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EXECUTLVE SUMMARY .. . . . 

. . 

. T h i s  t o p i c a l  . r e p o r t  . under Program Area 28.3.,, t i t l e d  "LC-Finer 

C a t a l y s t  Tes t ing , "  i n c l udes  a l l  SRC hydroprocess ing r e s u l t s  generated by  

b o t h  The Lummus Company and 1 .n te rna t i  onal  Coal Ref i n i  ng Company ( I C R C )  

R&D. Some o f  t he  SRC hydroprocess ing da ta  generated a t  t h e  W i l s o n v i l l e  

P i l o t  P l a n t  a re  a l s o  i nc l uded  i n  t he  r e p o r t  f o r  comparison. 

O v e r a l l ,  t h e  da ta  showed t h a t  t he  des ign o f  t h e  LC-Finer f o r  t h e  

S R C - I  Demonstrat ion P l a n t  i s .  conse rva t i ve  f o r  bo th  h igh-  and low- 

s e v e r i t y  cases. More s p e c i f i c  observa t ions  a re  d iscussed below. 

The h igher- than-expected gas y i e l d  and hydrogen consumption i n  t h e  

Lummus Process Development U n i t  (PDU) h igh-convers ion  , run 2LCF-27 

r e s u l t e d  f rom t h e  h i g h  r e a c t o r  temperature r e q u i r e d  t o  ach ieve t h e  

des i r ed  convers ion.  Exper imental  work conducted a t  I C R C  R&D t o  de te r -  

mine t h e  a f f e c t  o f  r e a c t i o n  temperature showed t h a t  SRC convers ion,  

hydrocarbon gas p roduc t i on ,  and hydrogen consumption inc reasqd  w i t h  

i n c r e a s i n g  r e a c t i o n  temperature f rom 775 t o  825,'F. However, o i  1 produc- 

t i o n  d i d  n o t  inc rease  w i t h  temperature.  The r a t i o  o f  hydrocarbon gas t o  

o i  1  p r o d u c t i o n  and .the r a t i o  o f  hydrogen consumption t o  o i  1  . p roduc t i on  

increased sha rp l y ,  i .nd icat i ,ng a  sharp d e c l i n e  i n  s e l e c t i v i t y  f o r  o i l  

p roduc t i on .  Heteroatom removal d i d  n o t  improve s i  gn i  f i c a n t l y  by . . 

i n c r e a s i n g  t h e  r e a c t i o n  temperature f rom 775 t o .  82S°F. . . 

The h i g h  r e a c t i o n  temperature i n  r u n  2LCF-27 a l s o  c o n t r i b u t e d  t o  a  

, . h i g h  r a t e  o f  c a t a l y s t  d e a c t i v a t i o n ,  and decreas ing r e c y c l e  SRC reac- 

t i v i t y .  The h i g h  c a t a l y s t  d e a c t i v a t i u ~ ~  ~. r a t e  may be a t t r i b u t e d  t.o ret.ro- 

grade ' r e a c t i o n s  p roduc ing  coke p recursors  d u r i n g  operat ion. '  The forma- 

t i o n  o f  t h e  coke p recursors  o r  i n s o l u b l e  o rgan ic  macer ia l  ( I O M )  i n  r u n  

2LCF-27 due t o  t h e  h i g h  r e a c t i o n  temperature was hypothes ized t o  be the  

cause o f  r e a c t o r  p lugg ing .  

The r a p i d  d e a c t i v a t i o n  and r e a c t o r  p l u g g i n g  i n  Lummus' low- 

convers ion r u n  2LCF-28 was a l s o  a t t r i b u t e d  cok ing ,  as i n d i c a t e d  by 

h i g h  I O M  i n  t h e  r e a c t o r  p roduc t .    ow ever, , low-conversion r u n  2LCF-29 

was a success; gas y i e l d  and hydrogen consumption were c o n s i s t e n t  w i t h  

t h e  des ign  bas i s ,  b u t  on t h e  h i g h  s i d e  o f  t h e  rqnge developed p r e v i o u s l y  

by Lummus. 



C a t a l y s t  ag i ng  exper iments  conducted by  I C R C  R&D showed t h a t  SRC 

convers ion,  hydrocarbon gas and o i l  p roduc t i on ,  hydrogen consumption, 

and o v e r a l l  d e s u l f u r i z a t i o n ,  d e n i t r o g e n a t i o n  and deoxygenat ion,  changed 

o n l y  s l i g h t l y  d u r i n g  t h e  i n i t i a l  c a t a l y s t  age o f  246 l b  SRC/lb c a t a l y s t  

a t  77S°F, b u t  changed s i g n i f i c a n t l y  a f t e r  t h a t .  The c a t a l y s t  ag ing  

exper iment  a t  82S°F exper ienced severa l  ope ra t i ona l  problems, r e s u l t i n g  

i n  a  much s h o r t e r  p e r i o d  o f  cons tan t  c a t a l y s t  a c t i v i t y  than  i n  t h e  775OF 

exper iment.  The d e c l i n e  i n  a c t i v i t y  o f  Ni-Mo-A1 c a t a l y s t  observed i n  

t h e  I C R C  PDU was comparable t o  t h a t  noted w i t h  Co-Mo-A1 c a t a l y s t  a t  

W i l s o n v i l l e  i n  runs  235-3 dnd 4. 

Ana l ys i s  o f  spent c a t a l y s t  f rom t h e  I C R C  PDU revea led  a s i g n i f i c a n t  

r e d u c t i o n  i n  ~ d L d l y s t  su r f ace  area, pore  volume, and pore  d iameter ,  

which r e s u l t e d  f rom coke and metal  depos i t i on .  A d d i t i o n a l  a n a l y s i s  

showed an unusua l l y  h i g h  l e v e l  o f  sodium d e p o s i t i o n ,  which was p robab ly  

due t o  t h e  presence o f  a  h i g h  l e v e l  o f  sodium i n  t h e  feed. A mass 

ba lance around t h e  system revea led  t h a t  o n l y  minor p o r t i o n s  o f  i r o n  and 

t i t a n i u m  i n  t h e  feed  SRC were depos i ted  on t h e  c a t a l y s t ,  whereas a major 

p o r t i o n  o f  sodium i n  t h e  feed  SRC was r e t a i n e d  by t h e  c a t a l y s t .  

The r e d u i t i o r ~  irl sur face area and l o s s  o f  po re  s t r u c t u r e  f rom metal  

and coke d e p o s i t i o n  were hypothes ized t o  be t h e  main causes o f  t h e  

s i g n i f i c a n t  d e c l i n e  i n  c a t a l y s t  a c t i v i t y .  The d e c l i n e  i n  a c t i v i t y  cou ld  

a l s o  have been p a r t l y  due t o  sodium depos i t i on .  However, i t  i s  n o t  

in tended  t o  add sodium carbonate t o  t h e  S R C - I  Demonst ra t ion P lan t ;  

t h e r e f o r e ,  sodium l e v e l s  i n  t h e  SRC feed  t o  t h e  demonst ra t ion p l a n t  

h y d r o t r e a t e r  shou ld  no rma l l y  be l o w e r .  



Product ion o f  d i  s t i  1 l a t e  1 i q u i d  by c a t a l y t i c  hydroprocessing o f  

so lvent-  r e f i n e d  coal  (SRC) i s  a major processing step i n  t he  S R C - I  

Demonstration Plant.  One o f  t he  few commercially a v a i l a b l e  hydro- 

processing {methods t h a t  can p o t e n t i a l  l y  handle SRC i s  t he  Lummus-Ci t i e s  

ebul 1 ated-bed hydrocracker o'r L C - ~ i n e r .  Design plans a re  t o  i n s t a l  1 an 

LC-Finer i n  the  S R C - I   emo on strati on P lan t  t h a t  i s  capable o f  hand1 i n g  

14,000 b a r r e l  s-per-day (bpd) t o t a l  feed, o f  which approximately 30% i s  

recyc le  d i  s t i  11 a te  d i  1 uent o i  1. 

The LC-Finer was selected because o f  i t s  proven c a p a b i l i t y  i n  

processing res idua l  and heavy petroleum o i l s .  The process employs a 

convent ional hydroprocessi ng c a t a l y s t  i n  an ebul l a t e d  bed reac to r  i n  

which the  gaseous and l i q u i d  feeds are fed  upwardly through an expanded 

bed o f  c a t a l y s t .  The LC-Finer i s  w e l l - s u i t e d  t o  the  processing needs o f  

a r e f r a c t o r y  o r  very-high-molecular-weight feedstock because c a t a l y s t  

can be added o r  withdrawn from the  reac to r  du r ing  operat ion.  Because 

SRC comprises essen t i a l  l y  high-molecul ar-weight asphal tenes and preas- 

phal tenes, i t s  compositi,on may be the  major c o n t r i b u t o r  ' t o  r a p i d  

c a t a l y s t  aging. I n  add i t i on ,  t he  h igh  metal content  o f  SRC may con- 

t r i b u t e  s i g n i f i c a n t l y  t o  c a t a l y s t  deac t iva t ion .  

The demonstration p l a n t  LC-Finer has been designed around two 

d i f f e r e n t  cases, each producing a d i f f e r e n t  l e v e l  o f  SRC conversion. 

SRC conversion i s  de f ined as the  w t  % o r  vo l  % o f  850°F+ feed converted 
. . 

t o  850°F- components. I n  the  h igh-sever i  t y  design case, approximately 

80% o f  the  ne t  SRC feed i s  converted. Since the  h igh -seve r i t y  case 

invo lves  subs tan t i a l  SRC recyc le ,  the  f resh  SRC feed r a t e  i s  o n l y  one- 

h a l f  t h a t  o f  the  low-sever i ty  a1 te rna te  des ign '  case i n  which no SRC i s  

recyc led  and, the  conversion l e v e l  i s  46%. Since th'e h igher  conversion 

l e v e l  o f  the  h igh-sever i ty  case i s  compensated f o r  by a lower ne t  SRC 

feed ra te ,  both high- and low-conversion modes produce roughly the same 

q u a n t i t y  o f  C5-850°F d i s t i  1 l a t e .  However, the  low-conversion design 

case y i e l d s  a s l i g h t l y  g rea ter  amount o f  d i s t i l l a t e  wh i l e  consuming less  

hydrogen and producing less  hydrocarbon gas. These advantages are  

counterbalanced i n  the  high-cunversion case by a s l i g h t  improvement. i n  



produc t  p r o p e r t i e s  ( h i ghe r  hydrogen con ten t  and lower  heteroatom con- 

t e n t ) .  I n  a d d i t i o n ,  t h e  lower  n e t  SRC feed  r a t e  i n  t h e  h igh-convers ion  

case makes SRC a v a i l a b l e  f o r  o t h e r  end uses. The ac tua l .  p rocess ing  mode 

w i l l  be chosen d u r i n g  p l a n t  o p e r a t i o n  on t h e  b a s i s  o f  b o t h  eng ineer ing  

and market. i  ng cons ide ra t i ons .  S p e c i f i c  des ign da ta  f o r  t h e  two s e v e r i t y  

cases a re  g i v e n  i,n Tab1 e  1. 

Because o f  t h e  expected rap id ,  c a t a l y s t  d e a c t i v a t i o n  r a te , .  t h e  c o s t  

o f  r e p l a c i n g  c a t a l y s t  w i l l  be a  major  c o n s i d e r a t i o n  i n  hydroprocess ing 

SRC. B e s i d ~ s  t h e  h i g h  c o s t  o f  r e p l d c i n g  c a t a l y s t  i n  t he  LC-Finer,  t h e  

o t h e r  impo r tan t  aspect  t o  cons ider  i s  t h e  v a r i a t i o n  o f  t h e  y i e l d  str.ucP 

t u r e  w i t h  c a t a l y s t  aging. I n  a d d i t i o n ,  i t i s  impor tan t  t o  know the  t r u e  

y i e l d  s t . r ~ r c t i ~ r e  a t  .the des ign  c a t d l y s  t replacement r a t c .  P r i o r  LC-F iner 
process s t u d i e s  by  Lummus have i n d i c a t e d  t h ~ t  a  mod i f i ed  She l l  324 

Ni-Mo-A1 c a t a l y s t  can p r o v i d e  t h e  d e s i r e d  y i e l d  s t r u c t u r e .  S R C - I  Demon- 

. s t r a t i o n  P l a n t  des ign  suppor t  runs have a l s o  been c a r r i e d  o u t  a t  the  

W i  1 scn'vi 11 e  Advanced Coal L i q u e f a c t i o n  Fac i  1 i t y  ( runs  235-3 and - 4 )  t o  

c o n f i r m  y i e l d  s t r u c t u r e  and c a t a l y s t  a c t i v i t y  da ta  developed by ~ummus. 

However, these s t u d i e s  were no t  r u n  l ong  enough t o  c o n f i r m  y i e l d  s t r u c -  

t u r e  and c a t a l y s t  A c t i v i t y  da ta  a t  t h e  des ign c a t a l y s t  age. 

Bas.ed on t h e  u n c e r t a i n t i e s  i n  t h e  c a t a l y s t  replacement r a t e  and 
, . 

y i e l d  s t r u c t u r e ,  TCRC i n i t i a t e d  a research program, t o  develop a  da ta  

base t h a t  would inc rease  conf idence i n  t h e  des ign  bas is . .  The program 

was s p e c i f i c a l l y  designed t o  demonstrate t he  y i , e l d  s t r u c t u r e  and hydro- 

gen consumption a t  t he  d e s i g n ' c a t a l y s t  replacement r a t e .  The s tudy was 

a1 so designed t o  prWovide a  bas i s  f o r  unde is tand i  ng quant, i  t a t i v e l  y t h e  

e f f e c t  o f  key parameters such as space v e l o c i t y ,  r e a c t i o n  tem- 

pe ra tu re ,  c o n c e n t r a t i o n  u f  SRC I n  t h e  feed,  source o f  SRC, and cat.alyst 

Lype d n  c a t a ' l y s t  ag i ng  and y i e l d  s t r u c t u r e .  I n  a d d i t i o n ,  t h e  researct.1 

program was des i qned t o  st.~.!dy t h e  na tu re  and mechani sm o f  c a t a l y s t  

d e a c t i v a t i o n .  

T h i s  r e p o r t  desc r ibes  and eva lua tes  t h e  r e s u l t s  o f  t h e  t h ree  PDU 

runs conducted by t h e  Lummus Company t o  c o n f i r m  t h e  des ign and a l t e r n a t e  

des ign bases. I t  a l s o  descr ibes  t h e  r e s u l t s  o f  t h r e e  a d d i t i o n a l  runs 

conducted by I C R C  R&D t o  c o n f i r m  t h e  des ign c a t a l y s t  replacement r a t e .  

The i n f o r m a t i o n  rega rd i ng  LC-Finer runs was p r e v i o u s l y  pub l i shed  by I C R C  



Table 1 

Expanded-Bed Hydrocracker Design Basis  . . . 

(Nonpropr ie tary  Version) 

-2. Y i e l d  Base design A1 t e r n a t e  des i  gn 

Feed - I b/hr  w t  % 1 b/hr  w t  % 

Fresh SRC 
O i  1 3,766 1.83 7,514 3.56 
SRC 70,068 34.13 . 140,153 66.44 

Subtota l  73,834 35.96 147,667 70.00 

Recyc 1 e 
O i  1 78.784 36.91 63,286 30.00 

* 

S RC' 
Subtota l  

To ta l  feed 205,322 100.00 210,953 100.00 

Product d i s t r i b u t i o n  (wt  % f r e s h  SRC feed) 

;6s 642. 0.87 
1,270 1.72 

~ 2 8  3,537 4.79 
C - C  10,396 ' 14.08 
~ 4 - 4 8 0 0 ~  12,345 16.72 
400-500 '~ 13,984 18.94 
500-650°F 9,074 12.29 
650-850°F 11,274 15.27 
S RC 14.'981 20.29 

2 - 3,692 - 5.00 

To ta l  73,834 100.00 

SRC convers ion ( v o l  %) 79.2 
U e s u l f u r i z a t i o n  (wt  %) 96.7 
Den i t rogenat ion  (wt  %) 85.9 
Deoxygenation ( w t  %) 93.7' 



and Lummus i n  severa l  r e p o r t s  (1-5). The r e s u l t s  o f  a l l  exper iments 

conducted by  I C R C  R&D were summarized by Garg (6) .  Th i s  r e p o r t  a l s o  

i nc l udes  a v a i l a b l e  da ta  generated a t  t h e  W i l s o n v i l l e  P i l o t  P l a n t  on 

hydroprocess ing  S R C  i n  suppor t  o f  t h e  S R C - I  Demonst ra t ion P l a n t  P r o j e c t .  

F i n a l l y ,  a comparison o f  t h e  da ta  generated i n  a l l  t h r e e  l a b o r a t o r i e s  i s  

p resen ted  and compared t o  t h e  des ign bas i s .  



DISCUSSION OF CATALYST ACTIVITY ANALYSIS 

The o b j e c t i v e  o f  the var ious SRC hydroprocessing runs conducted by 

the  Lummus Company, I C R C  R&D, and the  W i l s o n v i l l e  P i l o t  P lan t  was t o  

v e r i f y  the a c t i v i t y  ahd aging r a t e  o f  the  LC-Finer c a t a l y s t .  Both the  

aging and a c t i v i t y  concepts must be f u l l y  appreciated t o  understand the  

phenomenon o f  c a t a l y s t  deac t iva t ion .  

Cata lys t  a c t i v i t y  provides a  measure o f  the performance o f  a  

c a t a l y s t  t o  e f f e c t  a p a r t i c u l a r  change. For example, i f  the  c a t a l y s t  

improves the  t rans format ion  o f  A t o  B, t he  conversion l e v e l  o f  A would 

be the  s implest  measure o f  i t s  a c t i v i t y .  .As a  performance measure, 

conversion has the  advantage o f  being d i  r e c t l y  observable by simply 

measuring the    on cent rations o f  A and B i n  the  reac to r  e f f l u e n t ,  and of 

measuring the  most economically important  va r i ab le ,  t h a t  i s ,  the  quan- 

t i t y  o f  B produced. However, t h i s  performance measure has the  d i s -  

advantage o f  being a f fec ted  by process parameters such as reac to r  

con f i gu ra t i on ,  space v e l o c i t y ,  temperature, and reac tan t  concentrat ion,  

which may vary from run  t o  run  and from reac to r  t o  reac tor .  To measure 

the  performance o f  the  c a t ~ l y s t  i n  SRC hydroprocessing, I C R C  has modeled 

the  conversion o f  SRC to '  ma te r i a l s  b o i l i n g  bel'ow 850°F as a  f i r s t - o r d e r  

reac t i on .  Since the reactants and products are w e l l  mixed i n  t he  ebul-  

l a t e d  bed o r  f i x e d  basket c a t a l y t i c  reac tors ,  the  conversion o f  SRC t o  

mater ial 's b o i l i n g  below 850°F i s  modeled assuming a  f i r s t - o r d e r  r e a c t i o n  

f o r  SRC conversion (kSRC) i n  a  completely mixed reac to r  (see Appen- 

d i x  A) .  Th is  e l im ina tes  the c o n t r i b u t i o n  o f  f a c t o r s  such as space 

v e l o c i t y  and reac tan t  concentrat ion,  and evaluates on ly  the s t a t e  o f  t he  

c a t a l y s t  a t  t he  system temperature. The model succeeds i n  focusing 

a t t e n t i o n  on the  c a t a l y s t ,  b u t  may be mis leading ' i f  the  founding 

assumptions are  i n v a l i d .  These assumptions are described i n  d e t a i l  i n  

Appendix A. 

The second important  concept, c a t a l y s t  age, i s  r e f l e c t e d  i n  a  

dec l i ne  i n  c a t a l y s t  a c t i v i t y  w i t h  time. Ca ta l ys t  age i s  normal ly  deter-  

mined by the  t o t a l  t ime,on stream. This d e f i n i t i o n  o f  c a t a l y s t  age w i l l  

be very mis leading i f  a  p a r t  o f  t he  experiment i s  c a r r i e d  ou t  below the  

react i 'on cond i t ions .  Therefore, the  t o t a l  t ime on stream a t  the  reac- 

t i o n  cond i t ions  w i l l  be more appropr ia te  t o  de f i ne  the  t r u e  c a t a l y s t  
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age. I f  c a t a l y s t  d e a c t i v a t i o n  i s  caused by a  po ison  i n  t h e  feed, then 

t he  t o t a l  q u a n t i t y  o f  t h a t  po ison  f e d  t o  t h e  r e a c t o r  p e r  u n i t  we igh t  o f  

c a t a l y s t  w i l l  be a  more a p p r o p r i a t e  measure o f  c a t a l y s t  age. Suspected 

po isons i n c l u d e *  meta ls  such as sodium, t i t a n i u m ,  and boron, which a re  

known t o  have d e l e t e r i o u s  e f f e c t s  on hydroprocess ing c a t a l y s t s .  Since 

t h e  compos i t i on  o f  t h e  feed  SRC i s  approx imate ly  cons tan t  d u r i n g  a  run, 

' t he  t o t a l  q u a n t i t y  o f  these  po isons f e d  t o  t h e  r e a c t o r  w i l l  be propor-  

t i o n a l  t o  t h e  t o t a l  q u a n t i t y  o f  SRC feed. Thus, a  second u s e f u l  measure 

o f  c a t a l y s t  age i s  t h e  t o t a l  we igh t  o f  SHC feed  p e r  u n i t  we igh t  o f  

c a t a l y s t .  

Yet  a  t h i r d  measure o f  c a t a l y s t  age w i l l  be app rop r i a t e  i f  t h e  

c a t a l y s t  d e a ~ t l v a t ~ l n n  1s  rP1atsd t o  t h e  "work" t h e  c a t a ' l y s t  has done, 

r a t h e r  than  t h e  feed i t  has been con tac ted  w i t h .  Th i s  measure o f  

c a t a l y s t  age, d e f i n e d  as t h e  cumu la t i ve  amount o f  SRC conver ted  per  u n i t  

amount o f  c a t a l y s t ,  can be used. i n  comparing t h e  c a t a l y s t  ag ing  i n  

d i f f e r e n t  r e a c t o r  systems. Th i s  concept i s  ve ry  usefu l '  because i t  

a1 lows a  d i r e c t  e v a l u a t i o n  o f  how much o f  t h e  d e s i r e d  end p roduc t  has 

been manufactured pe r  u n i t  amount o f  c a t a l y s t .  Furthermore, t h i s  con- 

cep t  e l i m i n a t e s  t h e  d i f f e r e n c e s  i n  t h e  measured c a t a l y s t  age caused by 

t h e  v a r i a t i o n s  i n  t h e  convers ion  l e v e l s  and t h e  use o f  d i f f e r e n t  r e a c t o r  

conf  i g u r a t i  ons. 

The d i f f e r e n t  p i l o t  p l a n t  hydroprocess ing da ta  bases d iscussed i n  

t h i s  r e p o r t  . i n v o l v e d  b a t c h  ag ing  o f  t h e  c a t a l y s t .  A t  any g i v e n  t ime,  

a l l  t h e  c a t a l y s t  i n  t h e  r e a c t o r  would have t h e  same age. I n  c o n t r a s t ,  

t he  demons t ra t ion  p l a n t  hydroprocess ing u n i t  w i l l  have cont inuous 

c a t a l y s t  ' a d d i t i o n  and wi thdrawal  f a c i l i t i e s .  A f t e r  s t a r t u p  on an 

i n i t i a l  . ba tch ,  f r e s h  c a t a l y s t  w i l l  be con t i nuous l y  added, and used 

c a t a l y s t  w i l l  be con t i nuous l y  wi thdrawn f rom t h e  system. Because t h e  

react.or i r, we1 1 - m i  xed,  the  c a t a l y s t  wi thdrawn fr*ut~~ t l ~ c  sys tem wi  1  1  have 

a  d i s t r i b u t i o n  o f  ages and '  w i l l  i n c l u d e  f r e s h  c a t a l y s t  as w e l l  as 

c a t a l y s t  t h a t  i s  q u i t e  o l d .  S i m i l a r l y ,  t h e  c a t a l y s t  i n  t h e  r e a c t o r  w i l l  

have a  d i s t r i b u t i o n  o f  ages t h a t  i s  d i r e c t l y  r e l a t e d  t o  t h e  degree of  

m i x i ng  i n  t h e  r e a c t o r  and t h e . c a t a l y s t  a d d i t i o n  r a t e .  

The average a c t i v i t y  o f  t h e  t o t a l  c a t a l y s t  charged t o  a  we1 1-mixed 

ba tch  r e a c t o r  can be determined by summing t h e  p roduc ts  o f  t h e  f r a c t i o n  



o f  c a t a l y s t  a t  a  g i ven  age and t h e  a c t i v i t y  o f  t h e  c a t a l y s t  a t  t h a t  age. 

Because t h e  ebu l la ted-bed  hydrocracker  i s  a  we l l -m ixed  system, t h e  

f r a c t i o n ' o f  c a t a l y s t  a t  a  g i ven  age can be determined f rom t h e  res idence 

t ime  d i s t r i b u t i o n  o f  an i d e a l  s t i r r e d  t ank  r e a c t o r .  The a c t i v i t y  o f  t h e .  

c a t a l y s t  a t  a  g i ven  age can be determined th rough  ba t ch  c a t a l y s t  ag ing  

exper iments,  and can t y p i c a l l y  be descr ibed  by t he  exponen t ia l  decay 

f u n c t i o n  (see Appendix B). I f  t he  c a t a l y s t  d e a c t i v a t i o n  express ion  i s  

a v a i l a b l e ,  t h e  average c a t a l y s t  a c t i v i t y  i n  a  con t i nuous l y  o p e r a t i n g  

ebu l la ted-bed  hydrocracker  can be d e r i v e d  by combining t h e  express ions 

f o r  c a t a l y s t  d e a c t i v a t i o n  and res idence t ime d i s t r i b u t i o n  as shown i n  

Appendix B. Consequently, i f  ba t ch  c a t a l y s t  ag i ng  da ta  a re  t o  be use fu l  

f o r  des ign  con f i rma t i on ,  c a t a l y s t  decay must be a c c u r a t e l y  modeled. 

Furthermore, c a t a l y s t  ag i ng  da ta  must be a v a i l a b l e  f o r  an extended 

p e r i o d  i n  o rde r  t o  c a l c u l a t e  a  r e p r e s e n t a t i v e  c a t a l y s t  replacement r a t e .  

The d i scuss ion  t h a t  f o l l o w s  descr ibes  and eva lua tes  a l l  t h e  expe r i -  

mental work conducted i n  suppor t  o f  t he  S R C - I  Demonstrat ion P l a n t  LC- 

F i n e r  des ign.  'The d i scuss ion  i s  subdi.vided i n t o  f o u r  major  sec t i ons .  

The f i r s t  t h r e e  sec t i ons  cover  t he  exper imenta l  work conducted by t h e  

t h r e e  d i f f e r e n t  o rgan i za t i ons .  I n  t h e  f o u r t h  - sec t i on ,  t h e .  da ta  

generated by these o rgan i za t i ons  a re  compared,, and t h e  impact o f  t h e  

generated da ta  on t h e  des ign bas i s  i s  discussed.'  



THE LUMMUS COMPANY PDU RUNS 

Three d i f f e r e n t  LC-Finer PDU runs were c a r r i e d  o u t  a t  The Lummus 

Company t o  p r o v i d e  da ta  and i n f o r m a t i o n  f o r  b o t h  t h e  h igh-convers ion  

des ign  and t h e  low-convers ion a l t e r n a t e  des ign modes o f  LC-Finer opera- 

t i o n .  The h igh-convers ion  des ign  mode r u n  was scheduled f o r  45 days 

d u r i n g  which 500°F+ p roduc t  was r e c y c l e d  w i t h  35 v o l  % f r esh  SRC. The 

r u n  was designed t o  y i e l d  a  n e t  convers ion  o f  80 v o l  % o f  f r e s h  feed 

SRC.  The low-convers ion a l t e r n a t e  mode r u n  was scheduled f o r  30 days 

d u r i n g  whi,ch Snn-8Sn°F p r n d ~ ~ c t .  was r e c y c l e d  w i t h  70 v o l  % f r e s h  feed  

SRC. The low-convers ion r u n  was designed t o  o b t a i n  a  50 v o l  % con- 

v e r s i n n  of f r e s h  feed  SRC.  [ ab l e  2 summarizes t h e  des ign ope ra t i on  and 

convers ion  s p e c i f i c a t i o n s  o f  h igh-  and 1 ow-conversion LC-Fi ner  runs. 

The LC-Finer p i l o t  p l a n t  c o n s i s t s  o f  two expanded-bed c a t a l y t i c  

r e a c t o r s  i n  s e r i e s  w i t h  e b u l l a t i n g  l i q u i d  r e c y c l e  f o r  each r e a c t o r  p l u s  

p roduc t  recovery  f a c i  1  i t i e s .  The d e t a i l e d  exper imenta l  program and run  

procedures can be found i n  a  p rev i ous  r e p o r t  pub1 i shed  by I C R C  (1). 

For  b o t h  h igh-  and low-convers ion runs,  t h e  r e a c t o r s  were charged 

w i t h  f r e s h  ca t .a lys t ,  and then  s t a r t e d  up w i t h  c reoso te  o i l .  Reactor 

temperatures were r a i s e d  g r a d u a l l y  t o  t h e  d e s i r e d  temperature,  a t  which 

p o i n t  t h e  feed  was i n l r oduced ;  t h e  des i red  f l o w  rates were then 

est.abl i shed and he1 d const,a.nt.. 

0perat i .ng Summary o f  PDU Runs 

S h e l l  324 (nickel-molybdenum), 1 /32 - i n . - ex t r uda te  c a t a l y s t  was used 

i n  b o t h  h igh-convers ion  r u n  2LCF-27 and low-convers ion r u n  2LCF-29, 

w h i l e  American Cyanamid 14428 (cobalt-molybdenum) c a t a l y s t  was used i n  

t h e  o t h e r  low-convers ion run,, 2LCF-28. For t h e  f i r s t .  15 pe r i ods  o f  

qnce-through opc-.rat.ion (34-hr  p e r i o d )  f o r  r u n  2LCF-27, the feed was a 

'b lend o f  50 v o l  % SRC, a  850°F+ b o i l i n g  m a t e r i a l ,  and 50 v o l  % so l ven t ,  

a  b lend  o f  prehydrogenated and raw c reoso te  o i l .  So lven t  f o r  subsequent 

pe r i ods  was r e c y c l e d  LC-Finer 500°F+ p roduc t  f rom t h e  once-through 

o p e r a t i o n  o r  subsequent r e c y c l e  passes. Th i s  s o l v e n t  was prepared by.  

d i s t i l l i n g  t h e  accumulated t o t a l  l i q u i d  p roduc t  (TLP) t o  500°F. For  t he  

feed  b lends ,  s u f f i c i e n t  f r esh  SRC was added t o  t h e  . d i s t i l l e d  500°.F+ 

. f r a c t i o n  t o  e f f e c t  a 1.45. r a t i o  o f  f r e s h  t o  unconver ted S'RC. The feed  
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Table  2 

Expanded-Bed Hydrocracker Design and 

A l t e r n a t e  Design Bases f o r  SRC-I Demonstration P l a n t  

Feed blend 

Fresh SRC feed  (vol  %) 

Recycle 5 0 0 - 8 5 0 0 ~  (vo l  %j 
Recycle 850°F+ SRC (vol  %) 

Conversion s p e c i f i c a t i o n s  

Hydrogen consumption 

w t  % f r e s h  SRC feed  

scf/bbl  

850°F+ conversion t a r g e t  (vol  %) 

Per pass ( t o t a l  SRC) 

Net  ( f r e s h  SRC on ly )  75-80 - - 



f o r  t he  two low-convers ion runs,  2LCF-28 and 29, cons i s ted  o f  a  b lend  o f  

70 v o l  % f r e s h  850°F+ SRC and 30 v o l  % prehydrogenated creosote o i l  f o r  

t h e  f i r s t  12 days o f  once-through operat ion.  For each subsequent 

pe r i od ,  t h e  f eed  cons i s ted  o f  30 v o l  % r e c y c l e  so l ven t  and 70 vo l  % 

f r e s h  SRC. 'The so l ven t  f o r  t h e  low-conversion runs was a  500-850°F 

p roduc t  recovered by  d i s t i l l i n g  t h e  product. f rom prev ious  passes. 

Several  samples o f  feed  and products  were c o l l e c t e d  and analyzed 

d u r i n g  t h e  course o f  a l l  t h r e e  runs,  and t h e  d e t a i l e d  i n fo rma t i on  ahnut. 

t h e  samples and a n a l y t i c a l  procedures can be found i n  a repnr t .  p1.1blished 

by I C K C  (1-,3). 

High-Conversion Run 2LCF-27 

Run 2LCF-27 was c a r r i e d  ou t  f o r  a  t o t a l  o f  5 1  days. F i f t - een  o f  

these days were once-through operatdon w i t h  f r e s h  SRC and 'p rehydro-  

genated c reoso te  o i  1  t o  prepare r e c y c l e  mat.eria.1. T h i r t y  days i nvo l ved  

f o u r  r e c y c l e  passes on s o l v e n t  and unconverted SRC; and an a d d i t i o n a l  

s i x  days o f  o p e r a t i o n  were performed t o  check c a t a l y s t  a c t i v i t y  and make 

s u f f i c i e n t  p roduc t  from t h e  f o u r t h  r e c y c l e  p i s s  a t  a  decreased feed 

r a t e .  Conversions o f  SRC d u r i n g  t h e  once-through ope ra t i on  increased 

from 24 t o  52 v o l  % as t h e  r e a c t o r  temperature was increased. The 

h ighes t  n e t  convers ion  o f  81.0 v o l  % was no ted  d u r i n g  t h e  f i r s t  r e c y c l e  

pass. However, convers ion decreased d u r i  n g  subsequent, per iods  because 

o f  c a t a l y s t  d e a c t i v a t i o n ,  r e q u i r i n g  adjustment's i n  r e a c t o r  temperatures 

and space v e l o c i t i e s .  The n e t  convers ion o f  .SRC ranged from 63.7 t o  

81.9 vo l  % d ~ ~ t - i  ng t .he  nperat  i o n  o f  r u n  2LCF-27. The highest. ne t  con 

.ve rs ion  o f  81.9 v o l  % was noted a t  the  'end o f  t.hs fo~ . ! r th  r e c y c l e  recyc le  

pass. T h i s  i nc rease  i n  n e t  convers ion i n  s p i t e  o f  c a t a l y s t  d e a c t i v a t i o n  

was due t o  t h e  use o t  a  s i g n i f i c a n t l y  lower 1 i q u i d  h o u r l y  space v e l o c i t y  

i n  t h e  f o u r t h  r e c y c l e  pass (0.16 h r ' l )  compared w i t h  0.32 h r - I  used i n  

t h e  f i r s t  r e c y c l e  pass. The p r e d i c t e d  gas y i e l d  was s i g n i f i c a n t l y  

. h i g h e r  compared t o  t h e  Lummus da ta  base (Table 3). Furthermore, hydro- 

gcn consumption, bo th  i n  r u n  2LCF-3 drld Lhat predl 'cted based' on 2LCF-27 

data,  was s i g n i f i c a n t l y  h i ghe r  than  t h e  des ign bas i s  f o r  t h e  S R C - I  

  em on strati on P l a n t  (Table 2). 



Table 3 

comparison o f  y i e l d - s t r u c t u r e  from High-Conversion 

LC-Fi ner  ~ u n s  

Data base ,Phase I p r e d i c t i o n  

Data source 

Coal source 

SRC separa t ion  technique 

SRC source 

P i l o t  p l a n t  cond i t i ons  

Rel. space v e l o c i t y  

Reactor temp (OF) 

850°F+ i n  feed ( w t  %) 

Recycle c u t  (nominal OF) 

No. ba tch  recyc le  passes 

~ L C F - ~ ~  

Ky #9/14 Col . 
f i l t r a t i o n  

- 

Reactor Net 
feed - SRC - 

Corre la ted  y i e l d s  (wt  %) 

4.4 12.2 

C4 1.7 4.7 

C5-400°F 9.4 26.2 

400-650°F 34.4 36.1 

2LCF-27 

Ky #9 F ies  

c r i t i c a l  so l ven t  deashing 

W i l s o n v i l l e  run  no. 209 

Reactor Net . 

feed - SR% - 

650-850°F 21.5 8.4 21.4 12.4 

850°F+ 28.0 10.9 32.6 19.0 

Net 850°F+ conversion ( vo l  %) 52.6 88.3 46.5 80.6 

Hz consumption ( sc f / bb l )  1,620 4,750 1,577 4,620 

C4+ product  ( O A P I )  2 .1  19.7 2.6 16.0 

a 
From Cities Service. 1982. ~ x ~ a h d e d  bed hydroprocessing of solvent-refined 
coal (SRC) and short contact time (SCT) extracts. Prepared for U.S. DOE, 
FE-2038-43, April. 



The o p e r a t i n g  c o n d i t i o n s  f o r  2LCF-27 were based on p i l o t  p l a n t  r u n  

2LCF-3 (Table  3) ,  t h e  o n l y  o t h e r  LC-Finer PDU r u n  i n  which unconverted 

SRC m a t e r i a l  was recyc led .  The r e l a t i v e  space v e l o c i t y  i n  r u n  2LCF-3 

was one-ha l f  t h a t  o f  r u n  2LCF-27, r e s u l t i n g  i n  approx imate ly  50°F lower  

r e a c t o r  temperature t o  ach ieve t h e  same convers ion  (Table  3).    he lower  

r e a c t o r  temperature may be t h e  p r ima ry  r e a i o n  f o r  t h e  lower  gas y i e l d  i n  

' r u n  2LCF-3 versus r u n  2LCF-27. ' T h i s  i m p l i e s  t h a t  gas p roduc t ion"  i s  . 

temperature-sens i  t i v e .  ~ u r t h e r m o r e ,  t h e  gas y i e l d  i n  r u n  2LCF-27 i s 

c o n s i s t e n t  w i t h  t h e  SRC-I process gas y i e l d / t empe ra tu re  r e l a t i o n s h i p  i n  

t h e  same temperature range, i m p l y i n g  t h a t  gas y i e l d  i s  t h e r m a l l y  r a t h e r  

t han  c a t a c l y t i  c a l  ly c o n t r o l  l e d .  

The d e c r e a s i  i n  t h e  r a t e  o f  SRC convers ion  ad jus ted  t o  cons tan t  

space v e l o c i t y  and temperature was t h e  same f o r  b o t h  runs 2LCF-3 an'd -27 

(F igures  1 and 2) .  There fo re ,  c a t a l y s t  d e a c t i v a t i o n  seemed n o t  t o  be a  

s t r o n g  f u n c t i o n  o f  r e a c t o r '  temperature o r  space v e l o c i t y .  The r e a c t i o n  

r a t e  decreased r a p i d l y  d u r i n g  runs 2LCF-3 and 27, bo th  o f .  which were 

operated f o r  a  c a t a l y s t  age o f  2.5 b a r r e l s  o f  r e a c t o r  feed  pe r  pound o f  

c a t a l y s t .  A t  t h i s  age, c a t a l y s t  a c t i v i t y  dropped t o  l e s s  than  50% o f  

t h e  i n i t i a l  va lue  i n  b o t h  t h e  runs.  

The Peed SRC was h e l d  a.t e l eva ted  temperatures i n  the absence o f  

hydrogen i n  r u n  2LCF-27, which cou ld  cause re t r og rade  r e a c t i o n s  t o  form 
, . 

i nso l  "b le  o rgan ic  m a t e r i a l  ( I O M )  and o t h e r  r e f r a c t o r y  m a t e r i a l s .  I O M  

and r e f r a c t o r y  m a t e r i a l s  c o u l d  a1 so be formed d u r i n g  t h e  conve'rs ion o f  

SRC, . which . would inc rease  t h e  cok ing  tendency i n  t h e  r e a c t o r .  Ana lys is  

o f  p roduc ts  f rom r u n  2LCF-27 i n d i c a t e d  an inc rease  i n  I O M  w i t h  each 

ba t ch - recyc l e  pass (Table  4) .  A cu rso ry  a n a l y s i s  o f  t h e  spent  c a t a l y s t  

revea led  t h a t  some o f  t h e  l o s t  a c t i v i t y  was due t o  hard  coke depos i t s  on 

t h e  oUt.er ca t . a l y s t  su r face .  The severe l o s s  i n  convers ion  a c t i v i t y  

t h e r e f o r e  c o u l d  be due t o  b o t h  degrada t ion  o f  feed i n d i c a t e d  by b u i l d u p  

o f  I O M  and cok ing  d u r i n g  t h e  r e a c t i o n .  

Low-Conversion Run 2LCF-28 

L i k e  r u n  2LCF-27, SRC convers ion  d u r i n g  r u n  2LCF-28 decreased 

cons ide rab l y  w i t h  t ime  on stream, r e q u i r i n g  a  cont inuous ad justment  i n  

o p e r a t i n g  c o n d i t i o n s  t o  m a i n t a i n  50% convers ion.  The gas y i e l d  f o r  r u n  

14 



FIGURE I. 
VARIATION O F  RELATIVE SPACE. VELOCITY 
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FIGURE 2 
VARIATION OF RELATIVE ACTIVITY OF 

THE CATALYST WITH AGE 
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Table 4 

.Pre l - im inary  Analyses o f  Three PDU Runs.. for . : 

To ta l  L i q u i d  p roduc t  I n s o l u b l e  M a t e r i a l s  

w t  % t o t a l  1  i q u i d  -producta 

PDU r u n  . I O M  . . :. Ash . .  

2LCF-27 

Once-through 

1 s t  ba tch  r e c y c l e  

2nd ba tch  ' recyc le  

3 r d  ba tch  r e c y c l e  

2LCF-28 

Once- through 

1 s t  ba tch  r e c y c l e .  

2LCF-29 

Once- through: . 

1 s t  ba tch  . r e c y c l e  ' 

..2nd ba tch  r e c y c l e  

3 r d  ba tch  r e c y c l e  

a 
orai communication--J. D. Potts, Cities Service, 6/10/81. 



2LCF-28 was no ted  t o  be h i ghe r  a t  t h e  h i ghe r  temperature than  t h a t  o f  

r u n  2LCF-27, suppo r t i ng  t h e  hypo thes is  t h a t  gas i s  produced p r i m a r i l y  

f rom thermal  r eac t i ons .  The r u n  had t o  be abor ted  a f t e r  22 days o f  

o p e r a t i o n  due t o  p l ugg ing  o f  t h e  second r e a c t o r .  The cause o f  t h e  

r e a c t o r  bed p l u g g i n g  i s  n o t  c l e a r ;  however, based on t h e  I O M  concen- 

t r a t i o n  o f  t h e  p roduc t  (Table  4) ,  i t  can be hypothes ized t h a t  t h e  

p l u g g i n g  was caused by r a p i d  cok ing.  Th i s  r u n  a l s o  exper ienced very  

r a p i d  d e a c t i v a t i o n  and r e a c t o r  p l u g g i n g  d u r i n g  t h e  p e r i o d  i n  which t h e  

I O M  c o n c e n t r a t i o n  was as h i g h  as i n  2LCF-27. 

The cause o f  l h e  I O M  b u i l d u p  i n  2LCF-28 cannot be t h e  same as 

hypothes ized f o r  2LCF-27, t h a t  i s ,  b u i l d u p  o f  I O M  concen t ra t i on  due t o  

ba tch  rbecyc l r ,  because no unconver ted SKC was recyc led .  More 1  i k e l y ,  

coke p recu rso rs  accumulated due t a  poor  m i x i ng  i n  t h e  r e a c t o r .  

Low-Conversion Run 2LCF-29 

Run 2LCF-29 was c a r r i e d  o u t  f o r  a  t o t a l  o f  32 days. Twelve o f  

these days were once-through ope ra t i on  w i t h  f r e s h  SRC and prehydro- 

genated c reoso te  o i l  t o  p repare  t h e  r e c y c l e  so lven t .  Twenty days 

i n v o l v e d  t h r e e  r e c y c l e  passes u s i n g  t h i s  so l ven t .  Gas y i e l d  and 

hydrogen consumption f o r  t h i s  r u n  were comparable t o  t h a t  r epo r t ed  i n  

p rev i ous  runs a t  comparable c o n d i t i o n s  (LCF-36 and 2LCF-18; Table  5).  

Prev ious r u n  LCF-36 r e q u i r e d  an average r e a c t o r  temperature o f  800°F t o  

ach ieve 64% SRC convers ion  a t  a  r e l a t i v e  space v e l o c i t y  o f  0.5.  Run 

2LCF-18 r e q u i r e d  an average r e a c t o r  temperature o f  833OF t o  achieve 50% 

convers ion  a t  a  r e l a t i v e  space v e l o c i t y  o f  1.1.' However, gas y i e l d  and 

hydrogen consumption i n  r u n  2LCF-18 were 20% g r e a t e r  than  i n  r u n  LCF-36. 

These d a t a  i n d i c a t e d  t h a t  gas y i e l d  and hydrogen consumption were s t r ong  

f u n c t i o n s  o f  r e a c t o r  temperature and space v e l o c i t y .  The r e l a t i v e  space 

v e l o c i t y  S I I  r:uri 2LCF=29 was reduced t o  U . / S ,  and t h e  r e a c t o r  temperature 

was s e t  t o  ach ieve t h e  gas y i e l d  and hydrogen consumption e q u i v a l e n t  t o  

. t h a t  o f  r u n  LCF-36. The r e s u l t a n t  r e a c t o r  temperature and SRC con- 

ve r s i on  wpre 805OF and 45.6%, r c s p c c t i  ve ly .  

Desp i t e  r each ing  an age o f  1 .28 . b a r r e l s  o f  SRC feed  pe r  pound o f .  

c a t a l y s t ,  no s i g n i f i c a n t  c a t a l y s t  d e a c t i v a t i o n  was observed i n  r u n  

2LC.F-29. Th i s ,  coupled w i t h  t h e  absence o f  I O M  c o n c e n t r a t i o n  i n  t h e  



. . . .  . 

Comparison of Yield S t ruc tu re  from Low-Conversion L C - ~ i  n i n g  Runs 

~ a t a  b,ase Pi l o t  p l a n t  d a t a  

Data source L C F - ~ ~ ~  ~ L C F - I ~ ~  , 2LCF-29 

Coal source Ky #9/14 Col . Ky #9 Pyro Ky #9 Fies  

SRC separa t ion  technique f i l t r a t i o n  c r i t i c a l  c r i t i c a l .  sol vent  

sol  vent  deashi ng . . .deashi ng 

SRC source , 
. -- Wi 1 sonv.i(l.1 e r u n  . Wi 1 sonvi 11 e r u n  

. . no. 159. 
' . no. 209 

P i l o t  p l a n t  condi t ions  

Rel. space ve loc i ty  0 . 5  1.1 - . .0:75 

Reactor temp ( O F )  800 . . 833 805 :. 

850°F+ , i n  feed (wt %) 53 . .  6 8 . 4 ,  . . ;70-76 

.Recycle c u t  (nominal OF) 500-850 . .  500-850 ,500-850 

. . No. batch recyc le  passes  . 5 . - , 2  3 
. . -  

. . Reactor . Net . . Reactor . :  Net Reactor .. Net 
feed - SRC feed - S RC - feed - S RC 

Correlated y i e l d s  (wt %) 

650-850°F 
850°F+ 

850°F+ conversion 
(vol %) 

H 2  consumption 
(scf /bbl  ) 

C,+ product (OAPI) 

a From Cities Service. 1982. Expanded bed hydroprocessing of solvent-refined 
coal (SRC) and ~ h o r t  contact time (SCT) extracts, Prepared for U.S. DOE, 
FE-2038-43, April. 
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p roduc t s  (Table  4 ) ,  i s  f u r t h e r  evidence t h a t  t h e  r e t r o g r a d e  , reac t ions  

(measured by t h e  i n c r e a s i n g  I O M )  i n  r u n  2LCF-27 c o n t r i b u t e d  t o  t h e  l o s s  

o f  convers ion  a c t i v i t y .  

Summary o f  Lummus PDU Runs 

The h igher- than-expected gas y i e l d  and hydrog'en consumption i n  

h igh-convers ion  r u n  2LCF-27 were t h e  r e s u l t  o f  t h e  h i g h  r e a c t o r  temper- 

a t u r e  r e q u i r e d  t o  ach ieve t he  d e s i r e d  convers ion.  Several  f a c t o r s  

c o n t r i b u t e d  t o  t h e  h i g h  r e a c t o r  temperature.: h i g h  space v e l o c i t y ,  h i g h  

r a t e  o f  c a t a l y s t  d e a c t i v a t i o n ,  and decreas ing r e c y c l e  SRC i..edcL i v  i Ly. 

The h i g h  c a t a l y s t  d e a c t i v a t i o n  r a t e  may be a t t r i b u t e d  t o  r e t r og rade  

r e a c t i o n s  , p roduc ing  coke p recu rso rs  d u r i n g  opera t ion .  It i s  I ~ y p o  t t i -  

e s i zed  t h a t  t h e  f o rma t i on  o f  I O M  r e s u l t e d  i n  r e a c t o r  p lugg ing .  

The r a p i d  d e a c t i v a t i o n  and r e a c t o r  p l u g g i n g  i n  low-convers ion r u n  

2LCF-28 was a l s o  a t t r i b u t e d  t o  cok ing ,  i n d i c a t e d  by h i g h  I O M  i n  t h e  

r e a c t o r  p roduc t  p robab ly  caused by poor  r e a c t o r  m i x i n g  and h i gh  tem- 

pera tu res .  I n  t h e  success fu l  low-convers ion r u n  2LCF-29, t h e  gas y i e l d  

'and hydrogen consumption were c o n s i s t e n t  w i t h  t h e  Lummus da ta  base. 

L ikew ise ,  cok i ng  d i d  n o t  occur  i n  t h i s  run.  

F i n a l l y ,  t h e  ' ba t ch  r e c y c l e  o p e r a t i o n  o f  t h e  PDU i s  n o t  s u f f i c i e n t  

t o  s imu la te  t h e  y i e l d  s t r u c t u r e  f o r  cont inuous SRC r e c y c l e  i n  a  com- 

me rc i a l  LC-Finer 'due t o  b u i l d u p  o f  I O M  and r e f r a c t o r y  m a t e r i a l s .  



I C R C  R&D PDU RUNS 

Three d i f f e r e n t  SRC hydroprocessing runs were performed by I C R C  R&D 

t o  develop c a t a l y s t  aging data and t o  determine the  e f f e c t  o f  process 

var iab les  l i k e  reac t i on  temperature us ing  mod i f ied  She l l  324 Ni-Mo-A1 

c a t a l y s t .  

PDU Run Procedure 

The hydroprocessing o f  SRC was c a r r i e d  ou t  us ing  a novel f ixed-bed 

ca ta l ys t .  basket reactor,. The d e t a i l e d  design o f  the  reac to r  was d i s -  

cussed i n  a r e p o r t  p rev ious l y  publ ished by I C R C  (6). The c a t a l y s t  

basket was f i l  l e d  w i th '  a predetermi.ned amount o f  mod i f ied  She1 1 324 

Ni-Mo-A1 c a t a l y s t  (1/16-in. ext rudates)  and p laced i n  the  2-L autoclave. 

The autoc lave.  was sealed, and the  e n t i r e  PDU was checked f o r  proper 

operat ion o f  a l l  c o n t r o l l e r s  and a l so  p ressu re - tes ted . fo r  poss ib le  leaks 

as discussed p rev ious l y  (6). The c a t a l y s t  was s u l f i d e d  a t  600°F us ing  

creosote o i l  mixed w i t h  e t h y l  d i s u l f i d e .  The s u l f i d i n g , p r o c e d u r e  was 

i d e n t i c a l  t o  t h a t  discussed p rev ious l y  - (6 ) .  A f t e r  s u l f i d i n g  t h e  

c a t a l y s t ,  -SRC feed ma te r ia l  c o n s i s t i n g  o f  70 w t  % .SRC/30 w t  % hydro- 
/ 

.. . t reate. r  so lvent  was pumped through the  reac tor .  The reac to r  temperature 

was then s lowly  increased t o  the. d e s i r e d r e a c t i o n  temperature. and main- 

t a ined  . there f o r  the  e n t i r e  run. Typical  r e a c t i o n  cond i t i ons  used i n  

. the  experiments were as fo l lows:  hydrogen,:pressure - . . .  2,000 ps ig ,  Hz 

feed r a t e  - 8,000 scf /bbl  t o t a l  feed, and weight  hour ly  space v e l o c j t y  

(WHSV) - 1.0 g feed/g ca ta l ys t /h r .  

. The feed and product  l i q u ' i d  samples were solvent-separated and 

analyzed by encapsulated gas chromatographic s imulated d i s t i l l a t i o n ,  as 

discussed p rev ious l y  (6), t o  determine 850°F- and 850°F+ f r a c t i o n s .  

Overa l l  product  d i  s t r i  b u t i  on was ca l cu la ted  on the  bas is  o f  conversion 

o f  850O~+ mate r ia l  t o  gases and 1 i qu id .  

E f f e c t  o f  Reaction Temperature 

Reaction temperature e f f e c t s  on c a t a l y s t  performance were de ter -  

... mined by us ing  temperatures o f  775, 80.0, and 82S°F i n  . t he  f ixed-basket 

c a t a l y t i , ~  reac tor .  SRC conversion and hydrocarbon (HC) gas p ' roduct ion 

were-noted t o  be very s e n s i t i v e  t o  reac t i on  temperature; bo th  increased 

2 1  



l i n e a r l y  w i t h  i n c r e a s i n g  r e a c t i o n  temperature,  as shown i n  F i gu re  3. 

O i l  p r oduc t i on ,  however, d i d  n o t  change w i t h  temperature.  These r e s u l t s  

c l e a r l y  i n d i c a t e  t h a t  t h e  inc rease  i n  SRC convers ion  w i t h  temperature 

. r e s u l t e d  i n  . i nc reased  HC gas r a t h e r  t han  o i l  p roduc t ion .  A s i m i l a r  

i n t e r p r e t a t i o n  can be d e r i v e d  by observ ing  t h e  s i g n i f i c a n t  i nc rease  i n  

t h e  s e , l e c t i v i t y  f o r  HC gases over  o i l s  w i t h  inc reased  r e a c t i o n  .temper- 

a t u r e  (Table  6).  As expected, hydrogen consumption inc reased  w i t h  

temperature (Table  6). However, heteroatom gas p roduc t i on  was n o t  ve ry  

s e n s i t i v e  t o  i n c r e a s i n g  temperature (Table  6  and F igu re  3) .  L ikewise,  

m i  nor  v a r i a t i o n s  i n  t o t a l  desul  f u r i z a t i o n ,  deni  t r ogena t i on ,  and desxy- 

gena t ion  were no ted  w i t h  i n c r e a s i n g  temperature.  The f i r s t - o r d e r  r a t e  

cons tan t  f o r  t h e  convers ion  o f  SRC a1 so inc reased  w i t h  i n c r e a s i n g  tem- 

pe ra tu re .  (Re fe r  t o  Appendix A ,  equat ion  A - 5 . )  

It can be concluded t h a t  SRC convers ion ,  hydrocarbon gas produc- 

t i o n ,  and hydrogen. consumption a re  ve ry  s e n s i t i v e  t o  r e a c t i o n  temper- 

a tu re .  An i nc rease  i n  hydrocarbon gas p r o d u c t i o n  a long w i t h  hydrogen 

. .  consumption r e s u l t s  i n  a  severe r e d u c t i o n  i n  s e l e c t i v i t y  f o r  o i l  

. producti.on over  b o t h  hydrogen consumption and hydrocarbon gas produc- 
.. - t i o n ,  sugges t ing  an i n e f f i c i e n t  use o f  hydrogen .a t  h i ghe r  temperatures.  

. I n  a d d i t i o n ,  t h e  da ta  i n d i c a t e . n o  s i g n i f i c a n t  l o s s  i n  heteroatom. removal 

a c t i v i t y  of' t h e  c a t a l y s t  by  l owe r i ng  t h e  r e a c t i o n  temperature.  

. . E f f e c t  o f  Residence Time 

Residence t ime  . e f f e c t s  on c a t a l y s t  'performance .were determined by 

u s i n g n o m i n a l  res idence  t imes  o f  5 A d  10 h r  duri.ng runs CCL-50, 54 and 

63. The res idence  t ime was v a r i e d  by  changing t h e  i n t e r n a l  volume o f  

t h e  r e a c t o r  th rough  placement - o f  a  metal  i n s e r t  a t  the bot tom o f  t h e  

autoc lave.  I n  e f  fec. t ,  t h i  s  decreased t h c  nominal ( v o i d )  res idence t ime,  

, b o t h  a t  775 clrid 825'F, w h i l e  keeping t he  e a t a l y s t  res ide l i ce  t ir l le tile 

same. Th i s  l e f t  t h e  f eed  pump r a t e  t o  t h e  r e a c t o r  unchanged, and 

r e s u l t e d  i n  h i ghe r  hydrocarbon gas f o rma t i on  and lower  SRC convers ion,  

as we1 1 as lower  o i l  p r o d u c t i o n  (Table  7).  Het.eroat.om removal a l s o  

decreased cons ide rab l y  w i t h  reduced o v e r a l l  r e a c t o r  res idence  t ime,  

w h i l e  t h e  s e l e c t i v i t y  f o r  gas over  o i l  i nc reased  and t h a t  f o r  o i l  over  

hydrogen consumption decreased. The f i  r s t - o r d e r  r a t e  cons tan t  f o r  SRC 



FIGURE 3 
VARIATION OF PRODUCT DISTRIBUTION 

WITH TEMPERATURE' 
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Table 6 

V a r i a t i o n  o f  Product  D i s t r i b u t i o n  w i t h  Temperature 

Sample no. 50- 26' 

Time on stream ( h r )  26 

C a t a l y s t  age ( g  SRC/g c a t a l y s t )  1 6 . 1  

React ion temperature ( O F )  7 75 

Pressure , ( ps i g )  2,000 

H2 f l o w  r a t e  ( s c f / l b  feed) 20.2 

WHSV ( g  fee'd/g c a t a l y s t - h r )  0.88 

LHSV ( m ~  feed/mL r e a c t o r - h r )  0.09 

Product  d i s t r i b u t i o n  
(w t  % 850°F+ m a t e r i a l )  

,. ,+. 
, ;.. CO , . co2 0.1 

i .  His, ,  NH3 
. . 

3 . 1  

... . 4.1 
.: O i  1,' ' 47.8 - 

r - .  S R C ~  43.2 
.. 

Conversion 56.8 

H2 consumption (w t  % 850°F+ m a t e r i a l )  

T o t a l  from gas 4.5 

f rom s o l v e n t  (0. 71b 

Net 3.8 

Desul f u r i z a t i o n  (%) 8 6 , l  

Den i t r o g c n a t i o n ,  (X) . 62.6 

Deoxygenation (%) 71.6 

S e l e c t i v i t y  

O i l / H 2  consumption 12.6 11.1 10.4 10.0 1 3 . 1  

F i r s t - o r d e r  r a t e  constagf 
f o r  SRC convers ion ( h r  ) 1.16 1.50 2.00 1.94 1.00 

a  
b  SRC i s  de f i*ed  a s  t h e  m a t e r i a l  b o i l i n g  above 850°F 

( ) represents  n e g a t i v e  v a l u e . '  
2 4 



Table 7 

V a r i a t i o n  o f  Product D i s t r i b u t i o n  w i t h  React ion Time 

Sample no. 50-26 

React ion temperature (OF) 775 

React ion t ime  (h r )  11 

Pressure (ps ig )  2,000 

H2 f l o w  r a t e  ( s c f / l b  feed) 20.2 

WHSV (g  SRC feed/g c a t a l y s t - h r )  0.88 

Product d i s t r i b u t i o n  (wt  % 850°F+ m a t e r i a l ) a  

H C 6 . 1  

CO co2 0 . 1  

H2S, NH3 3 . 1  

H2° 
4 . 1  

O i  1 47.8 

S RC 43.2 

Conversion 56.8 42.6 65.1 52.3 

H2 consumption (w t  % 850°F+ m a t e r i a l  ) 

To ta l  from gas 4.5 3.4 5.0 4.6 

f rom s o l v e n t  (0. 7)b 0.0 (0.4) 0 .3  

Net 

Desul f u r i z a t i o n  

Den i t rogenat ion  

Deoxygenati on 

S e l e c t i v i t y  

HC gas/oi  1 0.13 0.20 0.30 0.81 

Oi l /H2 consumption. 12.6 9.6 10.4 5.60 

F i r s t - o r d e r  r a t e  cons tan t  

f o r  SRC convers ion (hr-i) 1.16 0.88 2.00 1.07 

a 850°F+ mater ia l  i s  d e f i n e d  a s  SRC. 
b( ) represents negative v a l u e .  



convers ion  decreased s l i g h t l y  a t  77S°F, b u t  decreased sha rp l y  . a t  825OF 

w i t h  decreas ing res idence  t ime. 

The hydroprocess i  ng o f  SRC conceptual  l y  i nvo l ves  competing thermal 

and c a t a l y t i c  r e a c t i o n s .  The p r o p o r t i  on o f  thermal t o  c a t a l y t i c  reac- 

t i o n  may v a r y  by v a r y i n g  t h e  res idence t imes. I f  t h e  r e a c t i o n  i s  

p redominan t l y  c a t a l y t i c ,  SRC convers ion w i l l  remain unchanged w i t h  

decreas i  ng v o i d  res idence  t ime. However, i f  t h e  thermal r e a c t i o n  pre-  

dominates, convers ion  as we1 1 as t he  p roduc ts  from t h e  therm'al. r e a c t i o n  

w i l l  d i m i n i s h  as res idence  t ime  dimin' ishes. A t  775 and 825OF, con- 

v e r s i o n  a c t i v i t y  decreased as v o i d  res idence t ime decreased, i n d i c a t i n g  

a preponderance o f  thermal r eac t i ons .  The s l i g h t  inc rease  i n  t h e  gas 

y i e l d  a t  t h e  'lower res idence t imes i n d i c a t e d  t h a t  gases somewhat 

unexpec ted l y  a re  d e r i v e d  v i a  a  c a t a l y t i c  r eac t i on .  Because t he  space 

v e l o c i t y  e f f e c t  i s  so i l l - d e f i n e d  by t he  data,  conceivably  t he  ac tua l  
.. . 

r e a c t i o n  mechanism may be r e f l e c t e d  i n  an i n t e r a c t i o n  o f  the  thermal and 

c a t a l y t i c  steps. More work i s  needed t o  v e r i f y  t he  . v a r i a t i o n  and i n t e r -  

a c t i o n  o f  thermal and ' c a t a l y t i c  r eac t i ons  w i t h  res idence t ime t o  under- 
. . 

s tand  t h e  t r u e  mechanism. 

C a t a l y s t  Aging S tud ies  

C a t a l y s t  a c t i v i t y  and ag ing  were s tud ied  a t  775 and 825OF i n  two 

d i f f e r e n t  I C R C  PDU runs,  CCL-54 and CCL-63, us i ng  mod i f i ed  She l l .  324 

Ni-Mo-A1 c a t a l y s t .  As expected, t he  i n i t i a l  convers ion o f  SRC and t h e  

r a t e  cons tan t  a t  82S°F were h i ghe r  than  a t  775OF (F igures  4 and 5);  SRC 

convers ion was 54% a t  825OF as opposed t o  43-48% a t  77S°F. Heteroatom 

removal a c t i v i t y  o f  t h e  ' c a t a l y s t  was .also h i ghe r  a t  825 than  a t  775OF 

d u r i n g  t he  f i r s t  few hours o f  opera t ion .  Hydrocarbon gas p roduc t i on  and 

hydrogen consumption were cons iderab ly  h i ghe r  a t  82S°F than  a t  77S°F, 

as shown i n  k.igures 6 and 1. On the  con t ra r y , .  o i l  p roduc t i on  was 10W@r 

a t  h i ghe r  temperatures (F igure  6). . F i n a l l y ,  t h e  s e l e c t i v i t y  f o r  o i l  

ove r  hydrogen consumption was cons iderab ly  lower  a t  825 than  a t  77S°F 

(F igu re  8). 

C a t a l y s t  a c t i v i t y  remained cons tan t  d u r i  ng t h e  f i r s t  severa l  hours 

o f  ope ra t i on  a t  b o t h  temperatures, and then  dec l i ned  sharp ly .  A t  77S°F, 

SRC.conversion changed s l i g h t l y  d u r i n g  t h e  i n i t i a l .  c a t a l y s t  ag ing  p e r i o d  

26 



FIGURE 4 
VARIATION OF SRC CONVERSION, WITH 

CATALYST AGE 
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FIGURE 6 
VARIATION OF OIL AND HC GAS PRODUCTION 

WITH CATALYST AGE 
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FIGURE 7 
VARIATI'ON OF-HYDROGEN CONSUMPTION 

WITH CATALYST AGE 
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FIGURE 8 
VARIATION OF SELECTIVITY WITH CATALYST AGE 
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o f  240 g  SRC/g c a t a l y s t ,  and then  began t o  decrease g r a d u a l l y  f rom 38% 

a t  a  c a t a l y s t  age o f  246 t o  21% a t  a  c a t a l y s t  age o f  357 g  SRC/g cata-  

l y s t  (F i gu re  4). S i m i l a r  r e s u l t s  were noted f o r  t h e  f i r s t - o r d e r  con- 

v e r s i o n  r a t e  cons tan t ,  o i l  and hydrocarbon gas p roduc t ion ,  and hydrogen 

consumption (see F igures  5  t o  7). Al though SRC convers ion decreased 

w i t h  c a t a l y s t  age a t  775OF, s e l e c t i v i t y  was mainta ined a t  i t s  i n i t i a l  

va lue  (F igu re  8). 

C a t a l y s t  a c t i v i t y  a t  825OF a l s o  changed s l i g h t l y  du r i ng  t h e  i n i t i a l  

c a t a l y s t  ag ing  p e r i o d  o f  59 g  SRC/g c a t a l y s t ,  b u t  then  decreased 

sharp ly ;  SRC convers ion  de~r -eased  f r o m  52 t o  3 X ,  as shown i n  F igure  4. 

S i m i l a r  r e s u l t s  were noted f o r  o i l  and hydrocarbon gas p roduc t i on ,  

f i r z t - o p d t r  r a t e  ~u11sLant  and hydrogen consumption (F igures 5 t o  7). 

However, s e l e c t i v i t y  decreased s l i g h t l y  w i t h  c a t a l y s t  age a t  825OF 

(F igu re  8). 

The sharp d e c l i n e  i n  c a t a l y s t  a c t i v i t y  a t  825OF. as w e l l  as  qho r te r  

c a t a l y s t  l i f e  compared t o  t h a t  a t  775OF cou ld  be due t o  severa l  problems 

encountered d u r i n g  t h e  ope ra t i on  o f  r un  CCL-63; these problems cou ld  

have p remature ly  deac t i va ted  t . h ~  c a t a l y s t ,  The da ta  a t  825°F a l s o  

showed a ve ry  h i g h  gas y i e l d ,  which cou ld  have been due t o  m a l d i s t r i b u -  

t i o n  o f  gas and l i q u i d  through t h e  c a t a l y s t  basket.  I n  a d d i t i o n ,  t he  

r e s u l t s  a t  825uF seemed t o  be ou t  o f  1  i n e  w i t h  those ob ta ined  bo th  a t  

The Lurnm115 Cnmpeny ai-~d d l  W i 1  sunv l  1 1 e .  Uecause u T these d l  screpanci  es , 
the  da ta  ob ta i ned  a t  825OF i n  r u n  CCL-63 a re  ques t ionab le  and should be 

used w i t h  cau t ion .  

C a t a l y s t  Ana l ys i s  

Samples o f  spent cat.alyst. were recovercd a f t e r  runs CCL-54 cillcl 63 

and analyzed t o  determine t h e  causes o f  c a t a l y s t  deac t i va t i on .  

The a n a l y s i s  o f  spent c a l a l y s t  (Table 8 )  i n d i c a t e d  t h a t  carbon was 

n o t  depos i ted  u n i f o r m l y  on t he  c a t a l y s t  i n  r u n  CCL-54: t he  c a t a l y s t  

f rom the  upper h a l f  o f  t h e  basket  con ta ined  more than  t w i c e  as much 

carbon. The d e p o s i t i n n  o f  carbon on c a t a l y s t  i n  r u n  CCL-63 a t  825'F w a s  

s u b s t a n t i a l l y  h i ghe r  than i n  r u n  CCL-54. As expected, t h e  l e v e l  o f  

meta ls  depos i ted  on c a t a l y s t  samples was h ighe r  i n  sun CCL-54 than  i n  

CCL-63, s i nce  t h e  l e v e l  of  meta ls  d e p o s i t i o n  . i s  a  f u n c t i o n  o f  c a t a l y s t  

age. Depos i t ion  o f  meta ls  and carbon on c a t a l y s t s  i s  known t o  reduce 
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Table  8 

D e t a i l e d  Analysis  o f  Fresh.and Spent C a t a l y s t  

Weight % 
Fresh spent c a t a l y s t  

c a t a l y s t  CC L- 54 CCL-63 
Upper ha1 f Lower ha1 f 
o f  basket  o f  basket  

2 Surface a rea  (m /g) 

Median pore diameter ( A 0 )  
2 Median pore vol ume (m /g) 



sur face  area, pore  volume, and c a t a l y s t  a c t i v i t y ,  as subs tan t i a ted  by 

t h e  da ta  i n  Table 8. I n  f a c t ,  t h e  pore volume a n a l y s i s  o f  t h e  spent 

c a t a l y s t  f rom r u n  CCL-63 revea led  an almost t o t a l  disappearance o f  pore 

' s t r uc tu re .  Therefore,  t h e  r e d u c t i o n  i n  t h e  sur face  area and pore  volume 

probab ly  a r e  t h e  main reasdns f o r  t h e  s i g n i f i c a n t  r educ t i on  i n  c a t a l y s t  

a c t i v i t y .  

Whether t h e  reduced c a t a l y s t  a c t i v i t y  was due t o  carbon o r  metal  

depos i t i on ,  o r  bo th ,  i s  c u r r e n t l y  unknown. The l e v e l  o f  meta ls  and 

carbon depos i ted  on t h e  c a t a l y s t  was normal, except  f o r  an unusua l l y  

h i g h  l e v e l  o f  sodium (Table 8),  which p robab ly  r e s u l t e d  from t h e  

presence o f  a h i g h  sodium l e v e l  i n  t h e  feed SRC (Table 9 ) ,  due t o  Na2C03 

a d d i t i o n  d u r i n g  t he  i n i t i a l  coa l  l ~ i y u e f a c t i a n  j t t lp .  A mass balance 

around t h e  r e a c t o r  revea led  t h a t  o n l y  minor  p o r t i o n s  o f  t he  i r o n  and 

t i t a n i u m  i n  t he  feed SRC were depos i ted  on t h e  c a t a l y s t ,  whereas most o f  

t h e  sodium was r e t a i n e d  by t he  c a t a l y s t  (Table 9).  Because sodium has 

been r e p o r t e d  t o  severe ly  d e a c t i v a t e  c rack ing  as w e l l  as d e s u l f u r i z a t i o n  

c a t a l y s t s  ( 7  and 8) ,  t h e  unusua l l y  h i gh  l e v e l  o f  sodium depos i ted  on the  

c a t a l y s t  may be one o f  t h e  pr ime reasons f o r  c a t a l y s t  deac t i va t i on .  



Table 9 

Metal D i s t r i b u t i o n  i n  t he  Feed and Spent Ca ta l ys t  

Amount o f  metals (g) 
Deposited I n  t h e  

I n  t he  feed on c a t a l y s t  p roduc t  . .  

(1) (2 (1) - (2 )  

Run CCL-54 a t  775OF 

I r o n  

Sodi urn 

T i  t a n i  urn 

Run CC1-63 a t  825OF 

I r o n  

Sodi urn 

T i  t a n i  urn 



THE WILSONVILLE PILOT PLANT RUNS 

Several  SRC hydroprocess ing runs were performed a t  t h e  W i l s o n v i l l e  

P i l o t  P l a n t  t o  s t udy  t h e  a c t i v i t y  and ag ing  o f  American Cyanamid 1442B 

Co-Mo-A1 c a t a l y s t .  W i l s o n v i l l e  r u n  235 was c a r r i e d  o u t  a t  des ign demon- 

s t r a t i o n  p l a n t  c o n d i t i o n s  ( low-convers ion mode) us i ng  Kentucky #9 coa l  

i n  t h e  d i s s o l v e r  sec t i on .  The p roduc t  SRC f rom r u n  235 was hydro- 

processed i n  t h e  W i l s o n v i l l e  ebu l la ted-bed  h y d r o t r e a t e r  t o  v e r i f y  t h e  

des ign  a c t i v i t y  drld aging o f  t h e  c a t a l y s t  (9 and 10).  Whi le  t h e  

d i s s o l v e r  c o n d i t i o n s  were ma in ta ined  cons tan t ,  t h e  hydrupr-ucessing 

o p e r a t i o n  d u r i n g  r u n  235 was d i v i d e d  i n t o  two sub-runs, numbers 3 and 4. 

The f i r s t ,  hydr.otreater r u n  3, was c a r r i e d  o u t  f o r  581 h r  (500 l b  t o t a l  

SRC feed / l b  c a t a l y s t )  a t  f rom 775-780°F, whereas r u n  4 was c a r r i e d  o u t  

f o r  386 h r  (332 l b  t o t a l  SRC feed/' lb c a t a l y s t )  a t  t h e  s l i g h t l y  h i ghe r  

temperature o f  810°F. 

P i  1 o t  P l a n t  Procedure 

SRC was hydroprocessed u s i  ng an ebul  1 ated-bed r e a c t o r  des i  gned by 

Hydrocarbon Research 1nst.it.11te and 1/32- in.  Co-Mo-A1 c a t a l y s l .  As I n  

t h e  TCRC PDU runs ,  t h e  c a t a l y s t  was f i r s s t  s u l f i d e d  i n  c reoso te  o i l  

b e f o r e  SRC was processed i r i  t h e  u n i t .  The feed  m a t e r i a l  t o  t h e  hydro- 

t r e a t e r  c o n s i s t e d  o f  50 w t  % SRC/50 w t  % so l ven t ,  which was pumped 

th rough  t h e  r e a c t o r .  The r e a c t o r  temperature was s l o w l y  r a i s e d  and 

ma in ta ined  a t  t h e  d e s i r e d  l e v e l  f o r  t h e  e n t i r e  run. The d e t a i l e d  reac- 

t i o n  c o n d i t i o n s  used f o r  runs  3 and 4 a re  summarized i n  Table 10. I n  

a d d i t i o n  t o  u s i n g  d i f f e r e n t  r e a c t i o n  temperatures,  sodium carbonate was 

ddded t o  t h e  l i q u e t a c t i o n  s tage feed s l u r r y  d u r i n g  t h e  operat inn o f  bo th  

runs  3 and 4. 

D iscuss ion  

The. convers ion  o f  SRC i n  r un  3 p l o t t e d  a g a i n s t  c a t a l y s t  age i n  

F i g u r e  9 showed no d e c l i n e  i n  convers ion  l e v e l  up t.n an extended c a t -  

a l y s t  age o f  350 1b SRC/lb c a t a l y s t .  The rea f t e r ,  convers ion  decreased 

r a p i d l y  f rom 32 t o  25%, beg inn ing  w i t h  an a,ge o f  about 350 l b  SRC/lb 

c a t a l y s t .  The va lue  o f  t h e  f i r s t - o r d e r  r a t e  cons tan t  f o r  r u n  3 a l s o  



Table  10 

Nominal Process C o n d i t i o n s  f o r  W i l s o n v i l l e  H y d r o t r e a t e r  Runs :. 

2 '  . 

Run 235-3 Run 235-4 

Temperature ( O F )  780 

WHSV ( h r - l )  2 .0  

SRC c o n c e n t r a t i o n  (w t  %) 4 6 

I n l e t  Hz p a r t i a l  p ressure  

C a t a l y s t  American Cyanamid 1442B American Cyanamid 14428 *. . -. 
Co-Mo-A1 Co-Mo-A1 ' 



FIGURE 9 
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remained n e a r l y  cons tan t  d u r i n g  t h e  i n i t i a l  p a r t  o f  t h e  r u n  (up t o  an 

age o f  320 l b  SRC/lb c a t a l y s t ) ,  and t hen  decreased (F i gu re  10); t h e  

i n i t i a l  va lue  o f  t h e  r a t e  cons tan t  was about 1.0 h r - l ,  and t h e  r u n  was 

te rmina ted  when i t  reached about 75% o f  t h i s  i n i t i a l  va lue  a t  a  c a t a l y s t  

age of  500 l b  SRC/lb c a t a l y s t .  However, i n  r u n  4, t h e  convers ion  l e v e l  

seemed.to decrease con t i nuous l y  w i t h  c a t a l y s t  age, and f i r s t - o r d e r  r a t e  

cons tan t  decreased o n l y  s l i g h t l y  w i t h  c a t a l y s t  age from an i n i t i a l  va lue  

o f  2.0 h r ' l .  The r u n  was te rmina ted  when t h e  va lue  decreased t o  75% o f  

i t s  i n i t i a l  va lue  a t  t h e  age o f  332 l b  SRC/lb c a t a l y s t .  

The l eng ths  o f  t h e  two runs were s i g n i f i c a n t l y  d i f f e r e n t :  r u n  3  

exceeded r u n  4 by 170 I b  SRC processed/ lb  c a t a l y s t .  However, t h i s  

d i f f e r e n c e  e x i s t e d  o n l y  i f  c a t a l y s t  l i f e  was measured as pounds o f  SRC 

processed p e r  pound o f  c a t a l y s t .  When c a t a l y s t  age was measured as 

pounds o f  SRC conver ted per  pound o f  c a t a l y s t  t o  account f o r  t he  a c t u a l  

"work" perfo'rmed by t h e  c a t a l y s t ,  t h e  above d i f f e r e n c e  i n  c a t a l y s t  age 

d r a m a t i c a l l y  -d isappeared  (F i gu re  11). C a t a l y s t  a c t i v i t y  was a lmost  

cons tan t  u n t i l  an age o f  about 100 l b  o f  SRC conve r t ed / l b  c a t a l y s t  i n  

r u n  3 was reached, b u t  dec l i ned  r a p i d l y  t h e r e a f t e r .  However, c a t a l y s t  

a c t i v . i t y  d e c l i n e d  g r a d u a l l y  i n  r u n  4. 

I t  i s  g e n e r a l l y  accepted t h a t  c a t a l y s t  ag i ng  and a c t i v i t y  depend 

h e a v i l y  on r e a c t i o n  temperature.  I t  i s  a l s o  b e l i e v e d  t h a t  i n c r e a s i n g  

t h e  temperature w i l l  i nc rease  c a t a l y s t  a c t i v i t y ,  b u t  w i l l  a l s o  serve t o  

acce le ra te  c a t a l y s t  aging. However, t h e  da ta  presented above p a r t l y  

c o n t r a d i c t  these t h e o r i e s .  A t  h i ghe r  temperatures,  c a t a l y s t  a c t i v i t y  

was h i ghe r ,  as expected, b u t  t h e  d e a c t i v a t i o n  r a t e  was lower.  A l though 

t h e  feed  t o  t h e  d i s s o l v e r  was kep t  cons tan t  th roughou t  r u n  235, d e t a i l e d  

a n a l y s i s  o f  t h e  da ta  i n d i c a t e s  t h a t  t h e  composi t ion o f  t h e  feed  SRC t o  

runs 3 and 4 v a r i e s  i n  severa l  ways. For  example, t h e  feed  t o  t h e  

h y d r o t r e a t e r  i n  r u n  3 con ta ined  s i g n i f i c a n t l y  h igher ,amounts  o f  sodium 

compared w i t h  t h e  feed  i n  r u n  4. I t i s  a  known f a c t  t h a t  t h e  presence 

o f  sodium ' w i l l  l i m i t  c a t a l y s t  a c t i v i t y  and cause excess ive c a t a l y s t  

d e a c t i v a t i o n .  I n  a d d i t i o n  t o  v a r i a t i o n s  i n  sodium con ten t ,  t h e r e  were 

u n q u a n t i f i e d  d i f fe ren 'ces  i n  t h e  composi t ion o f  feed t o  runs 3 an'd 4. 

The mere ex i s t ence  o f  these d i f f e r e n c e s  r a i s e s  severe doubts about t h e  
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v a l i d i t y  o f  the  e a r l i e r  observat ions t h a t  a t  h igher  temperatures, 

c a t a l y s t  a c t i v i t y  was h igher ,  b u t  t h a t  the  deac t i va t i on  r a t e  was lower. 

Therefore, i t  would be u n f a i r  t o  say t h a t  c a t a l y s t  a c t i v i t y  i s  h igher  a t  

.higher temperatures, as w e l l  as t h a t  the  c a t a l y s t  deact ivates more 

s lowly  a t  h igher  temperatures. More work w i t h  c o n t r o l l e d  composit ion o f  

the  feedstock i s  needed t o  conf i rm c a t a l y s t  a c t i v i t y  and aging a t  both 

low and h i g h  temperatures. 



CONCLUSIONS 

O v e r a l l ,  t he  des ign o f  t h e  LC-Finer f o r  t h e  SRC-I Demonst ra t ion 
. . 

P l a n t  i s  conse rva t i ve  f o r  bo th  t h e  h igh-  and low-sever i  t y  convers ion  

cases. Care fu l  a n a l y s i s  o f  t he  exper imenta l  da ta  l e a d  t o  t h e  f o l l o w i n g  

a d d i t i o n a l  conc lus ions :  

O I C R C  PDU da ta  were comparable w i t h  those o f  W i l s o n v i l l e  and 

b e t t e r  than  those o f  ~ummus i n  terms o f  o v e r a l l  convers ion  and 

y i e l d  s t r u c t u r e .  

C a t a l y s t  d e a c t i v a t i o n  i n  t h e  I C R C  PDU was h i ghe r  than  t h a t  a t  

W i l s o n v i l l e ,  b u t  t h e  ages a t  which a c t i v i t y  s t a r t e d  t o  d e c l i n e  

were s i m i l a r  i n  t h e  two u n i t s .  

The d e c l i n e  i n  c a t a l y s t  a c t i v i t y  was p robab ly  ma in ly  r e l a t e d  

t o  coke and metal  depos i t i on ,  which severe ly  reduced su r f ace  

area and pore  volume. 

The presence o f  l a r g e  amounts o f  sodium i n  t h e  f e e d  and i t s  

s i g n i f i c a n t  r e t e n t i o n  by t h e  c a t a l y s t  cou ld  a l s o  have con- 

t r i b u t e d  t o  c a t a l y s t  d e a c t i v a t i o n .  

C a t a l y s t  d e a c t i v a t i o n  r a t e  was comparable a t  775 and 825OF 

temperatures;  c a t a l y s t  a c t i v i t y  remained cons tan t  d u r i n g  t h e  . 
i n i t i a l  p a r t  o f  t h e  r u n  and t hen  d e c l i n e d  d r a m a t i c a l l y .  

SRC convers ion,  hydrocarbon gas p roduc t i on ,  and hydrogen 

consumption increased w i t h  i n c r e a s i n g  r e a c t i o n  temperature.  

I n c r e a s i n g  SRC convers ion  r e s u l t e d  i n  a  n e t  inc rease  i n  hydro- 

carbon gas, b u t  d i d  n o t  inc rease  o i l  p roduc t ion .  

Grea te r  hydrocarbon gas p r o d u c t i o n  t o g e t h e r  w i t h  h i g h e r  hydro- 

gen consumption w i t h  i n c r e a s i n g  temperature r e s u l t e d  i n  a  

severe d e c l i n e  i n  t h e  s e l e c t i v i t i e s  f o r  o i l  ' p r o d u c t i o n  over  

b o t h  hydrocarbon gas. p roduc t i on  and hydrogen consumption. 

Heteroatom removal d i d  n o t  improve s i g n i f i c a n t l y  by i n c r e a s i n g  

r e a c t i  on temperat.ure. 



RECOMMENDATIONS * , 

I n  t h i s  program, severa l  f a c t o r s  c r i t i c a l  t o  t h e  development o f  SRC 

hydroprocess ing technology were i d e n t i f i e d .  However, t h e  f o l l o w i n g  work 

i s  needed t o  f u l l y  unders tand t h e i r  r o l e  i n  deve lop ing  t h i s  technology: 

O ~ n v e s t i ~ a t e  t h e  - e f f e c t  o f  sources o f  SRC, such as d i f f e r e n t  

coa l  5 .  

O I n v e s t i g a t e  t h e  e f f e c t  o f  coa l  l i q u e f a c t i o n  r e a c t i o n  s e v e r i t y .  
O .Deve lop  da ta  on long- term c a t a l y s t  d e a c t i v a t i o n .  
0 I n v e s t i g a t e  t h e  e f f ec1  o f  react.?nn c o n d i t i o n s  on c a t a l y s t  

a c t i v i t y  and ag ing.  

O I n v e s t i g a t e  the  e f f e c t  o f  metal  and coke d e p o s i t i o n  on 

c a t a l y s t  d e a c t i v a t i o n .  

I r l vesL iga te  t he  e f f e c t  ' o t  sodium on c a t a l y s t  a c t i v i t y  and 

ag ing.  

, O  I n v e s t i g a t e  t h e  e f f e c t  o f  concen t ra t i on  o f  SRC on c a t a l y s t  

a c t i v i t y  and aging. 
O I n v e s t i g a t e  t h e  e f f e c t  o f  c a t a l y s t  t ype  on c a t a l y s t  ag ing  and 

y i e l d  s t r u c t u r e .  
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NOMENCLATURE 

a  - React ion r a t e  w i t h  c a t a l y s t  a t  age t r e l a t i v e  t o  r a t e  w i t h  

f resh  c a t a l y s t  

, C ~  - Weight concent ra t ion  o f  component A i n  product,  l b  A/ lb product  

C~ 
0 

- Weight concent ra t ion  o f  component A i n  feed, l b  A/ lb feed 

E - Fractions l conversion o f  component A by weight 

F - .L iqu id  feed r a t e  a t  STP, 1 b/hr  

- Rate constant  f o r  disappearance o f  A a t  t ime t, h r  - 1 
k . ~  

k~ 
0 

- Rate constant  f o r  disappearance o f  A a t  t ime t - o, h r - I  

kd,  - Rate constant  f o r  l o s s  o f  c a t a l y s t  a c t i v i t y ,  h r - I  

r~ - Rate o f  disappearance o f  A a t  t ime t, l b / h r  

r .  
A 0 

- Rate o f  disappearance o f  A a t  t ime t = o, l b / h r  

t - Ca ta l ys t  age i n  representa t ive  u n i t s  (i e .  , l b  SRC feed/ lb  

c a t a l y s t  o r  1  b  SRC converted/! b c a t a l y s t )  

W - Weight o f  c a t a l y s t  charged t o  reac tor ,  1b 

WHSV - Weight hou r l y  space v e l o c i t y ,  1  b feed /h r / l b -ca ta l ys t  

'T: - Nominal c a t a l y s t  residence t ime. (W/F), h r  

.T - Average c a t a l y s t  a d d i t i o n  r a t e ,  l b  S R C / ~ ' ~  c a t a l y s t  

T '  - Reaction temperature, O F  



APPENDIX A 

~ o d e l  i ng o f  SRC Hydroprocessi  ng React ion 

The r e a c t i o n s  b e i  ng cons idered are:  

where A i s  SRC (850°F+ m a t e r i a l  ) ,  

El i s  d i s t i l l a t e  ( C 6  - 850°F), and 

C i s  gas (C, -C5) .  

Model ing o f  SRC Conversion 

, . 

The disappearance b f  A can be modeled as an i r r e v e r s i b l e  r e a c t i o n  t h a t  

i s  f i r s t - o r d e r  i n  concen t ra t i on  o f  A: 

-r = k C  l b / h r  A conv.erted (Eqn. A-1) 
A A A l b  c a t a l y s t  

where kA i s  t h e  f i r s t - o r d e r  r a t e  cons tan t ,  f o r  t h e  convers ion  o f  SRC a t  . . 

c a t a l y s t  a g e  t (h r ' l )  

and CA i s  t h e  concen t ra t i on  o f  SRC ( l b / l b  p roduc t )  

Assuming t h e  r e a c t o r  i s  comp le te ly  mixed, then  a m a t e r i a l  ba lance f o r  A 

can be w r i t t e n  as1: 

1. 

= 1 + k A T  - (Eqn. A-2) 

C~ 

'levenspiel, 0. 1972. Chemical reaction engineering. John Kiley and Sons, 
Inc., pp. 545-546. 



where 1 i s  nominal res idence t ime and i s  approximated by the  equation: 

(Eqn. A-3) 

where W i s  t he  weight  o f  t h e  c a t a l y s t  i n  l b ,  F i s  . l i q u i d  feed i n  l b / h r ,  

and WHSV i s  weight  hou r l y  space v e l o c i t y  i n  l b i h r / f e e d  over l b / c a t a j y s t .  

The convers ion o f  A can be de f ined  by: 

C~ - 
E - 1 -  CA (Eqn. A-4) 

0 

Equations A-2 and A-4 can be combined t o  g i v e  the  r a t e  constant  f o r  the  

conversion o f  A: 

(Eqn. A-5) -. 
In a case i n  which t h e  reac to r  system i s  composed o f  two wel l -mixed 

reac to rs  i n  ser ies ,  t h e  va lue o f  t h e  r a t e  constant  can be c a l c u l a t e d  by 

t h e  f o l  1 owl ng expression: 

1 l' - 1, kA = 2 WHSV [(-) 
1- E 

(Eqn. A-5.1) 

Since the c a t a l y s t  deac t iva tes  w i t h  t ime, t h e  ca l cu la ted  kA i s  a  func- 

t i o n  o f  t ime and can be de f ined  as: 

where 

(Eqn. A-6) 

rA = r a t e  o f  r e a c t i o n  a t  t ime t, and 
' r A. = r a t e  o f  r e a c t i o n  a t  t i m e  zern. 



S u b s t i t u t i n g  Eqn.'A-6 in .Eqn.  A-5, 'we -ge t  

E  
kA a  = WHSV (x) (Eqn. A-8) 

0 

Assuming a, f i r s t - o r d e r  c a t a l y s t  d e a c t i v a t i o n  mechanism, t h e  d e a c t i v a t i o n  

r a t e  can be c a l c u l a t e d  by t h e  f o l  1 owi ng equa t i  on1: 

d  a  - 
d t  = - kda (Eqn. A-9) 

where kd i s  t h e  d e a c t i v a t i o n  r a t e  cons tan t  i n  l b  c a t a l y s t / l b  SRC. 

I n t e g r a t i n g  Eqn. A-9 g ives  

- k  t a = e d  (Eqn. A-10) 

where t i s  ba t ch  c a t a l y s t  age i n . l b  SRC/lb c a t a l y s t .  

S u b s t i t u t i n g  Eqn. A-10 i n  Eqn. A-8 

(Eqn. A-11) 

. . 
S u b s t i t u t i n g  Eqn. A-10 i n  Eqn. A-6, we g e t  

- k d t  
kA = kA e (Eqn. A-12) 

0 .  .. 

Tak ing the n a t u r a l  l o g a r i t h m  o f  Eqn. A-12 r e s u l t s  i n  

i n  kA = - k d t  + i n  kA (Eqn. A-13) 
0 

. . .  

P l o t t i n g  t h e  va lue  o f  i n  kA (as measured) vs. ba tch  c a t a l y s t  age ( t) 

produces a l i n e  w i t h  a  s lope  equal t o  t h e  d e a c t i v a t i o n  r a t e  cons tan t  

(kd) and an i n t e r c e p t  equal t o  t h e  convers ion  r a t e  cons tan t  a t  t ime  zero 

l ~ e v e n s ~ i e l ,  0. 1972. Chemical r e a c t i o n  eng ineer ing .  John Wiley and 
Sons, .Inc.,. pp.  544-546. 



Fur the r ,  f o r  any ba t ch  c a t a l y s t  age (t), t h e  r a t e  cons tan t  f o r  con- 

v e r s i o n  o f  SRC can be modeled by a s tandard Arrhenius expression: 

k = A e  -AE/RT ' (Eqn. A-14) 

where AE i s  t h e  a c t i v a t i o n  ' energy, A i s  t h e  frequency f a c t o r  o r  

p re -exponent ia l  f a c t o r  ( t h e o r e t i c a l l y  t h e  r a t e  cons tan t  t h a t  

would be observed a t  i n f i n i t e  temperature),  and T' i s  t he  

r e a c t i o n  temperature.  

Assumptions . ... 

A number o f  assumptions a re  i n h e r e n t  i n  t h e  above d e r i v a t i o n s .  If 

any o f  these  assumptions a r e  i n v a l i d ,  t h e  v a l i d i t y  o f  t h e  model w i l l  be 

g r e a t l y  reduced. 

The r e a c t i o n  i s  modeled as beiriy f i r s t - o r d e r  i n  t he  concen t ra t i on  

o f  SRC on l y .  I t  i s  assumed t h a t  so l ven t  concen t ra t i on  and hydrogen 

p a r t i a l  p ressure  do n o t  i n f l u e n c e  t h e  k i n e t i c s ,  and t h a t  t he  e f f e c t  o f  

SRC concen t ra t i on  i s  accu ra te l y  r e f l e c t e d  by t h e  f i r s t - o r d e r  expression. 

Because a l l  o f  t h e  exper imenta l  p i l o t  p lant .  programs operated a t  t o t a l  

pressures o f  2,000-2,800 p s i a  w i t h  hydrogen p a r t i a l  pressure i n  t h e  

range o f  1,600-2;300 ps ia ,  t h i s  parameter was n o t  v a r i e d  s u f f i c i e n t l y  t o  

. . determine i t s  e f f e c t  on t he  r e a c t i o n  . . mechanism. Th i s  i s  e s p e c i a l l y  t r u e  
because each p i l o t  p l a n t  mainta ined e s s e n t i a l l y  . cons tan t  hydrogen 

p a r t i a l  nressures, throughout  . . i t s  runs. However, because t h e  p i  1 o t  

p l a n t s  operated i n  the pressure ' range speci  f i e d  i n  t h e  S R C - I  Demonstra- 

t i o n  P l a n t  hydroprocessing, design, a1 1 t h e  exper imenta l  da ta  should be 

v a l i d  w i t h  r espec t  t o  t h e  e f f e c t  o f  hydrogen p a r t i a l  pressure.  I n  a 
s i m i l a r  way, except f o r  minor  v a r i a t i o n s ,  each o f  t h e  p i l o t  p l a n t s  

operated a t  one space v e l o c i t y  and SRC concen t ra t ion .  Because t h e  

v a l i d i t y  o f  t h e  f i r s t - o r d e r  express ion i s  assessed by cons ide r i ng  t h e  

accuracy o f  Equat.ion A-2 f o r  va r ious  t imes and i n i t i a l  concen t ra t ions  

w h i l e  s imu l taneous ly  account ing f o r  t h e  masking e f f e c t s  o f  exper imenta l  

u n c e r t a i n t y  and c a t a l y s t  d e a c t i v a t i o n  t ime,  these assut~lp t i o r i s  have n o t  

been v e r i f i e d .  



Solven t  concen t ra t i on  w i l l  have a  s i g n i f i c a n t  e f f e c t  on r e a c t i o n  

model i n g  and exper imenta l  design. I f  t h e  s o l v e n t  concen t ra t ion '  i s  t oo  

low, t h e  hydrogen t r a n s f e r  f rom s o l v e n t  t o  SRC becomes r a t e - l i m i t i n g ,  o r  

t h e  p r o p o r t i o n  o f  c rack i ng  o f  s o l v e n t  t o  gas becomes app rec i ab le  

r e l a t i v e  t o  t h e  gas produced by SRC conversi0.n. I t  i s  b e l i e v e d  t h a t  t he  

system does n o t  become so l ven t - s t a r ved  u n t i l  a  s o l v e n t  concen t ra t i on  

l e v e l  we1 1  below t h e  30% used i n  t h e  c u r r e n t  ' s tud ies  and i n  t h e  Lummus 

design. The p r o p o r t i o n  o f  gas produced by s o l v e n t  c r a c k i n g  i s  n o t  

known. Since W i l s o n v i l l e  c a r r i e d  o u t  t h e ' h y d r o p r o c e s s i n g  exper iments 

us ing  50% s o l v e n t  i n  t h e  feed as opposed t o  30% . i n  t h e  des ign b a s i s ,  

s o l v e n t  c rack i ng  may be respons ib l e  f o r  incrementa l  gas p roduc t i on .  

The res idence t ime,  r ,  should  r e f l e c t  t h e  t ime  t h a t  t h e  r eac tan t s  

a re  i n  t h e  r e a c t i o n  zone. As t h i s  i s  c a t a l y t i c  hydrocrack ing,  t he  

res idence t ime  should  r e f l e c t  t he  t ime t h a t  t h e  feed i s  i n  con tac t  w i t h  

t h e  c a t a l y s t .  Pu re l y  thermal c rack i ng  w i l l  a l s o  be o c c u r r i n g ,  b u t  t h i s  

' s e t  o f  r eac t i ons  can be subsumed by t h e  express ion f o r  c a t a l y t i c  c rack -  

i n g  i f  most o f  t he  c rack i ng  i s  c a t a l y t i c  o r  i f  t h e  p r o p o r t i o n  o f  

c a t a l y t i c  c rack i ng  t o  thermal c r a c k i n g  i s  f i x e d .  There i s  no doubt t h a t  

c a t a l y t i c  c rack i ng  predominates a t  lower temperatures.  A t  h i ghe r  tem- 

pera ' tures,  t he  onset  o f  thermal c rack i ng  i s  s i gna led  by a  l a r g e  inc rease  

i n  hydrocarbon gas p roduc t ion .  I n  a d d i t i o n ,  t h e  p ropo r t i on .  o f  thermal  

t o  c a t a l y t i c  c rack i ng  w i l l  be f i x e d  i f  t he  r a t i o  o f  thermal res idence 

t ime  t o  c a t a l y t i c  res idence t ime i s  f i x e d .  Whi le  t h i s  i s  t r u e  f o r  a  

g i ven  r e a c t o r ,  i t  i s  no t  t r u e  i n  comparing d i f f e r e n t  r e a c t o r  systems. 

As d iscussed i n  t h e  t e x t ,  t h e  v a r i a t i o n  o f  thermal res idence t ime  

between r e a c t o r s  i s  p robab ly  r espons ib l e  f o r  some o f  t h e  d i s p a r i t y  

between exper imenta l  r e s u l t s  f rom d i f f e r e n t  r e a c t o r  systems. . 
The c a t a l y t i c  res idence t ime  w i l l  be p r o p e r l y  r e f l e c t e d  by t he  

r e c i p r o c a l  o f  t h e  we igh t  h o u r l y  space v e l o c i t y  o n l y  i f  a  cons tan t  

p r o p o r t i o n  o f  t h e  feed  i s  vapor ized.  The degree o f  feed v a p o r i z a t i o n  i s  

a f f e c t e d  by such f a c t o r s  as t o t a l  p ressure ,  gas - to - feed  r a t i o ,  SRC 

concen t ra t i on  i n  t he  feed s l u r r y ,  and temperature.  I n  e v a l u a t i n g  t he  

r e s u l t s  from a s i n g l e  r e a c t o r  system, t he  most s i g n i f i c a n t  e f f e c t  w i l l  

be t h a t  o f  temperature.  Since more s o l v e n t  vapor izes a t  h i ghe r  temper- 

a tu res ,  t h e  t r u e  res idence t ime  increases as t h e  temperature r i s e s  



A1 though t h e  magnitude o f  t h i s  e f f e c t  i s  n o t  known, vapor / l  i q u i d  

equi  1  i b r i u m  and gas and 1  i q u i d  holdup c o r r e l a t i o n s  i n d i c a t e  t h e  e f f e c t  

w i l l  be minor .  

F i n a l l y ,  i t  should be emphasized t h a t  t he  weight  h o u r l y  space 

v e l o c i t y  (WHSV) should be based on t h e  t o t a l  l i q u i d  feed t o  t he  r e a c t o r ,  

i n c l u d i n g  bo th  s o l v e n t  and SRC. I n  r e c y c l e  opera t ion ,  t he  k i n e t i c  r a t e  

cons tan t  should be c a l c u l a t e d  on t h e  bas i s  o f  per-pass space v e l o c i t i e s  

and convers ions p e r  pass. 

A we l l -m ixed  r e a c t o r  has been assumed i n  t h e  d e r i v a t i o n s .  . Th i s  

hypothes is  has been con f i rmed by c o l d - f l o w  mode l l i ng  and t r a c e r  s tud ies  

i n  t h c  va r i ous  r e a c t o r  systems. 



APPENDIX B 

D e r i v a t i o n  o f  Express ion f o r  Average C a t a l y s t  

A c t i v i t y  i n  Continuous Opera t ion  

A cont inuous SRC hydroprocess ing process r e l i e s  on t h e  a d d i t i o n  o f  f r e s h  

c a t a l y s t  and wi thdrawal  o f  spent c a t a l y s t  t o  ma in ta i n  process per -  

formance. I n  o rde r  t o  determine t h e  c a t a l y s t  requ i rements  o f  a  con- 

t i nuous  process, accura te  ba tch  c a t a l y s t  d e a c t i v a t i o n  i s  r equ i r ed .  The 

ba t ch  c a t a l y s t  d e a c t i v a t i o n  da ta  can be f i t t e d  w i t h  a  t y p i c a l  c a t a l y s t  

d e a c t i v a t i o n  express ion  o f  t h e  form: 

(Eqn. B-1) 

where: kA = f i r s t  o rde r  r a t e  cons tan t  f o r  convers ion  o f  SRC a t  age t 

( i n  h r - I ) ,  

kA 
= i n i t i a l  r a t e  cons tan t  f o r  convers ion  o f  SRC ( i n  h r - I ) ,  

0 

kd = exponen t ia l  d e a c t i v a t i o n  r a t e  cons tan t  ( i n  1b c a t / l b  

SRC), and 

t = ba tch  c a t a l y s t  age ( i n  l b  SRC/lb c a t ) .  (See Appen- 

d i x  A . )  

The average c a t a l y s t  a c t i v i t y  i n  a  h y d r o t r e a t e r  o p e r a t i n g  w i t h  the  

cont inuous a d d i t i o n  and wi thdrawal  o f  c a t a l y s t  can be c a l c u l a t e d  by 

summing t h e  p roduc ts  o f  t h e  f r a c t i o n  o f  c a t a l y s t  i n  t h e  r e a c t o r  a t  a  

g i ven  age and t h e  a c t i v i t y  o f  t h e  c a t a l y s t  a t  t h a t  age. Because t h e  
t 

h y d r o t r e a t e r  i s  a  we l l -m ixed  system, t h e  f r a c t i o n  o f  c a t a l y s t  a t  a  g i ven  

age can be determined f rom t h e  e s t a b l i s h e d  res idence t ime  d i s t r i b u t i o n  

express ion f o r  an i d e a l  s t i r r e d  tank  r e a c t o r .  The c a t a l y s t  a c t i v i t y  and 

res idence t ime  express ions can then  be combined t o  c a l c u l a t e  t h e  average 

a c t i v i t y  o f  t h e  c a t a l y s t .  A r i g o r o u s  mathematical  d e r i v a t i o n  o f  t h e  

avetbage c a t a l y s t  a c t i v i t y  , fo l lows: '  



A c t i v i  ty o f  C a t a l y s t  F r a c t i o n  o f  C a t a l y s t  
A c t i v i t y  
Average = c a t  Age t ] [ a t  Age t 

t = O  

Average kA = k  / (kdT + 1) (Eqn. 0-2) 
A* 

where: T = average c a t a l y s t  a d d i t i o n  r a t e  1b SRC/lb c a t a l y s t  

To determine t h e  ba t ch  c a t a l y s t  age e q u i v a l e n t  t o  a g i ven  c a t a l y s t  

replacement r a t e ,  equate Equat ions 0 - 1  and 0-2. There fo re ,  

(Eqn. 8-3)  



Comparison o f  LC-Finer Design Bas is  w i t h  W i l s o n v i l l e  and 

I C R C  P i l o t  P l a n t  Data,  

The c a t a l y s t  a c t i v i t y  and ag ing  da ta  ob ta ined  a t  The Lummus Com- 

pany, W i l s o n v i l l e  P i l o t  P l a n t ,  and I C R C  PDU were compared t o  t he  

LC-Finer Design bas i s  t o  v e r i f y  t h e  des ign  c a t a l y s t  a c t i v i t y  and 

replacement r a t e .  Before t h e  da ta  a re  discussed, i t  i s  impo r tan t  t o  

compare t h e  h i s t o r y  o f  SRC samples used a t  t h e  t h r e e  f a c i l i t i e s  . i n  

a d d i t i o n  t o  t h e  des ign and performance o f  t h e  t h r e e  reac to r s .  

H i s t o r y  o f  SRC Samples 

The SRC sample used i n  Lummus PDU runs 2LCF-27, 28, and 29 was 

ob ta ined  from t h e  W i l s o n v i l l e  P i l o t  P l an t .  The sample was generated 

from Kentucky #9 F ies  mine coa l  d u r i n g  t h e  ope ra t i on  o f  r u n  209. Since 

t he  coa l  con ta ined  l e s s  than  , 0. I.% c h l o r i n e ,  no sodium carbonate was 

added d u r i n g  t h e  run.  The SRC sample used b o t h  f o r  t h e  ope ra t i on  o f  t he  

W i  1 sonv i  11 e  h y d r o t r e a t e r  and t h e  I C R C  PDU was a1 so generated from 

Kentucky #9 F ies  m ine  c o a l ,  b u t  d u r i n g  t h e  ope ra t i on  o f  r u n  235. The 

ba t ch  o f  Kentucky #9 coa l  used i n  run .235  .con ta ined  more than  0 . E  

c h l o r i n e ,  r e q u i r i n g  Na CO a d d i t i o n  i n  t h e  i n i t i a l  l i q u e f a c t i o n  s t ep  t o  ? 3 
p reven t  c h l o r i n e  co r ros i on .  

The feed  SRC a t  Lummus was h e l d  a t  e l eva ted  temperatures i n  t h e  

presence . o f  a  r, which cou ld  have r e s u l t e d  i n  r e t r og rade  r e a c t i o n s  

forming i n s o l u b l e  o rgan ic  m a t e r i a l  ( I O M )  and o t h e r  r e f r a c t o r y  m a t e r i a l s .  

The feed  SRC f o r  t h e  ope ra t i on  o f  t h e  I C R C  PDU was h e l d  a t  e l e v a t e d  

temperatures,  b u t  i n  t h e  presence of  n i t r o g e n  t o  min imize any re t r og rade  

reac t i ons .  I n  t h e  W i l s o n v i l l e  P i l o t  P lant , '  f r e s h  SRC recovered f rom t h e  

Kerr-McGee deashing u n i t  was mixed w i t h  t h e  s o l v e n t  and f ed  t o  t t ie  

h y d r o t r e a t e r ,  avo id i ng  pro longed exposure o f  t h e  SRC t o  e l eva ted  tern-'  

pe ra tu res ,  and thereby  m in im i z i ng  any re t r og rade  reac t i ons .  There fo re ,  

i t  i s  p o s s i b l e  t h a t  t h e  feed  SRC was sub jec ted  t o  d i f f e r e n t  degrees o f  

r e t r og rade  r e a c t i o n s  a t  t h e  t h r w  f a c i l i t i e s .  No a t tempt  was made t o  
q u a n t i f y  t h e  e x t e n t  o f '  these reac t i ons .  

55. , 



The degrada t ion  o f  feed SRC due t o  r e t r og rade  reac t i ons  may have an 

e f f e c t  on c a t a l y s t  a c t i v i t y  and aging. The exposure o f  feed SRC t o  

d i f f e r e n t  degrees o f  such r e a c t i o n s  a t  t h e  t h r e e  f a c i l i t i e s  f u r t h e r  

compl i ca tes  t h e  comparison o f  c a t a l y s t  a c t i v i t y  and aging. I n  a d d i t i o n ,  

t h e  presence o f  d i f f e r e n t  amounts o f  sodium i n  t h e  feed SRC due t o  t he  

a d d i t i o n  o f  Na2C03 i n  t he  l i q u e f a c t i o n  s tep  a f f e c t s  c a t a l y s t  a c t i v i t y  

and aging. Since i t  i s  r a t h e r  d i f f i c u l t  t o  determine t h e  e f f e c t  o f  bo th  

re t rog rade  r e a c t i o n s  and sodium con ten t  on cat .a lys t  a c t i v i t y  and aging, 

' no a t tempt  is ,made i n  t h i s  r e p o r t  t o  q u a n t i f y  them. 

Reactor Des i2 
Fundamental d i f f e r e n c e s  between t he  reac to r s  used a t  The Lummus 

Company, W i l s o n v i l l e  P i l o t  P l a n t ,  and a t  I C R C  R&D a re  summarized i n  

Table C - 1 .  'The s i m p l i f i e d  f l o w  sketches o f  t h e  f a c i l i t i e s  a r e  shown i n  

F igures  C - 1  and C-2. Rnt.h Lummus and W i l s o n v i l l e  used ebu l la ted-bed  

r e a c t o r s  f o r  hydroprocess ing SRC. I n  c o n t r a s t ,  a  f i x e d  c a t a l y s t  basket  

r e a c t o r  was designed t o  s imu la te  t he  ope ra t i on  o f  an ebu l la ted-bed  

r e a c t o r  and used by I C R C  R&D i n  t he  PDU runs. Th is  r e a c t o r  was essen- 

t i a l l y  an annu la r  f i x e d  c a t a l y s t  basket  f i t t e d  i n t o  a  2 - l i t e r  s t i r r e d  

autocl 'ave. I n  t h e  r e a c t o r  bo th  ' 1  i q u i d  and gases a re  f n r n ~ r l  01.1tward 

th rough t h e  c a t a l y s t  basket  by a f l a t  b lade  i m p e l l e r  t o  p rov ide  

e f f i c i e n t  con tac t  '.between ca ta lys t ' ,  l i q u i d ,  and gases. ' Resistance 

' heaters- -su r round ing  t h e  w a l l  were used t o  p rov ide  hea t ing ,  w h i l e  t h e  

temperature i n s i d e  was measured and c o n t r o l l e d  by m u l t i p l e  thermocouples 

w e l l  immersed i n  t h e  s l u r r y  phase. Thp d e t a i l e d  descrsipLion and design 

o f  ' t h e  r e a c t o r  i s  d iscussed i n  a  p rev ious  r e p o r t  b y '  I C R C  (6). The 

~ d l d l y s t  s l z e  used b o t h  a t .  Lummus and W i l s o n v i l l e  i s  sma l le r  than  t h a t  

used i n  t he  PDU. 

Reactor Performance 

Table C-2 shows t h a t  a t  775OF t h e  I C R C  PDU experienced e i t h e r  

equ i va len t  o r  h i ghe r  SRC convers ion than  d i d  t h e  Lummus a n d . W i l s o n v i l l e  

u n i  ti, which had comparable convers ion l e v e l s  ( t h e  da ta  from PDU Run 

CCL-63 are ' exc luded . i n .  t h i s  comparison). However, SRC . convers ion was 

no ted  t o  be s i g n i f i c a n t l y  h i ghe r  i n  t h e  I C R C  PDU than  i t  was i n  t h e  

Lummus and W i  1  s'onvi 1  l e  u n i t s ,  bo th  a t  800 and 825OF. '. The h ighe r  SRC 
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Tab le  C-1 

D e s c r i p t i o n  o f  Reactors  

Lummus W i l s o n v i l l e  PDU 

C a t a l y s t  Ni-Mo-A1 

C a t a l y s t  s i z e  ( i n . )  1 /32 

H2 p r e s s u r e  ( p s i g )  

H2 f e e d  r a t e  ( s c f / l b  feed )  

WHSV ( g  feed/g  c a t a l y s t -  h r )  

R e l a t i v e  r e s i d e n c e  t i m e  ( h r )  

Co-Mo- A1 

1  /32 

2,300 

16 .0  

2 . 0  

1 

Reactor  t ype  ebu l  1 a t e d  bed ebu l  1 a t e d  bed f i x e d  b a s k e t  
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FIGURE C-2 

W ILSONVILLE PILOT PLANT 
SCHEMATIC FLOW SHEET 

CAUSTIC SOLUTION 

TO WASTE WATER 

DISTILLATE BYPRODUCTS 

HYDROTREATER 

RECYCLE TANK 

HYDROGEN HYDROTREATEOSRC 

1 



Table C-2 - 

. . 

~ o m ~ a r i s o . 1  o f  . R C  Conversion, Ca ta l ys t  Age, and F i  rs t -Order .  Rate Constant 

Lummus W i l s o n v i l l e  PDU 

SRC Ca ta l ys t  Rate SRC Ca ta l ys t  Rate SRC Ca ta l ys t  Rate 

Temper- convers ion age ( l b  SRC/ constant  convers ion age ( l b  SRC/ cons tan t  conversion age ( l b  SRC/ cons tan t  

a t u r e  ( O F )  (wt  9/01 l b  c a t a l y s t )  (hr-') (w t  % )  l b  c a t a l y s t )  [ h r - l )  (w t  %) 1  b / c a t a l y s t )  (hr") 



convers ion  l e v e l  i n  t h e  I C R C  PDU cou ld  have been due t o  e i t h e r  l onge r  

res idence  t ime  o r  lower  c a t a l y s t  age. The f i r s t - o r d e r  r a t e  cons tan ts  

f o r  convers ion  o f  SRC i n  t h e  I C R C  PDU were n e a r l y  e q u i v a l e n t  t o  Wi lson- 

v i l l e  a t  a l l  t h r e e  temperatures and were h i ghe r  than  Lummus. 
\ 

The p roduc t  d i s t r i b u t i o n s  o f  t h e  t h r e e  r e a c t o r s  a t  800°F a re  com- 

pared and summarized i n  Table C-3. The s i g n i f i c a n t l y  h i ghe r  SRC con- 

v e r s i o n  observed i n  t h e  I C R C  PDU was complemented by h i ghe r  o i l  produc- 

t i o n .  As mentioned e a r l i e r ,  t h e  h i ghe r  SRC convers ion  l e v e l  i n  t h e  I C R C  

PDU c o u l d  have been due t o  lower  c a t a l y s t  age and longer  res idence  t ime. 

However, t h e  f i r s t - o r d e r  r a t e  cons tan t ,  which normal izes t h e  d i f f e r e n c e s  

i n  t h e  res idence t ime,  was s i m i l a r  t o  t h a t  o f  W i l s o n v i l l e ,  b u t  was 

cons iderab ly  h i ghe r  than  t h a t  o f  Lummus. .The p roduc t i on  o f  heteroatoms 

and HC gases i n  t h e  I C R C  PDU was comparable t o  Lummus, b u t  h i g h e r  than  

W i l s o n v i l l e .  Hydrogen consumption i n  t h e  I C R C  PDU was s i g n i f i c a n t l y  

h i ghe r  than t h a t  o f  W i l s o n v i l  l e ,  b u t  was lower  t h a n  t h a t  o f '  Lu~mus. 

However, hydrogen c o ~ s u m p t i o n  pe r  u n i t  SRC conve rs i oh  i n t h e  ICRC PDU 

was s i m i l a r  t o  t h a t  o f  W i l s o n v i l  l e ,  ,but  was cons ider6b ly '  ~ d w e t  ' t han  t h a t  

of Lummus. 

The most d e s i r a b l e  aspects  o f  , any SRC hydroprocessi.ng r e a c t o r  

des ign  a r e  h i g h  convers ion  w i t h  low 'HC gas p r o d u c t i o n  and low hydrogen . -\ . 
consumption. Based s o l e l y  on t h e s e ,  f ac to r s ,  t h e  performance o f '  ' the 

. . 
f i x e d  c a t a l y s t  basket  r e a c t o r  was e q u i v a l e n t  t o .  t h a t  o f  ~um&s".  .re.actor, 

b u t  i n f e r i o r  t o  t h a t  o f  W i l s o n v i l l e .  However, based i" f i r s t - o r d e r  r a t e  

cons tan t  and hydrogen consumption p e r  u n i t  SRC convers ion,  t h e  per-  
. . 

formance o f  t he  f i x e d  c a t a l y s t  basket  r e a c t o r  was comparabl,e t o  t h a t  of 

W i  1 sonv i  1  l e ,  b u t  b e t t e r  than tha.t o f  t h e  Lummus ebul  l a ted-bed  . .  . - r e a c t o r .  . e ..-. 
. . :+  . : 

Comparison o f  C a t a l y s t  Aging Data 

Based on t he  r e s u l t s  ' o f  t h r e e  LC-Finer P i l o t  P l a n t  runs,.,ZLCF-27, 

28 and 29, t h e  Lummus Company developed k i n e t i c  c o r r e l a t i o n s  f o r  use i n  

t h e  SRC- I  emo on strati on P l a n t  LC-Fi ne r  des ign.  These c o r r e l a t i o n s  

i n c l u d e d  t h r e e  key k i n e t i c  parameters: t he  a c t i v a t i o n  energy f o r  t h e  

SRC convers ion  (AE) ,  t h e  p re -exponen t ia l  f a c t o r  ( A ) ,  and t h e  exponen t ia l  

r a t e  cons tan t  f o r  c a t a l y s t  d e a c t i v a t i o n  (kd).  The c a l c u l a t e d  va lues o f  

these  parameters a re  summarized i n  Table C-4. The der.. ivation o f  the 

k i n e t i c  model and t h e  u n d e r l y i n g  assumptions a re  p resen ted  i n  Appen- 

d i c e s  A and 0. 
61 



Table C-3 

Comparison o f  Y ie l ds  a t  0 0 0 0 ~ ~  

Lummus W i l s o n v i l l e  PDU 

R e l a t i v e  l i q u i d  res idence  t ime  ( h r )  1 5 

C a t a l y s t  age ( l b  SRC/lb c a t a l y s t )  - 65.0 45.0 

'Product d i s t r i b u t i o n  (w t  % SRC) 

- NH3 + H2S 3.2 1 . 5  3 . 1  

H20 4.0 G .  G 4.5 

* C1-C5 10.4 6.0 11.4 
O i l  (850°F-) 36.0 39.3 46.6 

SRC (850°F+) 52.2 50.7 41 .1  

SRC convers ion  (%) 48.8 49.0 60.9 

H2 consumption ( w t  % SRC) 5.6 4 . 1  5.2 

Rate cons tan t  ( h r - l )  - 1.6 1 . 5  

H consumption . * 
2 . ... ...- i- 

SRC conversi.on 

d 
It should be noted that differences in product distribution and SRC conversion 
could be attributed to differences in residence time. 



Table  C-4 

K i n e t i c  Constants  f o r  Convers ion o f  SRC 

Runs WE (kCal  /g-mol e) A ( h r - l )  k, ( h r - l )  

Lcrmmus 

2LCF-27 and -29 

W i l s o n v i l l e  

235-3 

235-4 



The a c t i v i t y  o f  t he  c a t a l y s t  a t  any age can be c a l c u l a t e d  by t he  

f o l  1  owing equa t i on  (see Appendix A): 

- k  t 
k  d  

a  = SRC = e  
k 

SRC 
0 

where t i s  ba t ch  c a t a l y s t  age i n  l b  SRC/lb c a t a l y s t .  

The W i l s o n v i l l e  P i l o t  P l a n t  da ta  were a l s o  sub jec ted  t o  s i m i l a r  

k i n e t i c  a ~ i a l y s l s  t o  determine t he  values o f  k ' i ne t i c  parameters and t o  

compare them t o  t h e  des ign values. The values o f  t h e  var ious  k i n e t i c  

parameters a re  summarized i n  Table 'C-4, a long  w i t h  LC-Finer des i  yn 

va lues.  I n t e r e s t i n g l y ,  t he  r a t e  o f  c a t a l y s t  d e a c t i v a t i o n ,  b o t h  a t  

W i  1  sonvi  1  l e  and Lummus, were very  s i m i l a r .  However, t h e  a c t i v a t i o n  

energy and pre-exponent ia l  f a c t o r s  a t  W i l s o n v i l l e  were cons iderab ly  

h i ghe r  than  a t  Lummus. Th is  i n f o r m a t i o n  revealed t.hat t he  r a t e  o f  SRC 

convers ion (ca ta lys t .  a c t i v i t y )  demonstrated a t  t h e  W i l s o n v i l l e  P i l o t  

P l a n t  on ACCO 14428 (Co-Mo-Al) c a t a l y s t  was h ighe r  than  t h a t  o f  t h e  

Lummus des ign b a s i s  f o r  She l l  324 (Ni-Mo-Al) c a t a l y s t  (see F igu re  C-3). 

Furthermore, i n  s p i t e  o f  h i ghe r  r a t e s .  o f  SRC convers ion  a t  W i  1  sonv i  11 e,. 

t h e  r a t e  o f  c a t a l y s t  d e a c t i v a t i o n  was s i m i l a r  t o  t h a t  'noted a t  Lummus. 

There cou ld  be two p o s s i b l e  exp lana t ions  o f  t h e  above d i f f e r e n c e s :  

t h a t  t he  Co-Mo-A1 c a t a l y s t  i s  a  supe r i o r  c a t a l y s t  t o  Ni-Mo-A1 f o r  hydro- 

process ing SRC o r  t h a t  t he  k i n e t i c  da ta  ob ta ined  i n  t h e  LC-Finer P i l o t '  

P l a n t  are n o t  r e p r e s e n t a t i v e  o f  what would be observed i n  a la rge-sca le  

p l a n t  such as W i  1  sonv i  1  l e .  However, Lummus had derrloris t r a t e d  i n  runs 

~ L C F - 2 8  and .-29 t h a t  t h e  act i 'v i  ty o f  ACCO 1442 0 (Co-Mo-Al) c a t a l y s t  was 

n e a r l y  the same as t h a t  o f  She l l  324 (Ni-Mo-Al) c a t a l y s t .  Th i s  informa- 

t i o n  tends t o  suppor t  t h e  hypothes is  t h a t  da ta  ob ta ined  from t h e  LC- 

F i n e r  P i l o t  P l a n t  a re  n o t  r ep resen ta t i ve  o f  a l a rge -sca le  p l a n t .  

The da ta  i n  Table C-4 show t h a t  t h e  c a t a l y s t  d e a c t i v a t i o n  r a t e s  a re  

equ i va len t  f o r  W i  l s o n v i  1  l e  runs 3 and 4  over  t h e  c a t a l y s t  1  i f e  tested. '  

S i m i l a r  r e s u l t s  a r e  repo r ted  by W i l s o n v i l l e  i n  t h e  EPRI Conference (see 
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F igu re  C-4 and Reference 11). Based on t h i s  i n f o r m a t i o n  and on t h e  da ta  

i n  Table C-4, t h e  W i l s o n v i l l e  c a t a l y s t  a c t i v i t y  was c a l c u l a t e d  as a  

f u n c t i o n  o f  temperature and p l o t t e d  i n  F i gu re  C-5. The d a t a  c l e a r l y  

i n d i c a t e  t h a t  t h e  c a t a l y s t  a c t i v i t y  noted a t ~ W i l s o n v i l l e  i s  much h i ghe r  

than  t h a t  noted a t  t he  Lummus P i l o t  P l an t .  The .  I C R C  PDU da ta  i n  

F i gu re  C-4 cor respond w e l l  t o  t he  W i l s o n v i l l e  data,  f u r t h e r  suppo r t i ng  

t h e  f a c t  t h a t  t h e r e  i s  l i t t l e  d i f f e r e n c e  between t h e  a c t i v i t y  o f  ACCO 

1442 B (Co-Mo-Al) and She1 1 334 (Ni-Mo-Al) c a t a l y s t s  f o r  t h e  co i l ve r .~  i on  

o f  SRC. Therefore,  i t  can be reasonably  concluded t h a t  t h e  da ta  gen- 

e r a t e d  i n  t h e  LC-Finer P i l o t  P l a n t  a re  n o t  r e p r e s e n t a t i v e  o f  t h e  l a rge -  

s c a l e  p l a n t .  

The r a t e  o f  c a t a l y s t  d e a c t i v a t i o n  i s  as impo r tan t  as  t.he i n i t i a l  

a c t i v i t y  o f  t h e  c a t a l y s t .  The ad jus ted  r a t e  cons tan ts  da ta  f o r  con- 

v e r s i o n  o f  SRC generated a t  Luminus, W i l s o n v i l l e ,  and I C R C  R&D a r e  

p l o t t e d  i n  F i gu re  C-6 as a  f u n c t i o n  o f  c a t a l y s t  age. The bas i s  f o r  t h e  

c a l c u l a t i o n  o f  these da ta  i s  d e r i v e d  ahd d iscussed i n  Appendices A and 

B. The c a t a l y s t  d e a c t i v a t i o n  r a t e s  f o r  W i l s o n v i l l e  runs 3 and 4 were 

shown e a r l i e r  t o  be e q u i v a l e n t ,  and t h e r e f o r e  a re  represen ted  by orie 

l i n e .  The i n i t i a l  d a t a  generated a t  W i l s o n v i l l e  agree w e l l  w i t h  I C R C  

R&D data,  b u t  d i f f e r  d r a m a t i c a l l y  f rom t.he Lummus data.  The da ta  gel-I- 

e r a t e d  a t  W i  1  sonv i  11 e  and a t  I C R C  'R&D - showed unequivoca l  l y  h i ghe r  ca ta -  

l y s t  a c t i v i t y  t han  those from'Lummus'. However, t h e  da ta  generated b o t h  

a t  W i l s o n v i l l e  and I C R C  R&D f a l l  s h o r t  o f  a  c a t a l y s t  age equal t o  t h e  

Lummus des ign  c a t a l y s t  ba t ch  age. The l onges t  W i  1  sonv i  1  l e  r u n  was j u s t  

river 500 l b  SRC/lb cat.aly5t.. Tiler.trTur'c, I t  S:S d ~ t t i c u l t  i o  say any th i ng  

about  t he  ' a c t i v i t y  o f  t h e  c a t a l y s t  beyond an age o f  500 I b  SRC/lb ca ta -  

l y s L .  Slrnllarljl, t h e  longes t  r u n  conducted by  Lummus reached an age 

whlch i s  once aga in .  s h o r t e r  than  t h e  des ign  ca ta l ys t .  age. C l e a r l y ,  t.he 

des ign  c a t a l y s t  performance va lues f o r  t h e  demonst ra t ion p l a n t  LC-Finer 

were ob ta i ned  by e x t r a p o l a t i n g  t h e  data.  

An obv ious problem w i t h  e x t r a p o l a t i n g  any da ta  i s  t h e  p o s s i b i l i t y  

t h a t  Llle e x t r a p o l a t e d  va lues may be u n r e a l i s t i c .  The c a t a l y s t  ag i ng  

da ta  ob ta i ned  by I C R C  R&D (F. ig~rre  C-6) showed a more r a p i d  decl i ne  i n  

c a t a l y s t  a c t i v i t y  than  observed a t  W i l s o n v i l l e .  I n t e r e s t i n g l y ,  t h e  I C R C  

R&D da ta  showed t h a t  a f t e r  a  l eng thy  s t a b l e  per i .od o f  ope ra t i on ,  c a t a l -  
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y s t  a c t i v i t y  decreased sharp ly ,  demonstrat ing t h e  danger o f  bas ing a  . 

des ign  on e x t r a p o l a t e d  data. 

Another i n t e r e s t i n g  p o i n t  was noted when t h e  c a t a l y s t  age da ta  were 

eva lua ted  n o t  as a  f u n c t i o n  o f  l b  SRC processed pe r  1b c a t a l y s t ,  b u t  as 

a  f u n c t i o n  o f  a c t u a l  "work" performed by t h e  c a t a l y s t  (i. e. , SRC con- 

ver ted) .  Th i s  approach tends t o  e l i m i n a t e  a l l  t h e  v a r i a t i o n s  due t o  

changes i n  SRC convers ion  and p rov ides  a  b e t t e r  measure o f  c a t a l y s t  age. 

The c a t a l y s t  a c t i v i t y  data,  when p l o t t e d  i n  F igure  C-7 as a  f u n c t i o n  o f  

t h e  above-defined ca ta lys t .  a g ~  f n r  t he  I C R C  PDU and Wi lsonv i  1  l c  runs 3  

and 4, show t h a t  t h e  c a t a l y s t  a c t i v i t y  began t o  d e c l i n e  bo th  i n  t h e  I C R C  

PDU dr111 W i  l s n n v i  1 l p  rl.ln 3 a t  almost '  t he  came agc (100 1 b SRC esnvt\ - tcd/  

l h  o f  c a t a l y s t ) .  However, t h e  a c t i v i t y  dec l i ned  more sha rp l y  i n  the 

I C R C  PDU than  i n  r u n  3. The l ess  severe d e c l i n e  i n  run  3 cou ld  have 

been due t o  an inc rease  i n  r e a c t i o n  temperature from 775 t o  78Z°F a f t e r  

approx imate ly  100 I b  o f  SRC conver ted / lb  o f  c a t a l y s t .  It i s  w e l l  known 

t h a t  an inc rease  i n  temperature w i l l  i nc rease  SRC convers ion,  and w i l l  

t h e r e f o r e  mask t h e  dec l  i n e  i n  convers ion due t o  c a t a l y s t  d e a c t i v a t i o n .  

I t  i s  conce ivab le  t h a t  a  sharp d e c l i n e  i n  c a t a l y s t  a c t i v i t y  i n  r un  3  

would have r e s u l t e d  had t h e  r u n  been c a r r i e d  o u t  f o r  a l v r i ye r  p e r i o d  

( c a t a l y s t  age g r e a t e r  than 150 l b  SRC conver ted / lb  n f  cat.alyst.). T h i s  

i nformat i  on f u r t h e r  p o i n t s  o u t  t h e  danger of  ex t rapo l  a t i  ng t . h ~  da ta  

beyond a c t u a l  exper ience. 

E x t r a p o l a t i o n  o f  da ta  beyond ac tua l  exper ience i s  .commonly prac-  

t i c e d  i n  va r i ous  i n d u s t r i e s .  However, t he  va lue  o f  t he  ex t rapo la ted  

data  g r e a t l y  depends on t h e  qua1 i t y  o f  t he  i n p u t  data.  When the  da ta  

from Wi lsonv i ' l  l e  runs 3 and 4  were f i t t e d  t o  t he  exponent ia l  c a t a l y s t  

d e a c t i v a t i o n  model descr ibed  i n  Appendix B, t h e  f o l l o w i n g  values o f  

d e a c t i v a t i o n  cons tan ts  were obtained: 

,Run number kd C o r r e l a t i o n  c o e f f i c i e n t  

235-3 0.00081 0.69 

235-4 0.00106 0.51 

The ext remely  low va lues o f  t h e  c o r r e l a t i o n  c o e f f i c i e n t s  c l e a r l y  i n d i -  

c a t e  t h a t  t h e  c a t a l y s t  d e a c t i v a t i o n  r a t e  c o u l d  n o t  be modeled by a  
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s imple f i r s t - o r d e r  c a t a l y s t  d e a c t i v a t i o n  equat ion,  making any e x t r a -  

p o l a t e d  da ta  f rom t h i s  model o f  l i m i t e d  va lue.  

Based on t h e  above d i s c u s s i o n  i t  appears t h a t  t h e  LC-Finer des ign 

b a s i s  f o r  t h e  demonst ra t ion p l a n t   is^ q u i t e  conserva t i ve .  There fo re ,  as 

designed, t h e  SRC-I Demonstrat ion P l a n t  LC-Finer w i l l  l i k e l y  have enough 

c a t a l y s t  and r e a c t o r  c a p a c i t y  t o  process a l l  o f  t h e  SRC generated a t  t h e  

des ign  convers ion  r a t e ,  n o t  j u s t  t w o - t h i r d s  o f  t h e  SRC as s p e c i f i e d  i n  

t h e  a l t e r n a t e  des ign  bas i s .  Furthermore, i t appears t h a t  t h e  c a t a l y s t  

replacement r a t e  w i  11 be more than  adequate t o  m a i n t a i n  t h e  convers ion 

s p e c i f i e d  i n  t h e  a1 t e r n a t e  des ign  basis'.  

E f f e c t  o f  C,ataly-st Age on Product  Q u a l i t y  

The above d i scuss ion  has concen t ra ted  ma in l y  on t h e  convers ion  o f  

SRC t o  850°F- p roduc t .  However, i t  i s  impo r tan t  t o  p o i n t  o u t  t h a t  t h e r e  

are. severa l  o t h e r  key des ign parameters t h a t  have t o  be met, such as 

s e l e c t i v i t y  ( d i s t i l l a t e  r a t h e r  than  hydrocarbon gas), hydrogen consump- 

t i o n ,  and heteroatom removal, i n  o rde r  t o  comp le te ly  v e r i f y  t h e  S R C - I  

Uemonst ra t ion P l a n t  LC-Finer des ign bas i s ,  s i nce  such parameters cou ld  

va r y  w i t h  c a t a l y s t  age. I C R C  PDU run  CCL-54 c l e a r l y ,  showed a  decrease 

i n  heteroatom removal . . a c t i v i t y "  o f  t h e  ca ta lys t .  w i  t.h age. ~i 1 sonv i  1  l e  

da ta  a l s o  i n d i c a t e d  a  r a p i d  d e c l i n e  i n  t he  d e s u l f u r i z a t i o n  a c t i v ' i t y  o f  

t h e  c a t a l y s t  w i t h  age. Therefore,  i t  - i s  conce ivab le  t h a t  p roduc t -  qua1 - 
i t y  parameters such as hydrogen and s u l f u r  con ten ts  may be s i g n i f i c a n t l y  

d i f f e r e n t  .at t h e  des ign  c a t a l y s t  age than  t h e  des ign  bas i s .  However, a t  

t h i s  t ime ,  i n s u f f i c i e n t  da ta  a re  a v a i l a b l e  t o  f u r t h e r  e l abo ra te  on. t h i s  

po i ,n t .  

Ihe s e l e c t i v i t i e s  o f  p roduc t s ,  d e f i n e d  as t h e  r a t i o  o f  d i s t i l l a t e  

o i l  t o  hydrocarbon gas and d i s t i l l a t e  o i l  t o  hydrogen consumption, a re  

key f a c t o r s  t h a t  can vary  w i t h  c a t a l y s t  age.. The da ta  generated a t  I C R C  

R&D. showed t h a t  t h e  s e l e c t i v i t i e s  d i d  no t  depend on c a t a l y s t  age, p ro -  

v i ded  t h e  r e a c t i o n  , temperature was h e l d  constant .  When t h e  r e a c t i o n  

temperature was r a i s e d ,  t h e  s e l e c t i v i t i e s  dropped cons iderab ly .  I n  

LC-Finer runs 71 CF-77 snd -29, t.he rr lact. icrn temperature was r a i s e d  

con t i nuous l y  t o  m a i n t a i n  t h e  d e s i r e d  SRC convers ion,  which suggests t h a t  

. i n  those  runs t h e  convers ion  was ma in ta ined  a t  t h e  expense o f  p roduc t  
.. . 



s e l e c t i v i t y .  , C e r t a i n l y ,  such' p r a c t i c e  i n  t h e  demonst ra t ion p l a n t  w i l l  

r e s u l t  in s i g n i f i c a n t l y  h i ghe r  hydrogen consumption than  t h e  des ign  

basis,';.which w i l l  a l t e r  t h e  economics o f  t h e  e n t i r e  p l a n t .  

L i k e  s e l e c t i v i t y ,  . t h e  q u a l i t y  o f  d i s t i l l a t e  o i l  i s  an impo r tan t  

v a r i a b l e  i n  LC-Finer opera t ion .  The. da ta  generated a t  W i l s o n v i l  l e  

seemed t o  i n d i c a t e  t h a t  d i s t i l l a t e  p roduc t  q u a l i t y  d i d '  n o t  va ry  w i t h  

e i t h e r  convers ion o r  c a t a l y s t  age, as shown i n  F igures  C-8. and C-9. The 

hydrogen con ten t  and - s p e c i f i c  g r a v i t y  o f  a  s p e c i f i c  b o i l i n g  range o f  

t o t a l  d i  s t i  1  l a t e  o i  1  s  (IBP-850°.F) were ve ry  s im i  1  a r  a t  d i f f e r e n t  SRC 

convers ion  l e v e l s ,  imp l y i ng  t h a t  t h e  q u a l i t y  o f  t h e  d i s t i l l ' a t e  o i l  would 

n o t  va ry  w i t h  convers ion  and c a t a l y s t  age. ' However, i t  i s  known t h a t  as 

o v e r a l l  .SRC convers ion  changes w i t h  c a t a l y s t  age, t h e , a b s o l u t e  q u a n t i t y  

o f  d i s t i l l a t e  o i l  w i l l  change. 
. .. 

E f f ec ' t  o f  Feed,'SRC . . . . 

T h e  des ign o f  t h e  : S R C - I  Demonstrat ion P l a n t  L C - ~ i n e r  was based on 

da ta  generated by hydroprocess ing , SRC f rom Kentucky #9 coa l .  A l l  

exper iments conducted by  Lummus and I C R C  R&D t o  v e r i f y  t h e  des ign  b a s i s  

were a l s o  c a r r i e d  0u.t us i ng  SRC from' Kentucky. #9 coal'. . In p r a c t i c e ,  t h e  

des ign o f  a  commercial p l a n t  shou ld .  be independent o f  a  p a r t i c u l a r  coa l  

t ype  and shoul-d' be a b l e  t o '  handle s im i  1  a r  f&ds tock  f rom o t h e r  sources. 

There fo re ,  another  r u n  was ' c a r r i e d  o u t  a t  W i  l s o n v i  1  l e  ( r u n  240; HTR 

r u n  8 )  u s i n g  an . I 1  1  i n o i s .  #6 coa l .  The coa l  was aga in  1  i q u e f i e d  i n  t h e  
. . 

d i s s o l v e r  us ing.demonst ra t i .on p l a n t  r e a c t i o n  c o n d i t i o n s  t o  generate  SRC. 

The p roduc t  SRC was t h e n  hydroprocessed a t  a  r e a c t i o n  t e p e r a t u r e  o f  

.. 760°F ahd a WHSV o f  1 .2  1  b  t o t a l ,  SRC feed/ ' l  b  c a t a l y - s t  u s i n g  American .' . 

Cyanamid 1442 B (Co-Mo-Al) c .a ta lys t ,  and a r e a c t i o n  m i x t u r e  o f  50% SRC 

and 50%-so lven t .  The SRC convers ion  l e v e l  a t t a i n e d  was 40%,',arid t h e  r u n  

was c a r r i e d  o u t  f o r ' a  c a t a l y s t  age o f  454 I b  SRC/lb c a t a l y s t .  

S u r p r i s i n g l y ,  W i l s o n v i l l e  r u n  8 on S R C -  f rom I l l i n o i s  #6 coa l  had a 

ve ry  1  ow c a t a l y s t  deac t i , va t ion  r a t e  compared, w i t h  t h a t .  d b t a i  n e d  w i t h  SRC 

f rom Kentucky #9' =oa l .  Furthermore, t h e  f i r s t - o r d e r  r a t e  cons tan t  f o r  
4 . 

t h e  convers ion  o f  SRC d u r i n g  . ,  .. ' t h e  , i ' n i t i a l  "per'i'od o f  r u n  8 agreed w e l l  

w i t h  t h a t  observed w i t h  SRC f rom Kentucky #9 coa l .  Cons ider ing  these  

f a c t s ,  t h e  c a t a l y s t  replacement r a t e  f o r  hydroprocess ing SRC f rom 
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I l l i n o i s  #6 coal  woul'd be much lower than t h s t  w i t h  SRC from Kentucky #9 

coal .  Therefore, the  source o f  SRC represents an impor tan t .  f a c t o r  i n  

the LC-Finer design. The c a t a l y s t  a c t i v i t y  and aging data on SRC from 

I l l i n o i s  #6 coal  f u r t h e r  strengthens the  conclus ion made. e a r l i e r  t h a t  

the S R C - I  Demonstration P l a n t  LC-Fi ner design ' i s '  'very conservat ive. 

Discussion On Ca ta l ys t  Deact iva t ion  

Analys is  o f  t he  spent c a t a l y s t s  from W i l s o n v i l l e  runs 3 and 4 and 

from the I C R C  PDU runs showed s i g n i f i c a n t  depos i t ion  o f  coke and metals 

on t h e  spent c a t a l y s t s .  The analyses o f  feed and hydrotreated SRC 

i n t e r e s t i n g l y  revealed t h a t  dur ing  t h e .  i n i t i a l  p a r t  o f  the  W i  1  sonvi 11 e  

runs, most o f  t h e  metals such as sodium and t i t a n i u m  were re ta ined  by 

the c a t a l y s t .  The data a l s o  i nd i ca ted  t h a t  t he  c a t a l y s t  eventua l ly  

became sa tura ted  w i t h  these metals and no f u r t h e r  depos i t i on  occurred. 

The. .analyses o f  W i  1  sonvi 1  l e  data discussed e a r l i e r  showed'that c a t a l y s t  

a c t i v i t y  s t a r t e d  t o  dec l i ne  a f t e r  a  c e r t a i n  t ime on stream, which sur- 

p r i s i n g l y  co inc ided w i t h  the  t ime on stream a t  which the  c a t a l y s t  

apparent ly  became saturated w i t h  metals. This  coincidence suggests t h a t  

c a t a l y s t  a c t i v i t y  depends l a r g e l y  on metals deposi t ion.  I n i t i a l l y ,  a  

h igh  c a t a l y s t  a c t i v i t y  l e v e l  i s  maintained because o f  t he  a v a i l a b i l i t y  

o f  a n  excessive number o f  r e a c t i v e  s i t e s  o r  l a r g e  surface area due t o  

the presence o f  an excess amount o f  c a t a l y s t .  However, cont inued opera- 

t i o n  o f  t he  u n i t  causes a  s i g n i f i c a n t  reduc t ion  i n  the  surface area o f  

the c a t a l y s t ,  as w b l l  as t h e  number o f  a c t i v e  s i t e s ,  which r e s u l t s  i n  a  

severe reduct ion  i n  c a t a l y s t  a c t i v i t y .  

The above explanat ion i s  a  s i m p l i s t i c  d e s c r i p t i o n  o f  a  r a t h e r  

compl icated systenl. Many fac  t o p s  ull ler. LII~II r - e d u ~ l  ~ U I I  i I, sur-rdce armed 

and number o f  a c t i v e  s i t e s  may occur a t  t he  same t ime and a f f e c t  

c a t a l y s t  a c t i v i t y .  For example, pore s i ze  o f  the c a t a l y s t  w i l l  decrease 

w i t h  meta l  and coke depos i t ion .  Pore mouth p lugging and reduct ion  i n  

pore s ize  w i l l  n o t  a l l ow  reac tan ts  such as SRC t o  d i f f u s e  through the 

pores, r e s u l t i n g  i n  i n a c c e s s i b i l i t y  o f  i n t e r n a l  a c t i v e  s i t e s  o f  the  

c a t a l y s t  t o  SRC molecules. Therefore, d i f f u s i o n a l  probl-ems a l so  p1a.y an 

important p a r t  i n  c a t a l y s t  a c t i v i t y .  



The r e s u l t s  f rom t h e  I C R C  PDU o p e r a t i o n  a l s o  t end  t o  suppor t  t h e  

above exp lana t i on  concern ing t h e  d e a c t i v a t i o n  o f  c a t a l y s t  by coke and 

meta ls  depos i t i on .  Ana l ys i s  o f  t h e  spent  c a t a l y s t  showed n o t  o n l y  a  

s i g n i f i c a n t  l e v e l  o f  metal  depos i t i on ,  b u t  a1 so a  s i g n i f i c a n t  r e d u c t i o n  

i n  bo th  su r f ace  area and pore s i ze .  However, more work i s  needed t o  

q u a n t i f y  t h e  r e d u c t i o n  i n  c a t a l y s t  a c t i v i t y  by meta ls  and coke deposi- '  \ 

t i o n .  

The e f f e c t  o f  meta ls  d e p o s i t i o n  on c a t a l y s t  a c t i v i t y  was i n d i r e c t l y  

s t u d i e d  i n  W i l s o n v i l l e  r un  8. Since t h e  I l l i n o i s  #6 coa l  used i n  t h i s  

r u n  con ta ined  a  lower  concen t ra t i on  o f  c h l o r i n e ,  sodium carbonate was 

n o t  added t o  t h e  i n i t i a l  coa l  l i q u e f a c t i o n  s tep.  Th i s  r e s u l t e d  i n  

s i g n i f i c a n t l y  l e s s  sodium i n  t h e  feed SRC t o  t h e  h y d r o t r e a t e r  compared 

t o  r u n  3. The concen t ra t i ons  o f  i r o n  and t i t a n i u m ,  however, were 

s i m i l a r  t o  those con ta ined  i n  t h e  feed SRC f o r  r u n  3. The r e s u l t s  from 

r u n  8 (d iscussed e a r l i e r )  showed o n l y  a  marg ina l  dec l  i n e  i n  c a t a l y s t  

a c t i v i t y  over  t h e  e n t i r e  p e r i o d  o f  ope ra t i on .  I n  a d d i t i o n ,  t he  f i r s t -  

o rde r  r a t e  cons tan t  f o r  t h e  convers ion.  o f  SRC was s i m i l a r  t o  t h a t  f o r  

feed SRC f rom Kentucky #9 coa l .  Ana l ys i s  o f  feed  SRC and p roduc t  f rom 

r u n  8 revea led  a  r e t e n t i o n  o f  t i t a n i u m  by t h e  c a t a l y s t ,  b u t  ve ry  1  i t . t l e  

sodium r e t e n t i o n .  Th i s  i n f o r m a t i o n  i n d i c a t e d  t h a t  e i t h e r  SRC from 

I l l i n o i s  #6 coa l  i s  more r e a c t i v e  than  t h a t  f rom Kentucky #9 coa l  o r  

sodium has a  severe de t r imen ta l  e f f e c t  on t h e  a c t i v i t y  o f  t he  c a t a l y s t .  

Th i s  i s  a  ve ry  general  statement because t he  r e a c t i v i t y  o f  SRC may very  

we1 1 depend on t h e  r e a c t i o n  c o n d i t i o n s  o r  s e v e r i t y  used t o  generate  i t . 

Comparison o f  t he  r e s u l t s  f rom t h e  PDU and W i l s o n v i l l e  runs 3 and 8 

r a i s e s  severa l  impor tan t  quest ions:  Why was t h e  SKC t rom I l l i n o i s  #6 

coa l  more r e a c t i v e  than  SRC from Kentucky #9 coa l?  Why d i d n ' t  c a t a l y s t  

a c t i v i t y  d e c l i n e  d u r i n g  p rocess ing  SRC f rom I l l i n o i s  #6 coa l?  What i s  

t he  t r u e  mechanism o f  c a t a l y s t  d e a c t i v a t i o n ?  What i s  t he  impact o f  

meta ls  and coke d e p o s i t i o n  on c a t a l y s t  a c t i v i t y ?  What i s  t h e  e f f e c t  o f  

sodium on c a t a l y s t  a c t i v i t y ?  These ques t ions  a re  ve ry  impo r tan t  and 

should  be answered t o  ensure t h e  successfu l  ope ra t i on  o f  t he  S R C - I  

Demonstrat ion P l a n t  LC-Finer. 
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