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INTRODUCTTON

Fropagating elastic waves are commonly used to characterize non-
destructively polycrystalline microstructure. To develop a fully quan-
titautive characterizaltion procedurce, one needs a better understanding
of what wicrostructural features most strongly inlluesnce the propaga-
tion and how these features appear in the measurcd, frequency dependent,
wave speed and attenuation. We report on our progress in a first prin-
ciple investigation of these questions. We started with the equations
of motion for elustic wave propagation and zystematically developed a
new approximalion that is both well characterized and a potential
improvement upon existing approximations. One of our objectives is
studying the sensilivity of Lhis approximation to changes in
microstructural parameterization.

The seminal erk for existing approximations was done by Litshits
and Parkhomovskii. They characterized the crystallite to crystallite
variations in elastic stiffness by a Tield AC, . l(r), which was measured
relative to an average material, and derived **prussionu for elfective
wroe speed and attenuation for crystallites with cubic symmetry to
second order in AC,,, . After making Lhe effective medime approximat ion,
that is, assuming the average displacement Lield was a constant ampli-
tude plane wave, they asymplotically evalunted these expressions at high
and low frequencices.  Microstructural details, to the level of gpproxi-
mal ion considered, become vmbuind in a correlation function Whr=-r')
that gives the probebility of v and v' being in the same crystallite,

Recent ly, Kino and Slunkvz extended the vitshits-Parkhomoviekii
work. As Litshits-Parkhomovskii, they developed an effective
medium approximation to the wave gquation, but by adapting an
approximation of Karpl and Keller” and evaluating the necessary




integrals and con igurational averages exactly, they produced an
approximation for the wave speed aid attenuation for which the Lifshits-
Parkhomovskii theory is an approximation and the a priori restriction

to use at high and low frequenci. s was removed. An additional aspect
of the Kino-Stanke work was the experimental determination that W{r)
appears well approximated by exp(-r/L). This form simplifies the eval-
uation of the required spatial integ-ations and embodies all
microstructural information into a single parameter L.

Our work advances in the direction developed by Lifshits-
Parkhomovskii and Kino-Stanke, but with several important diiferences:
Our resulting equations are ncot restricted to crystallites of cubic
symmetry. Wc¢ performed the necessary orientational averages analyti-
cally and generally (triclinic crystallites). Also, our approximation

N
is not second order in AC.., .(r). In the perturbation series for the
average displacement fielé, we selectively summed an infinite series
of terms in products of <AC, AC > to produce and approximation of

L . . jkl"“m o ;

infinite order in the an1so%%opy. nRﬂd]tlonally, we did not have teo
make the effective medium approximation. We are in a position to test
its consequences.

In this report we restrict ourselves to summarizing the basic
nature of our approximation, coitrasting it with those of Lifshits-
Parkhomovskii and Kino-Stanke, and highlighting the important
differences from a perturbation-theoretic point of view.

AVERAGE FIELDS

Our starling point is the equation of motion for the steady-state,
displacement ftieid Green's tensor of an vlaskic mediun in which the
clastic stiffness varies from point to point
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o G, boo(ryr') HpwtG, + 6, S(r=r') =0 1

X, anl(r) le blm(l’r ) f "im im ( ) (1)
After defining G . (F) = C° 4 AC. . (F), where €. is a ¢

ter defining ik r) = Tkl ikl r), where 7 ikl is a4 con
stant Lensor Laken to be <C, . >, we can convert (1) into an equivalent
integra! coation that for H‘v:wnl purposes is most conveniently cx-
pressed in terms of the Fourier transforms of the physical quantities
ol interest.  Symbolically, ve write this equalion as
«
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and

> > ~
Vij(k,q) = kmACimjnqn (3¢)

with p being the crystallite density, w the angular frequency, o the
longitudinal wavenumber associated with Cci)'k] , and ﬁo the transverse
wavenumber. J

From (2) we seek to determine the poles of <G>. From the real
part of these poles, we oktain the phase velocity of the average wave;
from the imaginary parts, the attenuation. To proceed we make the
ansatz that

<cij(ﬁ,3)> = cij(ﬁ) 5(k-q) (4)
which is simply a statement that the averaging restores translational
invariance to the material. In the effective medium apnyor.imation this
same ansatz is made along wilh the assumption that <G..(k,q)> has tLhe
same form as G¢ (k); that is, (4) is given by right—héﬂd side of (3Dh)
with o, and B 1f‘epla(‘ed by the to be determined o and . We are,
however, able to show that

Gi‘j(k’) = G](k)RiRJ + (;L(k)(ﬁij—R],Rj)

where
1
G (k) = o :
] 2 2
k™ - ”0 - Ml(k)
G (k) = !
' T2 2
K -y - M (k)

which implies a pole structure diflerent amd potentially more compli-
cated Lthan allowed by the efflective medium approximation, The M and
M, are the longitudinal and transverse parts of a quanlity we vn*l the
:1\5('rng(‘ proper self-energy, terminelogy developed in quantum {ietd
theory., This self-cpergy appears in the integral equation tor <G»;
that i , we can show’

I O S TR Y PRt (h)

and that

M Vot MG (V=M ()
These equations represent an cxacl zolution to the problem.  Sinee Ge
depends on M, and M depends on <Gy, they are coupled nonlinear, integral
cquations.  The advantage ol expressing the solution o this form in the

potential tor a systematic development ot porturbation theory,
particularly perturbation theory te intinite order in V.

]
To dervive (%) and (6) we ntart ! by itevating (2)



c° + 6vc® + G°vgve® + ...
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6° + 6°(1 + v6v + vG°vG® + ...)G

¢° + 6’16 . (7)
where the scattering operator T equals

T = V(I + V)7 (8)
Next, we average (7) to obtain

<G> = G° + ¢%°<1>6° (9)
and then we solve this equation for c°

® = (1 + ¢°<>)" ! 6> (10)
Then we substitute this result for the last G° in (9) to produce (6)

<G>

c° + g° wm><G> (11)
where

M> = <> (I + G%<1>)" ] (12)

To derive (6), which leads fgr pres 'nt purposes to a more useful form
for <M>, we solve (11) for G

° = (1 + <6><M>)" ! <G> (13)
and substitute Lhis result for the last GO in (7) to convert it to
6=6°+ " T + <o) <o
For the average of this equation to be consiscent with (11) we must have

M= T + <Go<M>)”)

1 1

I
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which upon replacement of ¢° by (13) reduces straightfoirwsardly to
M= V(I - <G>V - <M>))"!
or
M =V 1 M<G>(V - <M>)

the desired result.

To illustrate the connection of these results to perturbation
theory, we wrile
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where the subscript denotes the order of the corresponding term in V.
We find that

Ml =V
Mz = V<G>V - V<G><V>
M3 = =V<G> (V<GoV = <V2<G><V>)

T(VEGOV = V<G><V>)<G>(V - <V>)
when we substitute these results into the right-hand side of (6), aver-
age both sides of the resulting equations, and use the result that
<V> = 0, we find that
<M> = <VLKG>V> + <V<GOVLG>V>
+ <VLKG>VLGIVLGOV> - <VLKGOV>LKG>KVLG>V>

+ 0(V) (14)

But <G> can, through (5) and (14), be expressed in terms of V and c°.
The resulting expression for <M> is

<M> = <«veov> - <vG6ov>62<velv>
+ <«ve%<vcv>ev> - «v6°v>6<vGCeve vy

<vGO<ve®v>GPv>6l<vie®v> + <vaP<vily>GPvr>eevil<vily>6lv>

+
+ <vGovGov> +

The terms implied in the first four lines originate "rom the firsl term
in (14); hence, having <M> depend on <G> and vice versa is simply a way
of compactly representing such infinite series ol terms. Since V repre-
sents the crystalline anisotropy, any approximation to <M> bazed on
<V<G>V> is thu. of infinite order in the anisotropy. In the next scc-
tion we adopt this approximation, discusx some of its basic {calures,
and contrast it to the approximations of Lifshits-Parkbomovskii and
Kino-Stanke

APPROXIMATIONS

The poles of 7G> salisfy

2 2

k™ a7 - M (k) =0 (15a)
o 1
k> - ni - M) = 0 (*5h)

Since M and M depend on <G> and henee its poles, thene cquations are
coupled. We will denote the solutions to these equations by o and fi
and signity the dependency of M oun <G> by Mlo, ], that is, by the loca-
tion of the poles of <G>, Our basic approximation is to take ftor -M>»
the leading term in (14)



<M[a,B)> ~ <V<G[a,B]>V> (16a)
where
<6> = 6°(1 - <M>6°)"} (16b)
As discussed in the last section, these equations represent a perturha-
tion series to infinte order in V. In particuiar, our approximation
for <G> iu
<6> = G + G%<«vG%v>G° + 6°<«vG<vGv>Gov>G°
- 6°%<vGPv>GO<vGOv>6® - 6°<vGOv>GC<vg®<vaCv>GOv>a6°
+ ... 17)
The Kino~Stanke approximation can pbe characterized by
<Mla,Bl> ~ <V<G[a,B]>V>
<G> ~ 6°[a,B] = c°[ao,pol(r-<n:c°[uo,aol)"
These approximations lead to

“2 -a - ml(u)

0 (18a)
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which are an uncoupled set of equations for o and B. i we make the
effective medium approximation, our M [a,B] and M [a,B] would equal
Kino-Stanke's m, [a,B] and mt[u,Bl. In terms of a perturbation series
for <G>, their approximation is equivalent to

<G> = G°la, Bl

G° + a%<«vi voi? + 6%eavilvritvePvog®

F G evevagl e v clavgOvag? + L (19)
which of infinite order in V.,

The Lifshits-Parkhomovksii approximation can be characterized by

<M[a,f]> ~ <Vula,plve

0
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which lead to an unconpled set of cauations for o and f3,

”A - ”z -=m (0 ) =0 , (20a)
0 1 o

P 2 )

- - - 20
I I%() m ([l()) 0 (20b)
In terms of o perturbation series for o> their approximation is simply

e o= 6N gevaveg” (21)



REMARKS

In the absence of any effective medium approximation, (21), (19),
and (17) represent a clear heirarchy in level of approximation. How
significant is the cffect of the effective medium approximation is at
this time unknown. We do know, however, that our approximation (17)
is formally equivalent to Kraichnan's direct interaction approximation
(the DIA) developed for wave propagatiur in turbulent medium. Using a
W(r) ~ exp(-r/L), Frisch shows for scalar waves that the effective
medium approximation tn the DIA is very good. If this same fidelity is
true for the elastic wave problem, then (17) with the effective medium
approximation will reduce to a set of equations just slightly more com-
plicated than those of Kino and Stanke. Objectives of computations
under way include studying the utility of the effective medium approxi-
mation and the quanitative difference between (17) and (i9). The results
of these computations, as well the details of our analytic methods, will
be reported elsewhere.
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