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COMMIX-PPC: A Three-Dimensional Transient Multicomponent
Computer Program for Analyzing Performance
of Power Plant Condensers

Volume I: Equations and Numerics

Abstract

The COMMIX-PPC computer program is an extended and improved version of earlier
COMMIX codes and is specifically designed for evaluating the thermal performance of
power plant condensers. The COMMIX codes are general-purpose computer programs for’
the analysis of fluid flow and heat transfer in complex industrial systems. In COMMIX-PPC,
two major features have been added to previously published COMMIX codes. One feature is
the incorporation of one-dimensional equations of conservation of mass, momentum, and
energy on the tube side and the proper accounting for the thermal interaction between
shell and tube side through the porous-medium approach. The other added feature is the
extension of the three-dimensional conservation equations for shell-side flow to treat the
flow of a multicomponent medium.

COMMIX-PPC is designed to perform steady-state and transient, three-dimensional
analysis of fluid flow with heat transfer in a power plant condenser. However, the code is
designed in a generalized fashion so that, with some modification, it can be used to analyze
processes in any heat exchanger or other single-phase engineering applications.

The following unique features are retained from other COMMIX codes:

¢ Porous-Medium Formulation. COMMIX-PPC uses a new porous-medium
formulation with the-parameters of volume porosity, directional surface
porosity, distributed resistance, and distributed heat source or sink. With this
formulation, the COMMIX code has the capability to model an anisotropic flow
domain with stationary structures, and it can be used to treat irregular
geometries. The porous-medium formulation with the additional parameter of
directional surface porosity represents a unified approach to thermal-
hydraulic analysis. Because of this feature, it is now possible to perform a
multidimensional thermal-hydraulic simulation of either a single component,
such as a rod bundle, reactor plenum, or piping system, or a multicomponent
system that is a combination of two or more engineering components.

¢ New finite-volume formulation for equations of conservation of mass,
momentum, and energy. The momentum formulation employs the concept of
a volume-averaged velocity as used in COMMIX-1C. It makes the numerical
calculation more robust than in previous COMMIX versions. It also makes the
location of pressure change coincide with that of density change for one-
dimensional flows. In addition, the new discretized momentum equations also
satisfy the one-dimensional Bernoulli equation;

e Three Matrix Solvers. In COMMIX-PPC, three matrix solvers, the successive
overrelaxation method, the direct matrix inversion method, and the precondi-
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tioned conjugate gradient method for symmetric matrix, are available to solve
the pressure equation and scalar transport equations. Depending on the size
of the computational domain, the user can choose the solver that is best suited
for a given problem. These three matrix solvers greatly increase the flexibility
and efficiency of numexical computation for COMMIX-1C compared to previous
codes.

* Geometrical Package. A special geometrical package has been developed and
implemented to permit modeling of any complex geometry in the most
storage-efficient way.

Volume I (Equations and Numerics) of this report describes in detail the basic
equations, formulation, solution procedures, and models for auxiliary phenomena. Volume
II (User's Guide and Manual) contains the input instruction, flow charts, sample problems,
and descriptions of available options and boundary conditions.

COMMIX-PPC is a product of the continuing evolution of the family of COMMIX codes.
The technical contents of the latest version of COMMIX-1C, when appropriate and relevant,
will be duplicated here.
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Executive Summary

The COMMIX (Component Mixing) code is a general-purpose computer program for
the analysis of fluid flow in real-world engineering systems. Because the needs of users
have changed since its inception in 1976, the code has undergone several stages of
development, and several versions/extensions are now available. The present COMMIX-PPC
is yet another extension, designed specifically for analyzing the performance of power plant
condensers. To meet the objective of this application, the following two major additions
have been incorporated into the code.

e The three-dimensional conservation equations for shell-side flow have been
extended to treat the flow of a multicomponent medium. This is necessary
because the shell side generally contains a mixture of steam and air. The
capability to treat the flow of a multicomponent medium is also essential for
assessing the effect of noncondensibles on condenser performance. On the
other hand, the computation is simplified by assuming that the steam is at the
saturated state and its bulk temperature is determined solcly by its partial
pressure in the mixture.

¢ Tube-side fluid flow and heat transfer have been developed and incorporated
into the code. The use of one-dimensional conservation equations of mass,
momentum, and energy for tube-side flow greatly reduces the required
computer time without sacrificing accuracy. It also facilitates handling of
thermal coupling between the condensation of vapor on the shell side and the
forced convection of a single-phase liquid on the tube side.

In addition to the foregoing two major additions, several minor modifications and
additions have been made, mainly dictated by the consideration of condensation of steam in
the presence of noncondensibles. However, it is emphasized that many of the salient
features of COMMIX are retained in COMMIX-PPC.

A major unique feature of COMMIX is its porous-medium formulation, which was
rigorously derived through local volume averaging. The formulation makes use of the
concept of volume pdrosity, directional surface porosity (a dimensioniess vector quantity
associated with a surface element), distributed resistance, and distributed heat source or
sink. Volume porosity is the ratio of the volume occupied by fluid in a control volume to the
total control volume. Surface porosity is similarly defined as the ratio of the area available
for fluid flow through a control surface to the total control surface area. Both arise naturally
in the averaging process. In the conventional porous-medium formulation, only the volume
porosity, distributed resistance, and distributed heat source are used. The concept of
directional surface porosity is relatively new. It facilitates the modeling of anisotropic
structural resistance to flow. Irregular geometries can also be adapted in the present
porous-medium formulation.

The predictive capability of the numerical analysis of fluid flow and heat transfer in
complicated engineering systeras, e.g., nuclear reactor cores or the shell side of a steam
condenser, depends strongly on how well the distributed resistances are modeled. The
resistances would vary with their orientation relative to the general flow direction and are
often not known a priori. The directional surface porosity is a geometrical quantity and can
be accurately and unambiguously calculated. Its introduction lessens the dependency of the



velocity field on the modeling of the flow resistance and hence, improves the accuracy of
the numerical prediction. This is a major advantage of the present porous-medium
formulation.

The finite-volume formulation used in COMMIX for the mass, momentum, and energy
conservation equations has recently been extended to include variable-density flows. The
modified formulation employs the concept of a volume-average mass-weighted velocity. As
a consequence, the numerical procedure is more robust than the previous COMMIX
versions. It also forces the location of pressure change to coincide with that of density
change in one-dimensional flows. In addition, the discretized momentum equation also
satisfies the ocne-dimensional Bemoulli equation.

The COMMIX code provides detailed implied velocity and temperature fields for the
systemn under consideration. The conservation equations of mass, momentum, and energy,
and the transport equations of the turbulence parameters are solved as a boundary-value
problem in space and an initial-value problem in time. The discretized equations are
obtained by integrating the conservation equations over a control volume. The code is
flexible and has a wide range of applicability. It is capable of solving thermal-hydraulic
problems involving either a single engineering compgnent, such as a rod bundle, reactor
plenum, piping system, or heat exchanger, or an engineering system that consists of a
combination of these components.

COMMIX uses a fully implicit solution scheme called SIMPLEST-ANL. It is a modifica-
tion of the well-known numerical procedure SIMPLER, has a modular structure, and
permits the use of either Cartesian or cylindrical coordinate systems. COMMIX-PPC
contains physical-property packages for water vapor and liquid water. In addition to these
two packages, an option is available for users to input simplified property correlations that
are valid in the desired range of applications.

There are three matrix solvers in COMMIX-PPC: the successive overrelaxation method
(SOR), the direct matrix inversion method (DMIM), and the preconditioned conjugate
gradient method (PCG). SOR and DMIM are suitable for both symmetric and nonsymmetric
matrices and are selected for solving the pressure equation and scalar transport equations.
PCG is only applicable to a symmetric matrix and thus may be used for the pressure
equation. Depending on the size of the matrix, the user may choose the particular solver
that is best suited for the problem in question. With the availability of the three matrix
solvers, the efficiency of the numerical computation capability of COMMIX-PPC is greatly
increased.

Another unique feature of the COMMIX code is its geometry package. The basic con-
cept is to use computational cells (either in Cartesian or cylindrical coordinates) as building
blocks that are stacked to approximate the shape of the physical systems under consider-
ation. Then, volume porosity and directional surface porosity are used to account for
differences between the geometry used in the computation and the actual configuration.
This feature permits the COMMIX code to model irregular and complex geometries with
relative ease. Furthermore, the computer storage requirement of the COMMIX code is
optimized; only the computational cells used in the calculations are counted.

Volume I, Equations and Numerics, of this report describes in detail the basic conser-
vation equations, finite-volume formulation, turbulence modeling, one-dimensional



treatment of tube-side flow, and solution procedures. Auxiliary models for the following
phenomena are also described:

» Momentum interaction between fluid and stationary solid structures.

e Thermal int.raction between shell- and tube-side fluid and stationary solid
structures.

In Volume II, User's Guide and Manual, we provide flow charts, descriptions of
subroutines, geometry modeling, initialization procedures, input descriptions, etc. A
sample problem is included to familiarize readers with the input/output structures of the
code. Also included is a sensitivity study about the effects of inlet air mass fraction and exit
mass flow rate at the air extraction pipe on steam condensation rate.

In both volumes, wherever applicable, technical content of COMMIX-1C is dupiicated.

1 Introduction

In the power industry, one way to save energy and reduce operating cost of a power
plant is to improve condenser performance. This requires detailed information on the
heat- and mass-transfer rates and pressure drop at the local level. Because the heat- and
mass—transfer processes associated with steam flow in a condenser is complex and the local
rates are difficult to measure experimentally, one resorts to numerical models to obtain
such information.

In the past three decades, several condenser models!-8 have been developed to study
fluid flow and heat transfer in power plant condensers or power condensers. All are two—
dimensional models. Because the steam flow in power condensers is essentially three-
dimensional, these models cannot provide detailed information on pressure, temperature,
velocity, and concentration distribution. Hence, they are not useful for studying optimiza-
tion of tube arrangement, baffle plate shape and spacing, and configuration of other
components to improve condenser performance.

A three-dimensional computer code, COMMIX-PPC (power plant condenser), is being
developed at Argonne National Laboratory to analyze the performance of power plant
condensers. This three-dimensional code is an offshoot of the in-house version of the
COMMIX-2A computer code, which is intended for two-phase applications in a reactor
component or a multicomponent reactor system. It was developed under U.S. Nuclear
Regulatory Commission sponsorship and, due to funding limitations, has yet to be
completed. COMMIX-2A is a product of thie development, over many years, of a series of
COMMIX codes.9-12

COMMIX-PPC is designed to analyze three-dimensional, transient or steady state,
laminar or turbulent, multicomponent flow in power plant condensers. The tube nest, or
bundle, is treated as a porous medium. On the shell side, the present model considers a
mixture of only steam and air. Unless the rate and locations of air leakage are known, air is
assumed to be uniformly mixed in inlet steam. As the air and steam mixture flows past the
tube bundle, condensed water is assumed to be removed instantaneously. The steam is
taken to be saturated. Cooling water on the tube side is modeled as a one-dimensional



single-phase flow; hence, large storage capacity for tube-side variables is not needed. Also,
because the steam is taken to be saturated, its temperature can be calculated directly from
the equation of state once the pr¢ ssure is known. Thus, the mixture energy on the shell
side is not needed. To economize on storage and reduce the size of the matrix for solving
the dependent variables, we decided to handle tube-side and sheli-side flows sequentially.
COMMIX-PPC solves the three-dimensional, time-dependent, conservation equations of
mixture mass, mixture momentum, and a component mass, either air or steam, for shell-
side flow, and the one-dimensional conservation equations of mass, momentum, and energy
for the tube-side flow. The shell-side and tube-side flow are coupled through the heat
transfer process. The solution is obtained by an iterative procedure.

Although COMMIX-PPC is designed for power condenser calculations, it can also be
used as a general-purpose computer code for analyzing single-phase flow in complex
engineering systems with minimal or no modifications.

1.1 Major Features of COMMIX-PPC

1.1.1 Porous-Medium Formulation

As do all codes in the COMMIX series, COMMIX-PPC employs conservation equations of
mass, momentum, and a component mass using a new porous-medium formulation based
on local volume averaging.13-19 The forrnulation utilizes four parameters, i.e., volume
porosity, directional surface porosity, distributed flow resistance, and distributed heat
source (sink), to model fluid-dynamic and thermal effects of internal solid structures. In
the conventional porous-medium formulation, only three parameters (volume porosity,
distributed resistance, and distributed heat source) are used. The addition of a fourth
parameter, directional surface porosity,13-21 is a relatively new concept.

Volume porosity is defined as the ratio of the volume occupied by fluid in a control
volume to the total control volume. The directional surface porosity is similarly defined as
the ratio of the area available for fluid flow through a control surface to the total control
surface area. The adjective “directional® was incorporated to emphasize the fact that
surface porosity is an anisotropic quantity.

Introducing the fourth parameter, directional surface porosity, has distinct advantages.
First, the need for introducing distributed resistance and directional surface porosity arises
naturally in volume averaging of the governing conservation equations.!?7 Second, in the
thermal-hydraulic analysis of complex systems, be it a reactor core or power condenser,
the flow resistance due to internal structures, e.g., tube bundle and irregular geometry such
as baffles or other flow obstacles, is generally not reliably known; however, it can be
modeled scparately as a distributed resistance in the control volume and a directional
surface porosity of the control surface. The latter is a purely geometrical parameter and
can be unambiguously calculated. Thus, in the new porous-medium formulation, the
numerical resuits depend only on how well the distributed resistance is modeled. This is a
definite improvement over the conventional porous-medium formulation, in which the
effects of the distributed resistance in the control volume and the flow restriction at the
control surface are intermingled and thus are more difficult to assess. The concept of
incorporating directional surface porosity greatly facilitates the modeling of velocity and



temperature fields in anisotropic media and, in general, improves resolution and accuracy.
Another useful feature of the new porous-medium formulation is that irregular geometry
can be more conveniently treated.

If we set the directional surface porosity equal to one, the new formulation reduces to
the conventional porous-medium formulation. Therefore, we can consider the conventional
porous-medium formulation as a subset of the new porous-medium formulation. Further-
more, if we set the volume porosity equal to one and the distributed flow resistance and
heat source equal to zero, the porous-medium formulation reduces to a continuum formula-
tion. Thus, the new porous-medium formulation can be considered a generalization of the
approach to thermal-hydraulic analysis.

1.1.2  Fully Implicit Algorithm

A fully implicit algorithm named SIMPLEST-ANL!O is used. This algorithm is a
modification of the Patankar-Spalding numerical procedure22 known as SIMPLE/SIMPLER.

It is particularly suitable for analyzing steady-state systems, although it can also be used for
slow and moderate transients.

1.1.3 Three Matrix Solvers

All discretized equations in COMMIX-PPC can be expressed in the following form:

[]

afd, - lz{am -by =0,
where ¢ is a dependent variable and a and b are coefficients. The subscript o stands for the
centerpoint, and the subscript ¢ stands for the indices of the six neighboring points. This
general form of the discretized equation lends itself to various solution schemes. In
COMMIX-PPC, three matrix solvers [successive over-relaxation (SOR), direct matrix
inversion method (DMIM), and preconditioned conjugate gradient (PCG)] are available and
the user can choose any one of them to solve the discretized equations.

1.1.4 One-Dimensional Formulation for Tube-Side Flow

In COMMIX-PPC, the shell-side and tube-side flow are calculated sequentially. The
shell-side flow uses a three-dimensional formulation, whereas the tube-side flow is solved
by a one-dimensional formulation. A great deal of computer storage for tube-side flow
variables is saved. Both shell-side and tube-side flows are coupled thermally and their final
solutions are obtained by an iterative procedure.

1.1.5 Geometry Package

The geometry package developed and implemented in several previous versions of
COMMIX is retained in COMMIX-PPC. This package is capable of approximating any
irregular geometry. It uses basic computational cells as building blocks to model the
geometry under consideration. Volume porosities and directional surface porosities are



. then used to account for differences between the approximated computation and the actual
configuration.

To save computer storage, a computational cell is defined by one number rather than by
its conventional (i, j, k) location, where 1, j, and k are the computational cell indices in the
three principal axes (e.g., x, y, and z in the Cartesian coordinate system). With this
approach, the storage requirement depends only on the total number of computational cells
and not on the value of the product IMAX x JMAX x KMAX, where IMAX, JMAX, and KMAX
denote the maximum values of computational cell indices in the three corresponding
principal axes.

A normal three-dimensional computational cell has six surfaces. To facilitate proper
modeling of a cell of complex and irregular geometry (most geometries in engineering
systems are complex and irregular), the code provides the flexibility of allowing a user to
specify an.additional seventh surface, calle? irregular surface, to cut a computational cell for
simulating the physical geometry.

1.1.6 Muliticomponent System

For analysis of condenser performance, it is necessary to predict steam and air
distribution inside a condenser. Thus, the code also must have a multicomponent
capability.

1.2 Other Features of COMMIX-PPC

COMMIX—-PPC comprises

* Two models to give it a wide range of | applications in turbulent flows:
- Constant turbulent diffusivity model.
- Two~equation k-¢ turbulence model.

* Discretized conservation equations that are formulated by integrating the
differential conservation equations and transport equations for turbulence
parameters over a control volume surrounding a grid point. Thus, the derivation

process and resulting equations have direct physical meaning, and the solution
satisfies conservation principles.

* An option that allows use of either Cartesian or cylindrical coordinates.

* A modular structure that permits rapid implementation of the latest available
drag models, heat transfer models, etc.

* A built-in property data bank for water and water vapor, with an option that

permits the use of simplified property correlations for any fluids and solid
structures.

* A generalized resistance model to permit specification of resistance due to
internal structures (baffles, tube plates, tube bundles, etc.) in the respective
coordination directions.



* A generalized thermal-structure formulation to model thermal interaction
between structures (duct wall, tube bundles, baffles, etc.) and surrounding
fluid.

e The possibility of heat source/sink and boundary conditions being functions of
time.

¢ A structure that permits solution of one-, two-, or three-dimensional
calculations.

1.3 Organization of the Report

This volume describes the formulations of the governing conservation equations for
three-dimensional, steady-state and transient multicomponent fluid flow with heat
transfer. The description starts with differential equations and focuses attention on
numerical methods incorporated into the COMMIX-PPC program. Section 2 presents the
governing conservation equations appropriate for condenser modeling. Section 3 is
devoted to the general form of governing conservation equations fer a quasicontinuum
domain, with the purpose of providing the basis for unified development of the numerical
method and the construction of the computer program. The quasicontinuum domain is
defined as one that contains finite, dispersed, stationary, heat-generating (or absorbing)
solid structures. The fluid dynamic and thermal effects of solid structures in the domain
are accounted for by introducing volume porosity, directional surface porosity, distributed
flow resistance, and distributed heat sources. Section 4 describes the staggered-grid
arrangement and the conventions used in COMMIX-PPC to define the location of a control
volume. Section 5 assembles the finite-volume equations. The general finite-volume
equation of the main control volume is presented in Sec. 5.5. Because a staggered-grid
system is used, the control volumes for momentum equations are different and require
special consideration. The special features of the momentum finite-volume equations are
presented in Sec. 5.6. The pressure appearing in the mnomentum equation must be such
that the velocity distribution obtained satisfies the continuity equation. The derivation of
the pressure equation (obtained by combining the momentum and continuity equations} is
presented in Sec. 6.

Section 7 is devoted to turbulence modeling. Currently, two options are available to
account for turbulence effects:

* Constant Turbulent Diffusivity Model. This model is the simplest. The
turbulent viscosity and turbulent thermal conductivity are simply assumed

constant and assigned a value. No transport equation of turbulence parameters
is solved.

e The k-¢ Two-Equation Turbulence Model. The transport equations of turbu-
lence kinetic energy k and dissipation rate € of turbulence kinetic energy are
solved to evaluate turbulence quantities. This model is more general than the
Prandt]l mixing-length hypothesis and the one-equation turbulence model and
is computationally more economical than the complex multiequation models of
turbulence that are still in the developmental stage. :



Section 8 describes the one-dimensional formulation of the conservation equations for
tube-side flow. Section 9 describes the supplementary models incorporated in COMMIX-
PPC. These include heat transfer correlations for single-phase flow inside tubes and for
film condensation outside a tube bank in the presence of entrained air, as well as
generalized force and thermal-structure models. The force model computes distributed
resistance to account for the friction between fluid and submerged solids. The thermal-
structure model is designed to compute the distributed heat source (fluid and submerged
solids) and the thermal inertia of submerged solids. This section describes only the shell-
and tube-side thermal coupling. A more generalized thermal-structure model is presented
in the Appendix.

Several boundary-condition options for momentum, continuity, temperature, and
continuity mass equations are described in Sec. 10. In COMMIX-PPC, the fully implicit
solution scheme SIMPLEST-ANL, an extension of the numerical procedures in SIMPLE/
SIMPLER, is used. A scheme is described in Sec. 11. The three matrix solvers (SOR,
DMIM, and PCG) available in COMMIX-PPC for solving the discretized scalar transport
equations and the pressure equation are also described in Sec. 11.

Volume 11 of this report is prepared specifically for COMMIX-PPC users. It describes
the steady-state and transient calculation and the various procedures in the preparation of
load modules, input data, reading and writing of restart files, etc. A sample problem, along
with its description, input, and output, is presented to provide an introduction to the
capabilities of COMMIX-PPC. The code input description is also included in Volume II.

2 Governing Conservation Equations and Auxiliary
Equations for Shell Side

2.1 Conservation Equations
The three-dimensional time-dependent conservation equations of mass and

momentum for gas mixtures, based on the porous-medium fermulation through local
volume averaging!7 are

Mixture continuity equation

) _ .
ng(P) + Vo(yapV) = y,m™ (2.1)

Comaponent continuity equation

9 _ ™
Tz (Pxi) + Ve(yaxyp?) = yymg + V(YA PDk e VXK ) (2.2)

Mixture momentum equation

o, — _ - e
7v§(pV) + Ve(YapW) = —7yVP ~ Ve(yaneqVev) + vypE + YWR + y,m™V  (2.3)
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component gas,

mixture density, }:g/m3,
surface porosity,

volume porosity,

mass fraction for k, ¥ x, =1,
mass source for k, kg/m3/s,
iy,

velocity vector, m/s,

. mixture pressure, Pa,

gravitational constant, m/s2,

Km + Rturb = effective viscosity of mixture, kg/m/s,

molecular viscosity of gas mixture, kg/m/s,

turbulence viscosity of gas mixture, kg/m/s,

Dk.m + Dkt = effective diffusivity for k in the gas mixture, m2/s,
molecular diffusivity for k in the gas mixture, m2/s,

turbulent diffusivity for k in the gas mixture, m2/s,

distributed resistance per unit volume, N/m3,

2.2 Auxiliary Equations (appropriate for condensing steam under saturated
condition)

2.2.1

2.2.2

The steam condensation rate per unit volume, m:. can be defined by

Saturation Temperature (Tg)

Ts = T(Ps)

= partial pressure of steam,

= total pressure of steam and air mixture.

= molecular weight of steam,
= molecular weight of air

= mass fraction of air

= mass fraction of steam

Mass Source (ri,)

(2.4)

(2.5)
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My T‘-l'-g-' (2.6)

where hgg is the latent heat of steam, and q" is the heat transfer rate from steam to cooling
water per unit volume.

The value of (1"' can be calculated from

4" = UATs - Tw). 2.7)

where U is the overall heat transfer coefficient, A* is the heat transfer area per unit volume,
T, is the saturation temperature, determined completely by the local partial presure of the
steam, and Ty is the temperature of the local tube-side cooling water.

2.2.3 Physical Properties

Mixture density (p)
The density of the gas mixture p is obtained from
1

Xk’
k Px

p = (2.8)

where xi is the mass fraction of k, and px is the density of component k.
Mixture enthalpy (h)
The enthalpy of the gas mixture h is calculated from

h = Zthk. (2.9)
k
where hg is the enthalpy of k.

Mixture specific heat (Cp)

The specific heat of the gas mixture Cp can be obtained from

Cp = §xkc,,k. (2.10)
where Cpk is the specific heat of k.
Mixture molecular viscosity (Um)

The viscosity of a gas mixture pp, is calculated by the method of Slattery and Bird et al.23 It
is given by the approximate equation
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N
um = Z‘N{‘—i&!— fOl'i= 1. 2. vos N,j = lv 29 soe N (2'11)
=130 0y
=

e o) 0T

where

oy = - -, (2.12)
2431 + M|
X
M )
n = -ﬂ-i-j- (2.13)
HMI

u1 and yy = viscosity of the component gases,
nj and nj = mole fraction of the component gases,
M; and Mj = molecular weight of the component gases,
n = total number of components in the gas mixture.

Turbulent viscosity (ud

In COMMIX-PPC, two options are available for calculating the turbulent viscosity ut. They
are

¢ Constant turbulent diffusivity model, and

¢ Two-equation, k-e turbulence model.

Details of the k-¢ turbulence model are given in Sec. 7.
Mixture molecular conductivity (km)

Similar to the mixture viscosity calculation, the molecular conductivity of the gas mixture
km is calculated from

N
k
km = b, (2.14)
30 ey
[

where kj is the molecular conductivity of the component gas i, and &y and n; are given by
Egs. 2.12 and 2.13, respectively, with p; replaced by k.
Molecular diffusivity of steam or air in an ajr mixture (Dk,m)

For a steam and air mixture, the diffusivity between steam and air Dy, is calculated
from the equation developed by Slattery and Bird,23 i.e.,
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2.334
PDg 5 - 3.64 x 10—4( T ) (2.15)
1/3 snz( 1 1 V2 VTca Tcs
(Pc.aPcs)’ (TcaTcs) Ma + Ms

where the subscripts S and A refer to steam and air respectively, P is pressure, T is
temperature, Pc is the critical pressure, Tc is the critical temperature, and M is the
molecular weight. The units for D, P, T, and M are (cm2/sec), (atm), (K), and (g/g-mole),
respectively. Note that Eq. 2.15 is applicable for binary gas mixtures only.

Inserting the following values for air and steam systems,

Ma = 28.97 g/g-mole Mg = 18.02 g/g-mole,
Pc,A = 36.4 atm Rc,s = 218 atm,
Tc.A = 132K Tc,s = 647.3K,

Eq. 2.15 becomes

1 T2.334

Dym = 4.3421 x 107 —-———(m2 /sec). (2.16)

Turbulent diffusivity (Dx,d
The turbulent diffusivity of steam or air in a steam/air mixture D is defined as

Kt ,
PSch

where yt is the mixture turbulent viscosity, p is the mixture density, and S¢p, is the Schmidt
number. In this report, the Schmidt number is taken to be unity. Thus,

Dgt = (2.17)

Dx.t = ue/p. (2.18)

3 _General Form of the Conservation Equations

The conservation equations of mass and momentum for a mixture, and the component
continuity equation possess a common form. If we denote the general dependent variable
by ¢, the equations in the Cartesian coordinate system can be expressed as!5

L A pu0) | Altyevd)  A(y, pwd)
Ax Ay Az

e ot

Unsteady Convection

J
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A(Yx r, “a‘?‘) A(YY FOQ‘J A(Yz T, é’?)
_ ax) , o), %), y s
Diffusion Source

Here, u, v, and w are the velocities in the x, y, and z directions, respectively; yy is the
volume porosity (fraction of the volume occupied by the fluid), vx, ¥y, and y; are the
directional surface porosities (fraction of the surface area that is unobstructed to fluid flow)
in the x, y, and z directions, respectively, and I' is the diffusion coefficient. The convective
and diffusive terms Alg)/Ax; in Eq. 3.1 are defined as

Alg) _ (=i +4x,/2)- ¢(x, - Ax,/2)
Ax, Ax,

' (3.2)

in which x; stands for the x, y, or z coordinate. The diffusion coefficient I', and the source
terin Sy are specific to each ¢. The conservation equations in the cylindrical coordinate
system have the same general form (Eq. 3.1) when the centrifugal and Coriolis force terms
are included in the source term-Sy. (The source terms for equations in the Cartesian and
cyiindrical systems are listed in Tables 1 and 2, respectively.) Therefore, all formulations
in the Cartesian system can be readily transferred to cylindrical coordinates by using the
relationships shown in Table 3.

For turbulent flow, the entities in Eq. 3.1 are their time averages, and the diffusion
coefficient T is, as the effective diffusion coefficient, the sum of two contributions,
molecular and turbulent. Thus,

Ty = T'y, molecular + P¢,turbulent - (3.3)

The transport equations for the turbulence parameters, kinetic energy k and
dissipation rate € that are needed for the computation of the turbulent coefficient, also have
the same general form as Eq. 3.1. However, for the convenience of presentation, they will
be discussed in Sec. 7.

4 Control Volume

4.1 Construction of a Computational Cell

The computational cells around a grid point can be defined in several ways. In
COMMIX-PPC, the computational cell is defined by the locations of cell volume faces, and a
grid point is placed in the geometrical center of each cell volume. Cell sizes can be
nonuniform. This type of construction is shown in Fig. 1. The convention used in
COMMIX-PPC for defining neighboring cells and cell faces is given in Table 4.
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Table 1. Source terms in the Cartesian coordinate systeme

Diffusion
Coefficient
Equation Variable (¢) Direction (Ty) Source Term (Sy)
Continuity 1 Scalar 0 m""
Momentum
(1) u X Heff PEx + Vx = Ry - (‘g;’;') + m"'u
ap e
(11) v y ' Meff pgy + Vy - Ry - 'é'; + m'"'v
(111) w z Keff pgz+ V.- R, - (a_p_\ + m''w
0z )
Component mass X Scalar pDk.eff iy

aVx, Vy, V2 Balance of the viscous diffusion terms
Rx, Ry, Rz Distributed resistances due to solid structures in a momentum control volume

Table 2. Source terms in the cylindrical coordinate system®

—- Diffusion
Variable Coeflicient
Equation (9) Direction (Ty) Source Term (Sy)

Continuity 1 Scalar 0 m'"
Momentum 2 3

(1 - ve r direction g pYe_ , g + V.-R, - 1 3 (ep) + v,

r v» T arl a

(11) Vo e dll'ectlon u, - EIrJ- + pge + ve - Re - ; _a_a(p) + l’h"'vo

(111) vz z direction 13 pg; +V,-R, - 3% (p) + m™v,
Component .
mass Xk Scalar  pDk.eff 1y

@Centrifugal force term designated by *
Coriolis force term designated by **
V. Vg, Vz = balance of the viscous diffusion terms
Rx, Re, Rz = distributed resistances due to solid structures in a momentum control volume
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Cartesian Cylindrical
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Table 3. Trar.sformations for Cartesian and y 0
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Fig. 1. Construction of cell volumes

A typical cell
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Table 4. Convention used tn COMMIX-PPC to define
neighboring—cell control volumes

—Cell Centers —Cell-Face Center

Subscript X y z X y z

0 1, 3 k - - -

1 -1, §. k -1/2, 4. k

2 i+1, J. k i+1/72, J. k

3 i, -1, k 1, J-1/2, k

4 1, J+1, k 1, j+1/2 k

5 L, 3, k-1 1, 1 k-1/2

6 i, ), k+l i, 3 k+1/2

4.2 Control Volume for Nonflow Variables

A staggered-grid system is used in COMMIX. In this system, all dependent nonflow
variables (pressure, temperature, density, enthalpy, mass fraction turbulence kinetic
energy, physical properties, etc.) are calculated for the cell center and all flow variables
(velocity components) are calculated for the surfaces of the cell.

Consider the control volume for a nonflow variable as shown in Fig. 2. It is constructed
around a grid point O, which has grid points 1 (i-1), and 2 (i+1) as its west and east
neighbors; grid points 3 (j-1) and 4 (j+1) as its front and rear neighbors; and grid points 5
(k-1) and 6 (k+1) as its south and north neighbors. To obtain the finite-volume equation,
we integrate, step by step, each term of the conservation equation over the control volume.

4.3 Control Volume for Flow Variables

Although most dependent variables are calculated for a grid point, the velocity
components u, v, and w are exceptions. They are calculated not for the grid point, but for
displaced or “staggered” locations. The displaced locations of the velocity components are
such that they are placed on the faces of a control volume. Thus, the k-component velocity
w is calculated at the faces normal to the k direction.

Figure 3 shows the locations of u and w by short arrows on a two-dimensional grid: the
three-dimensional counterpart can be easily visualized. Relative to a grid point, the u
location is displaced only in the 1 direction, the w location only in the k direction, and so
forth. The location for w thus lies in the k direction link, joining two adjacent grid points.
It is the pressure difference between these grid points that will be used to drive the
velocity w located between them. This is the main feature of the staggered grid.

A direct consequence of the staggered grid is that the control volumes to be used for
the conservation of momentum must also be staggered. The control volumes shown in
Figs. 1 and 2 will hereafter be referred to as the main control volumes. The control



17

. /// S g
: // :

Fig. 2. Cell volume around point 0 in {j,k notation

|
}

|
l
|

!
1

r
1

————

%

|
1

|
f

|
!
|

%

—eir @) carft @

i

—fte @ e @ ——— ® —p

i

1
T

—

:

¢ Ocher variables

Fig. 3. Staggered gr(d,_



18

volumes for momentum will be staggered in the direction of the momentum so that the
faces normal to that direction pass through the grid points (see Fig. 4). Thus, the pressures
at these grid points can be directly used to calculate the pressure force on the momentum
control volume. Table 5 lists the convention used for the subscripts, and Fig. 4 shows the
momentum control volumes for the x and z directions.

z-momentum
control volume

\%m ¢ *
ny

X-momentum
X,1 control volume

Fig. 4. Momentum control volumes

Table 5. Convention used tn COMMIX-PPC to define neighboring
control volumes for z-direction momentum equations

Momentum Control Momentum Control
~Yolume Centers
Subscript x y z x y z
0 1, I8 k+1/2 - - -
1 i-1, IR k+1/2 -1/2, IR k+1/2
2 1+1, 1. k+1/2 i+1/2, J k+1/2
3 i, -1, k+1/2 i, J-1/2, k+1/2
4 f, J+1,  k+1/2 i, j+1/2 k+1/2
5 i, i k-1/2 i, 5 k
6 i, J k+3/2 i, ] o k+l
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5 Finite—=Volume Formulation

Although the finite-volume formulation is applicable to a grid in either the Cartesian or
cylindrical coordinate systems, only a Cartesian coordinate grid system is used here to
demonstrate the formulation of the finite-volume equations. Likewise, we have considered
only the z-momentum equation to illustrate the formulation of the momentum equation.
Extension of the derivation to the x and y momentum equations is straightforward. It
should be noted that the main control volume is applicable for the component continuity
equations, and the mixture continuity equation and the momentum control volume are
applicable to the mixture momentum equation.

The finite-volume equations are derived by integrating the governing equation (Eq. 3.1)
over a control volume. Each term in the equations is integrated separately.

5.1 Convection Term

5.1.1 Main Control Volume

The integration of the convection terms over the control volume gives

J‘ Ay, p ud) . A(vav¢) + A(Y.p wb) dxdydz
Az

Ax Ay

= F5(0); - F1(0) + Fu{0), - Fa(6); + Fe(0), - 75(0), - (5.1)

Here, F (= density x velocity x flow area) denotes the mass flow across the surface of the
control volume, and subscripts 1-6 stand for the west, east, front, rear, south, and north
surfaces, respectively (see Fig. 5). For example, the equation

F,=Fan= (p):(Y: uA yA z)z = (p):(uA‘)z = (pxu(uA‘)au/z (5.2)

is the mass flux at the east surface, as shown in Fig. 5. In Eq. 5.1, (Q): is the value of ¢
associated with surface “2,” which is convected by mass flow F2. Because only the values of
¢ associated with cell volumes are available for the main control volume, a relationship must
be assumed between volume values and values for the associated surfaces. The upwind
difference scheme provides one such relationship. It is

03 = @O, =9 =9, (fF,is +ve) (5.3a)
=0, = 6, (if F,is -ve). (5.3b)

A location-value superscript is used for positive velocity, and a location-value subscript is
used for negative velocity. Each term on the right side of Eq. 5.1 can be written in a
different format. For example,
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Fig. 5. Convective fluxes for the main control volume

0
F5(4), =[0.F2[¢0 - [0.-F2lé; . (5.4)
The operator | | is defined as equal to the greater of two arguments, i.e.,
iIA,Bl =A ifA>B

=B ifB>A. (5.5)

Using the foregoing convention and after some simplification, we can rewrite Eq. 5.1 as

j A(Y,p u¢) + A(YYPVQ) + A(Y.pv¢) dxdydz
Ax Ay Az v

= [|0. Fg| + [0, F4| +[0. Fg| +0. - Fy| + |0, - F3| + [0, - Fs|] o
~[10.- F2l02 +[0.~ Fa|¢4 +[0. - F |46 + [0. Filor +[0. 3|3 + 0. Fs|ds)- (5.6)

All six convective fluxes for the main control volume are listed in Table 6.

5.1.2 Momentum Control Volume

Figure 6 shows the staggered mesh for the z-momentum control volume. The various
mass flows shown in the figure are as follows:
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Table 6. Convective fluxes for the main control volume

Fy = (Axv),.,/ (p):
F2=(Axv)y,/, (p)g

3
Fy= (AYV) J1/2 (oo
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Fpo = (p)gAzOWO' (5.7a)
F, = (Pe1A, Wy | (5.7b)
Fp2 = (PsaAsa W (5.7¢)
F5 = (P A5 W (5.7d)
g = (MegAe Ve (5.7¢)
Fa= ko Ay (5.71)
Fra = (p)g Axa U, (5.7g)
Fre1 = (P):l Ayg) Ugy» (5.7h)
Frea = (P):gAzezuez- (5.71)

where the velocities w and u are defined at the cell faces as shown in Fig. 3. The mass flow
rates on the south and north faces of the staggered mesh (F,; and F,4) are not directly
available. In COMMIX~PPC, it is assumed that

Fis = (Fpo + Fzs)/2 (5.7§)
and
Fe = (Fzo0 + F26)/2, (5.7k)

In previous COMMIX versions (COMMIX-1A!0 and COMMIX-1B11), velocity w is
assumed to be transported by convective fluxes. In COMMIX-PPC, however, we consider
that the transport quantity is a momentum per unit mass associated with a certain volume
instead of the facial velocity w. Referring to Fig. 6, the z momentum (M;) associated with
the lower half of the staggered mesh is

M,y /2 = jvonyvadxdydz ) (5.8a)
If a volume-averaged velocity W,, is defined as
Vo «gs°
po -2LWw = (M‘)Vle . (5.8b)

then

C 2 _ 2]y, vepwindydz

W, {5.8¢)
® VoPo Po Vo

or
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2 dxdyld
w;o _ IA../:[L-:)Y'SV) x y] % . (5.8d)

The integral inside the bracket of Eq. 5.8d is the mass flow rate through any cross—
sectional area A; inside the volume Vg/2. In COMMIX-PPC, this mass flow rate is assumed
to be equal to Fzo; therefore, Eq. 5.8d becomes

. Az, F,
W = 220720 (5.8e)
7 poVo

W,, represents the momentum per unit mass of the fluid in the volume Vo/2 and is the
quantity to be transported. W,, has the dimension of velocity and can also be considered a
volume-averaged velocity defined by Eq. 5.8¢.

Similarly, a volume-cveraged velocity for the upper half of the staggered mesh in Fig. 6
can be defined as follows:

V, .
2200 Woo = (Ma)y, s = |, ¥vpwelxdydz (5.80
and
. _ AzgF
we = AeFio (5.8¢)
» Pe Ve é

The volume-averaged velocities (W*) associated with their respective volumes are also
shown in Fig. 6 and are defined by the following equations:

« _Fpolzg _ (P)z Azolzg

- w L] (s-ga)
00 poVo Po Vo 0
0
. FpoAz (P) Azo Azﬁ
W, =-20-%6 - 116 * Wo. (5.9b)
06 pg Vs Pe Ve °
. FH AZQ (p)lﬂ Asl Az,
wl = = . wl' (5-90)
W MV
2
e Fy,Az <P> Agzy Az
W)= 2200 - 1762 *W,, (5.9d)
2 P2 V2 P2V, 2
« F,cAz (P)5 AgzsAzg
W, = &30 - I .y, (5.9¢)
Po Vo Po Vo

6
w. = F=6 AZ§ = (p>66A16 AzG .
6 Pe Vs Pe Vs

We, (5.91)

1
L le A26 _ (p)61 Azl Az6 .
61 p61 Ve P61 Vel

Wi, {5.9g)
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W' = Fgpldzg _ () AzzAzg

{5.9h)
62 pga Vs P2 Vs2

where V = % AxAyAz is the volume of the fluid at that location. Equations 5.9 (a-h) can be
regarded as the closure relations that link the volume-averaged velocities te the facial
velocities. The derivation described here is somewhat more complicated than those in
previous COMMIX versions. However, the calculations with the present formulation are
found to be more robust in COMMIX-1C than those in previous COMMIX versions in certain
applications. In addition, as we shall demonstrate later, the present closure relations lead
to a formulation that ensures that the pressure drop at a given location conforms with the
density gradient in one-dimensional, steady-state flows. As shown by Padilla and Rowe,24
use of the so—-called donor flow formulation has the important advantage of making a
numerical scheme robust when significant density gradients occur. Furthermore, as we
shall also demonstrate later, the closure relations described here satisfy the one-
dimension:l steady-state Bernoulli equation.

The fl1.ite-volume expressions for the convective terms in the z momentum equation

(Fig. 6) are presented below. The w-momentum transport due to flow in the z-direction
(pww} is

I Az pww)

dxdydz
= |0.F,¢| Woq - |0.-Fos| Wy - 0., | W, +]0,-Foy| wo, . (5.10)

I -—-—————A(YZ:W) dxdydz

1 . 1 . . .
= -2-|o.r,2| Woo - 3|o.-1?,2| W, +%|o.1?,62| Wo - %]o.-r,szl W,
1 . 1 o« 1 .« 1 .’
-3 [0.Rg| W, + 3 |0, By W, - -ilo.rml W, + ;|°-'Fx61| Wog - (5.11)
The remaining convective term (pwv) in Eq. 3.1 can be written similarly. By summing up

. the three convective terms and using Eqs. 5.7 and 5.9, we obtain the finite-volume
expression for z momentum control volume in the following form:

I[A(v,pw) A(yzpwa) vy pwv)

+ +
Az A Ay ]dxdydz

=8, Wo -8y w - a3 ws -8y vy - aiw, -aCws - aiCug, (5.12)

where the coefficients are defined by the following equations:

{po AsoAZe (1= 1. 1 1 1 1
> o= ---“5;-3—9- (]o.F,e] +3 0.~ Fygq| + 3 [0~ Fyqy| + 3 lo.- F,“| *3 |o.— le)

(plg A 1
+ Po:;,o (IO Fsl + |0 sz|+-—-|0 Ful+ = |0 4|+-2—|0.--I"y3|) (5.13a)
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a = %ﬂo'FxxlAzo(W:n Ap/eVy+ |0'Fx61|Aze(p)161 A1 /P vﬁl] (6.13b)
8, = ’;‘ﬂo"’ Fral820(P)az A25 /95 Vs + |°" F x62|Azs<P)§2 Az, /Pgy vez] (6.13¢]
al® = -;-Uo.xryalmo(p)g3 B2y /9, Vg + |0y g| 824 ()3 AZg / Pes Vsa] (5.13d)
ag = ';' [IO" Fy4|Azo(P)g4 Az, /oy Vy+ |°"' Fye4|Az6 (P)oa Azy /Py V64] (5.13¢)
ag® = |0.F,5|az, (0} Az /Py Vy (5.130
ag. = |0.- 'F"zelAzs(p)gs Azg [ pg V. (5.13g)

In Eqs. 5.13a-g, the superscript w indicates the w-momentum equation and c indicates
convection. The various convective fluxes for the z-momentum control volume are listed in
Table 7. The finite-volume expressions for the x- and y-momentum control volumes can
be derived similarly. Equation 5.12 can be rewritten in the more general form:

J.[A(Y.M) . Ay, pv) +A(7;:“¢) dxdydz

Az Ay

= aloo-alte - alfes - af b3 - af 0 - al 05 - 2k b6 - (5.14)

Here again, we have employed the general variable ¢, which can represent either u, v, or w
because we are dealing with momentum control volumes.

To demonstrate that the pressure drop occurs at the same location where the density
changes, we consider a steady-state one-dimensional flow with a constant flow area and no
internal structure. Assuming that convection is dominating, Eq. 3.1 for the z direction
becomes

Alyoww) __ dp |
B -, 2 (5.15)

Integrating over the z-momentum control volume (Fig. 6) and assuming that w is positive,
we obtain from Eq. 5.10 '

Fie W::s = F",,w; = ‘(Ps‘Po)Az . (5.16)

where Az is the flow area in the z direction. Substituting Eqs. 5.7 and 5.9 into Eq. 5.16, we
obtain

(F:o + F-e)Fxo / 2pg Az, - (F:o + Fsb)F:s /2py Az, = ~(Py - Po)Az . (5.17)
For one—dimensional flow with a constant flow area,

Azy= Azg = Azg = Az,
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Table 7. Convectlve fluxes for the z-momentum
control volume

Fis = l(F‘, +Fp) = %[(P)g Az, Wy + (P): Az Ws]

Fie = ;(Fw +Fy) = 2[(9):0 Azg Wg + (P): Az, Wo]
Fao = (Pt (A2 W),,y5 = (PYs AZo Wo
Fu= (P)::t:u(Az W) ke = (P):inAerf'
(p)::t:ﬂ(Az W)\ikea = (P)ea Azy W,
Fis = (P);-:'.:u(Az w)j-l.h-llz = (P):;;Azeawa
= (P):::':n(Az W)k = (p); Azg W,
Fis = (P (AZ Whya = (p)o Az, W,
Fie = (p)::;(Az Wiaa = (p):eAze We
Foo = (P):u(Ax “)m/z = (P): Ax, u,
Fa= (P):-l(Ax u)|-l/2 = (P); Ax, u,
Fraa = (p):'::l:u AX u),,0km = (p):zAxﬁﬂu&
Fra1 = (p)::i:::(Ax W), yj2kn = {p :l Axg, Ug,
= (P)js (AY V)2 = (PYiAYL Vs
= ()" (Ay V),.p = (PO AY3 Vs
64 = (P):::n (Ay v) J1/2kel (P):; Ayg4Ves

k
Fyes = (P)i-:uﬂ (AY V) 1/20m = (Ple’ Aes Ves
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Fa0 = poAZo Wo = pAzw,
Fu5 = ps AZg W5 = pAzw,

Fi6 = pg Azg Wg = pAzw,
and Eq. 5.17 reduces to

(pw)z(i-%} (% - ). (5.18)

which indicates that the pressure drop occurs at the same location where the density
changes. In a similar manner, it can be demonstrated that the same relation holds if w is
negative. '

5.2 Diffusion Term

§.2.1 Main Control Volume
The integration of diffusion terms over a main control volume (Fig. 7) gives

* % %
ﬂ‘{‘r’ a"‘)4- A[Yxro 3y)+ A[ero az) dxdydz
Ax Ay Az Y

= D, (0, - o)~ D69~ 8,) + D (8, = #) - Dy(eg - 3) + Dg(0 - 49) - D5(8 - ¢5)
= Dyé) + Daég + D3bg + Dy ¢4 + Dsds + Dg bg

-(D1+D2+D3+D4+05+D6)¢0. (5.19)

Here, D (= effective diffusivity x flow area/distance between the centers of two control
volumes) is the diffusion strength across tlie surface of the control volume.

To determine the value of D at a surface, we assume that the diffusivity I" varies
continuously from one main control volume to the next and use the following average
diffusfon strength:

D, = (Ay),,, ,2(1*0 + T)f(Axy + Axy). (5.20)

Expressions of the diffusion strength for the six surfaces of the main control volume are
listed in Table 8.
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Fig. 7. Diffusion fluxes for the main control volume

Table 8. Diffusion strengths for the main
control volume

Dy = (Ax)ya(To + N)/(ax0 + Ax))
Dy = (Ax)yy/a(To + Ta)f(Axo + Ax,)
D = (Ay),,,,(Fo + T3)/(ayo + 4y3)
D, = (A,)M a0 + Ta)/(8y0 + 4ya)
Ds = (Az)1/0(To + Ts)/(Azo + A2s5)

Dg = (Az),1/a(To + Te)/(420 + 4z¢)
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5.2.2 Momentum Control Volume

Integration of the diffusion terms over the z-momentum control volume (Fig. 8) results
in an expression similar to Eq. 5.19:

I A(y,l‘, 7?.%) ) A(Y,F, %) ) A,.(y‘,l‘, %:l

Ax ay | Az e dy dz

= Dy¢; + Dada + Dyds + Dy ¢4 + D5 ¢5 + Dg 06

~(Dy + Dy + Dy + Dy + D5 + Dg) ¢o - (5.21)

The only difference is that we now use the momentum control volume diffusion strength D,
instead of the main control volume diffusion strength D, e.g., for the north face,

D = %[(Az)k +(Az)k+1]({;)6 : (5.22)

Expressions of the diffusion strengths D for the z momentum control volume are listed in
Table 9.

5.3 Unsteady Term

5.3.1 Main Control Volume

Representation of the term d(ywp¢)/ot is obtained by assuming that the values po and ¢o
prevail over the control volume surrounding point O (see Fig. 9). Integration of the
unsteady terms over the control volume then gives

n
I%(ym)dxdydz - Q%EC(L")L Vo . (5.23)

where Vo = ¥ Ax Ay Az is the volume of the fluid, the superscript n refers to a known
previous time-step value, and the superscript n+1 for a new time-step value is omitted for
simplicity, i.e., (pé)o implies (p¢)8“.

5.3.2 Momentum Control Volume

Referring to the z-momentum control volume shown in Fig. 6, and recalling that the
momentum of the staggered mesh consists of two parts, i.e.,

M, = (“-)v.n +(H')v./z

= Y.pwdxdydz+ L nY DHwdxdydz, (5.24)

Vo/2
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Fg. 8. Diffusion fluxes for the z-momentum
control volume

Table 9. Diffusion strengths for the z-momentum control volume

D, = %[( Ax), oo +H(A), 0 kﬂ][(A(:: : 2:)1) * (A(:: :lel)]

5, %[(A,)MM+(Ax)mn.m][ (+0) , (G+Fa) ]

(ax, +4x,)  (Ax, +Ax,,)

Dy = %:( Ay) szt (A}') j-1/2,k+1][(A(::z : ?y)g) + (A(::: 12;36)3)]
_ . Io+Ty Ts +T'es

Dy = %_(Ay) #1/2.% + (AY)ju/z.ku][(A(yo + Ay),.) * (A(Ys + Aya)A)]
Ds = ‘%_(Az)k + (Az)m]({;)o

Dg = %[(Az)k + (Az)k“]({;l
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Fig. 9. Control volume for fleld variables

by integrating the unsteady term over the control volume, we obtain

I-gt-(yva)dxdydz = L /2%(yva)dxdydz +J‘ gt-(yva)dxdydz

v, /2
d J
= T(u')v.n +E(H')v.n

t
_ 9 Vop, W . BIAAAM
Jgt dt 2

=.A1_t[.%-(p_ Woo - PO W ) (p. o - Ph o.)] (5.25a)

In deriving Eq. 5.25a, we used Eqs. 5.8b and 5.8f, which were introduced to define volume-

averaged velocity W*. Here again, the superscript n refers to the previous time-step value,
and the superscript n+1 for new a time-step value is omitted for simplicity.

Substituting Eq. 5.9 into Eq. 5.25a and rearranging, we obtain

Isa; (vaw)dx dydz

0 n
P T LRI s
ZAt 0 2At 0 .
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In deducing Eq. 5.25b, we have employed the closure relations (Eq. 5.10) described in
Sec. 5.1.2.

Note that Eq. 5.25b has two potential limitations: (a) if the density change in the
control volume is large, the approximation may be less accurate; (b) if the volume porosity
is substantially different from the surface porosity in the momentum control volume, the
approximation may also be less accurate. An alternative formulation of the unsteady term as
shown in Eq. 5.23 is provided as a user’s option. In the alternative formulation, both
volume-weighted average porosity and volume-weighted average density are used.

5.4 Source Term

The source term S, in Eq. 3.1 can, in general, be represented by a linear combination
of two terms:

S’ = Sc’ + SPQ ¢ . (5.26)

It is understood that Sce, Spe, and ¢ refer to the control volume in question and are
assumed uniform in that volume. Clearly, both Scy and Spe depend on the source term Sg
under consideration. When Scy is greater than 0 and Spe is less than or equal to zero, the
linear decomposition of S, defined by Eq. 5.26 is an effective device for obtaining
computational stability and convergence.22

Integration of the source term over the main control volume gives
J.S¢dxdydz = SCQV°+SP¢ VQ&Q ' (5.27)

where Vg = % Ax Ay Az is the fluid volume.

Integration of the source term over the z-momentum control volume gives

jS¢d!dez= SC¢VO+Sw Vo&o » (5.28)
where
Az Az
V. = -0 . 6
VO = (AZO +A26)/[ Vo + V6 } , (529)

¥V, is the characteristic volume used in the finite-volume integration. It will be made clear

in Sec. 5.6 why we employed Eq. 5.29 as the characteristic volume for the integration of the
z-momentum control volume.

5.5 General Finite—Volume Equation for the Main Control Volume

Having looked at each term of the general equation separately, we now assemble all
terms of Egs. 5.6, 5.19, 5.23, and 5.27 for the main control volume to obtain the general
finite-volume equation.
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j[(Unsteady) +(Convection) - (Diffusion) - (Source)] dxdydz

n
(P4l = 095
At

(Unsteady) (Convection)

(IO."Fll + IO.F2| + ----)QQ

- (j0.F1|¢y +[0.-F2e2 + cess)+(Dy + Dz ++++2)80

(Convection) (Diffusion)
—(D1¢1+D2.‘¢2+...-)—SC¢V0,—SP¢¢0V0 =0. (5.30)
(Diffusion) (Source)

After some algebra and rearrangement, we obtain

V,
T vi]}

n,n
= [(|O,F1| +Dy)@; + -+ +(|0.~Fg| + Dg) ¢6] + ("‘x" Vo + Sy vo} . (5.31)

The discretized form of the continuity equation is obtained by setting ¢ = 1, D = 0, Scp =
m'", and Spy = 0 in Eq. 5.31. The result is

n
E:TO + IO.—Fll + |0.F2| + ®0se 4 |0.F6| = IO-Fll + eooe 4+ IO'—FGI + %QEVO + ™"V,

(5.32)

Substituting Eq. 5.32 into Eq. 5.31, we obtain the general finite-volume equation for the
main control volume:

a?)‘o = a:¢l 4+ oooe 4 a%¢6 + bg, (5.33)
where the coefficients al, af, etc. are as given in Table 10.

Finally, it should be noted that the general variable ¢ for the main control volume can
represent any nonflow variable such as enthalpy. turbulence kinetic energy, or rate of
dissipation of turbulence kinetic energy.

5.6 General Finite—Volume Equation for the z-Momentum Control Volume

The finite-volume expression for the z-momentum equation can be obtained by
following the same procedure as for the finite-volume equation of the main control volume,
with one exception. The pressure gradient term in the momentum equation is not known a
priori. It is determined in accordance with a procedure presented in Sec. 6 and is
calculated with the requirement that the velocity field satisfies the continuity equation. For
this reason, the pressure-containing term in the finite-volume form of the momentum

Com
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Table 10. Fully implicit finite-volume equation for the main
control volume and its coefficients

a

-

= (jo.F,| +D,) a} = (j0.-F;|+D;)

we
> o

= (|0.Fg|+Ds) a = (j0.-F,|+D,)

= (|0.-Fq| + De)

o
[

a} = (j0.Fs|+ Ds)

n.n
b} ["At +Sep - m) Vo
V]

ag (af+a‘2’+....a6) [ S”J

equation is not included it in the source term. Accordingly, the discretized equation for
the z-momentum control volume shown in Fig. 6 is written as

ay wg = a] Wy +ay Wp +a3 Wy +ay Wy +ay W +ag wg +bg —d"(Ps—Pp), (5.34)

where
dw = Vo /[%(AZQ + AZG)] (5-35)

and V, is the characteristic volume for the momentum control volume defined by Eq. 5.29.
The reason that Eq. 5.35 is written in the form shown is that we want the discretized
momentum equation to satisfy the one-dimensional steady-state Bernoulli’s equation (with
constant density).

The derivation of Eq. 5.29 follows. Referring to Fig. 6, the one-dimensional steady-
state Bernoulli equation with constant density can be written as

pg(Azy + Azg)
5 .

where ¥, and ¥, are the average velocities associated with the control volume centered at
grid points 6 and O, respectively. From continuity, we have

p(W6 WO)/2 = —(Ps Po) - (5.36)

V, Vo
Pwexze's' = PWoA—z'; = Fo = pAzZoW,. (5.37)

Substituting Eq. 5.37 into Eq. 5.36, and rearranging lead to the equation
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which must be satisfied by the discretized, one-dimensional z-momentum equation.

The one-dimensional momentum equation in the z direction is

wW P
ﬁm—) = "‘Yv'é" - YvPE.

Az az

(5.38)

(5.39)

Integrating over the z-momentum control volume (Fig. 6), and assuming that w is positive,

that
and

[, Yopedv = 1vpe¥%,
we obtain

FaeWos — FysWs = ~(Pg - Po)Vo / [%(Azo + Aze)] - 1vpgV.

where V, is the characteristic volume to be determined.

Substituting Egs. 5.7 and 5.9 into Eq. 5.40, we get

(Fuo * Fr6)Fr0826  (Fio (Fyo *Fys)Fs i (Pg - Po) Y, Y g
206 Vs 2povo 3(az, + a2 >

For one-dimensional flow with constant density,

Fz0 = Fz5 = Fag,

and

po'= ps= p.
Therefore, Eq. 5.41 reduces to

20 | V

Dividing Eq. 5.42 by Eq. 5.38, we obtain

e

2
fﬁ’_[—_ﬁ. __Q](Az +Az ) —(PG-PO)VO - -;-yvpg(Azo+Azs)vo

(5.40)

(5.41)

(5.42)

(5.43)
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Equation 5.43 is identical to Eq. 5.29. Thus, the characteristic volume V, employed in Eq.
5.35 is the proper volume for integration over the z-momentum control volume, and the
resulting finite-volume equation satisfies the one-dimensional Bernoulli equation.

The coefficients a):--a} and by in Eq. 5.34 can be evaluated from Egs. 5.12, 5.21, 5.25,
and 5.28. The resulting equation has the same form as Eq. 5.33, except that the contribu-
tions of the source that enter a! and by do not contain the pressure. The effect of the
pressure gradient is incorporated in the last term of Eq. 5.34. The coefficients of the
momentum equaiion for the z-momentum control volume are listed in Table 11, where
velocity w was replaced by the general variable ¢. This is to indicate that the x- and y-
momentum equations can be derived in a similar manner. Note that in Table 11, the two
quantities Scp and Spy do not contain the mass source term ™. Two different forms of the
coefficient a% are given in Table 11. The first form, a}(1), is obtained from the momentum
equation only and is referred to as the conservative form because conservation of
momentum is satisfied over the control volume. The second form, a}(2), is derived by
employing both the momentum and continuity equations even though the latter may not be
satisfied during an iteration. Experience indicates that using the continuity equation often
helps to speed up convergence during iterations. The second form of the coefficient is
referred to as the transport form of the momentum equation and is implemented in
COMMIX-PPC.

To derive the transport form of the z-momentum equation, we begin with the
discretized continuity equation for Cell 0 and Cell 6, which can be written as

(Po - Pg)Vo / At + Fyg - Fyg + Fyg = Fyy +Fyg = Fyg - 1iig Vo = 0 (5.44)

for Cell 0, and

(Ps - Pg)vs / At + Fpg - Fyg + Frgy — Fye1 + Fyes - Fygs - MgVo = 0 (5.45)

for Cell 6. The transport form of the z-momentum equation is obtained from the following
relatinnship:

transport conservative form w. w.

form of z- = of z-momentum - —2 x Eq. 5.44 - —22x Eq. 5.45. (5.46)
momentum equation 2 2

equation

Equations 5.44 and 5.45 contain the time-dependent terms, the convective fluxes, and
condensation terms. The diffusion terms and the source terms remain the same in the
transport form as they are in the conservative form of the z-momentum equation. Thus, all
the coefficients are in the conservative and transport forms of the z-momentum equation,
with the exception of the coefficient a!, and Eq. 5.46 can be reduced to

L] L]

ad(2) = a(1)- 3’-502 x Eq. 5.44 - %Oix Eq. 5.45. (5.47)

After some manipulation and rearrangement, the final forms of a}(2) are identical to those
given in Table 11.
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Table 11. Coefficients of the fully implicit finite-volume
equation for the z-momentum control volume

addo = ale, +o+ adtg + b} - dy(Ps - Po)

1
P)a, AZ D
a: = Q'g'lz—_l’(lo.FxllAZO /plvl + |00Fx6]‘Azﬁ /pﬁlvﬁl) + Dl

2
Az -
aj = @%J'(loo-l"ﬂ!mo / p2Va +0.~Fxea| 26 / pmvsz) + Dy
3
Az —
a} = (—‘,)'%——S'(IO.Fy3|AZo /p3Vs + Io-FyGS‘AZG / p‘“’v‘”) +Ds

4
aj = @%ﬂ(lo'"FyJAzo /P4Vs +|0"'Fy64|A26/ p°4V°4)+5‘

5
ag = lo’Fz5|£z_O(_p_)vLA_z_5+ Bs
PoVo

6
ag = ‘O'—fzalw"' 66

PeVe
b} = Azo[(p)g]“(Azo + Azg)0p / 24t + SyVo
ad()= Azo(p)q(Azo + Azg)/ 24t

+ p6v6 |0.Fz6l + '2—|0.Fx62| + '2"|0'-Fx61| + -2-|0.Fy64‘ + a—lO,_Fyss| - _ZQ_VG

0 Az — h
B o g o+l Jol+ o-nl - )

+§l + e +-D-6 - sp‘vo

at(2)= su.[(e_)m (Ez)Az]

2At Po Pe

. (p)e AZoAZo

oV, (|0.-?"ze| + "12‘|°-‘er2| + %Io'erll + %‘O.—Fy“l + %[o. Fye| + Fw)

o AZoAZo (| =
+ (D) PQV(:) 2 (lO'FzS| + %lo'_F:dl + %‘O'Fxll + %lo'_FYd + %‘O'Fyal - on)

+ﬁl + oo +f)-6 - S”VO
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6 Pressure Equation

The pressure in the momentum equation (Eq. 5.34) is unknown and must be
determined from the conservation-of-mass equation. In this section, we present the
derivation of the pressure equation.

The conservation of mass in Eq. 5.32 for the cell around point O (Fig. 9) can be
expressed as

Vo (%) - (A, “):-1/2("):) +(Ay “)|+1/2<p)g B (AY v)1—1/2“))g ' (Ay v)l“’ 2(p)2

- (A, W)k_1/2<9)g +(Ag W)kn/z(l))g - m;VO =8 . (6.1)

Here, Vo = wAxAyAz is the fluid volume of the main control volume, 3¢ is the mass residual
of the continuity equation, <p> is the upwind density, u, v, and w are the normal velocities
at the surface of the control volume, and A is the true flow area, which is the product of
superficial surface area and directional surface porosity.

When mass !s precisely conserved, the right side of Eq. 6.1 vanishes, i.e., 8y = O.
However, because Eq. 6.1 is solved by an iterative procedure, the mass residual g, in
general, may not be zero.

To convert the indirect specification of pressure in the continuity equation to an
explicit form, we write the momentum Eq. 5.34 as

¢ = $- d*A(5P) (¢ = u v.w), (6.2a)

where

p = prtiopn, (6.2b)

8
Yale, + b1l - d* aP”

¢ =Ll 3 - (6.2¢)

In Eq. 6.2a, 3P (instead of P) is used to speed the convergence. This is particularly helpful
when the change in pressure is small compared to the absolute pressure of the system.

For example, the z-direction velocity w at the north surface of the main control volume
is

We = ‘.VG ot d;, (5?6 - SPO) ' (6.38)
where

6
aYa, w,+bg - dZ(P{;‘— P(',')

Wg = —L=l = : (6.3b)
0




2vyr
w _ , (6.30)
a% ap (Azq + Azq)
and
VY = (Azo + Aze) (Az° +4% Az*‘) (6.3d)

Defining q, ¥, d, and V in a similar manner, the following set of expressions can be derived.
ul = ﬁl - dr (spo - SP‘) .

U2 = ﬁz - d‘zl (8P2 - GPO) '

<
©
!

v —d;(SPo-SP:,).

Vo = ‘74‘d:(5P4‘ 81:'o)'

and
wg = Wy - dg (8P - 8Ps). (6.4)
where
4o = pAVAY
17 aj(ax, +Ax,)’
4 = 2vy
? 7 af(Ax, + Ax,)
3 ag(Ayo + Ays)
o 29
‘ -— £ ]
ag(Ayo + Ay,)
and
W
dy = — 28 (6.5)

ad (Azy + Azg)

The characteristic volumes are defined as

v - (Axoml)/(_u_i)

Vy = (ax, + Ax,)/(%i+ %—1)

= (Ayo + Ays / { Ay, Ay“)
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Vi = (ayo + AYA)/(A\%’Q' + 9‘%1) .

and
Vy = (Azo + Azg) (—‘1"’ + 8% ) (6.6)

In Egs. 6.6, the subscripts 1-6 refer to velocities at the surfaces of the main control volume.
Substitution of Eqs. 6.3 and 6.4 into Eq. 6.1 and rearranging yleld

Py _ P P
alo‘“’o‘z:,"‘z 8Py~ Do = 5o (6.7)
{=1

where the coefficients are as listed in Table 12. These coeflicients form a symmetric
matrix.

Equation 6.7 is the required pressure equation. It can be solved by using any one of the
matrix solvers described in Sec. 11.3.

7__Turbulence Modeling

Currently, two options are available in COMMIX-PPC to account for turbulence effects.
One is the constant turbulent viscosity model and the other is the k-e two-equation model;
both are briefly described in the following.

7.1 Constant Turbulent Viscosity Model

The constant turbulent viscosity model, in which the turbulent viscosity and the
turbulent conductivity are simply taken to be uniform, is the simplest turbulence model.
The value of the turbulent viscosity is a user-prescribed single-input constant. Strictly
speaking, the constant-diffusivity model is not a turbulence model. We sometimes find it
useful in performing scoping calculations.

It is preferable to prescribe values of turbulent viscosity and turbulent conductivity
based on experimental data. If the experimental information is not available, then turbulent
viscosity can be estimated with the following equation, suggested by Sha and Launder:25

Heur = 0.007¢,pUpax ¢ (7.1)
where

¢, =01 for Re . > 2000,

¢, =0.1(0.001Re,,,~1) for 1000 < Rep,, <2000,

c,=0 for Re,,,, <1000,

(7.2)
Umax = Max(u,v,w), (7.3)
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Table 12. Coefficients of the pressure equation
(Eq. 6.7)

L a0 Axg A"J
4 ‘ v
A 2V.
ag = |~ { )g(A +3A ]
\ 20 /1 1/2 Yo +4Y3
(él\ o 2-v-v
R )y Ayg + A
\ 20 Jji1/2 Yo +aYy4
{ 3\ =Sw
A 5 2V,
a5 = | (p)O(Az +5Az ]
; \20 Jk-1/2 0 5
al = (A, ()0( 2Ve' ]
= 6
\20 Jiayz \AZo +42g

ab = af+ag+a§+ai+ag+ag

0 N -
by = -Vo ('5%)0 +(Ax “)x-1/2<P):) - (Ax “)i+1/2(9)g
+ (Ay 0)]..1/2“’)8 - (AY“’)JH/z(P)g

- 5 rJ 0 o 11t
+(A, W)k_l/z(P)o - (Azw)ku/z(")s" m™Vp.

Remax = Max(Rex. Rey, Rey) , (7.4)
and
Re =2;h2. (7.5)

The mixing length ¢ is given by

l=C, Dh' (7.6)

with the coefficient

C‘=004| (7.7)

and Dy, is the hydraulic diameter.

If information about the turbulent conductivity Ayr is not available, the following
approximation may be used:
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- Cp Pur
tar=

- cp Beur (7 8)
= - :
0.81- exp(-6 x 10-*RePr'°)[”

where op, is the turbulent Prandtl number, Re is the characteristic Reynolds number, and

Pr = Cpjt/A is the molecular Prandtl number. Equation 7.8 was proposed by of Nijsing and
Eifler.26

7.2 k-e Two-Equation Turbulence Model
The derivations of the transport equations for k and € are well documented in the
literature, e.g., Sha and Launder,28 Launder and Spalding,27 and Arpact and Larsen.28 Here,
we only briefly summarize the results. The turbulence kinetic energy k is defined by
— l 2 '2 '3
k-2(u +V'+w ) (7.9)

and the dissipation rate is defined by

g = ydULOY (7.10)
dx, 9X,

Here, u', v, and w' denote the fluctuation velocity components in the coordinate directions

x1. X2, and x3 respectively, v is the molecular-kinematic viscosity, i and j are the indices
from 1 to 3, and the overbars denote time averaging.

7.2.1  Transport Equation for k

The transport equation for turbulence kinetic energy k can be written as

ok ok —du, ou [9u, ou
P‘a't““‘PuJ&‘" ="P“|“j“9'l‘+P“| g - l(""{"*_l]

A B C
3| [ok duu | wuu — (7.11)
*ax,Hax,* 3, ] P—3 Pu, & .
D

The four groups of terms on the right-hand side are
A: source due to mean shear,

B: buoyancy interactions,
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C: loss of k through viscous disstpation, and
D: diffusive transport of k and randomizing action of the pressure/strain correlation.

It is evident that Eq. 7.11 requires closure. The prevailing practice is to rewrite Eq. 7.11
in the following form:

A, e M, |2 (7.12)
pat+pulaxj—Pk+Gk pe+axj{( 3, +p‘m1}E].
in which
aul au' auj

= Pour| =t ==+ = 7.13
i{s the source due to mean shear, and

= Meur 9pf 0T 7.14

G pon a'r[ax, g,] (7.14)

is the source due to thermal buoyancy. It is commonly recommended that the turbulence
Prandt! number on be assigned a value of 0.9. The term containing ok in Eq. 7.12
represents the diffusion of k, and ok is called the turbulence Prandtl number for k.
Launder et al.29 have recommended that ok be assigned the value 1.0.

7.2.2 Transport Equation for e

The transport equation for ¢ is discussed in detail by Daly and Harlow,3C Hanjalic and
Launder,3! and Lumley and Khajeh-Nouri.32 At the present time, the only feasible approach
toward devising a useful € equation is to employ physical intuition and intelligent dimen-
sional analysis. The resulting e equation usually contains several empirical coeflicients that
require adjustment to account for prominent behaviors of different shear flows. The
equation proposed by Jones and Launder33 and by Daly and Harlow30 is

;
3 ¥k ¢ peZ 3 |[my 3
PP uime = CriclPe G- Gy ¢ sx‘;[(‘?;‘j‘*“eam)sxj‘ (7.15)

In Eq. 7.15, the source terms Px and Gk have the same form as Eq. 7.13 and Eq. 7.14, tiie
second term on the right accounts for energy dissipation, and the last term represents
diffusion, in which o is the turbulence Prandtl number for € and its recommended value28
is 1.3. The choice of the coefficient of the production term C; is usually based on near-wall
turbulence, whereas the coefficient Cg is determined from the decay-of-grid turbulence.
The values of C; and Cg recommended by Launder et al.34 are 1.44 and 1.92, respectively.
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7.2.3  Sequence of Steps in the k-e¢ Two-Equation Turbulence Modoel

In the k-¢ two-equation turbulence model, the transport equations for the turbulence
kinetic energy k (Eq. 7.12) and for the dissipation rate of turbulence kinetic energy € (Eq.
7.15) are solved first. Then, the turbulent viscosity ptur is determined from the relation

C pk2
Prur = (—L“e ] (7.16)

where, Cp is a constant with the recommended value 0.09. The turbulent thermal
conductivity Atyr is determined from the equation

C
Splur (7.17)

Mo =
tur Un

In turbulent flows, the turbulent diffusivities in the governing conservation equation

(3.1) are time-averaged quantities. By combining them with their respective molecular
counterparts, we can write

R = Heff = llam + Htur (7.18)
and

A = Aeff = Mam + Atur. (7.19)

where, the subscripts lam and tur stand for laminar (molecular) and turbulent properties,
respectively.

The Prandtl’'s mixing-length hypothesis is a special case of the k-¢ two-equation
turbulence model. We shall now proceed to demonstrate that this is indeed the case. For
steady-state, one-dimensional flow near a wall, the effects of convection and diffusion are
usually negligible; turbulence production is balanced by dissipation. Hence, Eq. 7.12
reduces to

du 2
um(——) = pe. (7.20)

Combining Eq. 7.16 and Eq. 7.20 gives

2
du 2.2
"?;.(-) = Cpp’k®. (7.21)
y D
Because
0
Tur = l-ltur_u- (7.22)
ay

Eq. 7.21 can be written as
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Tor = Cg2pk. (7.23)

which states that the turbulent shear stress is directly proportional to the turbulence
kinetic energy in local equilibrium turbulence. This important relationship is supported by
numerous experiments on flows near walls.

From dimensional considerations,27 the dissipation rate &€ can be expressed as
e=CYx¥%/s. (7.24)

Substituting Eqgs. 7.16 and 7.24 into Eq. 7.20 and after rearrangement, one obtains

2
du
clf?k = (—-) 2. (7.25)
° ay
Eliminating k between Egs. 7.23 and 7.25 gives
2
?( du
= = 7.2
o =06 (5] 29

which is the original form given by the Prandtl's mixing-length hypothesis. Thus, the
mixing-length hypothesis can be deduced from the transport equation for the turbulence
kinetic energy upon neglecting the contributions from convection and diffusion. Its
application is limited to local equilibrium turbulent flows that usually occur near walls.
Consequently, as we shall soon see, the results of a local equilibrium turbulence model play
an important role in the development of the wall function to be described in Sec. 7.4.

7.3 Boundary Conditions for Turbulence Transport Equations

There are three types of boundaries: 1. a line or a surface {plane) of symmetry, 2. inlet
and outlet boundaries, and 3. a solid wall. The first two boundaries are discussed here, and
a solid-wall boundary is discussed in Sec. 7.4.

7.3.1 Symmetry Boundary

The simplest boundary is the line or plane of symmetry; at a symmetry line or plane,
the normal velocity is zero. The gradients of scalar quantities k and £ normal to the
symmetry line or plane also vanish.

7.3.2 inlet and Outiet Boundaries

At the outlet plane (free boundary), the gradient of turbulence quantities is assumed to
be zero. Thus, at the outlet plane,

dk/dz = 0,

and
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de/dz = 0, (7.27)

where z represents flow direction at the outlet.

The inlet plane requires special treatment. Both the inlet turbulence kinetic energy
kin and the inlet dissipation rate gj; should be obtained from measurements if available. If
measurements are not available at the inlet plane, the following procedure may be used to
estimate ki, and gin. If the inlet velocity uj, is uniform,

k,, = 0.001 u?, (7.28)

and
£m = Cok¥?2/¢,. (7.29)

where ¢j, is a length scale at the inlet. It is usually assumed that ¢;, is equal to the smaller
of 0.42 y and 0.1 8, where y denotes the distance to the nearest wall and 8 is the width of
the shear layer. If ujn is not uniform but the profile of the mean velocity at the inlet plane is
known, ki can be estimated from

ki = 3£, [(QST'“JZ + (%ﬂ (7.30)

where uj, is the mean velocity component in the main flow (x) direction. The inlet
dissipation rate €, is again estimated by using Eq. 7.29.

Note that ki, and ¢ are user-specified input parameters in COMMIX-PPC. If the user
does not specify kin and g5, COMMIX-PPC assumes that the inlet k and ¢ are negligibly
small (k = 10-16 and ¢ = 10-10),

7.4 Wall-Function Treatment

In the immediate vicinity of a solid wall, there is a large variation in the values of
turbulence properties. Therefore, to predict the correct values of momentum flux, energy
flux, and the gradients of k and &, a special procedure is followed, called the wall-function
treatment. In this procedure, we implicitly account for steep variation near a wall and avoid
the need for a fine mesh. This approach fits well with COMMIX because, in most engi-
neering applications, one rareiy has the luxury of resolving the fine details in a boundary
layer that are due primarily to the high cost of computation with a fine-mesh system.

in the literature, there are several different treatments of wall function.35 It appears
that, at the present time, no single wall-function treatment can claim superiority in both
generality and accuracy under a variety of condition. In view of this, we have developed the
wall-function model in COMMIX-PPC based on the following guidelines:

1. Simplicity.

2. Minimizing numerical difficulties.
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3. Wide range of applicability.

The first two guidelines are self-explanatory. In a general-purpose code such as COMMIX,
one may frequently have to deal simultaneously with laminar and turbulent flows at different
locations in a system. Also, during a transient simulation, different flow regimes may occur
at the same location but at different times. Thus, in COMMIX-PPC, provision is made to
calculate flows with local Reynolds numbers ranging from very small (laminar) to very large
(highly turbulent), even though the accuracy of the results may deteriorate in a certain
range of the relevant parameters (such as Reynolds number). This is what we mean by a
wide range of applicability in Guideline 3.

There are basically two approaches in treating the cells adjacent to walls. The first is
that both k and ¢ are calculated algebraically for the cells next to the walls, and therefore,
the transport equations for k and ¢ are not solved. The second approach is to calculate €
algebraically and solve the transport equation for k for cells adjacent to walls. In COMMIX-
PPC, we have adopted the first approach, i.e., both k and ¢ are solved algebraically, because
of simplicity (Guideline 1).

There are also two types of wall-function models; a two-layer model and a three-layer
model. In COMMIX-PPC, the simpler two-layer wall-function model is adopted with minor
modification.

7.4.1 A Wall-Function Model

Figure 10 {llustrates the wall-function model used in COMMIX~-PPC, where P is the
node adjacent to the wall, yp is the distance from P to the wall, and y ¢ 18 the thickness of
the viscous sublayer. When yp > Y, the node P is in the fully turbulent region; when yp < Yo
the node P is in the laminar sublayer. The distance yp is fixed when the user completes
modeling the geometry (and mesh system). The thickness of the viscous sublayer Yg
however, is not constant and often cannot be easily determined beforehand. Hence,
provision is made in COMMIX-PPC to accommodate both situations.

When Yp > Y,, the first node is in the fully turbulent zone (Fig. 10). The velocity at
node P is given by the law of the wall in the fully turbulent region

+ 1
up = -i-(-tn(E y;), (7.31)
where
u; = Up/un, (7.32)
ue = (tw/p)1/2, (7.33)
Yyt =yu/v, (7.34)

E is a constant equal to 9.0, K is the von Karman constant (K = 0.42), and v is the kinematic
viscosity.

The turbulence kinetic energy k at node P can be calculated by using Eq. 7.23, which is
rewritten as

\
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Fg. 10. Two-layer wall-function model
ur> yw)

3 2 ,~1/2
kp = u; /C°, (7.35)

for which the approximation that ty, = tw was used. The turbulence dissipation rate ¢ at
node P is calculated by using an equation similar to Eq. 7.24, i.e.,

gp = C?)“ kg/ﬂ /(Kyp)

= u?/(Kyp). (7.36)

because £ = Kyp.
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When Yp <Yy, the node P is in the viscous sublayer (Fig. 10). The velocity at node P is
given by the law of the wall in the viscous sublayer

+

u, = y;, (7.37)

which can be rewritten as

u, = (vup/yp)’>. (7.37a)

The turbulence kinetic energy at node P is calculated from

kp = k,(yp /Yc)z- (7.38)

where k, is the turbulence kinetic energy at y = y,. If we assume that Eq. 7.24, which is
valid for local equilibrium turbulence, applies at the edge of the laminar sublayer (y = y,).
then Eq. 7.38 becomes

kp = u?(yp/y,)° /CY2. (7.38a)

Note that the assumption of local equilibrium at the edge of the laminar sublayer may
not be strictly valid. It is known28 that local equilibrium applies in the region 30 < y* < 50.
The main reason that the assumption was adopted was to simplify the calculation. The
present model also assumes that the turbulence kinetic energy k is constant outside the
laminar sublayer (Fig. 10). This assumption greatly simplifies the numerical calculation
(Guideline 1) because no extrapolation is needed.

The turbulence dissipation rate € at node P, which is calculated by using Eq. 7.35 and
by assuming that the dissipation rate in the viscous sublayer is constant and equal to that at
Y = y,. is defined as

gp =ul/ky,. (7.39)

The assumption of constant € in the viscous sublayer is in agreement with most wall-
function models in the literature. The assumption that ep is equal to € at y = y, is different
from assumptions in the literature. The reason for making the last assumption is to make €
continuous so that numerical difficulties associated with discontinuous functions can be
avoided (Guideline 2).

7.4.2 Evaluating k and ¢ for Cells Adjacent to Walls

In the computer code, the following paths are followed to determine the proper values
of k and ¢ for cells adjacent to the wall. The key is to determine whether the node adjacent
to a wall is in the viscous sublayer or in the turbulent zone. The relevant scaling parameter
is the frictional velocity u., which appears in the equations for k, ¢, and the velocity
distribution given by the law of the wall in Sec. 7.4.1.

The preliminary step is to evaluate the dimensionless thickness of the viscous sublayer
Y. This is accomplished by matching the velocity at the edge of the viscous sublayer (y =
ye) to that from the law of the wall. Because u; = yj,
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1
yi = -iln(E yi). (7.40)
where

Yi =y /v, (7.41)

with K = 0.42, and E = 9. It should be noted that 3 depends only on the constants K and
E. When the values of K and E just cited are used, y = 10.92. We then proceed to
calculate kp and ¢p as follows:

Step 1 - Calculate y, based on a guessed value of u;

The value of u; can be estimated by either the viscous sublayer relationship (Eq. 7.37a). or
the local equilibrium turbulence relationship (Eq. 7.35). In the code, we take the larger of
the two as the guessed value of ug, i.e.,

u? = mm{!‘-’-ﬂ.cg“kp} (7.42)
Yp
Then, y is calculated from

Ye=vys/u; = 10.92l.

u,

Step 2 - Compute kp and ep

If yp > Y. the node P is in the turbulent zone, and the frictional velocity u: is
recomputed iteratively by using the law of the wall in the turbulent zone,

u, = Kup /¢n(Eypu, /v). (7.43)
Next, kp and ep are calculated according to Eqs. 7.35 and 7.36, respectively, i.e.,

kp “3 / ng

ep = ui /Kyp.

If yp < yg. the node P is in the viscous sublayer, and the friction velocity ugis
recomputed by using Eq. 7.37a. Thus,

u; = (V“P /YP)1/2~

Next, kp and ep are calculated according to Eqs. 7.38a and 7.39, respectively, i.e.,
ke = u¥(ye/y.)" /CY?

ep = ul /Ky,.

The algebraically computed kp and ep of the cells adjacent to the wall are then used in the
solution of the transport equations of k and ¢ for other cells. If the results do not satisfy the
convergence criteria, Steps 1 and 2 are repeated until convergence is reached.
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7.5 Solution Procedure for Calculating Turbulent Flows

The procedure for calculating turbulent flows is similar to that described in Sec. 11,
except that two additional transport equations for k and for ¢ must be solved. This is
accomplished after solving the pressure equation and before sclving the component mass
conservation equation. A fully implicit solution procedure for calculating turbulent flows is
summarized in Table 13.

7.6 Discussion

Eight constants are employed in the k-¢ two-equation turbulence model. Listed in
Table 14, they are the default values used in COMMIX-PPC. Some of these values may be
slightly different from those used in other k-¢ two-equation turbulence models. If users
wish to use values other than those listed in Table 14, they can readily do so (see input
preparation described in Volume II).

The wall-function model described in Sec. 7.4 is simpler than most other models in
the literature. We have thoroughly tested this model against data for fully developed pipe
flow and for two-dimensional sudden—-expansion associated with backward-facing steps.36
The results indicate that the current k-¢ two-equation turbulence model compares
favorably with the data from fully developed pipe flow at high Reynolds numbers, but is less
favorable for the backward-facing step, particularly near the reattachment zone. These
observations are in agreement with the assessment of other two-equation turbulence
models.37

The k-¢ two~equation turbulence model has also been tested against data from a
circular buoyant jet.36 Both the calculated centerline velocity and centerline temperature
distributions compare favorably with data for a densimetric Froude number of 5. The
buoyant jet is a free shear flow and therefore is not affected by the wall-function model.

Finally, it should be noted that the k-¢ two-equation turbulence model described in
this chapter is, strictly speaking, only valid for turbulence at very high Reynolds numbers.
Even though the code will perform calculations for flows at lower Reynolds numbers, the
results are less reliable and must be examined and interpreted very carefully. The k-& two-
equation turbulence model does not automatically degenerate to that for low Reynolds
flows, which is the inherent limitation of most turbulence models. Users must be aware of
this limitation. Our assessment is that this model does have some generality in treating a
variety of turbulent flows encountered in engineering systems, even though the accuracy
may vary from one type of flow to another.
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L

Table 13. Fully implicit (SIMPLEST-ANL) solution sequence
for turbulent flows

1. Calculate velocity-pressure relation coefficients from the previous iterate values of u, v,
w, and Heff:

$.d*%(¢ = u,v,w).

2. Calculate pressure equation coefficients using ¢, d* :
ab,al,bj .

3. Solve pressure equation for new-time, new-iterate pressure SP:
aj 8P, =X aj 8P, + by .

4. Calculate new~time, new-iterate velocities u, v, w from velocity-pressure relations:
¢=0¢-d*ASP;(¢ = u,v,w).

5. Calculate coefficients for k and e equations using new-time new-iterate velocities:
ag.af.bg : ag. aj. bf

6. Solve k and £ equations for new-time, new-iterate k and ¢:
akky = Xakk, + b : ale, = Tale, + b}

7. Calculate new~time, new-iterate pefr and Aefr:
Mur =CpPk? /& Ay =Cplyy /0y
Hef = Heam *Hiurs Aer = Aiam +Atur
8. Solve mass fraction xx from component conservation equation.

(ad%o), = (zl;a;x,) . (b8)

k

9. Calculate partial steam pressure, saturation temperature, and mixture enthalpy.

Pg, Ts, h.

10. Check for convergence of u, v, w, h, k, g, xi; if not converged, return to Step 1.
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Table 14. Summary of constants employed in the
k~¢ two-equation turbulence model

Appearance
Symbol Value (Equation)
Oh 0.9 7.11
Ok 1.0 7.11
O¢ 1.3 7.15
C 1.44 7.15
C2 1.92 7.15
Cp 0.09 7.16
K 0.42 7.31 and 7.35
E 9.0 7.31 and 7.39

8 One-Dimensional Formulation for Condenser Tube-Side Flow

Because the flow in the tube side is essentially unidirectional along the tube axis, one-
dimensional calculations can be used. The flow is also single phase. The governing
equations and their finite-volume formulations are as follows:

8.1 Governing Equations
Continuity equation
Q -—a— =
Frald ax(pu) 0. (8.1)
Momentum equation

gt-(pu) + %(puu) - R, (8.2)

i
|
I
+
R

Energy equation

s‘tf-(ph) + %(puh) (8.3)

"
0.
a-

where Ry is the tube-wall resistance per unit volume, and q'; is the wall heat flux per unit
volume.

Thus, wall friction is incorporated as a sink in the momentum equation and heat
transfer at the tube wall is treated as a source in the energy equation. In the latter, both
conduction and dissipation in fluid are neglected.
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8.2 Finite~Volume Formulation

8.2.1 Control Volume

In common with sheli-side analysis, the staggered-grid system was used for tube-side
computation. All dependent nonflow variables are stored at the center of a cell, and flow
velocities are stored at the surface of the cell.

Figure 11 shows the control volume for nonflow variables. It is constructed around a
grid point O(i), which has grid points 1(i-1) and 2(i+1) as its west and east neighbors. This
control volume, also called the main control volume, will be used for calculating the nonflow
variables, such as temperature and pressure,

Because the velocities are calculated for the surface of the cells, the control volume for
the fluid velocity at the east surface of the main control volume is that of a cell shifted half a
cell length from the main control volume, as shown in Fig. 12. The pressure difference
between the two adjacent grid points (0 and 2) drives the flow. The staggered control
volume is used for the momentum equation.

8.2.2 Finite-Volume Equations for Continuity, Momentum, and Energy Conservation
8.2.2.1 Continuity Equation

Figure 13 shows the control volume for the continuity equation, in which F is the mass
flux across the control surface.

Jpon integrating Eq. 8.1 over the control volume, we obtain
1
(pl‘pi )Vl

At + 1+1/2° F

/2 =0. (8.4)

where V; = A Ax; is the fluid volume, A is the cross-sectional area of the tube, superscript n
refers to known old time-step values, and the superscript n+1 refers to new time-step
values. The latter is omitted for simplicity.

The mass flux Fi4+1/2 and Fi-1/2 in Eq. 8.4 can be expressed as
i
/2 = Pl (UA) /0 =9 (UA), 1/ (fu,,,, >0

=P (UA)y . (fuy,,, < 0) (8.5)
and
-1
F(—l/2=(p>: (UA)(_l/2=Pt-l(UA)(-1/2 (Ifuy2 > 0}
=Pt(UA)¢_1/2 (ifuy_yy9 < O} (8.6)

Here, the upwind-difference scheme is used. A location-value superscript is used for
positive velocity and a location-value subscript is used for negative velocity.

Equations 8.5 and 8.6 can also be written as
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Fig. 11. Control volume for nonflow variables
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Fig. 12. Control volume for flow velocities
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Fig. 13. Control volume for the continuity equation

{
(P)isa(uA) /0 = IO'(“A)1+1/2|Pl - lo-‘(“A)a+1/2|Pl+l (8.7)

and

(o) uA)yyg = ‘0-(UA)1-1/21P¢-1- |°'”("-A)¢-1/2l"t . (8.8)

The symbol Ixj, x2! denotes the maximum of the two real numbers x; and x3.
8.2.2.2 Momentum Equation

The finite-volume formulation for tne momentum equation can be obtained by
integrating Eq. 8.2 over the staggered control volume, as shown in Fig. 14.
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Fig. 14. Control volume for the momentum equation

Transient Term
n
3 [(P“)1+1/2 - ("“)1+1/2] Vo2
— V = : . (8-9)
where
p Ax, +p, ,Ax
lem = i 417 i+l (8.10)
Ax, +A4x,
A
Viie = E(A"x +A"l+1) (8.11)
Convectjve Term
d
J‘-&(puu) dv= IO‘FMI u, -IO.-FMI u, - |0.Fl| u, +|0'_Fll u_, (8.12)

where

RN i+1
Fl+l = E[(p)l+l(Au)l+l/2 +(P):12(Au),+3/2]
1
= E[|0.(Au)i+1/2l¢’, - |0.-(.A‘u)1+1/2|4’,+l +|0.(Au)‘+3/2|9M —IO.-(Au)i .3 lzlp“_z] (8.13)
1 {-1 i
F = ’5[(9)1 (Au),_/0+ (P)1+1(A“)1+1/2]

= %Uo.(Au)|-1/2|Pi-1 - jo~(Au),_yolp1 +[0.(Au),,, o)1 - |0--(AU)‘+1/2|P1+1]- (8.14)

Pressure Term
. P -P
P a7y

ox %(Axi*'Axm) ‘+,/2=-(P i

1+1° 1) A. (8.15)

Gravity Term
PELAV = (pV)y,1/28,- (8.16)

Wall Frictiop Term

..ijdV = -(va)mﬂ. (8.17)
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where

f
Ry =CigPiaa “l+l/2|“l+l/2 =FR Uy41/2 (8.18)

with

f
Fr= Cx'ﬁpmnluﬂl/zl- : (8.19)

Using Egs. 8.9, 8.12, 8.15-8.19, we can write the finite-volume form of the momen-
tum equat!on as

ao“mm =a)u,_ 1/2*“2 1+a/2*b ( 1417 1) A, (8.20)
where

a“=(-‘3y-)‘4‘&+10t-‘ |+10.~Fy|+Fr ¥, (8.21)

0 At (2R3 | vy R Yi+1/2» .

ay =|0.F]. (8.22)

a3 =[0.-F,,,|. (8.23)
and

( n nvn)
bY = (pV),,1/28, +-—-——-‘ill3- (8.24)
Dividing Eq. 8.20 by ag and rearranging, one obtains

U y2 =0y d 1+1/2( 1" 1)' | (8.25)

where
u u
a,u +b ‘
ﬁ“,llz = 1 1-1/2 2 l+3/2 . (8.26)

du,,; /g = (8.27)

° :|>

8.2.2.3 Energy Equation

The finite-volume equation for the conservation of energy is obtained by integrating
Eq. 8.3 over the main control volume (Fig. 15).

Transient Term
Ia(pm) oo em-Gn?]
at At

- (8.28)
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Fig. 15. Control volume for the energy equation
Convective Term

[ 2 pum)av = (A1 oo~ () glom

= lo'(A“)M/ZI":ht - ‘0"(A“)l+1/2|91+1ht+1
- IO'(A“)I-llﬁlpx-lht-l +|°"'(A“)|-1/2|pthi'
Wall Heat Flux Term

Jq';,civ=(<';';vv)l = q,v,
The evaluation of q';,‘ is discussed in Sec. J.
Combining Egs. 8.27-8.32, we obtain the finite-volume equation
aghy = af'h,.; +adhy, + b,
where
ag = %*l‘)’“‘“’wzlﬁ +l0'(' Au)l-llzlpl'

h_
al' =jo.(au),_, |-

h _
a, “lo"(“‘“)nuzl'

and

n_ PRV,
bo = —ar +w Vi

(8.29)

(8.30)

(8.31)

(8.32)

(8.33)

(8.34)

(8.35)
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8.2.3 Pressure Equation

The pressures Py, and Pj appearing in the momentum equation (8.25) are not known
a priorl and are determined from the conservation-of-mass equation.

Let P = P® + &P, (8.36)
where 8P is the pressure increment relative to the old time pressure value Pn,

Using Eq. 8.36, we can rewrite Eq. 8.25 as

U2 = Uy~ (d“)xn/z(m’m - SP‘), (8.37)

where

ﬁu—l/z =ﬁl+l/2 (du)h-l/z( el ) (8.38)

Upon substituting Eq. 8.37 into Eq. 8.4 and rearranging, we obtain the pressure equation

2P P P
SP —?‘SP +a 8PM+b (8.39)
where
aP =af+af
a, =3, +a,, (8.40)
f" (P):_ A(du),_, /. (8.41)
P 1
a, = (")MA(d“)M/z' (8.42)
and
bf =)\ A, - (), Al —-Yl( - ") (8.43)
0 =i AUy 0 =Pl AU o~ PPy ) .

9 Auxiliary Relations and Supplenientary Physical Models

To broaden the scope of COMMIX-PPC applications and to more accurately account for
the phenomena relevant to thermal-hydraulic simulation, several supplementary physical
models have been incorporated into COMMIX-PPC.

9.1 Rigorous Fluid-Property Routines

There are two fluid-property packages in COMMIX-PPC. One is for liquid water, the
other, for water vapor. These two packages are formulated in a modular fashion so they can
be read'ly replaced by any other property package, if desired. The input description for the
use of these packages is given in Volume Ii of this report.
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8.2 Simplified Fluid-Property Option

Besides the rigorous fluid-property packages, a simplified option is available to the
user. This option includes both fluid and solid properties. Enthalpy, density, thermal

conductivity, viscosity, and the saturation pressure of steam are expressed in the following
functional form:

h = COh + ClhT + Cthz + CShP .
p = Co, + C,,T +CyP /(T +273.15),
k = COk + ClkT + Cszz ,

H=Cq +C,T+Cy /(T+273.15),

and

P = exp(Cop +C T+ Cszz). 9.1)
In the foregoing equation, T is temperature in degrees C, P is pressure in Pascals, and Co,
C1, C2, and C3 are constant coefficients to be specified by the user. The default values for
these constants are zero. We have found that the simplified option is quite useful in many
applications because it takes very little time to prepare and input the coefficients into Eq.
9.1. It should be noted that for liquids and solids, the pressure dependence of a property
does not apply. and the corresponding coefficients should be set to zero. A detailed
description of inputting the simplified property option is given in Volume II of this report.

9.3 Heat Transfer Correlations

9.3.1 Heat Transfor Correlation for Condensation of a SteamvAir
Mixture in a Power Condenser

As a steam/air mixture flows past a bank of condensing tubes in a power condenser,
noncondensible air tends to accumulate at the interface between the metal surface and the
condensate film. Depending on the surface properties and contamination of the metal
surface, the noncondensible air tends to adhere to the surface and is, in general, not
completely removed by the flow of the condensate film. Condensation also takes place at
the interface between the condensate film and the steam/air mixture and, here again, the
air also tends to accumulate. Because air is a poor conductor, its accumulation at both
interfaces could significantly retard the overall condensation rate. The physical process is

complicated, and at the present stage of understanding, we resort to empirical correlations
and approximate analysis.

The deposition of dirt and the formation of scale on the inside surface of the tube are
also important considerations. In practice, their effect is accounted for by introducing a
fouling resistance. Accordingly, the overall heat transfer coefficient for the condensation of
a steam/air mixture in a power plant condenser is commonly expressed by5.7.8
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+BL+RW+Rf+—-9l— (9.2)
[+

1
Uo h, Dihg,

where

c
=)
Ll

overall heat transfer coefficient, W/mZ2eK,

ha = heat transfer coefficient to account for resistance due to the presence of
noncondensible air, W/m2e¢K,

hc = film heat transfer coefficient between liquid film and uncontaminated tube
surface, W/m2eK,

7
i}

thermal resistance of tube wall, m2¢K/W,

Ry = thermal resistance to account for fouling due to scale formation and dirt
deposition on tube wall, m2¢K/W,

hew = tube-side heat transfer coefficient due to flow of cooling water, W/m2eK,
Dg = outer diameter of the tube, m,
and
D; = inner diameter of the tube, m.

Figure 16 shows the component parts of the various resistances. The two resistances
due to the presence of an air layer at the tube surface and at the interface between the
condensate film and the steam/air mixture are combined into one, namely 1/h,. In Fig. 16,
Ts is the temperature of the steam/air mixture, Tcs is the exterior temperature of the
condensate film, Ty, is the temperature of the outside tube wall, Tyw; is the temperature of
the inside tube wall, and Tcw is the bulk temperature of the cooling water.

9.3.2 Heat Transfar Coefficient due to Presence of Noncondensible Air (hg)

The heat transfer coefficient due to the presence of air can be evaluated from38

D p 0.6 p h 2/3
h, = a—mRel®|Zm | pY3|2B) (,_T,)3 w/m2.K (9.3)
D, P, T,

where
a = empirical constant, 0.82.
Dm = molecular diffusivity, m2/s,
Pm = pressure of steam/air mixture, Pa,
Pa = partial pressure of air, Pa,

ps = density of steam, kg/m3,
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Fig. 16. Component parts of thermal resistances for condensation
of a steam/air mixture

Ts = saturation temperature of steam, K,
Tes = vapor/condensate interface temperature, °C,
hgg = latent heat, J/kg,
Renp = -q-:P—Di = Reynolds number, (9.3a)
m

Gm = mass flux of mixture flow, kg/m2esec,

and

Mm = mixture viscosity, kg/mes.

9.3.3 Heat Transfer Coefficient of Film Condensation for &8 Tube Bank (h¢)

The heat transfer coefficient for pure steam condensing on horizontal tubes, modified
by the effects of inundation, subcooling, and vapor shear, can be expressed by

he=hnefiefgefy, (9.4)

where hy is the heat transfer coefficient for laminar film condensation of pure steam on the
outside of a single horizontal tube, and fj, fg, and fy are the correction factors that account
for the effects of inundation, subcooling, and vapor shear, respectively.

An expression for hy, averaged over the entire surface of a horizontal tube, was
originally derived by Nusselt.39 It is
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(9.5)

1/4
pelpe - Pg)aki gy
IHDo(Tca - Two) '

h, = 0.725[
where
pe = density of the liquid, kg/m3,
pg = density of the vapor, kg/m3,
g = gravitational force, 9.8 m/s2,
k, = thermal conductivity of liquid, W/m/°C/s,
u, = viscosity of the liquid, kg/m/s,
hgg = latent heat of condensation J/kg,
Cp¢ = specific heat of the liquid, W/kg°C,
Tcs = vapor - conidensate interface temperature, °C,
Two = surface temperature of the outside wall , °C,
and
Do = outside diameter of the tube, m.
9.3.3.1 Inundation Effect (fi)

For the condensation of vapor on a vertical bank of horizontal tubes, as shown in Fig.
17, where the condensate flowing from a tube is assumed to fall upon the next lower row of
tubes, Nusselt3® obtained the following expression for the average heat transfer coefficient
over n tube rows:

h o= 0725[”‘(“ — pg)k?hfi]m (9.6)
nDoﬂl(Tes - Two) '
Comparing Egs. 9.5 and 9.6, one sees that the correction factor fj is
fi =n-1/4, (9.7)

Musselt's result is generally considered to be too conservative. Clearly, the inundation
effect varies with tube layout. Bundles with tubes in line in the vertical direction will show
a greater inundation effect than those with tubes in a staggered arrangement, because the
condensate will tend to hit tube sides rather than tube tops (Fig. 18).

An empirical relationship proposed by Short and Brown40 for the inundation effect is

fi = 1.24 n-1/4, (9.8)
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Condensate film

Fig. 18. Condensate film on staggered tubes
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9.3.3.2 Condensate Subcooling Effect (f)

Because the liquid film on the tube surface is subcooled, Chen4! suggested that it is
possible for additional condensation to occur on the subcooled liquid layer around the
tubes; his analysis led to the following expression:

fg = 1+ 0.2CP‘(T°S - T"’°)(n -1, (9.9)
(n = 1)Cpy(Tes = Two) <2.

. heg

Rosenhow42 proposed that hg, in Eq. 9.5 be replaced by

which is a good approximation when

h;'g = hyg + 0.68 Cp¢ (Tes — Two) (9.10)
to obtain good agreement with experimental data.

In a power condenser, the latent heat (hfg) is two orders of magnitude greater than the
sensible heat, Cp, (Tcs — Two). Hence, the subcooling effect is of less significance when
compared with the effects of condensate inundation and shear of flowing vapor.

9.3.3.3 Vapor Shear Effect (fy)

Vapor shear influences the condensation heat transfer over tube bundles in three ways.
First, at high vapor velocity, there is increasing tendency for the film flow to become
turbulent. Second, vapor shear will reduce the thickness of the flowing condensate film
due to its acceleration in the direction of vapor flow. Third, a higher vapor velocity will
alter the flow path of the condensate that is falling on the tube rows.

The vapor shear correction factor suggested by Berman and Tumanov43 is
incorporated in the COMMIX-PPC code:

fV - 1+ O.mgsRe;i'B/'J-N_‘:o (9-11)

where Rey, is defined in Eq. 9.3a and Ny, is the Nusselt number defined as

N, - Do, 0.12)

9.3.4 Thermal Resistance of the Tube Wall (Ry)

The thermal resistance of the tube wall is expressed as

Doln(-gT) m? oK
v T e (9.13)

R

where
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Do = tube outside diameter, m
D; = tube inside diameter, m
kw = thermal conductivity of the tube material, W/meK.

9.3.5 Thermal Resistance of the Fouling Layer (Ry)

Fouling is an extremely complex phenomenon in condensers. The fouling
characteristics are functions of various parameters:

e  Geometry and material of the heat transfer surface.
e Temperature of the fouling fluid and the deposit.

e  Flow velocity.

s  Characteristics of the fouling fluid.

Condensers in which sea water is used for cooling are subject to biofouling, corrosion
fouling, and fouling due to deposition of suspended particles or precipitation of salts.

Fouling deposits are usually poor thermal conductors; therefore, because they
accumulate on heat transfer surfaces, there is a reduction in condenser efficiency and
performance.

Thus, the thermal resistance due to a fouling layer in the condenser tube varies. A
value of Ry from 0.00005 to 0.00014 m2+K/W was used by Eissenberg and Noritake44 in
seawater distillation plants.

9.3.6 Heat Transfer Coefficient for the Flow of Cooling Water Inside a Tube

The Dittus-Boelter4d correlation, used to calculate the turbulent heat transfer
coefficient between tube wall and cooling water, is

hew = 0.023ZLReBIPO4. (9.14)
i

9.4 Structure/Fluid Momentum interaction

As described previously, the solid structures in the system under study interact with
fluld and influence momentum distribution. In the porous-medium formulation employed
in COMMIX-PPC, these interactions are modeled with distributed resistances that appear
in the source term of the momentum equations (Table 1). This section describes how the
distributed resistance, also known as force structure, is determined, and how a wide range
of generality and flexibility is provided in COMMIX~PPC.

In COMMIX-PPC, the frictional pressure drop due to stationary solid structures is
expressed in the following general form:
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Ap = c,—;-pvzf. (9.15)

where L(Ax, Ay, or Az) is the length of the cell and D is the hydraulic diameter.

The friction factor f is a function of the Reynolds number and is assumed to be of the
form

f = a,amReb““‘ +Cgam (AsRe—0, Cyayy —0) (S.16)
for Re<Re¢r and
f = @y, Re®™ +Cyy (9.17)

for Re> Rer. Here, Re is the Reynolds number, and a, b, and ¢ are constants. The
subscripts am, tur, and tr stand for laminar, turbulent, and transition. COMMIX has the
flexibility of permitting as many correlations as the user desires. Each correlation requires
seven input numbers: agam. b¢am. Cfam. atur. btur, Ctur, and Reyr. The Reynolds number Re
is defined by

VDp
u ’

where V is the local flow velocity, D is the hydraulic diameter, p is the density, and p is the
viscosity. The product pV is the local mass flux.

Re = (9.18)

In Eq. 9.15, the values of c; and D depend on the geometry and type of structure and
must be provided by the user. There may be more than one type of structure in a flow
domain of interest. Partially submerged structures usually have different geometries and
require different values for parameters c; and D. In COMMIX, we have provided this
flexibility; details are given in Volume II of this report.

The resistance to flow due to internal structure would depend on the orientation of the
structure relative to the general flow direction. Accordingly, a directional distributed
resistance R, expressed in pressure drop per unit length, is introduced. It is defined by

R = _A__Q vivi
L

= clpr. (9.19)

Equation 9.19 is used in COMMIX-PPC to account for frictional pressure drop. To
simplify the specification of the manner that a fluid cell interacts with a structure, a
specific input arrangement has been implemented in COMMIX; details are presented in
Volume II. A collection of resistance correlations commonly needed by COMMIX users is

presented in a recent report46 and is also included in the appendix of Volume II of this
report.

Occasionally, the COMMIX-PPC user may find that the desired correlation is not of a
form directly suitable for input into COMMIX. When this occurs, the user may approximate
the correlation to fit the input form, or implement the new correlation into the code.
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9.5 Shell-Side and Tube-Side Thermal Coupling

9.5.1 Introduction

As described earlier, solid structures, partially or totally submerged in a fluid, interact
with the fluid and influence momentum distribution. They influence temperature distribu-
tion when the temperature of the solid structure is different from that of the fluid. The
structure/thermal interaction in COMMIX-PPC is modeled by distributed heat sources.
Such interaction consists primarily of heat transfer between a structure and surrounding
fluid and, indirectly, heat transfer within the solid structure.

In COMMIX-PPC, the condenser tubes are modeled as thermal structures. The tubes
interact with a steam/air mixture on the shell side and with cooling water on the tube side.
When a mixture of steam and air flows over tube surfaces, steam condenses on the tube
surface and releases latent heat to the tube. This latent heat is then transferred to the tube
side and raises the temperature of the cooling water.

COMMIX~PPC has modeled the thermal structure in a more generalized way so that it

can be used for other engineering calculations, such as those used in the nuclear industry.
It has the following features:

¢ The model considers all internal structures,

e A structure can be planar, cylindrical, or spherical with either one surface
(e.g.. solid cylinder or sphere) or two surfaces (plane or annular cylinder)
thermally interacting with surrounding fluid. The axis of the structure can be
aligned with any of the three coordinate axes,”

¢ Each structure can consist of more than one type of material, each separated
by a gap.

A generalized way of modeling thermal structure is presented in the Appendix. In this
section, the thermal coupling between the shell-side and tube-side fluids will be described.
The heat transfer and temperature distribution within the tube wall is calculated by solving
the one-dimensional heat conduction equation in the radial direction. This assumes that
heat conduction in the other two directions is negligible. The rate of heat transfer from a
steam/air mixture to a tube is the distributed heat source. Because the energy equation is

not solved for a steam/air mixture, this distributed heat source is then used to calculate the
steam condensation rate.

9.5.2 Geometrical Description

Figure 19 shows a condenser tube with its axis aligned in the x-direction and its length
extending over a number of computational cells with partition Ax. Each Ax partition of the
tube is referred to as a thermal-structure clement. Each element interacts with only one
fluid cell. Each element has its own temperature distribution as it interacts with
surrounding fluid cells. Each element has two surfaces, outer and inner. The outer surface
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Fig. 19. Condenser tube (thermal structure) in a flow domain

interacts thermally with the steam/air mixture and the inner surface interacts thermally
with the cooling water. Each element can consist of any number of tubes.

9.5.3 Governing Equation

The transient one-dimensional heat conduction equation is

ar 19 _
= = (- 2
pCp = = A ar( Aq), (9.20)

where p and Cp are the density and specific heat of the tube, q is the radial heat flux per
unit area, and A is the local cross-sectional area.

9.5.4 Finite-Difference Formulation

Figure 20 shows the cross section of the thermal-structure element under consider-
ation. Each element is divided into a desired number of equal partitions. Let Ar be the
partition size and L be the total number of partition cells.

9.5.4.1 Internal Cells (£ = 2,3, .-, L-1)
Consider the energy balance of cell ¢ as shown in Fig. 21. The integrated energy
equation for the structure in the control volume of cell ¢ gives

PCp Ve

—'&"(Tt - T¢ ) = Ay — Ap1Qeer- (9.21)

Here, V; is the cell volume. The heat flux q; can be expressed in terms of the overall heat
transfer coefficient Uy or its reciprocal and a temperature difference: :

qQ = Ut(Tt-l - Ttn) = 'ﬁl"'(’rl-l - Tzn)- | (9.22)
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where

U = — = ( 1 _ (9.23)

Re %rx)l—l * (—%rx)l

Here, A is thermal conduc.ivity, T and T are temperatures at time t and (t + 8t),
respectively.

Upon substituting Eq. 9.22 into Eq. 9.21 and rearranging, we obtain

(ag + by + bg)Ty = bpTey + bryiTew + de (9.24)
where
ag= pCpVe/dt, (9.25)
by = AU = A¢/Ry, (9.26)
bes1 = Aze1Usst = Agst/Rerl, (9.27)
and
d, = a,T/. (9.28)

In Eq. 9.24, ag is related to the tube heat capacity, be and b ¢ 1are related to the heat
transfer area and heat transfer coefficients, and d; is related to ag and T¢'.

9.5.4.2 Outer Surface Coall (£ = 1)

For the case of Cell 1 (Fig. 22), adjacent to the coolant Tcool. the finite-difference
energy equation is

C, Vi
9——2-—!' T - Tln = UIAI Tcooll - Tl - U2A2(T1 - Tz). (9.29)
St
where
1 1
U = & = (9.30)
1 Ar
Ri &+ (55),
and
1 1
Ug = — = 70— , (9.21)
Ar A )
R2 ('i'f)l + (ﬁ%)z

Here, h; is the convective heat transfer coefficient between fluid and tube wall, and can be
evaluated from Eq. 9.2 as

1 1 1
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Fig. 22. Energy balance of Cell 1
Upon substituting Eqs. 9.30 and 9.31 into Eq. 9.29 and rearranging, we obtain

(a1 + by + by)Ty = b1 Teool, + boTa + dy. (9.33)
where
bi= AU = —21 . (9.35)
n + (5), |
bz- A2U2- (9.36)
and »
dy = a1y (9.37)

Here, aj, b1, and d; have the same meaning as a,, by, and d,, in Eqs. 9.25-28. Note that b)
includes the convective contribution.

9.5.4.3 Inner Cell (£=L)

For the case of Cell L (Fig. 23), adjacent to coolant Tcoolg. the finite-difference energy
equation is

C2 v
: &Vl(TL - ) = ULAL(Te - Tu) - ULiAva(Te = Teoal,). (9.38)
where
1
UL = ' (9.39)
" [, - @),
and

ULy = : _ (9.40)
TR, .
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Fig. 23. Energy balance of Cell L
Here, hg is the convective heat transfer coefficient, which, from Eq. 9.2, can be defined as

Do
= R¢ + . 9.41
f Dihcs ( )

1
hy

Upon substituting Egs. 9.39 and 9.40 into Eq. 9.38 and rearranging, we obtain

(aL + by + bLy)Ty = bLTi ) + bryTeool, + di. (9.42)
where
aL= p—c-%vk 9.43)
bL = ALUL. (9.44)
bLe1 = ALs1ULslc (9.45)
and
do= aT[. (9.46)

Here, aL, bL, bL+1, and di have the same meaning as ay, by, bg,1, and dg, defined in Eqs.
9.25-9.28. Note that br,) includes the convective contribution.

We can see from the formulations of the preceding section that there are L equations
for L. unknown temperatures.

¢  Outside Surface Cell (£ = 1)
(a1 + by +b2) Ty = baTy + by Teool; + di (9.473a)
e Internal ceil (£ = 2,3, -, L~1)

(a¢ + bg + bgs1) Ty = bTe-1 + bea1 Tes1 + de (9.47b)
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e Innercell (£ =1)
(aL + bL + bL+1) TL = bLTL-1 + brL+1 Teoolp + dL. (9.47c¢)

Equations 9.47 can be rewritten as

C[Tl = boTy + Al ¢ = 1) (9.48)
Cth = bl+1Tl+l + Al ¢ = 2,.L-1) (9.49)
CLTL = bL+choo|2 + AL U = L)- (9-50)
where
b,A
A, = dp+ =51 (=2.-L), (9.51)
Cet
b2
C, = a, + by + by - =% (£=2,--L), (9.52)
-1
a; = di + bTeool, (9.53)
and
C, = a; + by + ba. (9.54)

The inside-surface cell temperature is first calculated from Eq. 9.50. The remaining
temperatures are then computed by using Egs. 9.48 and 9.49.

9.5.5 Heat Transfer to Adjacent Fluid

Once the temperature distribution in a structure element is determined, the rate of
heat transfer to the adjacent fluid can be computed fron

a Alul(Tcooll - Tl) for the outside surface (9.55)

qL+l = AL+1UL+1(TL - Tcoolz) for the inside surface. (9.56)

9.5.6 Steam Condensaticn Rate

The steam condensation rate per unit volume (m'"') is computed from
S 1t q M
m = e— (9.57)
hngf

where hgg is latent heat and Vy is the volume of the computational fluid cell.
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10 Initial and Boundary Conditions

10.1 Initial Conditions

Generally, before the solution sequence can begin, values of all variables must be
assigned. In COMMIX~-PPC, we can accomplish this by either

e Continuing a previous run via the restart capability (recommended for all but
the first run), or

* Specifying the initial distribution throughout the interior points and boundary
of the space under consideration.

When the initialization is not a restart, we must specify initial pressure, temperature,
velocity, mass fraction, and turbulence parameters for the entire computation domain. The
assignment of these initial values and their subsequent input into the code are generally
tedious. In COMMIX, several simplified input procedures are provided for the initialization
of velocity, pressure, temperature, mass fraction, and turbulence parameters. These
procedures are described in Volume Il of this report.

10.2 Boundary Conditions

This section describes the boundary conditions for mass, momentum, and energy
equations. The boundary conditions for turbulence-transport equations have already been
described in Sec. 7.4. The surface fluxes are in a direction normal to the local surface and
pointing into the fluid from the boundary surface.

10.2.1 Fluid Velocity Boundary Conditions

The most common physical boundaries in an engineering system are solid impervious
surface, inlet, symmetry, and outlet. To accommodate all possible fluid velocity conditions
at these boundaries, seven boundary condition options {summarized in Table 15) are
provided in the COMMIX code. In the following, these options are described in mathe-
matical terms: in Volume [I their implementation in the input data is described.

1. Constant Fluid Velocity

This boundary condition implies that normal fluid velocity vy is constant.
This option is applicable to an inlet surface with constant inlet fluid velocity.
It is also applicable to a stationary solid surface as a special case of zero
normal fluid velocity.

2. Transient Fluid Velocity

This option is applicable when (he inlet velocity varies with time, e.g.,

vn = vo fit) . (10.1)

Cogwr o
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Table 15. Fluid velocity boundary options

Option
Boundary/Suitable Option No. Remarks
Solid Impervious Surface
Constant velocity 1 Specify normal velocity vp = 0
Inlet
Constant velocity 1 Specify inlet velocity
Transient velocity 2 Specify inlet velocity and

appropriate transient function

Surface of Symmetry
Free Slip 3 Axis through origin in
cylindrical coordinate is a
surface of symmetry

Outlet
Continuous mass flow
Continuous momentum
Continuous velocity

General outlet condition
Suitable when areas are equal
Suitable when areas and
densities are equal

Uniform velocity 7 Suitable when outlet is finely
divided (Fig. 24)

(<2 IS R

Here,
vn = surface-normal fluid velocity at time, t,
vo = surface-normal fluid velocity at time, t = 0,
and
fit) = dimensionless function of time.
. Free Slip

The free-slip option is used when the shear stress at the surface vanishes and

vn=0.0. (10.2)

This option is applicable to a symmetry boundary. For a cylindrical coordinate
system in COMMIX, the z axis passing through the origin is considered a
symmetry boundary with zero surface area.

. Continuous Mass Flow at Outlet

This option is for an outlet surface, as illustrated in Fig. 24, in which £ and m
are the outlet boundary cells and £+1 and m-1 are the neighboring cells. The
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Fig. 24. Near-boundary cells

continuous mass flow at the outlet implies that the normal surface velocity
must be such as to balance the mass flow, i.e.,

(Va)rye = [(PA)e+l/2ut+l/2 + (Pc - P?)v%t]/(PA)H/z- (10.3a)
and |
(Vn).m.l/z = ["(PA)m-l/z“m-llz + (pm - P:x)v%t]/(PA)mﬂ/z' (10.3Db)

The sign difference between Egs. 10.3a and 10.3b is in conformity with the
COMMIX convention that surface-normal is directed into the flow domain.

. Continuous Momentum Flow at Outlet

When an outlet area is the same as the neighboring surface area, Eq. 10.3a
simplifies to

(Va)erse = [(P“)M/z + (Pt - P?)”%t]/h«l/z- (10.4)

It is called continuous momentum flow at outlet because it has the appearance
of equating neighboring and outlet momentum fluxes.

. Continuous Velocity at Outlet

If we have equal areas and equal densities, Eq. 10.3a simplifies to
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(Vn)l_l/z = (u)ul/Z' (10.5)

This option is called continuous velocity at outlet because the outlet velocity
and the velocity of the neighboring cells are equal.

7. Uniform Velocity at Outlet

The uniforin velocity at outlet option of the boundary condition sets the
normal velocity for all surface elements at the same value. This value is
computed in such a way that the total mass flow through a surface is the same
as that obtained from the boundary condition of continuous mass flow outlet.
Mathematically,

(Vo) = Z[(PAU)M/Z + (Pt - P?)‘%t]/Z(PAe-l/z)' (10.6)

Here, the summation is taken over all elements of a surface. This option is
suitable when an cutlet is very finely divided, as shown in Fig. 25.

10.2.2 Temperature Boundary Conditions

The five options of temperature boundary condition available in COMMIX-PPC are
briefly described here and summarized in Table 16.

1. Constant Temperature

This option is for a constant-temperature surface. The temperature
associated with each surface element is set initially and remains unchanged
throughout the calculation, as shown in Fig. 26. The surface heat flux is
calculated from the relation

G = UA(Ty, - Ty). (10.7)
where the subscripts w and f refer to the solid surface element and boundary
fluid cell, respectively, and

1

U= . (10.8)
R we

V

in which h is the heat transfer coefficient, A is the conductivity of the wall
material, and AL is the wall thickness. Calculation of the overall heat transfer

coefficient U requires input on wall thickness, suitable correlation for h, and
thermal conductivity of wall material A.

If the Biot number hAL/2Aw << 1, the overall heat transfer coefficient
becomes equal to h.

If an inlet surface has a constant temperature, as shown in Fig. 27, the surface
heat flux is calculated from the Fourier relation
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Fig. 25. Model suitable for uniform veloctty at outlet option

Table 16, Suitable temperature boundary options

Option
Boundary/Option No. Remarks
Solid Surface
Constant temperature 1 Tw = constant
Transient temperature 2 Tw = Toflt)
Constant heat flux 3 qw = constant
Transient heat flux 4 qQw = Qofl(t)
Adiabatic 5 qw =0
Inlet
Constant temperature 1 Tw = constant
Transient temperature 2 Tw = Tofl(t)
Outlet
Adiabatic 5 qw =0
Surface of Symmetry
Adiabatic 5 qw = 0
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Inlet Surface at
Constant Temperature Tw

Fig. 27. Nonconvective constani-temperature boundary
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g < ber ATy = Tr) (10.9)

Ax
)

Here, Aef is the effective thermal conductivity of the fluid in the adjacent
internal cell and can be calculated from Eq. 7.19, Axs is the distance between
the surface and the boundary cell center, and the subscripts w and f stand for
wall (surface element) and adjacent internal cell, respectively.

. Transient Temperature

This option is for a surface whose temperature varies with time, e.g.,

Tw = To fit), (10.10)

where

Tw = surface temperature at time: t,

To = surface temperature at time = O,
and

fit) = a dimensionless function of time.

We calculate the surface-element heat flux with the procedure described for
the constant-temperature boundary option.

. Constant Heat Flux

In this option, the heat flux associated with each surface element is set
initially and remains unchanged throughout the calculation. Although the
surface heat flux remains fixed, its temperature is evaluated by using Eq. 10.7
or 10.9.

. Transtent Heat Flux

This option is useful when the surface heat flux has a known variation with
time, e.g.,

where

4 = surface heat flux at time t,

4, = surface heat flux at time t = 0,
and

fit) = a dimensionless function of time.

Once the surface heat flux is known for any given time t, the surface
temperature can be calculated from Eq. 10.7 or 10.9.
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5. Adiabatic Surface

The adiabatic boundary option is used when the heat flux ¢ = 0. In this
option, the normal heat flux at all elements of a surface is initialized to zero
and it remains at zero. The surface-element temperature is set equal to the
temperature of the neighboring internal cell.

10.2.3 Pressure Boundary Conditions

Currently, two options for pressure boundary condition are provided in COMMIX-PPC:
o Constant pressure, and

¢ Transient pressure.

The pressure boundary is specified for cells adjacent to the surface. This option is
usually used in conjunction with the continuous-mass-flow boundary condition.

If the velocity boundary condition is specified for an inlet surface, the pressure
boundary option is not used, because surface pressure does not enter into any calculation.

It is important to note that the pressure boundary condition in COMMIX-F2C refers to
the pressure at the boundary of adjacent fluid cells. Therefore, it is recommended that the
geometry be modeled in such a way that the pressure boundary is applied to

¢ A surface with one surface element, or
e A surface that is normal to the direction of gravity and has parallel flow,
as shown in Fig. 28.

When the constant-pressure boundary option is used, the pressures of all internal cells
adjacent to a surface are set to a prescribed value. These values then remain unchanged
during the calculation.

For a transient pressure over a surface, the pressures of all internal cells adjacent to
that surface are calculated from '

Pm= Pmo flt) . (10.12)
where
Pm = pressure of the adjacent cell m and time t,
Pmo = pressure of adjacent cell m at time = 0,
and

f(t) = a dimensionless function of time.

The implementation of these options in the input is explained in Volume IL
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Fig. 28. Recommended surface arrangements for pressure boundary condition

10.3 Additional Options

The boundary conditions described in Sec. 10.2 are generally for uniform conditions at
the boundary surfaces. If the distribution of the parameter in question is not uniform, this
parameter can be specified by using the boundary surface-element initialization procedure
in COMMIX-PPC. For example, if the inlet velocity is not uniform, the velocity can be
specified individually for each surface element at the inlet plane by using the variable VELB.
Similarly, if the heat flux on a given surface is not uniform, the heat flux can be specified
individually for each surface element by using the variable QBN. Other variables such as
mass flow rate, mass fraction, enthalpy, temperature, density, turbulence kinetic energy,
and dissipation rate of turbulence kinetic energy are included in the procedure for
boundary surface-element initialization, which overrides the procedures described in Sec.
10.2. Quite frequently, a combination of two procedures is used to achieve better accuracy
in specifying boundary conditions. The boundary surface-element initialization procedure
provides greater flexibility not only in specifying the nonuniform boundary conditions
previously described, but also for others not described in Sec. 10.2. For example, if the
user wishes to specify uniform mass flow at the inlet and because this option is not
provided in Table 15, the user can specify uniform mass flow at the inlet plane by using the
boundary surface-element initialization procedure. A detailed description of this procedure
is given in Volume II of this report.
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11 Solution Procedures

11.1 Introduction

COMMIX-PPC performs thermal-hydraulic calculations by marching in time. The
values of the dependent variables at a given time-step n are known and the values of the
dependent variables at time-step n+1 are calculated. By repeating this procedure, the
thermal-hydraulic variables for the desired time span are determined. The overall flow
chart of the program is shown in Fig. 29.

The same procedure is followed for steady-state calculations. We start with an initial
guess and continue the marching-in-time process until the changes in values of all
dependent variables of two successive time steps are lower than specified. The size of the
time step for the implicit steady-state calculation can be many times larger than the
Courant time-step criterion.

In COMMIX-PPC, two options are provided for the size of the time step:

e The user-desired time-step size (details of this input are given in the Input
Description in Volume II), and

¢ The automatic time-step option.

In the automatic time-step option, the time-step size is evaluated on the basis of-the
Courant condition

At = C,Atc . (11.1)

where C; is the user-prescribed coefficient and Atc is the time-step size evaluated from
the Courant condition. The Courant time-step size is defined as the minimum time
required for fluid to be convected through a cell. In COMMIX, each computational cell is
examined with respect to flow in all three component directions for the determination of
the Courant time-step size. The fully implicit solution sequence is used in COMMIX-PPC.
Details are described in Section 11.2.

11.2 Fully Implicit (SIMPLEST-ANL) Solution Sequence

The fully implicit solution sequence, named SIMPLEST-ANL, is based on a modification
of the SIMPLE/SIMPLER procedures developed at the Imperial College in England.
SIMPLEST/ANL requires less computer storage than SIMPLER and has comparable or
better computing efficiency. Because it relieves many of the time-step size limitations and

permits use of larger time steps, it is most suitable for steady-state and transient
calcula’ions.
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Fig. 29. COMMIX-PPC flow chart

The procedure is called fully implicit because the new-time values of all variables
prevail during any time step. An iterative procedure is therefore needed. Each outer®
iteration loop ylelds a better estimate of advanced-time values of all variables. When the

*Here, outer iteration loop is used to distinguish it from the inner iterative loops used for the solution of a specific
variable equation, e.g., the {terative loop (successive overrelaxation procedure or the preconditioned conjugate
gradient method) used for the solution of pressure equations is considered an inner iterative loop.



86

change in all variable values becomes smaller as one proceeds from one outer iteration to
the next, the iteraiive process is considered converging and the last outer iterated values
are used for the advanced time-variable values. The solution sequence for the fully implicit
formulation is the seven-step iterative process shown in Table 17,

11.3 Matrix Solvers

Three matrix solvers are available in COMMIX~PPC to solve the discretized equations.
They are the successive overrelaxation (SOR) method, the direct matrix inversion method
(DMIM), and the Preconditioned Conjugate Gradient (PCG) method. All are incorporated in
COMMIX-PPC in a modular fashion so that the user has the flexibility of choosing any one of
the solvers for the pressure equation because the resulting matrix is symmetric. Either
SOR or DMIM can be selected for the scalar transport equations.

Of the three matrix solvers, SOR and PCG are iterative solvers, whereas DMIM is a
direct solver and requires no iteration. It should be noted that the solution procedures
require the solving of several sets of algebraic equations by one or a combination of the
three matrix solvers.

11.3.1 Successive Overrglaxation Iterative Scheme

The SOR iteration scheme uses one pass through the computational cell domain. As
each cell is visited, the residual of the ¢—equation to be solved is computed, using the most
recent values of the surrounding ¢'s. In this way, an updated value of ¢ is used if the
neighboring cell has been visited earlier in the pass, and a previously iterated value of ¢ is
used if the neighboring cell is to be visited later. Immediately after the residual of the ¢
equation for a cell under consideration is computed, the ¢ is adjusted in that cell before the
computation proceeds to the next cell in the pass.

After all cells have been visited, the convergence is checked and if it has been
achieved, the iterative process terminates; if convergence has not been achieved, another
single-pass iteration is performed.

The SOR scheme requires the relaxation parameter o to be between 0 and 2.
Generally, convergence can be achieved in fewer iterations than in the Jacobi scheme,
Because o can have values greater than 1.0, it is termed overrelaxation. The optimum value
of the relaxation parameter is generally geometry- and problem-dependent; it is usually
between 1.4 and 1.8, and hence the name overrelaxation.

11.3.2 Direct Matrix Inversion Method

The DMIM is a collection of routines for solving the n x n system of linear algebraic
equations when the coefficient matrix is large and sparse. The direct method is based on
Gauasian elimination without pivoting. The coefficient matrix can be symmetric or
nonsymmetric. The routines of the direct matrix inversion method decompose the
coefficient matrix into triangular factors and then successively solve the triangular systems.
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Table 17. Fully implicit (SIMPLEST-ANL) solution sequence

1. Calculate velocity-pressure relation coefficients from the previous iterates
of u, v, and w:

6, de:i(d=u, v, w).

2. Calculate pressure equation coefficients using ¢, d* :
af.af.bj.

3. Solve pressure equation for new-time, new-iterate pressure 6P:
aBdpP, = Y afdP, + bf.

4. Calculate new-time, new-iterate velocities u, v, w from velocity-pressure
relations:

¢ =4-d*ASP; (6 = u, v, w)

5. Calculate component mass fraction equation coefficients using new-time,
new-iterate velocities:

_ag.ag.bg.
6. Solve component mass fraction equation for new-time mass fraction x:
agxg = Yazx, +bg .

7. Calculate the steam partial pressure, the saturation temperature, and
mixture enthalpy:

Pg, Ts, h.

8. Check for convergence of u, v, w, h, x; if convergence criterion is not
satisfied, return to Step 1.

The routine takes advantage of the sparse coefficient matrix by solving the triangular

systems without storing or operating on zero entries. The advantage of DMIM is that it is a
direct solver and no iteration is involved. Both symmetric and nonsymmetric matrices can
be solved. However, as the number of computation celis is increased, both the storage and

the work increase rapidly and other methods (SOR and PCG) may become more economical
and efficient.

11.3.3 Preconditioned Conjugate Gradient Method

A number of PCG-like methods have been reported in the literature.47 The PCG
method uses an iterative procedure that computes a sequence of approximate solutions of a
system of linear algebraic equations. In COMMIX-PPC, it solves the symmetric, positive-
definite systems, requires no estimates of scalar parameters, and is relatively inexpensive
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per step. These properties make the conjugate gradient method more robust, easier to
implement, and more rapidly convergent than other iterative methods for solving
symmetric, positive-definite problems. The convergence of the conjugate gradient method
can be improved by preconditioning techniques.46 Consider a linear system of the form

Mx = b, (11.2)

where M is the coefficient matrix, and x and b are column vectors whose components are
x, bji=1, 2, -, n). In broad terms, preconditioning consists of solving the following
system:

Qi Mx=Q1b, (11.3)

where Q is an approximation of M so that Eq. 11.3 is in some sense easier to solve than
Eq. 11.2. The preconditioning technique employed in COMMIX-PPC is the incomplete
factorization of M. More detailed descriptions of the conjugate gradient methods and the
preconditioning techniques can be found in Ref. 47.

11.3.4 Discussion

As described previously, the user has the flexibility of choosing any one or a combina-
tion of the three matrix solvers to solve the pressure equations and the scalar transport
(energy, turbulence kinetic energy, etc.) equations. Table 18 summarizes the properties of
these matrix solvers and the type of equations each solver is suitable for. The pressure
equations in COMMIX-PPC are made symmetric and therefore can be solved by all three
matrix solvers. The transport equations are nonsymmetric and therefore not suitable for
PCG, but can be solved by either the SOR or the DMI method. Practically speaking, the
DMIM is more efficient for relatively small numbers of computational cells; it becomes less
efficient when the number of computational cells is greater than 1000. Whe.a the number
of computational cells exceeds 2000, the PCG and SOR methods are more efficient and
economical than the DMIM . As a rough guide, the DMIM should be used for all equations
if the number of computational cells is less than 1000. If the number of computational cells
is greater than 2000, the PCG method should be used to solve the pressure equations and
the SOR method should be used to solve the scalar transport equations.

11.4 Iteration Criteria

As has already been pointed out, SIMPLEST-ANL is a fully implicit scheme and
requires iteration. Thus, iteration criteria are needed to determine if iteration should

proceed or be stopped before advancing to a next time step. This is what we referred to
earlier as the outer iteration loop.

The seventh step listed in the fully implicit scheme (Table 17) is to check for
convergence. The changes from one iteration to the next are checked against the
convergence criteria for all ¢’s. The iteration criteria are considered satisfied when

oo - gl

god fa
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Table 18. Properties of the three matrix solvers in COMMIX-PPC

; Suitable for
Matrix Coefficient Pressure Transport

Solver Matrix Scheme Egs. Egs.
SOR Symmetric/Nonsymmetric Iterative Yes Yes
DMIM Symmetric/Nonsymmetric Direct Yes Yes
PCG Symmetric Iterative Yes No
Iunew - uoldl
<&,
vmax
vnew — yoid
I—--———‘-'M‘- < g5, and
vmax

- wold
[woow — Wl (11.4)
Vinax

simultaneously. Here, Vpax is the maximum magnitude of the velocity, €3 is a user input
convergence parameter, and the superscripts “new” and “old” refer to current and
previous iterate values. If any one of these convergence criteria is not met, the sequence is
repeated from Step 1. The solution proceeds through the sequence until it converges or
the specified maximum number of iterations has been performed. Here, ¢ refers to the
general scalar transport variable (such as enthalpy, turbulence kinetic energy, etc.).

Iteration criteria are also needed for the inner iteration loop if an iterative matrix
solver is selected. The inner iteration loop solves the individual pressure and scalar
transport equations within a given time step. If either the SOR or PCG method is selected,
we will need a mass convergence criterion for the pressure equation and some other
criteria for the scalar transport equations.

In theory, the pressure equation (Eq. 6.7) is considered solved when mass residue d is
equal to O for all cells. Because Eq. 6.7 is solved iteratively, this will, in general, never be
true. Instead, a nonzero mass residual  is computed for every cell and a maximum fis
determined as |5!max. The iterative process continues until either a maximum specified
number of iterations has been performed or the maximum mass residual falls below the
convergence criterion,

|8 max < convergence criterion. (11.5)

The mass convergence criterion is calculated with the relation

Convergence criterion = g, * (m)'m + €, (11.6)
Yv Axl
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where €] and &3 are the input convergence constants and subscript 1 stands for three
coordinates.

The convergence criteria for the scalar transport equations in the inner iteration loop
within a given time step are

‘nrl ljk < e
hm - hm ’
km+l :nk

< g,

km - km,
and

e|'n+l em
1k Kk
L B, NP (11.7)

€max ~ Emin

where the superscripts m and m+1 represent the previous and the current iterative values,
respectively, the subscripts max and min represent the maximum and minimum values of
the variable in the entire computational domain, and the subscript {jk indicates the change
in value of the variable from one iteration to the next and is evaluated at the same location.
The convergence criteria expressed by Eq. 11.7 mean that if the change in value of a vari-
able from one iteration to the next at any location divided by the maximum variation of that
variable in the computational domain is equal to or smaller than some prespecified number
g, the solution is considered convergent and no more iteration is required. Again, these

criteria apply only to iterative matrix solvers such as SOR and PCG. These iteration criteria
are not needed for the DMIM.

Table 19 summarizes the convergence criteria for the iterative scheme (fully implicit)
and the iterative matrix solvers (SOR and PCG) and provides the default values of
convergence parameters employed in COMMIX-PPC.

Table 19. Convergence criteria for the iterative scheme (fully implicitt and
the iterative matrix solvers (SOR and PCGJj used in COMMIX-PPC

Convergence Default [teration
Parameter Value Loop Description
£1 10-4 Inner Mass convergence for
pressure equations
€2 10-6 Inner Mass convergence for
pressure equations
€3 5x 105 Outer All transport variables

€6 10-5 Inner Turbulence parameters k and €
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12 Summary and Discussion

12.1 Magor Features of COMMIX-PPC

The important features of COMMIX-PPC have already been explained. Some are unique
and distinct from other computer codes.. Five of these unique features, which significantly
expand COMMIX-PPC capabillities and increase its flexibility, are reiterated below.

¢ Porous-medium formulation
¢ Geometry modeling

¢ Matrix solvers

Multicomponent capability

Shell-tube-side thermal coupling.

12.1.1 Porous-Medium Formulation

In COMMIX, volume porosity, directional surface porosity, distributed resistance, and
distributed heat source (or sink) are used to model the fluid dynamic and thermal charac-
teristics of a system involving complex geometry. The use of directional surface porosity is
relatively new. It has greatly facilitated the modeling of flow and heat transfer in aniso-
tropic media and has improved the resolution and accuracy of numerical modeling.

The porous-medium formulation has its foundation built on local volume-averaging of
the governing partial differential conservation equations. The resulting equations are more
general. If the directional surface porosity is set to equal the volume porosity, the equations
reduce to those for the conventional porous-medium formulation. Furthermore, if the
volume porosity and the directional surface porosity are set to unity, and the distributed
resistances and heat sources are set to zero, then the equations simplify to those of the
continuum formulation. Therefore, we may say that the continuum formulation is a subset
of the conventional pordus-medium formulation which, in turn, is a subset of the present
porous-medium formulation.

The porous-medium formulation has provided a wider range of applicability of the
COMMIX code and has been successfully used to treat irregular geometries that are often
encountered in engineering applications. With some modification, COMMIX-PPC has the
capability to analyze in great detail

¢ A single-component system, such as a
-fuel assembly
~reactor plenum
-piping network,

as well as
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¢ A multicomponent system, such as a
-reactor vessel
~downcomer and lower plenum,
—cold leg, high-pressure injection system, downcomer.

12.1.2 Geometry Modeling

Unique features related to geometry modeling are

» Identification of a computational cell by a cell number instead of its (ij,k)
location. All “do loops™ are performed with the cell number as an index
instead of the conventional directional indices i.,j,k. Consequently, the storage
requirement depends only on the total number of computational cells and not
on the dimension of IMAX x JMAX x KMAX. This is illustrated in Fig. 30 for
the grid arrangement in a two-dimensional piping system. The storage
requirement reduces from 56 for the conventional (i,j.k) method of cell
identification to 14 when the present scheme is used.

» Use of surface arrays to store boundary values at the boundary surface. This
eliminates the need for fictitic s boundary cells to store boundary values.

» Extra surface to model irregu. . geometry. An irregular surface is one that is
at an angle to a grid plane. It is an additional surface to the six, or normal,
surfaces (parallel to grid planes) of a computational cell. Heat transfer in the
energy equation and shear stress in the momentum equation pertaining to this
seventh irregular surface are properly accounted for in COMMIX~-PPC.

12.1.3 Matrix Solvers

Three matrix solvers are provided in' COMMIX-PPC. They are the
* Successive overrelaxation (SOR) method

¢ Direct Matrix Invirsion Method (DMIM)

* Preconditioned conjugate gradient (PCG) method.

Th. se matrix solvers are used for the individual discretized equations (pressure and scalar
transport equations) in the inner iteration loop.

The SOR method and the DMIM are suitable for both symmetric and nonsymmetric
matrices, whereas the PCG method is limited to symmetric matrices only. Thus, the SOR
method and the DMIM are applicable to both the pressure and the scalar transport
equations, whereas the PCG method is limited to the pressure equation only. Both the SOR
and the PCG methods are iterative, whereas the DMIM is a direct solver and does not
involve iteration. In general, if the number of computational cells is less than 1,000, the
DMIM should be used. On the other hand, if the number of computational cells is greater
than 2,000, the SOR or PCG method should be selected.
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|

IMAX = 8

JMAX =7

Total number of cells = 14

Conventional storage requirements = 8 x 7 = 56
Storage Requirement in COMMIX-1C = 14

Fig. 30. Grid arrangement in a two-dimensional piping system,
tllustrating storage requirements in COMMIX-PPC

The three matrix solvers significantly increase the flexibility and efficiency of
COMMIX-PPC for the numerical computation of a wide range of engineering problems.

12.1.4 Multicomponent Capability

A multicomponent capability has been incorporated into the COMMIX-PPC cede and
this capability is necessary because the shell side consists, in general, of a mixture of steam
and air. The distributions of steam and air inside a condenser are essential for the evalua-
tion of the performance of a condenser. The presence of air has a significant impact on the
local heat transfer rate. The steam is assumed in the saturated state with its bulk tempera-
ture determined solely by its partial pressure in the mixture. This assumption is quite
reasonable for condenser operation and greatly simplifies calculation.

12.1.5 Shel!~-Tube-Side Thermal Coupling

Tube-side fluid flow and heat transfer have been developed and incorporated into the
COMMIX-PPC code. The use of one-dimensional conservation equations of mass, momen-
tum, and energy for tube-side flows greatly reduces the complexity and computer running
time without sacrificing accuracy. It also facilitates the handling of thermal coupling
between the condensation of vapor on the shell side and forced convection of a single-
phase liquid in the tube side.
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12.2 Code Application and Validation

The COMMIX-PPC computer code has been applied to the Maansan nuclear power
plant for calculating condenser performance. The calculation is based on data provided by
the Taiwan Power Company. The data contain the boundary conditions at the inlets and
outlets of the shell and tube sides. The inlet and outlet pressure and temperature of tube-
side flow are measured, whereas the inlet steam pressure and temperature are calculated
based on measured tube-side information and the designed values of steam mass flow rate,
feed water pump turbine exhaust flow conditions, tube-side mass flow rate, and the overall
heat transfer coefficient. The actual air leakage to the condenser is not known. The
velocity, pressure, and temperature distribution are also not available.

Because the appropriate experimental data are not available, validation of the COMMIX~-
PPC computer code is not possible. Hopefully, we may be able to obtain experimental data
to validate COMMIX-PPC through cooperation with industrial vendors and government
agencies.

12.3 Future Developments

Future developments of COMMIX-PPC will include the following:

* Tracking down condensates. In the present COMMIX-PPC, the liquid conden-
sate is discarded once steam is condensed. The effects of the motion of the
condensate on the fluid dynamic and heat transfer in the condenser are thus
neglected. Neglecting the presence of condensate, in general, underestimates
the pressure drop. Developing a two-phase model to track down the liquid
fluid and study its effects on condenser performance is needed.

¢ Validating all heat transfer correlations. We are seeking available condenser
experimental data to validate all the heat transfer correlations that are used in
the COMMIX-PPC computer code.

* Quantifying the turbulent viscosity and mass diffusivity. In the present
COMMIX condenser calculation, constant values of turbulent viscosity and mass
diffusivity are used. To improve the accuracy of COMMIX-PPC calculations, the

two—equation turbulence model will be used to quantify turbulent viscosity and
diffusivity.

¢ Developing an efficient numerical scheme. The current converging rate is
slow. An efficient and new solution scheme must be developed to speed up
the calculation.

¢ Improving input and output processing. COMMIX-PPC is a very large
computer code. Consequently, input preparation and output processing often
become tedious. Currently, due to the separation of shell- and tube-side flow
formulations, the graphic capability for the tube-side is no longer operational.
Further developments and efforts are needed to make COMMIX-PPC a more
user-friendly computer program.
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Appendix:
Structure/Fluid Thermal Interaction

A1 Introduction

Solid structures partially or totally submerged in a fluid interact with the fluid and
influence momentum distribution. They influence temperature distribution when the
temperature of the solid structures is different from that of the fluid. The structure/fluid
thermal interaction in COMMIX-PPC is modeled by distributed heat sources. Such
interaction consists primarily of heat transfer between a structure and surrounding fluid
and, indirectly, heat transfer within the solid structure.

The transfer of heat to fluid from a structure is calculated by solving the cne-
dimensional heat conduction equation for the structure. This assumes that heat conduction
in the other two directions is negligible.

The following features are found in the COMMIX thermal-structure model:

e The model considers all internal structures. The input determines the total
number of structures.

e A structure can be planar, cylindrical, or spherical, with either one surface (e.g..
solid cylinder or sphiere) or two surfaces (plane or annular cylinder) thermally
interacting with the surrounding fluid. The axis of the structure can be aligned
with any of the three coordinate axes.

¢ Each structure can consist of more than one type of material, each separated by
a gap.

¢ Temperature dependence of thermal conductivity and specific heat of
structures are incorporated.

e The effects of gaps in a structure element are accournted for in the model. The
gap width and heat transfer coefficient across a gap are input parameters.

¢ The heat source in a structure element is considered in the heat conduction
equation. The heat source can be transient.

e Each structure {s divided into a desired number of axial elements. A set of
discretization equations is obtained for each element through the use of proper
boundary conditions. The equations are solved by using the Tri~Diagonal Matrix
Algorithm. The temperature variations in the element and heat transfer from
the element to fluid are calculated.



100

A.2 Thermal Structure Modeling

A.2.1 Geometrical Description

To explain the geometrical features of the model, we consider a cylindrical structure
with its axis aligned in the z direction and its length extending over a number of Az
partitions (k levels) as shown in Fig. A.1. Although the description and subsequent
formulation are for cylindrical-type structures, the model in COMMIX-PPC is also
applicable to spherical and slab-type geometries.

Each Az partition of the structure is referred to as a thermal-structure element. Each
element has its own internal temperature distribution as it interacts with surrounding fluid
cells. Each element has two surfaces, outer and inner. The outer surface interacts
thermally with surrounding fluid. The inner surface can either be adiabatic or interact with
fluid, as shown in Fig. A.2. Each element may interact with no more than one fluid cell per
element, as illustrated in Fig. A.3.

Figure A.4 shows the cross section of a typical structure element. The outside surface
is designated as Surface 1 and the inside as Surface 2. Each element can be made up of
more than one material. In Fig. A.4, there are three materials. Each material region can be
subdivided into several partitions as shown.

A.2.2 Governing Equation

The transient one-dimensional heat conduction equation is

T 190 -
pCp—'a-E- = Ksl: (—Aq)+q . (A.1)

Here, p and cp are the density and specific heat of the material, 4 is the heat source per
unit volume, q is the radial heat flux per unit area, and A is the local cross-sectional area.

A.2.3 Finite-Difference Formulation

Figure A.5 shows the cross section of a typical structure element under consideration.
Each element is divided into a number of material regions and each material region is

subdivided into several partitions. Let Ar be the partition size and L be the total number of
partition cells.

Consider the energy balance of cell £ shown in Fig. A.6. The integrated energy equation
for the structure in the control volume of cell ¢ gives

_——_pc v /4
gt : (Tl - Ttn) = ‘(AM Qe — At‘lz) +q”V,. (A.2)
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Here, V; Is the cell volume. The heat flux q¢ can be expressed in terms of the overall heat
transfer coefficient (conductance) Uy or its reciprocal Ry, the overall thermal resistance,
and a temperature difference

q = Ul(Tl-l - Tt) = (Ter - TR, - (A.3)
a 1
'(—Ar—)'—-;—;,T for conduction between two
28/¢-1 ('fx t solid cells of same material, (A.4)
] ) for conduction and convection between
U = R’ =T a fluid cell and a solid cell (this is only when
¢ }1{ + (23.); convection takes piace on a surface whose (A.5)
normal is in the r- direction) )
- (A.6)
for conduction between two .
+ +
(Q{;)H F:-: (%)l solid cells with different materials.

-
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Here, A is the thermal conductivity, h is the convection heat transfer coefficient, and hgap is
the gap conductance between the two materials.

Upon substltuﬁng Eq. A.3 into A.2 and rearranging, we obtain

(8 + By +bey) Ty = BTy + by Teyy +d,. (A.7)
where

a= pc,V/at, (A.8)

b= AU=A/R, (A.9)
and

d= "V+aT", (A.10)

Here, T0 and T are the temperatures at time t and (t + 5t), respectively.

Note that Ay is related to the heat capacity of the structural element, by is related to the
heat transfer coefficient and area, and d is related to the heat source.

A.2.3.1 Cell Adjacent to Coolant

For the case of Cell 1 (Fig. A.7), adjacent to the fluid, the finite-difference energy
equation is

(a‘ + bl + b2)Tl = blel + szz + dl . (A- 1 1)

Here, a), b), and d) have the same meaning as a, b, and d in Eqs. A.8-A.10. Note that b;
includes the convective contribution. Therefore,

bl=.‘h=__6_|rir, (A.12)
R, FJ_n-h +\21),

Similarly, at the other end of the thermal structure, Cell L is in contact with fluid and we
have

(aL + bL + bLfl)TL = bLTL“l + bLQlTw“ + dL » (A. 13)

where

A _ __Awn
Rin  wg + (&),

b[_,‘ = (A. 1 4)

A.2.3.2 Cell Adjacent to Ditferent Material

For a cell adjacent to a different material cell, as shown in Fig. A.8.

(a, + b¢ + bl+l)Tl = b‘T‘_l + bl#lTl+l + d¢ . (A. 15)
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Equation A.15 is similar to Eq. A.7. Note that the term by, includes the gap resistance.
Thus,

b = R = ¢ : (A.16)

A.2.3.3 End Cell with Adiabatic Boundary Condition

The existence of a symmetry line (or surface) depends not only on geometry, but also
on thermal conditions. In solid cylindrical or spherical structures, the other end
(symmetry line) has the adiabatic boundary condition. The end cell for this boundary
condition is shown in Fig. A.9. There is no heat transfer, so thermal resistance is infinite
and the term b, goes to zero. The final equation, therefore, is

(aL + bL)TL = bLTL—l + dL . (A- 17)

A.2.3.4 Solution of the Discretized Equations

We can see from the formulations of the preceding section that there are L number of
equations for L number of unknown temperatures.

e Outside Surface Cell (£ = 1)
(@ + by +bg) Ty = byT, +d, + b; Toq, - (A.18a)
* Intermediate Cells (£ = 2, soee L-1)
(a, +b, + by, )T, = b,T,, + b, Ty, +d,. (A.18Db)
¢ Inside Surface Cell (¢ = L)
(a + by + by )Ty, = by Ty, + by Teoa, +dr (A.18c¢)
if the inside surface is nonadiabatic, and
(aL +by)Ty = by T, +d, (A.18d)
if the inside surface is adiabatic.
Equations A.18 can be rewritten as

C,T, = b, T, + A, =1 (A.19a)
C T, = by Ty + A, (¢ = 2,:L-1) (A.19b)
CL Ty = by, Teg, + AL (¢ = L; nonadiabatic) (A.19c¢)
C.T, = A, (¢ = L; adiabatic), (A.19d)

Here,
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A, =d, +(blA'l-l/C'l-l) (¢=2-1L) (A.20a)
and
Cp = a,+b +b,,-(b?/C,,) (£=2i-L) (A.20b)
Fort¢=1,
A, =d, + b, Ty, (A.20c)
and
Ci=a,+b,+by . (A.20d)

The inside-surface cell temperature is first calculated from Eq. A.19c or A.19d. Then, the
rest of the temperatures are computed with Egs. A.19a and A.19b.

A.2.3.5 Heat Transfer to Adjacent Fluid

Once the temperature distribution in a structure element is determined, the heat
transfer rate to the adjacent fluid can be computed from

. A
q= E:‘(Tx -Ty)
= Uy A|(T) - Ty) for the outside surface (Tf = ’I‘mh) (A.21)

and
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A
q = BL(T, - T)
L+l

= UL+1 (TL - T for the inside surface (Tt = Tcool2). (A.22)

where ¢ is the heat transfer rate and U is the overall heat transfer coefficient given by

1
R = Tmy (A.23)

A is the surface area, T and T, are the temperatures of the edge partition cells, and Tg is
the fluid temperature, either Tcool; Or Teoolz. For the present condenser modeling, the
heat transfer rate q in Eq. A.21 is used to calculate the steam condensation rate in the shell
side and the heat transfer rate q in Eq. A.22 is the source term for the tube-side energy
equation. Because steam is assumed to always be in the saturated condition, Tcoolyis known
and is determined by the local pressure in the shell side. Tcoolp is not known a priori and
is determined by a consideration of the interaction between the thermal structure and the
inside and outside fluid. However, for general engineering applications, the heat transfer
rate § in Egs. A.21 and A.22 are specified as distributed heat source Q in the energy
equation. In this case, we have adopted an implicit treatment of the interaction between
the fluid and the thermal structure to increase the speed of convergence in COMMIX-PPC.
The integrated (over the main control volume) heat source term can be expressed as

IS dxdydz = Vo + 2 (hg - 3. (A.24)
0

where Vg is the fluid volume, Q is the rate of heat generation in the fluid per unit fluid
volume, ¢ is the heat transfer rate from the thermal structure to the fluid, hg is the
enthalpy of the fluid cell adjacent to the thermal structure at old time n, and hg is the
enthalpy of the fluid cell adjacent to the thermal structure at new time n+1. The
superscript n+1 is omitted for convenience. Equation 5.27 can be written for the energy
equation as

ISh dXdydz = Sch VO + Sph Vo ho . (A.25)

Comparing Eq. A.24 to Eq. A.25, one has

Scn = @-h3 3 /V . (A.26)

and
Spn = aa}:, /Vo . (A.27)

In writing Eqs. A.26 and A.27, we have separated the term containing the new time value ho
from the rest of the terms that are known. When Eq. A.25 is substituted into the energy
equation, the term containing hg can be combined into the left side of the general
discretized finite-volume equation (Eq. 5.35). Thus, the effect of the thermal structure has
been accounted for when the energy equation is solved. This is what we mean by the
implicit treatment of the interaction between the fluid and the thermal structure.
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However, we must derive an expression for (3q/dhg) so that the two quantities Sch and Sph
given by Egs. A.26 and A.27 can be calculated.

Consider the case where only the outside surface is in contact with the fluid. At old
time n, Eq. A.21 can be written as -

i = U A(T" - T3). (A.28)

where T; is the temperature for Cell 1 and T is the coolant temperature adjacent to Cell
1. At the new time n+l,

4 = U ATy - Ty)

= U, A (TP - T8) + (T, - ) - (T - T3]

cl

=4 +U,Al(§rr‘ - 1](110 ~ hg)/Cpr. (A.29)

where hg -~ hg = Cp1 (Ta — Teg), andCp) is the specific heat cf the fluid adjacent to the
thermal structure. In Eq. A.29, the variables q,, T, Tc1, and hg represent the new time
value and we have omitted the superscript n+1 for these variables. From Eq. A.29, we can
obtain the following approximate expression for (dq/dhgq).

%, _ 4-dr U,A.[cm )
= = -11. (A.30)

dhy hy-hg Cp \ Ty
From Eq. A.19a,

ar, 1, or, A,

T G, [b“ Tt frr] (A.31
From Eq. A.20c,

%A, _

T b,. (A.32)
Substituting Egs. A.31 and A.32 into Eq. A.30,

oh Cp1 [Ci C|l dT¢y C'l ' (A.33)
(dT2/dT¢1) can be calculated in terms of the following two recurrence equations:

T, 1 T, OA,

=—|b +
3[‘01 Ct[ t ncl 3I‘c1 (A.34)

and
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an, _ by My
Ty C., a1, {A.35)

which are obtained from Egs. A.19c and A.20a. From Eq. A.19¢, we have

aT, _ 1 A,
aT, C;. aT, ) (4.36)

for adiabatic and nonadiabatic cases.

In summary, (3¢,/dho) can be calculated analytically by using Eqgs. A.32-A.36 when the
outside surface of the thermal structure is in contact with the fluid.

If only the inside surface of the thermal structure is in contact with the fluid, an
equation similar to Eq. A.30 can be derived:

¥y G -4 M(ﬁ_ 1)_ (A.37)
ohy," hgy-hy Cp \0Ty

(9TL/9Tc2) can be calculated by using Eq. A.19¢:

aT, b

= = =k, A.38

T, C ( )
where C',_!s given py Eq. A.20D for ¢ = L. The recurrence formula, Eq. A.20b, can also be
used to evaluate C;_;:

Cy = 8, +b; + by, = (b3/Cyy) (¢ = 2000L-1), (A.39D)

because C', is known from Eq. A.20d. Thus, if only the inside surface of the thermal
structure is in contact with the fluid, (34, /dho) can be calculated analytically by using Egs.
A.37, A.38, A.20b, and A.20d.
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