IDEX+2) ,GATE(IDEX+4) ,GATEF (ILEX+3), (GATE (II) ,1I=KG,KK)

CCYTINUE

JDEX = INDEX

212

INCEX = INDEX + 1
1F (INDEX .G1. MGATE) GO TO 900

IGATE (INDEX) = KK + 1
JCGRTE(INLCEX) = JLEX
GRIE(RK + 4) = ¢

KLEX = ILEX + S
LDEX = 1
I¥ (GATE(ILEX+1) .NE. 0) GO 10 2C2

C

(o €ATE HAS NC UNLEVELOPED EBANCEES.
NDEX = IDEX
GC TC 410

400 CCXTINUE
CHAAAE K H 20 00 ok o oo o oo ok ok oKk ook AR KK ORI R K Kk ok Rk kR 0K ok ok ko Kok Rk

C *
c GATE ENTEFS THIS REGION EACH 1IME A EFANCH IS CCMELETED, *
c (FFCH 33€, 342). *
c JLEX = INLEX OF CURFENT GATE. *
c INCEX = INCEX CF NEXT GATE TC EE GENEFATEL. *
C NCEX = IGRTE(JLEX) *
c IDEX = INDEX OF NEXT ERANCH. *
c *
c FIRST FIND IF ANY UNDEVELCPED ERANCHES REMAIN. *
c *
Codokokak b5 A b ok okok o sk ok o a2k o o ok ok dk 3% kb ok ok kok o ak ok o b 3k ok ok ok ok ok ko ak ok ok ok ook ook sk K ok o e ak skl ok ak ok oK ek ko ok

KCEX = NLCEX + 3 + 2=*LDEX
IF (GATE(KDEX) .LT. O0) GC TC 401

OO0

NO UNDEVELCPEC BEANCHES REMAIN: GATE FINISHED,
GC TIC 410
401 CCHTINUE

GATE HAS FURTHER ERANCHES (FRCM 218/400/484,
LCFX HAS BEEN SET TO NEXT UNDEVELCPED BBANCH
(FRCM 216/234/342/484),

IKINE = =GATE(NILEX)

JGATE (INDEX) = JDEX

ICEX = IGATE (INLEX)

GATE (IDEX + 3) = 0

IF (IKIND .EC. 1) GO TO 202

AQoae

C CATE IS *OR'. PRESET NODES, TEEN BEGIN NEW BRANCH (300).
DC 4C€2 I = 1,NCDES
IF (X(2,1I) .1TI. JDEX) GO TO 4CzZ

1,1y = =1
X(z,I) = =1
40z CCRIINUE
GC TC 300

410 COXTINUE
CHRR AR o2k ok ko o o 0 OROK KK K R 2K KK KN K o KK o R A R o ok A K o ok ok K e Aok

C GATE ENTEFS THIS REGICN WEEN FINISHED... *
C «e«FRCM STEPS 216,334,342,352,40C,483. *

213

C****#**#*******#*i*!l*****i#**’*##*#*‘##*#*#***###******#**#***#********
IF (IERINT .CF. 1) WRITE (6,1022) JDEX
GATE (NDEX) -GATE (NDEX)
LLLEX GATE(NDEX + 1) + GATE(NDEX + 2)
KK NLEX + 2*LLDEX + 4
IF (IPRINT .GT. 1) WRITE (6,1020) JDEX, (GATE(II),II=NDEX,KK)
1F (LLLEX .¥C. 1) GO TO 485

[}

CATE HAS MOULTIELE INPUTS. CHECK FOR REDUNDANCIES/CCNTRATUICTIONS
FIEST ARRANGE GATE TC INCIULE GATE ENTEIES FIRST.
INGATE = GATE(NLEX + 1)
IF (INGATE.EC.0 .CE. GATE(NDEX+2).EQ.0) GC TO 420
ISECT NDEX + €
ND NDEX + 4
16 NDEX + 3 + Z*®*INGATE
pDcC 412 I = 1,LLDEX
KL = ND + %
IF (GATE(ND) .NE. =1} GO TC 41z

a0

N

C GATE INEUT FCUND.
1F (ISFOT .EQ. (ND=1)) GO TI0 411
CATE(ND) = GATE(ISECT + 1)
CATE(ISEQT+1) = ~1

ISTORE = GATE (ND-1)
GATE(ND-1) = GATE(ISPOT)
GATE(ISPOT) = ISTOEE

411 ISFOT = ISPOT ¢+ 2
IF (ISPOT .GT. IG) GC TO 413
412 CCXTINDE
413 IF (IPRINT .GT,., 1) WRITE (6,1020) JDEX, (GATE(II),II=NDEX,KK)

C
C GATE ENTFIES NCW AKE2NGEL.
C NOW CHECK 'ANL' GATES FIRSI.
420 IF (IEDIT.GE.99 .CK.
1 (INGATE.EC.0 .ANLC. GATE(NDEX).EC.1)) GO TO 482
1F (GATE(KDEX) .EQ. 2) GO TO 455
Coakakok ok ok o ok ook ok 2 p ok b kR R R Rk R KR R R R KRR R AR IR DRk B SRRk K

*

C
C YANLC' GATE PCST GATE EDIT EKEGICN

C CHECK FCE EBESET OR CONTEADICTORY GATE ENTRIES

C ¥S. *ANL' GATE NODES (PRIMAFY EVENTS) SET.

C FOUTINE CHECKS GATES TO 3 LEIVELS (JDEX, JDEX2, JDEX3).
C
C

[3R B 2% 2

BAREARAAF AR R RRRA AR R AR R AR AR R AR R AR A AR AR R AR RS R R Rk pdkok kkk ok kK
ISECT = NDEX + 3

DO 454 I = 1,IKGATE
ISEOT = ISPOT + 2
JDEX2 = GATE(ISPQT)
NCEX2Z = IGATE(JDEXZ2)
JNGATE = GATE (NDEX2 + 1)
JPFIME = GATE(NDEXZ + 2)
JLDEX = JNGATE + JPEIME

214

[eNeNe]

aOaOn

[sXeNe!

anNnaOn

421

422

JF (GATE(NLEXZ) .EQ. 2) GO TO 433
IF (JNGATE .EC. 0) GC TO 454

CHECK INEUTS TO SECCND LEVEL 'AND' GATE JDEX2,
SEARCH CNLY FOF THIRL LEVEL °'CRE' GATES WITH PRIMARY INPUTS,
JSECI = NDEXZ + 3

DO 429 J = 1,JNGATE
JSEQT = JSEQT + 2
JDEX3 = GATE(JSECT)
FDEX3 = IGATEF(JIDEX3)

IF (GATE(NDEX3) .EQ. 1) GO TIC 429
KPRIME = GR2TE(NDEX3 + 2)
IF (KPFIME .EQ. 0) GC IC 429

THIRD LEVEL GATE JDEX3 HAS KPRIME PFIMARY INPUOTS.
CHECK 10 SEE IF PRESET OR CCNIRADICTCEY.

KSEQT = NDEX3 + 3 + 2%GATE(KRDEX3 + 1)

IC 424 K = 1,KPRIME

KSEGT = KSEOT + 2
KNODE = GRTE(KSPOT)
JMCDE = X (1,KNCDE)

IF (SMCDE .EC. =1) GO TO 424

NOLE HAS BEEN PREVIOUSLY SEI.
KMCDE = GATE(KSPOT + 1)
IF (IPRINT .GT. Q) WRITE(6,1016)JDEX3,KNODE,JrODE,X (2,KNCDE)
IF (KMCDE .EC. JMCLE) GO IC 422

PRIMARY INEUT CONTRALICIS ERESET NODE.
CELETE PRIMARY INPUT TO GATE JDEX3 AND MOVE UF REST.
I? (IEEINT .GT. 0) WBITE (6,1023) K,JDEX3
GATE (NDEX3 ¢ 2) = GATE(NDEX3 + 2) - 1
IF (K .E(. KPRIME) GO TC 4z4
KEM1 = KERIME - 1
KKSPCT1 = KSECT
LO 421 Kz = K,KPM1
GATE (KKSPOT) GATE (KKSECT + 2)
GATE (KKSPOT +1) GATE (KKSEOT + 3)
KKSECT = KKSEOT + 2
KSECT = KSPOT - 2
GO TC 424
CONTINUE

PRIMARY INPUT HAS EBEEN ERESET; THUS ‘OR®' GATE JDEX3
IS SURE TO OCCUR, AND WIILI BE REMOVED.
REMCVE INFUT TO PRECEEDING ‘*AND' GATE JDEX2.
IF (IEKINT .GT. 0) WRITE(6,1006) JDEX3
IF (IPRINT .GT. 0) WBITE(€,10C8) JDEX3,KIND(1),JDEX2,J,JLDEX
GATE (MCEX 3) -99
JGATE (JDEX3) -99
GATE(NLEX2+1) GATE(NDEXZ + 1) <~ 1
JM1 = JINGATE + JPEIME ~ 1

noino#H

215

e NeNeNe!

[eNeXKs!

OOn

423

424

425

400¢

4001

IF (¢ .GT. JM1) GO TO 429
JJSPCT = JSEGT
DO 423 K2 = J,JdM1
GATE (JJSEQT) = GATE(JJSECT + 2)
GATE (JJSPOT+1) = GATE(JJSECT + 3)
JJSECT = JJISECT + 2
JSEQOT = JSPEOT = 2
GO TC 429
CONTINUE
CHECK CF FFIMARY INPUTS TC THIRD LEVEL GATE CONCLUDED.
IF NC INPUTS KEMAIN, GATE JDEX CANNOT OCCUF, SO
ELIMINATE JDEX. IF CNE INPUT REMAINS, INSEFT INTO JDEX2.

KLDEX = GATE(NDEX3 + 1) + GATE(NDEX3 + 2)
IL = NLEX3 4+ 4 + 2*%KLDEX
IF (IPFINT .GT. 1) WRITE (6,1020) JDEX3, (GATE(II),II=NDEX3,LL)
1F (KLLEX ,CGE. 2) GO TO 429
I (KLDEX .EC. 1) GO TO 425
GATE(NDEX3) = =99
JGATE(JLCEX3) = =99
IF (IFEIN? ,LT. 1) GO TC 449
WRITE (6,1C24) JLEX3,JLEX:Z
WRITE (6,1007) JDEX3,KIND(1),JDEX2,JDEX2
CC TC 448
CCNTINGE

CNLY CNE INPEUT TO GATE JDEX3 EEMAINS. INSERT DIKECTLY
INTO GATE JLEX2 AND REARR2NGE ENTRIES, IF NECESSAEY.
CALL BELUCE (1,JDEX3,NDEX3,JLEX2,NDEX2,IPRINT,J,INGATE,JSPOT,
GATE,JGATE ,NGSIZE, MGATE)
CCNTINUE

NOW SET PRIMARY INEFUT FRCF JDEX, OF INPUTS FRCM LOWER
"AND' CATES INTO ARERAY *X°,
IF (GATE(NDEX3 + 1) .GTI. 0) GC TO 4001

SET EFIMARY INEUT INTC AEERY °*X?,
KNODE = GATE(NLEX3 + 5)
% (1,KNCDE) = GATE(NLCEX3 + 6)
X (2,KNCLE) = JLDEX2
JERIME = JEFIME + 1
CGC TO 428
CONTINUE

SEARCH FCF LCWER LEVEL "ANLC' GATES AND SET PRIMARY INPUTS.
JDEX3 = CATE(NDEX3 + 5)
NDEX3 = IGATE(JDEX3)
I1F (GATE(NLEX3) .EQ. 2) GC 1IC 429
KPKIME = GATE(NDEX3 + 2)
1F (KPRIKE .EC. 0) GO TC 429
KSECT = NCEX3 + 3 + 2%GATE(NCEX3 + 1)
DO 4003 K = 1,KEEINE

216

[eXsKe!

no

eNeReNs!

4002

4003

429

430

431
432

433

KSECTI = KSPOT + 2
KNCDE = GATE({KSECT)
JMCDE = X(1,KNODE)

IF (J¥CDE .EC. =1) GO TO 40C2

NODE HAS BEEN PEEVIOQUSLY SET,; CHECK POE AGREEMENT.
1F (KMCLE .EQ. JMOLE) GO 1IC 40C3

PFIMRRY INPUT CONTRADICIS PRESET NOCE ANL CANNOT CCCUE.
DELETE JDEX3, JDEX2 AND JLCEX ANLC EETURN.

GATF (NDEX3) = =99

JGATE (JDEX3) = =99

IF (IEFINT .LT. 1) GO TO 449

WRITE (6,1C16) JDEX3,KNODE,JMCDE,X(2,KNODE)

WRITE (6, 1C06) JCEX3

WRITE (6,1C07) JDEX3,KINC(1),JDEX2,JDEX2

GO 1IC 448

CONTINUE

NOCE HAS NOT BEEN PRESET. SET NODE.
X(1,KNCDE) GATE (KSPCT + 1)
X (2, KKCDE) JLEX3
CONTINUE
CCRTINUE

GATE JLEXZ CHECK CCMPLETEL.

I¥ NC INPUTS REMAIN, LCELETE INPUT TO GATE JDEX.

IF CNE INPUT REMAINS, INSERT DIRECTLY INTO GATE JDEX.
JLDEX = GATE(NDE¥2 + 1) ¢ GATE (NDEX2 + 2)
<d = NLDEX2 + 4 + 2*JLDEX
IF {(IPRIKT .GTI. 1) WRITE (6,1020) JDEX2, (GATE(II),II=NDEX2,JJ)
1F (JLDEX .GT. 1) GO TC 454
IP (JLDEX .EC. 1) GO TO 450

GATE JTDEX2 HAS NO INPUTIS., LCELETE INPUT TO JDEX.
IF (IPRINT .GT. 0) WRITIE (6,1C24) JDEX2,JLEX2
1F (IPFINI .GTI. 0) WRITE (6,1CC8) JDEX2,KIND(1),JLEX,I,LLLEX
CATE (NDEX + 1) GATE(NDEX + 1) = 1
GATE (NLEX2) =99
JGATE(JDEX2) =-S5
JM1 = INGATE + GATE(NDEX + 2) - 1
IF (I .GI. JM1) GO TO 432
IISPOT = ISPOT
IO 431 Kz = 1,dm1
GATE (IISFQT) = GATE(IISECT + 2)
CATE(IISFOTI+1) = GATE(IISPOT + 3)
IISPOT = IISEQT + 2
ISEQOT = ISEOT = 2
IF (IPRINT .GT. 1) WRITE (6,1020) JDEX, (GATE(II),II=NDEX,KK)
€C TC 4cy4
CCRIINUE

wonou

217

[sNeNal

e NaNeNs!

a0

[eXaXe]

GATE JDEX2 IS 'OF' GATE (TRAKNSFER FEOM AFTER 420).
FIRST CEECK FOF DIKECT PRIMAFY INPUTS.

1F (JPRIME .EC. 0) GO TO 436

JSECT = NDEXZz ¢+ 3 + 2*JNGATE

IC 435 3 = 1,JERIME

JSEDT = JSECT + 2
JNODE = GATE (JSPOT)
JECDE = X(1,JNOLE)

IF (JMOLE .EC. =1) GO T0 43¢

NODE E2S EEEN PREVIOUSLY SET
KMODE = GATE(JSPQT + 1)
IF (IEFINT .GT. O) WRITE (6,1016) JDEX2,JNODE,JMOLE,X(2,JNCDE)
I¥ (IPFINT .GT. C .ANL. KMCLDE .EQ. JMODE)
1 WRITE (€,10086) JDEX:z
IF (KMCDE LEC. JMOLE) GC TO 430

PRIMAEY INFOUT CCNTEADICTS EFESET NODE.
CELETE PFIMARY INPUT 10 GATE JDEX2 AND MOVE UE EFEST.
IF (IPFINT .GT., O0) WRITE (6,1023) J,JDEX2
CATF(NDEX2 + 2) = GATE(NDEXZ + 2) - 1
IP (J .EG. JEEIME) GO TC 43%
JM1 = JEFIME - 1
JJSPCT = JSECT
IO 434 J2z = J,dM1
GATE (JJSECT) = GATE (JJSECT + 2)
GATE(JJSPOT+1) = GATE(JJISECT + 3)

434 JJSPCT = JJSPCT + 2
JSECT = JSECT = 2
435 CCNTINUE

CHECK CF ESIMARY INPUTS TC GATE JLCEX2 COMPLETE.
IF GATE INFUTS REMAIN, CORTINUE CHECK. OTHEEW&ISE,
CEECK KUMBER OF INPUTS TO GATE AND PFROCEED.
IF (JNGATE .EC. 0) GO TO 447 .
436 CCNTINUE

GATE JDEX2 HAS 'JNGATE®' GATE INPUTS TO EE CHECKIED
JSECT = NLEXZz + 3

LO 446 3 = 1,JNGATE
JSPOT = JSEQCT + 2
JDEX3 = GATE(JSEOQT)
NLCEX3 = IGATE(JDEXJ)
KPRIME = GATE(NDEX3 + 2)

IF (KPRIME .EQ. 0) GO TO U4E€

GATE JDEX3 HAS KPRIME PRIMARY INPUTS.

CHECK POF PRESET CE CCNTRRLICTCRY CONDITIONS.
KSEQOT = NDEX3Z 4+ 3 + 2%GATE(NCEX3 + 1)
DO 439 K = 1,KPEIME

KSEOT = KSPOT + 2

KNODE = GATE (KSPCT)

218

[sNeNe]

437

438

439

440

JMCDE = X(1,KNCLCE)
IF¥ {(JMCDE .EC. ~-1) GO IC 439

NODE 'KNCDE' HAS BEEN PEEVIGCUSLY SET,
KMODE = GATE (KSPCT + 1)
IF (IFRINT .GT. 0) WRITE(6,1016) JCEX3,KNODE,JMODE,X {2,KNCDE)
1F ((GATE(NLCEX3).EG.1 .ANL. KMODE.EC.JMODE) .OR.
(GATE(NDEX3) .EQ.2 .ANL. KMODE.NE.JMODE)) GO TC 437
IF (IEFINT .GT. 0) WRITE (6,1006) JDEX3
IF (GATE(NDEX3) .EQ.1 .AND. KMGDE.NE.JMODE) GO TO 440

GATES JCEX3 ANL JDEX2 MUST BE DELETED.
GATE(NDEX3) = =99
JGATE(JDEX3) = =S§
IF (IERINT .GT. 0) WRITE (6,1007) JIDEX3,KIND(2),JIDEX2,JDEX2
GO TC 43¢
CCNTINCE

DELETE EFIMARY INPUT TOC GATE KDEX3
IF (IERINT .GI. 0) WRITE (6,1023) K,JDEX3
GATE (NDEX3 + 2) = GATE(NDEX3 + 2) - 1
IF (K .EC. KPRIME) GC TO 439
KEM1 = KERIME = 1
KKSPOT = KSPOT
DC 438 K2 = K,KPK1

GATE (KKSEOT) = GATE(KKSEOT + 2)

GATE (KKSPOT+1) = GATE (KKSEOT + 3)

KKSECT = KKSPOT + 2
KSPCT = KSEQOT - 2
CONTINUE

CEECK CF PRIMARY INPUTS T0O GATE JDEX3 COMPLETED.
CEECK NUMBER GF INPUTS EEMAINING.

KLDEX = GATE(NDEX3 + 1) + GATE({NDEX3 + 2)
1L = NDEX3 + 4 + 2*KLDEX
1F (IPFINT .GI. 1) ®WRITE (6,1020) JDEX3,(GATE(II),II=KLCEX3,LL)
IF (KLDEX .GTI. 1) GC TC 446
IF (KLLEX .EC. 1) GC TO 442
1F (IPFINT .GT. 0) WRITE (6,1C24) JDEX3,JDEX3
I¥ (GATE(NDEX3) .EC. 2) GO TC 440

DELETE °*AND' GATE JDEX3 AMD 'CK' GATE JDEX2
1F (IPRINT .GT. O) WRITE (6,1C07) JDEX3,KIND{(2) ,JLEX2,JLEX2
GATE(NDEX3) = =99
JGATE (JLEX3) = =99
GC TO 43¢
CCNTINUE

DELETE GATE JDEX3 AND INPCT TC JDEX2.
1F (IPFINT .GT. O) WRITE (6,1008) JDEX3,KIND(2) ,JLEX2,J,JLICEX
GATE (NDEX3) -99
JGATE(JLEX3) =99

219

o000

441

442

446

GATE(NDEX2 + 1) = GATE(NDEX2 + 1) - 1

JM1 = JNGATE + GATE(NDEX2 + 2) ~ 1

1F (3 .GT. JM1) GO TO 446

JJSBCT = JSECT

IC 441 Kz = §,dM1
GATE (JJSECT) = GATE (JJSECT + 2)
GATE (JJSPCT+1) = GATE(JJSECTI + 3)
JJISECT = JJISECT + 2

JSECT = JSECT - 2

GO TO 44€

CCNIINUE

GATE JLCEX3 HAS SINGLE INPUT. DELETE JDEX3
AND INSEET DIRECTILY INTC JLEXZ2.

CALL RELUCE (1,JDEX3,NDEX3,JDEX2,NDEX2,IPRINT,J,IJNGATE,JSECT,

GATE,JGATE,NGSIZE, MGATE)
CCNTINUE

CRkkd Bk 3k b 3k ook dak ok ok b ok b ok ok ok ok sk ok ok o ok ok ook ok 38 b 3k ok ok ok ko 3k ok ok ok o ok ko ok ok 3k ok ok R ok KK o koo ok ok ok ok

C
C
C
C
C
C

aQOOn

aaeon

[eNeNe!

*

GATE JDEX2 CHECK CCMELETELC (FBRCM 446 CR TRANSEER FROM 435).%

IF NC INPUIS REMAIN, TELETE GAIE JDEX.
IFP CNE INEUT REMAINS, INSERT CIRECTLY INTO JDEX.

*
*
*

ok ok ok b 2ok b ob ok b okook o ok ok 3k ok ok ok ok ok Aok K Xk o b 3 o b b ok 3K 2k ok Kk Ok ko ok 3Kk ak ok 3 K ok K R k3K ok kK ok

447

448
449

450

4100

JLDEX = GATE(NLCEX2 + 1) + GATE(NDEX2 + 2)
Jd = NDEX2 ¢+ 4 + 2%JLDEX

1f (IPRINT .GT. 1) WRITE (6,1020) JDEX2, (GATE(II),II=NDEX2,JJ)

IF (JLDEX .GT1. 1) GO TO 4%4
I¥ (JLDEX .E(¢. 1) GO TGO 450

GATE JDEX2 HAS NC INPOUTS (FECM 447 OF TFANSFER FROM 424).
CELETE CGATF JDEX ANLC RETURN TC PREVIOUS GATE.
IF (IPRINT .IT. 1) GO TO 449
WFITE (€,1C24) JDEX2,JDEX2
WRITE (6,1007) JDEX2,KIND(1),JDEX,JDEX
INLCEX = JLEX
JDEX = JGATE (INDEX)
€C TO 213
CCNTINUE

GATE JDEX2 HAS SINGLE INPUT (TRANSFER FFOM 429 CR 447).
CELETE JCEXZ AND INSERT DIRECILY INTO JDEX.
IKIND = GATE (NDEX2)
CALL RECUCE (1,JCEX2,NDEX2,3DEX,NDEX,IPRINT,I,INGATE,ISECT,
GATE,JGATE,NGSIZE,MGATE)
CCNTINUE

1JF GATE JDEX2 WAS 'OK' GATE, SET PRIMARY INPUT FECM GATE,
CR FRCM LOWKEF 'AND' GATES INTC AKRAY *X°.

IF (IKINLC .EC. 1) GO T0O 4%t4

I¥ (GATE(NLEXZ ¢+ 1) ,GTI. C) GC 10 4101

220

4101

4110

4102
41C3

JDEX2 HAD FFIMARY INPUT. SET INTC ARERAY 'X°,
KNCLE = GRATE(NLEX2 + 5)
X{1,KNODE) = GR2TE(NDEXZ + 6)
i(z2,KNCDE) = JDEX
€C TO 454
CCRTINUE

SEARCH FCE LCWER LEVEL 'AND®' GATES AND SET PRIMARY INPOUTS.
ODEX2 = GATE(NLEX2 + 5)
NDEX2 = IGATE (JDEX2)
JF (GATE(NLEX2) .EQ. 2) GC TO 454

FIRST SET ERIMARY INPUTS.
JPFIME = GATE(NDEX2 + 2)
JNGATE = CGRTE(NCEX2 + 1)

17 (JPRIME .EC. 0) GC TO 4103
JSECT = NLEX: + 3 + 2%JNGATE
LO 4102 J = 1,JPFIME

JSECT = JSECT + 2
KNODE = GATE (JSEOT)
JMODE = X(1,KNOLE)

. IF (JMCDE .EC. =1) GC TC 4110

NODE BAS BEEN PREVIOUSLY SE¥T. CHECK FCR AGREEMENT.
KMODE = CGATE(JSPOT + 1)
IF (KMCDE .EC. JMOLCE) GC TO 4102

PRIMAFY INEUT CCNTFADICTOFY. LELETE JDEX2 ANL JDEX.
CGATE(NLEX2) = =99
JGATE (JCEXZ) = =99
IF (IPEINT .LT. 1) GO TO 44S
WRITE (6,1016) JDEX2,KNCDE,JKCDE,X(2,KNCDE)
WEITE (€,1CC0€) JDEY2
GO TC 4ue
CCNTINUE

NODE HAS NCT BEEN PREVICUSLY SET, SET NODE,
X(1,KNCDE) GATE(JSEOT + 1)
X (2,KNCDE) JDEX2
CCNTINDE
IF (JNGATE .EC. C) GC TO 454

0o

NOW CHECK AND SET 'AND' GATE INPUTS TO GATE JDEX2.
JSEOT = NLEXZ + 3
DC 4106 J = 1,JINGATE

JSECT = JSBOT + 2

JDEX3 = GATE (JSECT)

NDEX3 = IGATE(JLEX3)

IF (GATE (NDEX3) .EC. 2) GO 1C 4106

KPRIME = GATE(NCEX3 + 2)

IF (KPEIME .EC. 0) GC TC 41Cé6

KSECT = NLCEX3 + 3 + 2#GATE(NCEX3 + 1)

non

221

DO 4105 K = 1,KEFIME
KSPCT = KSECT + 2
KNOTE = GATE(KSPCT)
JMCDE = X (1,KNCDE)
1F (JMCDE .EC. ~-1) GO TO 41C4
c
c NODF HAS BEEN PREVIOUSLY SET., CHECK FOR AGEEEMENT.
KMCDE = GATE(KSPCT + 1)
IF (KMCLE .EC. JMCLE) GO 10 4105
c
C PRIMARY INFUT CONTRALICTORY, THUS CANNOT OCCUE.
C DELETE GATES JDEX3, JDEX2 ANC JDEX.
GATE (NLEX3) = =§¢
JGATE (JDEX3) = =99
IF (IBEFINT .LT. 1) GO TO 443
%RITE (6,1016) JDEX3,KNODE,JMOLE,X(2,KNODE)
WRITE (6,100¢) JLEX3
WRITE (6,1007) JDEX3,KIND({1),JDEX2,JLEX2
GO TC 448
4104 CCNTINUE
C
c NOCE HAS NOT PBEVIOUSLY BEEN SET. SET NODE.
X(1,KNCDE) = GATE(KSECT + 1)
X (2,KNCDE) = JDEX3
4105 CCNTINIE
4106 CCNTINDE

454 CCRTINUE
Aok ook R b R 0 Ak K ORROR KRR R AOK KRR R K KR R R R R R R R R Rk 8 Rk Rk ok koK

C *
C EDIT OF *ANLC' GATE JDEX COMELETE (LCCP FROM 420). *
C CEECK FCE NUMBEEK OF INEUTS FEMAINING. *
C IF NO INFUTS REMAIN, DELETE GATE AND RETURN IO 331. *
C *
CRERKERD IR A AR Rk BN R R KRR AR AR R AR AR SRR KRR AR AR RRAR KK F R R B Rk K

LLDEX = GATE(NDEX + 1) + GATE(NLEX + 2)

J4Jd = NDEX + 4 + 2%LLTEX

IF (IPRINT .GT. 3) WRITE (6,102€) GAIE

I? (IPRINT .GT. 1) WBITE (6,1020) JDEX, (GATE(II),II=NDEX,JJ)
JF (ILDEX .CT. 1) GO TC 482

IF (LLDEX .EC. 1) GC TC 485

GATE JDEX HAS NC INPUTS AND ThUS IS "SURE TO OCCUE."
IELETE GATE ANDC FEETURN TO PREVIOUS GATE. (THIS SHCULLN'I CCCUR)
IF (IPRINT ,.GT. C) WRBRITE (6,1024) JDEX,JDEX
INLEX = JLEX
JDEX = JGATE (INDEX)
GC TC 331

455 CONTIINUE
CRERRRARIEFBARERRR AR B RIRR KRR AR AR RARE SRR KRR AR RN ERE R R AR AR AR S SRR KRRk

a6

C *
C 'OR*' GATEF FOST GATE ELIT BEGICKX, *
C CHECK FCF EEDUNLCANT PRIMARY EVENTS BENEATH °'OR' GATES. *

222 :

C
C

FIRST RESET NOTES, THEN CHECK EFIMARY INPUTS,

*
*

CRBRAON B 3o h bk bk okoh ok ok b ok bk ok ok ok o ok oK R o 3 o ok a0k ok ok o ok K koK oK ok o ok R Rk ko K R ok K

456

457

458

4580

459

LC 456 I = 1,NCLES
IF (X(2,I) .1TI. JDEX) GO TOC 456

¥(1,I) = =1
¥gz,I) = -1
CCXTINUE

IPFIME = GATE(NDEX + 2)

IF (IPRIME .EC. 0) GO TC 457
ISEOT = NDEX + 5 + 2%INGATE
JNCCE = GATE (ISEOT)
X(1,3NODE) = GATE(ISEOT + 1)
X (Z,INODE) = =2

IF (IERIME .EQ. 1) GO TO 457

INITIAL NOLE SET., NOWR CHECK PRIMARY INPUIS TO GATF JDEX.
CALL XCHECK (2,JDEX,NDEX,IPRINT,X,GATE,NODES,NGSIZE)
IF (INGATE .EQ. 0) GO TO 479
CCKNTINUE

NO% CHECK 'CF' GATE INPUTS TO GATE JDEX.
ISICT = NDEX + 2

DC 458 I = 1,IKGATE
ISECT = ISPOT + 2
JDEXZ = GATE(ISECQT)
F¥DEX2 = IGATE(JTEX2)
JPFIME = GATE (NDEX2 + 2)

1F (GATE(NLEXZz) +EQ. ' .OR. JPRIME .EQ. 0) GO 10 458

'OR' GATE WITH PRIMARY INPUTS FOUND. CHECK INFUTIS.
CALL XCHECK (1,JDEX2,NDEX2,IPFINT,X,GATE,NODES,NGSIZE)
CCNTINUE

NOW CHECK TEIRLC LEVEL 'OR' GATES FOF INEUTS.
ISECT = NDEX + 3

DC 461 I = 1,INGATE
ISEOT = ISPCT + 2
JDEX2 = CATE(ISFOT)
¥DEX2 = IGATE (JDEX2)
JNGATE = GATE(NLEX2 + 1)

IF (GATE(NDEX2).EQ.1 .OR. JNGATE.EQ.D) GO TO 451
JSECT = NLEXZz + 3
LO 46C J = 1,JNGATE

JSFOT = JSPOT + 2

JDEX3 = GATE (JSEQT)
NDEX3 = IGATE(JLEX3)
KBRIME = GATE(NDEX3 + 2)

IF (GATE(NDEX3).EQ.1 .OR. KPRIME.EQ.0) GO TO 480

THIRL LEVEL 'YOR' GATE HAS EFRIMARY INPUTS TO BE CHECKEL.
CALL XCHECK (1,JDEX3 ,NDEX3,IPRINT,X,GATE,NODES,NGSIZE)

223

460

461

462

KLLCEX = GATE (NDEX3 + 1) + GATE(NDEX3 + 2)

KK NCEX3 + 4 + Z*KLDEX

IF (IPEINT .,GT. 1) WRITE(6,1020) JDEX3, (GATE(II),II=NDEX3,KK)
1F (KLCEX .GTI. 1) GC TO 460

GATF JLEX3 HAS ZERO OR ONE INPUT. RELCUCE INPUI TO JLEX3.
CALL REDUCE (KLDEX,JDEX3,NDEX3,JDEX2,NDEX2,IPERINT,J,JNGATE,
1 JSPOT,GATE ,JGATE,NGSIZE, MGATE)
IF (KLTEX.EQ.1 .ANL., GATE(XKDEX3+1).EQ.1) GO TC 459
CCNTINGE
JLDEX = GATE (NDEX2+1) + GATE(NLCEX2 + 2)
JF (JLDEX .GTI. 1) GO TO 461

CGATE JLEX2 EAS ZERO OR CNE INFUTI. REDUCE INPUT TO JDEX.
CALL REDUCE¥ (JLDEX,JDEX2,NDEXZ,JDEX,NDEX,IPRINT,I,INGATE,
1 I1sPO1,GATE,JGATE,NGESIZE,MGATE)
IF (GATE (NDEX2+1) .EQ. 1) GC TO 4580
CONTINUE

NOW CEEFCK SECOND AND THIRD LEVEL °'AND' GATES.
ISECT = NDEX + 3

CC 476 I = 1,INCGATE
ISECT = ISPCT + 2
JLCEX2 = GATE(ISPOT)
NDEX2 = IGATE (JDEX2)
JNGATE = GATE(NDEXZ + 1)

IF (GATE(NDEX2) .EQ. 1) GC TO 468

GATE JDEX2 IS 'OF'. CHECK FCF THIERD LEVEL *AND' GATES.
IF (JNGATF .EC. 0) GO TO 4¢€7

JSECT = NDEXZz + 3

[C 466 J = 1,INGATE
JSEQOT = JSEOT ¢+ 2
JDEX3 = GATE(JSECT)
XDEX3 = IGATE(JLEX3)
KPEI¥E = GATE{(NDEX3 + 2)

1F (GATE(NLE¥X2) L.EQ. 2 L.OR. KPRIME .EC. 0) GO TC 466

THIRL LEVEL 'AND' GATE HAS PRIMARY INFUTS.
ISTART = =1
CALL XCEECK (ISTART,JDEX3,NLCEX3,IPRINT,X,GATE,NCDES,NGSIZE)
IF (ISTIRRT .NE. =1) GO TIC 466

GATE JDEX3 HAS PRESET INPUT AND WILL EE DELETED.
CATE(NCEX2 + 1) = GATE(NDEX2 + 1) = 1
GATE(NDEX3) = =99
JGATE (JDEX3) = =69
IF (IPFINT .GT. 0) WRITE (6,1008) JDEX3,KIND(2),JDEX2,J,JNGATE
JJSECT = JSEOCT
IF (J .GE. JNGATE) GC TC 464
JF1 = JNCGATE = 1
LO 463 Jz = J,3M1

224

GATE (JJSECT) GATE (JJSECT + 2)
GATE (JJSECT+1) GATE (JJSECT + 3)
463 JISECT = JJSECT + 2
464 JPEIME = GATE(NDEX2 + 2)
IF (JPRIFE .EC. 0) GC TC 465
JSEQT2 = JJISECT + Z¥JPRIME
GATE (JJSECT) GATE (JSPOTZ)
CATE (JJSEQT4+1) GATE (JSPOTZ + 1)
IF (GATE (JSPOT2) .LT. 0) GATE (JSPOT2) = =-JJISPOT
4€5 JSECT = JSECT -~ 2
JJ = NDEX2 + 4 + 2%(GATE(NDEX2+1) + JPRIME)
IF (IPFINT .GT. 1) WERITE (6,1020) JDEX2,(GATE(II),II=NDEX2,JJ)
466 CCNTINTE
467 JLDEX = GATE (NDEX2+1) + GATE(KDEXZ + 2)
1F (JLDEX .GT. 1) GO TO 478

nou

GATE JDEX2 EAS ZERO OFK CNE INPUT. REDUCE INPUT 10 JDEX.
CALL REDUCE (JLLCEX,JCEX2,NDEXZ,JDEX,NDEX,IPRINT,I,INGATE,
1 ISPOT,GATE,JGATE,NGSIZE, MGATE)
i? (JLDEX .EC. ' .ANL. GATE(NDEX2+1) .EC. 1) GO TO 462
GC TO 478
468 CCNTINCGE

CBECK SECCND LEVEL 'ANL' GATES,
SFEIME = CATE(NLEXZ + 2)
IF (JPRIXE LEC. 0) GC TO 472

CHECK EFIMARY INPUTIS TO GATE JDEX2.
1ST2RT = =1
CALL XCHECX (ISTART,JDEX2,NDEX2,IPRINT,X,GATE,NODES,NGSIZE)
1F (ISTAEFT .NE. =1) GO TO 472

GATE JDEX2 EAS PEESET INPUT AND WILL BE ELIMINATELD.
GATE (NDEX+1) = GATE(KLCEX+1) - 1
CATE (NCEXZ) -9g
JGATE (JDEX2) = =99
IF (IPRINT .G1. 0) WRITE (6,1(C8) JDEX2,KIND{2),3LEX,I,INGATE
IISPOT = ISPCT
1F (I .CE. INGATE) GO TO 47C
J¥1 = INGATE = 1
[0 469 IZ = I,JdM1
GATE(IISECT) = GATE(IISPOT + 2)
GATF (IISEQOT+1) = GATE(IISPOT + 3)
469 IISECT = IISEOT + 2
470 IFFIME = GCATE(NDEX + 2)
1F (IPRIME LEC. 0) GO TO 471
ISEQT2 = IISEQT + 2*IERIME
GATE(IISECT) = GATE(ISECT2)
CATE(IISEQOT+1) = GATE (ISECT2+1)
IF (GATE(ISPOI2) .LT. €) GATE(ISPCTI2) = =-IISPOT
471 ISEQT = ISICT ~ 2
JJ = NDEX + 4 + 2% (GATE(NDEX+1) + IPRIME)

W oo

225

[eNeNe]

472

473

474

475

476

477
478

1P (IPEINT .GT. 1) WRITE (6,1CZ0) JDEX, (GATE(II),II=NDEX,JJ)
6O TC 47¢&
CCNTINUE

NOW CBFCK THIRL LEVEL GATES.
IF (JNGATE .EC. 0) GC TO 478
JSECT = NLEXZ + 3

L0 477 J = 1,JNGATE
JSECT = JSFOT + 2
JDEX3 = GATE{JSEOT)
NLCEX3 = IGATE(JLEX3)
KPRIME = GATE(NDEX3 + 2)

IF (KPEIME .EC. 0) GO TO 477

THIRTL LEVEL GATE EAS PEIMARY INPUIS T0 BE CHECKEL.
ISTAET = 0
1F (GATE(NDEX3) .EQ. 1) ISTAETI = =1
CALL XCHECK (ISTART,JDEX3,NLEX3,IPRINT,X,GATE,NCDES,NESIZE)
1F (GATE(NLEX3) .EC. 1) GO 1C 475

THIRL LEVEL GATE IS 'OKk' GATE AND IS FINISHEL.
CHECK FCK NUMBEE CF INBUTS.
KLDEX = GATF (NDEX3 + 1) + GATE (NDEX3 + 2)
EK = NDEX3 + 4§ + 2*KIDEX
IF (IPRINT .GT. 1) WRITE (6,1020) JDEX3,(GATE(II),II=MCEX3,KK)
IF (KLLDEX .GTI. 1) GC TO 477

GATE JDEY3 HAS ZEKO OR CNE INPUT. REIUCE INPUT TO JDEXZ.
1F (KLCEX .EQ. 1) GO TO 474
IP (IPRINT .67. 0) WRITE (6,1024) JDEX3,JDEX3
€0 TC 47¢
CALL RELUCE (1,JDEX3,NDEX3,JPEX2,NDEX2,IPRINT,J,JNGATE,
JSPOT,GATE,JGATE,NGSIZE, NGATE)
IF (GATE (NDEX3+1) ,GI. 0) GC TO 473
€0 TO 477
IF (ISTAFT .NE. =1) GO IC 477

GATES JDEX3 AND JDEX2 WILI EE DELETEL.
GATE(NLEX3) = =99
JGATE(JDEX3) = =99
CALL RELUCE¥ (0,JCEX2,NDEX2,JDEX,NDEX,0,I,INGATE,ISEOT,
GATE,JGATE,NGSIZE, MGATE)
IF (IPFIXT .LE. 0) GO TO u47¢
WRITE (6,1007) JDEX3,KIND(1),JDEX2,JDEX2Z
WRITE (6,10C8) JDEX2,KIND(2) ,JDEX,I,INGATE
JJ = NDEX + 4 + 2*(GATE(NDEX+1) + GATE{NDEX+2))
IF (IPFINT .GT. 1) WRITE (6,1020) JDEX, (GATE(II),II=NLEX,JdJ)
GC TO 47¢
CCNTINUE
CCNTINUE

S 2SR SRS 222222222222 222 222222 R Rt R 22 222 22222 e il R R B L L 2

C

*

226

C ‘OR' GATE EDIT CCMPLETE (COXNTINUATICN, CR TRANSFER FROM 456).%
C FIFST RESET NOTES ANC GATE ENTRIES SET BY GATE EDIT, *
C TEEN CEECK NUMBEFR OF INFUIS T1C GATE JDEX AND PRCCEED. *
C *
C

WA A A B ok ko ok K b Rk ok ok ok kool e koK 3K ok ok 3k o ok ko ok oK ok s 3ok ok i e kol ok ke ok ok ok 3K ok o3k ok ok Kok Kk kKoK

479 CCNTINUE

LLTEX = GATE(NLEX + 1) + GATE(NLEX + 2)
JdJd = NDEX + 4 + 2*LLDEX
IF (IPRINTI .GT. 1) WRITE (6,1C2() JDEX, (GATE(II) ,II=NLEX,JdJd)
IF (IPRINT .GT. 2) WRITE (6,1C27) JDEX,X
IF (IPRINT .GT. 2) WERITE (6,1025) JDEX,GATE
LC 481 I = 1,NCLES
ISECT = =X (2,I)
1F (ISPCT .LE. 1) GO TO 481
(1,1) = -1
X(2,I)y = =1
IF (ISPCT .EC. 2) GO TC 481
C
C CHAIN C® NCDES HAS BEEN SET, STAETING AT LOCATION ISPOT.
480 IISPFOT = ~CGATE(ISPOT)
GATE(ISECI) =1
ISEOT = IISPOT
IF (ISPOT .GT. 0) GO TC 480
481 CCXTINUE
IF {IPRINT .GT, 2) WRITE (6,1026) GATE
IF (IPFINT .GT. 1) WRITE (6,102() JDEX, (GATE({II) ,II=NDEX,JJ)
IF (LLDEX .GT. 1) GG TC 482
IF (LLDEX .%¥C. 1) GO TG 485
C
C €ATF *JDEX* HAS NO INPUTIS; CANNOT CCCUER (SHOULCN'T CCCUEF).
IF (IFFINT .GT. 0) WEITE (6,1024) JDEX,JDEX
INCEX = JDEX
JDEX = JGATE (IKDEX)
GC TC 213

482 CONTINUE
CRERXEAA AR BA XA AR A TR AR KRR R KRR R KRR RKR RN KR R R R0k &K kKK

C *
C *AND' /*OK' EIIT COMPLETE (FROF 42C,/454,481,487,48E,489/490) . *
c TACKTEACK TO PFEVICUS GATE ANIL EEGIN NEW ERANCH, *
C *

CHEd 30 000 003k okok ok R 000k 8 3 ok ok ok ok o8 3 33 ok o ok oK o AR K R K R kb ke sk R ok ok
1F (IPFINT .GT. 0) WRITE (6,1021) JDEX
JDEX = JGATE(JDEX)
I¥F (JCEX .EC. 0) GO TO 500
NDEX = IGATE(JLEX)
IKIND = -GATE(NDEX)

NOW PIND KEXT BEANCH CF PKEVICUS GATE; OK, IP FINISHED,
SENL PREVIOUS GATE TO BE EDITEL.
KDEX NDEX + 3
LLLZX GATE(NLCEX + 1)
DC 4€3 I = 1,LIDEX

[eNeNe]

+ GATE(NCEX + 2)

227

KLF¥X = KLEX + Z
IF (GATE(KDEX) .1I. 0) GO TO 484
483 CCRTINUE

C
C NO UNDEVEILOEED ERANCHES REMAIN. GATE *JLEX* FINISHED.
GC TC 410
484 LTCEX = (KDEX - NLEXY - 3),2
GC TG 401

485 CCNTINUE
CARakk ok ok ok okok ok ok bk ok ook b ook o o ok ko ok ok o o 3 ook o koK Kok o ok bk dkok ok ok b ok R ok kR kR kKK

C x
C SINGLE INFUT GATES TEANSFER TC THIS REGICN (FROM 410,454,481) *
C GATEF WILL BE ELIMINATEL AND I1S INPUT INSE&TED INIO *
C PBECEEDING GATE. IN ADDITION, IF GATE IS AN *OR' AND INPUTS *
C IN YANL', BEESET NODES FROM °*ANL' GATES EEIOW. *
Cc JDEX CURFENT GATE *
C ICEX EREVIOUS GATE *
C *
C *
C x
C *
C *

N e

INDEX NEXT GATE TIC BE GENEFATED.
JTEX2,JL¥X3,JCEX4,3LEXS = SCCCEEDING GAIES
KDEX = IGATE(JDEX)

ok kok b 3 oh b b o koo ok ok ok K % ok ok ok b ok 3k ok ook ok 2 ok ok ok 3 3 3 ok ok ok ok ak ook ok 3k ak 3k ko o ke e 3k ke ok 3k koo Kk R ok ok koK koK ok
ITEX = JGATE (JLEX)
I¥ (IDEX .EC. 0) GC TC S10
MDEX = IGAT¥(ILEY)

[eNe}

NOW SEAFCH PREVICUS GATE TO FINL CURRENT ERANCH,

JSECT = MLEX + S
KLDEX = GATE(MDEX + 1) + GATE(MLEX + 2)
KSECT = MLEX + 3 + 2*KLLEX

DO 486 ISPCT = JSPFOT,KSPCT,2
IF (GATE{(ISPOT).EQ.JCEX .AND. GATE(ISPOT+1).EQ.-1) GO TC 487
486 CCNTINGCE
IE = 486

PRINT 1,IB
G ok o kR RO R B R KK KA K R R Rk Rk koK ok R Rk Rk kAR ok Rk R ROk R Rk R Rk

CoRRMRR R R ok ok ko b ok b bk ko ok ok ok ok ok ok ok koK 3 3k ok ok koK ok ok ok o 3 ke ok o ok ok ok o ok ok ok ok B R koK ok Rk ok

C
C ISPOT HAS BEEN SET TC CUFRENT ICCATICN IN PREVIOUS GATE.
487 IKIKL = GATE(NLEX)
KK = KSECT + 1
GATE(NDEX) = =99
IF (IPRINT .GT. 0) WRITE (6,101S) JSDEX,KIND(IKIND) ,IDEX
17 (IKIND .EC. 2) GC TC 489
C
C CURRENT GATE IS5 "AND', INSEET INTO PREVIOUS GATE AND BACKTRACK.

IF (GATE(NLEX + 1) .EQ. 0) GO TIC 488

GATE (ISPOT) = GATE(NLDEX + 5)

IISECT = GATE(ISFOT)

JGRTE(IISECT) = ILCEX

IF (IPRINT .GT. 1) WRITE (6,102C) IDEX, (GATE(II),II=MDEX,KK)
GC TC u8Z

228

488 CCNTINUE

C
C

489

ann

INPUT IS FFIMARY INPUT,
GATE(MDEX + 1) = GATE(MLEX + 1) =
GATE (MDEX + 2) GATE(MCEX + 2) +
GATE (ISPOT) GATE(NDEX + 5)
GATE (ISECT +1) GATE(NLCEX + 6)
INLEX = JUEX +
IGATE(INDEX) = IGATE(JDEX) + 1
1F (IPRINT .GT. 1) WRITE (6,102C) IDEX, (GATE(II),II=MDEX,KK)
GC IC 482
CCATINUE

PO I T 1

CURRENT GATE IS 'OR'. IF PRECFEDING GATE 'IDEX® IS 'AND',
SET NODES FRCM SUCCEEDING 'ANL* GATES.

JKINL = =-GRTE(MLEY)

IF (GATE(NDEX + 1) .EQ. 1) GC TC 490

GATE (MLCEX + 1) GATE(MCEX + 1) = 1

GATE(MDEX + 2) = GATE(MCEX + 2) + 1

GATE (ISPOT) GATE(NDEX + 5)

GATE (ISPOT+1) GATE (NCEX + 6)

IF (IPFINT .GT. 1) WRITE (6,102C) IDEX, (GATE(II),II=MDEX,KK)

IF (JKIND .EC. 2) GC TC 482

JNCDE = GATE (ISEOT)

IB = 489

1F (X(2,JNCDE) .GE. O .AND. X{(Z,JNODE) .LT. JDEX) PRINT 1,IB

ok ke Aok ok ok kA ok R o 3k b ok ok ok k3 o ok 3k ok ok ak b koK ko 2k sk ko ok Ak dk e ok ke ok o 2k e ok 2 ok ok o ok ok ok o ok koK K o oKk
(C 3 okook ook K o e b ok 2k ok o) ok b ok ok b ok 3k ok ok ok ok sk ok ok ok kR K 3k b b ok o ok ok ok o ok o 3k ok ak ok ok ok o k3K ok ok Kk ok ok KO K K ok K

490

X (1,JNODE) = GATE (ISEOT + 1)
X (2,JNCDE) ICEX

GC TO 482

CCNTINUE

]

INEUT IS GATE INPUI. CHECK ANLC SET NODES IF 'AND'.
GATE(ISPCT) = GATE(NDEX + 5)
IISEOT = GATE(ISEOT)
JGATE (IISPCT) = IDEX
IF (IERINT .GT. 1) WRITE (6,102C) IDEX, (GATE(II),II=MDEX,KK)
I1F {JKIND .EC. 2) GC TC 482
JDEX2 = GATE (ISECT)
NDEX2 = IGATE(JLEXZ)
IF (GATE(NDEX2) .EC. 2) GG 10 482
INGATE = CATF(NLCEXZ + 1)
IEFIME = GATE(NDEXZ + 2)
IF (IERIME .FQC. D) GO TC 492

SET NOLES FOF PBIMARY INPCUIS,
ISEOT = NDEXZ + 3 + 2*INGATE
LC 491 I = 1,IPRIME

ISECT = ISECT + 2
JNCLCE = GRIE(ISPOT)
IB = 491

229

1F (X(2,JNCDE) .GE.0 .AND. X(2,JNODE).LT.JDEX} PRINT 1,IE
CREAR AR kR RN Bk R ook ok ko ok ko 3 ok ok ok oo o K R AR R R K R KK K Kk Rk

CHEXFF AR ARI AR AR AR AR R AR R KRR KRR R R AR R R Rk R AR AR AR RR R AR RS SR BN RN A ER R KRR
X{(1,INCDE) = GRATE(ISECT + 1)
491 %(Z2,0N0CE) = JLEX2
I¥ (INGATE .EQ. 0) GO TO 48z
492 ISECT = NDEXZ + 3

C
C NO® SEARCH SECCND LEVEL GATE JDEX2 FOR THIRD LEVEL 'AND' GATES.
LC 4999 I = 1,INGATE
ISEOT = ISPCT + 2
SLC¥X3 = GATE(ISPOT)
¥DEX3 = IGATE(JDEX3)
JF (GATE(NLEX2) .EQ. 2) GC TO 4999
JNGATE = GATE(NDEX3 + 1)
JEFIME = GRTE(NLDEX3 + 2)
IF (JPRIME ,EC. C) GC TO 494
C
C GATE *JDEX3* HAS PRIMARY INFUTS. SET NODES.

JSECT = NLEX3 + 3 + 2*JNGATE
LO 493 J = 1,JEFIME
JdSPCT = JSPCT + 2
JNODE = GATE (JSECT)
IE = 493
IF (X(2,JNCDE) .GE.O .ANL. X (2,JNODE).LT.JDEX) PEINT 1,IB
Coaok sk Aok bk 3 ook ok ok b 3 o kb ok ok ok ko ok ok o o kK Rk R Kk K b K K K
CRERAFRF AR FoRR R AR AR A RN kAR R h b o) ko Aok R KRR R R R R R R Rk kK
X (1,JINGDE) = GATE(JSEOT + 1)
493 X(2,JdNCLE) = JLEX3
1F (JNGATE .EC. 0) GO TC 4399
494 JSECT = NLEX3 + 3

C
C NON SEAFCH THIEL LEVEL GATE JLCEX3 FOR FCORTH LEVEL *ANI' GATES
DO 499 J = 1,JdNGATE
JSECT = JSECQT + 2
JDEXY4 = GATE (JSPOT)
NCEX4 = IGATE(JDEXAY)
IF (GATE(NDEXY4) .EQ. 2) GC TC 499
KNGATE = GRTE(NTEX4 + 1)
KERIME = GATE(NDEXH + 2)
IF (KPRIME .EQ. 0) GO TO 49¢
C
C GATE 'JDEX4' HAS FPEIMARY INPUIS., SET NODES,

KSECT = NDEX4 + 3 + 2%KNGATE
IC 495 K = 1,KPFIME
KSECT = KSEOT + 2
JNODE = GRIE(KSPOT)
IB = 495
IF (X(2,JNCDF) .GE.O .ANLC. X (2,JNODE).LT.JDEX) PBINT 1,IB
CRAEKKKAKIEREAFE IR A RRAFR AR DA R AR A AR R R R AR RE S 3B AR KRR AR F R KRk K
CHIRRARR AR AR ARARBRRR BRI AR R AR R RRR R IR R AR R KRR RRRR KRR R F AR AR R TRk F Rk

X(1,3NCDE) = GATE(KSECT + 1)

230

4¢5 X(2,3NCDE) = JDEX4
1F (KNGATE .EQ. 0) GO TO 49¢

496 KSECT = NDEX4 + 3
C
C NOW SERRCH FCURTH LEVEL GATF JDEXY4 FCE *AND' GATES.,
IO 498 K = 1,KNGATE
KSBCT = KSECT + 2
JDEXS = GATE(KSPOT)

NDEXS = IGATE (JDEX5)

IF (GATE(NLEXS) .EQ. 2) GC 10 498
LNGATE = GATE (NDEXS + 1)

LEEINME = GATEF(NLEXS + 2)

IF (LEEIME .EC. 0) GO TC 498

C GATE *JDEXS* HAS PEIMARY INFUTS. SET NODES.
LSEOT = NLEXE + 3 + 2*LNGATE
DO 4¢7 L = 1,LERINME

LSECT = LSPOT + 2
JNOLDE = GATE (LSECT)
IB = 497

I (X(2,JNODE).GE.0 .ANL. X(2,JNODE).LT.JDEX) PRINT 1,IB
CHMH Ak A 4300k 3 o 3ok o 3ok ok ok Kok ko o oK ok b ok ok Kk ok ok ok koK kR ko ok sk ok ok koK ok b ok ok KoKk
CHFAEARF AR B AR bk o A28 kb ok 0 30k b3k 3k ok o kR R Ok R okl K KRR Rk KK
X(1,0NCLCE) = GATE(LSPOT + 1)
487 X(<,3NCCE) = JLEXS

498 CONTINCE
499 CCNTINUE
4999 CONTINUE

GC 1IC 482

500 CCRIINUE
koo ok b ok o8 3k ok ok ook ok k0K SR KK R K K 3k ok o Kok ok o o o R Kok R ok K o o Rk ok ok ok ok ok ok

C x
C 'TOP' GATF HAS BEEN COMPLETED., TIEEE IS FINISHED. *
C BEGICN TC FRINT KESULTS AND DC FINAL EDITING, ETC. *
C *

Cadorat ko ko aokak ok ok ok R ok ok ok R ARk koK ok o 2 3 383 303K K ok ok o3 3K o ok oK R R Kok o kK o
WRITE (6,1C28) TITLE
DC 5301 I = 1,MGATE
IF (IGATE¥(I) .EQC. 0) GC TC 600
KDEX = IGATE (1)
IF (GATE(NDEX) .IE. 0) G0 TC 501
NG2TE = 1
KK = NDEX + 4 + 2% (GATE(NLCEX+1) + GATE(NDEX+2))
WRITE (6,102C) I, (GATE(II),II=NLEX,KK)
501 CONTINGE
G0 TC 600
510 CCXTINUE

C
C TOP GATE HAS SINGLE INPUT (TRANSFER FRON 4B85),
JF (GATE(NLEX+1) .EQ. 0) GG T0 E(CC

(s N g]

10P GATE HAS FUBTEER GATE INPUI. SET IT AS TOP GATE.

231

GATE (NDEX) = =99
JDEX = GATE(NLCEX + 5)
JGATE{JIDEX) = C
60 TIC 500

600 CCNTINUE

700 CCMIINUE
CRAR AR Aok ok KR AR Kok R R AR ARk R A KRR AR KA KRR AR R RN R KRR F RN KR R Rk F Rk

ese FINAL CGATE FECGICN...
TRANSFERS 2REF ELIMINATEL MNL EXTRA GATES LELETED.
CATES ARF EENUMBEREL CCNSECUTIVELY.

EEGIN EY SYARCEING FCF TRANSFEEES,
FOE EACH GATF CHECKEL, SET GATE(NDEX) = GATE(NDEX) + 10.

L AR B BE B B K 3R 2

c
C
C
C
C
C
C
C
C

0o kok o o o ok ok ok K ok ak ok o 3K ok koK b o ok 3k ok 3ok o ok K b b 3k ok ok 2k ok ke ok ok ok o ko ok K ok K K koK oKk ok Kk Kk ok ok

IF (1ECIT .EC. 98 .OR, IELIT .CGE. 100) GO TO 720
IF (NGATE .I1. 4) GC TC 799
NGz = NGATE - 2
NG3 = NGATE = 2
pc 710 11 = 1,NG3
1 = NGATE + 1 ~ 11
NDEX = IGATIE(I)
IKIND = CGATE(NLIEX)
IF (IKINLC LLE., C .OF. IKINL .GE, 3) GC TO 710
IRGATE CATEI(NCEX + 1)
IPEIME GATE {(NDEX + 2)

non

C VALID GATE 'I' PCUND. NOW SEARCH POR MATCHING GATES.

LC 7€9 01 = 11,NG2
J = NGATE = J1
NDEX2 = IGATE(J)
JKIND = GATE (NDEX2)
1F (JKINL .NE. IKINL) GO TO 7(9
JNGATE = GATE(NDEX2 + 1)
JERIME = GATE(NLDEXZ + 2)
IF (JPEIYE .NE. IPRIME .OR. JNGATE .NE., INGATE) GO T0 709

C GATE MATCH, SEAFCH FCK IMNEUT MATCHES.
1¥ (IPFIME .EQ. 0) GO TIC 703
K1 = NDEX + 5 + 2%INGATE
K2 = NDCEX + 3 + 2% (INGATE + IPFRINZ)
L1 = NDEX2 ¢ 5 + 2*JNGATE
12 = NDEX2 + 3 + 2% (IJNGATE + JPFIME)
IC 702 kK = K1,K2,2
KNCDE = GATE (K)
KMCDE = GRTE(K + 1)
Do 7C€1 L = L1,12,2
IF (GATE(L) .EC.KNODE .ANL. GATE (L+1).EQ.KMCDE) GG TG 702
701 CCETINGE
GO TC 709
702 CCNTINUE

n
-+ 4+

H WA

232

aan

[eXeNe!

703

704
705

706

7¢7

COMELETE MATCH CF¥ PFEIMAFY INPUTS FCUND,
NOW SEAFCH FOE MATCHING GATIE INPUTS.
IF (INGATE .EQ. D) GC TC 706

K1 = NLEX + 5
K2 = NDEX + 3 + 2%INGATE
11 = NLEXZ + S
L2 = NDEX2 + 3 + 2*JKGATIE

LC 705 X = K1,K2,2
KGATE = GATE (K)
Lo 704 L = L1,L2,2
IF (GATE(L).EC.KGATE) GC IO 705
CONTINUE
GO TIC 708
CCNTINDE

CCMELETE MATCH FOUNL. ©FEMCVE GATE *'J°'.
SE2BCH PRECEEDING G2TE ANL FEPLACE INPUT.

GATE(NLEXZ) = =1

JDEX = JGATE (J)

IDEX = ICGATE(JLEX)

K1 = ICEX + 5

K2 = ITEX + 3 + 2%GATE(IDEX + 1)

Lo 707 K = K1,K2,2
IF (GATE(K) .EQ. J +AND. GATE(K+1) .LT. 0) GO TO 7408
CONTINLUE

1E = 7C7

EFINT 1,IB

Cokeodkookok gk ko ¥k o % b 3k ook o b ok o ok ok ok ok ke i ke 3k ok ak ook ok K o R ok ak ok 3k ok ok ok o ok ok ok skl ok K R K R ok ok ok ak akok ok ok ke ke k
CAeokeokook sk ok 3 3k 2k 3k p ok ok ok ok 3 bk ok ok ok b ok b ok ok % ok ok ok b 3 b ok ok o ok ok ok ok ab ok kA Ok o ok o ok ok Ok ok ok Ok Kk Sk kok K

C
C

708

7C9

710

711

CCNTINUE

REFLACE [UPLICATE GATE *J' IN GATE JDEX WITH GATE *I°,
GATE(K) = I
CCNTINUE

GATE 'J' SEAFCH COMPLETEL. SETI GATE *I' TO FINISHEL.
GATE (NDEX) = GATE(NDEX) + 10
CCNTINUE

GATE CEECK COMPLETEL. NOW FESET GATE TYPES,
DC 711 I = 1,NGATE
KDEX = IGATE (1)
IF (GATE (NDEX) .GT. 3) GATE(NLEX) = GATE (NDEX) - 10
1F (IPRINT .LT. 2) GO TO 72€

KRITE GATE PRINTOUT.
WRITE (6,1€2G) TITLE
LC 712 I = 1,NGATE
KDEX = IGATE(I)
IF (GATE(NTLEX) .LE. C) GO TO 712
KK = NDEY + 4 + 2% (GATE(NDEX+1) + GATE(NDEX+2))

233

WRITE (6,1020) I, (GATE(II),II=NCEX,KK)
712 CCKTINUE
72C CCKTINUE
c
c NOW RENUMBEE GATES CCNSECUTIVELY. SET JGATE(I) = NEW INDEX.
WRITE (6,1C30) TIILE
INCEX = 1
LC 721 I = 1,NGATE
KDEX = IGRTE(I)
1F (GATE(NDEX) .LE. C) GC TG 721
JGRTE(I) = INLEX
INDEX = INDE} + 1
721 CONTINUE

C NCW RENUMBEE GATE INPUIS.
Do 724 I = 1,NGATE
¥DEX = IGATE(I)
IF (GATE(NDEX) .1LE. 0) GC TO 724
INGATE = GATE(NLCEX + 1)
IF (INGATE .EC. 0) GC TO 723
J1 = NDEX + £
J2 = NDEX + 3 + 2%INGATE
Io 722 J = J1,32,2
JDEX = GATE {J)
722 CATE{(J) = JCGATY(JDEX)
723 KK = NDEX + 4 + 2% (INGATE + G2ATE(NDEX+2))
WRITE (6,1020) JGATE(I), (GATE(II) ,II=NDEX,KK)
724 CCNIINUE
799 FEITUEN
900 CCNTINUE

c FAULT TBEE TCC LAKGE, WRITE CUTPUT AND EARTIAL TEEE.
WRITE (6,1031) MGATE
GC TC $30
920 CCKTINUE
WRITE (6,1032) KNGSIZE
930 INLEX = INLEX - 2
WRITE (6,1030) TITLE
DC 931 I = 1,INCEX
NDEX = IGATE(I)
1F (GATE(NDEX) .LT. =-2) GG TO $31
KK = IGATE(I + 1) = 1
WRITE (6,1020) I, (GATE(II),II=NLEX,KK)
931 CCKTINGE
1 = INCEX + 1
NDEX = IGATE(I)
KK = NDEX + 4 + 2%(GATE(NDEX+1) + GATE(NDEX+2))
WRITE (6,102C) I,(GATE(II),II=NLEX,KK)
1FER = 1
EETUFN
2020 WBITE {6,1€33)
TEFF = 1

234

FETUEN
203C¢ 1E = 2030
WRITE (6,1) 1B
I1EEF = 1
FETOEN
2040 WRITE (6,1034)
IEFE = 1
RETOEN
2060 WRITE (6,103%)
1FEE = 1
FETUEN
ook g kok b b o 2 oF 3 ok ok ok 3 b 4 ok ok 3 2k 3 ok K ool ook ok e i i ook okl oK ok oK ok ok e sk ok ok ok o Ak ek ok kb Rk Kk koK
C *
c FCEMAT REGION *
C *
TRk kb b 3ok b Rk 0 b Ak ok 3k ook 2 ok o 3k 3k ko Ak ko Rk K sk ok K ok o KR A i 3 ok ko ke K ok o 3ok o ok o ok oK K R kK
1 FCFMAT (1HO,65('#*') /' * ERROE MUMBER',I5,T131,'*'/1X,65 (%*%') /)
1000 FCEMAT (1H1,€E5('==")/" =1,T131,%=40/% = v 20A4,T131,1=-1/' -,T131,
1 *-1,% - CAT GATE PRINTCUT SECTICN.', T131,!='/* -t ,7131,
2 '~ /1X,65('=="')//1X,"**% PRELIMINAEY GATE PEINTOUT %x%?//)
1001 FCEMAT (1HO,'GATE',I4,3X,'TYPE = ',A3/12X,*NUMBER OF GATES INPUT =
1*,12,' NUMBEF CF PFIMABY INEUTS =',I2/12%,'EVENT: EVALUATE ROW',
2 16,' OF CCMPCNENT',I5/12X,"INECIS: *,7('(*,I6,%,',16,%),%)/
3 2C%,7(° (' ,1€,,',16,%,%)))
1002 FOEFMAT (1HC,'GATE',I4,3X,*TYPE = ',A3/12X,'NUMBER OF GATES INPUT
1v,12,' NUMBER CF PFIMARY INEUIS =',I2/12X,'EVENT: SIGNAL =!,I6,
2 ' AT NODE',I6 /12X, YINEUTS: *,7(" (*,16,%,',16,%),')/
3 (20X, 7((',I€,',',1I6,%),")))
1003 PCEMAT ('OGATE 1*, 3%,'TYPE = *,A3/12X,'NUMBER OF GATES INPUT
1,12,' NUMBEF CF FFIMAEY INEUTS =',I2/12X,'EVENT: TOP EVENT'/
2 12X,*INECIS: *,7('(',16,',',I6,%),%)/
3 (2CX,T7("(',16,%,',1I6,'),")))
1004 FOFMAT (1HO,*** NC OUTEUT MODE =¢,I5,' EXISTS FOR NODE', IS5,

1 ' (CCPPCNENT *'',A8,°%** TIYFE',I6,', CUTPUT NC.',I2,%')."')
1005 FOIMAT (1HO,*** NC COMELETE FOW MATCH FOUNL FOR COMPCNENT *'?,
1 A8,*'* TIYPE',16,','/5X,'DUE TO CCNTRADICTING INITI2L OF BOU

ZNDRRY CONDITIOKS,?)
1006 FCEMAT (4X,'* CGATE',I4,' BEING ELIMINATELD AND PRECEEDING GATES ®

1DITED.?)

1007 FOFMAT (4X,** GATE®*,I4,* INPUTS ***,A3,'*? GATE',I4,'; GATE',Iu,
1 ' BEING ELIMINATED.')

1008 FOEMAT (7X,*GATE®,I4,' INPUTIS *"*',A3,%%' GATE',I4,'; BRANCH',I3,
1 ' OF',I3,' ERANCEES EEING ELIMINATEL.?')

1009 PCEMAT (4X,*'* GATE',I4,' INPUIS SINGLE INFUT *'%,a3,%'* GATE?,
1 I4,%; GATE*,I4,' EEING ELIFINATED,.')
1010 FCEMAT (/5X,*GATE',I4,': COMPONENT *'*,28,*'' TYPE',I6,', ECW',I3,

1 ' NODE', 16,': MODE =',15,' CCNTRADICTS MODE =',1I5,
2 *, SE1 BY GATE',I4,?.')
1011 PCEMAT (/5X,°'GATE*,I4,%: COMPONENT **¢,a8,%9* TYPE' ,I6,', EOW',I3,
* NCDE!', I6,': MODE =',I5,' CCNTEADICTS MCDE =%,15,

N -

'y SET BY INITIAL CONDITICNS.')
1012 POFMAT (/5X,°GATE',I4,': COMNPCNENT **? _p8,¢** TYPE',I6,', EOW',I3,

235

1 ' INTERNAL',I6,%: MODE =',I5,' CCNTEADICTS MCDE =',I5,
2 ', SET BY GATE',I4,'.")

1013 FGFMAT (/5X,'GATE®,I4,': CCMPCNENT **'',28,%*' TYPE',I6,', EOW',I3,
1 * INTEEN2L',1€,': MODE =!,15,% CCNTEADICTS NCDE =*,I5,
2 ', SET BY INITIAL CCND.')

1014 FOFMAT (,5X,'GATE! ,I4, ?': NCDE?,I6,' PRESET TO MODE =*,15,
1 * BY GATE®,I4,%'.*)

1015 FORKMAT (/5X,'GATE',I4, *: NCDE*,16,' PRESET TO MODE =',I5,
1 * BY INITIAL CONCITICNS. ')

1016 FPCEMAT (1HO,4X,'GATE',I4,*: INTEENAL',I6,* PRESET TC MODE =',I5,
1 * BY GATE',I4,'.')

1017 FCEMAT (1H0,4X, *GATE',I4,*: INTEFENAL',I6,' PRESET TC MCDE =',I5,
1 ' BY INITIAL CCKDITICNS. ')

1018 FCEMAT (*'0 ** CCMPONENT ***,ag8,'** IYPE?,I6,', ROW®,I4,': ALL NOD
1ES HAVE BEEN PEESET. */4X,*'* GATE',I4,' BEING ELIMINATED AND PFRECE
ZEDING GATES ECITED.')

1019 FCHEM2T (1HO, * * GATE',I4,*' TYFE = ',A3,' HAS SINGIE INPUT. GATE
1 BEINKG ELIMINATED AND INEUT DIRECTLY INTO GATE',I4,'.7)

1020 FCFMAT (5X,*GATE',I4,':?,313,2I6,1X,6("'(',16,',',16,"),%)/

1 (36X,€(*(',16,',',16,"'),")))

1021 PCEMAT ('O%** PBELIMINAEY ELCIT CF¥ GATE',I4," COMPLETED ***1'//)

1022 FCEM2T (//'0*%* GATE',I4,' COMPIETIED. FRELIMINAEY GATE EDIT FCOLLOW
15 *#31,/)

1023 FCFMAT (7X,'ERIMARY INPUT®',12,' CF GATE',I4,* BEING DELETED.')

1024 PCFMAT ('O #** ALL INPUIS TO GATE',I4,' HAVE BEEN ELIMINATEL.'/
14X ,** GATE!,I4,* BEING ELIMINATEL AND PFRECEEDING GATES ELCITED.')

1025 FCEMRT (1B1,'*** OF CATE EDIT OF GATE',I4,' COMPLETED **x?'/

1 ' *%3 PEINICUT OF ARRAY *'GATE'' BEFORE RESETTING NODES %*x
2v// (5%,1016))

1026 FCEMAT (//'0#%*#% PRINTOUT OF ARRAY ''GATE'' AFTER RESETIING NODES *
1% /7 (5%,1C16))

1027 FCEMAT {//,'0*** OF GATE EDIT OF GATE',I4,® COMPLETED **x1,

1 ' %%* PRINTCUT OF AREAY *'X'' BEFOFE RESETTING NODES *¥%4//
2 (5X,1CI€))

1028 FOEMAT (//'0%%%% veTOP#Y HAS EEEN CCMPLETED *%%%t/
1 181,65(%-=-%)/,' - PRCGRAY CAT, VEFSION OF 1C/75%,T131,1-v/
2, ' - FROGFAM FPOR TEE AUTOMATEL CONSIEUCTICN OF FAULT TREES.'
3, 7131,'=' ¢ - CUTPUT REGICN®
4, T131,%=% ,,% =%,T131,'=-%, ,' = % 20GA4,T131,'-* /,1X,
£ 65 ('=="')///,1%,V*%* GATF EFINTOUT SECTION *#%%x1//)

1029 FOFMAT (1H1,'*** GATE TEANSFERS CCMELETEL **%t//
1 1X, YINTERMFLIATE PRINTOUT FOR ',20AlL//)

1030 FOFMAT (1H1,65('=-')/' - PECGEAM CAT, VERSION OF 10/75',T131,'-'/
1, ' - EFCGFAM FOF TEE AUTOMATED CONSTIEUCTICN CF FAULT TREES.'
2, T131,'-* /' - QUTPUT EEGICN: FINAL GATE PRINTOUT®
3, T131,'=* ,,% =',T131,'=%, ,* = 7,2044,T131,'=* /,1X,
4 65('==%) /71X, '*%%x FINRL GATE ERINTOUT SECTICN ***1//)

1031 FOFMAT (1H1,65(**%v) /5 (v %% ,T131,%%%/) v *v, 5%,*2AULT TREE TOO LA
1RGE FCF EROGEAM CIMENSIONS.?',T131,'%?,/% %% 11137, ,9%,
2 ¢ %', SY,'NUMBER CF GATEFS FECUIRED EXCEEDS THE',I5,' GATES AL
3LCCATEL.',T131,%%v /% %1 T131,'%%, ¢ xv 5% ¢DARTIAL GATE ERINTOU
4T FCILICWS.',T131,9%1/ S5(1 *1,T131,9%1/) ,1X,65 (" xx1))

236

[sNsReNeNe]

2Nz Xa)

1032 FCEMAT (1H1,65("#*')/5(* #*1,T131,%%1/)," %' SY *PAQLT TREE TOO LA
1RCE FOR PECGFAM LIMENSIONS.!,T131,'%%/% v T131,1%¢,
Z % %', SX,'AFFAY ''GATE'' FEQUIFES MORE THAN THE',I6,' SEACES AL
3LCCATEL.',T131,%%% /% %9 ,T137,v%%, ¢ %', SX,'PARTIAL GATE PRINTOU
4T FCLLCWS.',T131,'*%/ 5(* %+, T131,9%%/) ,1X,65 (V¥*"))

1033 FOEMAT (1H1,€5("#%7) /5(* % _T131,%%%/)," %% GX ¢TQF EVENT FOR FAU
1LT TFEE HAS NO EOW MATCH.', T131,%%¢,1 %v _T131,%%1,
2 * %%, 5§3,%vICP EVENT CANNOT CCCUR.',
3 T131,9%% /0 %v T131,9%%, ¢ %1, S5X, ¢x%x* PEOGRAM TERMINAT
BING #%%x0v, T131,7%%, S(¢ %1 ,T131,'%1/) ,1X,65 (1 **1))

1034 FCEMAT (1H1,65 ("*%v) /5(" %% ,T131,%*%/) " *?, S5Y *TQOF EFVENT FOR FAU
1LT TFEE HAS EEEN ELIMINATED - TCE EVENT CANNOT OCCUF =',T131, %'/
2 ' %t T137,9%1, ¢ %% 5% txx*x PROGRAM TERMINAT
JING #%%x1, T131,9%1,/ 5(v *v,T131,%%1/) ,1X,65 (1 **7))

1035 FCEMAT (1B1,€5('#%%) 5(* *¢,7131,9%v/),% *', SY,'TOF EVENI FOE FAU
1LT TREE HAS BEEN ELIMINATED - TCE EVENT '*SURE TO OCCUR'' =-°,
2 T131,%%1,/0 %9 T131,9%0, ¢+ %9, G5 txkx* BRCGRAM TERMINAT
3ING #%%%, T131,0%%, 5(¢ %9 ,T131,9%1/) ,1X,65 (1 *x%1))
ENI
SCERCUTINE XCHECK (ISTAFT,JDEX,NCEX,IPRINT,X,GATE,NCDES,NGSIZE)

SUBEOUTINE TO CHECK ANL SET NODES FOF 'OR* GATE EDIT ROUTINE.
ISTART SFIS FLAG; IF ISTART IS NCN-POSITIVE, NC NODES ARE SET
ISTART = 0: CHECK CR-AND-CE GATE
ISTART =-1: CEECK OR-CR-AKL, OR-AND=-AND GATES

INTEGER X(2,NCLES) ,GATE {NGSIZE)

100 ISET = ISTRFI

IF (ISTART .LE. 0) ISTAET = 1

NEFIME = GATE(NLEX + 2)

ISECT = NDEX + 1 + 2% (GATE(NDEX+1) + ISTAET)

CC 110 1 = ISTAFI,NPRIME

ISEOCT = ISEQCT + 2
JNCLCE = G2TE(ISPOT)
KMCDE = GRIE (ISPCT + 1)
JMCLCE = X (1,JNCLE)

IF (JMCDE .¥E. =1) GC TO 101

NODE HAS NCT PFEVICUSLY BEEK SET,
1F (ISET .LE. Q) GC T0O 11¢
¥ (1,JNODE) KMCDE
X(Z2,3NCDE) = =2
GC 10 110
101 C(CNTINUE

NODE HAS BEEN PRESET. CHECK FOE AGREEMENT.
I®? (JMODE .E(. KMCLE) GO TC 105

NODE DISAGRFES. CHECK FCK FUFTHEF MOLES PRESET,
1F NCNE FOUNL, SET ACDITIONAL MCDE.

17 (X(2,JdNCDE) .1T. =2) GC TO 102

IF (ISET .GT. 0) X(2,JNODE) = =-ISEOT

GG 10 110

237

[eNeXe)

aacao

(o Ne!

102 IISEOT = -X(Z,JdNOLE}
103 1P (KMODE .EQ. GATE(IISPCT + 1)) GC TC 105

MODE NCT EQUAL TO FFESET MOLE, CEECK FOF FURTHER PRESET MODES.
1F (GATE(IISECT) .CE. 0) GO TC 104
IISPOT = =-GATE(IISECT)
€C IC 103
104 IF (ISET .GT, 0) GATE(IISEQGT) = -ISPOT

ALL MODES CHECKED; NC AGFEEEMENT. SET NEW MODE LOCATICN.
¢c IC 110
105 CONTINUE

MODE AGREES WITH PRESET VALUE,
CELETE ERIMARY INPUT ISEOTI.
1P (ISET .LE. =-1) GO TC 111
GATE(NDEX + 2) = GATE(NDEX + 2) - 1
i? {(IBPRINT ,GT. 0) WRITE (6,1000) JDEX,JNODE,KMODE,I,NPRINE
IF (I «.EC. NEFIME) GO T0 110
IM1 = NPFINE - 1
1ISPOT = 1tPOI
pc 1C6 I2 = I,INt
CATE(IISFEOT) = GATE(IISPOT + 2)
GATE (IISECT+1) = GATE(IISPOT + 3)
106 IISEOT = IISPOT + 2
ISEOT = ISEQT = 2
110 CCNTINDE

RETUENR
111 IST2FTI = -1

IF (IPEINT .GT. 0) WRITE (6,1001) JDEX,JNOLE,KMOLE,JDEX

FEIUEN
1000 FOFMAT ('0 GATE® ,I4,*: INTEEKNAL NODE',I16,' PRESET TO MODE =',

1 15/7X,YEFIMRRY INPUT',I2,' OF*,I2,' INEUTS BEING DELETEL.')
1001 FPOEMAT (*'C GATE®,I4,': INTEENAL NODE*,16,' PRESET T0 MCDE ="',

1 15/4X,** GATE',I4,' BEING ELINMINATEL AND PRECEEDING GATES ED

2ITEL.")

ENL

SUERCUTINE K¥LUCE(LLDEX,JDEX2,NLFX2,JDEX,NDEX,IPRINT,J,JNGATE,

1 JSEOT,GATE,JGATE,NGSIZE, MGATE)

SUEFOUTINE TC ELIMINATE ZERC ANL SINGLE INPUT GATIES.

GATE JDEX2 IS TO BE ELIMINATEL,

GATE JDEX WILL HAVE CCEBRESPONLING INPUT CHANGED CR DELETED.
INTECER GATE (NGSIZE)
DIPENSICN JGATE (MGATE) ,KIND(2)

LAT3 KIND/*AND *','CR '/
IKIND = GATE (NDEX2)
GATEF(NLEX2) = =99

JGATE(JDEXZ) = =99
IF (LLDEX .EC. 1) GO TC 200

GATE JDEX2 HAS NC INFUIS EFEMAINING.

238

anan

e NeNg}

LELETE GATE JLDEXZ AND INPUT 1C JDEX.
JRIND = GATE (NDEX)
JJ = JUNGATE + CATE(NLEX + 2)
IF¥ (IPRINT .GT. 0) WRITE (6,1000) JCEX2,JDEX2,JDEX2,KIND(JKIND),
1 JLEX,d,d4d
GATE (NDEX + 1) = GATE(KLCEX + 1) - 1
JJSECT = JSECT
IF (J .GE. JNGATE) GC TC 101
JE1 = JNGATE -~ 1
pboc 100 J2 = J,aM1?
CATE (JJSECT) GATE(JJSECT + 2)
CGATE (JISECTI#) GATE(JJSECT + 3)
100 JJSECT = JSSPCT + 2
101 JPRI®E = GATE(NDEX + 2)
I¥ (JBRIME L,EQ. 0) GO TO 10z
JSECTI2 = JJSECT + 2*JPFIME
GATE (JJSECT) = GATE(JSEOTZ)
GATE (JJSECT+1) = GATE(JSEQOTZ + 1)
1F {CATE(JSECT2) .LT. C) GAIE(JSECT2) = =JJSPOT
102 JSECT = JSECT =~ Z
JdJ = NDEX + 4 + 2% (GATE(NDEX+1) + GATE(NDEX+2))
IF (IPRINT .GT. 1) WRITE (6,1001) JDEX, (GATE (II) ,II=NDEX,Jd)
EETUEN
200 CCYTINUE

GATE JDEXZ HAS SINGLE INPUT.

LELETE JDEX2 AND INSERT DIRECILY INTO GATE JDEX.
JF (IPRINT .GT. 0) WRITE (6,100Z) JDEX2,KINL(IKIND) ,JDEX
1F (GATE(NDEX2 + 1) .Eg¢. 0) GO 1IC 201

INEUT TC JDEX2 IS GATE INEUT. SET INTO GATE JDEX.
GATE (JSPOT) = GATE(NLCEXZ + 5)
JISECT = GATE (JSEOT)
JG2TE (JJSPCT) = JDEX
FETUEN
201 CCKTINUE

INPUT T0 GATF JLEX2 IS PRIMARY INEUT.
MOVE UP REMAINING GATE INEUTS AND INSERT ERIMARY INPUT.
GATE(NDEX + 1) = GATE(NDEX + 1) - 1
GATE(NDEX + 2) = GATE(NDEX ¢ 2) + 1
JJISECT = JSECT
IF (J .BEC. JKGATE) GC TC 203
Jr1 = JNGATE - 1
CC 202 J2 = J,J¥K1
CATE(JISECTI) = GATE(JJSPOT + 2)
GATE (JJSECT+1) = GATE(JISECT + 3)
202 JJSBCT = JJSECT + 2
203 GATE (JJSPCT) GATE (NDEX2 + 5)
CATE (JJSECT+1) GATE(NLCEX2 + 6)

IN 'OR' GATE ECLIT REGION, GATE(NDEX2 + 5) MAY BE EOINTER.

239

c IF SO, SET ECINTER FCE NEW LOCATICN.
204 I1F (GATE (JJSPOT) .1T. 0) GATE(NLEX2 + 5) = =-JJSPOT
JJ = NDEX + 4§ + Zk(GATE(NDEX+1) + GATE(NDEX+2))
IF (IPRINT .GT. 1) WRITE (6,1001) JDEX, (GATE (II),II=NDEX,JJ)
JSECT = JSECT - 2
EETUEN
1000 FOEMAT (*0 ** ALL INPUTS TO GATE',I4,* HAVE BEEN ELIMINATED.'/
1 4X,"* GATE',I4,' BEING ELIMINATED AND PRECEEDING GATES ELITE
2D.v/7%,*GATEY,I4,* INPUTS **',A3,%'" GATE',I4,*; BEANCH',I3,
3 * QF',I3,' PRANCEES BEING ELIMINATED.')
1001 POEMAT (5X,'GATE®,I4,':',313,21€,1X,6(*(*,16,',*,16,%),")/
1 36X,6("(*,I6,',',I6,'),"'))
1002 FGEMAT ('0 % GATE',I4,* TYPE = *,A3,' HAS SINGLE IKPUT. GATE BEI
1NG ELIMINATEL AKD INEUT DIRECTLY INTO GATE®,I4,'.?)
ENT
SUEROUTINE CUTEUT (ITYPE,IGATE,JGATE,GATE,MCDNAM,CMENAM,NLIB,
1 MNODE, NNCME,MGATE, MXINT2,MAXINT,NGSIZE, NGATE, IOT)
C***t***t**‘**#*#iQ*####*t*****#*#*‘#*‘t#***#’t#‘#***t*#t**#**t*t*******
*
SUBFEOCTINE OUTPUT, VERSICN CF MAY 1977
SUEFCUTINE TO WRITE OUTPUT IN FORMAT POF EREP-KITT CODES
LIMITED TO 9999 GATES WITH MAXIMUM OF 49 INPUTS PER GATE
LAMECA LI®ITEL TO VALUGES EETWEEN 0.9999 AND 1.E-9

10T
INNMAX
IREAD

OUTPUT CEVICE NUMBER (FUNCH, TAFE OR DISK)
¥AX XC. OF INPUTS ALLCWED PER GATE (= 7 FOR PREP)
C/N¥ (TATA CORKECT/MISSING INPUT FROM DEVICE *NINP')

LR B BE BE BE N R S

C
C
C
C
C
C
Cc
C
C
C
C

s ook ok o A ob s b o 3k 3 3 o R o e o ok o o ok e o g ol ok ek ool ko ok oo ok ok Tk ok o ek ke 2K o ok ol ok ok kol dk sk kR K K R kK
DOUBLE PRECISICN CMENAM(NNCMP) ,NAME1,NAME2, NNAME,MNAME (2) ,NAMEX,
1 LLENLC ,MMENL,MOLNAM (MAXINT,NLIB) ,MELANK
DIFEXNSICN 2LAMI2(2),BLAMLCA(2),ATAU(2),BTAU(2),NUMBEF (10),
1 ITYPF {XNCMF) ,IGATE(MG2TEF) ,JGATE (MGATE) ,INAME (8),
2 JNAME (S6) ,KNAME (8) ,KINL (2)
INTEGER GATE (NGSIZE)
ICCICAL NCTIOP
COFKMCN TITLE (20) ,XXXX(20),XEKER,IEDIT,IDUM (12),NNAME,JPRINT,KOUT
LATA KINLC (1) ,KIND(2) ,NELANK,LG,LA,LT,LE,LC,LP,LENLC, MEND,LLENC,
MMEND,XEND,LOUT,XCUT NAMEX NUMBEF,MELANK/
*ANL',*CE*,? v ,9GY e39 eTv _3Ee _eQr _¢pv oENDY,'EENDY,YENDY,
'GENLY, SSEND?, *6CUT? ,'50U0TY,YEND FILE?, "0, %10, 020 1930 40,
150 160 170 18y _9gs ¢ sy
I¢c 1¢ 1 = 1,12
10 IDTM(I) = C
£C 2¢ 1 = 4,¢
20 INAME(I) = NELANK
LC 3C I = 1,56

£ WN

30 JNAME(I) = NELANK
NIKE = §
INFAX = 7
IFEAL = 0
KSECT = 1

240

TR2 = 0.0
WRITE (6,1000) ICT,TITLE
1000 FOIMAT (1H1,€5(ZH--) y29H - EROGEAM (AT, OUTBUT REGICN,T131,1H~-/

1 23 - OCTPUT TO I/C LEVICE,I3,
2 30H IN FORMAT FOR PREP-KITT CODES,T131,1H-/2H =-,T131,1H~/
3 34 - ,20A4,7131,1H-/1X,65 (2H==) /)

CAMA K oK K kb b o 3 ok ook ok ok ok ok ok o ool ok ok o ok o ok ok o ok ook ok R ok b ok o b kR oK kR ok R kK

C *
C CHECK FOF ERESENCE OF 'E£00T', '6END' CE END OF FIILE *
C FEAD IN SUERCUTINE 'STEVE?! *
C IF IATA 1S MISSING OUTPUT WILI STILL BE ERODUCED, *
C EUT WITH NC CFRCSS=CHECKING *
C *
C *

AR A ok kR ook ok Rk R R ok ko Rk kR b kb b o o ok kR ok oK ok oK R R ROk Rk KR Ok K ok
XCCDE = XXXX (1)
IF (XCODE .EC. 3XCUT) GC TIC 100
NNZME = NAMEX
1F (XCOLE .EQ. XENL) NNAME = MMEND
WRITE (6,1007) NNAME

1001 FCEMAT ("O#%** PREP LCATA MISSING ***?',7X,A8,' READ BY SUBRCUIINE ST
1EVE.'/ ' FAULT TREE WILL BE CUTEUT WITHOUT FAILURE DATA.'//)

IFEAL = 3
IF (XCCDE .EC. XENL) IREAD = 2
GC 1C 140
100 CCNTINUE
C
C FEAL PREEP CCNTFOL [AT2

READ (NINP,1002,END=130) XXXX,NCCLE, (IDUM(I),I=1,6)
1002 FCEMAT (20A4,T1,24,1€,5110)
IF (NCODE .NE. NBLANK) GC TC 11¢
REXLC (NINP,1003,ENC=130) XXXX,NCCLE, (IDUM(I),I=7,10),TAA
1003 FCEMAT (2024,T1,A4,1€,3110,F20.3)
IF (NCODE .XNE. NBLANK) GC TC 110
GO TIC 140
110 COKTINCE
IF (NCCDE .EC. LCUT) GO TO 100

C INEUT ERFCE KEARL., SUPPRESS FURTIHER DATA CHECKING
I¥ (NCODE .EC. LEND ,O0F, NCOLE ,.EC. MENL) GC TO 120
WEITE (6,10C4) XXXX
1004 POFMAT (*O*#**% INPUT ERKCE **#',7X,*LCATA CARLC MISSING OR MISPUNCHED
1. CREL IN EFROF 1S:'/7X,20A4,/*' FAULT TEEE WILL BE CUTEUT WITHCQUT
ZFAILURE LATR,.'//)
IFEAL = 4
GC TC 140
120 WRITE (6,1005) KCODE
1005 FOEMAT ("O*#** WARNING ***'/1X_,A4,' CAFD FCUND WHERE LCATA EXEECTED,
1*/" INPUT ELIT TERMINATING. FAUIT TREE WILL BE OUTEUT WITHOUT FAI
ZLUFE [ATA.'//)
IREAL = 1
1F (NCODE .EC. MENL) IFEAD = 2
GC TC 140

241

130 &RITE (6,10C€)

1006 FCEMAT ('0*** WARNING #****'/' ENL CF FILE FERCHEL'/*' INPUT EDIT TER
1MINATING, FRAULT TFEE ®ILL BE OUIFUT WITHGUT FAILURE L[ATA.'//)

IREAL = 3
140 CCNTINUE
c
C CCMEUTE NUMEBER OF GATES FCR PFEF INPOUTI

NG = 0
DC 150 I = 1,NGATE
NDEX = IGRTE (I)
1F (GATE(NLCEX) .LE. 0) GO TO 15C
NG = NG + 1
INTOT = GATE(NLEX+1) + GATE (NLEX+2)
1F (INICT .LE. INMAX) GO IC 150
KG = NG + (INTOT = 1) /INMAX + 1
15C CCKTINUE
ILCM (1) = NG
WRITE (IGCT,1008) TITLE, (IDUM(I),I=1,10) ,TARA
1008 FCEMAT (2024//5X,59H#** FAULT TFEE CCNSTRUCIED BY CAT,
1MAY 1677 **%,6H* DATA/6I10,4I1C,F20.3/3HENL/6H* TREE)
WRITE (6,1€C9) TITLE, (ICUM(I),I=1,10),TAA

VEESION OF

1009 PCFMAT (1HO,20AU4//6X,59H**% FAOLT TFEE CCNSTIRUCTED EY CAI, VEESION
1 CF MAY 1977 #**%,7H * DATA,1X,6110,1X,4I10,720,.3/48 END/

z 78 * TFEE)
CHEE2F3 42333 D% 2% kBB kool kB Bk Aok ki d o 32k ok ok ok 2ok ko ok ok ook K ok ok ke kK ok ROk
C *
c NCW PFODUCE FAULT TREE IN EREE FCEMAT *
c KSECT = NEXT AVAILABLE STOEAGE SPOT FOR CGCMPONENT NUMBEF *
C *

IS EE R R RS2 ERELE RS R 222222 222 22 22 L 2RSSR SRt 222 R R AR R R R AR d b

NCIOF = .FALSE.

INAME(T) = 11
INAME(2) = IC
INBME(3) = LE
INICT = C

DC 40C I = 1,NGATE

DEX = IGATE(I)

STYPE = GATE (NLEX)

IF (JTYPE. LE. 0) GO TC 400

NG = JGATE (I)

MKIND = KIND (JTYPE)

1F (.NCTI. NOTIOE) GO TO 22C

NUMT = NG/100C

FUM2 = (NG - 1000%NUM1)/1CC

NUF3 = (NG - 100% (NG,/100))/10

KUMY NG ~ 10%(NCG/10)

INAME(5) NUMBEE (KUM1+1)

INAME (6) NUMEER (NUMZ+1)

INAME(7) NUMBER (KUM3+1)

IN2ME(8) = NUMEER (NUMU4+1)
220 INGATE = GATE (NDEX+1)

IPFIME = GATE(NLCEX+2)

nonw

Won

it

242

sNeNe]

[sNeXe]

[aNeNs]

[sXeKs!

BRESET = 8¥IKICT
INIOT = INGATE + IPRIME
IF (INTOTI .GT. INMAX) GO 70 300

SET NAMES FCF INFUT GATES

ISECT KDEX + 3
JSEQT 1
I¥ (INGATE .EC. 0) GC TO 250
[0 240 KGATE = 1,INGATE
ISEQT = ISECT + 2
NG = GRIE(ISPOT)

JNAME (JSECT) = LG
JNAME (JSEQT+1) = LA
JNAME(JSECT+2) = LT
JNAME(JSEQT+3) = LE

UM1 = XG/1C€00

NOM2 = (NG - 1000%NOM1) 2100
NUM3 = (XG =- 100%(NG/100))/1C
NUM4U = NG - 10*(NG,/10)

ONAME (JSECT+4) = NUMEEE (NUM1+1)
JNAME (JSECT +5) NUMBEF (NUMZ+1)

GNAME(JSEQT+6) = NUMBEER (NUM3+1)
JNAFE(JSEQT+7) = NOMEER (NUM4+1)
240 JEECT = JSECT + 8

IF (IPRIME ,EC. 0) GC TO 270
250 CCXTINUE

SET NAMES FCF CCMECNENIS

LO 260 KGATE = 1,IERIME
ISECT = ISPOT + 2
LC 255 I1 = 1,2
NC = GATEF(ISPOT ¢+ II - 1)

NUM1 = NC,10C0

NUM2 = (NC = 100C*NUM1) /1CC
NUM3 = (NC - 100%(NC/100G)) /10
NUM4G = NC - 1C*(NC/1C)

JNANME (JSECT)
JNAME (JSECT+1)
JNAME (JSECT+2)
JNAME (JSECT+3)
255 JEECT = JSECT + 4

NUMEER (NU¥141)
NUMBER (NUKZ+1)
NUMBEE (NUF3+1)
NUMBER (NUE4+1)

NO® SET COMECNENT NUMBEF INTO TABLE FOR LATER KEFERENCE
GATE(KSECT) = 100CO*GATE(ISECT) + GATE (ISPOT+1)
260 KSEOT = KSPOT + 1
270 CCNTINUE

NOW EIANK CUT ANY NAMES KEMAINING FRCM PREVIOUS FECORD

243

[sNeKs!

280
230

1010

1011

300

IF (NRESEI .L1. JSECT) GO TC 290
I0 286 JgsSPCT1 = JSFCT,NRESET
JNAME (JJSECT) = NELANK

CCNTINUE

NCW WRITE CUIPUT

WRITE (ICT,1010) INAME,NKINC,INGATE,IPRIME,JNAME
FCEMAT (821,1X%,A4,212,7(1X,8A1))

RITE (6,1011) TINAME,NKIND,INGATE,IPRIME,JNAME
FOFMAT (1X,831,1%,A4,2I2,7(1X,E821))

IF (NOTOE) GC TO 4CO

INAME(1) = LG
INAME(2) = LR
INBME(3) = L1
INAME (4) = LE
NCTCP = .TFUE.
GO TC 400

CCNTINUE

CHPRED S0 X000 ok koo bk ok ok kb Rk ok 3ok Rk b dok b ok kR kb b kR Rk ko ok Rk kkokk koK kR kkk

C
C
C

ACD NE® GATES FOR THCSE GATEIS WHICH HAVE TOO MANY INPUIS

b 3
*
*

[I IR R R R EE R R A ERE SRR RER AR Z SRR R RS2 RS 22 R R R L R RS R R R B L S S 2

aoon

310

320

330

JNGATE = (INICT=1),/INMAX + 1

SPFIME = C

1F (NCTOE) GC TO 310
NUMS = NUMEEE (1)
NUFE6 = NUME

NUM7 = NOUMS

MUMB = NUMEEF (2)
GC IC 320

KUM5 = INAME (%)
FUNM6 = IKAME (€)
FUM? = IKAME(?)
NU®8 = INAFE(8)
JSECT = 1

SET NAMES FOF ADCITICNAL GATES EKEQUIREL

I0 330 KGATIE = 1,JNGATE

JNAME(JSECT) = LG

JNKAME (JSEOT+1) = LA

JINAME (JSEOT+2) = LT
JNAME(JSPOT+3) = NUMBER (KGATE+1)
JNAME (JSEOT+4) = NUM5

JNBAME (JSEOT+5) = NUM6
JNAME(JSICT+6) = NUM7
JNAME(JSECT+7) = NUME

JSEOT = JSECT + 8

NOW BIANK CUT ANY NAMES REMAINING FECM PREVIOUS RECORD

244

340
350

355

IF (NRESEX

CCNTIINUE

.1T., JSEOT) GO TG 350
L0 340 JJSFCT = JSEOT,NRESET
JNAME (JJSPCT) = NELAKK

WEITE CUTIPUT
WRITE (ICT,1010) INAME,NKINL,3NGATE,JPKIME,JNAME
¥RITE (6,1011) INBRME,NKIND,JNGATE,JPFIME,JNAME

1® (NCTOE)
INAME (1)
INAME (2)
INAME (3)
INANE (5)
INAME (€)
INAME (7)
INAME (8)
KCTIOE = .

CCKNTINUE

G

[T LI LI T T 1 I 1 I T

¢ TO 355
LEG

IA

LT

NUMS
NOMe
NUM7
NUMS
FUE,

Ck a2k 3k o 2 3k ok ok ek o ok ok ok ook ok i 3k ok ok K 0% ok ok ok ok o ok ok ok 3k R 3 3 ok ok ok ok ok ok ke ok 3 ok ok K ke ok ok 3k A ek ko ak K K K KOk

C
C
C
C
C
C
C
C

e NeNg]

358
360

365

370

WRITE ALCLDITICNAL GATE CAFILS.
TEE 'INICT* INPUIS TO THE OFIGINAL GATE WILL BE SPLIT INTC

'JINGATE?
CATES ANL

G

RTES, WITH *JNTICT' INEUTS INTO THE FIRST *KNGATE'
YJNTOT + 1' INPUTS INTO THE LAST 'JNGATFE-KNGATE.!

FIBST ILAWK OUT ANY EXTRA PCSITICNS,

JNTOT = INTOT/JINGATE

1F (JNTOT .GE., JNGATEF) GO TC Z€C

NRESET = E*JNGATE

JSECT = E*JNICT + 1

LO 358 JJSECT = JSECT,NRESET
JNAME (3JSPCT) = NELANK

KNGATE = JNGATE* (JNTCT+1) - IMNICT

ISECT = NLEX ¢+ 3

LOOP 365 WEBITES CNE RECCRD FOF EACH EXTEA GATE

IO 399 KGATE = 1,JNGATE

INANME (4)
1F (KGATE
IF (INGAT
JJIGATE
JPRIME
INGATE
GO Ta 3
JJGATE
JPRIME
INGATE
JSEOT = 1
I1F (JJCAT

oo~ un
(o]

E

0

NUMEEE (KGATE+1)
.EQ. (KNGATE+1)) JNIOT = JNICT + 1
.IT. JNTOT) GO TC 365

JNIOT

INGATIE - JJGATE

INGATE

0

E

JNICT - JJGATE

+EC. 0) GO TO 38(C

245

#* % % X X X K

e 0ok o 3k 3k ok o ok o o ok ok ok ok ook %k o koo ko ok ok kK a3k ok ok ok o ook ok 3K kK ok A ok ok ok A K ok ok k3 ak ok o kK o ok Kok K kKKK

SET NAMES FOF INPUT GATES

a0

DO 375 KKGATE = 1,3JGATE
ISPOT = ISEOT + 2
NG = GRTE (ISFOT)

JNAME (JSECT) = LG
JNAME (JSECT+1) = LA
JNAME (JSECT+2) = IT
JNAME (JSEQGT+3) = LE

NUNT = NG/10CC

NUM2 = (NG = 1CCO*NUM1) /1CC
NUM3 = (XG = 1C0*(NG/100)) /10
NUM4 = NG = 10%(NG/1C)

JNAME (JSECT+4)
JNAME (JSPCT+5)
JNAME (JSPCT+6)
JNAME (JSPOT+7)
375 JSECT = JSECT + 8
1F (JPRIKE .EC. 0) GO TO 39C
380 CCNTINUE

NUMBER (NUM1+1)
NUMBEE (NCPZ+1)
NUMBER (NUE¥3+1)
NUMBER (NCEU4+1)

o own

SET NAMES FCF COMECNENTS

aaOn

DO 385 KKGATE = 1,JERIME

ISEOT = ISPOT + 2

pC 382 II = 1,2
NC = GATE(ISEOT + II - 1)
NUM1 = NC/1000
NUMZ (NC = 10CO*NUM1) ,1CO
NUM3 (NC = 100%(NC/10C)) /10
NUMY NC = 10%(NC,10)
JNANME (JSEOT) NUMBER (NUM1+1)
JINAME(JSEOT+1) NUMEER (NUM2+1)
JNAPE (JSECT+2) NUMEER (KUM3+1)
JNAME(SSPOT+3) NUMBER (NUMU4+1)

382 JSECT = JSECT + 4

H

[

NOW SET COMPCNENTS INTC TABLE FOR LATEF REFERENCE

OO

GATE (KSPOT) = 10000*GATE(ISEOT) + GATE (ISPOT+1)
385 KSECT = KSPOT + 1
390 CCRTINUE

WEITE CUTEUT

[sXeNe}

WRITE (ICT,1010) INAME,NKINL,JJGATE,JPRINE,JNANE
WEITE (€,1C11) INAME,NKINI ,3JGATE,JPEINE,JNANE
399 CCNTINUE
INTICT = JNIOT
INAME(4) = LE
400 CCXTINUE

246

WEITE (ICT,1012)
1012 FCEMRAT (3BENI)

WEITE (6,1013)
1013 PCEMAT (4H EXD)

b 22 22 R RER SR R 2 R R AR RS R 22222 22 SR F R 222 222 R 2SR RS 22 R RS R 2223

NOW SOFT CCMFONENT NUMBERS INTO ASCENDING NOMERICAL CELEE

T0 BE USED TC CHFOSSCHBECK PREF INPUT.

AND NO CROSSCHECK WILL BE FERFCEFMED.

C

C

C

C IREAT .CT1. C MEANS INPUT ERECR WAS DETIECTED

C

C

CEEEAAFB A AR ALRRARAIRIARRIRR R DR AR AR RN A AR R AR R A RRR KR R R RN Rk R KRRk

NCCUNT = KSECT = 1
NCNT2 = NCCUKNT/2
IC 43C NLEX = 1,NCNT2
NDXMAX = KCCUNT + 1 - NDEX
IGHAX GRTE (NLEX)
IGEIN IGM2Y
MCEX1 NTEX + 1
IDEX NLEX
JLEX NLEX

W nnon

[sNeEsNe]

LO 420 NDEX2 = NLEX1,NCXMAX
IF (GATEI(NLCEX2) .GE. IGFEIN) GC 10 410
IGMIN = GATE(NDEX2)
ICEX = XNDEX:
GC TC 42¢
410 IF (GATE(NCEX2) .LE. IGMAX) GO 10 420
IGMAX = GATE(NDEX2)
SLCEX = NDEXZ
420 CCRTINCE
JF (ITEX .EC. ODEX) GC TO 440

OO0

GATE(ICEX) GATF (NDEX)
GATE (JDEX) GATE (NDXMAX)
1F (ICEX .EQ. NLXMAX) GATE(SDEX)
IF (JDEX .EC. NDEX) GATE(IDEX)
CATE(NCEX) = IGMIN

430 GATE (NDXMAX) = IGMAX

440 CCMNINUE

GATE (NDEX)

o

EROGRAM NOW ELIMINATES DUELICATED ENTEIES

[aNeNe]

NCMN1IZ = 1

DC 450 NDEX = Z,NCOOUNT
IF (GATE(XDEX) .EC. GATE(NCNTZ)) GO TC 450
KCNT2 = NCKNTz + 1

247

FIND LCCATICNS OF L2RRGEST ANL SMALLFEST ENTRIES.
IGMAX & IGMIN ARE ENTRIES, ILEX & JDEX ARE LOCATIIONS.

NOW SWITCH LARGEST AND SMALLEST ENTFIES TO ENDS CF AFEAY

GATE (NLXMAX)

*
*x
*x
*
x
*
x

GATE(NCNTI2) = GATE(NLEX)
450 CCNTINUE
NCCUNT = NCNI2
NCNTIZ2 = O
DC 460 RDEX = 1,NCCUNT
460 CATE(NCCUNT + NILEX) = C

IF (IREAD .NE. 0) GC TC 700
C%R ook o o ok o ok ok o ok ok 3 o o ok ok R o ok ok KK kK K A KR 3K K Ak o o o K R R KR RO

C *
o NOW RERAI FAJILUFE AND KEPAIR IATA AND CECSSCHECK *
C WITH CCMECNENT LIST. WEITE INTC PREP L2TASET CNLY *
c THAT IATA ACTUALLY REQUIRED,., FLAG ANY EXTEA OK MISSING DATA *
C *
C *

3K ook 3 ok ok b ok kb ok ok o b oK o) ok K o ok ok ok K ok ok ok ok ok 3k ok ko K R K ok oK o kot ok kK ok Rk ok K ok ok K ok Kk
REITE (ICT,1014)

1014 FCEMAT (7H* FATES)
WFITE (6,1015)

1015 PCEMAT (8H * RATES)
JICCE = 1

500 READ (NINP,1016,END=580) NAME1,R2LAMTA(1),ATAU(1),INT1,MODE1,
1 NAME2, B1LAMLRA(2),R2T20(2),INT2,MODE2

1016 FCFMAT (2(28,23%,F10.6,F10.3,215))
1F (NAME1 ¢, ILEND ,OF. NAME1 .EC. MMEND) GO TO 580
1F (NAME1 .EC. MBLANK) GO TC 57%

KNAME = NAME?
INTENL = INT1
MCLE = MCDE1
IICCE = 1

505 CONTINUE

SERRCH AKKRY 'CMINAM' FCF CCMECNENT *NNAME'

nOOn

DC 510 NDEX = 1,NNCME
IF (NNAME .EC. CEENAM(NDEX)) GC TO 520
€10 CCNTINGE
515 WRITE (6,1017) NNAME,MCLE,INTENL
1017 FORMAT (7X,'COMECNENT *,A8,"' CR CCMECNENT MCDE ',IS,
1 ' FCF INTEKNAL NODE®,I5,' NCT FCUND')
GC 10 57€
520 CCKTINUE
NOLE = MNODE + (NDEX=-1)*MXINT2 + INTRNL
NCCME = 100CO%NCEE + MOTE

C
C NCH SEAECH AFRAY 'GATE' FCE CCMECNENT NODE AND MOLE NUMBEF
C

KEIXK = O

N¥AX = NCCUNT + 1

530 N = (EMIN + KM2AX) /2

IF (NCCMP-GATE(N)) 531,540,533
531 NE2X = N
532 IF ((NMAX-KMIN)-1) 515,515,530
533 NMIN = N

248

NOOO

GC TC £32
540 CCXTINUE

CCMECNENT INLEX *N' IN ARKAY *GATE! FOONL,
SET DATA INIC CUTPUT RERAYS.

IF (GATE (NCCUNT + N) LEC. G) GC TC 550
WFITE (6,1C1€) NNAME,INTIRNL,MOLE
1018 POFMAT (*O%** RARNING *%xV/7X 'LUELICATE LATA INPUT FOR CCMPONENT?

1 ,1X,28,', INTEFNAL NOLE',15,', MOLE',I5/
2 7X,'EREVICUS DATA WILL EE USED')
GC 1TC 57¢C

550 GATE (NCCUNT+N) = 1
NCETZ = NCRTI2 + 1
BLAMIA(JLOCP) = ALAMIA(ILOOCE)
BTR2U (JLOCP) = ATAU(ILCGP)
NU¥1 = NODE,10CC

NU¥2 = (NODE =- 1C00%KUM1) /100
NUM3 = (NOTE - 100%*(NOLE,1C0)) /1C
NGE4 = NODE - 10% (NODE/10)

KUX5 = MCLE/10CC

NOM6 = (MODE -~ 1000*NUN5) /100
NUM7 = (MOLE - 100%* (MOLE,/1CC)) /1€
NU¥8 = MODE =~ 10% (MCDE/10)

IF (JLCCP .EC. 2) GO TO 56¢C

INAME (1) = NUMBEE(NUM1+1)
IN2ME(2) = NUMEEE(NUMZ2+1)
INAKE(3) = NUMEEE(NUM3+1)
INAME(4) = NUMBEE (NUM4+1)
INAME (5) = NUMEEF (NUMS5+1)
INAME(6) = NUMEEE(NUM6+1)
INAME(7) = KUMBEF (NUM7+1)
INAME(8) = NUMEEE(NUMB+1)
JICCE = 2
GC TC 570

560 KNAME(1) = NUMEEF (NUM141)
KNBME(2) = NUMEER(NUM2+1)
KNAME (3) = NUMEEF (NUM3+1)
KNAME(4) = NUMEER(NUM4+1)
KNAME(5) = NUMEEE(NUMS+1)
KNAME (6) = NUMEEE(NUM6+1)
KNAME (7) = MUMEEE (NUM7+1)
KNAME (8) = NUMEFR(NUMB+1)

WRITE (IOT,1019) INAME,ELAMCA(1),BTAU(1),KNAME, BLAMILA (2),BTAU (2)
1019 FCEMAT (2(821,2X,F10.3,F10.3,1X))

WBITE (6,1£20) INAME,ELAMLA(1) ,ETAU(1),KNAME, BLAMIA (2),BTAU(2)
1020 FCEMRAT (1X,2(821,2%,F10.3,F10.3,1X))

JICCE = 1
570 IF (ILOOP .EC. 2) GC TC 500
575 I1CCF = 2

IF (NAMEZ ,E¢. FBLANK) GG TC 500

NEKIMF = NAMEZ

249

INTENL = INT2

MCIE = MCLE2

GC TC 5CS
CRAA AR oK A ok oK o o o ok ok o K KoK K K o KRR K koK Kk R ok ok ok kKo ok Rk
C *
c END OF CUTEUT EFEGICN. *
C CEECK FCF MISSING LATA ANLC EFFINT CROSSTABLE OF CUTPUT *
C *

CoRA b 8o ook b ok ok ok b ok kb ok ok ok o ok ok ok oo ook ok kT ok R b o akke ok o ool ok o ok ok oRok K sk ok KK K KRk K Rk Rk

580 CCMNTINUE
IF (JICCF .E¢. 1) GC TC 590

HALF CAFLC EFEMAINS.

"o

WBITE (I07,1C19) INAME,BLAMIA(1) ,ETAU (1)
WRITE (6,1020) INAME,BLAMIA (1) ,ETAU (1)
590 WRITE (ICT,1012)
WEITE {6,113
I¥ (NCNT2 .GTI. 0) GO TC 600
IFEAL = 5
IF (NAME1 .EC. LIENWND) IFEAL =
IF (NAMEY .EC. MMEND) IREALD =
IF (IREAD .EC. 5) NAME1 = N2
WRITE (6,10217) NAME?
1021 POFMAT ('0O*** KAENING ***%,7Y a8,% READ WITHOUT VALID FAILURE DATA
1.%'/7X¥,'NC FRILUBE CATA WILL BE CLIPCTI.'//)
GO TC 700

600 CCKTINUE
CHEERR R AR AR ARRRRK AR AR RS R A AR RS SR AR R AR AR B AR RRRK AR KRR B RA KRR R R RRKRRRK

6
7
EX

C *
C CEECK ARFAY 'GATE' FCR MISSING DATA *
C x

Cokdekon b 3 ook b ok ob ok okok ok dk ok b ok ok ok kb ok ok ok ok ko ok 2k ook ok ok ok ok ok kKOO K K Rk ok ok Rk kR

JLEX = 2*NCOUNT

IDEX = NCCONT + 1

ILCCE = 1

DC 620 NDEX = IDEX,JDEX
IF (GATE(NLEX) .EQ. 1) GO TO €:zC
I? {(ILOCE .EC. 2) GG TIC 610
WBITE (6,1022)

1022 FCEMAT (1HO,€5(2H**) s2H *,T131,1H*/

1 328 * *** INEUT ERROR, LATA MISSING,T131,1H*/

2 47H * THE FCLLOWING COMPONENTS HAVE NG INPUT DATA:,T131,1H*/

3 ZH *,T131,1H*/2H * ,18X ,8HINTEFNAL,T131,1H*/2H *,5X,9HCOMPONENT

4, 6X,4BNCDE, 6X,4HMODE,T131, 1H*,2H *,T131,1H%*)

ILCCE = 2
610 KDEX = GATE(NCEX-NCOUNT) /1000C
IDEX = (KDEX = MNODE - 1)/MXIKT2 + 1
FODE = GATE(NLCEX~-NCOUNT) =- 10CCO*KDEX
NODE = KDEX = (LDEX=-1) *MXINT2 - MNCDE

WRITE (6,1023) CMPNAM(LDEX) ,NCLE,HODE
1023 FOFMAT (2H *,5%,A8,4%,16,5X,I6,1131,1H%)

250

620 CCNTINUE
IF (ILOOP .EC. 1) GO TO 7CC
WRITE (6,1C24)

1024 FCEMAT (1H , €5 (ZH**))

7060 CCNTINCUE

CH AR Rk AR Bk kb ok ok 3ok ok ok ok 0Kk oK ok Kk K ok koK ok o ok ok ok 3k ko K K ok 3K R o ok ok ok ok kK ok ok ok

C
C
C

*

WRITE C(BCSS-INLCEX FOR COMPONENIS INDEXEL IN THIE FAULT TREE *

*

Rk okok kb 3 ok 3 ok ook ok 2k o o o e 3k ok ok ok o ok ok k3R koo 3K ok ok Ok K kR ko ok ok ok sk ok o Ak e Kk 2 ke kR R akok K ok ok ko ok koK

c
C
C

WRITE (6,1025) TITLE

1025 FCEMAT (1H1,€5(2E--) /540 - BRCGEAM CAT, SUEROUTINE CUTPUT, VERSION
1 OF MAY 1577,T131,18B~/5€H - CROSS-INDEX CF COMPCNENT NAMES USEL FO
28 FREP/KITT INFPOUT,T131,1H-/2H -,T131,1H-/3H - ,20A4,T131, 1H-/1X,

3 65 (2k=~) ///5H PREP,6X,9HCCMECNENT, 2X,9HCOMPCNENT, 2X,
4 28HINTEENAL: INTEFNAL: INTEFNAL,2X,7HFAILURE/SH NAME, 10X,
5 TTHINCEX NAME,9X,7HCOLUMN:,3X,12HNUMBER: NAME,BX,5HSTATE/)

DC 71C NDEX = 1,NCCUNT

NCCME = GATE (NLEX)

NODE = KCCME/10000

FCLE = NCCME - 10000%*NODE

ICEX = (NCDE - MNCDE - 1)/MXINT2 + 1
KCLCE2 = NOLE - (IDEX-1)*MXINTZ - MNODE
IT = ITYPE (IDEX)

KU1 = NCDE/1000

KUF2 = (NCCE - 1000%NUM1),/10C
NUM3 = (NCDE =~ 100% (NCDE,/100)) /10
FUM4 = NCLE - 10*(NCLE/10)

FUP5 = ¥CDE/1000

FOM6 = (MCLCE - 10CO*NUMS5)/1CC
U7 = (MCDE - 100%* (NMCDE,/100)) /10
NUM8 = MCDE - 10%*(MOLE/10)

INAME (1) = NUMBER (NUN1+1)

INAME(2) = NUMEEE (NUMZ+1)

INAME(3) = NUMBER(NUM3+1)

INAME(4) = NUMBER(NUMU+1)

INAME (5) = NUMBEE (NUM5+1)

INAME(6) = NUMEEE (NUME+1)

INAME(7) = NUMBER (KUM7+1)

INAME (8) = NUMEEF (NUM8+1)

®RITE (6,1026) INAME,IDEX,CMENAM(IDEX),NOLE2,NODE,

1 MOLNAM(NOLCEZ2,1T) ,MCDE

1026 FOFMAT (1X,821,11%1,2X,A8,1I11,1H:,I9,2H: ,b28,1I9)

710 CCKTINUE
JILCOF = 0
JREAT = IEBERL + 1

I¥ (IREAD .EC. C .AND. NBRME!1 .NE. LLEND) GC TO 999

6o TC (910,510,999,599,900,9599,51C,999) ,JREAD
900 CCMNIINUE

FEAD REMAINING CAEDS IF IREAD .EQ. O, 1, 4 OR 6

UNTIL *&ENL' CF ENL OF FPILE IS FOUND

251

1027

1028
91¢

99¢

ILCCE = 1

WEITE (6,1C27)

FOFMAT (1H1,'**%* QUTFUT FEGION TEBMINATING *xx¥!'/
' EXTEA CBE EFECNEOUS CAFLS EEAD:'/)

WEITE (6,1028) XXXX

FCEMAT (¢ #*»7,2074)

RERXL (NINP,1002,ENC=999) XXXX,NCCDE

1F (NCODE .EC. FENT) GO TO S99

IF (ILCCP .,EC. 0) WEITE (6,1027)

IICCE = 1

WRITE (6,102&) 3IXXX
6C TC 910

IEFR = IREAL

BETUEN

ENC

252

