
CAT: A Computer Code for the
Automated Construction of Fault Trees

N P-705
Research Project 297-1

Interim Report, March 1978

Prepared by

School of Engineering and Applied Science
UNIVERSITY OF CALIFORNIA

Chemical, Nuclear and Thermal Engineering Department
Los Angeles, California 90024

Electric Power Research Institute
3412 Hillview Avenue

Palo Alto, California 94304

EPRI Project Manager
Boyer B. Chu

Nuclear Power Division

DISTIilBUTICTT CF THIS DOCUMENT IS UNLIMITED

Principal Investigators
G. E. Apostolakis

S. L. Salem
J. S. Wu

$2N ONLY

rx... :
L;;.- L "

^ firK It
r'CTinssi available

.uw L;uaasst possible avail-

Prepared for

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

LEGAL NOTICE

This report was prepared by the University of California, Los Angeles (UCLA),
as an account of work sponsored by the Electric Power Research Institute,
Inc. (EPRI). Neither EPRI, members of EPRI, UCLA, nor any person acting
on behalf of either: (a) makes any warranty or representation, express or
implied, with respect to the accuracy, completeness, or usefulness of the
information contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not infringe
privately owned rights; or (b) assumes any liabilities with respect to the
use of, or for damages resulting from the use of, any information, apparatus,
method, or process disclosed in this report.

FOREWORD

Recent attempts have been made to develop an automated algorithm for

constructing the logic models of fault trees. In a previous report, NP-288,

a decision table method was introduced and applied to model component be­

havior. This report is an extension of report NP-288. It presents the ap­

plication aspect of the decision table method for fault tree construction.

Several nuclear subsystems are analyzed to demonstrate various usages of

the CAT computer code. The report is also intended to serve as a CAT Code

Users Manual; the code may be obtained from Electric Power Software Center.

System reliability analysis has been increasingly recognized as an

integral part of design safety evaluations for nuclear power generation

plants. Fault and event tree analysis has been extensively applied to

quantify the systems and subsystems reliability both by the industry and

regulatory agencies. The analysis generally involves the construction and

evaluation of system logic models which describe various interconnections

among components and their operation requirements. Several computer codes

have been developed for the numerical evaluation of a given logic model.

Model construction has still remained a manual task which usually contri­

butes the bulk of time to probabilistic system analysis. The objectives of

this automated fault tree construction could perhaps speed up the entire

reliability analysis process. Several other concepts have been examined

for computerized fault tree construction; it appears that the CAT code

approach could provide a more adequate modeling capability to nuclear systems

and subsystems.

Boyer B. Chu
Project Manager
Nuclear Safety & Analysis Dept.

iii

ABSTRACT

This report presents a computer code, CAT (Computer Automated

Tree), which applies decision table methods to model the components

behavior for systematic construction of fault trees. The decision

tables for some commonly encountered mechanical and electrical com­

ponents are developed; two nuclear subsystems, a Containment Spray

Recirculation System and a Consequence Limiting Central Systems, are

analyzed to demonstrate the applications of CAT code.

v

TABLE OF CONTENTS

Page

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. BASIC OPERATION OF THE CAT CODE.. 4

2.1 Terminology and Basic Concepts ... 4

2.2 Input Data.. .' . 9

2.2.1 Outline of Input Data
Organization .. 9

2.2.2 Data Deck Setup and
General Input Considerations 10

2.2.3 Program Control Data.. 13
2.2.4 Library Data.. 17
2.2.5 Component Cards... 18
2.2.6 Top Event Definition.. 19
2.2.7 Boundary Conditions .. 20
2.2.8 Failure and Repair Data... 21
2.2.9 Multiple Jobs.. 23

2.3 CAT Output... 25

CHAPTER 3. DEVELOPMENT OF DECISION TABLES .. 27

3.1 Introduction... 27
3.2 Inductive Method of

Decision Table Development .. 28
3.3 Deductive Method of

Decision Table Development .. 32
3.4 The Use of Decision Tables in the

Construction of Fault Trees .. 35

CHAPTER 4. APPLICATIONS .. 37

4.1 Containment Spray
Recirculation System (CSRS) .. 37
4.1.1 Description of CSRS.. 37
4.1.2 TOP Event and Preliminary Considerations ... 39
4.1.3 Discussion of Fault Tree.. 41

4.2 Consequence Limiting Control System (CLCS) 46
4.2.1 Description of CLCS.. 46
4.2.2 Top Event and Preliminary Considerations ... 52
4.2.3 Discussion of Fault Tree.. 56

CHAPTER 5. CONCLUSIONS .. 62

REFERENCES ... 63

vii

TABLE OF CONTENTS (Continued)

Page

APPENDIX A. CODE STRUCTURE AND SUBROUTINE FUNCTIONS 64

A.l Code Structure.. 64
A.2 System and Component Node Organization 67
A.3 MAIN Program and Program Dimensioning 69
A.4 Subroutine DRIVER and Sub-Array Allocation 71
A.5 Subroutine LIBR.. 77
A.6 Subroutine INDEX.. 80
A.7 Subroutine STEVE... 84
A.8 Subroutine DO IT.. 89

A.8.1 Gate Construction.. 89
A.8.2 Intermediate Editing... 96
A.8.3 Final Editing... 103
A.8.4 Error Messages from DO IT..................................... 105

A.9 Subroutine XCHECK.. 107
A. 10 Subroutine REDUCE.. 110
A. 11 Subroutine OUTPUT... 112

References. .. 118

APPENDIX B. DECISION TABLE MODELS .. 119
References.. 130

APPENDIX C. SAMPLE CASE.. 131
References.. 141

APPENDIX D. SAMPLE INPUT ... 142

APPENDIX E. SAMPLE OUTPUT ... 147
References.. 154

APPENDIX F. PROGRAM LIST FOR CAT... 177

viii

LIST OF FIGURES

Page

Figure 1. Mini-Fault/Success Tree 1 for Pump.. 34

Figure 2. Mini-Fault/Success Tree II for Pump..................................... 34

Figure 3. Simplified Flow Diagram for the
Containment Spray Recirculation System 38

Figure 4. Upper Level Structure of Fault Tree for CSRS 42

Figure 5. Development of Lower Events for CSRS
Fault Tree.. 44

Figure 6. CLCS Simplified Diagram (5).. 48

Figure 7. CLCS Signal Flow Diagram (5).. 49

Figure 8. Fault Tree of Consequence Limiting
Control System ... 59

Figure A-l Subroutine Calling Sequence ... 65

Figure A-2 Flowchart for CAT Code.. 66

Figure A-3 Flowchart for Subroutine LIBR.. 78

Figure A-4 Flowchart for Subroutine INDEX .. 81

Figure A-5 Flowchart for Subroutine STEVE .. 85

Figure A-6 Flowchart for TOP Event and OR Gate Algorithm
of Subroutine DO IT.. 91

Figure A-7 AND Gate Construction Flowchart of Subroutine DO IT 92

Figure A-8 Flowchart for Intermediate Editing Loop of
Subroutine DO IT... 97

Figure A-9 Sample Tree for Intermediate Editing 101

Figure A-10 Flowchart for Final Editing Phase of
Subroutine DO IT.. 104

Figure A-ll Flowchart for Subroutine XCHECK ... 108

Figure A-l2 Flowchart for Subroutine REDUCE ... Ill

Figure A-13 Flowchart for Subroutine OUTPUT ... 113

ix

LIST OF FIGURES (Continued)

Figure C-1 Sample System .. 132

Figure C-2 Fault Tree for Sample System.. 136

Figure C-3 Fault Tree for Sample System With Good
States Removed .. 139

Figure D-l Data Deck for Sample Case.. 145

Page

x

LIST OF TABLES

Table 1. Representative System States ... 6

Table 2. General Failure State Categories ... 8

Table 3. Decision Table Failure States .. 8

Table 4. Input Data Deck for CAT.. 11

Table 5. Original Decision Table of Pump.. 29

Table 6. Reduced Decision Table of Pump.. 31

Table 7. Final Decision Table of Pump... 32

Table 8. Decision Table for Pump by Deductive Method 35

Table 9. Logic Model for Inhibit Condition 40

Table 10. Component Index Input Printout for CSRS.............................. 43

Table 11. TOP Event Decision Table for: "Containment Pressure
Normal, but Hi Signal Sent by Malfunction of CLCS" . . 53

Table 12. Decision Table of Operator... 55

Table 13. Component Index Input Printout for CLCS.............................. 57

Table A.l Integer Arrays.. 73

Table A.2 Alphanumeric Arrays.. 75

Table A.3 Diagnostics Produced by Subroutine LIBR.............................. 79

Table A.4 Diagnostics Produced by Subroutine LIBR.............................. 82

Table A.5 Diagnostics Produced by Subroutine STEVE 87

Table C.l Signal (101).. 131

Table C.2 On/Off Switch (102).. 133

Table C.3 Relay Switch (103) 134

Table C.4 Junction (OR Gate, Type 104).. 134

Table C.5 Operator (106)... 135

Table C.6 Relay Switch with Good States Removed................................ 140

Page

xi

SUMMARY

The CAT (Computer Automated Tree) methodology is a systematic

approach to the construction of fault trees, based upon the use of

decision tables. This approach consists of a scheme which utilizes

these decision tables to model component behavior, a method of describ­

ing the specific system configuration including initial system states,

and a means of defining a top event (or events) of interest. Given

these inputs, the decision table models are used for the appropriate

components within the system, and are combined and edited to form a

completed fault tree for the TOP event desired. This fault tree may

then be analyzed, either by hand, or by any of several fault tree

analysis codes, in order to obtain the desired reliability (availability)

information for the TOP event.

The current approach has several important features which make it

especially useful in the analysis of nuclear systems, as well as of

other, general types of systems. The decision table methodology is

capable of modeling complex components of essentially any type,

including mechanical, electrical and hydraulic. It can incorporate

models for human interactions, environmental influences and provides

a number of ways of treating common cause effects. Furthermore, the

specific approach developed here also allows the analysis of systems

containing feedback loops, such as may be found in many types of control

circuits in use in nuclear plants.

This report documents a slightly newer version of the CAT code

than presented by Salem, Apostolakis and Okrent in EPRI NP-288. This

version has been updated by the incorporation of a new subroutine

xi i i

('OUTPUT'), which produces the fault tree in a punched output format

directly compatible with the PREP-KITT codes. This output will provide

the complete data deck required as input for the PREP code, if desired.

However, the input requirements for this version are identical with

those of the previous one if the new output is not desired. Thus, the

same data decks may be utilized with either version of the CAT code.

If the new output option is to be utilized, however, additional failure

and repair data must be provided.

EPRI NP-288 has presented the CAT methodology from a somewhat

theoretical point of view. In the following chapters, those aspects

most important to the user of the code itself will be emphasized.

Actual details of the code itself will be included in the appendices.

In order to provide a general introduction to the CAT methodology.

Chapter 2 begins by presenting some basic concepts and terminology used

in this approach. The general organization of the input deck, and the

specific requirements for all input data are then presented. Finally,

the output produced by the code is briefly described.

Chapter 3 discusses the methods of developing the decision tables

to be used by the code. Each method is illustrated by an example in

order to familiarize the user with some of the techniques useful in

decision table modeling. Also, the way in which such decision tables

are used by the code in constructing fault trees is described. In

combination with Chapter 2, this chapter completes the discussion of

input required for operating the CAT code.

In Chapter 4, the use of the CAT code is illustrated by two

applications: a Containment Spray Recirculation System, and a

xiv

Consequence Limiting Control System. These systems have been chosen

to provide additional examples, complementing those of References [1,2],

and will help to display various features of the code. New features

illustrated by these examples include maintenance, TOP event logic

which is a function of time, and the use of inhibit conditions.

Finally, Chapter 5 summarizes these results and provides a few

concluding suggestions for the user.

This report is supplemented by several appendices, useful in

running the CAT code. Appendix A describes the functional organization

of CAT, and its specific subroutines. Appendix B provides a number of

decision tables, many of them developed during the past year, as

examples to guide the user in constructing his own tables. Appendix C

presents a simple example system which, together with the sample input

and output of Appendices D and E, provides a complete sample case which

can be used to check out the operation of the code and to obtain

familiarity with it. Finally, Appendix F contains a complete listing

of the updated version of CAT for those interested in becoming more

familiar with the actual mechanics of the code.

xv

1. INTRODUCTION

With the increasingly important role being played by probabilistic

risk assessment in the electric power industry, and the interest being

expressed both by commercial groups and regulatory bodies, the develop­

ment and improvement of methods of safety and reliability analysis are

currently of great interest in the nuclear field. Fault tree analysis

(FTA) is one of these techniques which is especially useful because of

its advanced state of development, and acceptance and use by large

segments of the technical community. The usefulness of FTA has been

greatly augmented by the development and application of a number of

computer codes for the numerical analysis of fault trees. However, the

rapid analysis of a complex system using such codes has, until recently,

had to await the much slower process of constructing the fault tree

itself. This construction phase has traditionally been a manual task,

relegated to the analyst himself, due to the lack of a systematic fault

tree methodology which could be readily programmed on the computer.

In light of the relatively advanced state of fault tree analysis

codes, the current effort was devoted to automating this one remaining

phase. The benefits of this automation would include the speeding up

of the entire fault tree analysis process as well as the freeing of

much of the analyst's time for other tasks. Furthermore, an automated

fault tree construction code would allow the preparation of additional

fault trees for investigating other events of interest, or for evaluat­

ing various system modifications. The development and implementation

of such an approach has been the goal of this work. The methodology

has been described elsewhere [1,2]; the operation and use of the CAT

1

code, which implements this methodology, will be presented in detail in

the following chapters of this report.

In order to see some of the other significant characteristics of

such a methodology, a few of the features incorporated into the CAT

code itself will be enumerated here. These include:

1) a simple, tabular decision table form for modeling component

behavior,

2) capability of multiple state and multiple failure mode decision

table models,

3) ability to develop both simple and highly detailed component

models to produce fault trees of varying complexity,

4) ease of defining multiple TOP events for the construction of

both fault and success trees for various events,

5) provision to define TOP events of any logical complexity,

6) ability to define initial states to specify initial system

configurations,

7) simplicity of changing or modifying systems to analyze

differences between various configurations,

8) essentially unlimited numbers of components, complexities of

systems or sizes of fault trees produced,

9) specification of various levels of editing, and printout,

10) capability of interfacing with the PREP-KITT analysis codes,

11) repeatability of fault trees produced for identical input, and

12) ability to "pre-structure" fault trees by varying TOP event

definitions and component models.

This report documents a slightly newer version of the CAT code than

2

presented by Salem, Apostolakis and Okrent [1,2]. This version has

been updated by the incorporation of a new subroutine ('OUTPUT'), which

produces the fault tree in a punched output format directly compatible

with the PREP-KITT codes. This output will provide the complete data

deck required as input for the PREP code, if desired. However, the

input requirements for this version are identical with those of the

previous one if the new output is not desired. Thus, the same data

decks may be utilized with either version of the CAT code. If the new

output option is to be utilized, however, additional failure and repair

data must be provided.

Internally the only changes in the code have been to incorporate

a call to the new subroutine, add input and error-checking sections for

the new data, delete one array which was no longer needed, and change

one variable in common.

In addition to a discussion of the fundamentals of the CAT method­

ology, this report presents sufficient material to allow the reader to

understand and operate the code itself. Thus, Chapter 4 includes two

examples of actual reactor systems analyzed by the code, and several

appendices have been added to further help the potential user. These

appendices contain a discussion of the code itself, with flowcharts,

a library of sample decision table models, a complete example case with

input and output listings, and a listing of the CAT code itself.

3

2. BASIC OPERATION OF THE CAT CODE

The CAT code has been developed as a systematic method of fault

tree construction utilizing the methodology of decision table model­

ing [1,2]. Sufficient detail has been presented to allow the user to

understand the basics of decision table modeling, and to construct

fault trees by hand identical to those produced by the CAT code. This

chapter will briefly review some essential terminology, and will dis­

cuss, in detail, the data required to actually operate CAT. A further

discussion of specific subroutines and their functions will be found

in Appendix A of this report. Furthermore, examples of input and

output will be found in Appendices D and E.

2.1 Terminology and Basic Concepts

A number of definitions and fundamental ideas will first be

presented. More detailed discussions will be found elsewhere [1,2].

The basic function of the code is to analyze a system, starting from

a specific initial state, and to produce a fault tree for the TOP event

of interest. This system can be any collection of units, known as

"components", which performs some certain defined function or functions

under specified conditions. These functions will be defined as the

output of the system, and the specified conditions the inputs. Al­

though the systems used here will generally be mechanical in nature,

others, such as economic systems, corporate organizations, etc., are

all equally valid.

Each system is first broken down into a set of components, which

are the smallest elements to be individually modeled. With the CAT

methodology, a component may actually consist of an entire system or

4

subsystem, as long as the features of interest can be accurately

modeled by a single decision table. For a complex component or

system, however, a number of coupled decision tables may be desirable.

Since there are often a number of similar or identical components

within a single system, it is advantageous to employ a single model to

describe the behavior of all such similar components. This introduces

the concept of a component type. A component type is a unique descrip­

tion of the operational and failure modes of a component, represented

by a single decision table. Any components which can be described

by a single model will be considered as a single type, even though

they may represent different physical components; thus, simple models

for a fuse, resistor and circuit breaker might be represented by the

same decision table. On the other hand, similar components with

different characteristics (e.g., valves with different modes of opera­

tion), would be considered different types, each with a unique decision

table representation. In either case, the models should be independent

of the system itself in order to allow the development of libraries

of component types to be used in systems of general interest.

Given a set of components, modeled by various component types,

a system is then described in terms of the interconnections between

these components. Each of these connections shall be defined as a

node, or any point at which an output from one component is connected

to the inputs of succeeding components. Note that one output may be

connected to any number of succeeding inputs at a node; however, only

a single output may exist at any one node. If outputs are to be

connected together in parallel, they should be connected to the inputs

5

of a gate (junction), modeled by a decision table which represents the

logical state formed by various combinations of the outputs to be con­

nected .

At each node of a system, a system state may be defined to describe

system conditions or signal states at that point. This state may have

been set as an initial condition, or defined by later fault tree

development, and must be consistent with all component inputs and out­

puts connected to that node. That is, this state must satisfy these

two conditions:

1) it must exist as a valid output state in the decision table

for the component output connected to that node, and

2) it must exist as a valid input state, or be allowed by don't

care entries, in all decision tables of components whose in­

puts are connected to that node.

Table 1 contains a number of system states as examples of typical

input, output and system states. These will be used in many of the

models developed in Appendix B.

Table 1. REPRESENTATIVE SYSTEM STATES

STATE DEFINITION

-1 "Don't care" (signal state irrelevant or undefined)

0 no signal, or signal too low

1 normal signal

2 overload (signal too high)

3 low signal (used if separate states are desired for "no"
and "low" signals)

101 ground (zero) or short to ground

102 floating (open, undefined)

6

An internal mode represents an internal function of a component.

and is represented by an "internal" column in a decision table. Since

there may be several internal functions, or sub-components, within a

complex component, a decision table may have several internal columns,

each labeled by a specific sub-component function. For example, the

motor-operated valve in Appendix B has the internal modes "posi­

tion", "mechanical", "slip-clutch" and "relay". For each internal

mode, or column, a component state may be defined to describe the

internal state. The simplest states are simply "good" and "failed".

However, since the mode of failure may determine the output state, it

is often necessary to provide several failure states, such as "failed

open" and "failed closed". Finally, it is important to consider all

combinations of failure states of the various failure modes (columns)

of a multiple-column component.

In order to utilize consistent decision table models. Table 2

was developed to systematically categorize failure states. This

numbering scheme was then used to define a representative number of

basic failure states, as shown in Table 3. Although use of such schemes

is highly recommended, any similar categorization may be employed by

the user.

Boundary conditions may now be described as system or component

states which have been predefined as existing or not existing "initial"

or "boundary" conditions within the system. These states exist ini­

tially, and continue to exist throughout the construction of the

fault tree. In general, they will be used to determine the initial

system configuration or operating conditions, and may be used to

7

TABLE 2. GENERAL FAILURE STATE CATEGORIES

!
| STATE DEFINITION

: don't care (internal mode irrelevant)

! 0 good

1-1000 general faults

1001-2000 electrical (shorts, surges, etc.)

: 2001-3000 mechanical

3001-4000 fluid (leak, rupture, plugged, etc.)

4001-5000 electronic (logic errors, etc.)

5001-6000 human

6001-7000 environmental (temperature, pressure, stress, etc.)

TABLE 3. DECISION TABLE FAILURE STATES

STATE DEFINITION '
l

1
j

failed open (fails to close; fails to transmit signal)

2 fails closed (shorted; fails to open; welded shut) '

3 internal failure (general, undefined)

I 4 fails to start (fails to actuate or change position)

i 5 fails to operate properly (fails during operation)

i 6 operates prematurely (starts without signal to start)

! looi| short to ground

(1002 short to power

1003 power surge (power supply failure mode)

3001 leak

3002 rupture

3003 plugged

3004J stuck

5001 calibration error

5002 design error
5003 general operator error

8

specify certain components as being failed at the start. Furthermore,

they may be used to qualify the TOP event description.

Finally, the TOP event is that event which defines the failed

(or successful) state of the system for which the fault tree is to be

constructed. The basic requirement for the TOP event is that it be

definable in terms of system states at specific nodes, which then serve

as starting points for the fault tree construction process. Further­

more, if more than one event (or state) is used in the TOP event defi­

nition, these must have some logical relationship to each other in

order to structure the tree beneath. For example, the TOP event

"failure of systems A and B" might be represented by simultaneous states

of zero at two nodes, logically connected by an AND gate. The result­

ing fault tree would then have a top AND gate connecting these two

events.

2.2 Input Data

2.2.1 Outline of Input Data Organization

The input to the CAT code consists of the following informa­

tion:

1) Program Control Data,

2) Decision Table Models,

3) System Configuration,

4) TOP Event definition,

5) Initial or Boundary Conditions,

6) Failure and repair data (for use with PREP-KITT output option).

The first of these inputs, as described below, consists of program

dimensions used to define the sizes of the component library and system

9

configuration,and flags to control the printing and editing options to

be used. The decision table models comprise the bulk of the input,

and will be described in detail in Chapter 3. The system configuration,

initial conditions and TOP event definition will all be described later

in this chapter.

Output from the code consists of two parts. First is the printed

output of all input data, cross-references and the fault tree itself.

Secondly, if desired, is a punched deck (or tape or disk file) consist­

ing of the fault tree and failure data in a format compatible with the

PREP-KITT codes. This is produced by a separate subroutine, 'OUTPUT' ,

which can be modified or replaced to interface with any code of the

user's option. This routine will be discussed later in this chapter,

and in the appendices.

2.2.2 Data Deck Setup and General Input Considerations

The input data deck is arranged as shown in Table 4. Each set

of data will be described individually; general information is pro­

vided below.

Each card (except the failure and repair data) begins with a

four character code which identifies to the computer what type of

information is to follow. This also facilitates later runs in which

the input must be modified on certain cards. On all except the 'DAT'

cards, the four character field can be followed by up to six columns

of information. Thus, the 'ROW cards can be numbered in column 5,

the 'LIBR' codes can be followed by the appropriate type number, etc.

(see sample input data). This information is for the user's conveni­

ence and is not read by the code. It is important to note that, on

10

TABLE 4. INPUT DATA DECK FOR CAT

TITLE
&DAT

(Data cards)

END
&LIB

(Library cards)

END
&CMP

(Component cards)

END
&T0P

(TOP event description)

END
&BC

(Boundary conditions) if necessary

LEND
pOUT

(Failure and repair data) if necessary

.END
&END
TITLE (optional)
&DAT
DAT1 if necessary
END
STOP

(New TOP)

END
&BC

(New boundary conditions)

-END
&0UT

(New failure data)

LEND
&END

if necessary

if necessary

cards for
additional
runs

11

certain cards, the four column code begins with a blank column.

The major sections begin with '&—' cards and terminate with

'END' cards. These codes allow the program to search for the next

set of data if terminal errors occur in any section. The '&DAT' sec­

tion contains the basic parameters for the job. This consists of

four cards, format (A4, II, 1215). However, cards 'DAT!' and 'DAT4'

may be omitted if default values of all parameters so skipped are

desired.

The second section, beginning with the '&LIB' card, contains the

library of component type decision tables. Each table begins with a

'LIBR' card which contains the basic information for that table. There

follows a 'MOD' card which lists the names of that component’s internal

failure mechanisms. The decision table itself is input on a set of

’ROW cards, concluded by an 'END' card.

The components themselves are described by the '&CMP' section, one

card per component. On them are given the component name, type number

and input/output node numbers.

The 'STOP' segment begins with a 'TTOP' card defining the size of

the TOP event decision table and the node numbers referring to the

columns of the table. This is followed by the 'TOP' cards, on which

the rows of the table are input.

If any boundary conditions are to be included, they follow the

'SBC card. Both internal component modes and system nodes may be

initialized by use of cards coded 'INT' and 'EXT' respectively.

Should fault tree output be desired for use by the PREP-KITT

codes, a section labeled '&0UT' follows. The first two cards contain

12

control data to be used by PREP, followed by failure and repair data.

Since the input formats are similar to those used by PREP, the initial

four letter codes are not used on these cards.

The last group of input cards must be followed by both its own

'END' card and a final 'SEND' card. These signify the end of the

data section and the end of the job. Following the '&END' card,

second and succeeding jobs may begin. Although each job of a multiple

run uses the same library and system description, new boundary condi­

tions and parameters from the 'DAT!' card may be defined, as well as

the required redefinition of the TOP event. Furthermore, new failure

and repair data must be provided, if necessary.

2.2.3 Program Control Data

The CAT input deck begins with a title card (20A4), followed by

the program control data, in the '&DAT' section. This data section

consists of four sets of program flags and dimensioning information, and

is contained on cards Tabled ' DAT!' - ' DAT4'. These cards have the

formats (A4, II, 1215), and the four character code field 'DATn' must

be preceeded by a blank. This group of cards must be preceeded by an

'&DAT' card and followed by an 'END ' card. The data on these cards

are as follows:

Title Card

&DAT
DAT! IJOB IPRINT KOUT I EDIT IDT
DAT2 NLIB LNROW MAXINT MXNROW
DAT 3 NNCMP NNODE
DAT4 MROW

END

The parameters on these cards are described below. Note that the

parameters on cards 'DAT!' and 'DAT4' have default values. In the

13

event that al1 parameters on the 'DAT!1 card are to be set to the default

values, the 'DAT!' card may be omitted. Similarly, if MROW = 1, the 'DATA'

card may be eliminated. However, if the DAT1 card is used, all values

must be defined, since a blank location will be read as 'zero.'

The following is a description of the program control parameters used

for CAT.

IJOB

IJOB is the identification number of the first job of a particular

sequence, and is incremented by 1 for each succeeding job. This value is

merely for the convenience of the user.

Default = 1.

IPRINT

This parameter determines the amount of printout from the fault tree

construction and editing phases. Any integer from -1 to 4 may be specified,

with each increasing value producing additional output. For an absolute

minimum of output, code IPRINT = -1; however, a value of IPRINT of 0 or

larger is suggested to provide the most useful information. Values of 1

or 2 allow the complete construction and editing phases to be followed

step by step. IPRINT = 3 or 4 produces printouts of certain intermediate

arrays during editing. A value of 4 includes the maximal number of arrays.

This last value is not suggested, since large amounts of output will be

produced. The most useful printouts will be obtained by setting IPRINT =

0, 2 or 3, as needed.

Default = 0.

KOUT

The KOUT parameter determines whether output is to be produced for

use by PREP-KITT. KOUT = 0 for no output, and KOUT = 1 for output to be

14

produced on output device (unit) I0T. Note that KOUT = 1 requires

additional CAT input in input section 'SOUT'.

Default = 0.

I EDIT

This parameter is used to omit certain editing phases. Values below

98 produce full editing. IEDIT = 98 will bypass the search for transfers

within the tree. IEDIT = 99 skips the intermediate editing stage. A value

of IEDIT of 100 or above will omit both these editing sections.

Default = 0.

I0T

I0T is the unit number for fault tree and data output produced for

PREP-KITT when KOUT = 1. This can be punched, or written onto disc or

tape, depending upon the specification of I0T, and the user's installation.

This output is also printed, along with other editing information, as

part of the CAT output. If I0T is left blank for the first job of a multi­

ple job run, it is set equal to the default value. If it is left blank

in a subsequent job, it is set equal to I0T of the previous job in that

run.

Default = 10.

NLIB

NLIB defines the number of component types to be input into the

library section. A number which is erroneous may produce one of two

effects. If the number is too large a warning will be produced, but the

program will continue. If NLIB is too small, the extra component types will

be skipped. However, the program will continue unless the system itself

requires one of the component types so bypassed.

15

LNROW

LNROW should be set to the maximum number of columns of any of the

decision tables, including that of the TOP event.

MAXINT

Set the value of MAXINT to the largest number of internal failure

mode columns of any component table. This value is used to determine the

number of failure mode names to be read by the program.

MXNROW

This variable is the total number of rows of all decision tables to

be input. It need be only an estimate, and is used in determining whether

sufficient space has been allocated for the total decision table library.

NNCMP

NNCMP defines the number of components in the system, as input by

block 3 of the program. This value must be exact.

NNODE

NNODE is the largest node number used in the system flowchart. If

NNODE is greater than the largest node number, its value will be correctly

redefined later in the program. If modifications in the system being

analyzed will change the numbering of nodes in later cases, NNODE may be

set to the largest value anticipated and not changed for any of the

runs.

MROW

MROW is set to the largest number of rows in any of the TOP event

decision tables for one group of jobs. If any TOP event table exceeds

MROW, that tree will be terminated and the next job begun.

Default = 1.

16

2.2.4 Library Data

The second section of program data is the decision table library input

group. This consists of one set of cards for each component type (there

will be NLIB sets in all). Each set is input in the following order:

LIBR NAME1 NTYPE NIN NINT NOUT NROW (A4, 6X, A8, 2X, 1215)
MOD NAME 2 NAMES • • • (A4, 6X, 7(A8, 2X))
ROW!

•

il i 2 i3 (A4, 16X, 1215)

•

ROWn nl n2 nS
END

The 'LIBR'1 card contains the basic information for the component type.

is the 8 character name of the component type, NTYPE is a unique 5

digit type number, and NIN, MINT and NOUT are the numbers of inputs,

internal failure mechanisms and outputs of the component. That is, NIN +

NINT + NOUT is the length of each row of the decision table which is to

follow. Furthermore, NIN + NOUT is the number of nodes assigned to that

component type. Finally, NROW is the number of rows of the decision table.

The 'MOD1 card lists the 8 character names of the component internal

mechanisms. There should be exactly NINT of these. Note that, even if

NINT = 0, this card is required.

Finally, the decision table itself will be input on the 'ROW cards.

There will be 'NROW of these, one for each row of the decision table. The

columns must be arranged in the order: inputs - internals - outputs, and

must have exactly NIN + NINT + NOUT entries. A "don't care" state will be

indicated by a '-T in the appropriate column. Note that each component

type group must end with its own 'END' card.

As pointed out previously, any library entries in excess of the 'NLIB'

groups specified on 'DAT2' will be ignored. However, as it is not

necessary that every library type be used in the system itself, the program

17

will not terminate unless one of the extra types is specifically required.

Furthermore, if several different models will be used for one component in

various runs, it may be convenient to include all models in the library

using different type numbers. In each run, only the specific component type

desired will be used.

2.2.5 Component Cards

Following the 'SCMP' card is the group describing the system itself.

This consists of a total of NNCMP cards, one per component. The format

is (A4, 6X, A8, 2X, 1215), and the input is as follows:

COM NAME ITYPE N0DE1 N0DE2 NODES

Notice that the code 'COM' begins in column 2, and that the following six

column field has been used, in the sample inputs, to number the component

cards. This is solely for the convenience of the user, since the six

columns following 'COM' are not read by the code. 'NAME' is the 8

character name of the component, and must be unique. In setting later

boundary conditions, this will be used to identify the specified components.

ITYPE is the component type number of the decision table to be used for

this component. Finally N0DE1, N0DE2, etc., are the input/output node

numbers of the component. Referring to component type ITYPE, there must

be a total of NIN + NOUT node numbers, the first NIN of which will be

inputs, with the final NOUT as outputs.

The requirements for the node numbers are that:

1) All output node numbers be unique. This refers to multiple

outputs of a single component, and to all outputs of other

components.

18

2) No component output may be connected directly to an input of the

same component. However, an output and input may be connected

to each other through any other component, including a simple

"piece of wire."

3) All inputs must be connected to valid output nodes from other

components; that is, no component may be left with undefined

inputs. However, any output may be left unconnected. If a

particular input node is not going to be used, it may be connected

to a "dummy" component. For example, if it is desired to set a

boundary condition at the input of a component such as a sensor,

a dummy component must still be connected to that node. A

simple dummy component that is of often used would have the follow­

ing decision table inserted into the library:

ROW Internal Output

1 0 0
2 1 1

Note that this component type has no inputs and only one output. A 'COM'

card would then be set up for the dummy component of this type, whose single

output node would be connected to the input node in question. Finally,

the boundary state could be defined at this node, as in Section 2.2.7.

With a boundary condition defined at that node, the dummy decision table

would never be used, and its exact form is irrelevant. However, the NIN

and NOUT parameters on the "LIBR1 card for the dummy decision table (0 and

1 in this example) must agree with the number of nodes defined on the

dummy 'COM' card.

2.2.6 TOP Event Definition

The TOP event is input in much the same way as the decision tables

for the component types. After the '&T0P' card, the basic data for the TOP

19

is input on the 'TTOP' card, followed by the decision table itself, on the

'TOP' cards. -

TTOP NAME NROW NIN N0DE1 NODE2 ... (A4, 6X, A8, 2X, 1215)
TOPI II 12 ... (A4, 16X, 1215)
TOP2 J1 J2
TOPn

END

The 'TTOP' card contains an 8 character identification ('NAME'), for

the TOP, followed by the number of rows and number of columns of the deci­

sion table (NROW and NIN). It is important to remember that NROW must

be less than or equal to MROW given by the 'DAT4' card. Finally, the

system nodes at which the TOP event decision table is defined (one per

column) are input, up to a maximum of 10. The decision table is input on

the 'TOP' cards. Note that the code 'TOP1 begins in column 2, and that

the numbers directly following are for the user's convenience, and are not

read by the code.

2.2.7 Boundary Conditions

This data group, if required, contains the specification of the

boundary conditions. If this group is needed, it begins with an '&BC

card and is followed, in any order, by 'INT' and 'EXT' cards defining

the boundary (initial) values of internal component modes and external

system states respectively. The form of the data is thus:

&BC
INT NAME MODE! MODE2 ... (A4, 6X, A8, 2X, 1215)
EXT NODE! STATE! ... NODES STATES (A4, 16X, 1215)

END

Each 'INT' card specifies the predefined states for one component's

internal modes. NAME is the 8 character identification of the component as

given by NAME on the appropriate 'COM' card. Then one value is defined

for each internal mechanism (column) of the component, including a -1 for

20

any mode which is not to be set as a boundary condition. Note that no

state should be left as a blank, even if only one state is to be defined.

Any blanks will be read as zeros, and thus a "good" state will be set,

rather than being left undefined (i.e., set equal to -1).

The 'EXT1 cards set the boundary conditions at system nodes. Each

card can define up to 6 node conditions, by first specifying the appropriate

node, followed by the state to be set. Notice that any number of 'EXT'

cards may be used and may be intermixed with the 'INT' cards. This data

group must be followed by an 'END' card.

2.2.8 Failure and Repair Data

If output is desired to be used with the PREP-KITT codes, one final

data group is required. This data begins with an 'SOUT' card, and

contains the control information and failure and repair data. This infor­

mation, combined with the fault tree produced by CAT, is output to a card

punch (or disc or tape file) in a format suitable for input to PREP-KITT.

The input in this data group is as follows:

&0UT
NG MIN MAX IDEX1 IDEX2 NPROB (6110)
MC NREJEC NTR IREN TAA (4110,F20.3)

NAME! XI t! INTI STATE!NAME2 X2 t2 INT2 STATE2

• 2(A8,2X, F10'6,F10’3,215)

NAMEi
END

Xi xi INTi STATEiNAMEj Xj xj INTj STATEj

The first two cards contain the control information for PREP, in

the same format as used by that code. A description of these variables

may be found in the PREP-KITT manual [3]. (Note that NPROB is an extra

21

variable, used only by the UCLA version of PREP, and may be omitted for other

versions.) Since NG, the number of gates, is supplied by CAT, it may be

left blank.

The remaining cards contain the failure and repair data for the

components, supplied one or two sets to a card, at the user's option.

Since each component may have several failure modes, with several states

for each mode.several sets of data may be required for each component.

Each set contains the following information:

Data Format Description

Name A8, 2X 8 character name of component,
same as used on 'COM' card.

X F10.6 Failure rate (per 10^ hour).

Note: X > ID"9, or X < 0

T F10.6 Repair time (hours) 10^> t >_ ID-'3

INT 15 Internal failure mode (column of
decision table)

STATE 15 Failure state

Note that each X and t represent the data for one specific failure

state of one internal failure mode (column), where 'INT' is the column

number and 'STATE' is the failure state. (For a component with only one

internal column in its decision table, INT will always =1.) Then, for

each column, one set of data is required for each state which appears in

that column in the decision table, unless it is known that a specific

state will not appear in the final decision table. The use of a component

as an inhibit condition is also allowed as an input option to PREP by

setting x £ 0, and t as a number between 0 and 1 (see reference 3, page

31 for definitions).

As an example of the above, the following two rows of a decision table

22

will be used to represent a simple system:

Input Maintenance
Internal
Failure Output

- - 5 0
_ 101 0

Internal failure 5 represents a failure to run, and maintenance = 101

means system unavailable due to maintenance. Assuming a failure rate of

-4 -6
5x10" (500x10"), 24 hour repair time, and 1% maintenance unavailability,

the input data for 'SYSTEM-A' would be:

SYSTEM-A 500.0 24.0 2 5

SYSTEM-A -1.0 0.01 1 101

These sets may be input in any order and intermixed with other components.

However, all data in this input data group must obey the following FORTRAN

rules:

1) all names must be left justified, and

2) all integers must be right justified.

Finally, the last data card must be followed by an 'END' card.

2.2.9 Multiple Jobs

The data for the first job terminates with an 'SEND' card, and may

be followed by further jobs. Each job must utilize the same system and

library, but may define a new TOP and boundary conditions, as well as new

failure data. We will see, however, that changes in a system may often

be made simply by appropriate changes in boundary conditions.

The new job may begin, if desired, with a new title (20A4). Further­

more, the parameters of the DAT1 card, may be redefined, again as an optional

feature. This would be done with the following setup.

23

&DAT
DAT! IJOB IPRINT KOUT IEDIT IOT

END

If the DAT1 card is included, all values must be defined. If DAT1 is not

used, neither the &DAT nor END cards are needed.

The TOP definition is the only required data for the new run, and is

input exactly as before. For the new run, all boundary conditions will be

reset to undefined states. All boundary conditions must be set, as before,

by the '&BC1 section following the TOP event definition. If KOUT is set

to 1 (or left from the previous run), new PREP-KITT data is required, even

if identical to the previous run. This is input in the 'SOUT' section, as

described in section 2.2.8. Finally, an 'SEND' card terminates this new

run, which may be followed by further jobs.

Although the system may not be redefined in succeeding jobs, one may

use switches, set by different boundary conditions, to switch in new sub­

systems, different component models, etc., at any points in the system.

Consider the block diagram below:

By defining switch 1 to be in position 1 or 2 in successive runs,

components (or systems) A and B are alternately switched into the overall

system. Other capabilities include the possibility that A and B are

simply different models for the same component. Both would be defined

as part of the original system on 'COM1 cards, and the appropriate one

24

would be chosen by the switch position.

2.3 CAT Output

The output from the CAT code consists of five phases illustrated in

more detail in the sample output in Appendix E. First is a listing of

all input data, excepting the PREP-KITT data (if any). This includes

extensive error checking and diagnostics to pinpoint input errors,

inconsistencies or missing data.

Second is a set of cross-references, listing input and output nodes,

and specific component names for all inputs to each component.

Next is the step-by-step construction of the fault tree. The output

of this phase is controlled by the IPRINT flag on the 'DAT!1 card. This

is followed by the final fault tree printout itself.

Finally, if KOUT = 1, CAT produces the PREP-KITT output. In addition

to the punched (or tape or disc) output, is an identical printed output of

the tree. This includes the ,*1 cards required by the PREP code. This

printed output also includes error messages to indicate extra or missing

data. Note that the fault tree output will be produced in all cases where

KOUT = 1, even if the failure data is missing. However, in this case,

the output will not contain the required failure data for PREP.

Since PREP can only accept a single failure mode for each component,

CAT must construct a unique name for each component-failure mode-failure

state set. This is listed in a final table, along with the original

component name, failure mode and state. This name is simply an eight

digit code consisting of the internal mode number (4 digits) and the

failure state (4 digits). Using the example in Section 2.2.8, assume

that the internal (computer generated) mode number for maintenance for

SYSTEM-A was 123, and for internal failure was 124 (corresponding to

25

columns 1 and 2 of the table). Then, the code for: SYSTEM-A, internal

failure, state 5 would be:

01240005,

and the code for: SYSTEM-A, maintenance, state 101, would be:

01230101.

Notice that, in this case, the "component" 01230101 would represent an

inhibit condition (see Section 2.2.8) and 01240005 would represent a

primary component failure.

26

3. DEVELOPMENT OF DECISION TABLES

3.1 Introduction

The development of accurate decision table models is a central

requirement in the current approach. However, since the components and

systems of interest are so diverse, and models of various levels of

sophistication are desirable, an effective method of constructing such

tables is needed. Two general methods for developing decision tables

of components will be described in the following sections, and a number

of decision tables which have been studied and used previously will be

outlined in Appendix B and will serve as a reference to the users.

Two ways of generating decision tables will be described in this

report. The first approach (inductive) consists of systematically

constructing the decision table by enumerating all possible combinations

of input states and internal modes, and then finding the appropriate

output state for each combination. This is a typical method of cons-

structing decision tables which assures a complete, though complex

table. The second approach begins by considering all possible output

states and tracing back to all possible input states. This deductive

method is similar to that used by CAT itself in constructing fault

trees.

The advantage of the first method, as pointed out, is the assur­

ance of completeness, at the expense of complexity. For example, a

component with 2 inputs, each with 3 states, and 3 internal modes, each
5

with 3 states, would result in a table with 6 columns and 3 = 243 rows

before reduction. The reduction itself, although tedious, is a process

amenable to computer implementation. The second method, although not

as straightforward, has the advantage of allowing one to immediately

27

concentrate on the output states of most interest. It has the serious

drawback, however, of allowing the possible oversight of some important

features unless a careful check of completeness is made.

3.2 Inductive Method of Decision Table Development

The first step in this method is to enumerate all combinations

of input states and internal modes of the component. Then, the output

state(s) for each combination are determined essentially by a failure

modes and effects analysis. Finally, a decision table reduction method

may be utilized to produce a compact table, suitable for use with the

code. A step by step description of the process of generating decision

tables by this method is given in following paragraphs. As an example

a decision table for a pump is developed.

Step 1. First, an investigation must be made of the physical charac­

teristics and design considerations of the component, in order to deter­

mine all of its possible input states and internal modes. For a pump,

there are two inputs, one internal mode and one output:

Input 1: Main flow (pressure) input

0 - no pressure in or pressure too low

1 - normal pressure

Input 2: Power input

0 - no power in

1 - power in

Internal
Mode: Condition of pump

0 - pump in good condition

4 - pump fails to start

5 - pump fails to run normally

28

Output: Main flow (pressure) output

0 - no pressure out or pressure out too low

1 - pressure out

Note that in other analyses, these states may differ, depending upon

the specific nature of the pump, and the depth of analysis desired.

For example, the state "fails to run normally" could further be broken

down into specific failures such as impeller failure, shaft failure,

etc., if specific data on these are available, and it is desired to

separate out these failures. This could be especially useful in try­

ing to isolate potential common mode failures, etc.

Step 2. An initial decision table is then constructed by listing these

combinations of input states and internal modes, along with the output

state which results. For the pump as example, there are 2 x 2 x 3 = 12

possible rows:

TABLE 5. ORIGINAL DECISION TABLE OF PUMP.

Input 1 Input 2 Internal
Row Main flow Power Mode Output

1 0 0 0
------—

0

2 0 0 4 0

3 0 0 5 0

4 0 1 0 0

5 0 1 4 0

6 0 1 5 0

7 1 0 0 0

8 1 0 4 0

9 1 0 5 0

10 1 1 0 1

11 1 1 4 0

12 1 1 5 0

29

Table 5 is the original decision table of the pump. Row 1 of

Table 5 shows that if there is no fluid input, no power input, and the

pump is good, there will be no flow at the output. Row 10 shows that

if the flow (pressure) input is high enough, the power is on, and the

pump is good, there will be flow at the output side of the pump. The

other rows can be understood in a similar manner.

Step 3. The decision table is now ready to be reduced. Although the

decision table developed in the previous steps can be used as the

input data for CAT code, it is very lengthy. A modification can be

made by introducing "don't care" states into the table, in order to

make it simpler, as well as to save computer time and memory in the

process of constructing the fault tree.

The basic rule for reducing decision tables is as follows. If

several rows have identical output, input, and internal states except for

one input or internal mode, and if this exception includes all possible

states which can occur, then these rows can be combined into a single

row with a "don't care" state. For example, in Table 5, rows 1, 2

and 3 all have 0 as output, 0 main flow input, and 0 power input.

Furthermore, the remaining column, the internal mode, includes all

three states possible (0, 4 and 5). This implies that, regardless of

the internal state, the output will be 0 as long as the flow input is

at low pressure and no power is present at input 2. Thus, rows 1, 2

and 3 can be combined into a single row with a 'don't care' state, i.e.,

0 0-10

Similarly, rows 4, 5 and 6 in Table 5 can be reduced to

0 1-10,

30

and rows 7, 8 and 9 can be reduced to

10-10.

Finally, similar reduction can be done to rows 2, 5, rows 3, 6, rows

8, 11, rows 9, 12, and a reduced decision table of the pump can be

obtained as shown in Table 6.

TABLE 6. REDUCED DECISION TABLE OF PUMP.

Row
Input 1

Main Flow
Input 2

Power
Internal

Mode Output

1 0 0 -1 0

2 0 1 -1 0

3 1 0 -1 0

4 1 1 0 1

5 1 -1 4 0

6 1 -1 5 0

7 0 -1 4 0

8 0 -1 5 0

If we look at rows 1 and 2 in Table 6, both of them have 0 as output,

0 as flow input and -1 as the internal mode; furthermore, the power

input includes both 0 and 1, the only possible states of that input.

In this case rows 1 and 2 of Table 2 can be combined again into:

0 -1 -1 0.

Similarly rows 1 and 3 in Table 6 can be combined into:

-1 0 -1 0.

Similar reductions are done to rows 5, 7, and rows 6 and 8. The decision

table of the pump is further reduced as Table 7.

31

TABLE 7. FINAL DECISION TABLE OF PUMP.

Row
Input 1

Main Flow
Input 2

Power
Internal

Mode Output

1 0 -1 -1 0

2 -1 0 -1 0

3 1 1 0 1

4 -1 -1 4 0

5 -1 -1 5 0

Table 7 is much simpler than the initial decision table as shown

in Table 5. A discussion about this reduced form of decision tables

has been worked out in reference [1] which indicates the reduced form

is equivalent to the original decision table in the sense of probability

considerations in the construction of fault trees, but with the advan­

tage of being simpler than the original form.

3.3 Deductive Method of Decision Table Development

One should bear in mind that the purpose of the decision tables

is to supply information for constructing the fault trees of various

systems. Each system fault tree starts from the TOP event and is then

traced back to the primary events. In this way, the decision table is

actually used in the reverse direction. For instance, in the pump

example, the information desired will be of the following type: "What

causes can produce 'no pressure or pressure too low' at the output?",

or "What events are required to obtain 'normal pressure' at its output?"

From such investigations, we can obtain a mini-fault/success tree [4] for

each possible output state. By collecting these trees for all possible

outcomes, one obtains the decision table for the component. A pump is

again used as an example in this case.

32

Step 1. First, the investigator must become familiar with the physical

characteristics and design purpose of the component. From these, the

analyst then finds different source reasons for malfunctions (this

is essentially a FMEA process). The analyst should also collect the

available failure history of each component in actual industry experience

For the case of a pump, the only situation in which there will be

output is when the pump is good, there is power input to the pump, and

the flow input has 'pressure in'.

The internal mode of the pump can either be 'good', 'fails to start'

or 'fails to run', each with a different probability; the total, however,

will sum up to one.

Step 2. Define all the possible states of inputs, internal modes and

outputs of the component. For a pump, there are two inputs, one internal

mode and one output as described previously.

Step 3. Construct the mini-fault/success tree. As an example.

Figures 1 and 2 show the mini-fault/success trees for a pump.

Step 4. Construct the decision table by using the mini-fault/success

trees, treating blank spaces as 'don't care' states. Tables shows the

decision table for a pump obtained in this way. Notice the equivalence

between Tables 7 and 8.

33

PUMP GOOD•PRESSURE IN. POWER IN

PRESSURE OUT

FIG. 1 MINI-FAULT/SUCCESS TREE I FOR PUMP

NO POWER PUMP FAILS
TO START

PUMP FAILS
TO RU!'NO PRESSURE

NO PRESSURE OUT
OR TOO LOW

FIG. 2 MIfiI-FAULT/SUCCESS TREE II FOR PUMP

34

TABLE 8. DECISION TABLE FOR PUMP BY DEDUCTIVE METHOD.

Row Main Flow
Input 2

Power
Internal

Mode Output

1 0 -1 -1 0

2 -1 0 -1 0

3 -1 -1 4 0

4 -1 -1 5 0

5 !
1 1 0 1

Step 5. Check the completeness of decision tables. Make sure each

mode of operation of the component has been included in the decision

table unless it is impossible or negligible.

3.4 The Use of Decision Tables in the Construction of Fault Trees

In order to construct fault trees for general systems, information

is required both to describe the system itself, and the operation of

the specific components within the system. The decision table methodology

has been used to describe the operation of the specific components of

the system. The use of such decision tables in constructing fault

trees will now be illustrated referring to Tables of Section 3.3. The

event "no output from pump" will be used as an event to be analyzed.

This might be the TOP event of a tree, or some intermediate event which

would be required to produce a zero input to a succeeding component.

Given the desired output state, a search is made for rows with the

correct state, in this case Rows 1 through 4 of Table 8. Since any one

of these rows has the correct output, they are connected by an OR gate,

each row being a single input (see the mini-fault tree used for the pump).

35

Since in all rows, two of the three signals are of the "don't care"

type, each row is replaced by a single event. Thus, Row 2 is replaced

by the event "no power," which must be developed further with the use

of another decision table. Row 4 is replaced by the event "pump

fails to start", which is a primary failure and thus becomes a direct

primary input event.

If the desired output state were "normal output from pump", then

a search of the rows reveals that only row 5 gives the correct output.

Here, there are three states defined, all of which must be true for the

output state to be 1. The result, then, is an AND gate with the three

appropriate inputs. In this case, one input represents a primary

event (pump good), and thus terminates that branch. However, the other

inputs to the AND gate are component input states, and must therefore,

be traced backwards to the previous components and developed further.

36

4. APPLICATIONS

Using the preceding methodology, the CAT Code was developed, and

used to construct a number of fault trees for various systems. As each

system illustrates different features of this approach, two new

examples will be used to complement the pressure tank system, and

reactor Residual Heat Removal System, described in Reference [1].

These new systems are a Containment Spray Recirculation System and a

Consequence Limiting Control System.

4.1 Containment Spray Recirculation System (CSRS)

4.1.1 Description of CSRS

The Containment Spray Recirculation System (CSRS) is described in

WASH-1400 [5]. For purposes of illustration, this system has been

simplified slightly and its flow diagram is shown in Figure 3. The

intended function of the CSRS is the recirculation of the containment

sump water through the heat exchangers of the Containment Heat Removal

System to spray headers inside the containment, thus removing energy

and fission products from the containment in the event of a LOCA.

The following are important features of the system:

1. The system is comprised of four trains. During the first

twenty-four hours following a LOCA, the logic of the system

for successful operation is two-out-of-four; it becomes

one-out-of-four after that period.

2. Each train consists of a pump, a heat exchanger and a spray

header. Two of the pumps are inside the containment.

3. All valves in the two trains which have the pumps outside

the containment are normally open.

37

CO
00

Spray B Spray DSpray CSpray A

l5Z 5*31

MOV D1

CHV D Pipe D4Pipe D2 Pipe 03
Heaili/ ^
V 1Heal

MOV Cl

CHV C Pipe C3Pipe C2

INSIDE CONTAINMENT
■4~(] Motor B [)

+-3 I | I” OUTSIDE CONTAIWIENT +-^| Motor C Pump D

MOV C2

--27

Pipe C5

Pipe D5

Pipe 6

Pipe 7

-40

■+-(^| Motor D f)

42 +M U-
51

Figure 3. Simplified Flow Diagram for the Containment Spray Recirculation System

4. The CSRS is actuated by a signal from the Consequence

Limiting Control System which turns on the pumps and also

opens the motor-operated valves if they had been inadvertently

left closed after maintenance.

5. The electrical power supply is common to one inside and

one outside train. The other pair of trains also have a

common electrical power supply to the motors of their pumps.

6. A train can be disabled due to maintenance. However, only

one leg is allowed to be down for maintenance at any time.

4.1.2 TOP Event and Preliminary Considerations

In order to construct the fault tree for this system, the decision

tables and TOP event definition had to be developed. Many of the tables

had been used for previous examples [1,2]. However, new models were

developed for the spray headers, heat exchangers, and pump motor

(see Appendix B). Furthermore, the model used for the motor-operated

valve [1] was modified by deleting a slip clutch failure mode.

The model for the pump motor was included in order to separate the

failures of the pump and pump motor into two components. Thus, the

motor itself received power from the power supply, and a signal to turn

on or off. The "power" for the pump (Table 8) was then actually the

mechanical coupling from the motor.

The TOP event for this system was defined as failure of the

recirculation system to supply adequate spray cooling to the containment

following a LOCA. This requires operation of at least two of the four

legs for the first twenty-four hours, and one-out-of-four legs thereafter.

Thus, the logic of the TOP event changes after twenty-four hours, and

39

this situation must be developed explicitly. This was done using

inhibit gates modeled by the following decision table (Table 9) as

part of the TOP event:

TABLE 9. LOGIC MODEL FOR INHIBIT CONDITION.

Row
Leg

A
Leg

B
Leg

C
Leg

D
Inhibit

Condition
System
Output

1 0 0 0 -1 1 0

2 0 0 -1 0 1 0

3 0 -1 0 0 1 0

4 -1 0 0 0 1 0

5 0 0 0 0 2 0

In this table, zeroes represent the condition "no flow" from the

appropriate leg, or "insufficient flow" as a system output. The

inhibit condition is treated as an internal mode, with state 1

representing the condition 0 < t < 24 and state 2 as t >24. Only those

rows leading to the system state "insufficient flow" are shown; that is,

only those combinations in Table 2 will allow system failure. Thus, it

is seen that for 0 < t < 24, either three or four leg failures will

lead to TOP failure, while for t 2 24, four failures are required.

An additional complication in this system is the inclusion of

maintenance. Any single one of the four legs is permitted to be under

repair for a period of up to twenty-four hours. Thus, should the

system fail while one leg is under maintenance, during the first

40

twenty-four hours, only two subsequent failures would be needed, or

three subsequent failures thereafter. Since only one leg may be under

maintenance at a time, this situation represents an "exclusive OR" type

of logic, and is modeled analogously to the inhibit conditions in

Table 9. The TOP event is defined as "insufficient output with no

leg under maintenance OR insufficient output with one leg under

maintenance"; "one leg under maintenance" is further divided into

"leg A under maintenance", "leg B under maintenance", etc. Since each

of these maintenance conditions is treated as if it were an inhibit

condition, the "exclusive" nature of the TOP OR gate is retained

without explicitly requiring such a gate. Thus, the resulting tree

can be analyzed by any of the existing computer codes (such as PREP-KITT).

This structure is seen in the upper level structure of the completed

fault tree. Figure 4.

Finally, as an example of the input used in the CAT Code, Table 10

reproduces the component node-numbering table for this system.

Referring to this table and Figure 3, and using heat exchanger A as an

example (component 3 in the table), the input defines this component

as "type 2" (i.e., using decision Table number 2), with input node 4

and output node 3. This output node is connected to the input of the

pipe (component 2), whose output (node 2) is ultimately connected to

spray header A (component 1). Components 47-52 represent the inhibit

gate models as shown in Table 9 for the TOP structure, including both

the maintenance modeling and time switching logic.

4.1.3 Discussion of Fault Tree

The previously described input to CAT was used to produce the

41

A\A\ ak/K a\ak
A\AsJ\ ak ^\A\ AkAA/zA A\A\A\ A\JAA'

Figure 4. Upper Level Structure of Fault Tree for CSRS

Table 10. Component Index Input Printout for CSRS

COM CARD FOUND. DATA VALIDATION CONTINUING.

CONTAINMENT SPRAV RECIRCULATION SYSTEM

COMPONENT INDEX INPUT PRINTOUT

COMPONENT CARD PRINTOUT
INDEX CODE NAME TYPE INPUT/OUTPUT !NODES

1 C CM 1 SPRAYA 1 ? 5?
2 COM2 PIPEA1 3900 3 2
3 COM3 HTEXA 2 4 3
4 COM4 PIPEA2 3900 5 4

Pt JMPA A3<in A 7 8
6 C0M6 PIPEA3 39 00 8 6
7 C0M7 WATER 3 8
8 C0M8 MOTORA 4 50 23 7
<J C0M9 SPRAYR | 9 53

10 C0M10 PIPE81 3900 10 9
1 1 C0M1 1 HTEXB 2 11 10
12 CGM12 PIPEB2 3900 12 1 1
1 3 rnMi 3 PUMPR 4300 1 3 1 A 1 P
14 COM 14 PIPEB3 3900 8 13
1 5 C0M15 MOTORS 4 51 23 14
16 C0M16 SPRAYC 1 16 54
1 7 C CM1 7 PIPEC1 3900 1 7 1 8
18 comi e HTEXC 2 18 1 7
19 C0M19 PIPEC2 3900 19 1 8
20 CGM20 CH VC 5 20 19
21 COMP 1 P T PEC3 3900 21 ?n
22 C0M22 MOVC1 68 10 22 23 21
23 C0M23 CONT SIG 3 23
24 COM25 PIPEC4 3900 25 22
25 CCM26 PUMPC 43 00 27 26 25
26 CCM27 MOTORC 4 50 23 26
27 C0M28 M0VC2 68 10 28 23 47
28 COM3 1 SPRAYD 1 31 55
2<J COM 3? PIPED1 3900 32 31
30 C0M33 HTEXD 2 33 32
31 C0M34 PIPED2 3900 34 33
32 C0M35 CHVD 5 35 34
33 C0M36 PIPED3 3900 36 35
34 C0M37 MOVD1 68 10 37 23 36
35 C0M40 PIPED4 3900 40 37
36 COM4 l PUMPD 43C0 4 1 42 40
37 COMAP MDTDRn A R 1 ? 3 A?
38 COM4 3 PIPE05 3900 43 41
39 C0M44 M0VD2 6810 44 23 43
40 C OM47 PI PECS 3900 47 27
41 COM48 ORl 6 48 49 ?a
42 COMA 9 OR2 6 48 49 44
43 CCM5C P IPE6 39C0 8 43
44 C0M51 PIPE7 3900 8 49
45 CCM52 PCWER1 3 50
46 COM53 P0WER2 3 51
47 C0M54 TOPC 101 52 53 54 55 1 5
48 CGM55 T0PD1 1 02 53 54 55 56
49 C0M56 T3PC2 102 52 54 55 57
50 CCM57 T0PD3 102 52 53 55 58
51 CGM58 TOPD4 102 52 53 54 59
52 COM 5 9 TOTAL 103 15 56 57 58 59 1

END

43

A
NO ROW FROM

TWIN D

NO WATER TO
SPRAT 0

✓sprayS. /IpraK

PLUGGED/ (RUPT-)VsZy N®/

28

T
NO WATER TO

PIPE 01

29
LpJ

NO WATER TO
PIPE 02

NO WATER TO
PIPE D3

NO WATER TO
MOV D1

Figure 5. Development of Lower Events for CSRS Fault Tree (page 1)

44

-A
X

34

'T

PUMP 0PUMP D>
FAIL TO

START J
FAIL TO

■fipr'05
RUPT-
IJRED.

^OTOR'
D NO
POWER

s^UPPv

Twto^s
D FAIL

TO^STARV
'PIPE >

05
PLUGGED,

MTR D
NO CONT
SIG. IN

WATER
FROM
SUMP >

WATER
FROM

JUMP^,
RUPT-
URED .

RUPT-
URED>

PLUGGED PLUGGEDi

PLUGGED

MOV 02
NO CONT
SIG. II

MOV 02

>IOVD?
MECH.
FAIL

XLOSL

RUPT­
URED.

NO WATER TO
PIPE 04

NO POWER TO
PUMP 0

NO WATER TO
PUMP 0

NO WATER TO
PIPE 05

NO WATER TO
MOV 02

Figure 5. Development of Lower Events for CSRS Fault Tree (page 2)

45

fault tree discussed here. The program was run on the IBM 360/91

computer at UCLA. A core storage of 150K bytes was used which would

be sufficient for 800 gates in the tree before editing (a core storage

of 114K bytes would be sufficient for 200 gates). The code produced

656 gates which were reduced to 77 in the final tree, mainly through

the use of transfers. A total of 6.5 CPU seconds was used.

The upper-level structure of the tree is shown in Figure 4.

The branch of the tree beneath gate 2 assumes no maintenance, while

the branches beneath 9, 15, 21, and 41 assume that one train is

disabled for maintenance. Since these four branches are similar, only

the branch beneath gate 9 is developed further in the figure.

The houses at the next level of the tree show whether the tree

is developed assuming system failure when all trains fail (after

24 hours following a LOCA), or when any three out of the four trains

fail (before 24 hours). The branches of the tree beneath this level

are produced in a straightforward manner by the CAT code, utilizing

Table 9 for the modeling of inhibit gates. For illustrative purposes,

the development of the event "no flow from D" is shown in Figure 5.

4.2 Consequence Limiting Control System (CLCS)

4.2.1 Description of CLCS

The Consequence Limiting Control System is designed to measure

the containment pressure and, if specific pressure levels are exceeded,

initiate operation of equipment designed to control the containment

environment [5].

46

A simplified block diagram of a Consequence Limiting Control System

is shown in Figure 6, and a more detailed system diagram is shown in

Figure 7. A general description of the system is given as follows:

1. The system is designed to detect out-of-tolerance conditions

within the containment by measuring containment pressure, and to

initiate operation of equipment and systems designed to limit and

counteract these conditions.

2. There are two output signals that will activate the safety

devices. A containment pressure rise to 1.5 psig produces signals

which initiate the HI containment pressure phase and the containment

vacuum pumps are tripped; certain containment isolation valves are

closed and back-up signals are sent to the safety injection control

system. A further rise of containment pressure to 10.3 psig will

initiate the HI HI containment pressure phase of the CLCS. This will

start the containment spray injection system and the containment spray

recirculation system, close the remaining containment isolation valves,

initiate start-up of two diesel generators and activate the appropriate

motor-operated circulating and service water valves to divert service

water to the containment spray heat exchanger.

3. The CLCS is made up of four logic trains (two for HI and two

for HI HI), and four measurement channels. Each logic train trips when

three-out-of-four measurement channels sense a trip pressure signal.

Each measurement channel contains its own transducer to sense the

pressure, and a comparator to detect different pressure levels. Upon a

47

HI HI

HI HI

MEASUREMENT
CHANNEL A

MEASUREMENT
CHANNEL B

TRAIN A

HI HI

TRAIN B

HI HI

MEASUREMENT
CHANNEL C

MEASUREMENT
CHANNEL D TRAIN B

TRAIN A

Figure 6. CLCS Simplified Diagram (5)

■ 120 V AC Bu> 1-1

/^Zr\ Current:
Jlm 100) t

rwTT

__ . Current.
\ pfi.irt

UMIOOj

s----- 1--------------------1-----

Conuinment
Penetration
No. 106

1---------------

U—^

• pr \ Current:Lliioo)

Smor
Circi' El*c

puffnt

Ht-HI
Input
Moduto

CompuMr
Input
Moduk

HI
Input
Modult

S«n«or
Circuit
Electron id

HI HI
Input
ModuK

Computer
Input
Module

Mein Boerd
Penel
Indice tor

HI
Input
Module

Senior
Circuit
Electron ict

HI-HI
Input
Module

Computer
Input
Module

Mein Boerd
Penel
Indice tor

HI-HI
Input
Module

Computer
Input
Module

Voltege: Prewure

HI Signel Comparator

V AC
Output

f

0 -5 1.5 PSIG
Input

- 120 V AC But 1-11

Voiuge: Preeeure

HI Signel Comperetor

V AC

Output

0 .5 1.5 PSIG
Input

Power - 120 V AC But MM

Voltepe: Preeture

HI Si^ul Comparator

117
V AC

Output

1 Reee
t J

0 .5 1.5 PSIG
input

Power 120 V AC But MV

VolUge: Preteure

HI Signal Comparator

117
VAC i

Output I
c •

0
0 .6 1.6 PSIG

Input

HI-HI Siptel Comperetor

117
VAC

Output

0
0 10.3 PSIG

Input

* r
Power 126 V DC But 1A

■Wu^ool Cloeure Q1 . ANN CUT \ 7 1
VT A3 / HO Contectt’ ' V___________S

,4°°/ NO Contectt

lmV^

Hl-H

117
V AC

Output

Signal Comperator

. _
0 10.3 PSIG

Input

i I

&

ss- ThS.

OQr 117 V AC
I LmOO

Opening 01
NQ Contectt

LM^OO)—L-----:------------
. BS / Opening 01

Hl-H

117
V AC

Output

0

1 Signel Comperator

0 1Q.3 PSIG

Input

NO Contectt

Cloeure 01

1 {
Pan PI

-»/lmRiooU

[*©-

NO Contectt

Opening Of
NO Contectt

—

^ ANN CKT

HA

___ j(ANN CKT)

-»/ui^oo) r"^ /C'
\ CS J Opening Of / HB
v^—^ NO Conuctt

HI-HI Signel Comperetor

117 _
V AC

1 r
CtomOl___

01 / NO Conuctt

‘“HSSS:
Cloeure Of

/T\ SP3
NO Contectt

______ /O'
/ HM>

ANN CKj)

KzzS NOCerNN

t>

Power - 125 V DC But 1A

Manual Letch Manuel Reeet
Puth Button

Removet
Rectoret

126 V DC On
Trip fl Of 2}

J-

When Preeeure
It At Reeet

-*(§)
CLCS Trein 1A
(HI)

-(§)
KS)

13ConU
To Verio

Power 125 V DC But IB t>

Figure 7. CLCS Signal Flow Diagram (5)

49

pressure of 1.5 psig, each measurement channel will send a HI contain­

ment pressure signal, and at 10.3 psig, each channel will send a HI HI

signal. There are two logic trains for each pressure level, in a one-

out-of-two configuration, to provide redundancy in initiating the

equipment.

4. The operator can initiate either of the two sets of trains

manually.

5. When containment pressure is reduced to -0.5 psig, following

an increased pressure above either or both set points, the CLCS circuits

signal the operator that the reset point has been reached, permitting

him to reset the logic trains. This reset function occurs for all four

logic trains at the same time. The equipment can be returned to the

pre-accident configuration only after the reset signal has been received

by the operator.

6. The HI HI signal trains were designed to be harder to trip

than the HI signal trains, in order to minimize the chance of inadvertent

spray actuation by a HI HI signal. The logic channels and sensors

are designed to trip on loss of power to a HI signal state, but

are prevented from tripping to the HI HI state. Also, manual trip by

the operator requires the operation of two push buttons for a HI HI

signal, but only one button for a HI signal.

7. The measurement channels can be tested monthly, one at a time.

The system logic trains trip when two-out-of-three measurement channels

reach certain pressure levels under test conditions.

51

8. The logic trains are also testable. While in the test mode,

a logic train will be automatically pulled out-of-test and returned

to normal operation if the train not being tested trips. Thus, testing

does not negate the function of any portion of the CLCS during its

testing.

4.2.2 Top Event and Preliminary Considerations

Four different failure modes of the Consequence Limiting Control

System have been considered as TOP events in the fault tree

construction:

1. Containment pressure between 1.5 psig and 10.3 psig, but no

Hi signal is sent by the CLCS .

2. Containment pressure above 10.3 psig, but no HI HI signal

is sent by the CLCS.

3. Containment pressure normal, but HI HI signal is sent because

of a malfunction of the CLCS.

4. Containment pressure normal, but HI signal is sent by a

malfunction of the CLCS.

In this example, the TOP event "containment pressure normal, but

Hi signal sent by malfunction of CLCS" has been further investigated

in detail. The upper level logic of this TOP event has been developed

as required by the CAT Code. It includes the maintenance of the

measurement channels and also shows the logic of the maintenance scheme,

which allows testing of only one at a time. Table 11 shows the decision

table of this TOP event.

52

TABLE 11. TOP EVENT DECISION TABLE FOR: "CONTAINMENT PRESSURE
NORMAL, BUT HI SIGNAL SENT BY MALFUNCTION OF CLCS".

Row Node 1 Node 54 Node 73 Node 74 Node 75 Node 76

1 -1 1 0 0 0 0

2 -1 1 1 0 0 0

3 -1 1 0 1 0 0

4 -1 1 0 0 1 0

5 -1 1 0 0 0 1

Node 1 in this table is the HI HI signal output node, and node 54

is the HI signal output node (see Figure 7). Nodes 73, 74, 75, and 76

are those nodes which indicate maintenance of measurement channel

A, B, C, or D, respectively; that is, a '1' under one of these nodes

indicates that channel is under maintenance. The only TOP event we

present here is the one with HI pressure signal output; thus, no

attention is given to the HI HI signal channels, and a '-1' is assigned

to node 1 in all cases; however, for other TOP events, node 1 would be

set to zero or one, depending on the specific event. Row 1 represents

the situation when no channel is under maintenance. Thus, all four

maintenance columns have been set to 'O'. The '1' at node 73 in row 2

indicates that measurement channel A is under maintenance. Rows 3, 4

and 5 similarly represent maintenance of channels B, C, and D.

Under this TOP event, the only boundary condition necessary is

normal pressure in the containment. Other TOP events would be accompanied

by different boundry conditions; however, the component library of deci­

sion tables and the system description would remain the same throughout

the analysis. This characteristic points out one convenience of using

53

such a methodology for constructing fault trees for multiple TOP events

of a system.

Components in the consequence limiting control system include

pressure transducers, comparators, relays, circuit breakers,

annunciators, "OR" logic gates, etc. Furthermore, the Operator has

been treated as an additional component of the system in this example.

The decision table of an operator is given as Table 12. The input to

the operator is the information transmitted to him in order to allow

him to take action. In this example, we assume that the basic informa­

tion he receives is from the annunciator. An input signal of '0'

indicates normal pressure signal, T is a HI pressure signal and '2'

is a HI HI pressure signal. The internal mode is separated into two

states. A zero means that the operator takes the correct action.

'5003' for the internal state of the operator represents an incorrect

action by the operator. The output of the operator in this example is

connected to the four trains of the CLCS system; a 'O' represents no

action by the operator, '1' means that the operator has initiated the

HI signal trains, and '2' means the HI HI signal trains have been

triggered by the operator. The assumption has been made here that the

operator takes the same action on both trains in the same set, e.g., if

the operator has pushed the button of the HI signal train, he will push

the button of the other HI signal train at the same time; however, this

table could be very simply expanded (by the addition of more rows) to

include other possible combinations of train actuation.

54

TABLE 12. DECISION TABLE OF OPERATOR

Row Input Operator
To HI

Out 1
Signal Train

Out 2
To HI HI

Out 3
Signal
Out 4

1 0 0 0 0 0 0

2 1 0 1 1 0 0

3 2 0 0 0 2 2

4 0 5003 1 1 -1 -1

5 0 5003 -1 -1 2 2

6 1 5003 0 0 -1 -1

7 2 5003 -1 -1 0 0
8 1 5003 -1 -1 2 2

9 2 5003 1 1 -1 -1

With this basic information, the decision table of the operator,

as shown in Table 12, can be interpreted as follows: Row 1 to row 3

represent correct operator actions, e.g., if no signal is sent to the

operator, he will not send a signal to any of the four trains. Rows 4

through 9 are those cases in which the operator 'fails', (those cases in

which the operator does not take the correct actions).

Finally, Table 13 shows the component node-numbering table for the

consequence limiting control system as input to the CAT code. Since the

four measurement channels are composed of the same set of components, only

channel A has been further developed in the system fault tree. It is

assumed the other three measurement channels have the same fault tree

construction as channel A. Referring to this table and Figure 7,

and using the HI-HI signal comparator in measurement channel A as an

example (component 12 in the table), the input defines this component

55

as "type 017" (i.e., using Decision Table number 17), with input node 27

and output node 23. This output node is connected to the input of the

relays (components 5, 6, and 71). Several of the components are con­

sidered as "dummy" components, (e.g., components 28-31 and 36-52), as

discussed in Section 2.2.5. This is due to the requirement that each com­

ponent input node be connected to a valid output node from some component.

Component 2, for example, requires an input at node 6 to represent

the reset signal for the CLCS. Since no detailed treatment is given this

signal, and it is not required for evaluation of the TOP event of interest,

the output from a dummy component (Component 28) is connected to this node.

This provides the required output at node 6; furthermore, since this

dummy component type (type 009) has no inputs, component 28 requires no

further connections. Notice that all dummy components are of type 009 and

are treated in the same manner.

4.2.3 Discussion of Fault Tree

Figure 8 shows the fault tree of the Consequence Limiting Control

System constructed by the CAT code for the TOP event "containment pressure

normal but HI signal sent by malfunction of CLCS". The inhibit gates

below gates 2, 12, 24, 38, and 54 represent the five maintenance possi­

bilities. The branch below gate 72 represents a HI signal sent by the

operator, which may be caused by human error or by a malfunction of the

system. This branch can be seen beneath a number of gates (as transfer

symbol 72).

One of the features of this fault tree can be seen by comparing the

two different subtrees under gates 7 and 17, which represent the same

event "0 VDC at node 49". Gate 7, under the inhibit gate "no measurement

56

Table 13. Component Index Input Printout for CLCS

C0N5E QUENCE LIMIfING CONTROL SYSTEM

COMPONENT INDEX

CO MPJNENT CARO'

INPUT PRINTOUT

- - —--- —

PRINTOUT
INDEX CODE NAME TYPE INPJT/OUTPUT NODES

1 COMI 0R2 A C 1 4 2 3 1
2 C OM2 SR2A 016 59 5 2
3 COM3 MANN2A 014 4 5 59
4 COM4 3/4 2 A Cl 5 77 73 79 30 4

_____ C 0 MS R A 1 004 23 7
6 COM6 R A2 004 23 3
7 C0M7 RA4 C04 61 9
S C 0M8 R A 5 004 61 1 0
9 COM9 3/4 2 3 015 e i ._ 82 .. 83 34 43

10 C 0 ,M 1 0 3/4 1A CO 3 35 86 87 88 49
1 1 COM! 1 3/4 1 3 003 89 90 91 92 53
12 COMI 2 COMPAHH 017 27 23
1JL. . CG.ML3. COMPAHI . . 005 65 61
14 COM 1 4 TRANSAHH CIS 3 1 27
1 5 COMI 5 TRANSAHI C06 31 65
1 o C 0 M 1 6 SENCXTA 007 35 31
n COMI 7 PTA 008 39 35

16 COMI 8 SENA 009 39
1 9 C OM 1 9 3R26 016 50 45 3
20 COM20 MANN23 C1 4 43 44 60

... .41 .COM 2.1
C 0M22

OR 1 A CO 1 46 50 54
22 SR.l A 012 47 56 46
23 COM2 3 SR 1 E 01 2 31 53 50
24 C0M24 M ANN1 A 01 1 48 55 47
26 C JM25 MANN19 Oil 52 57 51
26 C0M2t BCK1A C 1 J 4 9 46
27 COM27 8CK 1 a 0 1 3 53 52
26 C OM2fc OUM 1 P 009 6

.... 69 _C.g_M25.._.
C 0M3C

DUM2P 009 45
30 DUM 3R 00 9 5c
31 COM31 DUM4R CO 9 58
32 COM32 OPERATOR 002 69 55 57 5 44

.33 CO M3 3. ANNO HII 023 70 7J _
34 C 0M36 DUM 1 1 CO 9 1 1
35 C0M37 CUM1 5 CO 9 15
36 C0M38 DUM 1 a CC9 1 9

_____ 3.7 . ..cjiMas.. . DLM12__ .. _ __QQ9 .. -L2l..
38 C0M40 DUM 1c 009 1 6
39 COM4 1 DUM20 009 20
40 C0M42 DUM 1 3 CO 9 1 3
*■1 C 0M43 DUM 1 7 009 1 7
42 C 0M44 OUM 2 1 009 21
43 C0M45 DUM 14 CO 9 14
44 C QM46 DUM 18 CC9 18

C 0M47 DUM22 CO 9 22
4 6 C0M49 DUMA 9 009 T3
47 C 0M5C DCM5C 009 74
48 COM51 DUM 5 1 C09 75
49 C0M52

C0M53
DUM52 009 76

0^3 -50 TEST 6 021 7 7 '/
51 CGM54 TEST7 021 8 73 81
52 C3M55 TEST? 021 1 1 74 78
53 COM5c TEST9 021 1 2 74 32
54 C0M57 TEST10 C21 15 75 79
5b CQM58 TcSTl1 02 1 1 6 75 83
56 C0M59 TEST12 021 1 9 76 80

___ 57 -CJ0M6C TEST13 . .£2_1 ..ZQ . 76. ... A4
58 C0M6 1 TEST14 C 22 S 73 85
59 COM62 TESTIS 022 1 3 74 36
60 C0M63 THST15 022 1 7 75 8 7
61... -CQM64 TEST17 . .022 21 76 _68
62 CCMofc TEST13 022 1 0 73 39
63 C 0 M 6 6 TEST19 022 1 4 74 90
64 :0M67 TE ST20 022 1 S 76 91

____65 . _C.0M6.& ... TL S.T2.1...........£.2 2 Z2 . 76 .92 . .
66 C0M6 9 ANNOHIHI 01 0 9 10 72
67 C JM7C AND AND C 24 71 72 69
c 8 C 0M7 1 R A 3 004 23 70

e,NO

57

channel under maintenance," will send a 'HI' signal whenever three-out-

of-four measurement channels send a 'HI' signal to it. As shown in

Figure 8, gates 18, 30, 44 and 60, under gate 7, represent a 'HI'

signal sent by any three of the four measurement channels. Gate 30,

for example, receives 'HI' signals from channels A, C and D, where only

channel A has been further developed (see transfer 76). On the other

hand, gate 17 under the inhibit gate "measurement channel A under

maintenance", will send a HI signal if any two of measurement channels

B, C and D send a 'HI' signal to it. Since channel A is already under

maintenance, the boundary condition "signal = 1 at node 73" has already

been set by row 2 of the TOP event Table 10. Thus, the three-out-of-

four logic becomes two-out-of-three.

58

'HI' Signs!

at node 54

'HI' Signal 'HI' Signal

at node 54at node 54 'HI' Signal

at node 50 at node 46

Input Pressure Normal

False ’HI' Signal

44\ /30\ / 18 \ /68\ /51 \ /36\ /23

S©J

63 \ / 46 \ / 31 71 \ / 53 \ / 37

©
©
©

/K
©

62\ /45\ 36 70\ / 52

© © © @
Q

T

©J© © © © © ©

Q [eT

©© © 0© © © © © ®

Figure 8. Fault Tree of Consequence Limiting Control System (page 1)

Figure 8. Fault Tree of Consequence Limiting Control System (page 2)

61

5. CONCLUSIONS

This report has presented a discussion of all of the basic infor­

mation needed by a user of the CAT code. The applications included

here, in combination with those of ref. [1], will serve as examples

to guide the user in setting up a system, and developing his own compo­

nent models. Further details of the code, the modeling of decision

tables, and a complete sample case with input and output will be found

in the appendices as additional aids.

The simple, tabular decision table form for modeling component

behavior allows the user to develop both simple and highly detailed

component models to produce fault trees of varying complexity. This

is the stage of the analysis in which much care must be exercised and,

in fact, this represents a major area in which errors may be introduced

via faulty or incomplete tables. Furthermore, the user must always

bear in mind that failure rates for many specific failure modes of

components are generally not available and must use judgment in order

to avoid the development of too detailed decision tables, which will

prohibit a probabilistic analysis of the fault trees so produced.

The flexibility of the CAT methodology in defining TOP events of

any logocal complexity was demonstrated via specific examples. Thus,

the modeling of inhibit gates showed a general technique for dealing

with mutually exclusive events, such as are encountered in test and

maintenance schemes of redundant systems. This approach was also

shown to be useful in situations where the basic configuration of the

system changes as a function of time. This is especially important

in nuclear reactor applications where decay-heat levels, and therefore

62

cooling requirements, are reduced with time. Another example of the

flexibility of the code is the option of producing the fault tree in

a punched output format directly compatible with the PREP-KITT codes.

One final point must be emphasized to the prospective user of

CAT. Although the computer automation of fault tree construction can

greatly speed up this phase of FTA, and readily allow the construction

and investigation of very detailed fault trees, it should not be

viewed as a replacement for the analyst's efforts. The insight and

understanding provided by the analyst himself in carefully setting up

the system and component decision tables, as well as in choosing the

appropriate TOP events, cannot be supplied by the computer. Further­

more, the fault tree so produced can only be as accurate and complete

as the input provided by the analyst. If the CAT code is viewed in

this light, it can be seen as a useful tool in assisting the fault

tree analyst, and will become even more effective when combined with

care and foresight in its use.

REFERENCES

1. Salem, S. L., G. E. Apostolakis and D. Okrent, A Computer-Oriented
Approach to Fault-Tree Construction, EPRI NP-288, Palo Alto,
November 1976.

2. Salem, S. L., G. E. Apostolakis and D. Okrent, "A New Methodology
for the Computer-Aided Construction of Fault Trees," Annals of
Nuclear Energy, 4 (1977) 417-433.

3. Vesely, W. E., and R. E. Narum, PREP and KITT: Computer Codes for
the Automatic Evaluation of a Fault Tree, Idaho Nuclear Corporation,
Idaho Falls, Idaho, IN-1349, 1970.

4. Fussell, J. B., "A Formal Methodology for Fault Tree Construction,"
Nucl. Sci. and Engr., 52 (1973) 421-432.

5. U.S. Nuclear Regulatory Commission, Reactor Safety Study, WASH-1400
(NUREG-75/014), October 1975.

63

APPENDIX A

CODE STRUCTURE AND SUBROUTINE FUNCTIONS

A.1 Code Structure

The basic operation of the CAT code can be broken down into the

following functions:

1) Input data, check for errors, and set up basic array structure.

2) Construct and edit fault tree.

3) Print input edit, fault tree construction and editing phases,
and final tree.

4) Punch output (if desired) for use with PREP-KITT codes.

The code consists of a main program and eight subroutines,

organized as shown by the subroutine calling sequence in Figure A-l.

Notice that the major operations of the code are actually performed by

subroutine DRIVER. The functional organization of the code is illus­

trated by the flowchart in Figure A-2, which is essentially a flow­

chart of this subroutine. The function of each of these routines will

be discussed in the remainder of this appendix. In addition, flowcharts

for the major functions of each subroutine will be provided in order

to illustrate the basic structure and operation of each subroutine.

These flowcharts will contain program statement numbers for use when

referring to the actual FORTRAN program itself. Although these flowcharts

are not intended to illustrate the specific programming details of each

routine, they can be used, along with the comment cards contained in the

program itself, to assist the user in following the FORTRAN programming,

if desired.

64

START

OUTPUT

REDUCEXCHECK

DRIVER

INDEX DO ITSTEVE

Figure A-l. Subroutine Calling Sequence

MAIN
Program

Subroutine
DRIVER

Figure A-2. Flowchart for CAT Code

66

A.2 System and Component Node Organization

Before discussing the program structure itself, it will be useful

to describe how the CAT code utilizes the system node numbering scheme

(Section 2.1) and integrates the component internal modes into this

scheme. As can be seen from Sections 2.1 and 2.2.7, states and bound­

ary conditions can be described analogously for both system nodes and

component internal modes. This suggests an identical method for treat­

ing both within the code.

The approach employed within CAT is to combine both system nodes

and component internal modes into a single numbering scheme, and to

define program variables which can then represent both of these. The

first step is to determine the largest system node used by the system

(as input on the 'COM' cards). This is defined by the variable MNODE.

The first internal mode (internal column of the decision table) of the

first component is then assigned the node number MNODE +1. If there

are NNCMP components, with a maximum of MXINT2 internal columns per

component (as determined by subroutine LIBR) then there will be

NNCMP*MXINT2 nodes required to index all internal modes, producing a

total of MNODE + NNCMP*MXINT2 nodes in all. This number is defined as

the variable NODES. Notice that each component will be assigned exactly

MXINT2 internal nodes, even though it may not require this many. For

components with fewer internal columns, only the first of these nodes

will actually be used, with the remainder left blank. This simplifies

the numbering scheme, by allowing the jth internal column of the ith

component to be assigned the node number:

MNODE + (i-1)*MXINT2 + j.

67

Referring to the sample case in Appendix C, MNODE = 11 and MXINT2

= 2. As seen from the seventh page of the output (Appendix E), the

single internal column of component 1 is given node number 12, with

node number 13 not used; the single internal column of component 2 is

then numbered 14, etc.

With all inputs, internal modes and outputs of each component now

numbered, the array INODE (j,i) is used to store the j node numbers

of the ith component. For component 1 of the sample case, which has

no inputs, one internal node (12) and only one output (node 1),

INODE (j,l) = (12, 1).

For component 6, which has two inputs (nodes 5 and 6), two internal

nodes (22 and 23), and one output (node 7),

INODE (j ,6) = (5,6,22,23,7).

Finally, the array X is used to indicate the state existing at

any system or internal node. Each node is represented by two entries:

X(l,i) is set to the state existing at node i, and X(2,i) indicates the

gate beneath which this state was set. All entries are initialized to

-1, which indicates no defined state in existence. Boundary conditions

are indicated by X(2,i) = 0. Whenever a branch of an OR gate is com­

pleted, all states set by events beneath that branch must be reset to

-1 (see Sections 3.3.2 and 3.4 of reference A-l). Since higher numbered

gates are always input into lower numbered gates, this corresponds to

resetting only those nodes for which X(2,i) is greater than or equal

to the number of the current OR gate. Thus, boundary conditions will

never be reset, nor will the events set by higher order gates (gates

above the OR gate in question).

68

A.3 MAIN Program and Program Dimensioning

The MAIN program has only two functions: to set up the program

dimensions and to call subroutine DRIVER, which effectively controls

the rest of the code operation. The CAT code has two basic arrays:

1) array MAT (Dimension = NSIZE):

an integer array which contains all program integer array

elements, and

2) array NAME (Dimension = LSIZE):

a double precision array which contains all alphanumeric

names within the program.

These two arrays will be split up into 15 and 3 arrays respectively in

subroutine DRIVER and, by means of variable dimensions, these sub­

arrays can be redimensioned within each job. However, the two arrays

within the MAIN program itself must contain fixed dimensions. This is

done by the following three cards in MAIN:

DIMENSION MAT (nnnn)

DOUBLE PRECISION NAME {lisa)

DATA LSIZE, NSIZE/am, nnnn/

where 'nnnn' is the (fixed) dimension of MAT, and 'WM' is the (fixed)

dimension of NAME. These two dimensions must be set by the user before

the code is compiled (nnnn = 3000 and suun = 200 are sufficient for

small systems and fault trees). If any systems or fault trees are

encountered which are too large for these dimensions, suitable warn­

ings will be printed out by the code. The user need only change the

three cards shown above and recompile the MAIN program (6 FORTRAN

statements) in order to run any size job. Note that nnnn = 20,000

will accomodate the largest fault tree shown in this report. However,

69

the only limits to system and fault tree sizes are those of the user's

own computer installation itself.

70

A.4 Subroutine DRIVER and Sub-Array Allocation

Subroutine DRIVER reads the program control data (see Section 2.2.3),

sets the dimensions of the sub-arrays, and calls the remaining sub­

routines. Its flowchart is basically that shown in Figure A-2.

Once the program control data have been read in, the dimensions

for the first seven integer arrays and the three alphanumeric arrays

are determined. In order to conserve space, all major program arrays

(15 in all), are combined in the one large fixed-dimension array of

the MAIN program with the dimensions of the individual arrays expand­

ing at times to fill all available space, and contracting later to

the exact size necessary as determined by the program. This also allows

the program to determine at any point whether sufficient space has been

allocated by the main program. As an example, the figure below

represents the complete array area required by subroutine LIBR, which

uses only the first 7 of the 15 total arrays:

(1) (2)(3)(4)(5)(6)(7)
I j
j_________________ TOTAL ARRAY AREA FOR ALL 15 ARRAYS___________]

(dimension = NSIZE in MAIN)

The exact dimensions of the first 6 arrays are known and are thus fixed.

However, the size of array 7, which stores the component type library,

is only an estimate, and thus the program allows this array to expand

and fill the space which will be required for arrays 8-15 later. Once

subroutine LIBR has finished, and the component type library is completed,

its exact size will then be known, and array 7 will be appropriately

redimensioned downward, thus allowing maximal room for the remaining

arrays.

At this point, arrays 8-11 can now be dimensioned, as needed for

71

input of the system diagram by subroutine INDEX. Furthermore, the pro­

per dimension for array 12 is returned from subroutine INDEX. The

last three arrays, which will contain the fault tree itself, can now

be dimensioned to fill up the remaining space. These three arrays,

IGATE, JGATE and GATE require 1, 1 and (5 + 2*XX) entries per completed

gate, where XX is the average number of inputs per gate (XX = 3 in

subroutine DRIVER). Thus each gate will require 13 storage spaces,

and the three arrays are appropriately dimensioned to use up the total

remaining array space.

In a similar manner the three alphanumeric arrays (double pre­

cision) are dimensioned to partition the available array space. Table

A-l contains a listing and definition of the 15 integer arrays and

dimensions while A-2 contains a similar listing for the alphanumeric

arrays.

At this time all library and system data have been read in and

checked for errors. If any fatal errors have been detected, (JERR =)= 0),

or if no space was left to allocate for arrays IGATE, JGATE and GATE,

the program will terminate. If no errors have been found, subroutine

DRIVER will call subroutine STEVE, which inputs the TOP event and boundary

conditions.

In the event that STEVE detects a fatal error in the TOP or boundary

conditions (IERR < 0), this specific tree cannot be constructed. How­

ever, if the library and system data were correct (JERR = 0), DRIVER

will proceed to any subsequent job input, and search for a new TOP event

and boundary conditions.

Whenever a valid TOP event and boundary conditions are found, sub­

routine DO IT is called to construct the actual fault tree. Should a

72

TABLE A-l INTEGER ARRAYS

No. Name Dimension Description

1 NTYPE NLIB* The 'type number of the ith component
type. In the sample case (Appendix C),
NTYPE(l) = 101.

2 IROW NLIB Location of first row of ith component
type decision table in array JROW.
IR0W(1) =1. If table 1 has M rows,
IR0W(2) = M+l, etc. Note: IROW(NLIB)
= location of first row of decision
table for TOP event.

3 NINT NLIB Number of internal failure columns for
ith component type.

4 NIN NLIB Number of inputs for ith component type

5 NOUT NLIB Number of outputs for ith component
type.

6 NROW NLIB Number of rows in ith component type
decision table.

7 JROW LNROW, MXNROW Two-dimensional array which contains
the rows of the decision tables. There
are 'MXNROW' rows, each with 'LNROW'
entries. Location of first row of ith
table is given by IROW(i). Thus the
first entry in the ith table is JROW
(1 ,IR0W(i)).

8 NCMP NNODE Number of component whose output is
connected to node "i". In the sample
problem, NCMP(2) = 4 (the output of the
4th component is connected to node 2).

9 MOOT NNODE For components with multiple outputs,
MOUT(i) specifies which output of
component NCMP(i) is connected to node

*NLIB = 1 + NLIB from DAT2 card, to allow TOP event decision
table to be stored following the last component decision table.

73

Table A-l (Continued)

No. Name Dimension Description

10 ITYPE NNCMP** Component type of ith component.
ITYPE (NNCMP) = "type" number of TOP
event decision table (last table in
library).

11 INODE LNRP1, NNCMP

(LNRP1 =
LNROW + 1)

Two dimensional array which contain
the node numbers for each input,
internal column and output of each
component. (See Appendix A.2)

12 X (2, NODES) Two dimensional array which contains
the system states existing at all
nodes. x(l,i) = state at ith node;
x(2,i) = gate beneath which state
was set. (See Appendix A.2).

13 IGATE MGATE Location in
entries for

array GATE of start of
ith gate. IGATE(l) = 1

14 JGATE MGATE Gate into which ith gate is input.
JGATE(1) = 0; JGATE(2) = 1; in sample
case, JGATE(3) = 2, JGATE(4) = 2, etc.
(JGATE is redefined during final
editing).

15 GATE NGSIZE*** Array GATE contains all entries for
fault tree. The location of the first
entry for the ith gate is given by
IGATE(i). The entries for the ith
gate are defined and illustrated in
Appendix E, and are briefly: gate type
(1 = AND, 2 = OR), number of gates
input, number of primary inputs, event
signal state and node number developed
by gate, and pairs of inputs for each
input.

** NNCMP = 1 + NNCMP from DAT 3 card to allow for TOP event.

*** NGSIZE is total remaining space of integer array 'MAT'.

74

TABLE A-2 ALPHANUMERIC ARRAYS

No. Name Dimension Description

1 NAME NLIB NAME(i) is the name of ith component
type; NAME(NLIB) is 'TOPEVENT'.

2 MODNAM (MAXINT, NLIB) M0DNAM(j,i) is the name of the jth
internal mode (column) of the ith
component type.

3 CMPNAM NNCMP CMPNAM(i) is the name of the ith
component; NAME(NNCMP) is the name
of the TOP event from 'TTOP1 card.

75

complete tree be produced (IERR = 0), subroutine OUTPUT is called if

PREP-KITT output is desired. Otherwise, DRIVER will produce any appro­

priate messages, and search for any input data for a subsequent job.

Note that there are a number of reasons that may preclude construction

of a complete fault tree by subroutine DO IT. These include defining

a TOP event which cannot occur or is "sure to occur" under the stated

boundary conditions, or allocating insufficient array space for

completion of the tree.

76

A.5 Subroutine LIBR

After the program control data is read by DRIVER, subroutine LIBR

is called to set up the component library. A simplified flowchart of

this subroutine is shown in Figure A-3. Since this subroutine has its

own extensive error checking routine, LIBR first overrides the IBM

IHC215I error message with a call to the IBM routine 'ERRSET1. This

call will suppress the "illegal character" message which results from

reading input with the wrong format (such as when an extra card has

been inserted). Note that the parameters in this call must be changed

in order to run on a CDC computer.

The remaining functions of this subroutine, as shown by the flow­

chart, are as follows. Following the 'SLIB' card, loop 200 is performed

once for each of the 'NLIB1 decision tables. For each table, the 'LIBR1

card, containing the name, type, numbers of inputs, internal columns,

outputs and rows of the table, is first read. If this card is missing,

appropriate action is taken to search for the next valid card. When a

valid 'LIBR' card is encountered, the data contained on it are then

validated. This is followed by the 'MOD' card, containing the names of

the internal failure columns. Next, the row cards are read by loop

120 followed by an 'END' card, if present.

As indicated by Figure A-3, a large number of error checks are

performed by this subroutine. Table A-3 lists the diagnostics produced

by subroutine LIBR, along with the FORMAT number and probable cause.

77

dCALL ERRSET
- suppress error message

IHC215I (illegal character)

'4LI8' card already
read by DRIVERERR < O?

,-------------- ■»—a*-------- r
/Read 'M.IB' card /

DO 200 for
all library entries

/Read card /

Write
error CMP' Can

(RETURN 1Validate data
read for 'UBR'
or 'END' card

Atifflclent room
for component In
*varray 'JROW'7^

- write error
- set error flag
- reset JROW to

first row

Validate number of
Inputs, Internal

modes and outputs

4^77}
WriteID' card? .ND' card1 RETURN

unknown card
read for 'LIBR'

DO 120 for all
decision table rows

.CMP' card;few card? Write
error

CONTINUE unknown card
read for 'LIBR
or 'END' card

All decision
table rows have
been read In.
check for 'END'

7 read card /►

:ND' or Write
error unknown card.IBR' card:

CONTINUE

. Read any
remaining cards

. search for 'ACMP'
or 'COM' card

. write final
messages

CRETURN 1

Figure A-3. Flowchart for Subroutine LIBR

78

TABLE A-3. DIAGNOSTICS PRODUCED BY SUBROUTINE LIBR

MESSAGE
FORMAT

STATEMENT
PROBABLE

CAUSE

CARD MISSING OR
MISPUNCHED

1003

—

Card missing, out of order,
extra card, or four letter
code mispunched.

ONLY — COMPONENT
TYPES INPUT

1005 Component library incomplete,
NLIB incorrect, or error in
previous library components.

NO VALID HEADER CARDS
FOUND

1011 Missing system data and TOP
event input.

NUMBER OF COMPONENT ROWS
EXCEEDS NUMBER ALLOCATED

1012 Dimension NSIZE in MAIN
program too small.

COMPONENT — HAS —
INTERNAL MODES. THIS
EXCEEDS THE 'MAXINT'
MODES ALLOWED.

1013 Component has more internal
columns than specified by
'MAXINT' on 'DAT2' card;
'MAXINT' or 'NINT' in error.

COMPONENT — HAS —
INTERNAL MODES + INPUTS +
OUTPUTS. THIS EXCEEDS THE
'LNROW' ALLOWED.

1014 Rows for current decision table
too long; error in 'LNROW' on
card 'DAT2', or in 'NIN',
'NINT' or 'NOUT' on 'LIBR'
card.

EXTRA COMPONENT TYPES INPUT. 1016 Error in 'NLIB' on card 'DAT2'
extra decision tables in
library, or extra 'LIBR' or
'END' cards found.

79

A.6 Subroutine INDEX

Subroutine INDEX reads the system flow chart as input in the 'SCMP'

section. Its flowchart is shown in Figure A-4, and its basic operation

is as follows. After reading the 'SCMP' card (or immediately, if

'SCMP' is missing), INDEX reads and validates each 'COM1 card, one at

a time. Block 100 validates the input which is listed there, and

Table A-4 lists the error messages which are produced. If any error is

detected, an error flag is set for that component (component i), by

setting: INODE (LNRP1, i) = -2.

If the component has no errors, the correct node numbers are stored

in array INODE (see Section A.2). Finally, extra or missing 'COM1 cards

are indicated by further error messages (Table A-4), and indexing and

cross-referencing tables are printed out.

80

SUBROUTINE INDEX

IERR

97
Read card

'COM' card already
read by LIBR

'END' cardj

C RETURN)

Write
error

Error: COM cards
_____ missing

Validate COM card:
- valid type number
- number of inputs,

outputs
- node numbers £

NNODE
- unique name
- output nodes not

previously defined
- output nodes not

repeated
- no output connected

back to input________

150

200
/ Read next card]

no

Write appropriate
error message(s)

4*

unknown card type:
write error
IERR=IERR+1

Components missing
write error
IERR=IERR+1

300
Write component
indexing printout

400 Write output node
cross-index

500____________ ____________
Write final output

(RETURN)

Figure A-4. Flowchart for Subroutine INDEX.

81

TABLE A-4. DIAGNOSTICS PRODUCED BY SUBROUTINE LIBR

FORMAT
MESSAGE STATEMENT

CARD MISSING OR MISPUNCHED 1002

NO COMPONENT TYPE — 1005;
FOUND IN LIBRARY 1022

COMPONENT NAME " —" HAS 1007
PREVIOUSLY BEEN USED BY
COMPONENT —.

TOO FEW NODES, OR NON- 1008
POSITIVE NODES.

TOO MANY NODES. 1009

ONE OR MORE OUTPUTS IDENTICAL 1010
WITH ONE OR MORE INPUTS

OUTPUT NODES NOT UNIQUE 1011

OUTPUT NODE — HAS ALREADY BEEN 1012
ASSIGNED TO COMPONENT —

MORE THAN THE — COMPONENTS 1013
SPECIFIED HAVE BEEN INPUT

PROBABLE
CAUSE

Card missing, out of order,
extra card, or four letter
code mispunched.

TYPE number on 'COM1 card in
error; TYPE number in component
library in error; other error
in component library or library
incomplete.

Duplicate component name, or
name mispunched.

Current component has too few
nodes, or a blank or negative
entry was found; an input or
output node has been left
undefined; wrong decision
table (wrong TYPE number) chosen.

Current component has too many
node numbers defined on 'COM'
card, or wrong decision table
(wrong TYPE number) chosen.

An input and output for the
current component have the
same node number: no component
may have an output directly
connected to one of its inputs.

Two or more outputs of one
component have same node
number: output nodes must
be unique.

Two or more components have
the same output node number,
all output nodes must be unique.

Extra components included, or
NNCMP on 'DATS' card in error.

82

Table A-4. (Continued)

FORMAT PROBABLE
MESSAGE STATEMENT CAUSE

NODE TOO LARGE. MAXIMUM 1016
NODE ALLOWED = "NNODE"

ONLY — COMPONENTS INPUT. 1017
— COMPONENTS EXPECTED.

END CARD FOUND WHERE 1026
COMPONENT DATA EXPECTED.

— INPUT NODES REFERENCE 1028
UNDEFINED OUTPUT NODES

A node number for current
component exceeds 'NNODE'
on 'DATS* card; node number
or 'NNODE' in error.

'COM' card missing or mis­
punched; 'NNCMP' on 'DAT3'
card in error.

Component cards missing, or
'END' card following '&CMP'
card.

One or more input nodes have
no component input into them
(see Section 2.2.5); error in
node numbering; other error
in a component which should
have had the node in question
as an output node.

83

A.7 Subroutine STEVE

Subroutine STEVE has three main functions, as shown in the simpli­

fied flowchart of Figure A-5. These are:

1) number internal nodes,

2) set the TOP event, and

3) set boundary conditions.

First, loop 102 numbers the internal component columns, as discussed in

Section A.2. Then, before setting the TOP event and boundary conditions,

loop 201 initializes array X (see section A.2). Then, the input is

searched for a 'TTOP' card to input the TOP event. Should 'SEND' be

found, or later errors occur, this subroutine will terminate, and sub­

routine DRIVER will attempt to find a subsequently valid 'STOP' or

'TTOP' card for a succeeding job.

Once a 'TTOP' card has been found, the input parameters shown in

block 302 will be validated and, if no errors are found, subroutine

STEVE will then read and input the row cards for the TOP event.

If a valid TOP event is found, the final step is to input the

boundary conditions, if any. Since both internal and external boundary

conditions (component columns and system nodes) may be set, either of

two loops, 320 and 330, is used, determined by the code 'INT' or 'EXT'

on the card being read. The subroutine then concludes by printing any

final messages before returning.

Although the flowchart in Figure A-5 does not present a detailed

picture of all the error checks performed. Table A-5 can be consulted

for a list of the error messages which may be produced along with their

causes. Furthermore, in order to more easily trace the succession of

•-s

84

search for 'HOP' card

&END'
'ound?.

CRETURN)

error on

3l1/ Read TOP event
/ row cards

error?

"end ofBoundary^
condi tionj- data.

(RETURN)

■/ Read card]+

write error

write
message

write
message

search for
'&END'

write final
messages

Initialize array x (=-l)

SUBROUTINE STEVE

Validate and
set internal

nodes Validate and
set external

nodes

Set TOP node numbers
into array INODE

Validate TTOP card:
- MROW £ LROW
- NIN £ LNROW
- TOP nodes valid

and unique_____

DO 102
number internal columns
and insert into array INODE

FIGURE A-5. Flowchart for subroutine STEVE.

85

program statements executed when an error is encountered, the follow

ing states of the program flag 'ISET' are set at various stages of

the subroutine to indicate the point at which an error occurred:

ISET = 0 Beginning of subroutine

ISET = 1 'STOP' or 'TTOP' card has been read

ISET = 2 'TTOP' card has been read and validated

ISET = 3 TOP event has been validated

ISET = 4 'SBC has been read

ISET = 5 First 'INT' or 'EXT' card has been found.

86

TABLE A-5. DIAGNOSTICS PRODUCED BY SUBROUTINE STEVE

FORMAT PROBABLE
MESSAGE STATEMENT CAUSE

CARD MISSING OR MISPUNCHED 1003

— CARD EXPECTED: DATA CARDS 1008
MISSING OR MISPUNCHED

NUMBER OF ROWS OF TOP EVENT 1009
EXCEEDS SPACE ALLOCATED

NUMBER OF NODES OF TOP EVENT 1010
EXCEEDS SPACE ALLOCATED

NODE — IS NOT UNIQUE 1011

NODE — IS NOT BETWEEN 1 AND 1012
MNODE

NODE — HAS NOT BEEN DEFINED 1013

END CARD FOUND WHERE " —" 1017
CARD EXPECTED

MORE THAN THE — 'TOP' CARDS 1018
SPECIFIED HAVE BEEN INPUT

COMPONENT " —“ DOES NOT EXIST 1020

NODE — IS A TOP EVENT AS WELL 1021
AS A BOUNDARY CONDITION.
BOUNDARY CONDITION WILL BE
IGNORED.

Card missing, out of order,
extra card or four letter code
mispunched

End of file read where data
expected: 'STOP', 'TTOP' or 'TOP1
cards missing.

1MROW' on 'DATA' card or 'NROW'
on 'TTOP' card in error. 'MROW'
must be >_ 'NROW' for all jobs.

'LNROW1 on 1DAT2' card or 'NIN'
on 'TTOP' card in error: 'LNROW'
must be _> 'NIN* for all jobs.

Duplicate node numbers on 'TTOP'
card.

Non-positive node number, or
node number larger than maximum
node.

Node number refers to non-
existant node; error on 'TTOP'
card or error on previous 'COM'
card.

Cards missing, out of order,
previous error, or extraneous
'END' card.

Too many TOP event row cards;
error in 'NROW'; also check
'MROW' on 'DATA' card.

Attempt to set internal boundary
condition for nonexistant com­
ponent, or one with no internal
columns; error in name on 'INT'
or error on previous 'COM' card.

Attempt to set a boundary condi­
tion at a node defined as the
TOP event; error on 'TTOP' or
'EXT' card.

87

TABLE A-5. DIAGNOSTICS PRODUCED BY SUBROUTINE STEVE (Continued)

FORMAT PROBABLE
MESSAGE STATEMENT CAUSE

‘&END', '&OUT1 OR END 1023, 'END1 or data cards missing
OF FILE FOUND 1025,

1026
or mispunched; extra or mis­
placed '&END' or '&OUT1 card.

UNEXPECTED 'SOUT' READ
(KOUT = 0)

1027 Unexpected PREP data input;
erroneous '&OUT' in data;
KOUT omitted or in error on
'DAT1' card.

'SEND' OR END OF FILE
REACHED WITHOUT 'SOUT'
CARD. REQUIRED PREP
DATA MISSING (KOUT =1).

1028 '&0UT1 missing or mispunched;
PREP data missing; KOUT in
error on 'DAT!' card.

88

A.8 Subroutine DO IT

The actual construction of the fault tree is done by subroutine

DO IT, along with two subsidiary subroutines, XCHECK and REDUCE. DO IT

employs a top-down construction algorithm, which begins with the event(s)

defined by the TOP event and constructs the fault tree in a down­

ward direction, by searching through the system for events which may

lead to the TOP.

A.8.1 Gate Construction

The construction methodology is identical to that developed in

Chapter 3 of Reference 1, and illustrated in Section 3.4 of the current

report. The basic features of the CAT methodology, as implemented in

subroutine DO IT, include the following:

1) The construction and editing of the fault tree are broken down into

three phases: construction and preliminary editing, intermediate

editing, and final editing.

2) The preliminary fault tree construction stage will result in an alter­

nating series of AND and OR gates; however, many gates will later

be eliminated by editing, often resulting in a series of identical

gate types.

The reason for this alternating sequence stems from the method of

utilizing decision tables for the construction of the fault tree.

When, at any point in the fault tree, a decision table is being

searched for rows which match the necessary conditions, an OR gate

will be produced with each matched row as an input. Then, when one of

these inputs (a specific row of the table) is being further developed,

it will lead to an AND gate, with each entry in the row as an input.

89

Finally, should any of these entries require further development, this

will lead to another decision table with those rows matching the proper

state conditions forming an OR gate. Thus, the OR-AND-OR nature of

the fault tree construction is a specific result of the nature of the

decision tables, in which any "TRUE" row results in a "TRUE" result

(OR logic), while each "TRUE" row requires all entries to be "TRUE"

(AND logic).

The development of the TOP event and the OR and AND gate construc­

tion and preliminary editing phases of subroutine DO IT are illustrated

by the flowcharts in Figures A-6 and A-7. Since the TOP event is

basically a decision table used to start the fault tree construction

process, the initial phases of DO IT merely determine the nature of the

TOP gate, and send it to the proper location for further development

(Loop 200 for an OR gate, loop 300 for an AND gate). Note that a TOP

OR gate automatically implies a multiple input TOP gate (i.e., the

TOP event decision table has multiple rows). However, a TOP AND gate

might consist of only a single entry, of the form: "state j at node i."

This single input gate will be immediately replaced by an OR gate,

whose entries are the rows of the decision table of the component

whose output is connected to node i, and whose output states are j.

Once the proper gate type for the TOP event has been determined,

the construction phase itself begins, and sections 200, 300 and 400

of DO IT will be executed repetitively for each gate. For each OR

gate, loop 200 will be performed as follows (Figure A-6). First,

the index 'JDEX' will be set to the number of the gate above the

current OR gate ("INDEX" is the number of the current OR gate itself).

90

SUBROUTINE DO IT

singT^
input t>

TOP = OR|

Set entries for OR gate

Set entries
for AND gate

OR LOOP

check component rows
______ for matches

eliminate gate:
current gate
cannot occur

no fault
tree

Jj RETURN)

1 row? backtrack to
previous gate

single input OR
gate: develop

as AND
Set indices

develop first
branch as
AND gate

eliminatE
gate

xirrent branch
= last inputj.

gate finished

start new
gate

reset inputs to
eliminate branch

start new
branch

Figure A-6. Flowchart for TOP Event and OR Gate Algorithm
of Subroutine DO IT

91

|AND LOOP 1

initialize

Check for preset nodes
and set system states for
events beneath AND gate

inputs all
preset

delete gate:
gate always

true
,ND gati

1 input. backtrack to
previous gateSingle input AND

reset nodes beneath
gate to undefined

set gate inputs
gate
complete

/any \
mdevelopei
-branches>

develop gate
as OR____

develop backtrack to
gate abovefirst

branch
yes/^^\334

. /irrent braM
[gate finisheq/last input>

late above
<inished>gate .

fi nished Start new
reset inputs to
eliminate branch

start new
branch

Figure A-7. AND Gate Construction Flowchart of Subroutine DO IT

Then the component whose output is connected to node "JNODE" (as

stored in location "KDEX" of gate "JDEX") will be located, and its

rows searched for those with the proper output state, "IMODE." Those

rows having the correct output state will also be searched, and any

whose entries do not contradict any system or component states in

existence, will be input into the OR gate. Thus, each row input into

the final OR gate will match all current system states in existence.

Three situations may be encountered at this stage:

1) Several rows match the necessary conditions: in this case,

the current OR gate has multiple inputs, and the first input

will be developed as an AND gate, numbered "INDEX + 1," in

section 301.

2) Exactly one row matches: the current OR gate has only one

input, and thus will be deleted and replaced by its single

input. That is, its single input row will be developed in

section 300 as an AND gate, numbered "INDEX," which replaces

the single input OR gate, which was numbered "INDEX."

3) No rows match the necessary conditions: that is, the OR gate

cannot occur and must be eliminated. If this is the TOP gate,

then the TOP can never occur under the stated boundary

conditions, and no fault tree can be constructed. If there

is an AND gate or a single input OR gate above, this, too,

cannot occur, and must be deleted, along with any AND or

single OR gate it may be input into. If this leads back to

the TOP, then no fault tree can be constructed. However, if

a multiple input OR gate exists anywhere above the current

OR gate, then only the single branch containing the current

93

gate need be deleted as a "cannot occur" branch. If this is the final

branch of the gate, then the gate is finished, and is sent to location

410 for intermediate editing. If further branches remain to be con­

structed, the OR gate is set to location 401 to reset its indices and

begin development of the next branch.

Thus it is seen that development of an OR gate can lead to develop­

ment of lower gates (cases 1 and 2), or to removal of gates and dele­

tion of branches of gates above (case 3).

Several of these concepts are also utilized in loop 300 (Figure

A-7) for constructing AND gates. Loop 300 is entered each time a row,

input into an OR gate, is to be developed. As such, it has already

been checked for contradictions, and the first step of the AND loop

is to check for any row entries which match existing conditions. Since

entries which duplicate existing system states are "sure to occur" (they

have "already" occurred), they are treated as TRUE inputs into the AND

gate which need neither be shown nor developed. However, should any

entry in the row refer to a node ("KN0DE") at which no state has yet

been defined, the following will occur:

1) X(1,KN0DE) will be set to the state required by the row

entry, and

2) X(2, KN0DE) will be set to "INDEX" (the number of the current

AND gate).

This is done to assure that all events developed beneath this gate are

mutually compatible with (i.e., do not contradict) all other events

below, as required for an AND gate. Since all succeeding events occurr­

ing at this node will be checked against array X, this compatibility

is assured.

94

Once all entries in the row have been checked against system and

component states, those entries which represent previously undefined

events will remain as inputs into the gate. As in the OR gate construc­

tion, three possibilities now exist:

1) Several new events have been found (i.e., states at several nodes

have been found): thus, a multiple input AND gate exists. If all

of these inputs are primary events, the gate is complete, and

location 410 will be executed (post-gate intermediate editing).

If one or more undeveloped inputs exist, they will be developed

as OR gates (section 202).

2) A single input has been found: the gate is not a true AND, and

the single entry set into array X must be reset to -1 ("undefined").

If the single input is an undeveloped event, it will be sent to

location 203 to be developed as an OR gate, replacing the current

AND gate. If the single input is a primary input, it will be

directly inserted into the gate above. If the gate above is thus

completed, it is sent to location 410 for intermediate editing; if

further branches remain, location 400 is entered to reset indices

and begin the next branch.

3) No previously undefined states have been found: thus the AND gate

is automatically TRUE and will be deleted. If this is the TOP gate,

the fault tree has no entries (is always true under the stated

boundary conditions). Otherwise, section 331 will delete any OR,

or single input AND gates above, up to the lowest multiple input

AND gate, as "sure to occur." If no such multiple input AND gate

is found above the current AND, the top event is always TRUE.

95

However, if such a multiple input AND occurs above the current

gate, only the current branch is deleted, and the next branch can

then be begun (location 400). If there are no further branches,

then that AND is finished, and loop 410 is entered for intermediate

editing.

A.8.2 Intermediate Editing

This completes the construction and preliminary editing phases of

subroutine DO IT. The Intermediate Editing phase is then entered, as

is illustrated by Figure A-8. This loop is entered (locations 400 or

401) any time a branch of a gate is completed. If further branches

remain to be completed, section 401 sets indices for the next branch

and sends it to the proper (AND/OR) loop to construct the next branch.

Notice that if the current gate is an OR, and the last branch completed

was an AND gate, system nodes will have been set which must be reset

(set to "undefined") before the next branch of the OR is constructed.

These nodes will be indicated by:

X(2, NODE) > JDEX,

(where "JDEX" is the number of the current OR gate), since all gates

below the current OR will have larger indices.

If the current gate has been completed, and more than one input

exists, the intermediate editing phase for the appropriate gate type

will begin. (If only one input remains, see section 485).

The intermediate editing algorithm for AND gates (reference A-2)

is required because the removal of single input OR gates may lead to

contradictory events beneath an AND gate. Such a situation is illus­

trated by the following figure:

96

Figure A-

SUBROUTINE DO IT
INTERMEDIATE EDITING

Current branch of gate 'JDEX' complete

-Fuffherbrancftesi_

GATE COMPLETED ^u/rrenK. no
Vgate * AND£> »

Develop nMt branch,
which will be OR gate

Current gate is OR.
Reset any nodes which
have been set by AND
gates beneath previous
branch.

X
Develop next branch,
which will be AND gate

OR GATE
INTERMEDIATE EDITING

♦
Reset any nodes which

have been set by AND gates
beneath final branch

454 over all gates input
into gate 'JDEX'

check second level gates ('JDEX2'
and third level gates ('JDEX3')
for primary Inputs which duplicate
or contradict themselves or inputs
into first level gate (JDEX1)
eliminate duplicate or contra-
dictory inputs

CALL XCHECK:
check for redundant
primary inputs

DO 456 over all OR
gates input into gate 'JDEX'
- check for redundant inputs

Current gate has single input.
Delete gate and insert its input
directly into gate above

Removal ot UK gate has
produced chain of AND
gates, or direct primary
inputs into AND gate above
Set primary component node
states for these into AND
gate above.

5. Flowchart for Intermediate Editing Loop of Subroutine DO IT

97

Since primary events and are beneath separate OR gates,

these primary inputs do not affect one another. However, once branch

2 of OR gate 3 has been eliminated, gate 3 itself can be removed and

primary event becomes input into AND gate 1. In the resulting

tree, event B-| is forced to occur for gate 1 to be true, and thus

both A.j and B^ should be compatible with it. That is, if the original

tree is represented by:

(A-j u A2)n (B1 U b2) f <►,

then A^B2 f <|> or A2B2 f <|> would satisfy it, even if A^B^ = <)> and

A^ = <}). However, the elimination of B2 leaves:

(A1 u a2) n B1 ^ <().

In this case, if A^B^ = <|>, or A2A^ = $ then A^ or A2 may be removed

without affecting the tree. The effect of this elimination is a more

compact tree, although the previous form would still be correct. If,

however, A^B^ = $ and A2B^ = <|>, then

98

(A-j U A2) ^ B-j - (j>,

and the entire subtree 1 should be eliminated.

A third situation arises if, in the original tree, A-j or A2 was

identical with In this case, the reduced tree would become:

(A] U A2)n b1 = By

Thus gate 1 becomes a single input gate, and is replaced by the input

B-j itself.

In Subroutine DO IT, this type of editing is performed by loop 454

each time an AND gate is completed. For any AND gate "JDEX", all

second level gates (gates directly input into JDEX) and third level

gates (input into the second level gates) are searched for such redun­

dant or contradictory events (all primary inputs to all three levels

of gates are checked against each other). Note that this may lead to

zero or single input gates beneath the current AND gate, which will be

edited out by calls to subroutine REDUCE.

When the AND gate edit is completed, and multiple inputs remain,

loop 482 is entered to begin the next gate. If only a single input

remains, section 485 is entered to delete the gate. Finally, if no

inputs remain, the AND gate either cannot occur (go to 213 to edit

gates above) or is "sure to occur " (go to 331 to edit gates).

Although intermediate editing is not required for OR gates, it can

be useful in simplifying some fault trees. The basis for the OR gate

intermediate editing is the concept of minimal cut sets, as follows.

If an event occurs as a direct input to an OR gate, and to an AND gate

below, the AND gate is redundant and can be deleted, along with any

AND gates above, up to the lowest OR. This can be seen by referring

99

to the figure below and using the definition of minimal cut sets [A-3].

The cut sets for gate I are (A) and (A,B). However, since (A) is

minimal, (A,B) can be eliminated and gate I replaced by the single

event A.

The more general situation is shown in Figure A-9. This tree

represents the upper three levels of a typical sub-tree beneath an OR

gate, and illustrates the level of editing actually performed in

section 455 of DO IT.

First notice that all events A^, B and C are equivalent, lying beneath

direct OR gates. That is, any one of these events represents a

minimal cut set for gate 1. Thus each of these must be checked

against the primary inputs to the AND gates 4, 5 and 7, as well as

against the inputs to OR gate 6, whose events are not minimal, since

they lie beneath AND gate 5. This cross checking is performed at

each gate level by subroutine XCHECK.

Additionally, it is seen that primary events D, E and G are equi­

valent, since each lies beneath an AND or chain of AND's and is input

to the top OR or chain of OR's. Thus, should any of the events A^, B

100

Gates
LowerLower

Gates
Lower
Gates

Lower
Gates

Figure A-9. Sample Tree for Intermediate Editing

or C be identical to D, E or G, the appropriate AND would be deleted

and, in the case of event G, both gates 7 and 5 would be eliminated.

Event F presents a different situation. Each individual event beneath

gate 6 couples with gate 7 and event E to form a different cut set.

If event F is itself minimal, only that cut set containing F need be

removed from beneath gate 5. Thus event F would be deleted from gate 6,

leaving any other branches intact. If this leaves gate 6 with a single

input, then that gate would be eliminated and the lower events would

input into gate 5. However, this could result in a direct primary

input, or AND gate input to gate 5, requiring further editing which

could eventually lead to the removal of gate 5 itself. Specifically,

in DO IT, section 458 checks for events B identical to events A, loop

461 checks events C against A and B, and loop 478 checks events D, E,

F and G. In order to do this, section 456 resets any nodes set by AND

gates below the current gate, and sets nodes for each event found by

the successive loops. Thus, for example, should loop 458 find an event

B which matches an event A already set, that event will be deleted as

redundant. However, any events B not already found will then be set

in array X, to be checked by later loops for C, D, E, F and G.

Following the OR gate edit, the number of inputs remaining is

checked, as in the AND edit, and similar actions are taken. Finally,

when either type gate is completed (step 482), it is checked to see if

the TOP gate. If so, the tree is finished (step 500). If a further

gate remains above, it is sent to location 401 if other branches remain,

or to location 410 if that gate itself has been completed.

If in the process of the intermediate editing, a single input

102

gate is produced, section 485 is also executed. The first step is to

delete the gate and insert its single input into the gate above. Then,

if the gate deleted is an OR, and the gate above is an AND, nodes must

be set by the AND gate above in the event any AND gates or primary

events are directly input into it. That is, since any events directly

input into an AND (or into a chain of AND's) must be set into array X

to assure no contradictory events beneath, sections 490-4999 check all

direct sequences of AND gates, down to 5 succeeding levels, for primary

events which must be set for the AND gate above.

A.8.3 Final Editing

The flowchart for the final editing phases of DO IT is shown in

Figure A-10. This consists primarily of writing fault tree output and

producing gate transfers. First, if the TOP gate has only a single

input, it is replaced by the gate input into it (or is left as is if

the input is a primary event). Then, following a preliminary gate

printout, a search is made for transfers (if I EDIT has been properly

set).

This transfer search proceeds from the bottom up using the follow­

ing algorithm:

1) Search for gates with only primary inputs into them (these are

the lowest level gates). If any gates have identical inputs,

remove the duplicate gate and replace by a transfer (this is

done by using the same gate number for both gates).

2) Search for gates with only primary inputs and gates input

which have already been checked for transfers. Note that

since higher numbered gates are always input into lower

103

Figure A-10. Flowchart for Final Editing Phase of Subroutine DO IT

104

numbered gates, by starting the search from the highest

numbered gate, it is guaranteed that all inputs to a higher

level gate will have been checked by the time that higher

level gate is reached. Then, for each gate, check to see if

its type (AND/OR) and numbers of gate and primary inputs

coincide with any other gate. If so, and if all inputs are

identical, the gates are duplicates, so a transfer can be

produced.

Finally, after transfers are checked, the gates are renumbered

consecutively to fill in any gaps left by the editing phases, and

final printout is produced.

A.8.4 Error Messages from DO IT

In addition to a large number of messages produced during the

fault tree construction phases, several error messages may be produced

by subroutine DO IT. Most are self-explanatory, and concern fault

trees which "cannot occur", are "sure to occur," or are too large for

the current dimensions of array MAT (Section A.3). One additional

message, produced by FORMAT 1, has the following form:

* ERROR NUMBER nnn ****************

This message will not occur with the present version of the code un­

less certain programming modifications are made which produce internal

code errors within DO IT. In these cases, this message will serve as

a debugging aid, pointing to one of 13 locations where the error was

detected. The number "nnn" refers to a program statement number either

just before or after this message was printed (a double row of asterisks

105

in the program indicates the location of each of these). If such a

message ever occurs, the program logic should be checked at that

point to determine what caused the message, and any program modifi­

cations which affect the variables in question can then be searched

for errors.

106

A.9 Subroutine XCHECK

As pointed out in Section A.8.2, subroutine XCHECK is called by

DO IT in the intermediate OR gate edit, in order to check and set

nodes to eliminate redundant events beneath OR gates. The input flag

ISTART is set by DO IT as follows:

ISTART = 1 check and set nodes for check of direct primary

inputs (A, B and C of figure A-9).

ISTART = 0 check, but do not set nodes for OR-AND-OR gates

(inputs F).

ISTART = -1 check, but do not set nodes for OR-OR-AND/OR-AND-

AND gates (inputs D, E, G).

Internal variable ISET is then set to ISTART.

This subroutine then cross checks all primary inputs to the current

gate with any primary component states already set into array X. If

no preset state is found, the current input is not redundant, and the

next input is checked (after setting the current state into X if

ISET =1). If the current state has already been preset into array X,

it is redundant and the current input will be deleted. Note that if

ISET = -1, the current event inputs an AND gate, and subroutine XCHECK

returns to DO IT where the entire gate will be deleted (Figure A-ll).

Finally, if a state different from the current state has been

preset at the same component node "JNODE" in array X, this means that

multiple states of the same component exist beneath the OR gate (a

valid situation). In this case, array location X(2, JNODE) is set to

the negative location in array GATE where a further state for that

node may have been set (if X(2, JNODE) ^ -1, no further states exist).

107

SUBROUTINE XCHECK

DO 110 over all inputs:
check all component
states against preset
nodes in array x

/Xurreht
componenp—

already, set?
ISET < 0?

Set current component
mode into array x

Current,
SET < -

State redundant.
Delete current
primary input

State not a duplicate

ISET <

Set this state as an
additional state of
current component

CONTINUE
ISTART = -1

Figure A-ll. Flowchart for Subroutine XCHECK.

108

This location in array GATE may point to additional locations where

further states have been set. Thus several different component states

may co-exist under the same OR gate, and each must be compared with

the current state. If a redundancy exists between the current state and

any of these, the current input is treated as before. However, if it

is different from each of the others, a new location is set (if ISET = 1)

by setting the last location checked in array GATE equal to the negative

location of the current state, thus pointing to the new additional mode

of node JNODE. This, then leads to a chain of indices, each pointing

to the location of the next state of node JNODE. (Note that the final

location is indicated by a positive number which may later be set to

a negative pointer if further states are found).

109

A. 10 Subroutine REDUCE

Subroutine REDUCE is called by DO IT in order to delete zero and

single input gates. Its flowchart is shown in Figure A-12. LLDEX is

first set by DO IT to the number of inputs (0 or 1) of gate "JDEX2,"

which is input into gate "JDEX." If JDEX2 has no inputs, that input

location in gate JDEX is eliminated, the number of gates input is

reduced by one, and the empty location is filled by moving up sub­

sequent inputs.

If LLDEX = 1, the single input into gate JDEX2 is input directly

into JDEX. Note that if the single input is a primary input, this

means that a gate input into gate JDEX is being replaced by a primary

input. Thus, entries must be switched to assure that the new primary input

in JDEX follows all gate inputs.

A special situation may arise if this subroutine was called from

the OR gate intermediate edit region of DO IT, where negative gate

entries serve as pointers (section A.9). In this case, moving entries

to fill deleted inputs may move a pointer. Thus, inputs so moved must

be checked, and the pointer changed to indicate the new location.

110

LLDEX = 1?

C RETURN)

Is sing!

a gate?

(RETURN)

(RETURN)

SUBROUTINE REDUCE

Input this gate
directly into gate

above

OR gate edit region, reset
primary input pointer

If REDUCE was called from

Current gate (JDEX2)
has no inputs. Delete this
input from gate above (JDEX)

Current gate (JDEX2)
has single input. Input
this directly into
gate above (JDEX)

Single input is a
primary input. Input
this directly into
gate (JDEX) above,
following any gate

inputs.

Figure A-12. Flowchart for Subroutine REDUCE.

A.11 Subroutine OUTPUT

The final routine to be called by DRIVER is subroutine OUTPUT.

Its function is to produce the fault tree along with failure data and

control information, required as input by the PREP code. By using the

CAT input parameter "lOT” to specify the device number to which the

output is to be sent, either punched cards, tape or disk output may be

produced, in the input format required by PREP. In addition, this

identical output, along with further information in the form of cross

references, and error messages, is printed by this subroutine following

the output from the fault tree construction and editing phases. A

simplified flowchart of subroutine OUTPUT is shown in Figure A-13,

and is described below. It should be noted that, if a fault tree

analysis code other than PREP is desired to be used with the CAT code,

the basic structure of this subroutine may still be used in many

cases, with suitable changes in input/output formats, naming or

numbering conventions, order of output, etc.

Since the PREP input data required is of three types, subroutine

OUTPUT has been programmed in three sections. These correspond to

statement numbers 100-150, 200-400 and 500-590 in the program listing,

and produce the output for the "DATA," "TREE" and "RATES" input

sections for the PREP code, respectively. Additional pre- and post­

processing is done in other sections of the subroutine. For example,

integer array "IDUM" and alphanumeric arrays "INAME" and "JNAME" are

initially cleared in sections 10-30, along with setting certain flags

and writing output headers.

The first output produced by the code is the control data for

112

1 SUBROUTINE OUTPUT

/ READ PREP control data?

Set IREAD

Compute NG = number of gates

Write title and control data
onto device ‘I0T1

•*{ DO 400 over al1! gates

f Find valid gate (SATE(NDEX) > 0)7

[Set gate name and type]

Split current gate into
multiple gates with _< 7 inputsinputs

|D0 399 over all new gates'|Set number of gate and primary inputs]

Set name of gate andrSetnames for gates and components

Write current gate on device 'lOT1' and componer

iWrite current gate on 'IQT']

fast new gate?’Sort component code numbers
into ascending numerical order

PREP data missii
Skip failure da< section

Read and write failure
and repair data ;

-/ read card/-
Validate 1st half of
input data card

message

Store data into half
of output line

Write output line

Validate 2nd half of
input data card

fal id c< Write
messagemd mot

Store data into half
of output line

romplete?*

Write output line

Write last
half lineof out|

Write
message'missing?

[Write component crossindex

•xtra cards
or end of

(RETURN)

Figure A-13 Flowchart for Subroutine OUTPUT

113

PREP. This is read between statements 100-110, and stored in array

IDUM and as variable TAA. Should one or both of the two control data

cards be missing from the 'SOUT' section of the CAT input data, the

PREP "DATA" output would still be produced, but with zeroes in place

of any missing data. In this case, error messages would also be

produced and the flag, "IREAD" would also be set, to suppress further

attempts to read or crosscheck the missing data. Note that if an

"&END" or end of file has already been read by subroutine STEVE, flag

"IREAD" will be set immediately, and the initial read statements in

OUTPUT will also be bypassed. Since the value of "NG" (the number

of gates in the fault tree) is not known beforehand, its value need

not be input to CAT. This number will be set in loop 150, and all

control data will then be written onto device "I0T."

Loop 400 is executed once for each gate, in order to write out

the fault tree itself in the required PREP input format. This is

done by storing gate and component names letter-by-letter (and digit-

by-digit) in arrays INAME and JNAME. INAME stores the current gate

name as eight characters, in the form "GATEnnnn" (except for the

first gate, which must have the name "TOP"). This is followed by

the gate type, AND or OR, (stored in NKIND), the numbers of gates

and primary components input (INGATE, IPRIME), and the names of the

gates input, followed by the primary components (stored as eight

character groups in array JNAME).

The majority of loop 400 is concerned with generating the required

names, character-by-character. For components, as discussed in

Section 2.3, this consists of combining the four digit "internal node

number" with the four digit component state into one eight digit

114

number which serves as the name of that component failure state.

Gate names are simply the word "GATE" plus the gate number itself (up

to 9999 gates can be accomodated with the eight character name).

However, should CAT produce a gate with more than the seven inputs

allowed by PREP, loop 399 is entered, to split the single large gate

into several smaller gates. This is done by creating seven (or

fewer) new gates of the same type, and inputting them into the large

gate above, each of the newer gates taking up to seven of the original

inputs. For an original gate named "GATEnnnn," these new gates would

be named "GATlnnnn," "GATPnnnn," up to "GAT7nnnn" if necessary. Note

that if the TOP gate has more than seven inputs, the additional gates

would be named "GAT10001," "GAT20001," etc., even though the original

gate would retain the name "TOP."

Following the fault tree printout, subroutine OUTPUT will then

produce the failure data output. The first step is to arrange the

newly created component state numbers into numerical order, in order

to have a rapid means of checking the failure data for either extra,

or missing components or failure states. This is done in sections

410-460. Since the fault tree is no longer needed, array GATE is

used for this table: locations 1-NC0UNT store the component state

numbers, and locations (NCOUNT + 1) - (2*NC0UNT) will be set to 1 when

the appropriate input data are later validated. Then the failure

data can be read in (statement 500), checked against this table, and

output to PREP if this component and state actually appear in the

fault tree. Again, flag IREAD is used to bypass the input operations

if data are missing.

115

components, each half of these cards is treated essentially indepen-

dentally, permitting one half of a CAT input card to be written into

the opposite half of the PREP data card. This is done utilizing two

flags with the following states:

ILOOP = 1 currently validating first half of input card

ILOOP = 2 currently card validating second half of input card

JLOOP = 1 first half of current output card available

JLOOP = 2 first half of current output card filled, second
half available.

The program then proceeds as follows. Both halves of an input

card are read (statement 500), ILOOP is set to 1, and the first com­

ponent is validated. If valid, the component data is stored in the

first half of the output locations if JLOOP = 1, and into the second

half if JLOOP = 2. If JLOOP = 2, the output locations are now full,

and a complete output card is written onto 'I0T.' In either case,

both ILOOP and JLOOP are set to the opposite states, and the vali­

dation of the second half of the input card begins. After repeating

the above sequence, one full input card has been validated, and the

next input card is read.

The validation itself consists of the following. First, the

current half-card is checked to see if blank (although PREP requires

both halves of each card to contain data, CAT will accept cards with

either one or two sets of data). If input is present, array "CMPNAM"

is searched to see if that component exists. If it does, its index

number "NDEX" is used, along with the internal column number "INT"

and failure state "STATE" (as input on the data card) to generate

Since each input and output data card contains data for two

116

the required eight digit reference number (see Section A.2). This

number is checked to see if it appears in the ordered table (the first

half of "GATE"), generated in 410-460. If so, then the current data

are stored in the correct output locations, and a flag is set in the

second half of "GATE" to indicate that data for this state has now

been input. However, if the component name, as input, does not exist,

the specific failure state reference number does not appear in the

fault tree or data for that number has already been input, an approp­

riate message is written, and no values are stored.

When no failure data cards remain (as indicated by "END," "&END"

or "end-of-file,") statements 580 and following will write any remain­

ing half of an output data card onto device "I0T." This completes

the PREP output phases, and loop 620 of subroutine OUTPUT then

searches the second half of array "GATE" to make sure that data has

been read for all component failure states. If data is missing, each

component and state without failure data will be listed. Then, a

cross reference of the eight digit component failure state numbers,

with their corresponding input names, node numbers and failure states,

is produced in section 700. Finally, section 900 is executed,

depending on the state of the flag IREAD, to read or bypass any

remaining input. If an "&END" or end-of-file was already read

(IREAD = 0, 2, 3, 5 or 7), no data remains. However, if "END," or

an unknown card type was last read, the subroutine will search for

an "&END" or end-of-file before returning.

117

REFERENCES

A-l. Salem, S. L., G. E. Apostolakis and D. Okrent, A Computer-
Oriented Approach to Fault-Tree Construction, ERRI Report
NP-288, Palo Alto, Ca., November 1976.

A-2. Salem, S. L., G. E. Apostolakis and D. Okrent, "A New
Methodology for the Computer-Aided Construction of Fault
Trees," Annals of Nucl. Energy, vol. 4, pp. 417-433,
1977.

A-3. Vesely, W. E., "A Time-Dependent Methodology for Fault Tree
Analysis," Nucl. Engr. and Design, vol. 13, No. 2, pp. 337-360,
August 1970.

118

APPENDIX B. DECISION TABLE MODELS

In order to make effective use of the CAT code, it is desirable

for the user to develop a basic library of component models for the

types of systems he expects to analyze most frequently. Chapter 3

of this report has discussed two methods by which decision table models

may be readily constructed. As a further aid to the user, this

appendix will present a number of decision tables which may serve as

examples for subsequent decision table development.

The decision tables which follow are not intended to be completely

detailed component models. Rather, they are intended to represent

the basic feature of a number of varied components. Thus, quite often

several failure modes have been combined into one when their effect on

the output is identical. Furthermore, several of the simpler decision

tables may be used to model a wide range of components either

unchanged, or by means of a few simple additions or deletions.

Two special modeling considerations have been illustrated in

these examples. First, a method of treating common cause failures

has been introduced in the three-state amplifier model. This approach

can be useful for producing decision tables which treat such common

cause mechanisms as calibration errors, operator errors, design errors,

design deficiencies, etc. Secondly, the manner of including external

power sources into component models has been shown in the general

pump table.

If the user desires to develop more complex decision table models,

or to add to these samples, the recent IEEE Std 500-1977[B-1] may

serve as a good reference for the failure modes and failure rates of

119

electrical components used in nuclear systems. In addition. Appendix

III of the Reactor Safety Study [B-2] contains failure modes and rates

for many types of nuclear components.

The sample tables presented here include the following component

models:

1. Amplifiers/sensors

2. Annunciator

3. Batteries/power supplies

4. Cables/resistors

5. Circuit breakers/contacts (normally closed)

6. Contacts (normally open)

7. Fuse/circuit breaker

8. Pipe/fitting

9. Pump/general active component

10. Signal source

11. Swi tch

12. Valve (motor-operated)

AMPLIFIERS/SENSORS

These amplifiers model a three state "unity gain", or isolation

type amplifier, and a very simple, two state inverting amplifier. Note

that the first model could be easily extended to represent an amplifier

with positive gain. Notice also that this model is a very simple exten­

sion of the decision table for cables and resistors which, themselves,

can be considered unity gain amplifiers. The only change has been the

addition of the states 5001, 5010 and 5011 (calibration errors) to the

amplifier model. This amplifier model could also be used to represent a

sensor circuit which produces an output proportional to the measured

variable.

120

THREE STATE AMPLIFIER

Row Input
Internal

Mode Output

1 0 -1 0

2 -1 1 0

3 -1 1001 0

4 -1 5010 0

5 1 0 1

6 -1 5001 1

7 -1 1002 1

8 2 0 2

9 -1 5011 2

10 -1 1002 2

Using the above model for several identical amplifiers in a system

would produce a fault tree with independent calibration errors for each

amplifier. It is, however, possible to include common mode calibration

errors via an additional external input. If a common "signal" were

sent to the calibration inputs of several amplifiers using the table

below, all amplifiers would simultaneously fail due to this common

mode error. Furthermore, both independent and common mode failures

could be included in this model by adding rows 4, 6 and 9 from the

previous model (with 'O' for the second input column).

121

THREE STATE AMPLIFIER WITH COMMON MODE
CALIBRATION ERROR

Row
Signal

Input
Calibration

Input
Internal

Mode Output

1 0 0 -1 0

2 -1 0 1 0

3 -1 0 1001 0

4 1 0 0 1

5 -1 0 1002 1

6 2 0 0 2

7 -1 0 1002 2

8 -1 1 -1 0

9 -1 2 -1 1

10 -1 3 -1 2

The decision table for the calibration input "component" would

have the following form:

Row
Internal

Mode Output

1 0 0

2 5010 1

3 5001 2

4 5011 3

A single "component" using this model could be defined as input

to all amplifiers; alternatively, several different components could

be used, each as input to a specific group of amplifiers which would

be calibrated at the same time or by the same person. Finally, such

a model would be useful for comparator circuits, sensor circuits,

trip logic, etc.

The above models could be also extended by the addition of a

122

power supply input, whose failure would produce the zero output state.

A final amplifier is the following highly reduced model for a

two state invertor:

INVERTOR AMPLIFIER

Row Input
Internal
Mode Output

1 1 0 0

2 -1 1 0

3 0 0 1

4 -1 1002 1

This model is useful for representing sensor circuits which produce

an output when the measured parameter falls below a preset value. In

this case, calibration errors could be included, as before. Further­

more, this can be useful for driving such circuits as the annunciator

which is described below.

ANNUNCIATOR

The function of this communicator is to produce an alarm (output)

on receipt of a signal. If an alarm on a zero signal is desired, an

inverting amplifier (such as described previously) may be inserted

before the annunciator.

Row Input
Internal

Mode Output

1 0 0 0

2 -1 4 0

3 1 0 1

4 -1 6 1

123

BATTERIES/POWER SUPPLIES

This model provides a signal (voltage) source to those components

which explicitly include a power supply input. Since a single power

supply may be used by many components, this may provide a major common

cause failure mechanism.

Internal
Row Mode Output

1 3 0

2 0 1

3 1003 2

CABLES/RESISTORS

This decision table can be used to represent any general type of

transmission device (cable, resistor, connector, etc.). It is very

similar to the previously described unity gain amplifier with the

omission of the calibration errors. It is also similar to the decision

table for a pipe, with the addition of "short circuit" failure modes.

If the cable or resistor cannot withstand an overload, the fuse model

should also be consulted.

Row Input
Internal

Mode Output

1 0 -1 0

2 -1 1 0

3 -1 1001 0

4 1 0 1

5 -1 1002 1

6 2 0 2

7 -1 1002 2

124

CIRCUIT BREAKERS/CONTACTS (Normally closed)

This model represents a circuit breaker which trips on an external

signal. Note that this is identical in operation to normally closed

contacts which open on a control signal. A protective circuit breaker

(trips on overload) will be described later as the fuse model.

Row
Voltage

Input
Control

Input
Internal

Mode Output

1 0 -1 -1 0

2 -1 1 0 0

3 -1 -1 1 0

4 -1 -1 6 0

5 1 0 0 1

6 1 -1 2 1

7 2 0 0 2

8 2 -1 2 2

CONTACTS (NORMALLY OPEN)

The function of this component is to close on an appropriate

signal. This model is essentially the inverse of the previous one.

Row
Voltage

Input
Control

Input
Internal
Mode Output

1 0 -1 -1 0

2 -1 0 0 0
3 -1 -1 1 0

4 1 1 0 1

5 1 -1 2 1

6 1 -1 6 1

7 2 1 0 2

8 2 -1 2 2

9 2 -1 6 2

125

FUSE/CIRCUIT BREAKER

This table represents a component (such as a fuse, fusible resistor,

or circuit breaker) which is designed to fail on an overload.

PIPE/FIT

Row Input
Internal

Mode Output

1 0 -1 0

2 -1 1 0

3 2 0 0

4 1 0 1

5 1 2 1
6 2 2 2

ING

The pipe decision table is a mechanical equivalent to the electri­

cal cable model. Note, however, that there is no equivalent to an

electrical short in this model.

Row Input
Internal
Mode Output

1 0 -1 0

2 -1 3001 0

3 -1 3002 0

4 -1 3003 0

5 1 0 1

PUMP/GENERAL ACTIVE COMPONENT

This is the pump model developed in Section 3.2. A large number

of components can be represented by a model such as this, which requires

both a source of power and a signal (fluid) input in order to operate

(produce an output). Note that this can also be used to represent a

two state amplifier with external power supply.

126

Row
Fluid
Input

Power
Input

Internal
Mode Output

1 0 -1 -1 0

2 -1 0 -1 0

3 -1 -1 4 0

4 -1 -1 5 0

5 1 1 0 1

SIGNAL SOURCE

Since CAT requires all component input nodes to be connected to

a preceding component output node, this signal source may be connected

to any component input (Section 2.2.5). Since this model has no in­

puts, any backtracking by the code will terminate here. A signal

source may be used for the following purposes:

1) To connect to component inputs such as amplifier or sensor

inputs. Often the state at such a node will be preset by a

boundary condition.

2) To connect to component inputs which will not be used.

Row Internal Output

1 0 0

2 1 1

3 2 2

4 3 3

etc.

SWITCH

This is the model for the ON-OFF switch developed in Section 3.5

of reference B-3. It has been generalized to a three-state table.

127

This switch has two internal modes: Position (1 = off, 2 = on), and

mechanical(0= good, 1 = failed open, 2 = failed closed). Note that

the position column could be treated as an external input, and would

then behave as a relay.

Row Input Position Mechanical Output

1 0 -1 -1 0

2 -1 1 0 0

3 -1 -1 1 0

4 1 -1 2 1

5 1 2 0 1

6 2 -1 2 2

7 2 2 0 2

VALVE (MOTOR-OPERATED)

This decision table models a motor-operated isolation valve with

slip clutch. This valve is designed to remain closed (isolate) as long

as its input is under high pressure (input =1). A discussion of this

valve model has been presented in section 4.2.1 of reference B-3. The

first input is the fluid input, followed by the control signal and

maintenance override inputs (the latter used to bypass the externally

interlocked control signal). The four internal modes include an initial

position (1 = left open, 2 = left closed), mechanical state, slip

clutch and relay failure states, followed by the output. Note that

the slip clutch is used to prevent the valve from opening while under

pressure, and that the relay is designed to "lock in" on a control

signal and assure that the valve opens and closes fully.

128

Row
Fluid
Input

Control
Input

Maint.
Input Position Mech. Clutch Relay Output

1 0 -1 -1 -1 -1 -1 -1 0

2 1 -1 -1 -1 1 -1 -1 1

3 1 -1 -1 1 -1 -1 -1 1

4 1 1 -1 -1 -1 1 -1 1

5 1 -1 1 -1 -1 1 -1 1

6 -1 -1 -1 2 0 0 -1 0

7 -1 0 0 2 0 -1 0 0

8 1 -1 -1 -1 -1 1 1 1

129

REFERENCES

B-l IEEE Std 500-1977, "IEEE Guide to the Collection and Presentation
of Electrical, Electronic and Sensing Component Reliability Data
for Nuclear-Power Generating Stations".

B-2 U.S. Nuclear Regulatory Commission, Reactor Safety Study, WASH-1400
(NUREG-75/014, October 1975.

B-3 Salem, S. L., G. E. Apostolakis and D. Okrent, A Computer-
Oriented Approach to Fault-Tree Construction, EPRI NP-288,
Palo Alto, November 1976.

130

APPENDIX C

SAMPLE CASE

A simple example system has been developed in order to illustrate

the use of the CAT code. This example is an extension of the system

used in Section 3.5 of reference C-l to demonstrate manual fault tree

construction techniques.

This system, shown in Figure C-l, is a simple electrical circuit

with an operator in a feedback loop. Signals 1 and 2 are simple two

state inputs, defined to be in existence as boundary (initial) conditions.

These signals will feed through switches 1 and 2 into a terminal where,

if either signal is present, it will appear at node 5. If the contacts

of the relay switch are closed, the signal will be transmitted to node 7.

If no signal is present at this node, an invertor will send a signal,

via an annunciator, to the operator, who will check to assure that

switches 1 and 2 are closed (or will close them, if necessary).

The input signals will be described by decision table C-l, listed

as type 101 in the sample input. This table indicates that an output

will be produced if the signal is "good;" (note, however that a signal

will always exist due to the boundary conditions defined).

TABLE C-l. SIGNAL (101)

Row Internal Output

1 0 1

2 1 0

Switches 1 and 2 will be two position (on/off) switches similar to

the table in Appendix B but with two changes:

1) input/output states of 2 have been deleted, leaving 7 rows.

131

Power

Switch 1
(102)

Signal 1
Terminal

Switch 2
(102)

Relay sw
Signal 2 Invertor

Annunc.
(105)

Figure C-l. Sample System

2) the internal "position" column has been changed to an external

operator input. The states of this column have been changed

to be:

0: operator leaves switch open

1: operator closes switch.

This switch is defined as type 102, and is shown in Table C-2.

TABLE C-2. ON/OFF SWITCH (102)

Row
Signal
Input

Operator
Input Internal Output

1 0 -1 -1 0

2 -1 0 0 0

3 -1 -1 1 0

4 1 -1 2 1

5 1 1 0 1

The relay switch is identical to that developed in section 4.3.2

of reference C-l and operates as follows. The relay contacts are

normally open unless held closed by a signal input to the coil. If

power is input to the coil, and if the coil and contacts are good, the

contacts will close and transmit a signal. The contacts will also remain

closed if they have failed shorted (state 2), or if the coil has

shorted (state 2). However, if no power is present, or if the coil or

contacts fail open, no signal will be transmitted. This relay switch

is modeled by Table C-3 (type 103).

133

TABLE C-3. RELAY SWITCH (103)

Row Signal Coil Internal Output
No. Input Input Coil Contacts Signal

1 1 -1 -1 2 1

2 1 1 0 0 1

3 1 -1 2 0 1

4 0 -1 -1 -1 0

5 -1 -1 -1 1 0

6 -1 0 -1 0 0

7 -1 -1 1 0 0

As described previously, the junction (nodes 2, 4 and 5) acts as

a simple OR gate defined by Table C-4 (type 104).

TABLE C-4. JUNCTION (OR gate, type 104)

Row Input 1 Input 2 Output

1 0 0 0

2 1 -1 1

3 -1 1 1

The Annunciator model is that shown in Appendix B, and is defined

as type 105 in this example. Its function is to produce a signal in

the presence of an input. Failure states are 4 (fails to operate on

demand) and 6 (operates spuriously).

The operator is modeled very simply in Table C-5 (type 106)

receiving an input from the annunciator, and sending outputs to (open­

ing or closing) switches 1 and 2. This model assumes complete common

mode action by the operator: if he takes correct action, he will close

both switches. Operator error (state 5003) will imply leaving both

134

switches open (row 2). However, for this example, it will be assumed

that, even if the operator has left the switches open, a signal from

the annunciator will cause him to close them correctly (row 3). A more

detailed model might include other operator failure modes to represent

closing only one switch, or leaving switches open even in the presence

of an alarm.

TABLE C-5. OPERATOR (106)

Row Annun. Operator Output Output
No. Input Mode 1 2

1 -1 0 1 1

2 0 5003 0 0

3 1 5003 1 1

The invertor (type 107) is modeled by the Invertor Amplifier in

Appendix B. This model produces a positive signal when no input is

present, and can fail in either of two modes: 1 (fails open), or 1002

(shorts to power-always produces an output).

Finally, the power supply model (type 108) is identical to the

battery model in Appendix B, with the failure modes 1 (fails open) and

1003 (power surge). Note that, even though this model has an output

state of 2, not used by the relay coil input, this row has been left in

the table to show that unused states in a decision table can be

left without any difficulty.

The preceding decision tables were used to construct a fault tree

for the TOP event "No output at node 7," under the stated boundary con­

ditions "signals present at nodes 1 and 3." This tree is shown in

Figure C-2. The explicit manner in which these decision tables were

135

Figure C-2. Fault Tree for Sample System

136

used in the fault tree construction process can be seen, for example,

by considering the structure of gate 1.

The construction of gate 1 begins by first locating node 7, at

which the TOP event is defined, as the output of the Relay Switch,

type 103. Thus, the TOP event becomes "output = 0 from Relay Switch"

which, as seen from Table C-3 (type 103) corresponds to rows 4, 5, 6

and 7. Thus gate 1 becomes an OR gate with these four rows as inputs.

Specifically, these four rows correspond to the following events:

row 4: no input to Relay Switch (i.e., signal = 0
at node 5),

row 5: relay contacts failed open,

row 6: no power input AND contacts good,

row 7: coil failed open AND contacts good.

Thus, row 4 requires further backtracking, leading to the events

beneath gate 2, and rows 6 and 7 become AND gates 10 and 11 when these

rows are eventually developed. (The reason rows 5 through 7 are re­

arranged in the final tree is that CAT structures all gates so that

gate inputs precede primary inputs.)

The explicit appearance of good components in the fault tree results

from the specific decision tables used. Referring to the above example,

row 7 requires the coil to fail open and contacts to be good in order

to assure no output at node 7. That is, coil failure will not lead to

signal loss if the contacts have failed shorted. However, the proba­

bility of contacts failing shorted is generally negligibly small compared

to the probability of being good so that, in the interests of simplify­

ing fault trees, analysts generally leave such states out. This is also

useful in computer analyses since roundoff errors may greatly reduce the

137

accuracy of numbers such as (1-Q) where Q is a small number. Further­

more, fault tree analysis codes such as Kill may not be able to correctly

treat such good states (which are examples of NOT gates), except when

using fixed probabilities.

Although these good states may be removed at this stage of the

analysis, it is generally simpler to eliminate them from the decision

tables before constructing the tree. This can be done by replacing '0'

states by '-T in the internal columns; however, some caution should

be used to insure that no potentially significant errors be introduced.

Furthermore, it must then be remembered that success trees cannot be

constructed using these tables.

In this manner, a set of decision tables was derived by removing

good states from the originally developed tables. For example. Table

C-6 is the table which results for the Relay Switch (type 103). This

set of tables was used with the identical system configuration, TOP

event and boundary conditions as before, to produce the fault tree in

Figure C-3. This is the example which has been used for the sample in­

put and output of Appendices D and E. These appendices can be consulted

to see the form of the new decision tables. In addition, the output

in Appendix E may be used to trace the full construction of the fault

tree, as was done above for the upper gate of Figure C-2.

138

POWER
failedcent.

failedfailed

error

ANNUNC
failed

NVERTOR
failed

Signa'
at node 11

Signal = 0
at node 4

Signal = 0
at node 9

Signa'
at node 2

TOP Event:
Signal = 0

Figure C-3. Fault Tree for Sample System with Good States Removed

139

TABLE C-6. RELAY SWITCH WITH GOOD STATES REMOVED

Row Signal Coil Internal Output
No. Input Input Coil Contacts Signal

1 1 -1 -1 2 1

2 1 1 -1 -1 1

3 1 -1 2 -1 1

4 0 -1 -1 -1 0

5 -1 -1 -1 1 0

6 -1 0 -1 -1 0

7 -1 -1 1 -1 0

A comparison of Figures C-2 and C-3 shows them to be identical,

save for the deletion of the good states. Figure C-3 is significantly

smaller and easier to analyze, either by hand or by computer. Further­

more, it corresponds more closely to manually constructed fault trees

used in safety/reliability analyses.

The final step in this analysis was to use the computer code PREP

to find the minimal cut sets for the fault tree produced by CAT. As

shown by the PREP output in Appendix E, these cut sets were:

1: (Power failed)

2: (Relay coil failed open)

3: (Relay contacts failed open)

4: (Switch 2 failed open, switch 1 failed open)

5: (Annunciator failed, operator error)

6: (Invertor failed, operator error).

That these are, in fact, the complete minimal cut sets can be seen by

a careful evaluation of Figure C-3.

140

REFERENCES

C-l Salem, S. L., G. E. Apostolakis and D. Okrent, A Computer-Oriented
Approach to Fault-Tree Construction, EPRI-288, Palo Alto,
November 1976.

141

APPENDIX D

SAMPLE INPUT

This appendix contains the complete input used to produce the

sample fault tree (Figure C-3) in Appendix C. All cards follow the

organization and formats as described in Section 2.

The input begins with a title card, followed by the control data

in the '&DAT' section. The 'DATl1 card specifies IJOB = 1, IPRINT = 2

(intermediate level of printout), KOUT = 1 (PREP output desired), IEDIT

= 0 (full editing desired), and I0T = 10 (write PREP output on I/O

device 10). 'DAT2' specifies NLIB = 8 (eight decision tables in

library), LNROW = 5 (length of longest decision table row), MAXINT = 2

(maximum number of internal columns in any table), and MXNROW = 40

(approximate number of rows in total decision table library). The

'DATS1 card specifies NNCMP = 10 (10 components in system) and NNODE = 11

(highest node number in system). Finally, 'DATA' indicates MROW = 1

(1 row in the TOP event table). Notice that the 'SDAT' section is the

only one in which the numbers in column 5 (e.g., 'DATT, 'DAT21, etc.)

are required for identification.

The next section, beginning with the 'SLIB' card which follows the

END card, contains the decision table library itself. Referring to the

models discussed in Appendix C, the first library entry ('LIBR01011)

identifies component type 101, named "SIGNALON," which has 0 inputs,

1 internal column, 1 output and 2 rows. The single internal column is

named "SIGNAL" on the 'MODE' card. This is followed by the two 'ROW

cards which contain the entries for the decision table itself, termi­

nating with an 'END' card. All other decision tables are input similarly.

142

Note that component type 104, which does not have an internal column,

still requires a 'MODE* card, which has been left blank. Furthermore,

the numbers in columns 5-8 of the 'LIBR' and 'ROW cards are for user

identification and are not required. Finally, the specific library

type numbers, and order of entry, are completely arbitrary; the library

itself may contain any number of component types in any order, including

some which may not be required by the specific systems being analyzed.

The '&CMP' section specifies the system components, types, and

node numbers as shown in Figure C-l of Appendix C. For example,

component 1, named "SIGNAL 1" is defined as type 101, having a single

node, numbered 1. Using the library as input in the '&LIB1 section,

type 101 is seen to have no inputs and a single output; thus this out­

put has been assigned to node 1. Referring to component 4, "SWITCH 1"

type 102 (2 inputs and 1 output), node 1 is seen to be an input in this

case, along with input node 10 and output node 2.

The following data, beginning with 'STOP' define the TOP event.

The 'TT0P' card specifies the event name "SAMPLE 1," the number of rows

(1) and nodes (1) of the TOP event decision table, and the node number

itself (7). The single row of this table is input on the card labeled

'TOPI' which indicates a state of zero to be defined at node 7 as the

TOP event.

Next, the '&BC' data section includes the boundary conditions as

discussed in Appendix C. Since the boundary conditions are defined at

system nodes, an 'EXT' card is used. This card specifies two sets of

boundary conditions: (1,1) - node 1, state = 1, and (3,1) - node 3,

state = 1.

143

Finally, the PREP data are input following the 'SOUT' card. The

first two cards include the PREP control information, as discussed in

Section 2.2.8. For this specific job, 1000 Monte Carlo simulations are

specified. Note that NG (input arbitrarily as 1) will be replaced by

the actual number of gates produced by CAT.

The final PREP inputs are the failure and repair rates. Although

only those components and failure modes are included which actually

appear in the fault tree, all components and modes could have been

included, and only those actually needed would have been used. Should

any data have been omitted, the full fault tree and all but the missing

data, would be output on I/O device 'lOT.1 Thus, any missing data

could be included at a later time. An example of this input can be

seen by referring to the relay switch, which has two internal failure

columns (1 = coil and 2 = contacts), and a failure state of 1 (failed

“6 “1open) specified for each. Note that a failure rate of 1.0x10 hr

has been assigned to the coil, and a rate of 0.1x10"^ to the contacts,

while a repair time of 2.0 hours has been used for both. Note also

that no failure rates have been included for failure states of 2

(failed shorted). Additional examples are the separate input data shown

for SWITCH 1 and SWITCH 2. This illustrates that, although the types

of two components may be identical, the failure data are specified

separately, and may, in fact, be different.

144

SAMPLE CASE FOB CAT
SDAT

1 2
8 5

10 11
1

E AT 1
DAT2
EAT3
DATU
END
6LIB
LIBFO101
MODE
EOW1
BOW2

END
LIBFC102
MODE
FOB 1
FOB 2
EOB3
FOB1*
FOBS

END
LIBF0103
MODS
FOB 1
FOB2
BOB3
FOB4
BOBS
FOH6
ROB 7

END
LIBP0104
MODE
EOB1
BOB2
ROR3

END
LIBF01CS
MODE
BOB1
ROW2
BOB 3
BOB1)

END
LIBF0106
MODE
BOB 1
ROS2
EOB3

END
LIBB01C7
BODE
BOB1
BOB2
BON3
BOB4
END
LIBEO108

COEE

I 0
! 40

SIGN ALC N
SIGNAL

SB-TYPE1
INTEFNAI

SB-TYPE2
COIL

JUNCTION

ANNUNC.
INTEENAL

OfEBATOF
OP IBFOF

INVEBTCF
INTEBNAL

POBER

0
-1
-1

1
1

103
CONTACT

1
1
1
0

-1
-1
-1

104

C
1

-1

0
-1

1
-1

106

-1
1

-1
-1
-1

0
-1

c
-1

1

1

-1
4

-1
6

-1 -1
C 5003
1 5003

107

1
-1

0

-1
1

-1
-1 1002

108

1

1

-1
-1

1
2

-1

2

-1
-1
2

-1
-1
-1

1

0

0
1
1

1

0
0
1
1

1

1
0
1

1

0
0
1
1

1

1 2

1 5

0
0
c
1
1

1 7

2 1
1 1
1 1
1 0
1 0
1 0
1 0

1 3

1 4

2 3

1
0
1

1 4

Figure D-l. Data Deck for Sample Case (page 1)

145

H ODE
FOifl

INTEBNAL
-1 1

ROV2 3 0
BOB3 1003 2

HMD
6CMP
com SIGNAL 1 101 1
COM2 5IGNAI 2 101 3
COM3 TERMINAL 104 2 4 5
CCHU SBITCH 1 102 1 10 2
C0M5 SBITCH 2 102 3 11 4
C0H6 FELAY SB 103 5 6 7
COM 7 POBER 108 6
cons INVESTOR 107 7 8
cons CP. 106 9 10 11
COM 1 0
END
STOP

ANNONC. 105 8 9

TTOF SAMPLE 1 1 1 7
TOPI 0

END
SBC
EXT 1 1 3 1

END
SOOT

1 0 0 0
1 1 100C 2

SWITCH 1 1.0 1.0 1 1
SNITCH 2 1.0 1.0 1 1
RELAY SB 1.0 2.0 1 1
BELAY SB C.1 2.0 2 1POBEF
INVEBTOB 1.0 2.0 1 10P.
ANNONC.
END
SEND

1.0 1.C 1 4

0.0

3.0 5.0 1 3
0.0 0.001 1 5003

Figure D-l. Data Deck for Sample Case (page 2)

146

APPENDIX E

SAMPLE OUTPUT

The following 18 pages contain the complete output for the sample

fault tree of Appendix C. This printout was produced with IPRINT = 2

so that an intermediate amount of printout during the fault tree con­

struction was produced. In addition, 4 sample pages from the PREP run

made using the CAT output have been included.

The first 4 pages represent essentially a direct printout of the

input, with certain headings and messages added. These pages can be

compared with Section 2 (input description) and the sample input in

Appendix D for reference. This output was produced directly by the

sample input shown in that appendix.

The fifth page, "Component Indexing Printout," is a cross-reference

of the components which were input on page 4. Following the index number

and name of each component is the type number of the corresponding

decision table, as input for that component (see column 3), and the type

name itself. Furthermore, for each input node of a specific component,

the component which is input to that node has been looked up and printed

out. In the case of a component with no inputs, the statement "This

component has no inputs" is printed instead. For example, component

number 4 (switch 1) has two input nodes, numbered 1 and 10 on page 4.

Here the components whose outputs are connected to these nodes have also

been printed: 'SIGNAL 1‘ and 'OP.1. This is an aid to error-checking

to the user, as well as a quick reference when modifying a system.

A further cross reference follows on page 6 ("Output Node Cross-

Index"). Each node which has been defined is referenced, along with

147

the index and name of the component whose output has been assigned to

that node. Finally, for use with components with multiple outputs, the

specific output connected to the node of interest is listed. Here the

only multiple-output component is the operator, assigned to nodes 10

(output 1) and 11 (output 2). The message at the bottom of the page

tells the amount of storage already used by the library and system in­

puts. The amount of space remaining and the number of gates it will

store are computed here, and the appropriate arrays are so dimensioned

within the program.

The final cross reference is produced on the page labeled "Internal

Node Index." This is a listing of the internal nodes, as numbered by

the program, and is used to interpret the numerical inputs to gates pro­

duced in the remaining output (see Appendix A.2). Notice that, for this

case, 11 nodes were defined in the system itself. Thus, number 12

was assigned by CAT as the first of the internal component failure

mechanisms. As an example, the numbers 22 and 23 refer to the two fail­

ure mechanisms of component 6, the relay switch.

The last page of input information is the definition of the TOP

event and specification of boundary conditions. This page is essentially

a listing of the input cards with additional information. In the event

of errors, appropriate messages would be produced here. As noted in

Appendix D, the TOP event is defined as a state of zero at a single

node, node 7. This, the TOP event decision table has a single row,

defining state 'O' at this node.

Pages 9-13 ("CAT Gate Printout Section") represent the construction

and preliminary and intermediate editing phases of the actual fault tree

148

construction for IPRINT =2. As an example, the first two blocks of

information on the first of these pages represent the preliminary

development of gates 1 and 2; an initial negative value within a set

of parentheses indicates an input which has not yet been developed.

In order to understand the undeveloped inputs, a distinction must

be made between AND and OR gates. Each input to a gate consists of a

pair of numbers. The inputs to AND gates consist of a node number,

followed by the signal state to be traced at this point. Thus gate 1,

as defined by the TOP event, will investigate a signal state of 0 at

node 7. The preliminary inputs to OR gates contain a component index

number, followed by the specific row to be developed. Since the TOP

event of the sample case is a single input gate (no signal at node 7)

this can be immediately traced to the appropriate component (component

6), and the TOP event thus becomes: "no output from component 6."

Since the decision table for component 6 (RELAY SW, type 103) has four

rows with zero outputs (rows 4-7), the TOP event can be replaced by

an OR gate, with rows 4-7 of component 6 as undeveloped inputs (see

Section 3.4). Thus the preliminary printout of gate 1 shows inputs

(-6,4), (-6,5), (-6,6), (-6,7), corresponding to undeveloped inputs

from rows 4, 5, 6 and 7 of component 6.

In addition to gate construction, editing phases are included

here, as indicated by asterisks. Thus, for example, the first input

to gate 1, consisting of row 4 of decision table type 103, is seen to

have only a single entry other than -1. This entry is signal = 0 at

node 5. Since single input gates can be eliminated and directly re­

placed by their input in the gate above, gate 2 (an AND gate) is replaced

by the input "signal = 0 at node 5" as the first entry in gate 1.

149

Backtracking further, node 5 is the output from component 3 (type 104).

Since only row 1 of type 104 has a zero output, this becomes a single

input OR gate, which is then eliminated, and its input inserted into

gate 1. Thus "signal = 0 at node 5" is replaced by an AND gate with

inputs: "signal = 0 at node 2 AND signal = 0 at node 4." This is

shown by "GATE 2 TYPE = AND" with the inputs: (-2,0), (-4,0), indicat­

ing undeveloped entries of states 0 at nodes 2 and 4.

As each branch of a gate is completed, an intermediate printout

of that gate appears. For example, on the second page of the fault

tree construction printout, branch 1 of gate 5 is completed, followed

by the printout:

GATE 5: -21190 (26, 1), (-10, 2),

The initial '-2' indicates an OR gate (-1 = AND), and the negative sign

implies that the gate has not yet been completed. The four succeeding

values are the numbers of gates and primary events input, followed by

the event being developed by gate 2. In this case it is "signal = 0

at node 9" and is the event which will be placed in the rectangle above

the OR gate in the final fault tree. Finally, the two inputs to gate 2

are printed. The first has been completed (26, 1), and is the primary

input "invertor failed;" that is, input 26 is the internal state of the

invertor, (see Internal Node Index), and state 1 is the failed state.

Notice that the second input to gate 2, (-10, 2), has not yet been

developed and so is the same as before.

Skipping to the final page of the construction phase it is seen

that gate 9 is the last to be constructed. It, in fact, is a single

input gate which is reduced to a direct primary input, leaving only 8

150

gates. This leads back to gate 1 which, when completed, signals the

completion of the fault tree.

The next three pages are printouts of the completed fault tree.

The first shows the fault tree following the preliminary and intermediate

editing. The second page reproduces the tree after transfers have been

removed. In the sample case, it is seen that gates 4 and 5 have been

eliminated and replaced by gates 7 and 8 (which are identical to the

replaced gates). Finally, the third page lists the final tree after

the gates have been renumbered consecutively to fill in the missing gap.

The gate listings on these three pages consist of the following

information, which is similar to the intermediate information produced

during gate construction: first, the gate type, (1 = AND, 2 = OR);

second and third, the number of gates and primary events input to the

gate; fourth and fifth, the event developed by the gate. This event can

be of two types. For numbers below 10,000, the first is a node number

and the second is a signal state to be evaluated at that node. For a

number over 10,000, the first minus 10,000 is the component number,

and the second is the row number of the corresponding component type

being evaluated. (This does not occur in the sample case.)

Finally, the inputs to the gate are of two kinds. First are the

succeeding gates input, as indicated by a -1 in the second position.

Then come the primary inputs: first the internal component node (see

Internal Node Index), followed by the failure state itself.

Since KOUT = 1, this output is followed by the PREP output print­

out and cross index (see Section 2.3). The first of these two pages

is an exact printout of the data to be written or punched on 1/0 device

151

"IOT." This includes three sets of data:

1) * DATA, followed by the control data for PREP [E-l];

2) * TREE, followed by the fault tree just constructed;

3) * RATES, followed by failure and repair data as required by PREP.

This data is described in Sections 2.2.8 and 2.3, and reference E-l.

Two special considerations must be discussed here. First, PREP

can accept a maximum of only seven inputs per gate. Should the CAT

code produce a gate with more than seven inputs, this gate will be

split into two smaller gates here, and input into a single gate above.

Thus, should "GATEOOnn1 have too many inputs, gates numbered 'GATlOOnn'

and lGAT200nn‘ would be created, each containing half the total gates,

and each input into 'GATEOOnn1.

A second consideration is that the PREP code allows only a single

failure mode for each component. As discussed in Section 2.3, a

unique component name is constructed for each failure state of each

internal column of each component which occurs in the fault tree. This

"component" is then incorporated into the tree, wherever needed, and

is included in a crossindex on the next page. Thus, failure state 1

(state "0001") of component 4 (internal column node number 18) becomes

component "00180001," and the failure and repair data for component 4,

internal column 1, state 1, is included in the '* RATES' section. If

data is included in the '&0UT' section of the CAT input for components

or states not included in the final fault tree, a message will be printed

and the data will not be output to PREP. If data is missing, a similar

warning will be printed.

The final four pages show some of the PREP output actually produced

152

using the CAT output. The first page shows the control data, and the

second the fault tree as input by CAT. This is followed by a listing

of the component names and failure rates, and finally the minimal cut

sets found by the code. For the sample case there were six minimal cut

sets, as expected.

153

REFERENCES

E-l Vesely, W. E. and R. E. Narum, "PREP and Kill: Computer Codes

for the Automatic Evaluation of a Fault Tree," Idaho Nuclear

Corporation, Idaho Falls, Idaho, IN-1349, 1970.

154

- FBOGBAM CAT, VERSION CF 10/75
- FBCGFAM FOB T HI AUTOMATE! CCNSTFUCTICN OF FAULT TREES.

- SAMPLE CASE FOB CAT CCDE

*** DATA VAL1LATICN SECTION **+

SEAT
DATl 1 2 1 0 10
DAT2 8 5 2 40
DAT3 10 11
DAT 4 1

END

NUMBER OF LIEFJRY ROWS ESTIMATFE (MXNROW) = 40 ROWS.
ALLOCATED SPACE REMAINING (MXROW 2) = 1S89 ROWS.

CJ1<y>

SAUFLE CISI FOB CAT COCE

LIBBABE IHEUT PBINTCIT

SL IB

L1BBAB1 DATA PtIIIOUT FCF CCHFONENT 1
BARE TYPE NIN NINI HOOT

LIBBC101 SIGNALCN 101 0 1 1
HCDB
BOB1

SIGNAL
0 1

BCB2
BND

1 0

LIBBABI CAT A PIIITOUT 1C F CCRPON ENT 2
BABE TYPE BIN BINT NOU1

LIBB0102
BODI

SS-11PH
INTEENAL

102 2 1 1

BOB1 0 -1 -1 0
BOB2 -1 0 -1 0
BOBS -1 -1 1 0
BCN* 1 -1 2 1
BOBS

INC
1 1 -1 1

LIBB AST DATA PFIN10UT ECB CORFCNENT 3
NAME TTEf NIN HINT BOUT

LIBB0103
BODE

SN-TTPI2
COIL

103 2
CONTACT

2 1

VCN 1 1 -1 -1
BON2 1 1 •1 -1
BOH 3 1 -1 2 -1
BOB* 0 -1 -1 -1
BOBS •1 -1 -1
B0B6 -1 0 -1 -1
BOB?

END
-1 -1 1 " 1

LIBFAM CATA PIINTOUI ECP COR FOR ENT 4
HARE TYPE NIN MINT worn

LIBF0104
RODE

J UNCIICN ION 2 0 1

PON 1 C 0 0
PCH 2 1 -1 1
FOU 3

2NC
- 1 1 1

• ••

MliC h
2

NBC US

NBC H
7

1110c0c

NBC fc3

cn*^j

LIBB &FY DATA PRINTOUT KF CCHFONENT 5
N AF1I TTPI NIN MINT NOUT NBC h

LIBB0105 ANNUNC. 105 1 1 1 4
NODE
KO*1

INTEFNAI
C -1 0

POf)2 -1 4 0
RCH3 1 -1 1
B0N4
EMC

-1 6 1

LI BE IB I DATE fEIMIOUT f CB CCHFONENT 6
HARE T IF E HIM HINT NOUT NBC h

LIBH0106 OFIF1TOB 1C6 1 1 2 3
NODE
SCSI

OB EEBCB
- 1 -1 1 1

ROM2 0 5003 0 0
BCB3

BHD
1 500 3 1 1

LIBBABI CATA PFINTOUT EC B CCHFONENT 7
NAME TIFE NIN MINT NOU1 NEC li

LI BB0107 IMVEFTOB 1C 7 1 1 1 4
RODE
BOH 1

IBTEFNAL
1 -1 0

BCH2 -1 1 0
BOH 3 0 -1 1
B0H4

END
-1 1002 1

LIBBABI FATA PFINTOUT FCF COMPONENT 8
NAME TYFE NIN NINT NOUT NFCfc

LIBB 01C 8 FChEF 1C 8 0 113
RODE
BOH 1

INTEENAL
-1 1

BCU2 2 0
BOH 3 1OC 3 2

•;crp c^i<d FC'jNt r A? A V T L T T ' N C '.'T ' Nr)! *! C

SAMPLE CASE FCE CAT CODE

COMPONENT INDEX INPUT PFINTOUT

COMPONENT CAFE PFINTOUT
INDEX CODE NAME TYPE

1 COM1 SIGNAL 1 101
2 COM2 SIGNAL 2 101
3 COM3 TERMINAL 104
4 COM4 SWITCH 1 102
5 C0M5 SWITCH 2 102
6 C0M6 FELAY SW 103
7 COM? EOWEP 108
8 C0M8 INVEFTOF 107
9 C0H9 CP. 106

10 COM1 0 INNUNC. 105
END

C
D

 vO
 O' un

U
>

INPUT/CUTPUT NODES

1
3
2 4 5
1 10 2

11 4
6 7

8
10 11

9

COMPONENT INDEXING PBIKICUT EOF:
SAMPLE CASE EC F CAT COtE

INDEX NAME TYPE# TYPE

1 SIGNAL 1
2 SIGNAL 2
3 TERMINAL
4 SWITCH 1
5 SWITCH 2
6 RELAY SU
7 POWER
8 INVEFTOF
9 OP.

10 ANNONC.

101 SIGNALON
101 SIGNALON
104 JUNCTION
102 SW-TYPF1
102 SW-TYPE1
103 SW-TYPE2
108 POWER
107 INVERTOR
106 OPERATOR
105 ANNUNC.

INPUTS FRCM: NODE/NAME

THIS COMPONENT HAS
THIS COMPONENT HAS

2/SWITCH 1
1/SIGNAL 1
3/SIGNAL 2
5/TERMINAL

THIS CCMPCNENT HAS
7/RELAY SW
9/ANNUNC.
8/IN VERTOR

NO INPUTS
NO INPUTS

4/SWITCH 2
10/OP.
11/OP.

6/POWEB
NO INPUTS

OUTPUT NODE CFCSS-INDEX FOE:
SAMPLE CASE FCE CAT CODE

OUTPUT NODE CCMICNEKT: INDEX NAME OUTPUT NO.

O'!o

1
2
3
4
5
6
7
e
9

10
11

1 SIGNAL 1 1
4 SWITCH 1 1
2 SIGNAL 2 1
5 SWITCH 2 1
3 TERMINAL 1
7 POKE F 1
6 FELAY SW 1
8 INVESTOR 1

10 ANNUNC, 1
9 OP. 1
SOP. 2

************444*4***********»***4*»***«***
* STORAGE SPACE SUMMARY
* ARRAY ■MAT* HAS USED 375 WORDS.
* REMAINING 9625 WORDS WILL ACCOMMODATE 740 GATES WITH AN AVERAGE CF 3.0 INPUTS PER GATE.
t***

INTERNAL NOCI INEIX FOF:
SAMPLE CASE FOF CAT COEE

INDEX NAME TYPE# TYPE

1 SIGNAL 1 101 SIGNALON
2 SIGNAL 2 101 SIGNALCN
3 TEFMINAI 104 JUNCTION
4 SWITCH 1 102 SW-TYEE1
5 SWITCH 2 102 SW-TYPE1
6 8 EL A X Sfc 103 SW-TYPE2
7 POWER 108 FOk EF
8 INVESTOR 107 INVEFTCE
9 OP. 10b CPEFATOF

10 ANNUNC. 10S ANNUNC.

INTERNAL NCEES

12: SIGNAL
14: SIGNAL

18: INTERNAL
20: INTERNAL
22: CCIL
24: 1 STERNAL
26: INTERNAL
28: CE ERFOB
30: INTERNAL

CONTACT

**
* fPOGKJK! CJIT, VBASICN CP 10/75
* TOP EVBHT *»t EOONEBPY CONCITICN PFINIOUT BCE JOB 1
*

* SAMPLE CASE IOE CAT CCDE**************4*4***

STOP

TOE EVENT EOB SAHELE CASE BOB CAT COCE

EVENT: SAHILE 1
NUMBER OP BOSS = 1
RUBBER CP MOLES = 1
TOP EVENT NODES =

NODE COHECNEKT OUTPUT

7 6 BELAY SH 1

TABLE EOB TOE EVENT:

TTOP NODE (S): 7
TOPI C

END

SBC

BOUNDARY CONDITIONS FOB SAMPLE CASE BOB CAT CCDE

EXT 113 1
END

SiBPLB CASK FOi C&1 CCCB

- CAT CATE PBIBIOUT SIC1ICN.

••• BBBLIBIBII1 C AT I PAIATCOT **•

<T>OJ

CAT! 1 TIPt ■ OB
MUlUIB OP GATfS INPUT - H MUflBBB Cl PBIHABX INPUTS - 0
MBIT: TOP IIBNT
INPOTS: (-6, *),(b),| -A, 6),{ *6, 7) , (

CATS 2: NODI 1 PBISIT TO BOOB - 0 BY INITIAL CONOI1XCNS.

• CATS 2 TIPS > AND NAS SINGLB INPUT. GATE BEING I1I8INATEC AND INPUT OIBECTLY INTO CATS 1.

• GATB 2 TIPI - OB NAS SINGLB INPUT. GATE BBING IlIfllNATEC AND INPUT OIBBCTLI INTO GATE 1.

GATE 2 TIM • OB
NUB EIB Of CAT IS INPUT * 1 NUflBBB C| PNIBANI INPUTS ■ 0
I IE NT: SIGBAI • 0 AT BODE b
IIPITS: (-3. 1)#|

GATB 2: BOOB 5 FBBSIT TO BOOB « 0 Bl GATE 1.

GAM 2 TIP! • AND
NUB 111 OP GAT IS IBPUT - 2 NUBUBB Cl PBIBAB1 INPUTS - Q
E IE NT: SIGBAI - 0 AT BOCB b
INPOTS: (-2, 0) , (0), |

GATB 3: CONICNBN1 ‘SNITCH 1« TYPE 2, AON 1 NODE 1: BOD| » 0 CONTBADICTS BODE • 1, SIT BY INITIAL COBOUIONS.

GATI 3 TIPI • OB
BUneifl OP GAMS INPUT « 2 NURBBB Cl PBINABY INPUTS - 0
ITT AT: SIGNAL • 0 AT NODI 2
INPOTS : (-H, 2)f (-H, 3). (

GATB Hi BOOB 2 PIBSET fO B00| • 0 PI GATE 2.

• GATI 4 TYPE - AND NAS SINGLE IBPUT. GATE BEING ALIBIN AT t C AND INPUT DIB 8CTLY INTO GATB 3.

• GATI 4 TIPI - OB NAS SINGLE INPUT. GATE BEING CUBINATEC AND INPUT DIB8CTLY INTO GATB 3.

GATS H IKE • GB
NUB E EB OP GA11S INPUT • 1 NUHbBB Of PBIBABV INPUTS > 0
E IE NT: SIGNII • 0 AT NOUE 10
INtCTS: (-9, 2) . (

GATI N: NODE 10 PBESET TO BODE • 0 t* GATE 3.

GATB 4 TIPI • AND
NUBEIS OP GATES INPUT * 1 NUPUEB Cl PBlBAbl INPUTS • 1
EVENT: SIC N AI - 0 AT NODE 10
INPUTS: (-9, 0) , (20, SQ0i),(

GATB 5 IKE > OB
NUnfEB OP GATES INPUT * 2 NUPfiEN Cl PfalnAPI INPUTS = 0
IVI NT: SIGNAI * 0 AT NODE 9
IN Pit S: (- 10, 1),{ -10, 2), <

9 PfctSlT TO BODB * 0 BK Cft'II 4

a>

• CAT! 6 TIPS * AMD HAS SINGLE INPUT. CATE BEING BLIHINATBD AMD INPUT DIB BCTLtf INTO GATE S.

GATI 6: CCBICNBMI •INVlhTOB* TXPB T, (OM 1 NODE 7: NODI » 1 CONTRADICTS RODE * 0, SET HI INITIAL CONDITIONS

• GATB 6 TYPE » OB NAS SINGLB INPUT. GATE BBING ELIRIMATE I AND INPUT DIB ECTLX INTO GATB 5*

GATB 6 TYPE • 01
NURtEB OP GA1IS INPUT > 1 NURUBB 0* PBlRAbV INPUTS * 0
EVBHT: SIGNAL > 0 AT NODE B
1NPDTS: (-8, 2) , (

GATB MODE 8 PRESET TO BODE > 0 fiy GATI 5.

• GATI 6 TYPE • AND HAS SINGLB INPUT. GATE BEING ELIHINATEL AND INPUT DIBBCTLV INTO GATB
GATB 5 s -2 1 \ 9 0 (26. 1),(-10. 2).(

GATB 6: NODS 9 PBESET TO BOOB “ 0 BY GATB 4.

• GATB 6 I VPI « ABC BAS SINGLE INPUT. GATE BBING BLINZNATEI AND INPUT DIB 8CTLT INTO GATB 5.
GATB S: *2 0 2 9 0 (26. 1),(30, 4),(

G4T B 6; BOOS

•«* CATS S CCBfLBTID. PBILlBINABl GATI ID1T POLLOMS *•*

GATI 6; 2 0 2 9 0 t 26, »l , (JO, 9)
GATB S: 2 0 2 9 0 (26, M. < 30,
GATB ii 2 0 2 9 0 (26, IK (30, <4|

PBBLIIIRIAI BLIT Of CAT! 5 C0BPLB1ED

• •• GATB « CCBPLBTBD. EBIllBlNARI GATI EDIT FCLLOUS *»*

CATE 4: 1 1 1 10 0 1 5,
0 < 5, -11 . (28, 9003),<

GATE 4: 1 1 1 10 28, soon. (
GATE 5: 2 0 2 9 0 < 26,

0 (6,
U. < 30, 4). <GATI 4; 1 1 1 10 -U. (28, 5003) , (

•#* PBBLIBINAII ICIT op GATI 4 COBPLB1BD •••

GATB 6; NOLI 2 PRESET TO BODB • 0 8Y GATE 2.
* GATE 6 TYPE - AND HAS SINGLB INPUT. GATE BBING BLIniNATEC AND
GA1I 3; -2 1 1 2 0 (4, -1). < 18. 1). <

GATB 3 CCBPLBTBD. PR ElI HINAbY GATB IDIT PCLLOMS **•

GATI 3: 2 1 1 2 0 < 4, -1). < 18, 11. (GATI 3: 2 1 t 2 0 (4,
0 1 26,

-1) . (18,
30, 1). (GATB S: 2 0 2 9 1). (4). (

GATB 3: 2 1 t 2 0 (4,
0 (4,

-1) , (18, 1). (
GATB 3; 2 t 1 3 -1) . (18. 1).<

••• PBELIBINAAV EDIT OP GATE COfifLLIEO **♦

2, BOM I MODE 3: HOOl ■ 0 COMTBIOICTS nODE 3, SET IN IT li L CONDITIONS

cr>cn

GATE 6

GATE

GATB

• GATE

• GATI

GATB 7

GATS

GATI 7

GATB 8

GATB

• GATI

GATB

• GATI

GATI 9

GATB

• GATB
GATI

GATB

• GATB
GATI

6: CC HI ON BN T SNITCH 2

IIP! « OB
RUHIIB OP GUI IS INPUT * 2 NUHBBB Cf PBINABY INPUTS * 0
EVENT: SIGNAI * 0 AT NODE 4
INICTS : (-5# 2) , (-5, 3) , \

7: NODE 4 PBESET TO RODE * 0 BY GATE 2.

7 TYPE « AND NAS SINGLE INPUT. GATE BEING ELININATEC AND INPUT DIB ECTLT INTO GATE 6.

7 TTPB • OB HAS SINGLE INPUT. CATS BEING ELININATEC AND INPUT DIRECTLY INTO GATB 6.

TYIE - 08
NUNEIB OP GUIS INPUT > 1 NUHBBB CF PBIRIfi! INPUTS » 0
EVENT: SIGNAI > 0 AT NODE It
INPttS: (-9, 2) , (

7: NODE 11 PIBSET TO NODE * 0 BY GATE 6.

TYPE > AND
NUN EIE OP GAT IS INPUT ■ 1 NUHBBB Cf PBIHARI INPUTS - 1
EVENT: SIGNAI • 0 AT NODE 11
INPUTS: (-9, 0) , (20, 50C 3), (

TYPE > OB
NUNEIB OP G AT IS INPUT • 2 NUHBBB CP PBIHARI INPUTS - 0
EVENT: SIGNAI - 0 AT NODE 9
INPOTS: (-10, 1) , I -10, 2) , \

9: BODB 9 PBESET TO HODB • 0 BY GATE 7.

9 TIPS - AND HAS SINGLB INPUT. GATE BEING ELIMINATED AND INPUT DIBBCTL1 INTO GATB 8.

9: COBICNBNT *11911701* TYPE 7, ION 1 NODB 7: NODE • 1 CONTBADICTS BODE - 0, S8T BY INITIAL CONDITIONS

9 TfPI - OB BAS SINGLB INPUT. GATB BBING ElIHINATIt AND INPUT DIBBCTLV INTO GATB 8.

TYPE • OB
NUN PIS OP GATES INPUT - 1 NUBBEfi CP PBIBAPI INPUTS « 0
EVENT: SIGNAL - 0 AT NODE 8
INF01S: (-8, 2) , (

9: NODB 8 PBESET TO BODB • 0 BY GATE 6.

9 TIPE « AND BAS SINGLB INPUT. GATE BEING ELININATEC AND INPUT DIRECTLY INTO GATE 8.
8: -2 1 1 9 0 (26, 1), (-10, 2), (

9: NODE 9 PBESET TO NODB > 0 BY GATI 7.

9 TYPE - AND HAS SINGLE INPUT. GATE BBING ELININATEC AND INPUT DIB BCTLY INTO GATE 8.
6: -2 0 2 9 0 (26, 1), (30, 4),<

GATB 8 CCHFLITID. FBUIHINAFT GATI EDIT FCLLOWS #**

GATE 6: 2 0 2 9 0 < 26, D, < 30, 4}
GATB 8: 2 0 2 9 0 (26, D. (30,
GATB 6: 2 0 2 9 0 (26, D. (30, 4)

• ** PBELININIPY KIT OF CAT! 0 COUPLET E D

•** SITE 7 CCRILETEL). (■RIUBlHiM UiTC EDM ECLLOHS

cncn

GATE 7: \ 1 1 11 0 (-1|. <
(a, -1),<

28, SO 0 3), <
GATE 7; 1 1 1 11 0 28, 5003) , (
GATE 8: 2 0 2 9 0 1 26, 1),l 30,

28,
4), I

GATI 71 1 1 1 11 0 1 8* -1),< 5003) , (

• • • PftELlHlbm IMT OE GATI 7 COBPL1120 •••

GATI 9: AO Cl 4 PBESET TO BOOB • 0 81 GATE 2.

• GATI 9 TIPI - ANC bAS SINGLE INPUT, GATE BBING ELININATEC AND
GATI 6: >2 1 1 4 0 (7* ~U.t 20, I), t

••• GATB 6 CCflUITED. miialNAAV GATE EDIT ECLLONS *•«

GATI 6: 2 1 1 4 0 (7, -1), (20, 1), 1
GATI
GATI

6: 2 1
Is 2 0

1 4
2 9

0
0

(7. -n.i
< 26, 1), (

20,
30,

D. (
4), (

GATI U 2 1 1 4 0 (7, -n,< 20,
20.

M, <
GATI G < 2 1 1 4 0 (7, -1),(1) , (

FfcELlallll! EDIT OP GATE 6 CCBPLITIO •••

GATB 2 CCflFlETID. PlILlBINAAl GATE EDIT FOLLOWS

CAT! 2: 1 2 0 s 0 1 3, -1),(6, *1), (
GATI 4: 1 1 1 10 0 (5, -!»,< 28, 5003),<
GATI 3s 2 1 1 2 0 (4, -1>,(18, U, <
GATI 2; 1 i 1 11 0 < 8, -U,<

< 7, -1>,<
28, 5003), |

GATB 6; 2 1 1 4 0 20, 1) , (
GATI 2 s 1 2 0 5 0 1 3# -1», (6, -1). <

FMBL XBIMIAY 1CIT Of GATE 2 COBPLITAO •••

GATI 9s BCCI 7 PBESET TO HODI • 0 Bl INITIAL CONOITICNS.

• GATI 9 TIPE * ANC NAS SINGLE INPUT. GATE BBING ELININATEC AND
GATB 1; -2 3 1 7 0 1 2, -n.t 23, U, (

GATI 9: «O0£ 7 PBESET TO MODI • 0 St INITIAL CONDITIONS.

• GATI 9 TIPI - ANC NAS SINGLB INPUT. GATE BEING ELININATEC AND

* GATI 9 TIPI - QB HAS SINGLE INPUT. GATE BEING ELININATEC AND

- 6 , 6), 1 -6, 1.

CTi—I

GMI 9 1YFI = OB
NUMEEB OF GATES INPUT = 1 NUMBER CE PEi 1(1 Ah Y INPUTS = 0
EVENT: SIGNAI = 0 AT NOCE b
INPt IS : (-7, 2) , (

*

*

** *

GATE 9: NODE 6 PBESET TO MODE

GATE 9 TYPE = AND HAS SINGLE INPUT
GATE 1: -2 2 2 7 0 <
GATE 9: NOCE 7 PRESET TO MODE

GATE 9 TYPE = AND HAS SINGLE INPUT
GATE 1: -2 1 3 7 0 (

GATE 1 COMPLETED. PR ELIMINABY GAT E

GATE 1: 2 1 3 7 0 (
GATE 1: 2 1 3 7 0 (
GATE 3: 2 1 1 2 0 (
GATE 6: 2 1 1 4 0 (
GATE 1: 2 1 3 7 0 <
GATE 1: 2 1 3 7 0 (

0 BY GATE 1 .

. GATE BEING ELIMINATEC AND INPUT DIRECTLY INTO GATE 1.
2, -1),< 23, 1),(24, 3),(-6, 7), (

= 0 BY INITIAL CONDITIONS.
GATE BEING ELIMINATED AND INPUT DIRECTLY INTO GATE 1.

2, -D,(23, 1),(24, 3), (22, 1) , (

EDIT ECLLONS **♦

2, -1) , (23, D . (24, 3) , (22, D . (
2, -1) , (23, 1), (24, 3), (22, 1), (
4, -1) . (18, 1) , (
7, -1) , (20, D , (
2, -1) . (23, 1), (24, 3) , (22, D . (
2, -1) , (23, D * (24, 3) , (22, D . (

*** PRELIHINAEY EDIT OF GATE COMPLETED

»* !T0P. HAS EE EN CCMIIETED * ****

- tECGSAN CIT, VfESICN Cf 1C/75
- PROGRAM FOR IHf AUIOMATED CCN3TRUCTICN CF FAULT TREES.
- OUTPUT REGICf

- SAHPLE CASE fCf CAT CCIE

cr>oo

*** GATE PBI8TCUT SECTTCA ♦**

GATE 1 2 1 3 7 0 (2, -1) . (23, 1). (
GATE 2 1 2 0 5 0 (3. -1). (6, -1) , (
GATE 3 2 1 1 2 0 (4, -1) . (18, 1) , (
GATE 4 1 1 1 10 0 (5, -1) , (28, 5003), (
GATE 5 2 0 2 9 0 (26, D . (30, 4) , (
GATE 6 2 1 1 4 0 (7, -1) . (20, 1), (
GATE 7 1 1 1 1 1 0 (8, -1) . (28, 5003),(
GATE 8 2 0 2 9 0 (26, 1). (30, 4), <

24, 3),(22, 1),(

GATE TEINSIEFS CCMEIETEE ***

INTEBNEDIATE Ef INTOUT ECR SAMPLE CASE FOR CAT CODE

GATE 1 2 1 3 7 0 (2. -1), (23, D , (GATE 2 1 2 0 5 0 (3, *1), (6, -1), (GATE 3 2 1 1 2 0 (7. -1) , (18, D , (GATE 6 2 1 1 4 0 (7, -1) , (20, 1), (GATE 7 1 1 1 11 0 (8, -1) . (29, 6003),(
GATE e 2 0 2 9 c (26, 1), (30, 4) , (

CT>

- ESOGFiH CiT, \) E E S 1C N C f 1C/75
- FBOGE4N FOB THE AUTOHATED CCNSTEOCTION OF FAOIT TPEES.
- CUTPOT EEGICB: FINAL GATE EEINTOUT

- SAMPLE CASE EOF CAT CCIE

»** FINAL GATE PFINIOUT SECTION

GATE 1 2 1 3 7 0 (2, -1) . (23, 1), (
CATE 2 1 2 0 5 0 (3, -D , < 4, -1), (
GATE 3 2 1 1 2 0 (5. -1) , (18, 1). (
GATE 4 2 1 1 4 0 (5, -1) , (20, 1) , (
GATE 5 1 1 1 11 0 (t>. -1), (28, 5003), (
GATE 6 2 0 2 9 0 (26, 1) . (30, 4) , (

- JrROGEAM CAT, CITPL1 FIGICN
- OUTPUT TO I/C EEVICE 10 IN FORMAT FOR PFEE-KITT CODES

- SAMPLE CASE IGF CAT CCIE

SAMPLE CASE ICE CAT COIE

*** FAULT TREE CONSTRUCTED BY CAT, VERSION OF MAY 1977 ***
♦ DATA

6 0 0 0 0 0
1 1 1000 2

O•o

ENE
* TREE
TOP OR 1 3 GATECCC2 00230001 C0240003 C0220001
GATE0002 AND 2 0 GATE00C3 GATE0004
GATE0003 OR 1 1 GATECCC5 0C18000 1
GATE0004 OR 1 1 GATE0CC5 00200001
GATE0005 AND 1 1 GATECCC6 0C285CO3
GATE0006 OR C 2 C0260C01 00300004
ENE
« FATES
00180001 1.000 1 .COO C0200001 1.000 1.000
00220001 1.000 2 .000 00230001 0.100 2. 000
00240003 3.000 5 .CCO 00260001 1.000 2.000
00285003
ENE

C.O 0 .001 00300004 1.000 1.000

EFOGFAM CAT, SUEBCUTINE CU1FLT, VFFSICN OE KAY 1977
CFOSS-INDEX CE COMPCEEKT NAMES USEE FOB PEEE/KITT INPUT

- SAMPLE CASE EOF CAT CCEE

PB EP COMPONENT CCMECNENT INTEENAL INTERNAL; INTERNAL FAILURE
NAME IN C EX NAME COLUMN; NUMEEB: NAME STATE

00180001 4 SWITCH 1 1 18; INTERNAL 1
00200001 5 SWITCH 2 1 20: INTERNAL 1
00220001 6 EEIAY SW 1 22: COIL 1
CO 230001 6 BELAY SW 2 23: CONTACT 1
CO 24000 3 7 ECWER 1 24: INTEPNAL 3
00260001 8 INVERTOR 1 26; INTERNAL 1
0028 5003 9 CE . 1 28: OP ERFOB 5003
CO 30000 4 10 A NNINC. 1 30: INTEFNAL 4

<t****l(t*****)*l*++*****i«************j|c***j,!**1<***»iKtKj(i*;*«*<c*Xt**'******’4l***>tcV+*J*(^JtC)«*

♦TEEBIL FAULT TREt BUILCTVG FFPGFAr
*4t^<<)*t**c**<l***+*1t>**+******^*«**nt* ***■)<**)(■**♦'** + +

SAMPLE CASE FCF CAT COTE

*** FAULT TREE CCNSTFUCTFD B Y CAT, VERSION OF MAY 1977 ***

_> NUMBER OF GATES,NG--- 6
•vjco

COMBO STARTING VALUE,MIN-------------------------------------- 0

COMBO ENDING VALUE,MAX-- 0

CUT SET - PATH SET SWITCH,IDEX1------------------------ C

PRINT - DISC SWITCH,IDEX2---------------------------------- 0

MONTE CARLO STARTER,MCS-- 1

NO. OF RANEO.M NUMBERS TO P EU'CT , MF EJ IC--------- 1

NO. OF MONTE CARLO TRIALS,NIP---------------------------- 1000

MIXING PARAMETER SWITCH,IPEN------------------------------ 2

MONTE CARLO MIXING PAR A M ET 3 F , T A A--------------------- 0 . "

174

♦TPEBIL FAULT IFIF BUILrIMG FROGFAM
****#**»****Ht*****^*»*****^*^****J|i***>k****<!*>(>***»***itt***

tiMi******#*<*4*****#******«**************************

SAMPLE CASE FCF CAT CODE

NAME TYPE INPUT S------
TOP OP 1 3 GATEC002 00230001 00240003 00220001
GATE00C2 ANC 2 C GATEP0C3 G AT E 0 C 0 4
GATE0C03 OF 1 1 GATECCC5 00180001
SATE00C4 OF 1 1 GATECCC5 00200001
GATE00C5 AND 1 1 G AT EC 0 06 00285003
GATE0006 OF C 2 002t>0CC1 00300004
END c C

************************************ *'****»**»***********«*******************************
♦TPEBIL FAULT TREE BUILEING PROGRAM *
*** ******** ** *

SAMPLE CASE FCF CAT CODE

COMPONENT INDICES, NAMES, ANC FAILURE RATES (PER HOUR) -

TREE INDEX

W ¥

COMPONENT NAME LAM3CA (FAILURE INTENSITY/HP.) TAU
1 00260C01 1.000 00D-06 2. 00000D*-00
2 00300004 1.30000D-06 1.OOOOOD+OO
3 00285003 0.0 1.00000 D-03
4 00200001 1 .OOOCOD-06 1.00000D+00
5 00180001 1.00000D-06 1. 00000 D + 00
6 00230001 1.00000D-07 2.00000D+00
7 00240003 3.000 00D-06 5.00000D+00
8 00220001 1 .00000D-06 2.OOOOOD+OO

MNIWAL SETS FCR THIS T F! E
*<(4 + #4i44i^«Ht#j»t4‘44444*4i**>t‘44*****>|f'4******4**4***4’«*4,fc44«*****>i4t*4w44*>(t***4#*4**4c*

#4'*******4**********************K**«***4’4,t**'* ************+ ***************4

MNIMAL CUT SET 1 rT2400Q3

PI NIMAL CUT SET 2 CC2200Q1

P!I NIMAL CUT SET 3 rO230CC1

HINIMAL CUT SFT 4 00200001 C018C001

MINIMAL CUT SET 5 CC3C00C4 OC 28 SO 0 3

MINIMAL CUT SET 6 C32600C1 CC28S003

+ + ** + m*4i + * EMD OF OUTPOI FFTM KIMSET **********

APPENDIX F

Program List for CAT

The following is the complete listing of the FORTRAN source deck

for the CAT code, including all comment cards. This listing contains

the current version (as of December, 1977) and incorporates the following

changes to the version described in reference 1:

1) Addition of subroutine OUTPUT, and call statement in subroutine

DRIVER, to produce PREP-KITT output; this necessitates addi­

tional input in new 'SOUT' section of data input if KOUT = 1;

2) deletion of array 'AMAT' and dimension 'MSIZE' from MAIN

program and subroutine DRIVER;

3) replacement of paramater 'IGOOD' by 'KOUT' and addition of

'lOT' on DAT1 card and in COMMON;

4) addition of parameter 'NGATE' in calling sequence for'DO IT';

5) addition of error checking statements for new input in 'SOUT'

section. This requires changes in DRIVER, LIBR, INDEX and

STEVE to recognize and differentiate between input sequences

for KOUT = 0 and KOUT =1. Also, changes in DO IT and DRIVER

have been made to bypass PREP-KITT input and output if no fault

tree is produced by CAT (e.g., if TOP event cannot occur in

the fault tree desired).

177

FBCGEAM C?.I
FROGBAM BOB THE AUTOHATID CCKSTBOCTTCN OF FAULT TBEES

VEBSICB CF M JY,1977
FBOGBAHHHD BY S. L. SALEH, 825-2792
CHEMICAL, NUCLEAR, AND 1HEBEAL ENGINEERING DEPAFTMENT
5532 BCEITEB HALL
SCHOOL CF ENGINEERING ANC AEELIED SCIENCE
CNIVEESITY CF CALIFORNIA, LCS ANGELES
LOS ANGELES, CALIFORNIA 90C24

c
c
c
c
c
c
c
c
c
c
cc** *********
c
C MAIN BCCTINE (LUMMY)
C ROUTINE TC SET MAIN ARRAY DIMENSIONS ANC CALL DRIVER

DIMENSION MAT (10000)
DCIBLE PRECISION NA ME (200)
LATA LSIZE,NSIZE/ 200,10000/
CALL DRIVE B (NA ME,MAT,LSIZE,NSI2E)
SICE
EKC
SO EFCUTINE LBIVEB (NAME,MAT,LSIZE,NSIZE)

C*******4********* 4*****444******************** *************************
*
*
*

*
*

*

*

*

*

*

*

C
c
c
c
c
c
c
c

MAIN DRIVER ROUTINE OP PROGRAM CAI
ROUTINE TO BEAD MAIN PARAMETERS, SET UP PROGRAM DIMENSIONS
AND CALL PROGRAM SUBROUTINES
VARIABLES II - 115 ABE STARTING INDICES OF SUBABBAYS

CF MAIN INTEGER ARRAY 'MAT
VARIABLES J1 - J3 ABE STARTING INDICES FOR DOUBLE PRECISION.

DIMENSION MAT(NSIZE)
DOUBLE PRECISION NAME(LSIZE),NNAKE
CCMMCN TITLE(2 0),YXXX(20),2ERR,IEDIT,IDUM(1 2),NNAME,IPRINT,KOUT
LATA LEAT,MEAT,LEND,LLIB/'6EAT', * EAT*,‘END ','6LIEV
DATA LTOE jMENCjXCUT/'DTCP' , '6ENE','&OUT'/
LATA IJCE,NFO«/1,1/
IFBINT
111 IT
KCLT
ICT
INGATE
IFF B =
JEFB =

0
0
0
10
1 1

C
c

BEAD (5, 10CC) TITLE
KBIT! (6,1001) TITLE
READ (5,1002) XXXX,NCOCE,I,IDUM
IF (NCODE .EC. LCAT) GC TO 90
WRIT! (6, 1003) LCAT
WRITE (6,1004) XXXX

INPUT ERROR EFTECTED. PROGRAM WILL ATTEMPT TO CONTINUE.

178

nn
no

r>

on

no

no

IB (MCODB .HE. HEAT) IBfiB = 1
IF (NCODE .EC. LEND) GC TO 6C0
IB (NCODE .EC. MEAT) GC TO 93
GC TC 91

90 ilFITE (6,1004) SXXX

BEAD INEOT IN GENESAI FOBBAT.
91 BEAD (5, 1002) XXXX , NCODE,I,IDUM

IF (NCODE.EQ.HEAT .CS. NCOEE.EQ.IENE) GC TC 92
aBITI (6, 1003) HEAT
«BITE (6,1004) XXXX
3EBB = IEB F ♦ 1
GC TC 2000

92 8BIT! (6,1004) XXXX
IF (NCODE .EC* LEND) GC TO 600

93 GC TC (100,200,300,400,500),I
100 CONTINUE

IB (IEUM (1) .Gl. 0) IJOB = IDUM (1)
IEBIKT = TECH (2)
KCET = IEOH (3)
IEDIT = IDEE (4)
IB (IDUM (5) .Gl. 0) IOT = IEUH (5)
GC TC 91

200 CONTINUE

EBOGBAH SETS PABAMET1ES OF ABBAYS FOB 'IIEB* BOUTINE
NI1B = IDCfi(l)
IKBCN = IIUH (2)
MASINT = IEEE (3)
HXNBCH = IEUH (4)
tNBf 1 = LNBCN ♦ 1
GC TC 91

300 CONTINUE

EBOGBAH SETS EABAMETEFS OF ABBiYS FOB INDEX ROUTINE
NNCMI = IDUM (1)
NNCDE = IDEM (2)
GC TC 91

4CC CONTINUE
IB (IDUM (1) .GT. 0) NEON = IDDM(I)
GO TC 91

500 CONTINUE
600 CONTINUE

ALL BABAMETEBS HAVE BEEN INPUT.
COMPUTE INDICES ANE DIMENSIONS FOB ABBAYS.
INDICES HAVE ADDITIONAL INCBEHBNTS OF 1 TO ALLOW FOB
INSERTION CF TOP EVENT.

11 = 1
12 = 11 ♦ NLIB ♦ 1
13 = 12 ♦ NEIB + 1
14 = 13 ♦ NIIE ♦ 1

179

n
n
n
n
n
n
n
n

-j o o

oo o

M
a?

w
2

3
1-

4
C

j
n

A
M

1—
4

H
M

M
M

M
3

3
•J

k
ss

M
O

2
hr

t
w

3
-

A
►

rt
tr

t
m

U
<o

CD
X

£>
U

)
A

M
M

A
tn

M
K

)
_
i

P
I

tn
A

2
2

A
3

CO
r
t

O
W

to
t-

.
1-

4
O

O
O

M
h
i

W
M

M
II

II
II

II
II

£
H

£
A

TO
II

II
»-

4
2

C-
,

—
fc

K
>

U
J

TO
TO

II
II

II
II

II
2

C
U

J
K

)
H

M
M

M
M

tr
t

•»
o

C
j

hr
t

—
A

vr
>

00
-J

II
1

W
TO

H
as

2
3

M
w

4
•

-A
 O

A
H

H
tv

2
C

?
to

X
A

3
W

TO
CO

ro
n

H
O

A
T

l
2

4
4

4
4

4
X

w
-

H
2

TO
3

m
n

3
2

•
A

m
A

to
TO

4*
h
i

H
I

4-
2

3

3

A
A

2
2

2
A

A
II

O
TO

+
2

>

3
*

3
2

2
2

2
2

£
£

m
A

2
A

A
fO

4*
M

O

^
♦n

2
to

O
A

O
to

K
 ■»

3
X

w
A

TO
a

#
W

O
 —

s
W

H

H

f/>
h
i

3
»

A
A

X
2

tn
tw

t/1
TO

se
_

*
3

H
I

X
h
i

W
A

£
4

tn
A

A
A

A
2

o
X

tn
•

N
*

#
o

M
C

3
A

W
C

J
M

t
l

A
4

3
2

£
no

to
w

A
A

TO
M

2
2

 %

«
h4

2
X

O
T

to
to

to
K

2
• •

W
»^

i
to

3

3

•
4

2
w

O
4

O
S

*
N

J
h3

>

>

o
o

£
4

a
A

C/
5
2

3
3

«
-*

R

H

3
£

_
*

A
2

C
3

X
X

2
H

H

L0
h

i
N

J
H

TO
O

TO
H

2
H

s—
’

2
2

TO
O

2
n

-
a

u

>
IS

J
4

W
O

H
£
A

3
O

'*
-'

w
A

O
a

3
N

>
to

h3
<%

O
-a

m
A

h
i

^

3
w

A
H

H
A

II
II

3

>

A
h
i

H
3

2
H

>

H

O
o

to
TO

TO
A

3
h
*

—
A

A
CO

A
(to

*
M

K
)

m
M

w
A
X

M

^

A
U

J
A

A
«■

{*
*

o
W

H
n

A
2

K
)
o

A
TO

A
O

w
O

J
a

A
TO

3
2

•
%

>
cn

2
>

m
«

a
2

t-3
o

A
3

H
S3

*
3

H

£
»

TO
A

TO
2

H
A

a
*

TO
A

M

U
)

A
a

TO
TO

TO
A

W
2

TO
TO

C
4

%
>

A
2

U
>

2
>

*
A

£
2

TO
tv

—

>

to
>

H
>

A
*

3
o

A
V

)
A

2

m

m
W

A
H

3
a

 ^

H

C-
.

w
w to

A
> A

TO TO
O o

CO

-*

•
o

A
TO

{>
TO

%
A

9
!

TO
TO

to
2

 %
A

>
K

2

3

W
H

TO
TO

o

>
»

A
2

K
TO

TO
3

1-
3

A
G

o
TO

hr
t

TO
TO

£
^

H
A

TO
CO
A

0
0

A
•

TO
•
X

M
2

TO
O

TO

f

CALL L IB £ (MAI (I I) , MAT (1 2) ,M A T (I3) ,M A I (1 4) ,M A T (I5) ,M A T (I6) ,
MAI (17) ,N A B E (J 1) ,N A M E (0 2) , N L IE , IN BOW,MXNBCW, MA XIN T
M XIN T2,M XB O B 2)

JEBB = IE P B
I F (I EBB . 1 1 . 0) JEBH = - IE S B - 1

n
o
n
n

n
n
n

2
H

£
U

4
H

3
C

j
C

i
c
.

H
H

H
X

TO
TO

m
X

U
J

to
-4

O
S

cn
TO

tv
2

H
h
i

tv
A

TO
A

TO
A

O
SS

A
II

II
II

II
It

II
A

A
A

**
•*

TO
C

j
3

£
TO

3
M

£
-a

C
J

X
to

TO
c

C
j

H
M

H
2

H
O

TO
tv

C
2

to
-4

0
1

tn
2

II
*

TO
 •

o
11

A
A

TO
a

3
A

£
A

TO
4

4
4

4
4

X
H

3
X

A
to

O
TO

A
X

TO
A

 ♦
2

A
TO

3
2

TO
2

2
A

TO
TO

o
A

•
CO

tv
M

tv
A

A
A

A
2

to
A

£
A

A
H

A
3

X
H

W
M

H
ha

£
to

CO
TO

C-
4

TO
>

H
CO

CO
TO

TO
H

TO
K

)
M

•
tn

A
2

o
A

3
04

hr
t
2

A
4

4
4

4
2

TO
•

X
hr

t
o

t
2

W
*

A
2

'w
'

<w
'

A
2

•
-4

—4
^k

.4
O

A
A

TO
M

H
A

2
TO

M
•

O
A

A
TO

A
CD

£
O

O
TO

tv
M

A
TO

%
4

A
TO

CO
M

VO
3

A
A

X
TO

tn
TO

*
X

O
O

w
tv

4
TO

O
3

TO
\

A
X

a
X

o

to
 t

o
A

O
A

TO
A

2
£

U
)

to
2

CO
w

O
M

TO
to

 t
n
 o

TO
a
*

TO
a

2
o

o
 o

O
TO

tv
A

TO
£

£
TO

n
M

<w
tv

TO
2

an
.

X
TO

•t
*

•
X

«■
TO

£
C

j
TO

TO
TO

H
O

TO
A

£
TO

W
•

2 A
TO

A
*

3
•a

TO
O

a
O

A
00

TO a

c
C CCHPOTE SEKAINING ABE AX SBACE A NO ALLOCATE TO GATES

IE (NSIZE .LT. (113 ♦ 2*INGATE + 3)) GO TO 2400
NGATE = (NSIZE - 113 ♦ 1)/(INGATE + 2)
NGSIZE = NSIZE - 113 - 2*MGATE +1
XX = (1 •C*INGATE - 5.0)/2.0
114 =113-1
115 = NSIZE - 114
WHITE (6,1010) 114,115,NGATE,XX
114 = 113 + NGATE
115 = 114 + NGATE
IF (JEKE .NE. 0) GO TO 958

800 ID CN (1) = IJCB
CALL STEVE (NAT(11) ,NAT(12) ,MAT (13) ,MAT (14) ,NAT(15) ,HAT(16) ,

1 HAT (17) ,MAT (18) ,MAT(I9),NAT (110),MAT (111),
2 MAT(112),NAME(J1) ,NAME (02) ,NAME (03) ,
3 NLIB,LNFCW,MXBOW2,NNODE,MNOEE,NNCMP,LNBE1,MXINT2,NODES,MAXINT)

C
C SUEECOTIN E 'STEVE' RETUBNS IEEE LESS THAN 0 FOB FATAL
C EBBOBS, AND IEEE GEEATEE THAN 0 FOE LESS SEVEBE EBBOBS.
C 00E WILL ABOET FOB IEEE LESS THAN 0, BUT SUBSEQUENT JOBS
C WILL BE BUN IF NO 'LI BE' CE 'INDEX* EBBOBS SEFI FOUND.

IF (IEEE .LT. C) GC TO 810
I F IE = 0
CALL DO IT (MAT (II) ,MAT (12) ,MAT(13),MAT(14) ,MAT (15) ,MAT(16),MAT (17)

1, NAT (18) ,MAT (19) ,NAT(I1C) ,HAT (111) ,MAT(I12) , M AT (113) ,
2 MAT (114) ,MAT (115),NAME (03),NLIE , INBOW,MXBCW2,NNCC3,
3 KN0DE,NNCMP,LNBP1,NGATE,MXINT2,NGSIZE,NODES,NGATE)

IF (IEEE .NE. C .CE. KOUT .EQ. 0) GC TO 810
C
C SUEEOOTINE 'DC IT* BETUENS IEEE = 1 IF NO FAULT TFEE
C CE ONLY EABTIAL FAULT TEEE WAS EBODUCED.
C
C SCEEOUTINE 'OUTPUT* WILL WEITF EB EP INPUT ONTO
C IATASET 'IOT* IF IEBE = 0 AND KOUT = 1.
C

CALL OUTPUT (MAT (110) , MAT (113) ,MAT (114) ,MAT (115) ,NAME (02) ,
1 NAME(03),NLIB,MN0Di,NNCMP,MGATE,MXINT2,MAXINT,
2 NC-SIZE,NGATE,IOT)

GC TC 998
810 CONTINUE

C
C FAULT TEEE NCT EBODUCED BY SUBECUTINE 'DO IT'.
C BEAD PAST EBEP-KITT DATA (IF EEESENT).
C XXXX CONTAINS LAST CABD READ BY SUBBOUTINE 'STEVE'
C ('SEND', 'SCUT', OB END-OF-FILE).
C

IF (KOUT .EQ. 0 .OE. XXXX(1) . NE. XOUT) GC TO 998
820 READ (5,1002 ,END=999) XXXX,NCODI

WEITF (6, 1004) XXXX
I? (NCODE .NE. MEND) GC TO 820

998 IF (IPEINT .LT. 0 .OB.

181

on

no

1 (IEBE .IQ. 0 .ANE. IEBINI .IT. 3}) GC TO 990
SEITI (6,9CCC) HAT
HB1TE (6,9001) NAME

990 BEITE (6,9002)
3 E (JIBE .NE. 0) GO TO 999
IEEE = 0

NOW HEAn INEUT FCE NEXT BUN
899 IOCE = IJOE ♦ 1
900 BEAD (5,1002 ,END=999) XXXX,NCCDE

IS IT = 1
IF (NCODE .EQ. LCAT) ISET = 2
IF (NCODE .EC. LTOP) ISET = 3
IF (NCODE .EC. MEND .OB. NCCDE .EC. LEND) GC TO 901
GC TC (910,920,920),ISET

901 WHITE (6,1009) XXXX
GC TC 900

910 EC 911 I = 1,20
911 TITLE (I) = XXXX(I)
920 WBITI (6,1011) TITLE,IJOE

IF (ISET .EC. 3) GO TO 800
921 BEAD (5,1002,END=999) XXXX,NCODE,I,IDUM

WBITE (6,1004) XXXX
IF (NCODE .EC* LTOP) GO TO 800
IF (NCODE .EC. LDAT .OB. NCCDE .EC. LEND) GC TO 921
IF (NCODE .EC. MEND) GO TO 900
IF (NCODE .EC. MDAT) GC TO 930
IF (ISET .EC. 0) GO TO 921
WHITE (6, 1002) LDAT
WBITE (6,1004) XXXX
IS IT = 0
GC TC 921

930 CONTINUE

BEAD NEW PAHAMETEFS FFOH 'DAT* CABD.
IEBIKT = IDEM (2)
KCCT = 3 EUM (3)
IEDIT = ID CM (4)
IF (IDUM(5) .GT. 0) IOT = IDUM (5)
ISET = 1

931 BEAD (5, 10C2,END=940) XXXX,NCODE
WHITE (6,1004) XXXX
IF (NCOEE .EQ. LTCP .OB. NCOEE .EQ. LEND) GC TO 800
IF (NCODE .EQ. MEND) GC TO 950
IF (ISET .IQ. 0) GO TO 931
WRITE (6,1003) IEND
WBITI (6,1004) XXXX
ISET = 0
GC TC 921

940 WRITE (6,1012)
BETUBN

950 WHITE (6,1013)

182

no

on

GC 1C 899
999 BEIOEN

EB FOE EEGICN.
2000 CCBTINUE

I? (NCODE .EQ. 1LIE) GO TO 2100
BEIOBN

2100 IEEE = -IEEE
GC 1C 600

2200 ISEACE = 17 ♦ LNBCW*MXNECS
BBITE (6,1005) 1SPACE,NSIZE
GO TC 2350

2300 ISEACE = 112 - 1
HEITE (6 , 1 CC 5) ISPACE, NSIZE

2350 03 = J3 + EKCMP
IF (03 .Gl. LSIZE) WRITE (6, 1006) 03,LSIZE
OEEE = OEEE ♦ 1
GO TC 998

2400 ISPACE = 113 - 1
WBITI (6, 1 CC9) NSIZE,ISPACE
OEEB = OEEE ♦ 1
GC TC 998

10 EM AT REGION
1000 FORMAT (20A4)
1001 FORMAT (1H1,65(» — M/#' - PEOGBAM CAT, VERSION OF 1 0/75 ' , 11 31 , «-•/

1, * - PROGRAM FOE THE AUTOMATED CONSTBUCTION OF FAULT TREES.'
2, TIBI,'-' /,' -',1131,•-•/ ,' - *,20A4,T131, »-• /, IX,
3 65('--•)///,IX,'*** DATA VALIDATION SECTION ***'//)

1002 FORMAT (20A4,T1,A4,11,1215)
1003 FORM AT (1H0,* *** INPUT ERROR ***'/,IX,A4,' CARD HISSING OB MISPUNC

1HEE*/,7X,'CAED IN EEEOR IS:'/)
1004 FORMAT (1X,20A4)
1005 FORMAT (1H0,'*** ERROR ****/5X,•ABE AY SPACE REQUIRED EXCEEDS SPACE

1 ALLOCATED.'/5X,*ARRAY MAT BEQUIRES ESTIMATED*,16,' WORDS FOR ROUT
2INE LIER, PLUS ADDITIONAL SPACE BCR REST CF JOB.*/5X,’CNLY • ,16,
3 • WORDS ALLOCATED. '/' *** JOB TERMINATING ***•)

1006 FORMAT (1H0,**** ERROR ***•/5X,•ARE AY SPACE REQUIRED EXCEEDS SPACE
1 ALLOCATED.'/5X,'ARRAY "NAME" REQUIRES', 16,' DOUBLE PRECISION WO
2BD£.*/5X,'ONLY' ,16,' WORDS ALLOCATED.'/
3 ' *** JOB TERMINATING ***')

1007 FORMAT (1H0,'NUMBER OF LIBRARY ECWS ESTIMATED (MXNRCW) =',15,
1 • BOWS.'/' ALLOCATED SPACE REMAINING (MXROW2) =',I5,
2 ' ROSS.')

1008 FORMAT (1B0,'*** WARNING ***'/5X,'REMAINING SPACE MAY BE INSUFFICI
1ENT FOE JOE. JOB CONTINUING.')

1009 FORMAT (1H0,**** ERROR ***'/5X,'INSUFFICIENT ARRAY SPACE REMAINING
1 FCR GATE STORAGE.'/5X,'ARRAY SPACE ALLOCATED =',I6,' WORDS.'/
25X,'ARRAY SPACE REQUIRED =',16, • PLUS 13 WORDS FOR EACH GATE GENE
3RATED.'/' *** JCB TERMINATING ***')

1010 FORMAT (////,IX,129(•*•)/' * STCPAGE SPACE SUMMARY*,T130,'*•/
1 • * ARRAY "MAT" EAS USED',16,' WORDS. * ,T130, ** •/

183

nn
n o

on

oo
oo

on

on

2 • * BEMAINING*,16,• WOB££ SILL ACCOMMODATE*,16,' GATES MI
3TH AN AVERAGE CF*,F4.1,* INEOTS EEE GATE. * ,T130,***/IX,129t•*')/)

1011 FCFfllT(1H1,65(*—“*)/,* - PROGRAM CAT, VERSION OF 10/75',T131,*-•/
1, ' - EROGRAM FOB TEE AUTOMATED C0NS1B0CTICN OE FAULT TREES.*
2, 1131,*-' /,* -•,T131,* - •/ - *,20A4,T131,/, IX,
3 65 (*—')///,IX,**** JOB*,15,* ***'//)

1012 FORMAT (*0*** END CF FILE BEACHED MITH NO TOP EVENT DEFINED ***•/
1 • *** JOE TERMINATING ****/lH1)

1013 FORMAT (*0*** INPUT ERROR ****/5X,*••SEND * * CABD REACHED KITH NO T
IOE EVENT DEFINED.*/5X,'DATA FOB NEXT JOE HILL BE BEAD.'/1H1)

90CC FORM AT (1H1,'ARRAY MAT^•//2C(1X , 15))
9001 FORMAT (1H1,'AEBAV KAME : •//(IX, 10 (A8,2X)))
9002 FCFMAT (1H1)

END
SUEROUTINE LIBR (NTYPE,IEOH,NINT,NIN,NOUT,NROM,JROH,NAME,MCDNAM,

1 NLIB,LNROH,MXNRCS,MAXINT,MXINT2,MXBOH2)

SUEROUTINE IIEB
SUEEOOTINE TO READ LIBRARY ANE VALIDATE ENTRIES

NTYPE IS TYPE NUMBER CF CCMICNENT TYPE I
IROW POINTS TO BEGINNING BOH CF COMPONENT TYPE I

DIMENSION NTYPE (NLIB) ,IEOH (NLIB) ,NINT (NLIB) ,NIN (NLIE) ,NOUT(NLIE) ,
1 NBOH(NLIE),JBOH(INBCH,MXNPCH)

REAL*8 NAME(NLIB),MCDNAM(MAXINT,NLIE),NBAME
CCMMCN TITLE(20),XXXX(20),I£RR,IEDIT,IDUM (12),NNAME,IPRINT,KCOI
DATA LIB,LRCH,LMCD,LEND,LIIE,LOME,LCCM/'LIEB',' ROM*,

1 * MOD','END *,*SLIE*,*SCMP*,* CCM'/

FIRST SUPPRESS ERROR MESSAGES FOR IHC215I (ILLEGAL CHAR.)
CALL EBRSET(215,0,-1,0,1)
IBCH(I) = 1
ISET = 0
JSTCP = 1
MXINT2 = 1

MXINT2 MILL BE SET TC MAX NO. CF INTERNAL MODES USED
WBITI (6, 10CC) TITLE
IF (IEPB .IT. 0) GC TO 94

READ FIRST CABD, WHICH SHOULD EE 'SLIB* CARD.
IF 'SLIB* CARD IS MISSING, CORRECTIVE ACTION WILL BE ATTEMPTED.

READ (5,1001) XXXX ,NCODE,NAME (1) ,NTYPE (1) ,NIN (1) ,NINT (1) ,
1 NCUT (1) ,NROW (1)
IF (NCODE .EC. LLIB) GO TO S5
WRITE (6,1003) L1IB
WRITE (6, IOC 2) XXXX
IEFB = I ERR + 1
IF (NCODE .KE. LIE) GO TO S6
IEPB = IEBB - 1
IS IT = 1

184

nn
n

n
n

n
n

n
n

n
n

n
n

n
n

n
n

n

HEITE (6,1010) IIB

IF 'SLIB* CAEC IS MISSING AND 'HER' CABD HAS BEEN BEAD,
SKIP TO E JTA VALIDATION SECTION WITHOUT BEADING NEXT CABD.

GC TC 56

•SUB* CAFE HAS ALREADY EEEN BEAD BY DRIVER PROGRAM,
ANE IEEE EAS EEEN SET NEGATIVE.
BOCTINE BESETS IERB AND CONTINUES.

94 IEBB = -IEFB - 1
95 HBITE (6,1002) XXXX
96 CONTINUE

DO 2 CO 1=1 ,NIIE
IE (ISET .EQ. 1) GO TO 97
BEAD(5,1001) XXXX,NCODE,NAME(I),NTYPE (I) ,NIN (I),NINT (I),

1 KOUT (I) ,NFOH (I)
97 ISET = 0

IF (NCODE .EQ. LIB) GO TO 100
IF (NCODE .EQ. LOME) GO TC 3998

98 HBITE (6,1003) LIB

EEBCB F0 UN I
ROUTINE ICC PS TO FIND NEXT VAIIE COMPONENT HEADEB CARE.
IF NONE FCDNE, BOUTINE TERMINATES.

IEBB = IEB F + 1
99 HBITE (6,1002) XXXX

IF (NCODE .EQ. LEND) GC TC 130
ISET = 2
GO TC 129

100 HBITE (6,1015) I,XXXX

VALID *11BB 1 CAFD FOUND FCE CCMEONENT I.
ROUTINE NOH VALIDATES INPUT DATA FOR COMPONENT I.

MHCW = NBCfc(I)
IF (I .GT. 1) IEOH (I) = IBCW(I-I) * NBCfc(I-l)
IF (IBOH(I) .IT. I) IBCW(I) = I
IF (IEOH (I) + MEOS .LE. MXNBOH + 1) GC TC 101
HBITE (6,1012) NTYPE (I)

IF ALLOCATED NUMBER CF BOHS IN ARRAY JRCi IS EXCEEDED,
SET EBRCP ELAG AND OVERLAP EXTRA ROWS CNTO ROW IROW = 1.

IEOH (I) = 1
IEFB = IEFB ♦ 1

101 NNINT = NINT (I)
MXINT2 = MAXC (MXINT2,NNINT)
KTOT = NNINT + NIN (I) + NCUT (I)
IF (NNINT .LE. MAXINT) GO TO 102
HRITE (6,1013) NTYPE (I) ,NNINT, EAXINT
IEBB = IEBF + 1

102 IF (NTOT .IE. INBCW) GC TC 103
HRITE (6,1014) NTYPE (I) ,N101,INR0H

185

nn
n

nn

on
n

no

on

1EBB = IEEE + 1
103 CCKTINOE

NOS PISE IN KABIS OF INTEENSI FSILOBE MODES.
FEAD(5,1004) KXXX ,NCODE, (BCDNAB (J,I) ,J=1,BAXINT)
IF (NCODE .EQ. LMOC) GO TO 11C

ICS SPUE (6,1003) IBCD

EBBOF FCCNE CN 'MOD' CABE.
SBITE (6,1 CO 2) XXXX
JEFfi = IEEE + 1
IF (NCODE .EC* DENE) GO TO 13C
IF (NCODE .EC. LCME) GO TC 3999
IS IT = 2
GC 10 129

110 SBITE(6,1C02) XXXX

NOS BEAE IN CCBECNENT TAELE BOSS.
JSTABT AND JSTOE MABK BEGINNING AND END OF COMPONENT I IN ABRAYS.

111 OSTABT = IPOS (I)
JSTCE = OSTAET ♦ BEOS - 1
EO 120 J=J£TAET,JSTOP

BEAD (5,1001) XXXX ,NCODE ,NNABE , (JFOW (K,J),K=1,LNROS)
IF (NCCEE .EC. LFOB) GO TO 119

118 SBITE (6,10C 3) LEGS

EBBCE FOUND CN 'BOB' CABD.
SBITE (6,1 CC 2) XXXX
IEBB = IEBB + 1
IF (NCCDE .EQ. DENE) GO TC 130
IF (NCCEE .EQ. LCBP)GO TO 3999
IF (IEBF .GE. 100) GO TC 2000
ISET = 2
GC TC 129

119 SBITE (6, IOC 2) XXXX
120 CCNTINCE

CHECK FCB ENE CAFD AFTER IACH COMPONENT.
BOOTINE HILL TAKE COBBECTIVE ACTION IF END CAFD IS OMITTED.

129 IF (I .EC. NLIE) GC TO 121
BEAD (5,1001) XXXX,NCCDE,NAME (1*1) ,NTYPE(I+1) ,NIN(I + 1) ,

1 HINT (1 + 1) ,BOOT (1*1) ,NBOS (1 + 1)
IF (NCODF .NE. LIE) GO TO 122
IF (ISET .NE. 2) SPITS (6,1003) LEND
SHITE (6,1002) XXXX
IS IT = 1
GC TC 200

121 CONTINUE
BEAD (5,1006) NCODE,XXXX

122 IF (NCCDE .EQ. LEND) GO TO 124
123 IF (ISET .EQ. 2) GO TO 124

SBITE (6,1003) LEND

186

n o

3SB1 = 2
3BFF = IIF F ♦ 1

124 SEITE (6,1002) XXXX
IF (NCODI.IQ.LCHP .ANE. I.LI.SLIB) GO TO 3998
IF (NCODE .SC. LCME) GC TC 3999

130 IF (NCOEI.NE.LIB .AND. NCODE.NE.LEND) GO TO 129
iBITE (6 ,1007)

200 CONTINUE
C
C LIEB1FY HAS EE IN READ IN AND VAIILATED,
C FINAL EBFCF MESSAGES FOLLOW.
C FIRST ROUTINE SETS MAX NUMBER OF INTERNAL MODES,
C AND NUMBER OF ROWS ACTUALLY USID.
C THIN ROUTINE CHECKS TO MAKE SERE NO EXTRA CARDS REMAIN

MXINT2 = HINC (MXINT2 , MAXINT)
READ (5, 10C 1,ENC = 9999) XXXX,NCODE ,NNAME,IDUM
IE (NCODE.NE.LCME .AND. NCODE.N E.LCCM) WRITE (6,1016) NLIB

201 IF (NCODE .EQ. LCME) GO TO 210
IF (NCODE .NE. LCOM) GC TO 202
WRITE (6,1010) ICCM
IF (IERR .NE. 0) WRITE (6,1008) IERB
IE FR = -IERR - 1
MXFCW2 = JSTCE
RETURN

202 WRITE (6, 1002) XXXX
READ (5,1001 ,END=9999) XXXX,NCODI ,NNAME,IDUM
GC TC 201

210 WRITE (6,1010) LCME
IF (IERR .NE. 0) WRITE (6,1008) IERR
MXIOS2 = JSTCE
RETURN

2000 WRITE (6,1CC9) IEEE
GC TC 202

3SS6 1=1-1
WRITE (6,1CC5) I,NLIB

3999 WRITE (6,1CC8) IERR
WRITE (6,1010) LCME
MXFOW2 = JSTCE
RETURN

9999 WRITE (6,1011)
IERR = 2
RETURN

FORMAT REGION.
1000 FORMAT (1H1,'*** '^OAU,* ***•//# 5X ,* LIBRAR Y INPUT PRINTOUT'//)
1001 FORMAT (20A4,T1 ,A4,6X,A8,2X,12I5)
1002 FORMAT (1X,2CA4)
1003 FORMAT (1H0, '*<* INPUT ERROR ***•/, IX,A4,' CARD MISSING OR MISPUNC

1HEE'/,7X,'CAED IN ERROR IS:'/)
1004 FORMAT (20A4,T1,A4,6X,7 (A8,2X))
1005 FORMAT (1H0,'*** WARNING ***•/,5X,•ONLY',14,• COMPONENT TYPES INPU

IT.',35,' CCMECNENT TYPES EXPECTED')

187

nn
n

nn
n

1006 FOBS JS2 (A4,11f 2CA4)
1CC7 FCBHA1 (//)
1008 FO fMAT (1H0,,L2FBAfiY BCOTINF TEBHIMATIHG. NOMBEB OF INPUT EBBOBS =

1',14,/,IX,'VALIDATION C? BEKAINIBG DATA MILL BE ATTEMPTED.'/)
1009 FCFMAT (1H0,'LIEBABY BOOTINE TEBMINATING ABNOBMALLY DUE TO',14,

1 • OB HOBE INPUT EBBOBS',/,IX,'VALIDATION OF BEHAINING INPUT
2 HILL BE ATTEMPTED.'/)

1010 FC EMAT (1 HO , A4, • CABD FOUND. DATA VALIDATION CONTIKOING.•//)
1011 FOBMAT (1H0 , '*** END OF INPUT DATA STBEAM ***•/,IX,'NO VALID HEADE

IB CABD FCUNI»/,1X,'JOB TEBMINATING'//,1X,'*** END OF PBOGBAM ***•)
1012 FOBMAT (1H0,'*** INPUT EBBOB ***•/,5X,'NUMBEB OF COMPONENT BOHS EX

1CEEDS NOMBEB ALLOCATED.*/,5X,'BOH INDEX BEING BESET TO 1 FOB COMPO
2NE NT *,16//)

1013 FOBMAT (1H0,**** INPUT EBBOB *** */,5X,'COMPONENT',16,* HAS',12,
1 • IKTEBNAL MODES.'/,5X,'THIS EXCEEDS THE',12,' MODES ALLCHED.'/)

1014 FOBMAT (1H0,**** INPUT EBBOB **<•/,5X,'COMPONENT*,16,• HAS',13,
1 • INTEENAL MODES + INPUTS ♦ OUTPUTS.»/,5X,'THIS EXCEEDS THE',13,
2 • AIIQHED.'/)

1015 FOBMAT (1H0,//,' LIBBABY DATA PBINTCUT FOB COMPONENT*,14/
1, 11X,'NAME',7X,'TYPE',IX,' NIN NINT NOUT NBOH•/,IX,20A4)

1016 FOBMAT (1H0 ,**’♦* HABNING **■"/, 5X, • EXTB A COMPONENT TYPES INPUT.
1CNIY ' ,15,' COMPONENT TYPES EXPECTED*/,5X,'EXTEA CARES FOLLOW'/)

END
SEEBOUTINE INDEX (NTYPE,NINT,NIN,NOUT,NAME,NCMP,MOOT,ITYPE,INODE,

1 CHENAM,NLIE,NRCMP,NNODE,LNBP1)

SUEBOUTINE TO BEAD AND INDEX CCMECNENT FLOW CHART

DIMENSION NTYPE (NLIB) ,NINT(NLIB),NIN (NLIB),NOUT(NLIE) ,NCMP(NNCDE) ,
1 MCOT(NNODE) , IT YPE <N NC M E) , INODE (LN BP1, NNCMP) ,
2 IEK6 (12),IER7(12)

DOUBLE PRECISION NNA ME,CMPNAM(NNCMP),NAME(NLIB),MNAHE(12) ,LEBB
COMMON TITLE (2C) ,XXXX (20),I EBB,IEDIT,IDUM(12) ,NNAME,IPRINT,KOUT
DATA LCCM,LEND,LTOP,LEBB/

1 ' COM','END ','STOP','***EBRCB'/
DATA IEB6/12*0/
DC 1C IZEEC=1,NNCDE

10 KCMP(IZEBC) = 0
I = c
HR ITE (6, 1CCC) TITLE

BEAD FIB ST CABD, WHICH SHOUID BE ’ COM' CABE.
IF • CCM' CABD HAS ALBEADY EEEN B:EAB BY LIBE ROUTINE,
IDUM ABB AY CONTAINS COMPONENT 1, SO READ IS SKIPPED.

IF (IEBB .IT. 0) GO TO 98
IEBB = 0

97 READ (5,1 0 C 1) XXXX ,NCODE ,NNAME,IDUM
IE (NCODE .EO. LCOM) GO TO S9
IF (NCODE .Eg. LEND) GO TO 1999
WRITE (6, 1002) LOOK
HBITE (6,1014) XXXX
IEBB = IEBB + 1
GC TC 97

188

on

o
on

o

no

98 JEFE = 0
99 MKIIE (6,1003)

100 I = I ♦ 1
ISE1 = 0
BE3TE (6,100<4) I,XXXX
CEF NAM(I) = ENAME
INCDE (LNEE1,1) = 0

COMECNEN1 IATA IS NOH VALIEATIE AND S10EEE IN ABE AYS
JD [M = IDOH(I)
EC 110 J = 1,NLIE

IF (JDOM .NE. NTYPE (J)) GC TC 110
IT YPE (I) = J
GC TC 120

110 CONTINUE
EBBOB ENCOONTSBED: NO COMPONENT TYPE 'I* IN LIBBABY

HE IT I (6, IOC E) JEUM,NNAME
1EFB = IEEE + 1
IT YPE (I) = JEUM
INCDE(LNBP1,1) = -1
GC TC 200

120 IN = NIN (J)
ICCT = NOUT(J)
IICT = IN + ICUT
ITCTE1 = ITOT ♦ 1

SIGN, NUMBEB AND VALIDITY OF NODES NOW CHECKED.
FIBST, CFECK ECB COFBECT NUMBEB AND SIGN CF INPUTS/CUTPUTS.

I E F 1 = 0
1 E E 2 = 0
IEF3 = 0
I £ F 4 = 0
IEF 5 = C
1EF8 = 0
IEE9 = 0
EO 130 IT = 2,12

JD C M = IBOM(IT)
IF (IT. LE. ITOTP1) GO TO 129
IF (JDUM .EQ. 0) GO TO 131

EFBOB: COMPONENT HAS TOO MANY NODES
ISB2 = 1
IE (JDUM .GT. NNOEE) IEB9 = 1
IE (JDUM .IT. 0) IEB1 = 1
C-C TO 131

129 IF (JDUM .IE. 0) IEB1 = 1
IF (JDUM ,C-I. NNODE) 3EB 9 = 1

130 CONTINUE
131 CONTINUE

IF (I .EQ. 1) GC TO 133

NOH CHECK FCB UNIQUENESS CF CCMECNENT NAME
IM 1 = 1-1
DC 132 IS=1,IM1

189

no

nn

nn
n

n
nn

n

IF (NNAMJ .NE. CKENAM (IS)) GC TC 132
IEB3 = IS
GO TO 133

132 C0KT3NUE
133 IF (IBfil * 1ZB2 + IEE 9 .NE. 0) GC TO 140

NO it CHECK THAT ALL OUTPUTS HAVE UNIQUE NCEE NUHBEBS
1ST IS INDEX OF FIRST OUTPUT NODE

1ST = IN + 2
DC 127 IS=3S1,ITOTP1

RTEST = ID CH (IS)
IF (NCMP(NIEST) .EQ. 0) GC TO 134

EBBCE: OUTPUT NODE HAS BEEN PREVIOUSLY DEFINED
TEE 6 (IS) = NTEST
IEB7(IS) = NCBP(NIEST)
IE F 8 = 1
GC TO 135

NOS SET COEECNENT INDEX AND CUTPUT NUMBEB
COBBESPCNDING TO NODE NUMBEB

134 KC MP (NTE ST) = I
ECUT(NTEST) = IS - (IN + 1)

135 IF (IS .IE. 2) GO TO 137
NON CHECK TEAT EACH OUTPUT IS DIFFEBENT
FBCM AIL CTHEB INPUTS/OOTPUTS

ISM 1 = IS - 1
DC 136 IT = 2 ,ISM1

IF (IDUM (IT) .NE. NTEST) GO TC 136
IF (IT .LT. 1ST) IEB4 = 1
IF (IT .GE. 1ST) IEB 5 = 1

136 CCNTINCE
137 CONTINUE
140 IEFTOT = IEB1 ♦ IEB2 + IEB3 ♦ IEB4 4 IEB5 4 IEB8 4 IEB9

IE (3EBTOT .EQ. 0) GO TO 150
IEBB = IEBB 4 1

INPUT CABD 'I* HAS CNE OB MOBE EBBOBS. HBITE MESSAGE (S).
HBITE (6,1C06) I
INCDE (INBP 1,1) = -2
IE (3ER3 .NE. C) HEITE<6,1007) NNAME,IEB3
IE (IEB9 .NE. 0) HFITE(6,1016) NNCDE
IF (IEB1 .NE. 0) HBITE (6,1008) IDUM(1),ITOT
IF (1EB2 .NE. 0) WE ITE (6 , ICC 9) 1EUM(1),IT0T
IF (IEB4 .NE. 0) HBITE (6,1010)
IF (1EB5 .NE. 0) WBITE(6,1011)
IF (IEB8 .EQ. 0) GO TO 150
DC 141 IS = 2, 12

IF (IEB6 (IS) .EQ. 0) GO TC 14 1
HBITE (6,1C12) IEB6(IS),IER7(IS)
IEB6 (IS) = 0

141 CONTINUE
GO TC 160

190

nn
n

n
n

no

nn

150 CCKIINUE
C CftFD N0» 51 At AND VAIILATED. SIT NODE NUHBEBS.

IF (IN .EQ. C) GO TO 152
DC 151 IS = 1 /1N

151 INCDE (IS,I) = IDUM (IS + 1)
152 IS 2 = NINT(J)

IN11 = IN ♦ 1
DO 153 IS = INE1 ,IT0T

153 INCDE (IS-*IS2, I) = IDUM (IS + 1)
160 CONTINUE

IE (3 EBTOT .NE. 0) SBITE (6,1C2S)
2C0 BEAD (5,1001 ,END=9999) XXXX ,NCOEE,NNAME,ID0M

IE (NCODE .NE. LCOM) GC TO 202
IF (ISET .EC. 1) SBITE (6,1029)
IE (I .LT. NNCME) GO TO 100

EBEOB ENCCDNTEBED: TOO MANX CCMECNENTS
SBITE (6,1013) NKCME
IEEE = IEBB + 1

201 SBITE (6,1014) XXXX
BEAD (5,10C1,END = 9999) XXXX,NCOEE ,NNAME ,IDUM
IF (NCODE.NE.LEND .AND. NCODE.NI.LTCP) GO TC 201
SPITE (6,1015) NCODE
GC TC 300

202 IF (NCODE.EC. LEND .OP. NCODE. EC .HOP) GO TC 203

EBBOB ENCCUNTIBED: UNKNOWN CABE TYPE
LCCDE = LEND
IF (I .LI. NNCMP) L CODE = LCOM
IF (ISET .EC. 0) SBITE (6,1002) LCCDE
SBITE (6,1014) XXXX
IF (ISET .EC. 0) IEBB = IEBB + 1
ISET = 1
GC TC 200

203 IF (I .EQ. NNCMP) GO TO 204

EBBOB ENCCDNTEBED: TOO EES COMPCNINTS
WHITE (6,1017) I,NNCMP
IEBB = IEBB + 1
ISET = I
GO TC 300

204 SBITE (6,1014) XXXX
GC TC 300

ALL CCMPCNENTS HAVE BEEN INPUT AND VALIDATED
INPUT EDIT FCLLCSS

300 CONTINUE
TEND = NNCMP
IF (ISET .GT. 1) IEND = ISET
ISET = 0
SBITE (6,1019) TITLE
DC 400 I = 1,1 END

191

no

no

nn

no

IF (INODI (LNFE1,I) .IQ. -1) GO 10 330
OTIPE = IISPE(I)
IF (INODE(LNBE1#I) .NE. 0) GO TC 340
IN = NIN(JTYPI)
IF (IN .EQ. 0) GO TO 320
CO 310 J = 1,IN

FIND COMPONENT NOMBEBS/NABES FOE EACH INP0T NCEE
ODUM = INCDE (J,I)
KCMP = NCMP (JDUM)
IDUM(J) = JDUM
IF (MCHP .IE. 0) GO TO 309
MNAME(J) = CMPNAM (HCMP)
GO TO 310

309 MNAME(J) = IEEE
IIEE = IEBE * 1
ISET = ISET ♦ 1

310 CONTINUE

INEEX EDIT COMPLETE FOB COMPONENT I: HBITE COBBECT CUTPUT FOBMAT
iBITE (6,1020) I ,CMPN AM (I) , NT YP E (JT YPE) , N AME (JTYP E) ,

1 (IDUM (0),MNAME (J),J=1,IN)
GO TO 400

320 HBITE (6,1021) I ,CMPN AM (I) , NT Y E E (JT YPE) , NAME (JTYPE)
GC TO 400

330 SBITE (6,1022) I ,CMPNAM(I),ITYPE(I)
GC TO 400

340 SBITE (6,1023) I ,CMP N A t (I) , NT Y P E (JT YPE) , N AME (JTYPE)
400 CONTINUE

IF (ISET .NE. 0) HBITE (6,1028) ISET

NOH DO OUTPUT NODE EDIT
HBITE (6, 1024) TITLE
DC 5CC 1 = 1,NNODE

IF (NCMP (I) .EQ. 0) GO TO 500
JCMP = NCMP (I)
MNCEE = I
SBITE (6,1025) I,JCMP,CMPNAM(JCMP),MOUT (I)

500 CCNTINUE
IDUM (1) = ENCDE

EDIT CONCLUDED. HBITE FINAL CUTPUT
600 IF (IEBB .NE. 0) HBITE (6,1018) IEBB

BETUEN
1999 HEITE (6,1026)

IEBB = 1
HBITE (6,1018) IEEF
BETUEN

9999 IEEE = 9999
SBITE (6,1027)
BETUEN

C

192

C PCBHAT EE6I0N
1000 FGFMA1 (1H1 ,20AV/»1X, •CCHfCNEMl INDEX INPOT PEINTOOT'//)
1001 FCIM AT (20A4/11,A4,6X#A8,2X#12I5)
1002 FCFMAT (1H0,***1* INEOT EBBOF *** • / ,1* ,k<iCABD MISSING OB MISPONC

1EIC. CABD IN EBBOF IS:*)
1003 FOBMAT {//,1 BO,'COMPONENT CABD BBINIOOTIX,'INDEX*,2X,'CCDE*,5X

1, •NAME*,7},*TXFE* ,2X, 'INPCT/COTPOT NODES'/)
1004 FOIMAT (IX,15,IX,20A4)
1005 FCFMAT (1H ,'*** INPOT EFBOB ***•/,5X,*NO CCMEONENT TYPE*,16,

1 • FCOKD IN LIEBABY,•,2X,A8,1 IN EBBCB, OB LIEBABY INCOMPLET
2E.'/)

1006 FOBMAT (1H ,•*** INPUT EBBOB ****/,5X,'COMPONENT*,14,• HAS EBBOBS
1IN INPUT AS EOLIOSS : ')

1007 FCFMAT (7X,'CCMECNENT NAME "*,A8,*" HAS PEEVIOUSLY EEEN USED BY CO
1MICNENT*,14)

1008 FCFMAT (7X,'T00 FEW NODES, OB NCK-POSITIVE NODES. CCMECNENT TYPE',
1 16,' BECOIBES* ,13,* POSITIVE NODES’)

1009 FCFMAT (7X,'TOO MANY NODES. COMPONENT TYPE',16,' BECOIBES',
1 13,' NODES')

1010 FOBMAT(7X,'CNE CF MCBE OUTPUTS IDENTICAL WITH ONE OB MOBE INPUTS')
1011 FCIMAT (7X , ' CUTE UT NODES NOT UN3C UE *)
1012 FOBMAT (7X,'CUTEUT NODE',15,' HAS ALBEADY EEEN ASSIGNED TC COMPONE

1 NT',15)
1013 FOBMAT (1H0,'*** INPUT EBBOB ***•/,5X,'MOBE THAN THE',15,' COMPONE

1NTS SPECIFIED KAVE BEEN INPUT. EXTBA CABDS FOLLOW:*)
1014 FCFMAT (7X,2CA4)
1015 FOBMAT (1H0,A4,* CABD FOUND. VALIDATION AND FINAL EDIT FOLLOW.')
1016 FCFMAT (7X,'NODE ICC LABGE. MAXIMUM NODE ALLOWED =',I5)
1017 FOBMAT (1H0,'*** INPUT EFBOB **■**/, 5X, * ONLY' ,14, • CCMPCNENTS INPUT

1. ' ,15,' COMBCNENTS EXPECTED.')
1018 FOBMAT (1H0,'INDEX BOUTINE TEBMINATING. NUMBER OF INPUT EEBCBS =',

1 14/,IX,'VALIDATION OF REMAINING DATA WILL BE ATTEMPTED.'/)
1019 FC EM AT (1 HI,•CCMPONENT INDEXING PRINTOUT FOB :'/,1X,20A4//,IX,

1 'INDEX',2X,' NAME* ,6X,'TYEI#* ,2X,'TYPE*,6X,'INPUTS FROM : ',
2 'NODE/NfME'/)

102C FORMAT (1 X ,15,2X ,A8,2X,15,2X,A8,5X, <5(15,*/',A8,2X)/))
1021 FCFMAT (1X,l5,2X,A8,2X,l5,2X,A8,5X,'THIS COMPONENT HAS NO INPUTS')
1022 FCFMAT (IX , 15,2X,A8,2X,15,2X,'***•,10X,•*** EBBOB: NO SUCH COMEONE

1NT TYPE FOUND IK LIBBABY')
1023 FCFMAT {1X,I5,2X,A8,2X,I5,2X,A8,5X,'*** EBBCB: INPUT HAS EBBOBS SP

1ECIE1ED PREVIOUSLY')
1024 FOBMAT (1H1,'OUTPUT NODE CBCSS-INDEX FOR: •/, IX,20A4//, IX,

1 'OUTPUT NODE*,2X,'CCEPCNEN1:',IX,'INDEX',2X,'NAME',3X,
2 'OUTPUT NO.'/)

1025 FCIMAT (IX,17,16X,I5,2X,A8,I5)
1026 FCBMAT (1H0,«*** INPUT EBBOF **«•/, IX,'END CABD FOUND WHSEE COMPON

IENT DATA EXPECTED')
1027 FOBMAT (IHO,***1* END OF INPUT DATA STREAM ***•/,IX,*NC VALID HEADE

IB CABD FOUND'/,IX,•JOB TEEMINATING'//,1X,•*** END OF PBOGBAM ***')
1028 FCBMAT (///' *** EBBOF:',15,' INPUT NODES EEFEBENCE UNDEFINED OUTP

1UT NODES.'/,IX,'PEINTOUT SPECIEIES NODE NC./***EBBOE'/)
1029 FCIMAT (IX)

193

INI
SUEBOUTINE STEVE (NTYPE,IEOS,NINT,NIN,NOUT,NEON,JBOW,NCHP,NOUT,

1 ITYPE,INOnE,X,NAME,HGDNAH,CMPNAM,
2 NIIB,INBCS,MXBO«2,NNODE,ANODE,NNCMP,LNPP1,MXINT2,NODES,MAXINT)
4 ******** ****** *** *********

c *
C SUEBOUTINE TO 'SET TCP EVENT VALUES, ETC.* *
C STEVE *
C SUEBOUTINE TO SET UP INTEENAL NODE NUHBEBS, SET ABBAY X, *
C AND SET TCP EVENT ANE SYSTEM ECUNDABY VALDES. *
C *
£4***4444444************** **

CC KMCN TITLE (20),XXXX (20),IEBB,IEDIT,IDUM (12) ,NNAME,IPBINT,KOUT
IN1EGEB X(2,NODES)
DIEENSION NINT(NLIB) ,NIN (NLIB),SCUT(NLIB) ,JEOW(LNB0S,HXB082),

1 INODE (LNBP1,NNCMP) ,ITSPE(NNCMP) ,NTYPE (NLIE) ,IBCS (NLIB) ,
2 NEON(NLIB) , NOME(NNCDE) ,K0UT(NNODE)

DOUBLE PBECISICN NNAME,NAME(NLIE),MCDNAM(MAXINT,NLIE),
1 CMPNAM(NNCMP),NAME1

DATA LTCP ,HTOP,NTOP,LEND,MEND,NEC,NNT,NEXT,NAM El,LOUT/*&TOP* ,
1 'TTCP *,* TOP',* ENE",'SEND*,'SBC*,* INT',' EXT*,•TOEEVENT•,'60UT•/
MBIT! (6,100C) TITLE
NAME (NLIE) = NAB El

C
C IIBST SET OP NODE NUMBEBS FOB INTEBNAL NODES.

NNCM1 = NNCMP - 1
EC 102 J = 1,NNCM1

IT = ITYPE (I)
INT = NINT(IT)
IF (INI .EC. C) GO TO 101

C
C COMPONENT I HAS INTEBNAL MODES WHICH MUST HAVE NODE NUMBEBS.

IN = NIN (IT)
NODE = MNCDE ♦ (1-1)*MXINT2
IS = IN •* 1
ITOT = IN ♦ INT
LC 100 J = IS,ITOT

100 INODE (0,1) = NODE * J - IN
SBITE (6,1001) I,CMPNAM(I) ,NIYPE(IT) , NAME (IT) ,

1 (INODE (IN+J,I) ,MCDNAH (J ,IT) ,0=1,INT)
C-C TO 102

101 SBITE (6,1001) I,CMPNAM(I) ,NTYPE(IT) ,NAME (IT)
102 CONTINUE

C
C NOS INITIALIZE X ABBAY

DC 201 I = 1,NODES
1(1,1) = -1

201 X (2,1) = -1
£***** ** 4* ************** 4***
C *
C SECTION TO BEAD AND VALIDATE TCP EVENT AND BOUNDABY CONDITIONS *
C IIBST SET UP LIBBABY ENTBIES EOB TOP (I = NLIB), THEN VALIDATE *

194

on

nn
n

nn
n

C *
c*******<********4 *** 4 ********

HEITE (6,1CC6) IDUM (1) ,TITLE
ISIT = 0
NliPE(SLIB) = C
IUPE (NNCMf) = NLIE
NIJl(NLIE) = C
NC UT (NLIB) = C

EUC FIEST CABE, HHICH SHOULD EE 'STOP' CABD.
IF CABD IS MISSING, SEARCH FOE 'TTOP* CABE.

300 BEAE (5, 10C2,END = S96) XXXX,NCODI,NNAME,IDUM
IE (NCODE .EC. LTCP .OB. NCCDE .EC. MTOP) GO TO 301
IE (NCCEE .EC. MEN I) GO TO S9C
IF (NCODE .EC. LEND) NCODE = LTCP
IF (NCCDE .EC. LENE) GC TO 1999
HBITE (6,1003) LTCP
HBITE (6,1004) XXXX
IEBB = IEBB ♦ 1
GC TC 2000

301 HBITE (6,ICCT) NCODE,TITLE
ISIT = 1
IF (NCODE .EC. MTOP) GC TO 302
BEAE (5, IOC 2,END = 9 9 7) XXXX,NCODE,NNAME,IDUM
IF (NCODE .EC. MTOP) GC TO 302
IF (NCODE .EC. MEN!) GO TO S91
IF (NCODE .EC. LEND) NCODE = MTCP
IF (NCOEE .EC* LENE) GO TO 1999
HBITE (6,1C03) MTOP
HBITE (6,IOC 4) XXXX
IEBB = IEBB + 1
GC TC 2000

302 CCNTINUE

TOP EVENT CABD ‘TTOP' HAS EEEN BEAD.
SBITE ANE VALIDATE EATA.

CMPNAM (NNCMP) = NNAME
MBCH = HUM (1)
NIN(NLIB) = IDEM(2)
NBCH (NLIB) = MBCH
LBCH = MXB0H2 - IBCH(NLIB) ♦ 1
IE (MBOH .LE. LBOH) GO TO 303
IEBB = -1
HBITE (6,1C09) LBCH,MBOH,XXXX

303 IF (NIN (NLIB) .IE. LNBCH) GC TO 304
IEEB = -1
HBITE (6,1010) INBOH,NIN (NLIB) ,XXXX
NIK(NLIE) = LNBCH

304 CONTINUE

NOH CHECK THAT ALL NODES HAVE EEEN DEFINED AND ABE UNIQUE.
IK = NIN (NLIE)

195

no

nn

nn

nn

DC 3CS I = 1,11)
0LOB = IL0B(1 4 2)
IF {JDUM .GT. MNODE .Cfi. JDOfi . LE. 0) GO TO 307
IE (NCMP (JEUM) .EQ. 0) GO TO 3C6

VALID C0TP0T NODE FOUND
IF (I .EQ. 1) GO TO 309
IM 1 = I - 1
EC 305 J = 1,IM1

IF (JDUM .EQ . IDUM (J +
305 CCNTINCE

GO TO 30 9
306 HBITE (6,1005) XXXX

HBITE (6, 1011) JDUM
IEBB = -1
GC TO 309

307 HBITE (6,1005) XXXX
HBITE (6,1012) JDUM,MNODE
IEBB = -1
GC TO 309

308 SBITE (6,1005) XXXX
HBITE (6, 1013) JDUM
IEBB = -1

309 CCNTINUE
IF (IEBB .IT. 0) GO TO 2999

. NON CHECK FOE UNIQUENESS.

2)) GC TO 306

•TTOP' CASE HAS BEEN VALIDATE!. ENTEF INTO INODE AND HEITE.
ISIT = 2
WRITE (6,101))) NNAME,MEOW,IN
DC 310 I = 1,IN

JDOM = IDEM (I 4 2)
INCDE(I,NNCMP) = JDUM
ICC MP = NCMP(JDUM)

310 HBITE (6,1C 15) JDUM,ICOMP,CMPNAM(ICOMP) ,MCUT(JDUM)

NOH INPOT TCP EVENT BOHS FBCM • TOP' CABDS.
INP2 = IN 4 2
HB3TI (6,1016) (IDUM (I) ,I=3,INP2)
1 = 0

311 BEAD (5,1CC2,END=9S8) XXXX,NCCDE,NNAME,IEOH
IF (NCODE .EQ. NTOP) GC TC 313
IF (NCODE .EQ. MEND) GO TO 992
IF (NCODE .EQ. IEND) NCODE = NTCP
IF (NCOEE .EQ. LENE) GO TC 19SS
HBITE (6,1003) NTOP
HEITE (6,1004) XXXX
GC TC 2000

313 3=1+1

VALID • TOP* CABE FOUND.
SBITE (6,1005) XXXX
I ECH = I EC Si (NLIE) +1-1

196

on

no

on

no
on

IC 314 J = 1,IN
314 JEOH(J ,IBCS) = IDUM (J)

IF (I .II. HBCW) GO TO 311

TOP EVENT BO US HAVE BEEN BEAD. SEAECH POE END CAED
AND SET EODNBABY CONDITIONS <IB ANY).
MAKE SDBE NO EXTBA • TOP* CABDS DEMAIN.

ISET = 3
BEAD (5,10C2,END = 220 1) XXXX,NCOEE,NNAME,IDUM
IF (NCODE .EC. LEND) GC TO 316
IF (NCODE .EC. NEC) GO TO 318
IP (NCODE .EC. MEND .CB. NCODI .EC. LOUT) GO TO 2201
IE (NCODE .EQ. NNT .OB. NCOEE .EQ. NEXT) GO TO 317
IF (NCODE .NE. NTOP) GC TO 315

EXTBA • TCE’ CABDS FOUND. AECBT JOB.
IEBB = -1
WB ITE (6,1018) MFC ki , XXXX
GC TC 2000

315 SBITE (6,1003) LEND
SE1TI (6,1004) XXXX
IE (IEBB .GE. 0) IEBB = IEBB + 1
GC TO 2000

316 SBITE (6,1005) LEND
BEAD (5,1002,ENE=2203) XXXX,NCOEE,NNAME,IDUM
IF (NCODE .EC. NEC) GC TO 318
IF (NCODE .EC. LEND .OF. NCOEE .EQ. MEND) HBITE (6,1004) XXXX
IF (NCODE .EC. LENE) GC TO 2000
IF (NCODE .EQ. BIND .OB. NCODI .EQ. LOUT) GO TO 2203
SBITE (6, 1003) NBC
SBITE (6,1004) XXXX
IF (NCOEE .EQ. NNT .OB. NCODE .EQ. NEXT) GO TO 317
IF (IEBB .GE. 0) IEBB =' IEBB ♦ 1
GO TC 2000

317 CCKTINUE

•SEC1 CABD OMITTED.
SBITE (6,1003) NBC
SBITE (6,1004) XXXX
SBITE (6,1 C 19) TITLE
IF (NCODI .IQ. NNT) GO TO 320
GC TC 330

318 CCNTINUE

•SEC CABD FOUND. SEAECH FOE VALID BOUNDABY CCNEITICNS.
SBITE (6,1019) TITLE
ISIT = 4

319 BEAD (5, 10C2,END=22C1) XXXX ,NCOEE,NNAME,IDUM
IF (NCODE .EQ. LEND) GC TO 2300
IF (NCODE .EQ. MEND .OB. NCODF .EQ. LOUT) GO TO 2201
IF (NCODE .EQ. NNT) GC TO 320
IF (NCODI .EQ. NEXT) GO TO 330

197

no

nn

nn

nn

nn

nn

WE IT I (6,1003) NEXT
WEITE (6,1CC4) XXXX
IB (3EEE .Gl. 0) IEEE = IEEE + 1
GC TC 2200

320 ISIT = 5
WEITE (6,1CC5) XXXX

INTEENAL NCDES TC BE SET. FIEST FIND COHPONENT.
EC 3 2 1 J = 1,NKCME

IF (CMENAfi (J) .EC. NNAME) GC TC 322
321 CCNTINCE

NC NAME MATCH FBOM ' INT* CABC.
IEEE = -1

329 WEITE (6,102C) NNAME
GC TC 319

322 CCKTIN01

VALID NAME ECUNE. SET NODES.
INT = NINT(J)
IF (INT .EC. 0) GO TO 329
NODE = MNODE * (J “ 1)*MXINT2
EC 323 K = 1,1NT

IF (ID DM (K) .IT. 0) GC TO 323
KNCDE = NODE + K
X(1 ,KNCDE) = IDOM (K)
X(2,KNCDE) = C

323 CCNTINCE
GC TC 319

330 ISET = 5
WF3TE (6,1 CO 5) XXXX

IXTEENAL NCDES TO EE SET. CHICK EACH NODE FOB VALIDITY.
DC 335 J = 1,6

GJ = 2*J - 1
JDOM = IDCM (JJ)
IF (JDOM .EQ. 0) GO TO 336
IF (JDUM .GT. MNODE .OB. JEOH .LE. 0) GO TO 333
IE (NCMP (JDOM) .EQ. 0) GO TO 334

VALID NODE FCCNE. CHECK AGAINST TOP EVENT.
IN = NIN(NLIB)
DO 331 K = 1,IN

IF (INCDE(K,NNCMP) . EQ. JEUF.) GO TO 332
331 CCNTINCE

NODE VALID. SET MODE.
X(1,JDOM) = IDCM(JJ + 1)
X(2,JDUM) = C
GO TO 335

332 CCNTINCE
C

198

no

no
n

n n

EOUNEABY CCNEIT1CN IS ALSO ICP EVENT.
NEGLECT ECUNDABY CONDITION.

SHITE (6,1 C21) JDUM
GC TO 335

333 SBITE (6,1012) JDUM,MNODE
IEEB = -1
GO TC 335

334 HEITE (6,1013) JDUM
IEBB = -1

335 CONTINUE
336 CONTINUE

GC TC 319

EINAL REGION.
EBBOBS CHECKED, EXTBA CAFES BEAD, ETC.

990 NCCDE = LTCE
GC TC 995

991 NCCEE = MTCE
GO TC 995

992 NCCDE = NTOB
995 HBITE (6,1025) NCCDE

IEBB = -1
BETUEN

996 NCCEE = LTOE
GC TC 999

997 NCCEE = MICE
GC TC 999

998 NCCDE = NICE
999 HBITE (6,1008) NCCDE,XXXX

IEEE = -2
BETUEN

EBOGBAM ENTEBS THIS BEGICN WHEN ISET = 0,1,2 OB
1999 HBITE (6,1017) NCODE

IF (IEBB .GE. 0) IEBB = IEBB ♦ 1
2000 JSET = ISET ♦ 1

3.

IE (NCODE .EC. LOUT .ANE. ISET .EC. 3) GC TO 2299
2001 BEAD (5,1002,END=2258) XXXX,NCOEE,NNAME,IDUM

GC TO (2009,2019,2029,2039),JSET
2009 IF (NCOEE .EC* LTOP) GO TO 301

IF (NCODE .EC. MTOP) GC TO 301
GC TC 2002

2019 IF (NCODE .EC. MTOP) GC TO 302
GO TC 2002

2029 IF (NCODE .EC. NTOP) GC TO 313
GC TC 2002

2039 IF (NCODE .EC. NBC) GO TC 318
IF (NCODE .EC. NNT .OB. NCOEE .EC. NEXT) GO TO 317
IF (NCODE .EC. LOUT) GC TO 2299

2002 HBITE (6,1005) XXXX
IF (NCODE .NE. MENE) GO TO 2001

199

no
n

n
n

n
n

C •SIND', *SCD1' OB ENE OF FILE BEAE.
2297 GO 10 (99C ,991 ,992,2299) ,JSE1
2298 GC 1C (996,997,998,2299),JSET
2299 HBI1E (6,1C2€)

SEI11 (6,1022)
3E (NCOEE .EC. LOOT) GO TO 2301
IF (IEBB .11. 0) WEITE (6,1024)
BE10EN

EBCGBAM ENTEBS THIS REGION WHEN ISET = 3 CB ISET * 4.
2200 RE JD (5,10C2,END=2201) XXXX,NCOEE,NNAME,IDUfl

IE (NCOEE .EC. NNT) GO TO 320
I? (NCODE .EC. NEXT) GC TO 330
IE (NCCDE .EC. LENE) GO TO 2300
IF (NCODE .NE. MEND .AND. NCODE .NE. LOOT) GO TO 2202

•SEND*, 'SCOT' CB END C? FILE BEAD (ISET = 3 OB 4)
2201 IF (ISET .EQ. 4) WRITE (6,1C22)

IBITE (6,1023)
2203 IF (ISIT .EQ. 3) WEITE (6,1022)

IF (NCOEE .EC. LOOT) GO TO 2301
IF (IEBB .11. 0) WFITE (6,1024)
BITOEN

2202 HBITE (6, ICC 5) XXXX
IE (IEBB .GE. C) IEBB = IEBB ♦ 1
GC TC 2200

END CABD ENCCDNTEBED, NO CABDS MISSING (TEANSFEB FBOM 319)
SEAECH FOE 'SEND*,SOOT OB END CF FILE.

2300 WRITE (6,1005) XXXX
BEAD (5, 10C2,END=2301) XXXX ,NCOEE,NNAME,IDOM
IF (NCODE .EC. MEND .OB. NCODI .EQ. LOUT) GO TO 2301
IF (IEBB .GE. C) IEBB = IEBB + 1
IF (NCODE .NE. NNT .AND. NCODE .NE. NEXT) GO TO 2300
SBI1E (6 ,1 C 1 7) NCCDE
IF (NCODE .EQ. NNT) GO TO 320
GC 1C 330

2301 IF (ISET .EC. 4) WEITE (6,1022)
ISIT = 6
IF (IEBB .LI. 0 .AND. NCOEE .EC. LOOT) GC TO 2300
IF (ROOT .EC. 1) 60 TO 2310
IF (NCODE .EC. LCOT) GC TC 2302
IE (IEBB .11. 0) WRITE (6,1024)
BE10BN

2302 WRITE (6,1027)
IEBB = IEBB +

XXXX
1

2303 BUD (5, 1002 , END=23C4)
WRITE (6,1005) XXXX

XXXX ,NCODE

2304
IE (NCODE .NI.
BE10BN

MEND) GO TO 2303

2310 II (NCODE .NE.
FE10FN

LCOT) GO TO 2311

200

o o u

2311 SH31I (6,1026)
IF (I HER .GE. 0) IEBB = IEEE + 1
IF (IEBB .11. 0) WRITE (6,1024)
BE1UEN

2999 MSI IE (6,1024)
2901 RE2E (5,1002,END=2902) XXXX,NCOEE

WBITI (6,10C 5) XXXX
IF (NCODE .NI. MENE) GO TO 2901

2902 EE1UBN£*******44 ************** **4*******
*

ICEMXT EEGION *
*

VERSION OF 10/75',T131,**•/

£***
1000 FOBMAT (1H1,'INTERNAL NODE INDEX FOB:'/IX,20A4//fIX,

1 'INDEX',2X,'NAME',6X,'TYPE#',2X,'TYPE',6X,'INTERNAL NODES*/)
1001 FCFMAT (1X,I5,2X,A8,I7,2X, A8,5X,5(15,': ',A8,2X)/

1 (38X , 5 (15,': *,A8,2X)))
1002 FCFMAT (20 A4,H, A4,6X,A8,2X, 1215)
1003 FOBMAT (*0*** INEOT EBBCB ***'/7X,A4,» CARD MISSING OB MISPONCHED.

1 CAFE IN EFBOB IS:')
1004 FCFMAT (7X,2CA4)
1005 FCBMAT (1X,20A4)
1006 FORMAT (1 HI , 65 (•**')/• * PBOGBAM CAT,

1 ' * TCP EVENT ANE BCONEABY CONDITION PRINTOUT FOE JOB',15,
2 T131,•*'/
3 • *• ,1131 ,'*•/• * *,20A4,T131,'*'/1X,65(•**')//)

1007 FCFMAT (IX,A4//* TCP EVENT FOB ',20A4/)
1008 FORMAT CO*** END OF INPUT EATA STREAM ***'/7X,A4,' CAFD EXPECTED:

1 EATA CABDS MISSING OB MISPUNCtFE. LAST CABD READ UAS:'/1X,20A4/
2 • JOB TEBMINATING'//' *** END CF EBOGBAM ***•//)

1009 FCFMAT (*0*** EBBOB ',60('**')/' * NUMBEB OF BOWS OF TOP EVENT EXC
1EEES SPACE ALLOCATED.' ,T131,**»/* *',I4,' BCWS ALLOCATED ("NBOW"
2 FBCM DAI4 CABD) . *,T131,
3 **•/• * ' , 14 ,' ECWS SPECIFIED OK "TTOP" C ASD. ' ,T 1 31 , • *• /
4 ' * "TTOP" CABE REAES: ' , 20 A 4,11 3 1 , ' * • /1 X ,65 ('** *)//)

1010 FORMAT ('0*** ERROR •,60(•**•)/' * NUMBER CF NODES CF TOP EVENT EX
ICE EES SPACE ALLOCATED.*,1131,•*•/• *',I4,' NODES ALLOCATED (*'LNRO
2B " FROM DAT2 CARE) .',T131,•*•/' *',I4,» NCDES SPECIFIED CN ''TTOP
3" CAED. • ,T1 31 , •*•/• * "TTCP" CAFE BEADS: •, 20 A4, T1 31, • *'/
4 1X,65('**') //)

1011 FOBMAT (' *** INEUT EBBOB ***• / 1 X , 'NODE',16,' IS NOT UNIQUE.'/)
1012 FOBMAT (' *** INPUT EEBOfi ***■»/1X, • NODE', 16, ' IS NOT BETWEEN 1 AND

(MNOEE) . •/)
*** INPUT EEBOR ***•/1X,'NODE',16,• HAS NOT BEEN DEFINED

2 *,16, '
1013 FORMAT ('

2. V)
1014 FCBMAT ('OEVENT:

1
2

'//
',A8/• NUMBER CF BOWS =',13/

• NUMBEB OF NODES =*,13/' TOP EVENT NODES
• NCEE ',3X,'COMPONENT',5X,'OUTP CT */)

1015 FCBMAT (15 ,16 ,3X,A8,14)
1016 FCFMAT (//’0 TABLE FOR TOP EVENT:'//' TTOP',6X,'NODE (S) :',2X,1015/)
1017 FORMAT ('0*** IKEOT ERROR ***•/» END CARD FOUND WHERE "*,A4,"' C

201

on
n

on

ISRI iXPECTIE.V DATA EBBOB, PREVIOUS HISPUNCH, OB CABD MISSING OB
2 CUT CF ORDER.'/' COBBECTIVE AC3ICN Will EE ATTEMPTED.'/)

1018 FORMAT ('0*** INPUT EBBCB ***•/• MOBE THAN THE',14,' " TOP" CABD
IS SPECIFIEI HAVE BEEN INPUT. EXTBA CABDS FOLLOW.•/• PBOGBAM TEBMI
1NATING; VALIDATION OF REMAINING CABDS WILL BE ATTEMPTED.'//
2 IX,20A4)

1019 FC EM AT (//'O&BC'//' BOUNDABY CONDITIONS FCB *,20A4//)
1020 FOBMAT (' *** INEUT EBBCB ***•/• COMPONENT '",A8,'" DOES NOT EXI

1ST OB HAS NC INTERNAL NODES.*/)
1021 FOBMAT {» *** SABNING ***•/' NODE',16,' IS A TOP EVENT AS WELL AS

1A ECUNDABY CONDITION. EOUNEABY CONDITION WILL BE IGNOBED. '/)
1022 FORMAT {/38HCNC BOUNDABY CONDITIONS HAVE BEEN SET.//)
1023 FCPMAT (16H *** WARNING ***/52H 6 END, SOUT OB END OF FILE BEACHED

1 WITH NO ENE CABD./28H EATA MAY RAVE BEEN OMITTED./
2 23H0*** JCB CONTINUING ***/)

1024 FCBMAT (/47EC*** JOB TEBMINATING DUE TO PREVIOUS EBBOBS ***/)
1025 FORMAT (/20EC*** INPUT EBBOB **V1X,27H SEND OB 60UT FOUND WHERE '

1 ,A4,16t* CABD EXPECTED./IX,24H *** JOB TEBMINATING ***/)
1026 FCIMAT (16HC*** WARNING ***/46HCUNEXPECTED BEND, SOUT OB END OF FI

1LE BEACHED./28H EATA MAY HAVE BEEN OMITTED./
2 23B0*** JCB CONTINUING ***/)

1027 FCBMAT (16H0*** WARNING ***/33H UNEXPECTED SOUT READ (KOUT = 0)./
1 38H EXTBA FAILURE EATA WILL BE NEGLECTED./
2 20H EXTRA CABDS FOLLOW://IX,20A4)

1028 FCPMAT (16H0*** WARNING ***/47H SEND OB END OF FILE BEACHED WITHOU
1T SOUT CABI./39H REQUIRED PBEP EATA MISSING (KOUT = 1)./
1 48H FAULT TREE WILL BE CUTPUT WITHOUT FAILURE DATA./)
INI
SUEBOUTINE DC IT (NTYPE,IBOW,NINT ,NIN,NOUT,NBOW,JB0W,NCMP,MCUT,

1 ITYPE,INOBE,X,IGATE,JGATE,GATE,CHENAM,
2 NLIB,LNBOW,MXECR2,NNOBE,MNODE,NNCMP,LNBPI,MGATE,
3 MXINT2,NGSIZE,NCDES,NGATE)

SUEBOUTINE TO GENERATE FAULT TREE
DIMENSION NTYPE (NLIB),IBOW(NLIB) , NINT(NLIE) ,NIN (NLIE),NOUT (NLIB),

1 NECW (NLIE),JBOW (LNROW,EXR0W2) ,NCMP(NNODE) ,MCUT(NNODE) ,
2 ITYPE(NNCMP) ,INODE (LNRP1,NNCMP),IGATE(MGATE),
3 JGATE (MGATE) ,KIND (2)

COMMON TITLE (20),XXXX(2C),IEBB,IEDIT,IDUM (12),NNAME,JPBINT,KOUT
DOUBLE PBECISICN NNAME,CMPNAM(NKCMP)
INTEGER X (2,NODES) ,GATE(NGSIZE)
DATA KIND(1) ,KIND (2)/'AND ','OB '/
DC S8 I = 1,NGSIZE

98 GATE (I) = C
DC 99 I = 1,MGATE

IGATE (I) = 0
99 JGATE (I) = 0

IDUM 1 = NUMBEB OF BOWS OF TABLE
IDUM2 = NUMBEB OF COLUMNS (NODES)

IDUM1 = NBOW(NLIB)
ID CM2 = NIS(NIIB)

202

on
n

nn

nn
n

C
C
c
c
c
c

IFFIKT = JPBINT
IF (IPBINT .GT. 0) HBITE (6,1000) TITLE

BEGIN TC GENEEATE TBEE HUH TCE EVENT.
IF 1 BUM 1 = IEUB2 = 1, TOP GATE MUST EE DEVELOPED FUEIHSB.

IF IDUM 1 .GT. 1, TOP GATE IS CE GATE.

IG AT I (1) =
JGATE (1) =
IN TEX
JDEX
GATE (3) =
GATE (4) =
GATE (5)
IBCHI
IE (1 CUM 1

1
0
1
0
c
c
0
IEOH (NLIB)

.EC. 1) GO TC 101

TOP GATE IS OB GATE HITH IDUM 1 INPUTS
NOH FILL IN ENTBIES CF TCP GATE.

GATE (1) = -2
GATE (2) = IEDM1
DC 100 JEUM = 1,IEUM1

JJDUM = 2*JDOM 4
GATE (JJDUM) = -NNCMP

IOC GATE(JJD U M + 1) = JDUM
IGATE (2) =
GO TC 110

2*IDUM1 ♦ 6

101 IF (IDUM2 • EC. 1) GO TO 104

TOP GATE IS ANE HITH IEUM2 INPOTS.
GATE (1) = -1
GATE (2) = IE0M2
DO 103 JDOM = 1 ,IDUM2

JJDUM = 2*JDUM ♦ 4
JNCDE = INCDE(JDUM,NNCMP)
IMCDE = JECi(JIUM,IH0H1)

102 X(1, JNCDE) IMCDE
X (2,JNOEE) 1
GATE (JJDUM) =-■JNCDE

103 GATE(JJDUM+1) = IMCDE
IGATE (2) = 2*IDUM2 + 6
GC TC 110

104 CCNTINUE

TOP GATE BEQUIBES FOBTHEB DEVELOPMENT AS CB GATE.
SET TOP NCEE ANE FINE FIBST CCMPONENT TO CHICK.

JNCDE = INCDE(1 ,NNCMP)
IMCDE = JBCN(1,3BQWI)

1C5 X(1,JNCDE) = IMCDE
X (2, JNCDE) = 0

203

nn
n

nn
nn

nn
nn

nn

C GO TO CE LCOP TO CCNSTEOCT TOE GATE.
GO TC 203

110 CCKT3N0E
JGATE (2) = 1
IKEEX = 2
JDEX =1

TOP GATE £AS BEEK GENEFATEC.
EBIET OOTPDT, IF DESIBED, AND ENTEB PFOPEE GATE LOOP.

KK = IGAT E(2) - 1
IKIND = -GATE (1)
IF (IPBINT .GT. 0) BBITE (6,1003) KIND (IKIND) ,GATE (2) ,GATE (3) ,

1 (GATE (II) ,II=6,KK)
GATE (KK + 4) = C
IBEX = 1
KDEX = 6
GC TO (202,300),IKIND

*

BEGINNING CF CB LCCP. *
THIS LOOP IS ENTEBED EACH TIME *
A EBANCH OF AN AND GATE IS BEGUN. *
EIBST LOCATE FBOPEB EBANCH TO SEAECH. *

*

200 CCNTINUE
JDEX = JGATE (INEEX)
KDEX = IGATE (JDEX) ♦ 3
LLEEX = GATE (KDEX - 2) + GATE (KEEX - 1)
DC 201 J = 1 ,LIDEX

KDEX = KIEX ♦ 2
IF (GATE (KDEX) .LT. 0) GO TO 202

201 CCNTINUE
GO TC 2030

202 CCNTINUE

KDEX HAS BEEN SET TO LOCATION OF BEANCH TC BE DEVELOPED.
GAT E(KDEX) CONTAINS NCDE TC BE CHECKED.

JNCDE = -GATE(KIEX)
IKCDE = GATE (KEEX ♦ 1)
GATE(KDEX) = INEEX
GATE(KDEX + 1) = -1

C
C SINGLE-INPCT GATES TFANSfEB TC THIS POINT.
C TO GENEEATE •CB* GATES.
C EIBST CHECK FCB ABBAY SPACE LEFT.
C TEEN CHECK CCMECNENT EOWS EOB MATCHES.

203 CCNTINUE
ICC ME = NCMP (JNOEE)
IOIT = MOIT(JNCDE)
JTYPE = ITYPE{ICOMP)
IDEX = IGATE (INDEX)
LIECW = IDEX * U * 2*NBOH(JTYPE)

204

no

nn

nn

nn

nn

IF (ILBCS .GT. NGSIZE) GC TC S2C
IPLCS = NIH (JTSEE) + NIHT(JTYPE)
ISPOT = IPIOS + 10DT
ITCT = IPIOS + SCOT(JTYPE)
ISIT = 0
IDEXP1= IDEX ♦ 1
GXTE(ICEX) = -2
GATE (IDEXP1) = 0
GATE(3DEX+2) = C

NOB SEABCE ICE VALID OOTPUT HCEE.
IBCSI = IBCB (JTYPE)
NFCBI = NBCB (JTYPE) + IBCHI - 1
DO 210 IB = IBCHI,NFCBI

IF (JBOW (ISPCT,IF) .HE. IMODE) GO TO 210
ISET = 1

OOTPUT MATCH. {JOB CHECK FCB COMPLETE MATCH.
EC 205 IS = 1,ITOT

KNCDE = INCDE (IS,ICCMP)
JHCDE = X(1,KNCDE)
IF (JMCDE .EC. -1) GC TC 205
IF ((JECH(IS,IB) .NE. -1) .AND.

1 (JBC8(IS,IF) .NE. OMODI)) GOTO 206
205 CCNTINUE

COMPLETE BOH MATCH. SET GATE INPOT
GATE (IDEXP1) = GATE (IEEXP1) ♦ 1
II0 EX = 2*GATE(IDEXP1) + 3 ♦ IDEX
GATE (IIDEX) = -ICCMP
GATE (IIDEX ♦ 1) = IB + 1 - IBCHI
GC TC 210

NODE CONTRADICTICN IN BCH IB. HBITE OUTPUT
206 IE (IPBINT .LT. 1) GO TO 210

NGATE = X(2,KNCDE)
KBCH = IB + 1 - IBOHI
IF (KNODE .GT. MNOEE) GO IC 207
IF (NGATE .GT. 0) HBITE (6,1010) INDEX,CMPNAM(ICOMP),JTYPE,

1 KBCH,KNCDE,JBCH (IS,IB),JMODE,NGATE
IB (NGATE .EQ. 0) HBITE (6,1011) INDEX,CMPNAM (ICOMP),JTYPE,

1 KBCH,KNCDE,JEOH (IS,IF) ,JMODE

207

210

GC TC 21C
KNCDE = IS
IF (NGATE

1
IF (NGATE

1

- NINT (JTYPE)
.GT. 0) HEITE (6,1012) INDEX,CMPNAM(ICOMP),JTYPE,

KFOH,KNODE,JECH (IS,IE) ,JMODE,NGATE
.EQ. 0) HBITE (6,1013) INDEX,CMPNAM (ICOMP),JTYPE,

KBOH,KNODE,JBCH (IS,IE) ,JMODE
CCNTINUE

IF (ISET .EC. 1) GC TO 211

NO OUTPUT MODE MATCH FCUNE.

205

903

Oni'xaaK=ii'(ii)ii¥9>'xsar (am'9) aiian U *19* imsdi) ai
•aaiaidHOD 31¥9 *53181.0 8381303 38 S¥H 31«9 D

D
ox os (xaan * it * xaai) ai

l - (l ♦ XaaH)3I¥9 = a ♦ X30H)ILf D
xaan,x3a,r#xaar'(aNiMi)aNiM'xaasi(800i#9) ana» (o *19* iHiaar) ai

xaan*^ + n ♦ xaas = aa
2/(£ - X33H - X3QS) = XjaT 91.2

*******+***1, ******+ *+** + ***3
** *****************0

8I'l INI 33
sir = 31

•aiHSIKia SI 3IS9 *351883810 0
*(XN¥ 31) 5318183 9810110005 30 3&03 D

*a3i«8iHna aa oi boh«83 30 noiixoot si xaaa o
o

912 01 09
30811800 912

(i-*oa*(i*xaax)ai¥9 *aN¥* xaasi’Oa*(xaaa)sivd) ar
2 + xaoa = xaaa

X33TT*l = 8 512 DO
£ *■ X33N = xsaa

612 01 09 (l *53* Xian) il
(2 + X308) 3L¥9 ♦ (l ♦ Xi38)ll¥9 = X301T tjl2

•BON«aa ai?8IHIT3 *,ao. si aixo sooiAsaa o
o

£12 01 09
(xao8i)3i¥9r = xior

xaor = taoNi
xsoo'xaar* (i)asia'xaasi (tooi'9) anaa (o *19* iBiaat) ai

*0313130 33 TUB 30 »08S, SI 31¥9 SQ0IA383 0
0

trl 2 01 09 (2 *33* 08181) a!
(X3 38) I Lif 9- = 08E 81
(X300)3L¥9I = X308

0t>02 01 09 (0 * 33 * XJOPl JI £12
*.aOi ai I333I 313133 0

*.00, ai 313133 *3I¥9 50013383 OX 80¥ai80¥3 0
*X33HI 98IIK3H3308I 108 X8 113815 3313130 SI 3I¥9 D

0
X308I (9001*9) 1II88 (0 *X0* 181831) 31

0202 OX 00 (l *33* X308I) 31 212
aaxxr* (3H00I)H¥83H0 (5001*9) 3X188 (0 *X9* XBISdl) 31

*** * * * * ****D
* 0
* *S3X¥9 snoiAaaa xioa 38¥ ax¥o axaiaa o
* *38003 3DXSW 803 3X313800 0« 0
* 0
***^

022 OX 09 (0 *38* (IdX 331) 31 ¥9) 31 U2
212 OX 09

xnoi'aaxxr* (aHDoi) HVBawo'aooBr'aaoBi (t?ooi*9) axiaM (o *19*181831) ai * 3X¥9 3X3133 38¥ I9¥SS3H 181330

GC TO 410
217 LIEIX1 = IIDEX - 1

EO 218 K = IDEX,LLDEX1
GATE (KDEX) = GATE (KDEX * 2)
GAT E (KDEX♦ 1) = GATE (KEEX + 3)

218 KDEX = KDEX + 2
IF (IPBINT .GT. 1) HBITE (6,1020) JDEX, (GATE (II) ,II = NDEX,KK)
GO TO 401

C
C EREVIOOS GATE IS SINGLE INPUT 'CB* AND HILL BE ELIMINATED.

219 IF (IPBINT .GT. 0) HBITE (6,1009) INDEX,KIND(IKIND),JDEX,JEEX
INEEX = JDEX
JDEX = JGATE(INDEX)
GC TC 213

220 CONTINUE
C******* 444**************************** *********************************
c *
C BOH HATCH FOUND (TFANSFEB EEC E STATEMENT 211). *
C BCH PEOGBAE GENEBATES ‘OR' GATE INPUTS. *
C *
C* **** *4 44444*****4*44****4**********4*******************4*44**44*******

IF (GATE (IDEXP1) .GT. 1) GO TO 221
C
C 'OB ’ GATE HAS CNLY CNE BOH, TEDS IS NOT TRUE GATE.
C FETUS N TO PREVIOUS GATE AND DEVELOP CUFBENT BRANCH
C AS AN 'AND* GATE. LDEX,KDEX,ICCMP,GATE(KDEX)
C HAVE ALREADY EEEN SET.

IF (IPRINT .GT. 0) HRITE (6,1019) INDEX,KIND (2) ,JDEX
MBCH = GAT E(IltEX ♦ 1)

221 CONTINUE
C
C 'OB' GATE HAS HDITIPLE BOBS.
C SET GATE PARAMETERS AND INDICES FOR FIRST BOH.

IF (GATE(IDEX+3).LT.10000 .AND. GATE(IDEX+3).NE.0) GO TO 222
GATE (1DEX + 3) = JNODE
GATE (IDEX+4) = IHCDE

222 KK = IDEX ■» 4 ♦ 2*GATE (IDEXP 1)
KG = IDEX •» 5
IF (IPRINT .GT. 0 .AND. JDEX .GT. 0) HRITE (6,1002) INDEX,

1 KIND(2),GATI(IDEXP1),GATE(IDEX42),IMODE,JNODE,
2 (GATE (II) ,II = KG,KK)
IF (IPRINT .C-T. 0 .AND. JDEX .EQ. 0) HRITE (6,1003) KIND(2),

1 GATE (2) , GATE (3) , (GATE (II) ,II=6,KK)
IE (GATE(IDEXP1) .EQ. 1) GC TO 301
JDEX = INEEX
INDEX = INDEX ♦ 1
IF (INDEX .GT. MGATE) GO TO 900
IGATE (INDEX) = KK + 1
JGATE (INDEX) = JDEX
GATE(KK ♦ 4) = 0
LEIX = 1

C***44 ** 4*** 4***** 4 ************** 4***44*********************************

207

nn

nn

nn
nn

 nn
C
c
c
c
c
c
c
c
c
c
c
c
c

*
BEGINNING CF ’AND * LCCF. *
THIS LOOP IS INTIBED EACH TIBI *
i. EBANCH CE AN 'OB' GATE IS BEGUN. *
EBESET ViEIAELES: *

INDEX = GATE NUMEEB CE CUBBINT ‘AND* GATE *
OGATE(INEEX) = INDEX OE GATE ABOVE CUBBENT GATE *
IGATE(INDEX) = STABTING POINT OF CUBBENT GATE IN ABBAY 'GATE**
IDEX = EBANCH OF GATE 'JGATE' BEING EVAIUATED *

*
VABISELES TO EE SET: *

LBOH = BCH IN TYPE IIEEABY TO EE SEABCHED *
*

4 ** 4 ****** 4 4 4* **** 4* * 4 ************** *********

300 CONTINUE
JDEX = JGATE(INDEX)
NDEX = IGAT E(JEEX)
KDEX = NDEX 3 + 2*LDEX
ICCMP = -GATE(KIEX)
MBCH = G ATE (KDEX ♦ 1)
GATE (KDEX) = INDEX
GATE(KDEX*1) = -1

301 JTYPE = ITYPE(ICCMP)
Lf CH = IEOH (JTYPE) ♦ MBOH - 1
IN fT = NIN(JTYPE)
INT = NINT (JTYPE)
JCIT = NOCT(JTYPE)

FIBST CHECK FCB ABBAY SPACE LEFT.
IlfCi = IGATE(INEEX) ♦ 4 + 2*(INPI ♦ INT)
IF (LLBON .GT. NGSIZE) GC TC 920

NODES HEBE CHECKED FOB CCNTBADICTIONS HITH PBESET VALUES
IN LOOP 205. NOH CHECK FCB OTEEB PBESET VALUES, SET NODES,
AND GENEFATE 'AND* GATE.

IDEX = IGATE(INEEX)
GATE (IDEX) = -1
GATE (IDEX ♦ 1) = 0
GATE (IDEX ♦ 2) = 0

CHICK COMFCNENT INPUTS FIBST.
IF (INPT .EQ. 0) GO TO 311
DC 3 10 IN ■= 1, INPT

KMCDE = UFCH (IN,LBCH)
IF (KMOEE .EC. -1) GO TO 310
KNCDE = INCDE (IN,ICCMP)
JHCDE = X (1,KNCDE)
IF (JMCDE .NE. -1) GC TO 309

NODE NOT PBESET, SO SET NODE AND GATE INPUTS.
X(1,KNODE) = KMCDE
X(2 ,KNODE) = INDEX

208

GATE(IDEX + 1) = GATE (IDEX + 1) + 1
IIDEX = IDEX + 3 ♦ 2*GATE(IDEX * 1)
GATE(IIEEX) = -KNODE
GATE (IIDEX + 1) = RHODE
GO TO 310

309 CONTINUE
C
C NODE PBESET. CO NOT SET GATE INPUT.

IB = 309
IF (JMODE .NE. RHODE) PBINT 1,IE

C****4*>M4*******4 4* ***********444*4*4 4*********************************
£***4*44 4*4** 4********

IF (IPBINT .LT. 1) GC TO 310
NGATE = X (2/KNOEE)
IE (NGATE .NE. 0) WPITE (6,1019) INDEX,KNODE,JMODE,NGATE
IF (NGATE .EC. 0) BBITE (6,1015) INDEX,KNCDE,JMODE

310 CONTINUE
C
C NOW CHICK INTEENAL NODES.

311 IF (INT .EC. 0) GO TO 321
INITE 1 = INET + 1
IEIES = INET + INT
CO 320 IN = IN FTP 1,IPL US

KMCDE = JECH (IN,IBCW)
IE (KMOEE .EQ. -1) GO TO 320
KNCDE = INODE (IN,ICOMP)
JMCDE = X (1,KNCDE)
IF (JMODE .NE. -1) GC TO 319

C
C NCDE NCT PFESET. SET NCDE.

X(1,KNODE) * RHODE
X (2,KNODE) = INDEX

C
C THIS IS A PEIMABY INEUT. SET GATE INPUTS.

GATE (IDEX + 2) = GATE(IDEX ♦ 2) + 1
IIDEX = IDEX ♦ 3 + 2* (GATE (IDIX + 1) + GATE (IDEX+2))
GATE (IIDEX) = KNCDE
GATE (IIDEX+1) = KMCDE
GC TO 320

319 CCNTINUE
C
C NCDE PBESET. EO NOT SET GATE INPUT.

IB = 319
IE (JMODE .NE. RHODE) PBINT 1,IE

£***4444444*****444#444***44444444*4*444*********4***«******************
£#**44444444**4*444*44************************************4*************

IF (IPBINT .IT. 1) GC TO 320
NGATE = X (2,KNCDE)
IF (NGATE .NE. 0) WEITE (6,1016) INDEX,KNCDE,JMODE,NGATE
IF (NGATE .EC. 0) WEITE (6,1017) INDEX,KNCDE,JMODE

320 CCNTINUE
C

209

C NOH CBICK OUTPUTS AND SET NCDES. (DC NOT SET GATE INPUTS.)
321 IPIOS = INET + INI + 1

ITCT = IEICS ♦ JCUT - 1
IE (ICOMP .EC. NNCMP) CO TO 330
DC 329 IN = IPIOS,ITOT

KMCDE = JBCH (IN,LBOH)
IF (KMCDE .EC. -1) GC TO 329
KNCDE = INCDE(IN,ICOMP)
JMCDE = X(1,KNCDE)
IF (JMODE .NE. -1) GO TO 328
>(1,KNCDE) = KMCDE
X(2,KNODE) = INEEX
GO TC 329

328 CONTINUE
IB = 328
IE (JMCDE .NE. JEOH(IN,IEOH)) PBINT 1,IB

£****4*44************ ******* *4 * j******* *a»**!M**********4i************4>4t4>4<*
£444

IF (IPBINT .IT. 1) GC TO 329
NGATE = X (2,KNODE)
IF (NGATE .NE. 0) HBITE (6,1014) INDEX,KNCDE,JMODE,NGATE
IF (NGATE .EC. 0) HBITE (6,1015) INDEX,KNODE,JMODE

329 CCNTINUE
C
C AIL NODES CEECKED. DETEBMINE TOTAL INPOTS.

330 LLDEX = GATE (IDEX ♦ 1) ♦ GATE (IDEX + 2)
IE (IIDEX .GT. 0) GO TO 340

£4 4444 4 4 4 444444444444444444444444444444 444444444444444444444444444444444
C *
C ALL INPOTS HIVE BEEN PBESET: GATE IS ALHAYS TBUE. *
C DELETE GATE ANE EDIT PBEVIODS GATES. *
C DELETE PBEVIODS *08* GATES ANE EBANCH OE LAST PBEVIOUS 'AND*. *
C *
£444

IF (IPBINT .GT. 0) HBITE (6,1018) CMPNAM(ICOMP),JTYPE,MBOH,INDEX
331 IF (JDEX .EC. 0) GO TO 206C

NDEX = IGAT E(JDEX)
IKIND = -GATI(NCEX)
IE (IKIND .EC. 1) GO TC 332

C
C PBEVIODS GATE IS 'OB' AND HIII EE DELETED.

IF (IPBINT .GT. 0) HBITE (6,1007) INDEX,KIND(IKIND),JDEX,JDEX
INDEX = JDEX
JDEX = JGATE(INDEX)
GC TC 331

C
C PBEVIOUS GATE IS 'AND*. LCCATI ANE ELIMINATE CUBBENT BRANCH.

332 LLEEX = GATE(NDEX ♦ 1) ♦ GATE (NDEX ♦ 2)
IF (LLDEX .EC. 1) GO TC 337
KEIX = NDEX ♦ 3
DC 333 K = 1,LLDEX

KDEX = KDEX ♦ 2

210

IF (GATE(KEEX) .EQ. INDEX .ANE . GATE(KDEX + 1) .EQ. -1) GC TO 334
333 CONTINUE

C
C KDEX HAS BEEN SET TO IOCATICN Of EEANCH TO BE ELIMINATED.
C MOVE UP SUCCEEDING ENTE1ES (IE ANY).
C CTHEENISE, GATE IS FINISHED.

IE = 333
FEINT 1,IB

£***************** t + m*****+* + **+*+* + + +*+*+ + *+ + +4+**.* + +*+ +

QIL4444444444444444444444444444*44444*44444**4**444*****+****4**444**44+*

334 LDEX = (KDEX - NCEX - 3)/2
KK = NDEX ♦ 4 + 2*LLDEX
IF (IPEINT .GT. 0) SBITE (6,1008)INDEX,KIND(IKIND),JDEX,LDEX,LLDEX
GATE (NDEX + 1) = GATE (NDEX ♦ 1) - 1
IF (IDEX .IT. ILDEX) GO TO 335

C
C GATE HAS NO FOBTHEB ENTBIES TC EE MOVED. GATE COMPLETED.

IE (IPEINT .GT. 1) WBITE (6,1020) ODEX, (GATE(II) ,II=NDEX,KK)
GC TO 410

335 LIEEX1 = LLEEX - 1
DO 336 K = LDEX.LLDEXI

GATE(KDEX) = GATE(KDEX ♦ 2)
GATE(KDEX+1) = GATE (KDEX + 3)

336 KDEX = KDEX ♦ 2
IF (IPBINT .GT. 1) WBITE (6,1020) JDEX, (GATE(II) ,II = NDEX,KK)
GC TC 400

C
C EBEVIOUS GATE IS SINGLE INPUT ‘AND’ AND WILL BE ELIMINATED.

33T IF (IPBINT .GT. 0) WBITE (6,1009) INDEX,KIND (IKIND),JDEX,JDEX
INIEX = JDEX
JDEX = JGATE(INDEX)
GC TO 331

340 CONTINUE
Q + 4 + 44 44 4 * *4**4 44 + 4* 4 + + ******* + *************** + *** + * + ** + 4* + *4**44*******

C 'AND* GATE INPUTS HAVE BEEN FOUND (TBANSEEB FBOM 330). *
C FIRST, CHECK TC SEE IF GATE HAS MORE THAN ONE INPUT. *
C IF NOT, GATE IS NOT TBUE GATE: BEIUBN TO PBEVIOUS GATE *
C AND DEVEICE CURRENT EFANCH. *
C *
Q44 + 4444 4* *** + + *444**4* + * + 44*****4*4***+*********4**********************

IE (ILDEX .GT. 1) GO TO 350
C
C GATE HAS CNLY CNE INPUT. DELETE GATE AND RESET NCDES.
C FIRST LOCATE AND SET NODES BACK INTO PBEVIOUS GATE.

IF (IPBINT .GT. 0) WBITE (6,1019) INDEX,KIND (1) ,JDEX
KNCDE = IAES (GATE(IDEX+5))
IE = 340
IF (X (2, KNCDE) .NE. INDEX) PBINT 1,IB

Q4 + 4444* 4* 4 + ***** + ** + + ** + + + *+** + * + + * + * + * + * + * + **+ + + **** + * + 4* + *+* + *** + * + ** £****4 *«4**4*** ***************
X (2, KNODE) = JDEX

C

211

on
n

no
n

no
n

nn
nn

o

C 80* SEABCH CGTFUT NODES, IF NCBI THAN ONE EXIST.
IE (0001 .11. 2) GO TO 342
DC 3«I1 IN = IELGS, HOT

KNCDE = INCDE(IN,ICOHf)
341 IF (X (2, K KCDE) .EQ. INDEX) X(2,KNODE) = JDEX

ALL NODES HAVE BEEN RESET. NOW RESET GATE INPUTS.
342 IE (GATE(IDEX+1) .EQ. 1) GC TO 343

CURRENT GATE HAS ONLY ESIBA8Y INPUT.
INSERT ENTRIES OF CURRENT GATE INTO PREVIOUS GATE.

IF (JDEX .EC. C) GO TO 500
NDEX = IGATI (JDEX)
GATE (NDEX+1) = GATE (NDEX ♦ 1) - 1
GATE (NDEX + 2) = GATE(NDEX + 2) + 1
GATE (KDEX) = GATE (IDEX + 5)
GATE (KDEX+1) = GATE(IDEX + 6)
GATE (IDEX+3) = 0
KK = NDEX + 4 + 2*(GATE (NDEX+1) ♦ GATE(NDEX + 2))
IF (IPPINT .GT. 1) WRITE (6,1020) JDEX, (GATE (II),II=NDEX,KK)

NOS RETURN TC PREVIOUS GATE, JDEX, SENDING KDEX, LDEX, INDEX,
ANE DEVELOP NEW BRANCH. FIRST CHICK IF GATE JDEX IS FINISHED.

IF (LDEX .EC. (GATE (NDEX+1) + GAT I(NDEX+2))) GO TO 410
LDEX = LDEX + 1
GO TC 400

343 CONTINUE

CURRENT GATE HAS SINGLE GATE INPUT.
SET PARAMETERS AND DEVELOP AS 'CR* (LDEX G KDEX HAVE BEEN SET).

JNCDE = -GAT I (IDEX + 5)
IBCDE = GATE (IDEX ♦ 6)
IF (GATE (IDEX+3) .LT.10000 .AND. GATE (IDEX + 3) .NE. 0) GO TO 203
GATE (IDEX + 3) = JNODE
GATE(IDEX+4) * IBCDE
GC TC 203

350 CONTINUE

•AND GATE HAS MULTIPLE INPUTS. IF ANY UNDEVELOPED INPUTS EXIST,
BEGIN TC DIVELCP FIRST BRANCH; OTHERWISE, GATE IS FINISHED.

KK = IDEX + 4 + 2+LLDEX
KG = IDEX ♦ 5
IF (GATE (IDEX+3) .LT.10000 .AND. GATE(IDEX + 3).NE.0) GO TO 351
GATE 11DEX+ 3) = 100C0 + ICOMP
GATE (IDEX+4) = MBOW
IF (IPBINT .GT. 0) WRITE (6,1001) I NDEX ,KIND (1) , GAT E (IDEX +1) ,

1 GATE (IDEX+2) ,MROS, ICOMP, (GATE (II) ,II = KG,KK)
GO TC 352

351 IF (IPBINT .GT. 0) WRITE (6,1002) INDEX,KIND(1),GATE(IDEX+1),
1 GATE (IDEX + 2) ,GATE(IDEX+4) ,GATE (IDEX+3), (GATE (II),II=KG,KK)

352 CCKTINUE
JDEX = INDEX

212

INEEX = INDEX + 1
IF (INDEX .Gl. HGATE) GO TO 900
IGATE (INDEX) = KK + 1
JGJ.TE (INDEX) = JDEX
GATE (KK ♦ 4) = C
KDEX = IDEX ♦ 5
LDEX = 1
II (GATE(IEEX+1) .NE. 0) GO TO 2C2

C
C GATE BAS NC DNEEVELOPED EBANCEES.

NDEX = IDEX
GC TC 410

400 CGKTINUEC*****44**4***4*****4***4***
c *
C GATE ENTIFS THIS REGION EACH 12HE A BRANCH IS CGHILETED, *
C (FECM 336, 342). *
C JEEX = INEEX OF CURFENT GATE. *
C INEEX = INDEX CF NEXT GATE TC EE GENE EAT IE. *
C KDEX = IGATI (JEEX) *
C IDEX = INDEX CF NEXT EBANCH. *
C *
C IIB ST FIND IF ANY UNDEVELOPED IBANCHES REMAIN. *
C *
044*44444444444*4*4*444*444444**44*4444 4*4*4* 4*4*4*******4**************

KDEX = NDEX -♦ 3 + 2*LDEX
IF (GATE (KDEX) .LT. 0) GC TC 40 1

C
C NO CNDEVELCPED BEANCHES REMAIN: GATE FINISHED.

GC TC 410
401 CCKTINUE

C
C GATE HAS FURTHER BRANCHES (FBCM 218/400/484.
C LDEX HAS BEEN SET TO NEXT CNDEVELCPED BRANCH
C (FBCM 216/334/342/484).

IKIND = -GATI(NEEX)
JGATE (INDEX) = JDEX
1EIX = IGATE (INDEX)
GATE(IDEX * 3) = 0
IF (IKIND .EC. 1) GO TO 202

C
C GATE IS 'OB'. RESET NODES, TIEN BEGIN NEK BRANCH (300).

DC 402 I = 1 ,NCDES
IF (X (2,1) .IT. JDEX) GO TO 4C2

= -1
X (2,1) = -1

402 CCKTINUE
GC TC 300

410 CONTINUE
Q****4*4 444444*4444*44*************************444*************444******

C GATE ENTEES THIS REGION WEEN FINISHED... *
C ...FBCM STEPS 2 16,334,342,352,4CC,483. *

213

no
n

no

no
n

C***************4*4*44**4*4 ***
IF (IF8INT .Cl. 1) SBITF (6,1022) JDEX
G&1E (NDEX) = -GS1E(NDEX)
LLEEX = GATE(NDEX * 1) + GATi (NDEX + 2)
KK = NEIX * 2+LLDEX ♦ 4
IF (IPBINT .GT. 1) HBTTE (6,1020) JDEX, (GATE (11),II = NDEX,KK)
IF (LLEEX .EC. 1) GO TO 485

GATE HAS MOLT IPLE INPOTS. CHICK FOR REDONDANCIES/CCNTBAEICTIONS
FIB ST AEBANGE GATE TC INCIODE GATE ENTBIES FIRST.

INC-ATE = GATE (NEEX + 1)
IF (INGATE.EC.0 .OB. GATE (NDEX + 2).EQ.0) GC TO 420
IS EOT = NDEX + 5
ND = NDEX + 4
IG = NDEX ♦ 3 + 2*INGATE
DC 412 I = 1 ,LLDEX

KE = ND + 2
IF (GATE (ND) .NE. -1) GO TC 412

GATE INEDT FCOND.
IF (ISPOT .EQ. (ND-1)) GO TO 411
GATE (ND) = GATE (ISPOT + 1)
GATE (ISPOT + 1) = -1
ISTOBE = GATE (ND-1)
GATE (ND-1) = GATE(ISPOT)
GATE (ISPOT) = ISTOBE

411 ISPOT = ISPOT ♦ 2
IF (ISPOT .GT. IG) GC TO 413

412 CCKTINOE
413 IF (IPBINT .GT. 1) BRITE (6,1020) JDEX, (GATE (II),II=NDEX,KK)

GATE ENTBIES NCB ABBANGEL.
NOB CHECK 'ANE* GATES FIRST.

420 IF (IEDI1.GE.S9 .CB.
1 (INGATE.EC.0 .AND. GATE (NDEX).EQ.1)) GO TO 482

IF (GATE (KDEX) .EQ. 2) GO TO 455£***
c *
C 'AND* GATE POST GATE EDIT EEGICN *
C CHECK FCE PRESET OB CONTEADICTOBY GATE ENTBIES *
C VS. •AND* GATE NODES (PBIHABY EVENTS) SET. *
C BOOTINE CHECKS GATES TO 3 LEVELS (JDEX, JDEX2, JDEX3). *
C *
£**»***4444**4***********************4**********************************

ISPOT = NDEX ♦ 3
DO 454 I = 1,INGATE

ISPOT = ISPOT + 2
JDEX2 = GATE (ISPOT)
KDEX2 = IGATE (JDEX2)
JNGATE = GATE (NDEX2 + 1)
JPEIHE = GATE(NDEX2 ♦ 2)
JLDEX = JNGATE + JPEIHE

214

on
nn

no

n
no

no

n
on

n

If (GATE(NEEX2) .EQ. 2) GO TO H33
IF (JNGATE .EQ. 0) GC TO 454

421

422

CHECK INIDTS TO SECOND IEVEI 'AND* GATE JDEX2.
SEABCH CNLY EOF THIBE LEVEL 'CB* GATES WITH PBIHABY INPUTS.

JSEC1 = NDEX 2 ♦ 3
DO 429 J = 1,JNGATE

GSPOT = J SPOT + 2
JDEX3 = GATE(JSECT)
NDEX 3 = IGATE(JDEX3)
IF (GATE (NDEX3) .EQ. 1) GO TC 429
KPBIHE = GATE(NBEX3 + 2)
IF (KPBIHE .EQ. 0) GC TC 429

THIRD LEVEL GATE JDEX3 HAS KPBIHE PBIHABY INPUTS.
CHECK TO SEE IF PRESET OB CCNTBADICTCBY.

KSPOT = NDEX3 + 3 + 2*GATE(NDEX3 ♦ 1)
10 424 K = 1,KPBIHE

KSPOT = KSPOT + 2
KNODE = GATE(KSPOT)
JHCDE = X (1,KNODE)
IF (JHCDE .EQ. -1) GO TO 424

NOEE HAS BEEN PBEVIOUSLY SET.
RHODE = GATE(KSPOT + 1)
IF (IPBINT .GT. 0) WBITE(6,1016)JDEX3,KNODE#JHOBE,X(2,KNCBE)
IF (KKCDE .EQ. JHCCE) GO TC 422

PBIHABY INPUT CONTBAEICTS PRESET NODE.
EELETE PBIHABY INPUT TO GATE JDEX3 AND HOVE DP BEST.

IF (IPBINT .GT. 0) WBITE (6,1023) K,JDEX3
GATE (NEEX3 ♦ 2) = GATE (NDEX3 ♦ 2) - 1
IF (K .EQ. KPBIHE) GO TO 424
KPH1 = KPBIHE - 1
KKSPCT = KSPCT
BO 421 K 2 = K ,KPH1

GATE (KKSPOT) = GATE (KKSPOT + 2)
GATE (KKSPOT+1) = GATE (KKSPOT + 3)
KKSPCT = KKSPOT + 2

KSPCT = KSPOT - 2
GO TC 424
CONTINUE

PBIHABY INPUT HAS EEEN PBESET; THUS 'OB' GATE JDEX3
IS SUBE TO OCCUR, AND WILL EE BEHOVED.
BEHCVE INPUT TO PBECEEEING 'AND* GATE JBEX2.

IF (IPBINT .GT. 0) WBITE (6,1006) JDEX3
IF (IPBINT .GT. 0) WBITE(6,10C8) JDEX3,KIND(1) ,JDEX2,J,JLBEX
GATE (KEEX3) * -99
JGATE(JDEX3) = -99
GATE (NBEX2 + 1) = GATE(NDEX2 + 1) - 1
JH1 = JNGATE ♦ JPEIHE - 1

215

n
n

nn
nn

o
n

n
n

nn
nn

423

424

425

1
4000

4001

IF (u .Gl. JK1) GO TO 429
JJSPC1 = JSFCT
DO 423 K 2 =

GATE (JOSEOT) = GATE (J JSECT + 2)
GATE (JOSPOT + 1) = GATE (JJSEC1 + 3)
OJSECT = JJSECT + 2

JSEOT = OSEOl - 2
GO TC 429
CONTIN 01

CHECK CF EFIMABY INPOTS TC THIfiD LEVEL GATE CONCLUDED.
IF NC INPUTS REMAIN, GATE JDEX CANNOT OCCUR, SO
ELIMINATE JDEX. IF CNE INPUT REMAINS, INSERT INTO JDEX2.

KIDEX = GATE (NDEX3 + 1) ♦ G AT I (NDEX3 ♦ 2)
IL = NEEX3 ♦ 4 + 2*KLDEX
IF (IPEINT .GT. 1) WRITE (6,1020) JDEX3, (GATE (II) , II=NDEX3,LL)
IF (KLEEX .GE. 2) GO TO 429
IF (KLDEX .EQ. 1) GO TO 425
GATE (NDEX3) = -99
JGATE (JCEX3) = -99
IF (IPEINT .LT. 1) GO TC 449

WRITE (6, 1024) JDEX3, JCEX3
WRITE (6,1007) JDEX3,KIND(1),JDEX2,JDEX2

GC TC 448
CCNTINUE

CNLY CNE INPUT TO GATE JDEX3 REMAINS. INSERT DIRECTLY
INTO GATE JDEX2 AND REARRANGE ENTRIES, IF NECESSARY.

CALL REEUCE (1,JDEX3,NDEX3,JEEX2,NDIX2,IPEINT,J,JNGATE,JSPOT,
GATE,JGATE,NGSIZE,MGATE)

CCKTINUE

NOW SET PRIMARY INPUT FRCE JDEX, OR INPUTS FRCM LOWER
•AND* GATES INTO ARRAY ‘X*.

IF (GATE (NDEX3 + 1) .GT. 0) GC TO 4001

SET PRIMARY INPUT INTO ARRAY ‘X*.
KNODE = GAT E (N EEX3 + 5)
1(1,KNCDE) = GATE (NDEX3 + 6)
X (2, KNCDE) = JEEX2
JFRIME = JPRIME + 1
GC TO 429
CONTINUE

SEARCH FCR LOWER LEVEL 'AND* GATES AND SET PRIMARY INPUTS.
JDEX3 = GATE (NDEX3 -♦ 5)
NDEX3 = IGATE(JDEX3)
IF (GATE(NDEX3) .EQ. 2) GC TC 429
KPEIME = GAT E(NDEX3 ♦ 2)
IF (KPEIME .EQ. 0) GO TC 429
KSPCT = NEEX3 + 3 ♦ 2*GATE(NDEX3 + 1)
DO 4003 K = 1,KPEIME

216

nn

nn
no

oo

nn

nn
n

KSECl = KSPOT ♦ 2
KNCDE = GATE(KSPCT)
JHCDE = X(1,KNODE)
IF (JHCDE .EC. -1) GO TO 4002

NODE HAS BEEN PHEVIOOSLX SET; CHECK FOB AGREEMENT.
IF (KHCEE .EQ. JMOIE) GO TC 4003

PFIMARJ INPOT CONTEADIClS PBESET NODE AND CANNOT CCCOB.
DELETE JDEX3 , JDEX2 AND JDEX AND BETUfiN.

GATS (NDEX 3) = -99
JGATE (JDEX3) = -99
IF (IPBINT .LT. 1) GO TO 449
WHITE (6,1C16) JDEX3,KNODE,JHCDE,X(2,KNODE)
WRITE (6, 1C06) JDEX3
WRITE (6,1C07) JDEX3,KIND (1),JDEX2,JEEX2
GO TC 448

4002 CONTINUE

NODE HAS NOT BEEN PRESET. SET NODE.
X(1,KNCDE) = GATE (KSPCT ♦ 1)
X (2,KKCDE) = JDEX3

4003 CONTINUE
429 CCNTINUE

GATE JEEX2 CHECK CCMPLETED.
IF NC INPOTS REMAIN, DELETE INPUT TO GATE JDEX.
IE CNE INPOT REMAINS, INSERT DIRECT!I INTO GATE JDEX.

JLDEX = GATE(NDEX2 + 1) ♦ GAT E (NDEX2 + 2)
JJ = NCEX2 ♦ 4 + 2*JLDEX
IF (IPRINT .GT. 1) WRITE (6,1020) JDEX2, (GATE (II) ,II=NDEX2,JJ)
IF (JLBEX .GT. 1) GO TO 454
IF (JLDEX .EC- 1) GO TO 450

GATE JBEX2 HAS NO INPUTS. DELETE INPUT TO JDEX.
IF (IPBINT .GT. 0) WRITE (6,1024) JDEX2,JDEX2

430 IF (IPBINT .GT. 0) WRITE (6,1CC8) JDEX2,KIND{1),JLEX,I,ILDEX
GATE(NDEX + 1) = G ATE(NDEX ♦ 1) - 1
GAT E (NDEX2) = -99
JGATE (JDEX 2) = -99
JM1 = INGATE + GATE (NDEX + 2) - 1
IF (I .GT. JM1) GO TO 432
IISPOT = ISPOT
DO 431 K2 = I,JM1

GATE (IISPOT) = GATE (IISPOT + 2)
GATE (IISPOT + 1) = GATE (IISPOT ♦ 3)

431 IISPOT = IISPOT * 2
432 ISPOT = ISPOT - 2

IF (IPRINT .GT. 1) WRITE (6,1020) JDEX, (GATE(II),II=NDEX,KK)
GC TO 454

433 CCKTINUE

217

no
n

nn
on

nn

no
n

nn

nn

GATE JDEX2 IS ’OB' GATE (TBANSFEE FBOH AFTEB 420).
FIBST CEECK EOF BIEECT EBIMABY INPUTS.

IF (JPEIHE .EQ. 0) GO TO 436
JSECT = NDEX2 ♦ 3 + 2*JNGATE
IC 435 J = 1,JPEIHE

J SPOT = JSECT + 2
JNODE = GATE (JSPOT)
JEODE = >(1,JNODE)
IF (JMOIE .EQ. -1) GO TO 435

NODE EAS EEEN PBEVIOUSLY SIT
KMODE = GATE (JSPOT + 1)
IF (IPEINT .GT. 0) SiB ITE (6,1016) JDEX2, JNODE, JBODE.X (2, JNCDE)
IF (IPEINT .GT. C .AND. KKCDE .EQ. JMODE)

1 SPITE (6,1006) JDEX 2
IF (KHCBE .EQ. JHOEE) GC TO 430

PKIHAEY INPUT CCNTEADICTS EBESET NODE.
EELETE PBIHABY INPUT TO GATE JDEX2 AND MOVE UP BEST.

IF (IPBINT .GT. 0) SPITE (6,1023) J,JDEX2
GATE (NDEX2 « 2) = GATE (NDEX2 ♦ 2) - 1
IF (J .EQ. JPEIHE) GO TC 435
JH1 = JPEIHE - 1
JJSPCT = JSPCT
IO 434 J2 = J,JM1

GATE (JJSPCT) = GATE (JJSPCT + 2)
GATE (JJSPOT + 1) = GATE (JJSECT + 3)

434 JJSPCT = JJSPCT + 2
JSPOT = JSECT - 2

435 CCNTINUE

CHECK CF PBIHABY INPUTS TC GATE JDEX2 COMPLETE.
IF GATE INPUTS REMAIN, CONTINUE CHECK. OTHEBSISE,
CEECK KUKBEB OF INPUTS TO GATE AND PECCEED.

IF (JNGATE .EQ. 0) GO TO 447
436 CCNTINUE

GATE JDEX2 HAS 'JNGATE' GATE INPUTS TO EE CHECKED
JSECT = NDEX2 4 3
DO 446 J = 1,JNGATE

JSPOT = JSEOT ♦ 2
JDEX3 = GATE (JSPOT)
NDEX3 = IGAT E(JDEX3)
KPBIHE = GATE(NDEX3 + 2)
IF (KPBIHE .EQ. 0) GO TO 446

GATE JDEX3 HAS KPBIHE PBIHABY INPUTS.
CHECK FOB PBESET CB CONTE ADICTOBY CONDITIONS.

KSPOT = NDEX3 434 2*GATE(NEEX3 4 1)
DO 439 K = 1,KPBIHE

KSPOT = KSPOT 4 2
KNODE = GATE(KSPCT)

218

nn

nn

nn
n

nn

nn

nn

JMCDE = X(1,KNODE)
IF {JECDE .EQ. -1) GO 10 «I39

438

439

440

NODE 'KNCDE' HftS BEEN DEEVICUSLY SET.
KMODE = GATE (KSP01 ♦ 1)
IF (IFBIN1 .GT. 0) WHITE (6,1016) JDEX3,KNODE,JMODE,X(2,KNCDE)
IF ((GATE (NDEX3) .EQ.1 .AKC. KMODE.EQ.JMODE) .OH.

(GATE (NDEX3) .EQ.2 .AND. RHODE.NE.JMODE)) GO TC 437
IF (IEBIN1 .GT. 0) WBITE (6,1006) JDEX3
IF (GATE(NDEX3).EQ.1 .AND. KMODE.NE.JMODE) GO TO 440

GATES JEEX3 AND JDEX2 MEST BE DELETED.
GATE(NDEX3) = -99
JGATE (JDEX3) = -S9
IF (IEBINT .GT. 0) WBITE (6,1007) JDEX3,KIND (2),JDEX2,JDEX2
GO TC 430
CCNTINGE

DELETE EEIMABY INPUT TO GATE KDEX 3
IF (IPBINT .Gl. 0) WBITE (6,1023) K,JDEX3
GATE (NDEX3 + 2) = GATE (NDEX3 ♦ 2) - 1
IF (K .EQ. KPBIME) GO TO 439
KEM1 = KPEIME - 1
KKSPCT = KSPOT
DC 438 K2 = K, KPM1

GATE (KKSPOT) = GATE (KKSPOT + 2)
GATE (KKSPOT+1) = GATE(KKSPOT + 3)
KKSPCT = KKSPOT + 2

KSPOT = KSPOT - 2
CONTINUE

CEECK CF PBIMAEY INPUTS TO GATE JDEX3 COMPLETED.
CEECK NUMBEB OF INPUTS BEMAINING.

KLDEX = GATE(NDEX3 + 1) + GATE (NDEX3 ♦ 2)
II - NDEX3 + 4 + 2*KIDEX
IF (IPBINT .GT. 1) WBITE (6,1020) JDEX3, (GATE (II) ,II=HEEX3,LL)
IF (KLDEX .GT. 1) GC TO 446
IF (KLDEX .EQ. 1) GC TO 442
IF (IPBINT .GT. 0) WBITE (6,1024) JDEX3,JDEX3
IF (GATE (NDEX3) .EQ. 2) GO TC 440

DELETE 'AND* GATE JDEX3 AND 'CB* GATE JDEX2
IF (IPBINT .GT. 0) WBITE (6,1007) JDEX3,KIND(2) ,JDEX2,JDEX2
GATE (NDEX3) = -99
JGATE (Jt EX3) = -99
GC TO 430
CONTINUE

DELETE GATE JDEX3 AND INPUT TC JDEX2.
IF (IPBINT .GT. O) WBITE (6,1008) JDEX3,KIND (2) ,JDEX2,J,JLDEX
GATE (NDEX3) = -99
JGATE (JDEX3) = -99

219

c
c
c

GAT1 (NDiX2 + 1) = GATE(NDEX2 ♦ 1) - 1
JM 1 = JNGATE + GATE (N0EX2 + 2) - 1
IE (J .GT. JM 1) GO TO 446
JJSPCT = JSPCT
ro 441 K 2 = J,JM1

GATE (JJSPCT) = GATE (JJSECT + 2)
GATE(JJSPCT + 1) = GATE (JJSECT + 3)

441 JJSPCT = JJSECT ♦ 2
JSEOT = JSECT - 2
GO TO 446

442 CCNTINUE

GATE JEEX3 HAS SINGLE INPtl. DELETE JDEX3
AND INSEET DIPECTLY INTO JCEX2.

CALL BIEUCE (1 ,JDEX3,NDEX3,JDEX2,NDEX2,IPEINT,J,JNGATE,JSPOT,
1 GATE, JGATE,NGSIZE,MGATE)

446 CCNTINUE

C
C
c

448
449

450
C
c
c

4100
c
c
c

GATE JDEX2 CHECK CCMELETEC (FBCM 446 CR TBANSEEB FROM 435).*
IF NC INPUTS BEMAIN, EELETE GATE JDEX. *
IF CNE INPUT BEMAINS, INSEBT EIBECTLY INTO JDEX. *

C***44**4*jM*****iM*4*********4*4**444*4********************************
c *
c
c
c
c *c************************************* **********************************

447 JLDEX = GJTE (NEEX2 ♦ 1) + GATE (NDEX2 ♦ 2)
JJ = NDEX2 ♦ 4 + 2*ULDEX
3 E (IPBINT .GT. 1) «PITE (6,1020) JDEX2, (GATE(II) ,II=NDEX2,JJ)
3F (JLDEX .GT. 1) GO TO 454
IF (JLDEX .EC. 1) GO TO 450

1

GATE JDEX2 HAS NC INPUTS (FBCM 447 OB TBANSEEB EBOM 424).
DELETE CATE JDEX AND BETUEN TC PBEVIOUS GATE.

IF (IPBINT .IT. 1) GO TO 449
WRITE (6, 1C24) JD£X2,JDEX2
WBITE (6 ,1007) JDEX2,KIND(1) ,JDEX,JDEX

INDEX * JDEX
JDEX = JGATE (INDEX)
CC TO 213
CONTINUE

GATE JDEX2 HAS SINGLE INPUT (TBANSEEB EBOM 429 CB 447).
EELETE JDEX2 AND INSEBT DIRECTLY INTO JDEX.

IKIND = GATE (NDEX2)
CALI BEDUCE (1,JDEX2,NDEX2,JDEX,NDEX,IPBINT,I,INGATE,IS PCX,

GATE, JGATE, NGSIZE, MG ATE)
CCNTINUE

IF GATE JDEX2 WAS 'OB' GATE, SET PBIMAEY INPUT EBCH GATE,
CB FBCM LOWEB 'AND* GATES INTO ABBAY »X'.

IF (IKIND .EC. 1) GO TO 454
IF (GATE (NDEX2 ♦ 1) .GT. C) GC TO 4101

220

n
n

no

no
on

no

nn

C JDEX2 HAD PBIHABY INPUT. SET INTC AfiBAY 'X*.
KNCEI = GATE (NIEX2 4 5)
X(1,KNODE) = GATE (NDEX2 ♦ 6)
A(2(KNCDE) = JDEX
GC TO 45«

4101 CCKTINUE

SEABCH FCB ICSEB LEVEL •AND* GATES AND SET PBIHABY INPUTS.
«3DEX 2 = GATE (NEEX 2 + 5)
KDEX2 = IGATE(JDEX2)
IE (GATE (NEEX2) .EQ. 2) GC TO 454

EIBST SET PBIHABY INPUTS.
UPBIHE = GATE (NDEX2 + 2)
JNGATE = GAT E (NEEX2 + 1)
IP (JPEIHE .EQ. 0) GC TO 4103
JSPCT = NEEX 2 + 3 + 2*JNGAT£
DO 4102 J = 1 ,JPFIHE

JSPCT = JSECT + 2
KNODE = GATE (JSPOT)
JHCDE = X(1,KNOEE)
IF (JHCDE .EQ. -1) GC TC 4110

NODE BAS EEEN PBEVIOUSLY SET. CHECK ECB AGBEEHENT.
RHODE = GATE(JSPOT + 1)
IF (KHCDE .EQ. JHOCE) GC TO 410 2

PBIHABY INPUT CCNTBADICTOEY. DELETE JDEX2 AND JDEX.
GATE (NEEX2) = -99
JGATE (JDEX2) = -99
IF (IPBINT .LT. 1) GO TO 449
fcBITE (6,1016) JDEX2,KNCDE,JHCDE,X(2,KNCDE)
N BITE (6,1006) JDEX 2
GO TC 448

4110 CCNTINUE

NODE HAS NOT BEEN PBEVIOUSLY SET. SET NODE.
X(1,KNCDE) = GATE (JSPOT + 1)
X (2,KNCDE) = JDEX2

4102 CCNTINUE
4103 IF (JNGATE .EQ. C) GC TO 454

NOW CHECK AND SET 'AND1 GATE INPUTS TO GATE JDEX2.
JSPOT = NEEX2 + 3
DC 4106 J = 1,JNGATE

JSPCT = JSPCT + 2
JDEX3 = GATE (JSFCT)
KDEX 3 = IGATE (J EEX3)
IF (GATE (NDEX3) .EQ. 2) GO TC 4106
KPBIHE = GATE(NDEX3 * 2)
IF (KPBIHE .EQ. 0) GC TC 4106
KSPCT = NEEX3 43+ 2*GATE(NEEX3 4 1)

221

DO 0105 K = 1,KPEIME
KSPCT = KSPCT ♦ 2
KNODE = GATE(KSPCT)
JMODE = S <1,KNCDE)
IF (JMCDE .EQ. -1) GO TO 41C4

C
C NODE HAS BEEN PEEVIOUSLI SET. CHECK FOE AGBEEMENT.

KMODE = GATE (KSPCT + 1)
IF (KMODE .SC. JMODE) GO TO 4105

C
C PPIMA8Y INPUT CONTBADICTOBY, THOS CANNOT OCCUB.
C DELETE GATES JDEX3, JDEX2 AND JDEX.

GATE (N EEX S) = -S$
JGATE(JDEX3) = -99
IF (IPEINT .LT. 1) GO TO 449
SiBIT E (6,1016) JDEX3,KNODE,JHCDE,X(2,KNODE)
HBITE (6, 10C6) JDEX 3
WHITE (6,1007) JDEX3,KIND(1),JDEX2,JDEX2
GO TC 448

4104 CGNTINOE
C
C NODE HAS NOT PBEVIOUSLY EEEN SET. SET NODE.

X(1,KKCDE) = G AT E (KSPCT ♦ 1)
X (2,KNCDE) = JDEX3

4105 CCNTINIE
4106 CCNTINUE

454 CCNTINUE
C***
c *
C EDIT OF 'ANE1 GATE JDEX COMPLETE (LCCP FROM 420). *
C CHECK FCE NUMBEB OF INPUTS BEHAINING. *
C IF NO INPUTS REMAIN, DELETE GATE AND BETUfiN TO 331. *
C *
£***

LLDEX = GATE (NDEX ♦ 1) + GATE (NDEX + 2)
JJ = NDEX ♦ 4 + 2*LLDEX
IF (IPBINT .GT. 3) WBITE (6,1026) GATE
IF (IPBINT .GT. 1) WBITE (6,1020) JDEX, (GATE (II) ,II=NDEX,JJ)
IF (ILDEX .GT. 1) GO TO 482
IF (LLDEX .EC. 1) GC TC 485

C
C GATE JDEX HAS NC INPUTS AND THUS IS "SUBE TO OCCUB."
C IELETE GATE AND BETUfiN TO PREVIOUS GATE. (THIS SHOULDN'T CCCUB)

IF (IPBINT .GT. 0) WBITE (6,1024) JDEX,JDEX
INDEX = JEEX
JDEX = JGATE (INDEX)
GC TC 331

455 CCKTINUEC***
c *
c 'OB' GATE POST GATE EDIT BEGICN. *
C CHECK FCB REDUNDANT PBIHABY EVENTS BENEATH 'OH' GATES. *

222

nn

nn
nn

nn

nn

no
n *

*
flRST RESET NODES, THEN CHECK EEIMAFY INPUTS.

EC 456 I = 1,NCEES
IF (X (2,1) .IT. JDEX) GO TO 456
M1,U = “I
S (2,1) = -1

456 CCKTINUE
IPEIBE = GATE(NDEX + 2)
IE (1PRIME .EQ. 0) GO TC 457
ISEOT = NDEX ♦ 5 + 2*INGATE
JNCEE = GATE (ISPOT)
X(1,JNODE) = G ATE (I SPOT + 1)
X (2,JNODE) = -2
IF (IEFIME .EQ. 1) GO TO 457

INITIAL NOEE SET. NOW CHECK PRIMARY INPUTS TO GATE JDEX.
CALL XCHECK (2,JDEX,NDEX,IPBINT,X,GATE,NODES,NGSIZE)
IF (INGATE .EQ. 0) GO TO 479

457 CCKTINUE

NC ti CHECK 'CF' GATE INPUTS TO GATE JDEX.
ISICT = NDEX + 3
DC 458 I = 1 ,1 KGATE

ISICT = ISPOT + 2
UDEX2 = GATE (ISICT)
KDEX2 = IGATI (JDEX2)
JPBIME = GATE (NDEX2 ♦ 2)
IF (GATE(NDEX2) .EQ. 1 .OB. JPBIME .EQ. 0) GO TO 458

•OB* GATE WITH PBIMAEY INPUTS FOUND. CHECK INPUTS.
CALL XCHECK (1,JDEX2,NDEX2,IPEI NT,X,GATE,NODES,NGSIZE)

458 CONTINUE

NOW CHECK TEIBD LEVEL 'OB* GATES FOB INPUTS.
ISICT = NDEX ♦ 3
DC 461 I = 1,INGATE

ISEOT = ISPCT -*• 2
4580 JDEX2 = GATE(ISPOT)

KDEX2 = IGATI (JDEX2)
JNGATE = GAT I (NDEX2 ♦ 1)
IF (GATE(NDEX2).EQ.1 .OB. JNGATE.EQ.O) GO TO 461
JSPCT = NEIX2 + 3
DO 460 J = 1 ,JNGATE

JSPOT = JSPOT ♦ 2
459 JDEX3 = GATE(JSEOT)

NDEX3 = IGATE(JDEX3)
KPBIME = GATE (NDEX3 + 2)
IF (GATE (NDEX3) .EQ.1 .OB. KPBIME.EQ.O) GO TO 460

THIBE LEVEL 'OB' GATE HAS PBIMAEY INPUTS TO EE CHECKED.
CALL XCHECK (1,JDEX3,NDEX3,IPBINT,X,GATE,NODES,NGSIZE)

223

n
n

nn

nn

nn

nn

nn

460

461

462

KLEEX = GATE (NDEX3 + 1) + GAT E(NDEX3 ♦ 2)
KK = NEEX3 + 4 + 2*KLDEX
IF (IPEINT .GT. 1) NEITE(6,1020) JDEX3,(GATE(II),II=NDEX3,KK)
IF (KLDEX .GT. 1) GC TO 460

GATE JEEX3 HAS ZERO OR ONE INPOT. BIEUCE INPUT TO JDEX3.
CALL REDUCE (KLDEX,JDEX3,NDEX3,JDEX2,NDEX2,IPBINT,J,JNGATE,

JSPOT,GATE,JGATE,NGSIZE,KGATE)
IF (KLEEX.EQ.1 .AND. GATE(KDEX3+1).EQ.1) GO TC 459
CCNTINOE

JLDEX = GATE (NDEX2+1) + GATE(KDEX2 ♦ 2)
IF (JLDEX .GT. 1) GO TO 461

GATE JEEX2 HAS ZERO OR CNE INPUT. REDUCE INPUT TO JDEX.
CALL REDUCE (JLDEX,JDEX2,NDEX2,JDEX,NDEX,IPRINT,I,INGATE,

ISPOT,GATE,JGATE,NGSIZE,KG ATE)
IF (GATE (NDEX2 + 1) .EQ. 1) GC TO 4580

CONTINUE

NOW CEECK SECOND AND THIRD LEVEL 'AND* GATES.
ISECT = NDEX + 3
DC 478 I = 1,INGATE

ISECT = ISPCT + 2
JDIX2 = GATE(ISPOT)
KDEX2 = IGATE (JDEX2)
JNGATE = GATE (NDEX2 + 1)
IF (GATE (NEEX2) .EQ. 1) GC TO 468

GATE JDEX2 IS *OF'. CHECK FCE THIRD LEVEL 'AND* GATES.
IF (JNGATE .EQ. 0) GO TO 467
JSECT = NDEXI + 3
IC 466 J = 1 ,JNGATE

JSEOT = JSEOT ♦ 2
JDEX3 = GATE(JSEOT)
KDEX 3 = IGATE (JDEX3)
KP8IRE = GATE (NDEX3 + 2)
IF (GAT E (N EEX3) .EQ. 2 .OB. KPBIME .EQ. 0) GO TC 466

THIRD LEVEL 'AND* GATE HAS PRIMARY INPUTS.
ISTART = -1
CALL XCEECK (ISTART,JDEX3,NDEX3,IPRINT,X,GATE,NODES,NGSIZE)
IF (ISTART .NE. -1) GO TO 466

GATE JDEX3 HAS PBESET INPUT AND WILL EE DELETED.
GATE(NEEX2 ♦ 1) = GATE(NDEX2 + 1) - 1
G ATE(NDE X3) = -99
JGATE(JDEX3) = -99
IF (IPEIKT .GT. 0) WRITE (6,1008) JDEX3 ,KIND (2) , JDEX2,J,JNGATE
JJSPCT = JSPOT
IF (J .GE. JNGATE) GC TC 464
JK1 = JNGATE - 1
DO 463 J 2 = J , J K 1

224

no

nn
 no

nn

GATE (JoSECI) = GATE (OJSECl + 2)
GATE (OJSECT+1) = GATE (JJSECT + 3)

463 JJSECT = JJSECT + 2
464 JPBIME = GATE(NEEX2 ♦ 2)

IF (JPBIME .EQ. 0) GC TC 465
JSE0T2 = JJSECT + 2*JPBIME
GATE (JJSECT) = GATE(JSPCT2)
GATE (JJSEOT+1) = GATE(JSP0T2 + 1)
I? (GATE (JSPOT2) .LT. 0) GATE(JSPOT2) = -JJSPOI

465 JSEOT = JSECT - 2
JJ = NDEX2 4 4 + 2* (GATE(NDIX241) + JPBIME)
IF (IPBINT .GT. 1) HBITE (6,1020) JDEX2, (GATE (II) ,II=NDEX2,JJ)

466 CCNTINUE
467 JLDEX = GATE (NDEX2+1) 4 GATE(KDEX2 4 2)

TE (JLDEX .GT. 1) GO TO 476

GATE JDEX2 KAS ZEBO OB ONE INPUT. BEDUCE INPUT TO JDEX.
CALL BEDDCE (JLCEX ,JDEX2,NDEX2,JDEX,NBEX,IPEINT,I,INGATE,

1 ISPOT,GATE,JGATE,NGSIZE,MGATE)
IF (JLDEX .EQ. 1 .AND. GATE(NDEX241) .EQ. 1) GO TO 462
GC TO 478

468 CCNTINGE

CEECK SECOND LEVEL 'AND* GATES.
JPBIME = GATE (NEEX2 4 2)
IF (JPBIME .EQ. 0) GC TO 472

CHECK PBIMAEY INPUTS TO GATE JDEX2.
ISTART = -1
CALL XCHECK (1STABT,JDEX2,NDEX2,1PBINT,X,GAT3,NODES,NGSIZE)
IF (ISIABT .NE. -1) GO TO 472

GATE JDEX2 EAS PBESET INPUT AND HILL BE ELIMINATED.
GATE (NDEX+1) = GATE (NDEX+1) - 1
GATE (NDEX2) = -99
JGATE (JDEX2) = -99
IF (IPBINT .GT. 0) WBITE (6,1CC8) JDSX2,KIND(2),JEEX,I,INGATE
IISPOT = ISPCT
IF (I .GE. INGATS) GO TO 47C
JM 1 = INGATE - 1
EO 469 12 = I,JM 1

GATE(IISPOT) = GATE (IISPOT + 2)
GATE (IISPOT + 1) = GATE (IISPOT + 3)

469 IISPCT = IISPOT + 2
470 IP B 3 ME = GATE(NDEX + 2)

IF (IPBIME .EQ. 0) GO TO 471
ISPOT2 = IISPOT + 2*IPEIME
GATE (IISPCT) = GATE(ISPCT2)
C-ATE(IISEOT + 1) = GATE (ISPCT2 + 1)
IF (GATE (ISPOT2) .LT. C) GATE(ISPOT2) = -IISPOT

471 ISEOT = ISEOT - 2
JJ = NDEX + 4 + 2*{GAIE(NDEX+1) + IPBIME)

225

oo

oo

nn
n

nn

nn

1? (IPBINl .GT. 1) SHITE <6,1C20) JDEX, (GATE (II),II=NDEXrJJ)
GO TO 47£

472 CCKTINOE

NOS CHECK THIBI LEVEL GATES.
IF (JNGATE .EC. 0) GC TO 478
JSECT = NLEX2 ♦ 3
CO 477 J = 1,JNGATE

JSEOT = JSEOT ♦ 2
473 JDEX3 = GATE(JSEOT)

NDEX3 = IGATE(JDEX3)
KPBIME = GATE (NDEX3 + 2)
IF (KPBIME .EQ. 0) GO TO 477

THIFI LEVEL GATE HAS PBIMAEY INPOTS TO BE CHECKEE.
ISTABT = 0
IF (GAT I (ND1X3) .EQ. 1) ISTABT = -1
CALL XCHECK (ISTABT,JDEX3,NEEX3,IPBINT,X,GATE,NCDES,NGSIZE)
IF (GATE (NEEX3) .EC. D GO TC 475

THIBI LEVEL GATE IS 'OB' GATE AND IS FINISHED.
CHECK FCB NOMBEfi C? INPOTS.

KLDEX = GATE (NDEX3 ♦ 1) + GATE (NDEX3 + 2)
KK = NDEX3 + 4 + 2*KIDEX
IF (IPBINT .GT. 1) WBITE (6,1020) JDEX3 , (G ATE (I I) , 11= KDEX 3,KK)
IF (KLDEX . GT. 1) GC TO 477

GATE JDE53 HAS ZEBO OB CNF INPUT. BEIOCE INPOT TO JDEX2.
IF (KLEEX .EQ. 1) GO TO 474
IF (IPBINT .GT. 0) WBITE (6,1024) JDEX3,JDEX3
GO TC 47€

474 CALL BIEOCE (1 ,JDEX3 ,NDEX3,JEEX2,NDEX2,IPRINT,J,JNGATE,
1 JSPOT,GATE,JGATF,NGSIZE,MGATE)

IF (GATE (NDEX3 + 1) .GT. 0) GC TO 473
GO TO 477

475 IF (ISTABT .NE. -1) GO TC 477

GATES JDEX3 AND JDEX2 WILI EE DELETED.
476 GATE (NIEX3) = -59

JGATE(JDEX3) = -99
CALL BEIOCE (0,JBEX2,NDEX2,JDEX,NDEX,0,1,INGATE,ISPOT,

1 GATE, JGATE,NGSI2E,MGATE)
IF (IPBIKT .LI. 0) GO TO 476
WBITE (6,1007) JDEX3,KIND(1),JDEX2,JDEX2
WBITE (6,1008) JDEX2,KIND(2) ,JDEX,I,INGATE
JJ = NDEX + 4 «- 2* (GATE (NDEX + 1) «■ G AT E (NDEX+2))
IF (IPEINT .GT. 1) WBITE (6,1020) JDEX, (GATE (II),II=NDEX,JJ)
GC TO 476

477 CCNTINOE
478 CCKTINOEQ^^*^4****4 ******************** ***

C *

226

C •OP* GATE EDIT COMPLETE (COKUNUATICN, CH TEANSfEB FEOM 456).♦
C EIEST EEEET NOTES AND GATE ENTRIES SET EY GATE EDIT. *
C TEEN CEECK NDMBEB OF INPUTS TO GATE JDEX AND PBCCEED. *
C *£*****444*44 **

479 CCKTINUE
LLEEX = GATE (NEEX ♦ 1) + GATE (NEEX + 2)
JJ = NDEX + 4 + 2 *ILDEX
IF (IPBINT .GT. 1) HBITE (6,1C2C) JDEX, (GATE(II) ,II = NEEX,JJ)
IF (IPBINT .GT. 2) HBITE (6,1027) JDEX,X
IF (IPBINT .GT. 2) HBITE (6,1025) JDEX,GATE
EC 481 I = 1,NC EES

ISPCT = -X (2 ,1)
IE (ISPCT .LE. 1) GO TO 481
*0,1) = -1
X (2,1) = -1
IF (ISPOT .EC. 2) GO TC 481

C
C CHAIN CF NCDES HAS BEEN SET, STARTING AT LOCATION ISPOT.

480 IISPOT = -GAT E(ISPOT)
GATE (ISECT) = I
ISEOT = IISPOT
IF (ISPOT .GT. 0) GO TC 480

481 CCKTINUE
IF (IPBINT .GT. 2) HBITE (6,1026) GATE
IF (IPBINT .GT. 1) HBITE (6,102C) JDEX, (GATE (II) ,II = NDEX,JJ)
IF (ILDEX .GT. 1) GO TC 482
IF (LLDEX .IC. 1) GO TO 485

C
C GATE 'JOIX* HAS NO INPUTS; CANNOT CCCUB (SHOULDN'T CCCUB).

IF (IPBINT .GT. 0) HBITE (6,1024) JDEX,JDEX
INEEX * JDEX
JDEX = JGATE(INDEX)
GC TC 213

482 COKTINUE
£******44444**4***4*4***
c *
c ' AND'/'OB' EEIT COMPLETE (FROM 42C/454/4S1/487/488/489/490) . *
C EACKTBACK TO PBEVIOUS GATE ANE BEGIN NEH EBANCH. *
C *
c***

IF (IPEINT .GT. 0) HBITE (6,1021) JDEX
JDEX = JGATE(JDEX)
II (JEEX .EC. 0) GO TO 500
NDEX = IGATE (JDEX)
IKIND = “GATE (NDEX)

C
C NOH FIND KEXT BRANCH CF PBEVICDS GATE; OB, IF FINISHED,
C SIND PBEVIOUS GATE TO BE EDITED.

KDEX = NDEX + 3
LLEIX = GATE (NEEX + 1) ♦ GATE (NEEX ♦ 2)
DC 483 I = 1 ,LLDEX

227

KEfX = KEEX ♦ 2
IF (GATE(KEEX) .LT. 0) GO TO 484

483 CCKTINUE
C
C NO UNDEVELOPED EBANCEES BEMAIN. GATE 'JEEX' FINISHED.

GO TC 410
484 LEIX = (KDEX - NCEX - 3)/2

GC TO 401
485 CCKTINOEC#***#JM**!***:***********iMr****#**>M‘*’M44**’M‘* **************** ***********

c
c
c
c
c
c
c
c
c
c
c

SINGLE INPUT GATES TBANSEEB TC THIS EEGICN (FBOM 410/454/481) *
GATE HILL BE ELIMINATE! AND ITS INPUT INSEfiTED INTO *
PBECEEDING GATE. IN ADDITION, IF GATE IS AN 'OB* AND INPUTS *
IN 'ANE', BESET NODES EBOM 'AKE' GATES EEIOH. *

JDEX = COBBENT GATE *
IEEX = PBEVIOUS GATE *
INDEX = NEXT GATE TC EE GENEBATID. *
JEEX2,JDEX3,JCEX4,JEEX5 = SUCCEEDING GATES *
KDEX = IGATE(JDEX) *

*

C****** ******************************* **********************************
IDEX = JGATE (JEEX)
IF (IDEX .EC. 0) GC TO 510
MDEX = IGATI (IEEX)

C
C NOH SEABCH PBEVIOUS GATE TO FINE CUBBENT EBANCH.

JSECT = MEEX + 5
KLDEX = GATE (MDEX + 1) + GATE (MEEX + 2)
KSICT = MEEX ♦ 3 + 2*KLtEX
DO 486 ISPCT = JSPOT,KSPCT,2

IF (GATE (ISPOT).EQ.JEEX .AND. GATE (ISPOT*1).EQ.-1) GC TC 487
486 CCKTINUE

IE = 486
PBINT 1 , IB

C***
C***
C
C ISPOT HAS EEEN SET TC CUBBENT LCCATION IN PBEVIOUS GATE.

487 IKIKI = GATE (NEEX)
KK = KSPCT + 1
GATE(NDEX) = -99
IE (IPBINT .GT. 0) WRITE (6,1019) JDEX,KIND (IKIND) ,IDEX
IF (IKIND .EC. 2) GC TC 489

C
C CUBBENT GATE IS 'AND'. INSEBT INTO PBEVIOUS GATE AND BACKTRACK.

IE (GATE(NEEX * 1) .EQ. 0) GO TC 488
GATE (ISPOT) = GATE(NDEX + 5)
IISPCT = GATE (ISPOT)
JGATE (IISPCT) = IEEX
IF (IPBINT .GT. 1) HBITE (6,1020) IDEX, (GATE (II),II=MD£X,KK)
GC TC 482

228

nn

on

nn

nn
n

nn

486 CGKTINDE
INPOT IS FFIHaEY INPOT.

G2Ii (MDEX + 1) = GATE (MEEX + 1) - 1
GATE(NDEX ♦ 2) = GATE (MDEX ♦ 2) + 1
GATE <ISPOT) = GATE (NCEX ♦ 5)
GATE(ISPCT +1) = GATE (NEEX + 6)
INEEX = JEEX + 1
IGATE(INDEX) = IGATE (JDEX) ♦ 1
IF (IPBINT .GT. 1) WBITE (6,1020 IDEX, (GATE (II) ,II=«DEX, KK)
GC TC 482

489 CCNTINUE

CUBBENT GATE IS 'OB'. IF PBECEEEING GATE 'IDEX* IS 'AND*,
SET NODES EBCH SUCCEEDING 'AND* GATES.

GRIND = -GAIE(HIEX)
IF (GATE (NDE X ♦ 1) .EQ. 1) GC TC 490
GATE (MEEX + 1) = GATE (MEEX ♦ 1) - 1
GATE (MDEX ♦ 2) = GATE (MDEX ♦ 2) + 1
GATE (ISPOT) = GAT E(NDEX + 5)
GATE (ISPOT+1) = GATE (NCEX + 6)
IE (IPBINT .GT. 1) WBITE (6,1020) IDEX, (GATE (II) ,II = MDEX,KK)
IF (GRIND .EQ. 2) GC TC 482
GNCDE = GATE(ISPOT)
IE = 489
IE (X(2,GNCDE) .GE. 0 .AND. X(2,GN0DE) .IT. G DEX) PBINT 1,IB

X (1,GN0DE) = GATE (ISPOT + 1)
X (2 ,GNCDE) = IDEX
GC TO 482

490 CCKTINUE

INPUT IS GATE INPUT. CHECK AND SET NODES IF 'AND'.
GATE(ISPCT) = GATE (NDEX + 5)
IISPOT = GAT I (ISEOT)
GGATE (IISPCT) = IDEX
IF (IPBINT .GT. 1) WRITE (6,1C2C) IDEX, (GATE (II) ,II = MDEX,KK)
IF (GRIND .EC. 2) GC TC 482
GDFX2 = GATE (ISECT)
NDFX2 = IGATE (GEFX2)
IF (GATE(NDE X2) .EQ. 2) GC TC 482
INGATE = C-AT F (NDEX2 + 1)
IFFIME = GATE(NDEX2 + 2)
IF (IPBIME .EQ. 0) GO IC 492

SET NODES FOB PBIMAEY INPUTS.
ISEOT = NDEX2 + 3 + 2+INGATE
DC 491 I = 1,IPBIME

ISPCT = ISECT + 2
GNCDE = GATE(ISPOT)
IB = 491

229

3 F (X (2, JNCDE) .GE.O .AND. X (2 , JNODE) . LX. JDEX) PFINT 1,IE
+ + 4 4+4 *+ + + + * 4 44 4 44 44 44 4 4 + 44444 44 4 4 4* 444*4* 4 4 4 + *4t***4 44**** 44*****4l*

q4 4444 44 444 444444444* 4* + #**4****4‘*4‘*4‘******4t4‘444****4t**4‘ + *** + 4***4 * + 4i**4f*4i

X(1,JNODE) = GATE(ISEC1 ♦ 1)
491 i |2,JNODE) = JEEX2

IF (INGATE .IQ. 0) GO TO 482
492 ISECT = NDE?2 ♦ 3

C
C NO k SEABCH SECOND LEVEL GATE J DEX 2 FOB THIRD LEVEL 'AND* GATES.

EC 4999 1=1,INGATE
ISEOT = ISPCT + 2
JEIX3 = GATE (ISPOT)
SDEX3 = IGATI(JDEX3)
IF (GATE(NEEX3) .EQ. 2) GO TO 4999
JNGATE = GATE (NDEX3 ♦ 1)
JPEIHE = GAT I (NDEX3 + 2)
IF (JPRIHE .EQ. C) GC TO 494

C
C GATE ' JDEX3' HAS PBIHABY INPUTS. SET NCDES.

JSECT = NEEX3 ♦ 3 + 2*JNGATE
BO 493 J = 1 ,JPEIHE

JSPCT = JSPCT + 2
JNODE = GATE (JSPOT)
IE = 493
IF (X(2,JNODE).GE.O .AND. X(2,JNODE).LT.JDEX) PBINT 1,IB

£44444444444444444444444444444*444
£■*4+4444444444444444444444444444*444444444444444444444444444444444444444

X(1, JNCDE) = GATE (JSPOT + 1)
493 X(2,JNCEE) = JEEX3

IF (JNGATE .EC. 0) GO TO 4999
494 JSECT = NDEX 3 + 3

C
C NOB SEABCH THIED LEVEL GATE JEEX3 FOE FOURTH LEVEL •ANI* GATES

DO 499 J = 1 ,JNGATE
JSEOT = JSPOT + 2
JDEX4 = GATE (JSPOT)
N DEX 4 = IGATE (JDEX4)
IF (GATE (NDEX4) .EQ. 2) GC TC 499
KNGATE = GATE(NDEX4 + 1)
KPBIHE = GATE (NDEX4 + 2)
IF (KPBIHE .EQ. 0) GO TO 496

C
C GATE '001X4' HAS PRIMARY INPUTS. SET NODES.

KSPCT = NDEX4 + 3 + 2 *K NGAT I
10 495 K = 1,KPBIME

KSPCT = KSPOT ♦ 2
JNODE = GATE(KSPOT)
IB = 495
IF (X (2, JNODE) .GE.O .AND. X (2 , JNODE) . LT. JDEX) PBINT 1,IB

£44*4444 44 4 444 4*444444*444444444444444444 4 4 44 44 4 4 444444 44 444 4 44 4 44444444
£444

X(1,JNCDE) = GATE(KSPCT ♦ 1)

230

4S5 X (2,JNCDE) = JDEX4
IE (KNGATE .EQ. 0) GO 10 49S

496 KSECT = NDEX4 + 3
C
C NOW SEABCH FOURTH LEVEL GATE JDEX4 ECB 'AND1 GATES.

EO 498 K = 1,KNGATE
KSECT = KSECT + 2
JDEX 5 = GATE(KSPOT)
NDEX5 = IGATE (JDEX5)
IF (GATE (NEEX5) .EQ. 2) GC TO 498
LNGATE = GATE(NDEX5 + 1)
LEBIHE = GATE(NEEX5 + 2)
IF (LE El ME .EQ. 0) GO TC 498

C
C GATE 'JBEXS* HAS PEIMABX INPUTS. SET NODES.

LSEOT = NEEX5 * 3 + 2*LNGATE
DO 497 L = 1 ,LEBIME

LSECT = LSEOT ♦ 2
JNODE = GATE (LSECT)
IB = 497
IF (X (2 ,JNODE) .GE.0 .ANE. X (2,JNODE).LT.JDEX) PBINT 1,IB

C*** 4 *4 * * 4 4*4* * 4 ****** + *********** + *********+* * + ***** + + ***4 + *4 + ** + + * + *

Q***4 444 4* 4 4 4*4 * 44 4 4 4 4*44 4 4 *4 4 4 4 4 4 4 4 4 4 44* 4*4**4 * 4 ********** 44***********

X(1, JNCEE) = G ATE (LSPOT ♦ 1)
497 X(2,JNCDE) = JEEX5
498 CONTINUE
499 CC NTIN D E

4999 CONTINUE
GC TC 482

SCO CCNTINUE
q****444 4*44******4*4*4*4*4 ********** **********4*******V4**4**^*4*******

C *
C ’TOP' GATE HAS BEEN COMPLETED. TBEE IS FINISHED. *
C BEGICN TC EBINT BESULTS AND DC FINAL EDITING, ETC. *
C *£4**44**4*44************************* 44 ********44***********************

WBITE (6,1C28) TITLE
DC 501 I = 1,MGATE

IE (IGATI (I) .EQ. 0) GC TC 600
KDEX = IGATE(I)
IF (GATE (NDEX) .IE. 0) GC TO 501
NGATE = I
KK = NDEX + 4 + 2* (GATE (NDEX+1) + GATE(NDEX+2))
WBITE (6,102C) I, (GATE(II),II = NDEX,KK)

501 CONTINUE
GO TO 600

510 CCKTINUE
C
C TOP GATE HAS SINGLE INPUT (TBANSEEB FBOM 485).

IE (GATE (NDEX + 1) .EQ. 0) GG TO SCO
C
C TOP GATE HAS EUBTEEE GATE INPUT. SET IT AS TOP GATE.

231

n
n

n
n

GATE (NDEX) = -99
JDEX = GATE (NEEX + 5)
JGATE (JDEX) = C
GO TC 500

600 CCKTINOE
700 CCKTINUE**4*4*44*** *********

c *
C ...FINAL GATE BEGICN... *
C TRANSFEBS ARE ELIHINATE E AND EXTRA GATES DELETED. *
C GATES ARE FEKOMEEBED CONSECUTIVELY. *
C *
C EEGIN EY S EARCEING FCB TRANSFERS. *
C FOE EACH GATE CHECKED, SET GATE (NDEX) = GATE (NDEX) + 10. *
C *
c***

IF (IEDIT .EQ. 98 .OR. IEDIT .GE. 100) GO TO 720
IF (NGATE .IT. U) GC TC 799
NG2 = NGATE - 2
NG3 = NGATE - 3
DC 710 II = 1, NG 3

1 = NGATE +1-11
NDEX = IGATE (I)
IKIND = GATE (NDEX)
IF (IKIND .LE. 0 .OR. IKIND .GE. 3) GC TO 710
INGATE = GATE (NEEX + 1)
IPBIME = GATE (NDEX + 2)

VALID GATE 'I* FCOND. NOW SEARCH FOR MATCHING GATES.
EC 709 J1 = 11,NG2

J = NGATE - J1
NDEX 2 = IGATE(J)
JKIND = GATE (NDEX2)
IF (JKIND .NE. IKIND) GO TO 7C9
JNGATE = GATE (NDEX2 + 1)
JPBIME = GATE(NCEX2 + 2)
IF (JPRIFE .NE. IPBIME .OR. JNGATE .NE. INGATE) GO TO 709

GATE MATCH. SEARCH ECB INPUT MATCHES.
IF (IPBIME .EQ. 0) GO TC 703
K1 = NDEX + 5 + 2+INGATE
K 2 = NEEX + 3 + 2* (INGATE + IPBIME)
LI = NDEX2 ♦ 5 + 2+JNGATE
12 = NDEX2 + 3 + 2* (JNGATE + JPRIME)
EC 702 K = K 1,K2,2

KNCDE = GATE (K)
KMCDE = GATE(K ♦ 1)
DO 701 I = LI ,12,2

IF (GATE(L) .EQ.KNODE .AND. GATE (L +1).EQ.KMODE) GO TC702
701 CCKTINCE

GO TC 709
702 CCNTINCE

232

no

no
on

no
on

no

n
no

n

COBELETE BATCH C? PEIHAFX INPUTS PCOND.
NOH SIAFCH FOE HATCHING GATE INPOTS.

IF (INGATE .EQ. 0) GC TC 706
703 K1 = NCEX ♦ 5

K2 = NDEX ♦ 3 + 2*INGATE
11 = NEEX2 * 5
L2 = NDEX2 + 3 + 2+ONGAIE
CC 705 K = K1,K 2,2

KGATE = GATE(K)
CO 704 L = L1,L2,2

IF (GATE (L) .EQ.KGATE) GC TO 705
704 CONTINUE

GO TC 709
7C5 CCNTINOE

CCKELET E HATCH IOONE. FEHOVE GATE 'J'.
SEABCH PBECEEDING GATE ANE EEPLACE INPUT.

706 GATE (NCEX2) = -1
JDEX = JGATE(J)
IDEX = IGATE (JCEX)
K1 = IEEX + 5
K2 = IEEX + 3 * 2*GATE(IDEX + 1)
DO 707 K = K1,K2 ,2

IE (GATE (K) .EQ. J .AND. GATE (K + 1) .LT. 0) GO TO 708
7C7 CONTINtE

IE = 7C7
FEINT 1 /1E

708 CCNTINUE

BEELACE CDPLICATE GATE •J * IN GATE JDEX WITH GATE •I*.
GATE (K) = I

709 CCNTINOE

GATE 'J' SEAFCH COHPLETEE. SET GATE *1* TO FINISHEC.
GATE (NDEX) = GATE (NDEX) ♦ 10

710 CCNTINUE

GATE CHECK COHPLETEE. NOW BESET GATE TXPES.
DO 7 11 I = 1 ,NGATE

KDEX = IGATE(I)
711 IF (GATE (NDEX) .GT. 3) GATE (NEEX) = GATE (NDEX) - 10

IE (IPBINT .LT. 2) GO TO 72C

WBITE GATE PBINTOUT.
WHITE (6,1C2S) TITLE
EC 712 I = 1,NGATE

KDEX = IGATE (T)
IF (GAT E (NEEX) .LE. C) GO TO 712
KK = NDEX ♦ 4 ♦ 2* (GATE(NDEX+1) + GATE(NDEX + 2))

233

no

n
n

n
n

SEITE (6,1020) I, (GATE (II) ,II=linEX,KK)
712 CCKTINOE
720 CCKTINOE

NON BENUHBEE GATES CCNSECOTIVELI. SET JGATE (I) = NEN INDEX.
NE3TE (6,1030) TITLE
IKEEX = 1
EC 721 I = 1 ,NGATE

KDEX = IGATE(3)
3F (GATE (NEE X) .IE. 0) GC TC 721
JGATE (I) = INEEX
INDEX = I NEE J + 1

721 CCNTINOE

NOW EEN0MBEB GATE 3NP01S.
DO 724 I = 1,NGATE

KDEX = IGATE(I)
I? (GATE (NEEX) .IE. 0) GC TO 724
INGATE = GATE (NEEX ♦ 1)
IF (INGATE .EC. 0) GC TO 723
J1 = NEEX 4 5
J2 = NDEX *3+ 2*INGATE
EO 722 J = J 1,J2,2

JDEX = GATE (J)
722 GATE (J) =JGATI(JDEX)
723 KK = NDEX 4 4 4 2* (INGATE 4 GATE (NDEX42))

NR ITE (6,1020) JGATE (I) , (GATE (II) ,II=NDEX,KK)
724 CCNTINOE
799 BETUIN
900 CCKTINOE

FACET TREE TOC LABGE. NBITE COTPOT AND PARTIAL TBEE.
SEITE (6,102 1) (IGATE
GC 1C S30

920 CCKTINOE
WBITE (6,1032) NGSIZE

930 INEEX = INEEX - 2
NBITE (6,1030) TITLE
DC 931 I = 1,INEEX

KDEX = IGATE (I)
IF (GATE (NDEX) .LT. -2) GO TO 931
KK = IGATE (I 4 1) - 1
HBITE (6,1020) I,(GATE(II),II=NEEX,KK)

931 CCKTINOE
I = INEEX 4 1
NDEX = IGATE (I)
KK = NDEX 4 4 4 2*(GATE(NDEX+1) 4 GATE (NDEX42))
NBITE (6 ,1020) I, (GATE (II) ,II=NE£X,KK)
IEEE = 1
BETUEN

2020 HBITE (6,1033)
IEEE = 1

234

nn
n

BE1DF N
2030 IE = 2030

HBITE (6,1) IB
IEEE = 1
BETOEN

2040 HBITE (6,1034)
I EBB = 1
BETOEN

2060 HBITE (6,103E)
I EBB = 1
BETCEN

q******* *4 4 * mm * + + *+**+ + + * + + + + + * + * + + ++++++*** + **+******* ++* + * +
*

1000 FCEtlJT
1
2

1001 ECEMAT
1**12, '
2 16,'

ECEMAT BEG ION *
*

C*****************’* ****************** * + *****#********★*** *** + j|c*
1 FCEMAT (1H0,65 (•**')/' ■* EBBOE NO BBEB • , 15 ,T 1 31 , ' *' / IX , 65 (• **•)/)

(1H1,£5 (• — •)/• -• ,T131 , •-•/• - ',20A4,T131, •-•/• -',T131,
- CAT GATE PBINTCBT SECTION.', T131,•-»/'• -»,T131,

»-»/1X,65('—*)//1X,**** EBELIMINABY GATE PBINTOUT ***•//)
(1HC,'GATE',14,3X,'TYPE = ',A3/12X,’NUMBEB OF GATES INPUT =
NUMBEB CF EEIMABY INPUTS =',12/12X,»EVENT: EVALUATE BOH',
OF COMPONENT*,I5/12X,*INPCTS: ' ,7 (» (•,16,•,• ,16,') , •)/

3 (2CX,7('(',16,',',16,•),')))
1002 FOBMAT (1 HO ,•GATE' ,14,3X,»TYPE = ',A3/12X,'NUMBEB OF GATES INPUT =

1' , 12, ' NUMBEB CF PfIMABY INPUTS =',12/12X,•EVENT: SIGNAL = ',16,
2 • AT NODE',16 /12X,•IN PUTS : ' ,7 (• (•,16,',' ,16,•),«)/
3 (2 OX,7 (* (',16,',',16,•),')))

1003 FCBMAT ('0GA1E 1', 3X,*TYPE = ',A3/12X,'NUMBEB OF GATES INPUT =
1 * ,12,' NUMBEB CF PBIHABY INPUTS =•,12/12X,'EVENT: TOP EVENT'/
2 12X,'INPCTS: ',7(' (',16,',',16,'),*)/
3 (2CX,7(* (',16,',',16,') ,')))

1004 FOEMAT (1B0,*** NC OUTPUT MODE =',I5,» EXISTS FOB NODE',15,
1 ' (CCFPCNENT '".AB,"' TYPE',16,', CUTPUT NC. • ,12 , '). •)

1005 FOEMAT (1H0,*** NC COMPLETE BOH MATCH FOUND FOB COMPONENT
1 A8, " • TYPE*,16,•,»/5X,'DUE TO CCNTBADICTING INITIAL OB BOU
2NDAHY CONDITIONS.•)

1006 FCEMAT (4X,** GATE',14,' BEING ELIMINATED AND PBECEEDING GATES E
1DI1EB. ')

1007 FOEMAT (4X,'* GATE',14,' INPUTS » " ,A3,• " GATE',14,'; GATE',14,
1 • BEING ELIMINATED.')

1008 FOBMAT (7X , • GATE' ,14 , * INPUTS "',A3,"' GATE',14,»; EBANCH',13,
1 • OF',13,' EBANCEES BEING ELIMINATED.')

1009 FCBMAT (4X,‘* GATE',14,' INPUTS SINGLE INPUT '",A3,"' GATE',
1 14,'; GATE',14,' BEING Ell El NATE D. •)

1010 FCEMAT (/5X,'GATE* , 14, • : COMPONENT '",A8,"' TYPE',16,', BCH',13,
1
2

1011 FCBMAT
1
2

1012 FOEMAT

16,': MODE = ' ,15 , • CCNT BADICTS MODE =',I5,• NODE'
', SET BY GATE',14,*.')
(/5X,'GATE',14,': COMPONENT "',A8,"' TYPE',16,*, BOH',13,
• NODE', 16,': MODE =',I5,' CCNTEADICTS MODE =’,I5,
', SET EY INITIAL CONDITIONS.')
(/5X,'GATE',14,': COHPCN E NT "SAS,"' TYPE',16,', EiOH',13,

235

• INlEBtlAL',16,* : HODE
SE1 Bt GATE*,14,' .')

,15,' CCNTBADICTS MODE =*,I5,

1013 FGBfJAT (/5X, 'GATE* ,14 , •: CCfiPCNEKT " • r A8 , • " TYPE',16,*, E0»*,I3»
• IK1EBN AL',16,1: MODE =•,15,' CCNTB ADICTS MODE
* , SET EY INITIAL CONE.')

* »15#

•,15,

:'#I5,

:,fI5,

1014 EOfMAT (/5X,'GATE* ,14, •: NODE*,16,* PEESET TO MODE
1 • BY GATE',^,*.')

1015 FOBMAI (/SXj'GATE*,14, •; NODE*,16,• PRESET TO MODE =',I5,
1 * BY INITIAL CONDITIONS.*)

1016 FC EHAT (1H0,4X,'GATE *,14,': INTEBNAL*,16,• PBESET TC MODS =
1 • BY GATE',14,'.•)

1017 FC EM AT (1H0,4X, 'GATE',14,*: INTEBNAL»,16,• PBESET TC MODE =
1 • BY INITIAL CCNBITICNS. •)

1018 FCEBAT (»0 ** CCMPONENT •,•,A8,,•• TYPE',16,', BON*,14,': ALL NOD
1ES HAVE BEEN PEESET.'/4X* GATE*,14,' BEING ELIMINATED AND PFECE
2EBING GATES EDITED.’)

1019 FC EH IT (1 HO, * * GATE',14,* TYPE = *,A3,* HAS SINGIE INPOT. GATE
1 BEING ELIMINATED AND INPUT DIRECTLY INTO GATE*,14,*.•)

1020 EC EM AT (5X,'GATE*,14,* :',3I3,2I6,1X,6(* (*,16,',*,16,•),*)/
1 (36X,€(*(*,I6,*,*,I6,*) ,*)))

1021 FCEMAT ('0*** PBELIMINAEY EDIT CB GATE',14,' COMPLETED ***•//)
1022 EC EM AT (//'0*** GATE',14,' COMPLETED. PBELIMINAEY GATE EDIT FCILOH

IS ***'//)
1023 EC EM AT (7X,'PBIMABY INPUT',12,' CE GATE',14,' BEING DELETED.')
1024 FCEMAT ('0 ** ALL INPUTS TO GATE',14,' HAVE BEEN ELIMINATED.'/

14X* GATE',14,' BEING ELIMINATED AND FEECEEDING GATES EDITED.')
1025 FCEMAT (1H1,**** OF GATE EDIT OB GATE',14,' COMPLETED ***•/

1 • *** PBINTCUT OF ARBAY "GATE" BEEOBE BESETTING NODES ***
2•// (5X,10I6))

1026 FCEMAT (//'0*** PBINTOOT OF ABBAY "GATE" AFTER BESETTING NODES *
1**' //(5X,1CI6))

1027 FCEMAT {//,'0*** OB GATE EDIT OB GATE',14,' COMPLETED ***•/
' *** PBINTCUT OF ABBAY
(5X,1CI6))

'X" BEFOBE BESETTING NODES ***'//

1028 FOBMAI (//'0**** "TOP" HAS BEEN CCMPLETED ****'/
1 1H1,65 (• — •)/,' - PBCGBAE CAT, VEFSION OF 1 0/75• , 11 31 , •-• /
2, • - FBOGBAM FOE TfcE AUTO MATED CONSTRUCTION OB FAULT TREES. •
3, T1 3 1 , •- ' /• - OUTPUT REGION'
4, T131,'-' /,' -',1131,•-•/ ,' - ',20A4,T131,•-• /,1X,
5 65 ('— ')/// ,1X,'*** GATE PBINTOOT SECTION ***•//)

1029 FOIMAT (1H1,'*** GATE TRANSFERS CCMPLETED ***•//
1 IX,'INTERMEDIATE PBINTOOT FOR *,20A4//)

1030 FORMAT (1H1,65('—•)/' PROGRAM CAT, VERSION OF 1 C/75',1131,*-'/
1, ' - PROGRAM FOR TEE AUTOMATED CONSTRUCTION OF FAULT TREES.'
2, T131 , '~ ' /' - OUTPUT REGION: FINAL GATE PRINTOUT'
3, T131,'-• /,' -',1131,•-•/ ,' - ',20A4,T131, /,1X,
4 65 (*—•)///,IX,'*** FINAL GATE PRINTOUT SECTION ***»//)

1031 FORMAT (1 Hi , 65 (•**•)/5 (• *• ,T13 1 ,'*•/),• *', 5X,'FAULT TREE TOO LA
1BGB FOB PROGRAM DIMENSIGNS.',T13 1 ,•*'/• *',T131,'*'/
2 ' *', 5X,'NUMBER OF GATES BECUIRED EXCEEDS THE*,15,' GATES AL
3LCCATED.',T1 31, •*>/• *',T131,'*'/ • *', 5X,'PARTIAL GATE PBINTOU
4T 5CHCNS. ' ,T131,'*'/ 5(' *', T1 3 1 ,'*•/), IX ,65 (•**•))

236

nn
nn

n
nn

nn

no
n

1032 FCFMAT (1H1 ,65 (•*♦')/5 (• *•,T131,»*'/)»' , 5X,'FA0LT TBEE TOO LA
1BGI JOB PBCGEAH EIMENS IONS. • ,T1 3 1 , • *'/' *',H31f**V
2 • 5X,'ABBAY "GATE" BEQDIBES MOPE THAN THE',16,' SPACES AL
3LCCATEE.' ,1131 ,'*•/• *«,T131,'*'/ • 5X,'PABTIAL GATE PBINTOU
4T ECILCWS. ',1131,'*'/ 5(* *',1131,'*•/),1X,65 ('**•))

1033 FOBMAI (1H1 ,€5 ("**•)/5<• *',1131,'*'/),• *•, 5X,'TOF EVENT FOB FAU
1LT TBEE HAS NO BOW MATCH.', T131,'*'/' *',1131,'*'/
2 • *', 5 X,* TCP EVENT CANNOT CCCUK.' ,
3 1131 ,'*'/' **,T131,•*•/ • *', 5X,'»*^ PBOGBAM TEBHINAT
4ING ***', 1131,'*'/ 5(• 1131,•*•/),IX,65('**'))

1034 FCEMAT (1H 1,65 <•*’»«)/5 (• ** ,113 1 ,'*•/), • **, 5X,'TOP EVENT FOB FAU
1LT TBEE HAS BEEN ELIMINATED - ICE EVENT CANNOT OCCUB -»,T131, •*'/
2 • *',T131,»*'/ • 5X,'*** PBOGBAM TERMINAT
3ING ***• , 1131,'*'/ 5 (' *»,T131,•*•/),IX,65('**»))

1035 FCEMAT (1 HI,65(•**«)/5(• *•,1131,'*'/),• , 5X,'TO£ EVENT FOB FAU
1LT TBEE HAS EEEN ELIMINATED - TCP EVENT "SUBE TO OCCUB" -',
2 1131,'*'/' *',1131,**'/ • *', 5X,•*** PBOGBAM TEBMINAT
31NG ***', 1131,•*•/ 5 (' *»,1131,'**/),IX,65{'**»))

EKI
SCERCUTINE XCHECK (1STAEl,JDEX,NDEX,IPRINT,X,GATE,NODES,NGSIZE)

SUBROUTINE TO CHECK AND SET NODES FOB 'OR' GATE EDIT ROUTINE.
ISTART SETS FLAG; IF ISTART IS NCN-POSITIVE, NC NODES ARE SET
ISTART = 0: CHECK CR-AND-CE GATE
ISTART =-1 : CHECK OR-CB-AKE, OR-AND-AND GATES

INTEGER X(2 ,NODES) ,GATE (NGSIZE)
100 ISIT = ISTART

IF (ISTART .LE. 0) ISTART = 1
NPBIME = GAT E(N DEX + 2)
ISEC1 = NDEX ♦ 1 + 2* (GATE(NDEX + 1) + ISTART)
DC 110 I = ISTABT,NPBIME

1 SPOT = IS EOT + 2
CNCDE = GATE(ISPOT)
RHODE = GATE(ISPOT + 1)
OMCDE = X (1, JNCDE)
IF (JMODE .NE. -1) GO TO 101

NODE HAS NCT PREVIOUSLY BEEN SET.
IE (ISET .LE. 0) GO TO 11C
> (1 , JNODE) = RHODE
X(2,JNCDE) = -2
GO TO 110

101 CONTINUE

NODE HAS BEEN PRESET. CHECK FOR AGREEMENT.
IF (JMODE .EC. KMCEE) GO TO 105

NODE DISAGREES. CHECK ECfi FURTHER MODES PBESET.
IF NONE FOUND, SET ADDITIONAL MODE.

IE (X(2,JNCDE) .LT. -2) GO TO 102
IF (ISET .GT. 0) X(2,JNODE) = -ISPOT
GO TO 110

237

O
o

no
on

oo

on
n

on

102 IISEOT = -X (2,JNOCI)
103 IP (KNODE .EQ. GSTE(TISP01 ♦ 1)) GC TO 105

HODE NCT EQOAL TO EFESET HO£J. CEECK FOF FOSTHEF PRESET HODES.
IF (GATE (IISEOT) . GE, 0) GO TC 104
IISPOI = -GATE (IISEOT)
GC TC 103

104 IF (ISET .GT. 0) GATE (IISEOT) = -ISPOT

ALL MODES CHECKED; NC AGEEEHENT. SET MEN MODE LOCATICN.
GO TC 110

105 CONTINUE

HODE AGREES SITH PBESET VALUE.
DELETE EBIMAKY INPUT ISPOT.

IF (ISET .LE. -1) GO TC 111
GATE (NDEX ♦ 2) = GATE(NDEX ♦ 2) - 1
IF (IPBINT .GT. 0) HEITE (6,1000) JDEX,JNODE,KMODE,I,NPBIME
IF (I .EC. NEFIME) GO TO 110
IH1 = NPBIME - 1
3ISPOT = ISPOT
DC 106 12 = I,IM1

GATE (IISEOT) = GATE(IISPOT ♦ 2)
GATE (IISECT+1) = GATE(IISPOT + 3)

106 IISEOT = IISPOT ♦ 2
ISIOT = ISIOT - 2

110 CONTINUE
BETUFN

111 ISTIFT = -1
IF (IPBINT .GT. 0) WBITE (6,1001) JDEX,JNODE,KMODE,JDEX
EETUEN

1000 FOFMAT (*0 GATE',14,': INTEBNAL NODE’,16,* PEESET TO MODE =',
1 I5/7X,•PF3MABY INPUT',12,' OI',12,' INPUTS BEING DELETED.')

1001 FOFMAT ('C GATE',14,*: INTEBNAL NODE',16,' PRESET TO MODE =',
1 I5/4X ,* * GATE',14,' BEING ELIMINATED AND PRECIEDING GATES ED
2ITID.')

END
SUEFCDTINE BEDUCE(LLDEX,JDEX2,NLEX2,JDEX,NDEX,IPBINT,J,JNGATE,

1 JSPOT,GATE,JGATE,NGSIZE,MGATE)

SUEBOUTINE TO ELIMINATE ZEBC AND SINGLE INPUT GATES.
GATE JDEX2 IS TO BE ELIMINATED.
GATE JDEX HILL HAVE CCBBESPON DING INPUT CHANGED Cfi DELETED.

INTEC-EB GATE (NGSIZE)
DIMENSION JGATE (AGATE) ,KIND (2)
DATA KIND/'AND ’,'OB ’/
IKIND = GATE (NDEX2)
GATE (NDEX2) = -99
JGATE (JDEX2) = -99
IF (LLDEX .EC. 1) GO TC 200

GATE JDEX2 HAS NC INPUTS BEHAI KING.

238

nn

nn
n

nn
nn

n

C EIIETE GATE JEEX2 AND INPUT TC JDEX.
JKIND = GATE (NDEX)
JJ * JNGATE + GATE(NEEX + 2)
If (IPBINT .GT. 0) NBITE (6,1000) JDEX2,JDEX2,JDEX2,KIND(JKIND),

1 J DEX , J,JJ
GATE (NDEX + 1) = GATE (NDEX ♦ 1) - 1
JJSECT = JSECT
IF (J .GE. JNGATE) GC TC 101
JPI = JNGATE - 1
DO 100 J2 = J,J K1

GATE(JJSECT) = GATE(JJSEOT 4 2)
GATE(JJSECT41) = GATE(JJSECT 4 3)

100 JJSECT = JJSPOT 4 2
101 JPBIEE = GAT E(NDEX 4 2)

IE (JPBIHE .EQ. 0) GO TO 102
JSECT 2 = JJSEOT 4 2*JPFIHE
GATE(JJSPCT) = GATE (JSPOT2)
GATE (JJSPOT4 1) = GATE(JSEOT2 4 1)
IE (GATE(JSECT2) .IT. C) GATE (JSECT2) = -JJSPOT

102 JSECT = JSECT - 2
JJ = NDEX 4 H 4 2* (GATE(ND£X4l) 4 GAT E(NDEX 4 2))
IF (IPBINT .GT. 1) BRITE (6,1001) JDEX, (GATE (II) ,II = NDEX,JJ)
EETUEN

200 CCNT1NUE

GATE JDEX2 HAS SINGLE INPUT.
DELETE JDEX2 AND INSERT DIRECTLX INTO GATE JDEX.

IF (IPBINT .GT. 0) WRITE (6,1002) JDEX2,KIND (IKIND) , JDEX
IF (GATE(NDE X2 4 1) .EQ. 0) GO TC 201

INPUT TC JDEX2 IS GATE INPUT. SET INTO GATE JDEX.
GATE (JSPOT) = GATE(NDEX2 4 5)
JJSPCT = GATE (JSPOT)
JGATE (JJSECT) = JDEX
EETUEN

201 CONTINUE

INPUT TO GATE JDEX2 IS PRIMARY INPUT.
MOVE UP REMAINING GATE INPUTS AND INSERT PRIMARY INPUT.

GATE (NDEX ♦ 1) = GATE (NDEX 4 1) - 1
GATE (NDEX 4 2)= GATE (NDEX 4 2) 4 1
JJSPCT = JSPOT
IF (J .EQ. JNGATE) GC TC 203
JB1 = JNGATE - 1
DC 202 J2 = J , JB1

GATE (JJSPCT) = G ATE (JJ SPOT 4 2)
GATE(JJSPCT41) = G ATE (JJSECT 4 3)

202 JJSECT = JJSPCT 4 2
203 GATE (JJSPCT) = GATE (NCEX2 4 5)

GATE (JJSPCT4 1) = GATE(NDEX2 * 6)

IN 'OB* GATE EDIT REGION, GATE(NDEX2 4 5) MAY BE POINTER.

239

C IF SO, SET FCINTEB FOB NE8 LOCAUCN.
204 IF (GATE (JJSPOT) .IT. 0) GATE(HEEX2 + 5) = -JJSPOT

JJ = NDEX ■» <i ♦ 2* (GATE (NDEX+1) ♦ GATE (NDEX+2))
IF (IPBINT .GT. 1) HEITE (6,1001) JDEX, (GATE (II) , II=NDEX ,JJ)
JSICT = JSECT - 2
BETOIN

1000 FCEHAT ('0 ** ALL INPUTS TO GATE',14,' HAVE BEEN ELIMINATED.'/
1 4X,'* GATE',14,' BEING ELIMINATED AND PBECEEDING GATES EDITE
2D. '/7X,'GATE* ,14,' INPOTS "*,A3,"' GATE',14,'; EBANCH*,I3,
3 • OF',13,' EBANCEES BEING ELIMINATED.')

1001 FOIMAT (5X,'GATE',I4,':»,3I3,2I€,1X,6(' <',I6,',' ,16,'),')/
1 36X,6(* (• ,16,',• ,16,•),'))

1002 FOIMAT (*0 * GATE',14,' TYPE = ',A3,' HAS SINGLE ISPOT. GATE BEI
1NG ELIMINATED AND INPUT DIRECTLY INTO GATE' ,14,•.•)
INI
SCEBOOTINE OUTPUT (ITYPE,IGATE,JGATE,GATE,MCDNAM,OMEN AM,NLIB,

1 MNODE,NNCME,MGATE,MXINT2,MAXINT,NGSIZE,NGATE,IOT)
£***+**+14*+*+*++*4**44**+*+++*++*+++**+++*++++++**+**+**+++***+********
c
c
c
c
c
c
c
c
c
c

*
SUBBOCTINE OUTPUT, VERSION CE MAY 1977 *

SOEECUTINE TO WRITE OUTPUT IN EOBMAT FOE FREP-KITT CODES *
LIMITED TO 9999 GATES WITH MAXIMUM OF 49 INPUTS PEB GATE *
LAMBDA LIMITED TO VALUES BETWEEN 0.9999 AND 1.E-9 *

*

IOT = OUTPUT DEVICE NUMBER (PUNCH, TAPE OR DISK) *
INMAX = MAX NC. OF INPUTS ALLOWED PEB GATE (= 7 FOB PBEP) *
IB I AD = C/N (DATA COFEECT/MISSING INPUT FROM DEVICE 'NINP') *

*
£*+*** + *4*4 ******* **

DOUBLE PRECISION CMPNAM (NNCMP) ,KAME1,NAME2,NNAME,MNAME(2),NAMEX,
1 LLENE,MMEND,MODNAM (MAXINT,NLIB) ,MELANK

DIMENSION AL AM £ A. (2) , BLAMEA (2) , ATAU (2) , BTAU (2) , NUMBEF (10) ,
1 IT YPE (NNCMP) , IGATE (MGATE) ,JGATE (MGATE) , IN AMI (8) ,
2 JNAME (56),KNAME (8),KIND(2)

INTEGER GATE (NGSIZE)
LCCICAL NCTOP
COMMON TITLE (20) ,XXXX (20),IEBB,IEDIT,IDUM (12),NNAME,JPRINT,KOOT
DATA KIND (1),KIND (2) ,NELANK,LG,LA,LT,LE,LC,LP,LEND,MEND,LLEND,

1 MM£ND,XEKD,LOUT,YOUT,NAMEX,NUMEEE,MILANK/
2 'AND',*OB',' ',*G','A,,'T*,'E','0','P','END','BEND','END',
3 'SENE', 'SEND', 'SCOT','SOLT','END FILE','0 ' , ' 1' , ' 2•, ' 3* , •4•,
4 'S','6','7',*8 • ,'9', • •/

EC 1C I = 1, 12
10 IDUM (I) = C

DC 20 I = 4,£
20 INA ME (I) = NELANK

DC 30 I = 1,56
30 JNAME (I) = NELANK

NIKE = 5
INKAX = 7
IFIAE = 0
KSPCT = 1

240

on

o
o

111 =0.0
SUITE (6,1000) ICT,TITLE

1000 FCIHST (1H1,t5{2fl—)/29H - EROGEAM CAT, OOTPOT BEGICN,I131,1H-/
1 23H - OCTPUT TO I/C DEVICE,13,
2 30 B IN FORMAT FOE PSEP-KITT CODES,T131,1H-/2H -,T131,1H-/
3 3H - ,2014,1131,1H-/1X,65 (2H—)/)

£*******4***********4***
c *
C CHICK FOE PRESENCE OF •6O0T,, 'SEND' CE END OF FIIE *
C READ IN SCEBOOTINE 'STEVE* *
C IF IATA IS MISSING OUTPUT HILL STILL BE PRODUCED, *
C Ed KITH NC CROSS-CHECKING *
C *
C***************************************?*******************************

XCCDE = XXXX (1)
IF (XCODE .EC. XCUT) GC 1C 100
NN1ME = NAMEX
IF (XCOEE .EQ. XFNE) NNAME = MMINC
SRITE (6,1001) NNAME

1001 FOIMAT ('0*** PREP DATA HISSING ***'/"JX, A8, • READ BX SUBROUTINE ST
1 EVE. •/ ' FAULT TBEE HILL BE OOTPOT WITHOUT FAILURE DATA.'//)
IRI AI = 3
IF (XCCDE .EQ. XEND) IBEAD = 2
GC TC 140

100 CONTINUE

EE At PEEP CCNTEOL IAll
BEAD (NINP,1002,END=13Q) XXXX,NCCEE, (IDUM (I),1=1,6)

1002 FCEMAT (20A4,T1,A4,16,5110)
IF (NCODE .NE. NELANK) GC TC 11C
BEAD (NINP,1003,ENr = 130) XXXX,NCCDE, (IDUM(I) ,1=7,10),TAA

1003 FCIMAT (20A4,T1,A4,I€,3I10,F2C.3)
IF (NCODE .NE. NELANK) GC TC 110
GO TC 140

110 CONTINUE
IE (NCCDE .EC. LCUT) GO TO 100

INPUT EBBCB BEAL. SUPPRESS FIB1HEE DATA CHECKING
IF (NCODE .EC. LEND .OR. NCODE .EC. MEND) GC TO 120
WBITE (6,1004) XXXX

1004 FORMAT ('0*** INPUT EBBCE ***'/7X,'DATA CARD MISSING OR MISPUNCHED
1. CARD IN EEROB IS: '/7X,2 0A4/' FAULT TREE WILL BE CUTEUT WITHOUT
2FAILUBE DATA.'//)
IFEAE = 4
GC TC 140

120 WRITE (6,1005) NCODE
1005 FORMAT ('0*** WARNING ***V1X,A4,' CARD FCUND WHERE DATA EXPECTED.

I'/' INPUT EBIT TERMINATING. FAULT TREE WILL BE OUTPUT WITHOUT FAI
2LUEE DATA.'//)
IBEAD = 1
IF (NCODE .EC. MEND) IBEAD = 2
GO TC 140

241

nn
nn

n
n

n

130 BBI1E (6,10C6)
1006 ECIBftT CO*** HJBNIHG ***•/' EMC CF FILE EE^.CHEEV, INPUT EDIT TER

1HIKATING. FiUIT TFEE BILL EE 0C1FUI BIIHOU1 FAILURE CATA.'//)
IBEAD = 3

140 CCMTINOE

CCMEUTE NUHEIF OF GATES FCR PEEP INPUT
NG = 0
DC 150 I = 1 ,NGATE

FDEX = IGATE (I)
3F (GATE (NCEX) .LE. 0) GO TO 15C
KG = NG + 1
INTOT = GATE(NCEX + 1) ♦ GATE (NCEX + 2)
IF (INTOT .LE. INNAX) GO TC 150
NG = NG ♦ (INTOT - 1)/INNAX ♦ 1

150 CONTINUE
ICCH(I) = NG
BRITE (101,1006) TITLE,<IBU«(I) ,1=1,10) ,TAA

1008 FCEMAT (20A4//5X,59H*** FAULT TREE CONSTRUCTED BY CAT, VERSION OF
IN AY 1977 ***/6H* DATA/611 0/411C ,E20.3/3HENC/6H* TREE)

WRITE (6,1 CC9) TITLE, (ICON (I) ,1=1,10) ,TAA
1005 FORMAT (1HO,20A4//6X,59H*** FAULT TBEE CONSTRUCTED EY CAT, VERSION

1 CE MAY 1977 ***/7H * DATA/1 X,6110/1X,4110,F20.3/4fi END/
2 7H * TREE)

*****444***444*** ** ***4t4^* **4 ******* 4 **********************************

NOB PRODUCE FAULT TREE IN REEL EOBMAT *
KSECT = NEXT AVAILABLE STORAGE SECT FOR CCMPONENT NUMBER *

*

£*♦*****4*4*4***44 *** *********
NCTOP = .FALSE.
IN AMI (1) = LT
IN AME (2) = IC
IK AME (3) = LE
INTOT = 0
DC 400 I = 1 ,NGATE

KDEX = IGATE (I)
CTYPE = GATE(NCEX)
IF (JTYPE. L2. 0) GO TC 400
KG = JGATE(I)
KKIND = KIND (JTYPE)
IF (.NCT. NOTOP) GO TO 22C
KUM1 = NG/1000
K0E2 = (NG - 1000*NUM1)/ICC

100* (NG/100))/10
- 10*(NG/ 10)
NUMBER (KUM1+1)
NUMBER(NUM2+1)
NUMBER (KUM3 + 1)
NUMBER(NUM4+1)

220 INGATE = GATE (NDEX+1)
GAT I(NCEX + 2)

N DM 3 = (NG
KUM4 = KG
INAME(5)
INAME (6)
INAME (7)
INAME (8)
INGATE =
IPBIME =

242

on
nn

no

nn
n

nn
n

240

250

255

260
270

KBISET = e^RTCT
1N30T = INGAIE + IPBIME
IF (INTO 3 .GT. INMAX) GO TO 300

SET NAMES FCB INEOT GATES

ISECT = NDEX + 3
GS EOT = 1
IF (INGATE .EC. 0) GC TO 250
EO 240 KGATE = 1,INGATE

ISPOT = ISECT + 2
NG = GAT E(ISPOT)
JNAME (JSECT) = LG
JNAME (JSEOT-M) = LA
JNAHE(JSECT+2) = LT
JNAHE(JSEOT+3) = LE
KOMI = NG/ICOO
N0M2 = (NG - 1000*N0M1)/100
N0M3 = (NG - 100* (NG/100))/1C
K0M4 = NG - 10* (NG/ 10)
JNAME (JSECT + 4) = N0MEE8(NUM1 + 1)
JNAME (JSECT+5) = NUMEEF (N0M2 + 1)
JNAME(JSEOT+6) = NOMEEB (N0M3 + 1)
JNAME (JSEOT*7) = NOMEEB (N0M4 + 1)
J SECT = JSECT + 8

IF (IPBIME .EQ. 0) GC TO 270
CCKTINCE

SET NAMES ECE COM EC NENTS

DO 26C KGATE = 1,IFBIME
ISEOT = ISPOT + 2
DC 255 II = 1,2

NC = GATE (ISPOT ♦ II - 1)
NUM1 = NC/10C0
N0M2 = (NC - 100C*NOM1)/ICC
NOM3 = (NC - 100* (NC/10C))/10
NUM4 = NC - 1C* (NC/1C)
JNAME (JSECT) = NOMEEB (NUM1 + 1)
JNAME (JSECT + 1) = NOMEEB (N0M2+1)
JNAME (JSECT+2) = NOMEEB(N0K3+1)
JNAME (JSECT + 3) = NOMEEB (N0M4 + 1)
JSECT = JSPOT + 4

NOH SET COMECNENT NOMEEB INTO TABLE FOB LATEB BEFEFENCE

GATE(KSECT) = 100C0*GATE (ISECT) ♦ GATE (ISPOT +1)
KSEOT = KSPOT + 1

CCKTINCE

NOW BLANK COT A NX NAMES REMAINING FBCM PBEVIOOS BECOBD

243

oo

nn
n

nn
nn

n
nn

n

IF (NBESEI .LT. JSECT) GO TC 290
10 280 JJSPCT = JSECT,NBESET

280 JKAME(JJSEOT) = NELANK
290 CCKTINUE

NCS HEITE OUTPUT

HEITE (ICT,1010) INAME,MINE,INGATE,IPBIME, JNAME
1010 EC EM AT (8A1,IX,A4,212,7 (1X,6A1))

SHITE (6,1011) INAME,KKIND,INGATE,IPBIME,JNAME
1011 EOEMAT (1X,8A1,1X,A4,2I2,'i(1X,8A1))

IF (NOTOE) GC TO 400
INAME (1) = LG
INAME (2) = LA
INAME (3) = LT
INAME (4) = LE
NCTOP = . TFU E.
GO TC 400

300 CONTINUE

*

ADD NES GATES FOB THOSE GATES WHICH HAVE TOO MANY INPUTS *
*

JNGATE = (1NTCT-1)/INMAX ♦ 1
JPEIME = C
IF (NCTOE) GC TO 210
NUBS = NUMEEE (1)
NUE6 = NUME
NUB7 = NDM5
NUM8 = NUMEEF (2)
GC TC 320

310 NUM5 = INAME(5)
NUM6 = INAME (6)
NUM7 = INAME(7)
NUBS = I NAME (8)

320 JSECT = 1

SET NAMES FOB ADDITIONAL GATES EEQUIBED

CO 330 KGATE = 1,JNGATE
0 NAME(JSECT) = LG
JNAME (JSEOT + 1) = LA
JNAME(JSEOT+2) = LT
JNAME (JSPOT+ 3) = NUMEEB (KGA IE *1)
JNAME(JSE0T+4) = NOM5
ONAME(JSEOT45) = N0M6
JNAME(JSECT+6) = NUM7
JNAME (JSPOT+7) = NUM8

330 JSPOT = JSECT + 8

NOW BLANK CUT ANY NAMES BEE AIMING FBCM PREVIOUS RECORD

244

c
IF (NBESEI .LT. JSEOT) GO TO 350
LO 340 JJSPOT = JSP01,NFESE1

340 JNAME (JJSPCT) = NELANK
350 CCKTINUE

INABE,NKINE,JNGATE,JPRIME,JNAME
INAME,NKIND,JNGAIE,JPRIME,JNAME
355

C
C SBITE CU1P0T

NBI1E (ICT,1010)
SBITE (6,1011)
IF (NOTOE) GC TO

INAME (1) = LG
INAME (2) = IA
INAME (3) = LT
INAME(5) = ROMS
IN AME (6) = NUM6
INAME (7) = NUM7
INAME (8) = NUM8
NCTOE = . TB CE.

355 CONTINUE
C************************************** *******♦*♦»************^♦*****♦*+:
c *
C SBITE ADEITICNAL GATE CARES. *
C TEE *INTOT' INPUTS TO THE ORIGINAL GATE WILL BE SPLIT INTO *
C 'JNGATE' GATES, HUH * J NT CT ' INPUTS INTO THE FIBST * KNG ATE' *
C GATES ANE 'JNTOT + 1» INPUTS INTO THE LAST •JNGATE-KNGATE. • *
C FIRST BLANK OUT ANT EXTRA POSITIONS. *
C *

JNTOT = INTOT/JNGATE
IE (JNTOT .GE. JNGATE) GO TO 36C
NBESET = 8 *JNGATE
JSPOT = 8*JNTOT + 1
EO 358 JJSPCT = JSPOT,NBESET

358 JNAME(JJSPCT) = NELANK
360 KNGATE = JNGATE* (JNTCT+1) - IKTCT

ISIOT = NEEX ♦ 3
C
C LOOP 35S WRITES CNE RECCED FOB EACH EXTRA GATE
C

EO 399 KGATE = 1,JNGATE
INAME (4) = NUMEEE (KGATE + 1)
IE (KGATE .EQ. (KNGATE*1)) JNTOT = JNTOT ♦ 1
IF (INGATE .IT. JNTOT) GO TC 365
JJGATE = JNTOT
JPBIHE = 0
INGATE = INGAIE - JJGATE
GO TO 37C

365 JJGATE = INGATE
JPBIME = JNTOT - JJGATE
INGATE = 0

370 JSPOT = 1
IF (JJGATE .EQ. 0) GO TO 38C

245

on
nn

no

on
o

no
n

375

380

3 82

385
390

399

400

SET NAMES FOE INPOT GATES

DO 375 KKGATE = 1,JJGATE
ISPOT = ISEOT «■ 2
NG = GATE(ISPOT)
JNAHE (JSECT) = IG
JNAME (JSECT + 1) = LA
JNAME(JSECT+2) = IT
JNAME(JSEOT+3) = IE
N0M1 = NG/1000
N0M2 = (NG - 1COO+NOM1)/1CC
N0M3 = (KG - 100* (NG/100))/10
NOM4 = NG - 10* (NG/1 C)
JNAME(JSECT+4) = NOMEEE(N0M1+1)
JNAME (JSPCT + 5) = NUMBER (NCK2 + 1)
JNAME (JSPCT+6) = NUMBER (N0F3+1)
JNAME (JSPOT + 7) = N UME ER (NC M.4 + 1)
JSEC1 = JSECT + 8

IF (JPFIME .EQ. 0) GO TO 39C
CONTINUE

SET NAMES FCF COBECNENTS

DO 385 KKGATE = 1,JPBIME
ISPOT = ISPOT ♦ 2
DC 382 11=1,2

NC = GATE(ISEOT + II - 1)
NUM1 = NC/10C0
NUM2 = (NC - 10C0*N0M1)/ICO
NUM3 = (NC - 100* (NC/10C))/10
NUM4 = NC - 10*(NC/10)
JNAME (JSEOT) = NUMBER (KUM1 +1)
JNAME(JSEOT + 1) = NUMBER (KUM2 + 1)
JNAME (JSEOT + 2) = NUMBER (KUM3+1)
JNAME(JSPOT + 3) = NUMBER (NUM4+1)
JSECT = JSEOT + 4

NOW SET COMPONENTS INTC TABLE FOR LATER REFERENCE

GATE (KSPOT) = 10000 *G AT E (IS EOT) + G AT E (ISPOT + 1)
KSEOT = KSPOT + 1

CONTINUE

WRITE CUTEUT

WRITS (ICT,1010) INAME,KKINI,JJGATE,JPRIME,JNAME
WRITE (6,1011) INAME,NKINI,JJGATE,JPBIME,JNAME
CONTINUE

INTOT = JNTOT
INAME (4) = LE
CCKTINUE

246

on
n

nn
n

nn
nn

no

no
nn

n

BBITE (ICT,1012)
1012 FCid IT (3EINI)

BBITE (6,1013)
1013 FCFMAT (4H EFD)

£******* 4*********4*4***
*

NOW SOFT CCMPONENT NUMEEBS INTO ASCENDING NOBEEICAI CEDES *
TO BE CSED TC CBOSSCHECK FREE INPOT. *
IBEAD .C-T. C MEANS INPOT EBBCB WAS DETECTED *
AND NO CBOSSCHECK WILL BE PEBFCBMED. *

*

NCCON1 = KSFCT - 1
NCSI2 = NCCtKT/2
DC 430 NDEX = 1,NCNT2

KDXMAX = KCC0NT + 1 - NDEX
IGMAX = GAT I(NEEX)
IGEIN = IGMAX
NDEX 1 = NDEX ♦ 1
IDEX = NCEX
uCEX = NDEX

BIND LOCATIONS OF LARGEST ANE SMALLEST ENTRIES.
IGMAX £ IGMIN ARE ENTRIES, IDEX 6 JDEX ABE LOCATIONS.

CO 420 NDEX2 = NEEX1,NEXMAX
IF (GAT I (N EEX2) .GE. IGMIN) GC TO 410
IGMIN = GATE (NDEX2)
IDEX = NDEX 2
GC TC 42C

410 IF (GATE(NEEX2) .LE. IGMAX) GO TO 420
IGMAX = GATE (NDEX2)
JDEX = NDEX 2

420 CONTINUE
IF (IDEX .EQ. JDEX) GC TO 440

NOH SWITCH LARGEST AND SMALLEST ENTBIES TO ENDS CF ABBAY

GATE (IDEX) = GATE(NDEX)
GATE (JDEX) = GATE (NDXMAX)
IF (IDEX .EC. NDXMAX) GATE(JDEX) = GATE (NCEX)
IF (JDEX .EC. NDEX) GATE (IDEX) = GATE (NDXMAX)
GATE (NEEX) = IGMIN

430 GATE (NDXMAX) = IGMAX
440 CONTINUE

BBOGBAM NOH ELIMINATES DOELICATID ENTBIES

NCNT2 = 1
DC 450 NDEX = 2,NCOONT

IF (GATE (NDEX) .EC. GATE(NCNT2)) GO TC 450
NCNT2 = NCNT2 + 1

247

on
o

on
o

GAIE (NCN12) = GAT E (NEEX)
450 CCN1IN0E

NCCONT = NCNT2
NCKT2 = 0
DC 460 NDEX = 1,NCCUNT

460 C-AT E (NCCUNT + NCEX) = 0
IF (IBEAD .NE. 0) GC TC 700

£****4444*4******* ** ***** *** * *************************** ** ***** * ********
c *
C NOH PE AC FAILOFE AND EEPAIR IATA AND CBCSSCHECK *
C SITH CCKECNENT LIST. HBITE INTC PREP CATASET ONLY *
C THAT CATA ACTUAIIY EEQUIBED. FLAG ANY EXTRA OH MISSING DATA *
C *
£***

SBITE (ICT,1014)
1014 FCIMAT (7H* IATIS)

WBITE (6,1015)
1015 FCEMAT (8H * BATES)

JICCE = 1
500 BEAD (NINP,1016,EN0=580) NAME1,ALAMEA (1),ATAU(1) ,I NT 1 ,MODE 1,

1 NAME2,AIAMCA (2),A1A0(2) ,INI2,MODE2
1016 FCEMAT (2(A8 ,2X,E10.6 ,F10.3,215))

IF (NAME1 .EQ. ILEND .OB. NAME1 .EC* MMEND) GO TO 580
IF (NAHE1 .EC* MBLANK) GO TO 575
NNAME = NAME1
INTENL = INTI
MODE = MCDE1
IICCE = 1

505 CONTINUE

SEARCH ABBAY 'CKENAM' FCB CCMECNENT 'NNAME*

DC 510 NDEX = 1,NNCMP
IF (NNAME .EC. CMENAM(NDEX)) GC TO 520

510 CONTINUE
515 WBITE (6,1017) NNAME,MODE,INTBNI

1017 FORMAT (7X ,'COMECNENT ' , A8,' CR CCMPONENT MODE ',15,
1 ' FCB INTERNAL NODE',15,' NCT FCUND')

GC TO 570
520 CCNTINUE

NODE = MNODE + (NDEX-1)*MXINT2 + INTBNL
NCCMP = 1000 0*NC CE + MODE

NCS SEARCH ABBAY 'GATE* FCB CCMPONENT NODI AND MODE NUMBER

KBIN = 0
NB AX = NCCCKT + 1

530 N = (NMIN + NMAX)/2
IF (NCCMP-GATE (N)) 531,540,533

531 NB AX = N
532 IE ((NBAX-KMIN)-1) 515,515,530
533 NBIN = N

248

nn
nn

GC TC 532
540 CCKTINUE

CCMECNENT INEEX ’N* IN ABBAY ‘GATE* FODNE.
SET DATA IKTC CUTEUT ABBAJS.

IF (GATE (NCCUNT + N) .EC. 0) GC TC 550
HBITE (6, 1C 16) NNAME,INTENL,MOEE

1018 FCEMAT (*0*** HABNING ***'/7X,‘EUELICATE EATA INPUT FOB CCMPONENT1
1 , 1X , A 8, ', INTEBNAL NODE',15,', MODE',15/
2 7X,'PREVIOUS DATA HILL EE USED'/)

GC TC 570
550 GATE (NCCUNT + N) = 1

NCKT2 = NCNT2 ♦ 1
ELAMI A (JLOCP) = ALAMIA (ILOOE)
BTAU(JLOCP) = AT A U (ILCCP)
KUM1 = NODE/ 10CC
KUS2 = (NODE - 1QQ0*KUM1)/100
NUK3 = (NODE - 100*(NOEE/1CC))/ 1 C
NCI!4 = NODE - 10* (NCDE/10)
KUK5 = MCEE/1CCC
NUM6 = (MODE - 1 000*NUK5)/I 00
NUM7 = (MOEE - ICO* (MOEE/1CC))/ 1C
NCC8 = MODE - 10*(HCDE/10)
IF (JLCCP .EQ. 2) GO TO 560
INAME (1) = NUMEEE (NUM1+1)
INAME (2) = NUMEEE(NUM2+1)
INAME (3) = NUMEEE (NUM3+1)
INAME (4) = NUMEEE(NUM4 + 1)
INAME (5) = NCMEEB (NUM5 + 1)
INAME (6) = NUMEEE (NUM6-H)
INAME (7) = NUMEEF (NUM7 + 1)
INAME (8) = NUMEEE (NUM8 + 1)
JICCE = 2
GC TC 570

560 KNAME(I) = NUMEEE (NUM1+1)
KNAMI (2) = KUMEEB(NUM2 + 1)
KNAME (3) = NUMEEE (NUM3 + 1)
KNAME (4) = NUMEEE (NUM4-f1)
KNAME(5) = NUMEEE(NUM5+1)
KNAME (6) = NUMEEE (NUM6*1)
KNAME (7) = KUMEEB(NUM7 + 1)
KNAME (8) = NUMEEB (NUM8 + 1)
HBITE (IOT,1019) INAHE,ELAMEA (1) , BT AU (1) , KN AME, BLAM EA (2),BTAU (2)

1019 FCEMAT (2(8A 1,2X,E10.3,F10.3,IX))
HBITE (6,1020) IN AME , ELAME A (1) , ET AU (1) , KN AME, BLAM IA (2) , El AU (2)

1020 FCEMAT (IX,2(8A1,2X,F10.3,F10.3,1X))
JICCE = 1

570 IF (ILOOP .EC. 2) GO TC 500
575 IICCE = 2

IF (NAME2 .EC. PBLANK) GC TC 500
NNAME = NAMF2

249

INIEKI = IS12
MCIE = HCEI2
GC TC 5C5

**** + ***
C *
C END CF CUTEUT FEGICN. *
C CEECK FCF MISSING DATA AND EEINT CBOSSTABLE OF OUTPUT *
C *C************************************** *********************************

580 CCKTINUE
IF (JICCE .EC. 1) GC TC 590

C
C HALF CAFD FEMAINS.
C

BBITE (IOT , 1 Cl 9) INAME,BLAMIA (1) #ETAU (1)
WRITE (6,1020) INAME,BLAMIA(1),ETAU(1)

590 BBITE (ICT,1012)
BBITE (6,1013)
IE (NCNT2 .GT. 0) GO TC 600
IFIAI = 5
IF (NAME1 .EQ. IIEND) IFEAD = 6
IF (N AME 1 .EC. MMEND) IBEAD = 7
IF (IBEAD .EC. 5) NAME1 = NAMEX
BBITE (6,102 1) NAME 1

1021 FOBMAI ('0*** WARNING ***'/!*,&%,' BEAD WITHOUT VALID FAILURE DATA
1.'/7X,'NO FAILDBE DATA WILL BE CCTPUT.'//)

GO TC 700
600 CCKTINUEC***

C *
C CEECK ABBA! 'GATE' FCB MISSING DATA *
C *
£****444 ************ 4**44*4 ********** 44 ************************ *********

JDEX = 2*NCOCNT
IDEX = NCCDKT + 1
IICCE = 1
DO 620 NDEX = IDEX,JDEX

IF (GATE (NEEX) .EQ. 1) GO TO €20
IF (ILOOI .EC. 2) GO TC 610
BBITE (6, 1022)

1022 FCFMAT (1H0,€ 5 (2H**)/2H *,1131,1H*/
1 32H * *** INEUT EEROB, DATA MIS SING,T131,IH*/
2 47H * THE FCLLOBING COMPONENTS HAVE NC INPUT DATA:,T131,1H*/
3 2H *,T131, 1H*/2H *,18X,8HINTEfNAL,T131,1H*/2H *,5X,9HCOHPONENT
4, 6X,4BNCDE,6X,4HMQDE,T131,1H*/2H *,T131,1H*)
IICCE = 2

610 KDEX = GATE(NEEX-NCOUNT)/1000C
IDEX = (KDEX - MNODE - 1)/MXINT2 + 1
MODE = GATE(NEEX-NCOUNT) - 10CC0*KDEX
NODE = KDEX - (LDEX-1)*MXINT2 - MNCDE
BBITE (6,1023) CMPNAM(LDEX),NODE,MODE

1023 EOEMAT (2H * ,5X,A8 ,4X ,16,5X,16,1131,1H*)

250

620 CCKHNOE
IF (ILOOP .EC. 1) GO TO 70G
HBITE (6,1024)

1024 FCEBAT (IH ,€5(2H**))
700 CCKTINCE£*********4***

C *
C WBITE CECSS-INLEX FOB CCHPOKENTS INDEXED IN THIS FAULT TBEE *
C *£******44*4****44*4***4**44*******

HBITE (6,1025) TITLE
1025 FCIMAT (1H1,€5(2E—)/54H - PBOGBAM CAT, SUEBOUTINE OUTPUT, VEBSION

1 OF BAY 1977,T121,1H-/56H - CBOSS-INDEX OF COMPONENT NAMES USEE FO
28 EBEP/KITT INFUT,T131 ,1H-/2H -,T131,1H-/3H - ,20A4 ,T 131, 1H-/1X,
3 65 (2fi~)///5H PEEP,6X,9HCCMPCNENT,2X, 9HCOMPC NENT,2X,
4 28HINTEENAL: INTEFNA1 : INTEBNAL,2X,7H FAILUEE/5H NAME,10X,
5 11 HINE EX NAME,9X,7HCOLUMN:,3X,12HNUMEEB: NAME,8X,5 HSTATE/)

DO 710 NDEX = 1,NCCUNT
NCCMP = GATE (NEEX)

KCCMI/10000
NCCMP - 10000*NODE
(NODE - MNCDE - 1)/MXINT2 + 1
NOEE - (IDEX-1)*MXINT2 - MNODE
ITYPE (IDEX)
NC DE/1000
(NOEE - 1000*NUM1)/10C
(NCDE - 100*(NCDE/100))/10

NC EE - 10*{NOEE/ 10)
MODE/1000

(MCEE - 1GC0*NUM5)/ICC
(MCDE - 100* (MCDE/100))/10

BCDE - 10*(MODE/10)
= NUMEEB (NUM1+1)
= NOMEEB (NUM2 + 1)
= NCMEEB (KDM3 + 1)
= NOMEEB(NUM4+1)
= NOMEEB (KUM5*1)
= NUMEEB(NUM6+1)
= NUMEEF (KUM7 + 1)
= NUMEEF (NUM8 + 1)

WHITE (6,1026) INAME,IDEX ,CMPKAM(IDEX) ,NOEE2,NODE,
MOENAM (NOEE2,IT) ,MODE

FOBMAT (IX ,8A1,111,2X,A8,I11,1H:,I9,2H: ,A8,I9)
CCKTINUE

ILCOP = 0
JBIAE = IBEIE ♦ 1
IF (IBEAD .EC. C .AND. NAME1 .NE. LLEND) GC TO 999
GO TC (910,9 10, 999,999,900,999,SIC,999) ,JBEAD

900 CCKTINUE

NODE
MCEE
IDEX
KCEE2
IT
KOMI
KUS2
KUM 3
KUM4
KUF5
KUM6
K DM 7
KUM 8 =
INAME (1)
INAME (2)
INAME (3)
INAME (4)
INAME (5)
INAME(6)
INAHE(7)
INAME (8)

1026
710

C
C BEAD BEHAIKING CABDS IF IBEAD .EO. 0, 1, 4 OB 6
C UNTIL •SENE' CF ENE OF FILE IS FOUND

251

c
IICCE = 1
SBITE

1027 FOIM3ST (1H1,**** OUTFOT PEGION 1EBMINATING ***'/
1 • EXTEA CB EBECNEOOS CAEIS BEAD:*/)
SBITE (6,1028) XXXX

1028 FCEMAT (• ’****,20A4)
910 BE At (NINP,1002,ENC=999) XXXX,NCCDE

IF (NCODE .EQ. RENE) GO TO 599
IF (IICCE .EC. 0) SBITE (6,1027)
IICCE = 1
SBITE (6,1028) XXXX
GC TC 910

999 IEBB = IBEAE
BETUEN
ENE

252

