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COMMIX-PPC: A Three-Dimensional Transient Multicomponent

Computer Program for Analyzing Performance
of Power Plant Condensers

Volume !: Equations and Numerics

Abstract

The COMMIX-PPC computer program is an extended and improved version of earlier

COMMIX codes and is specifically designed for evaluating the thermal performance of
power plant condensers. The COMMIX codes are general-purpose computer programs for
the analysis of fluid flow and heat transfer in complex industrial systems. In COMMIX-PPC,

two major features have been added to previously published COMMIX codes. One feature is
the incorporation of one-dimensional equations of conservation of mass, momentum, and

energy on the tube side and the proper accounting for the thermal interaction between
shell and tube side through the porous-medium approach. The other added feature is the
extension of the three-dlmensional conservation equations for shell-side flow to treat the
flow of a multicomponent medium.

COMMIX-PPC is designed to perform steady-state and transient, three--dimensional

analysis of fluid flow with heat transfer in a power plant condenser. However, the code is
designed in a generalized fashion so that, with some modification, it can be. used to analyze
processes in any heat exchanger or other single-phase engineering applications.

The following unique features are retained from other COMMIX codes:

• Porous-Medium Formulation. COMMIX-PPC uses a new porous--medium

formulation with the-parameters of volume porosity, directional surface

porosity, distributed resistance, and distributed heat source or sink. With this
formulation, the COMMIX code has the capability to model an anisotropic flow

domain with stationm:y structures, and it can be used to treat irregular
geometries. The porous-medlum formulation with the additional parameter of
directional surface porosity represents a unified approach to thermal-

hydraulic analysis. Because of this feature, it is now possible to perform a

multidimensional thermal-hydraulic simulation of either a single component,
such as a rod bundle, reactor plenum, or piping system, or a mulUcomponent

system that is a combination of two or more engineering components.

• New finite-volume formulation for equations of conservation of mass,
momentum, and energy. The momentum formulation employs the concept of
a volume-averaged velocity as used in COMMIX-lC. lt makes the numerical
calculation more robust than in previous COMMIX versions, lt also makes the

location of pressure change coincide with that of density change for one-
dimensional flows. In addition, the new discretized momentum equations also

satisfy the one-dimenslonal Bernoulli equatlon.

• Three Matrix Solvers. In COMMIX-PPC, three matrix solvers, the successive

overrelaxatlon method, the direct matrix inversion method, and the precondl-
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tioned conjugate grad/ent method for symmetric matrix, are available to solve
the pressure equation and scalar transport equations. Depending on the size
of the computational domain, the user can choose the solver that is best suited
for a given problem. These three matrix solvers greatly increase the flexibility "
and efficiency of nume_-i_:al computation for COMMIX-1C compared to previous
codes°

• Geometrfcal Package. A special geometrical package has been developed and
implemented to permit modeling of any complex geometry in the most
storage-efficient way.

Volume I (Equations and Numerics) of this report describes in detail the basic
equations, formulation, solution procedures, and models for aux/I/ary phenomena. Volume
II (User's Guide and Manual) contains the input instruction, flow charts, sample problems,
and descriptions of available opt/ons and boundary cond/tlons.

COMMIX-PPC is a product of the continuing evolution of the family of COMMIX codes.
The techn/cal contents of the latest version oi"COMMIX-1C, when appropriate and relevant,
will be duplicated here.
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Executive Summary

The COMMIX (Component Mf._Ing) code is a general-purpose computer program for

the analysis of fluid flow in real--world engineering systems. Because the needs of users
have changed since its inception in 1976, the code has undergone several stages of
development, and several versions/extensions are now available. The present COMMIX-PPC

is yet another extension, designed specifically for analyzing the performance of power plant
condensers. To meet the objective of thls application, the following two major additions
have been tncorporated into the code.

• The thre_imensional conservation equations for shell-side flow have been
extended to treat the flow of a multicomponent medium. This is necessary

because the shell side generally contains a mixture of steam and air. The

capability to treat the flow of a multicomponent medium Is also essential for
assessing the effect of noncondensibles on condenser performance. On the
other hand, the computation is simplified by assuming that the steam is at the
saturated state and its bulk temperature is determined solely by its partial

pressure in the mixture.

, • Tube-side fluid flow and heat transfer have been developed and incorporated
into the code. The use of one--dimensional conservation equations of mass,

momentum, and energy for tube-slde flow greatly reduces the required

computer time without sacrificing accuracy, lt also facilitates handling of
thermal coupling between the condensation of vapor on the shell slde and the
forced convection of a single--phase liquid on the tube side.

In addRion to the foregoing two major additions, several minor modifications and
additions have been made, mainly dictated by the consideration of condensation of steam in

the presence of noncondensibles. HOwever, it is emphasized that many of the salient
features of COMMIX are retained in COMMIX-PPC.

A major unique feature of COMMIX i_ its porous-medlum formulation, which was
rigorously derived through local volume averaging. The formulation makes use of the
concept of volume porosity, directional surface porosity (a dimensionless vector quantity
associated with a surface element), distributed resistance, and distributed heat source or

sink. Volume porosity is the ratio of the volume occupied by fluid in a control volume to the
total control volume. Surface porosity Is similarly defined as the ratio of the area available

. for fluid flow through a control surface to the total control surface area. Both arise naturally
in the averaging process. In the conventional por0us-medlum formulation, only the volume

porosity, distributed resistance, and distributed heat source are used. The concept of
directional surface porosity is relatively new. lt facilitates the modeling of anisotropic
structural resistance to flow. Irregular geometries can also be adapted in the present

porous-medium formulation.

The predictive capability of the numerical analysis of fluid flow and heat transfer in
complicated engineering systems, e.g., nuclear reactor cores or the shell side of a steam

condenser, depends strongly on how well the distributed resistances are modeled. The
resistances would vary with their orientation relative to the general flow direction and are
often not known a priori. The directional surface porosity is a geometrical quantity arid can

be accurately and unambiguously calculated. Its introduction lessens the dependency of the



velocity field on the modeling of the flow resistance and hence, improves the accuracy of
the numerical prediction, This is a major advantage of the present porous-medium
formulation.

The finite-volume formalation used in COMMIX for the mass, momentum, and energy
conservation equations has recently been extended to include variabl_ensity flows. The
modified formulation employs the concept of a volume-average mass-weighted velocity. As
a consequence, the numerical procedure is more robust than the previous COMMIX
versions, lt also forces the location of pressure change to coincide with that of density
change in one-dimensional flows. In addition, the discretized momentum equation also
satisfies the one-dimensional Bernoulli equation.

The COMMIX code provides detailed implied velocity and temperature fields for the
system under consideration. The conservation equations of mass. momentum, and energy.
and the transport equations of the turbulence parameters are solved as a boundary-value
problem in space and an initial-value problem in time. The discretized equations are
obtained by integrating the conservation equations over a control volume. The code is
flexible and has a wide range of applicability, lt is capable of solving thermal-hydraulic
problems involving either a single engineering component, such as a rod bundle, reactor
plenum, piping system, or heat exchanger, or an engineering system that consists of a
combination of these components.

COMMIX uses a fully implicit solution scheme called SIMPLEST-ANL. lt is a modifica-
tion of the well-known numerical procedure SIMPLER, has a modular structure, and
permits the use of either Cartesian or cylindrical coordinate systems. COMMIX-PPC
contains physical-property packages for water vapor and liquid water. In addition to these
two packages, an option is available for users to input simplified property correlations that
are valid in the desired range of applications.

There are three matrix solvers in COMMIX-PPC: the successive overrelaxatton method

(SOIl, the direct matrix inversion method (DMIM}. and the preconditioned conjugate
gradient method (PCG}. SOR and DMIM are suitable for both symmetric and nonsymmetric
matrices and are selected for solving the pressure equation and scalar transport equations,
PCG is only applicable to a symmetric matrix and thus may be used for the pressure
equation. Depending on the size of the matrix, the user may choose the particular solver
that is best suited for the problem in question. With the availability of the three matrix
solvers, the efficiency of the numerical computation capability of COMMIX-PPC is greatly
increased.

Another unique feature of the COMMIX code is its geometry package. The basic con-
cept is to use computational cells (either in Cartesian or cylindrical coordinates) as building

blocks that are stacked to approximate the shape of the physical systems under consider-
atlon. Then, volume porosity and directional surface porosity are used to account for

differences between the geometry used in the computation and the actual configuration.

This feature permits the COMMIX code to model irregular and complex geometr.ies with
relative ease. Furthermore, the computer storage requirement of the COMMIX code is
optimized; only the computational cells used in the calculations are counted.

Volume I, Equations and Numerics, of this report describes in detail the basic conser-
vation equations, finite-volume formulaUon, turbulence modeling, one-dlmenslonal



treatment of tube-side flow, and solution procedures. Auxiliary models for the following
phenomena are also described:

• Momentum interaction between fluid and stationary solid structures.

• Thermal interaction between shell- and tube-side fluid and stationary solid
structures.

In Volume II. User's Guide and Manual. we provide flow charts, descriptions of
subroutines, geometry model_g, initialization procedures, input descriptions, etc. A
sample problem is included to familiarize readers with the Input/output structures of the
code. Also included is a sensitivity study about the effects of inlet air mass fraction and exit
mass flow rate at the air extraction pipe on steam condensation rate.

In both volumes, wherever applicable, technical content of COMMIX-1C is duplicated.

1 Introduction

In the power industry, one way to save energy and reduce operating cost of a power
plant is to improve condenser performance. This requires detailed information on the
heat- and mass-transfer rates and pressure drop at the local level. Because the heat- and
mass-transfer processes associated with steam flow in a condenser is complex and the local
rates are difficult to measure experimentally, one resorts to numerical models to obtain
such lxfformatlon.

In the past three decades, several condenser models 1-8 have been developed to study
fluid flow and heat transfer in power plant condensers or power condensers. All are two--
dimensional models. Because the steam flow in power condensers is essentially three-
dimensional, these models cannot provide detailed information on pressure, temperature,
velocity, and concentration distribution. Hence, they are not useful for studying optimlza-
t.ion of tube arrangement, baffle plate shape and spacing, and configuration of other
components to improve condenser performance.

A three-dimensional computer code, COMMIX-PPC {power plant condenser}, is being
developed at Argonne National Laboratory to analyze the performance of power plant
condensers. This three--dimensional code is an offshoot of the in-house version of the

COMMIX-2A computer code, which is intended for two-phase applications in a reactor
component or a multtcomponent reactor system, lt was developed under U.S. Nuclear
Regulatory Commission sponsorship and, due to funding limitations, has yet to be
completed. COMMIX-2A is a product of the development, over many years, of a series of
COMMIX codes. 9-12

COMMIX-PPC is designed to analyze three-dimensional, transient or steady state.
laminar or turbulent, multtcomponent flow in power plant condensers. The tube nest. or
bundle, is treated as a porous medium. On the shell side, the present model considers a
mixture of only steam and atr. Unless the rate and locations of air leakage are known, air is
assumed to be uniformly mixed in inlet steam. As the air and steam mixture flows past the

tube bundle, condensed water is assumed to be removed instantaneously. The steam is
taken to be saturated. Cooling water on the tube side is modeled as a one-dimensional



single--phase flow; hence, large storage capacity for tube-side variables is not needed. Also,
because the steam is taken to be saturated, its temperature can be calculated directly from
the equation of state once the pr_ ssure is known. Thus, the mixture energy on the shell
side is not needed. To economize on storage and reduce the size of the matrix for solving
the dependent variables, we decided to handle tube--side and shell-side flows sequentially.
COMMIX-PPC solves the three-dimensional, time-dependent, conservation equations of
mixture mass, mixture momentum• and a component mass, either air or steam, for shell-
side flow, and the one--dlmensional conservation equations of mass, momentum, and energy
for the tube-side flow. The shell-side and tube--side flow are coupled through the heat
transfer process. The solution is obtained by an iterative pr_edure.

Although COMMIX-PPC is designed for power condenser calculations, it can also be
used as a general-purpose computer code for analyzing single-phase flow in complex
engineering systems with minimal or no modifications.

1.1 Major Features of COMMIX-PPC

1.1.1 Porous-Medium Formulation

As do all codes in the COMMIX series, COMMIX-PPC employs conservation equations of
mass, momentum, and a component mass using a new porous--medium formulation based

on local volume averaging. 13-19 The formulation utilizes four parameters, i.e., volume
porosity, directional surface porosity, distributed flow resistance, and distributed heat
source (sink), to model fluid-dynamic and thermal effects of internal solid structures. In

the conventional porous-medium formulation, only three parameters (volume porosity,
distributed resistance, and distributed heat source) are used. The addition of a fourth

parameter, directional surface porosity, 13-21 is a relatively new concept.

Volume porosity is defined as the ratio of the volume occupied by fluid in a control
volume to the total control volume. The directional surface porosity is similarly defined as

the ratio of the area available for fluid flow through a control surface to the total control
surface area. The adjective *directional" was incorporated to emphasize the fact that

surface porosity is an anlsotropic quantity.

Introducing the fourth parameter, directional surface porosity, has distinct advantages.
First, the need for introducing distributed resistance and directional surface porosity arises
naturally in volume averaging of the governing conservation equations. 17 Second, in the

thermal-hydraulic analysis of complex systems, be it a reactor core or power condenser,

the flow resistance due to internal structures, e.g., tube bundle and irregular geometry such
as baffles or other flow obstacles, Is generally not reliably known; however, it can be
modeled scparately as a distributed resistance in the control volume and a directional

surface porosity of the control surface. The latter is a purely geometrical parameter and
can be unambiguously calculated. Thus, in the new porous-medium formulation, the
numerical results depend only on how well _he distributed resistance is modeled. This is a

definite improvement over the conventional porous-medlum formulation, in which the
effects of the distributed resistance in the control volume and the flow restriction at the

control surface are intermingled and thus are more difficult to assess. The concept of

incorporating directional surface porosity greatly facilitates the modeling of velocity and



temperature fields in antsotroplc media and, in general, improves resolution and accuracy.
Another useful feature of the new porous--medium formulation is that irregular geometry
can be more conveniently treated.

If we set the directional surface poroslW equal to one, the new formulation reduces to
the conventional porous-medium formulation. Therefore, we can consider the con-Jentional

porous-medium formulation as a subset of the new porous-medium formulation. Further-
more, if we set the volume porosity equal to one and the distributed flow resistance and
heat source equal to zero, the porous-medium formulation reduces to a continuum formula-
tlon. Thus, the new porous--medium formulation can be considered a generalization Gf the
approach to thermal-hydraulic analysis.

1.1.2 Fully Implicit Algorithm

A fully implicit algorithm named SIMPLEST-ANL 1° is used. This algorithm is a
modification of the Patankar-Spaldtng numerical procedure 22 known as SIMPLE/SIMPLER.
lt is particularly suitable for analyzing steady-state systems, although it can also be used for
slow and moderate transients.

1.1.3 Three Matrix Solvers

All discretized equations in COMMIX-PPC can be expressed in the following form:

6

a*o_o- _at*_t- b*o = 0,
t-I

where _ is a dependent variable and a and b are coefficients. The subscript o stands for the

centerpoint, and the subscript t stands for the indices of the six neighboring points. This

general form of the discretized equation lends itself to various solution schemes. In
COMMIX-PPC, three matrix solvers [successive over-relaxation (SOR}, direct matrix

inversion method (DMIM), and preconditioned conjugate gradient (PCG}] are available and
the user can choose any one of them to solve the discretized equations.

1.1.4 One-Dimensional Formulation for Tube--Side Flow

In COMMIX-PPC, the shell-side and tube-side flow are calculated sequentially. The
shell-slde flow uses a three-dimensional formulation, whereas the tube-slde flow is solved

by a one-dimensional formulation. A great deal of computer storage for tube-side flow
variables is saved. Both shell-side and tube-side flows are coupled thermally and their final

solutions are obtained by an iterative procedure.

1.1.S Geometry Package

The geometry package developed and implemented in several previous versions of
COMMIX is retained in COMMIX-PPC. This package is capable of approximating any

irregular geometry, lt uses basic computational cells as building blocks to model the

geometry under consideration. Volume porosities and directional surface porosities are
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then used to account for differences between the approximated computation and the actual
configuration.

To save computer storage, a computational cell Is defined by one number rather than by
its conventional (i, J, k) location, where i, J, and k are the computational cell indices in the
three principal axes (e.g., x, y, and z in the Cartesian coordinate system). With this
approach, the storage requirement _epends only on the total number of computational cells
and not on the value of the product IMAX x JMAX x KMAX, where IMAX, jMAX, and KMAX
denote the maximum values of computational cell indices in the three corresponding
principal axes.

A normal three-dlmensional computational cell has six surfaces. To facilitate proper
modeling of a cell of complex and irregular geometry (most geometries in engineering
systems are complex and irregular), the code provides the flexibility of allowing a user to
specify an additional seventh surface, calle_ Irregular surface, to cut a computational cell for
slmulattng the physical geometry.

I

1.1.6 Multlcomponent System

For analysis of condenser performance, it is necessary to predict steam and air
distribution inside a condenser. Thus, the code also must have a multicomponent
capability.

1.2 Other Features of COMMIX-PPC

COMM_-PPC comprises

• Two models to give it a wide range of _applications in turbulent flows:

- Constant turbulent dlffustvityn_odel.
- Two-equation k-c turbulence model.

• Dtscretized conservation equations that are formulated by integrating the
differential conservation equations and transport equations for turbulence
parameters over a control volume surrounding a grid point. Thus, the derivation
process and resulting equations have direct physical meaning, and the solution
satisfies conservation principles.

* An option that allows use of either Cartesian or cylindrical coordinates.

• A modular structure that permits rapid implementation of the latest available
drag models, heat transfer models, etc.

• A built-in property data bank for water and water vapor, with an option that
permits the use of simplified property correlations for any fluids and solid
structures.

• A generalized resistance model to permit specification of resistance due to
internal structures (baffles, tube plates, tube bundles, etc.) in the respective
coordination directions.



• A generalized thermal-structure formulation to model thermal interaction
between structures (duct wall, tube bundles, baffles, etc.} and surrounding
fluid.

• The possibility of heat source/sink and boundary conditions being functions of
time.

• A structure that permits solution of one-, two-, or three-dimensional
calculations.

1.3 Organization of the Report

This volume describes the formulations of the governing conservation equations for
three-dimensional, steady-state and transient multicomponent fluid flow with heat
transfer. The description starts with differential equations and focuses attention on
numerical methods incorporated into the COMMIX-PPC program. Section 2 presents the
governing conservation equations appropriate for condenser modeling. Section 3 is
devoted to the general form of governing conservation equations for a quasicontinuum
domain, with the purpose of providing the basis for unified development of the numerical
method and the construction of the computer program. The quasicontinuum domain is
defined as one that contains finite, dispersed, stationary, heat-generating (or absorbing)

solid structures. The fluid dynamic and thermal effects of solid structures in the domain
are accounted for by introducing volume porosity, directional surface porosity, distributed
flow resistance, and distributed heat sources. Section 4 describes the staggered-grid

arrangement and the conventions used in COMMIX-PPC to define the location of a control
volume. Section 5 assembles the finite-volume equations. The general finite-volume
equation of the matn control volume Is presented in Sec. 5.5. Because a staggered-grid
system is used, the control volumes for momentum equations are different and require
special consideration. The special features of the momentum finite-volume equations are
presented in Sec. 5.6. The pressure appearing in the momentum equation must be such
that the velocity distribution obtained satisfies the continuity equation. The derivation of
the pressure equation (obtained by combining the momentum and continuity equations} is
presented in See. 6.

,..

Section 7 is devoted to turbulence modeling. Currently, two options are available to
account for turbulence effects:

• Constant Turbulent Diffusivity Model This model is the simplest. The
turbulent viscosity and turbulent thermal conductivity are simply assumed
constant and assigned a value. No transport equation of turbulence parameters
is solved.

• The k-e Two-Equation Turbulence ModeL The transport equations of turbu-
lence kinetic energy k and dissipation rate ¢ of turbulence kinetic energy are
solved to evaluate turbulence quantities. This model is more general than the
Prandtl mixing-length hypothesis and the one-equation turbulence model and
is computationally more economical than the complex multtequation models of
turbulence that are still in the developmental stage.



Section 8 describes the one-dimensional formulation of the conservation equations for
tube-side flow. Section 9 describes the supplementary models incorporated in COMMIX-
PPC. These include heat transfer correlations for single-phase flow inside tubes and for
film condensation outside a tube bank in the presence of entrained air, as well as
generalized force and thermal-structure models. The force model computes distributed
resistance to account for the friction between fluid and submerged solids. The thermal-
structure model is designed to compute the distributed heat source {fluid and submerged
solids) and the thermal inertia of submerged solids. This section describes only the shell-
and tube-side thermal coupling. A more generalized thermal-structure model is presented
in the Appendix.

Several boundary--condition options for momentum, continuity, temperature, and
continuity mass equations are described in Sec. 10. In COMMIX-PPC, the fully implicit
solution scheme SIMPLEST-ANL, an extension of the numerical procedures in SIMPLE/
SIMPLER. is used. A scheme is described in Sec. 11. The three matrix solvers (SOR,

DMIM, and PCG} available in COMMIX-PPC for solving the dtscretized scalar transport
equations and the pressure equation are also described in Sec. 11.

Volume II of this report is prepared specifically for COMMIX-PPC users, lt describes
the steady-state and transient calculation and the various procedures in the preparation of

load modules, input data, reading and writing of restart files, etc. A sample problem, along
with its description, input, and output, is presented to provide an introduction to the
capabtltUes of COMMIX-PPC. The code input description is also included in Volume 11.

2 Governing Conservation Equations and Auxiliary
Equations for Shell Side ...........

2.1 Conservation Equations

The three--dimensional time--dependent conservation equations of mass and
momentum for gas mixtures, based on the porous-medium fo:mulation through local
volume averaging17 are

Mixture continuity eauation_

Yv(p), ym'" (2.1)

Component continuity eouatlon

.,

Yv_'(pXk) + V*(TAXkpV) = Yvrhk + V"(yAPDk,effVXk) (2.2]

.. Mixture momentum eauatlQn

Yv_(pV) + V*(YAp_) =-7vVP- V*(YAgeffV*V ) + YvPg + YvR + Yvrh'"v (2.3}



where

k = component gas,
p = mixture density, _:g/m 3.

YA= surface porosity,
Yv = volume porosity,

Xk = mass fraction for k, _Xk = 1,
_hk = mass source for k, k_/mZ/s,

- Zmk.
V = _Ioclty vector• m/s,
P = mixture pressure• Pa,

= gravitational constant, m/s 2.
[J.eff--- _m + _turb ffi effective viscosity of mixture, kg/m/s,
_Im = molecular viscosity of gas mixture, kg/m/s,
llt = turbulence viscosity of gas mixture, kg/m/s,

Dk.eff = Dk.m + Dk.t = effective diffusivity for k in the gas mixture, m2/s,
Dk.m = molecular diffusivity for k in the gas mixture, m2/s,
Dk.t = turbulent diffusivity for k in the gas mixture, m2/s,

= distributed resistance per unit volume• N/m 3.

2.2 Auxiliary Equations (appropriate for condensing steam under saturated
condition)

2.2.1 Saturation Temperature (Ts)

Ts = T(Ps) (2.4}

Ps = Xs p {2.5}Ms
Xs -I- Xa_

Ma

where

Ps = partial pressure of steam,
P = total pressure of steam and air mixture.

Ms = molecular weight of steam,
Ma = molecular weight of air

Xa = mass fraction of air
Xs = mass fraction of steam

m

2.2.2 Mass Source (rh,)

The steam condensation rate per unit volume• rh:, can be defined by



I0

m

fits = Cl (2.6)
hfg'

where hfg is the latent heat of steam, and el" is the heat transfer rate from steam to cooling
water per unit volume.

The value of ¢_"can be calculated from

q" = UA*(Ts- Tw), (2.7)

where U is the overall heat transfer coefficient. A* is the heat transfer area per unit volume,

Ts is the saturation temperature, determined completely by the local partial presure of the
steam, and Tw is the temperature of the local tube-side cooling water.

2.2.3 Physical Properties

Mixture density (p)

The density of the gas mixture p is obtained from

1
p = ----- (2.8)

2Xk'
k Pk

where Xk is the mass fraction of k, and Pk is the density of component k.

Mixture enthalov [h)_ _

The enthalpy of the gas mixture h is calculated from

h = _Xkh k, (2.9)
k

where hk is the enthalpy of k.

Mixture sDecifi_ heat (Cp]

The specific heat of the gas mixture Cp can be obtained from

Cp - _".XkCpk, (2. lD)
k

where Cpk is the specific heat of k.

Mixture molectllar ylscosity (_m)

The viscosity of a gas mixture _tm IS calculated by the method of Slattery and Bird et al. 23 lt
is given by the approximate equation
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N

Iim = _N niIi! fort= 1.2. ... N,J = 1, 2 .... N (2.1 1)

i=l Zn j_lj

where

I f _I/2 tM \I/4"_2

• I + |iii| |_.___J| |

t,iiJ) t,Ml) J

*lJ : 2_[I+ MilMj]I/2 , (2.12)

Ml (2.13)

n,-

Iii and _j = viscosity of the component gases,
ni and nj = mole fraction of the component gases,

Mi and Mj = molecular weight of the component gases.
n = total number of components in the gas mixture.

Turbulent viscosltv(llt)

In COMMIX-PPC, two opUons are available for calculating the turbulent viscosity llt. They
are

• Constant turbulent diffusivity model, and

• Two-equaUon, k-£ turbulence model.

Details of the k-_ turbulence model are given in Sec. 7.

Mixture molecular conductivity (km)

Similar to the mixture viscosity calculation, the molecular conductivity of the gas mixture
km is calculated from

N niki
km = _ N ' (2.14)

irl _nj4)U
J

where ki is the molecular conductivity of the component gas l, and _tJ and ni are given by
Eqs. 2.12 and 2.13, respectively, with Iii replaced by ki.

Molecular diffusivity of stevtm or _ir in an air mixture (Dk.m)

For a steam and air mixture, the diffusivity between steam and air Dkm is calculated
from the equation developed by Slattery and Bird, 23 i.e.,
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/ _2.334

_TcA TCS )

(Pc.APc.s)II3[,_,_ ,5/12(1 1._.L)1/2_,'C,A 'C,S) _ + MS ,,)

where the subscripts S and A refer to steam and air respectively, P is pressure, T is
temperature, Pc is the critical pressure, TC is the critical temperature, and M is the
molecular weight. The units for D, P, T. and M are (cm2/sec}, (atm}, (K), and {g/g-mole),
respectively. Note that Eq. 2.15 is applicable for binary gas mixtures only.

Inserting the following values for air and steam systems.

MA = 28.97 g/g-mole Ms = 18.02 g/g-mole,
PC.A = 36.4 atm RC.S = 218 atm,
TC.A = 132K Tc.s = 647.3K,

Eq. 2.15 becomes

Dk.m = 4.3421 x I0 -II T2"334( )m2/sec. (2.16)
P

Turbulent diffuslvltv (Dk.t)

The turbulent diffusivity of steam or air in a steam/air mixture Dk.t is defined as

Dk. t = l_-----L-t. (2.17)
pSch

where llt is the mixture turbulent viscosity, p is the mixture density, and Sch is the Schmidt
number. In this report, the Schmidt number is taken t_ be unity. Thus,

Dk.t= _tt/p. (2.18)

3,, General Form,,of the Conservation Equations ......

The conservation equations of mass and momentum for a mixture, and the component
continuity equation possess a common form. If we denote the general dependent variable
by _, the equations in the Cartesian coordinate system can be expressed ast5

pw, )
_t Ax Ay Az
Unsteady Conv_ecUon
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= a 7xr,_xx + + + 7, S,. (3.1)
Ax Ay Az

' ' "" ' Source
Di_sion

Here. u, v, and w are the velocities in the x, y, and z directions, respectively; Yv is the

volume porosity (fraction of the volume occupied by the fluid). Yx. Ty. and Yz are the
directional surface porosities (fraction of the surface area that is unobstructed to fluid flow)
in the x, y. and z directions, respectively, and I" is the diffusion coefficient. The convective

and diffusive terms A(cp)/axi in Eq. 3.1 are defined as

._ + c3.2)
Axi Axt

in which xi stands for the x, y. or z coordinate. The diffusion coefficient I'# and the source
tenzl S# are specific to each _. The conservation equations in the cylindrical coordinate
system have the same general form (Eq. 3.1) when the centrifugal and Coriolis force terms
are included In the source term-S#. (The source terms for equations in the Cartesian and
cylindrical sy_Jtems are listed in Tables 1 and 2, respectively.} Therefore, ali formulations

in the Cartesian system can be readily transferred to cylindrical coordinates by using the
relationships shown in Table 3.

For turbulent flow, the entities in Eq. 3.1 are their time averages, and the diffusion
coefficient I" is, as the effective diffusion coefficient, the sum of two contributions,
molecular and turbulent. Thus.

r'_ = I'¢, molecular + _¢,turbulent • (3.3) '

The transport equations for the turbulence parameters, kinetic energy k and

dissipation rate E that are needed for the computation of the turbulent coefficient, also have
the same general form as Eq. 3. I. However. for the convenience of presentation, they will
be discussed in Sec. 7.

4 Control Volume

4.1 Constructionof a ComputationalCell

The computational cells around a grid point can be defined in several ways. In

COMMIX-PPC, the computational cell is defined by the locations of cell volume faces, and a
grid point is placed in the geometrical center of each cell volume. Cell sizes can be

nonuniform. This type of construction is shown in Fig. 1. The convention used in
COMMIX-PPC for defining neighboring cells and cell faces is given in Table 4.
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Table 1. Source terms In the Cartesian coordinate system a

............... Diffusion ....
coefficient

EquaUon Variable (¢} Direction (I'_) Source Term (S_)
,, ,,,,, i ,|,,, , ,, , li , iii | ii

Continuity I Scalar 0 rh'"

Momentum

(I) u x Peff pgx + Vx - Rx - I--_l + rh'"u

(ii) v y _eff pgy + Vy- Ry- I-_l + rh"'v% sv j,

+ m'"w(iii) w z _eff Pgz + Vz- Zz- _}

Component mass Xk Scalar pDk.eff rhk

aVx. Vy. Vz Balance _ the viscous diffusion terms
Rx. Ry. Rz Distributed res/stances due to solid structures in a momentum control volume

Table 2. Source terms In the cyllndr_al coordinate system a

..... " " Diffu_onv_

Var/able Coefficient

Equation (¢} Directlon {Ft} Source Term (S#}
H, , ,.. , , ,,,

Continuity I Scalar 0 rh'"

Momentum __2"
i+Vr-Rr +m"Vr(i) Vr r direction I_ ? r ,, r

pVrVe
q %

(ii} ve 8 direction I_ - + ?ge+ V. - R e - A_&(p) + rh,,,v°
r r o_

a

(iii) Vz z direction 11 ?g= + Vz - Rz - _ (Pl + rh'"Vz

Component
m

mass Xk Scalar pDk.eff rhk _
ii llnl IIn In II. l

aCentr/fugal force term designated by •
Coriolis force term designated by ""
Vr, Ve, Vz = balance of the viscous diffusion terms
Rx, I%, I_ = distributed resistances due to solid structures in a momentum control volume
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Cartesian Cylindrical
Coordinates Coordinates

X r

Table 3. Trcu_formations for Cartesian and y 0
cylindrical coordinate systems z z

Ax Ar

Ay rAO
Az Az

U Vr

v vo
W Vz

• li e |

e e # |
- -. • .... • -" - 0'--0 --- -' --O °_

: ,' I" :

|

--.-- --. .... : .... l ..
I J I t

.
i e

--O-- ---O-- --- • .... • ..

. o I o
• $

o l _ I

--" • .... • .... 0--,
e e |

! I o

i

: , \o ; :
-00 .... • ..... _ .... _ 4)-"

l | I _ e

• 8 e e _ I

x,i A typical; cell
•"volume

Fig. 1. Construction of cell volumes
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' Tab/e 4. ConventWn used/n COMMIX-PPC to define

nelghborlng--cell control volumes

Cell Centers _ Cell-Face Centerii

Subscript x y z x y z
ii i i

o i. j, k - - -
I I-1, J, k I-1/2, J, k
2 I+I, J, k i+I/2, J, k
3 i, J-I, k i, J-I/2, k
4 i, J+l, k i, J+1/2 k
5 i, J, k-1 i, J, k-1/2
6 i, J, k+l i, J, k+I/2

4.2 Control Volume for Nonflow Variables

A staggered-grld system is used in COMML_ In this system, all dependent nonilow
variables (pressure, temperature, density, enthalpy, mass fraction turbulence kinetic
energy, physical properties, etc.) are calculated for the cell center and all flow variables
(velocity components) are calculated for the surfaces of the cell.

Consider the control volume for a nonIlow variable as shown in Fig. 2. lt is constructed

around a grid point O, which has grid points 1 (i--l), and 2 (I+1) as its west and east
neighbors; grid points 3 (J-l} and 4 (J+I} as its front and rear neighbors; and grid points 5
(k-l} and 6 (k+1} as its south and north neighbors. To obtain the finlte-volume equation,
we integrate, step by step, each term of the conservat/on equation over the control volume.

4.3 Control Volume for Flow Variables

Although most dependent var/ables are calculated for a grid point, the velocity
components u, v, and w are exceptions. They are calculated not for the grid point, but for
displaced or "staggered" locations. The displaced locations of the velocity components are
such that they are placed on the faces of a control volume. Thus, the k-component velocity
w is calculated at the faces normal to the k direction.

Figure 3 shows the locations of u and w by short arrows on a two-dlmenslonal grid: the
three-dimensional counterpart can be easily visualized. Relative to a grid point, the u
location is displaced only in the i direction, the w location only in the k direction, and so
forth. The location for w thus lles in the k d/rection llnk, Joining two adjacent grid points.

lt is the pressure difference between these grid points that will be used to drive the
velocity w located between them. This is the main feature of the staggered grid.

A direct consequence of the staggered grid is that the control volumes to be used for
the conservation of momentum must also be staggered. The control volumes shown in

Figs. I and 2 will hereafter be referred to as the main control volumes. The control
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volumes for momentum will be staggered in the direction of the momentum so that the
faces normal to that direction pass through the grid points (see Flg. 4). Thus. the pressures

at these grid points can be directly used to calculate the pressure force on the momentum
control volume. Table 5 lists the Convention used for the subscripts, and Fig. 4 shows the
momentum control volumes for the x and z directions.

I
z -mome n tum

tout:ro1 -_olume

• .
. .

x -'momen tum

_-x_ i control volume

F_j. 4. Momentum control volumes

Table 5. Convention used _ COMMIX-PPC to defoe nelghborlng

control volumes for z--dlrectlon momentum equations

Momentum Control Momentum Control
Volume Centers Volume Face Centers

Subscript x y z x y z

0 I, J, k+I/2 - - -
1 I-1, J, k+1/2 i-I/2, J, k,I/2
2 I+I, J, k+1/2 1+1/2, J, k+1/2
3 I, J-I, k+1/2 1, J-I/2, k+I/2
4 I, J+l, k+I/2 I, J+I/2 k+1/2
5 i, J, k-1/2 I, J. k
6 i, J, k+3/2 I, J, . k+ I
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5 Finite-Volume Formulation
i i

Although the finite-volume formulation is applicable to a grid in either the Cartesian or
cylindrical coordinate systems, only a Cartesian coordinate grid system is used here to
demonstrate the formulation of the finlte-volume equations. Likewise. we have considered

only the z-momentum equation to illustrate the formulation of the momentum equation.
Extension of the derivation to the x and y momentum equations is straightforward, lt
should be noted that the main control volume is applicable for the component continuity

equations, and the mixture continuity equation and the momentum control volume are

applicable to the mixture momentum equation.

The finlte-volume equations are derived by integrating the governing equation (Eq. 3. I}
over a control volume. Each term in the equations is integrated separately.

5.1 Convection Term

S.1.1 Main Control Volume

The integration of the convection terms over the control volume gives

Az Ay

Here. F (= density x velocity x flow area} denotes the mass flow across the surface of the
control volume, and subscripts I--6 stand for the west. east. front, rear. south, and north
surfaces, respectively (see Fig. 5}. For example, the equation

o o tta (5.2}= ={p),.,(uA.),.,,,F,=F..,,, (p),C'r.uAy,,z),={p>,(.), '

associated with surface "2." which is convected by mass flow F2. Because only the values of
, associated with cell volumes are available for the main control volume, a relationship must
be assumed between volume values and values for the associated surfaces. The upwind

difference scheme provides one such relationship, lt is

(,)o= (,)ii+I = *o = *i (ifF2 is +ve) (5.3a}

= *2 = *I+l (if F2 is - re). (5.3b)

A location-value superscript ts used for positive velocity, and a Iocatlon-value subscript ts
used for negative velocity. Each term on the right side of Eq. 5.1 can be written in a
different format. For example,
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Fig. 5. Convective fluxes for the main control volume

,_(_>_=Io.,,k,o-10.-,,14,2• c5.4)
The operator I I is defined as equal to the greater of two arguments, i.e.,

IA, Bl =A ifA>B

=B ifB >A. (5.5)

Using the foregoing convention and after some simplification, we can rewrite Eq. 5.1 as

v*), - , d_dy_,
A(_ _,)+ ,_y

-- [I0.F2I+10,F4I+lD,F6I+ lD,-Fll+I0,- Fzl+lD.-FsI]_o

-Ilo.- F2152+lD.-F4154+10.- F6156+1o,F_I_+lD.F3lSz+1O.F5155]. (5.6}

All six convective fluxes for the main control volume are listed in Table 6.

6.1.2 Momontum Control Volumo

Figure 6 shows the staggered mesh for the z-momentum control volume. The various
mass flows shown in the figure are as follows:
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F,=(^,,,_)i.,,,(p)'o
_',=(".,")i,,/,{p)_
,,,-(^,,,)_,,,{,,>'o

Table 6. Convective fluxes for the main control volume

F/I --'-(AyV)3t.1.1/2 (p):

',=(^--")_-,_,_{p)'o
,, =(^.w),,,,/,(p)_

t

66

1 'W_62

Fzl __Fz2
! 2

F_.._ W, -"_ Fx2
Z

.x 5

FIg. 6. ConvectWe fluxes and average velocftfes for the z-momentum
control volume
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FzOffi (p)OAz0 w 0, (5.7a}

2
F=2= (P)e2Az2W2, (5.7c)

Fz5 = (P)05AzsW5, (5.7d)

F s = (P)_Az6W 6. (5.7e)

Fx_= (p)_Ax_u_. 15.7_

F== = (p)OAx=u=, (5.7g)

F=s, = (P)_'A=,, ua,, (5.7h)

F=m = (p)_=A=e2 us=, (5.71)

where the velocities w and u are defined at the cell faces as shown in Fig. 3. The mass flow
rates on the south and north faces of the staggered mesh (F=s and Fz6) are not directly
available, In COMMIX-PPC, it is assumed that

F=s = (F,o + F=s)/2 (5.7J)

and

F=6= (Fzo+Fze)/2. CS.7k_

In previous COMMIX versions (COMMIX-IA lO and COMMIX-1B l l). velocity w is
assumed to be transported by convective fluxes. In COMMIX-PPC, however, we consider
that the transport quantity is a momentum per unit mass associated with a certain volume
instead of the facial velocity w. Referring to Fig. 6, the z momentum (Mz) associated with
the lower half of the staggered mesh is

(M=}v,/= = fv=/=¥vpwdxdydz. (5.8a)

If a volume-averaged velocity W_=is defined as

VOw,°
P= 2 oo = (M=)v,/= {5.8b}

then

Woo = 2(M=)vg/= = 2JVo127vpwdxdydz (5.8c)
VoPo PoVo

or
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Pov_

The integral inside the bracket of Eq. 5.8d is the mass flow rate through any cross--
sectional area Az inside the volume Vo/2. In COMMIX-PPC, this mass flow rate is assumed

to be equal to Fzo; therefore, Eq. 5.8d becomes

• aZoF,oWoo= • (5.8e)
PoVo

"4_ represents the momentum per unit mass of the fluid in the volume Vo/2 and is the
quantity to be transported. "4_ohas the dimension of velocity and can also be considered a

volume-averaged velocity defined by Eq. 5.8c.

Similarly. a volume-_veraged velocity for the upper half of the staggered mesh in Fig. 6
can be defined as follows:

=CM.)v.,,=lv.,, ,pwdayd ,5Sn
and

w_ = aZ6F,o. (5.sg)
p6v6

The volume-averaged velocities (W*) associated with their respective volumes are also
shown in Fig. 6 and are defined by the following equations:

• F.oAZ 0 (P)_ AzoAZo= = " "40, (5.9a)
"4o0 PoVo PoVo

"40, = F"°Az' = (P)_
A.oAz6

P6 V6 P6 V6 " Wo, (5.9b)

• = = _I • Wz, (5.9c)
wz Pzv_ Pzvz

F,2A-o (p)2A,2A_o
= 6_ • ,42, (5.9d)

"42= P2V2 P2V2

" '-5 AZo (P)'9A,s AZo= = " "45, (5.9e)
W5 Po Vo Po Vo

W; Fz6Az6 (P)_(_Az6 Az6= = • W6, (5.9f)
P6 V6 P6 V6

" ----- = ¢_i " "4z, (5.9g)
"46z= P6z V6z P6z V6z



24

Fs2Az_ (P)262Az2 Az6W = = • W2. (5.9h)
P62 V62 P62 V62

where V = 7v AxAyAz is the volume of the fluid at that location. Equations 5.9 (a-h) can be
regarded as the closure relations that link the volume-averaged velocities to the facial
velocities. The derivation described here is somewhat more complicated than those in
previous CObIMIX versions. However, the calculations with the present formulation are
found to be more robust in COMMIX-IC than those in previous COMMIX versions in certain
applications. In addition, as we shall demonstrate later, the present closure relations lead
to a formulation that ensures that the pressure drop at a given location conforms with the
density gradient in one-dlmenslonal, steady--state flows. As shown by Padilla and Rowe, 24
use of the so-called donor flow formulation has the important advantage of making a
numerical scheme robust when significant density gradients occur. Furthermore. as we
shall also demonstrate later, the closure relations described here satisfy the one-
dlmensiorud steady-state Bernoulli equation.

The fix,lte--volume expressions for the convective terms in the z momentum equation
(Fig. 6) are presented below. The w-momentum transport due to flow in the z--direction
(pww) ts

A(7,"pww) dxdydzAz

= 10,F,,] W_-10,-F,,]W:-lO,F,,lW; + ]0.-F,,[ W_, (5.10)

A(TxpwU) dxdydzAT

1 1 • 1 • 110..Fx621 •=!l°'F'=lWoo"2 o.-F.=lw=

l lo.z..11w1"+ 11o.-F.,,[Woo1 • 1 '-_ _ --_lO,Ex611 w61 + _lo,-Fx_ll Wo6• {5.I I)

The remaining convective term (pwv) in F-al. 3.1 can be written similarly. By summing up
•the three convective terms and using Eqs. 5.7 and 5.9. we obtain the finlte-volume
expression for z momentum control volume in the foUowing form:

Az AT dxdydz

V_ I#C "dC
WOw o WOw x WOw 2 W_w 3-a w_ w 5-a w 6, (5 12)=a0 " al " a2 " a3 4 "aS 6

where the coefficients are defined by the foUo_qng equations:

o 0 I,OF.o,+ IIOF' I+0a_ --(p)"psv6A'°_. 0,_._i+7 _)"10'-F,,6,I+7 _IlD,-Fy.

+ (P): AzoAZo I 2 1 10'- Fx'l + 1 1 {0,- Fy3l) (5.13a)poVo lD.-_=,[+ IO.F==I+_ _.lO.F,,I+_.
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=1

a_ -
1

1

"_ - I°.-_ol''o<p>_Azo/povo. c5.13gl
In Eqs. 5.13a-g, the superscript w Indicates the w-momentum equation and c Indicates
convection. The various convective fluxes £or the z--momentum control volume are listed in
Table 7. The flrdte-volume expressions for the x- and y-momentum control volumes can
be derived similarly. Equation 5.12 can be rewr4tten In the more general form:

_'f,pv_)) . dxdydzI"( )+ ,,,

- _o_4,oa,_,, a_,, _,__ ....
Here again, we have employed the general variable _. which can represent either u, v, or w
because we are dealing wlth momentum control volumes.

To demonstrate that the pressure drop occurs at the same location where the density

changes, we consider a steady-state one-dlmenslonal flow wlth a constant flow area and no
Internal structure. AssumIng that convection Is domInating_ Eq. 3.1 for the z direction
becomes

A(I',pww) = -% 8p. (5.15}az &

Integrating over the z-momentum control volume (Fig. 6) and assuming that w Is positive,
we obtain from Eq. 5. I0

F,. w_ - F,ow; = -(Po-Po)AZ, (5.16)

where Az Is the flow area In the z direction. Substituting Eqs. 5.7 and 5.9 Into Eq. 5.16, we
obtain

(F,o + F,o)F,o/2poAzo- (F,o + F,o)F,o/2Po Azo = -(Po- Po) Az. (5.17)

For one-<llmensional flow wlth a constant flow area,

Azo = Az5 = Azo = Az,
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Table 7. Convective fluxes for the z-momentum
control volume

I [10_oAzO Wo + _0)o5 Az s ws ]I Fso)

l(Fae + F.o) ffi l[<p)_Aze we + (P)eAZoWo]_.o-

F.o={O)L,(_w)_.,_,={p)OAZoWo

F,,• ,,-L,,(Az ={p)_,AZ,= _P)t-l.k+lW)t-l.k+l/2• Wf_'

• "-_ (A_ : {p)_Az_Fd = _P1_,Lk+l W)_,Lk,_/2 W2

F,..,=(p)_'_(Azw)_.,._+,,,=(p)__ wspLk*l

,-'J+_"(Azw)_.,.,.,,,={p)_,Azo,w,Fs4 -- _P/J*ik.|

F=- {p)_-'(Azw)_.,,_- (p)o__ w,
n Ik+l/Az --F.o=_p?_,,tw)_+_,(p)_Az_w_

F_={p)',.,(A=,),.,_,={p)OA=_u,

F.,= (p)_'(Ax u),.,l,= {P)'oAx,u,

= _ /l+Lk+l

F,,, " """_"(,_ ={p)_'A_,= _P),+Lk.l U)t,-UZk+l Uel

F,4 = (p)Jj,,(Ay v)j,,l, = {p)°4 AY4v4

Fya = {p);'(Ay v)j.,/, = {P)oAYa va

= _k+l
Fy_ (p)j,Lk+,(AyV)j,,I_W., = {P)_4Ayu._ve_

J-l,k.l

Fy= = (P).l.k,' (AYv)j.,/2.k,, = (P)_ Ay= v=
|,
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Fzo= poAZoWo = pAzw,

Fz5= PsAZsws = PAzw,

Fss= psAz6ws = pAzw,

and Eq. 5.17 reduces to

(pw)' --(P.- Po). (5. sl

which indicates that the pressure drop occurs at the same location where the density
changes. In a similar manner, it can be demonstrated that the same relation holds g w is
negative.

5.2 Diffusion Term

5.2.1 Main Control Volume

The integration of diffusion terms over a main control volume (Fig. 7) gives

A(¥z_ _--I+ A(_'¥F, _I+ AI"[" _ dydzAy Az dx

= D2(_2- _0)- Vl(_0- _I) + D4(_4 - _0)- V3(_O - _3) + D6(#6- _0)- D5(_0- '5)

= DI_) 1+ D2_)2 + D3_)3 + D4_)4 + Dsa)s + D6_)s

- (Dl + D_ + D3 + D4 + D5 + Ds)_o. (5.19)

Here, D (= effective diffusivity x flow area/d]stance between the centers of two control
volumes) is the diffusion strength acrossthe surfaceof the control volume.

To determinethe value of D at a surface,we assume that the diffusivity I" varies
continuously from one main control volume to the next and use the fonowmgaverage
diffusionstrength:

i

D2 = (Ax)l+ll2(r0 + r2)/(&V_o + AX2). (5.20)

Expressions of the dlflusion strength for the six surfaces of the main control volume are

listed in Table 8.
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F_g. 7. D{_fuslon fluxes for the main control volume

DI = (Ax)t_lls(r'o + I'l)/(_Xo + _-xl)

D2 = (Ax)l+lls(l"o + l"2)/(_Xo + _:2)

D3 = + r3)/(_yo + &y3)Table 8. Dtffuslon strengths for the maln

control volume D4 = (Ay)j.ll2(r'o + r4)/(Ay 0 + Ay4)

Ds = (Az)k_ll_(I'o + I's)/(_Zo + Azs)

D6 = (Az)k+ll2(]"O + r6)/(A_-0 + _Z6)
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5.2.2 Momentum Control Volume

Integration of the diffusion terms over the z-momentum control volume (Fig. 8) results
tr, an expression similar to Eq. 5,19:

I 'Ax Ay _z

m .,=,m m ,Nam ,mm. m

-(DI+_D2+ D3 + V--4+ DS + D6)4)0. {5.21}

The onlydifferenceisthatwe now use themomentum controlvolumediffusionstrengthD,
insteadofthemain controlvolumediffusionstrengthD,e.g..forthenorthface,

]15) ,22,% (A-)_+(^.)_+_,
ExpressionsofthediffusionstrengthsD forthez momentum controlvolume arelistedin
Table9.

5.3 Unsteady Term

5.3.1 Main Control Volume

Representation of the term a{Tvp_)/at is obtained by assuming that the values Po and _bo
prevail over the control volume surrounding point 0 {see Fig. 9). Integration of the
unsteady terms over the control volume then gives

_(¥vp_)dxdyd= = V0 , {5.23)

where Vo = 7v Ax Ay Az is the volume of the fluid, the superscript n refers to a known
previous time-step value, and the superscript n+ 1 for a new time-step value is omitted for

n+l
simplicity, i.e., (P_}o implies (1_)o •

5.3.2 Momentum Control Volume

Referring to the z-momentum control volume shown in Fig. 6, and recalllng that the
momentum of the staggered mesh consists of two parts, i.e.,

.. : (..),.,.+(..),.,.

= fv.n_,pwdxdydz+ ;v,/:_',pwdxdyd,. (5.24)
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L
61 62

Z , fW5

Fig. 8. D{U'uslonfluxes for the z-momentum
control volume

Table 9. D{[]'uston strengths for the z-momentum control volume

If (ro+r0 (r_,r_,) ]
+ (..,+_,,)J

_ if (r. ,r.) (r. ,r..) ]
D, -l[(,_)i.,,=.,., + (._),+,,=..+,]L(A_, . _=)'+ (A_, + _u)J

-- 1[( ][(ro+r,) (r, +r,,) ]D, = _' Ay) j.1/l.k +(AY)j'I/I'k+I I.( AyO + AY3)+ (_Y' + AY63)J

1 1[ (ro. r,) (r. +r.,) ]
V' = _'[(^Y):!,3./,.,,+(*Y)_l/,.t'+,JL(*yo+ ,y,) + (,_y,+&y_.',}J

,,=-:[('.),+('.)=-,1(5)o
,,=_t(_.),+(,.),,,1(5).
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by integrating the unsteady term over the control volume, we obtain

- +
-

= 1tVo (p. Wa -pO W;o')+ V6 (P, W;, -p: W;:)]. (5.25a)atL 2 2

In dertvtng Eq. 5.25a. we used F-zis. 5.81) and 5.81_ which were Introduced to de3ne volmne--
averaged velocity W*. Here again, the superscript n refers to the previous time-step value.
and the superscript n+l for new a time-step value Is omitted for simplicity.

Substituting Eq. 5.9 Into Eq. 5.25a and rearranging, we obtain

_ (¥vl)w)dx dy dz

=Ao(p):(A--o+_.) ^'-o(& (_-o+A,.)n (5.25b)
W0 - W o •2At 2&t
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In deducing Eq. 5.25b. we have employed the closure relations (Eq. 5.10) described in
Sec. 5.1.2.

Note that Eq. 5.25b has two potential limitations: (a) if the density change in the
control volume is large, the approximation may be less accurate; (b) if the volume porosity

is substantially different from the surface porosity in the momentum control volume, the
approximation may also be less accurate. An alternative formulation of the unsteady term as
shown in Eq. 5.23 is provided as a user's option. In the alternative formulation, both
volume-welghted average porosity and volume--welghted average density are used.

5.4 Source Term

The source term S_ in Eq. 3.1 can, in general, be represented by a linear combination
of two terms:

S_ = Sc_ + Sp_ _. (5.26)

lt is understood that Sc_, Sp_, and _ refer to the control volume in question and are
assumed uniform in that volume. Clearly, both Sc_ and Sp_ depend on the source term St

under consideration. When Sc_ is greater than 0 and Sp_ is less than or equal to zero, the

linear decomposition of S_ defined by Eq. 5.26 is an effective device for obtaining
computational stability and convergence. 22

Integration of the source term over the main control volume gives

_ S0dxdydz = + V0_0 (5.27)Sc_Vo S_ J

where Vo = 7v_x Ay Az isthe fluidvolume.

Integrationof the source term overthe z-momentum controlvolume gives

_ S0dxdydz = Sc0Vo + $p_ Vo_o • (5.28)

where

-- _z _Lz°+ 15.29)
Vo-(AZo.6 v°

Vo is the characteristic volume used in the finite--volume integration, lt will be made clear
in Sec. 5.6 why we employed Eq. 5.29 as the characteristic volume for the integration of the
z-momentum control volume.

5.5 General Finite-Volume Equation for the Main Control Volume

Having looked at each term of the general equation separately, we now assemble all
terms of Eqs. 5.6, 5.19, 5.23, and 5.27 for the main control volume to obtain the general
finite-volume equation.
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f[(Unsteady) + (Convection)- (Diffusion)- (Source)] dz dy dz

(p_)o-(p_)_
= At Vo+(Io.-F_I+10.F21+....)_o

(Unsteady} (Convection}

- (Io.F_I_+10.-F21_2+--")+(D_+ D2 + .... )_0
(Convec tton} (Diffusion)

- (DI@t+ D2_2 + ....)- Sc#V0 :-Sp#@0V0 = 0. (5.30}

(Diffuslon} (Sou rce)

Aftersome algebraand rearrangement,we obtain

fpoVo _[(Io.-F,l++Io.Fol)+(D,+ +D_)-S_Vo]}o_-_--+ ........

Ian 1=[(10.F_I+DI),I+.... +(10.-Vd+D_)#6]+LA_Vo+S_Vo. cs.3t_
The discretized form of the continuity equation is obtained by setting $ = 1, D = 0, 8c¢ =

rh'". and Sp# = 0 in Eq. 5.31. The result ts

p;
p#____o+ IO.-F_i+ lO.F21+ """ + IO,Fd = IO.F_I+ °"" + IO.-Fd+ _Vo + m'"VoAt

(5.32)

SubsUtuUng Eq. 5.32 Into Eq. 5.31, we obtain the general finite-volume equation for the
main control volume:

a_o$0 = a_,, +---. + a_6$6+ b_o. {5.33}

where the coefficientsa_o. a_.etc.areas giveninTable 10.

Finally.itshould be noted that the generalvariable$ for the main controlvolume can
representany nonflow variablesuch as enthalpy,turbulence kineticenergy, or rate of

dissipationofturbulencekineticenergy.

5.6 General Finite-Volume Equationfor the z-Momentum Control Volume

The finite-volume expression for the z-momentum equation can be obtained by

following the same procedure as for the finite--volume equation of the main control volume,
with one exception. The pressure gradient term in the momentum equation ts not known a

priori, lt is determined in accordance with a procedure presented ix, Sec. 6 and is
calculated with the requirement that the velocity field satisfies the continuity equation. For
this reason, the pressure-containing term In the finite-volume form of the momentum
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Table I0. Fully implicit finite-volume equation for the main
control volume and its coefficients

a_o_o = a_$i + .... + a_6_e+ b_o

a_= (]O.Fll+D,) a_= (IO.-F21+D2)

,*_= (IO.F_I+D_) "I = (IO.-F,I+D,)

a_= (_O.FsI+Ds) _ = (Io.-Fol+De)

/pn_n fil,,,l 0b*o=L-_, s_ - Vo

._

equation is not included lt in the source term. Accordingly, the dlscretized equation for
the z-momentum control volume shown in Fig. 6 is written as

a_wo = a_wl + a_w2 + a w w3 w3 + a_ w 4 + a_ w 5 + a6 wo + b_ - dw(p6 - Po). (5.34)

where

d w = _0 / [2(A7.0 + AZ6)] (5.351

and Vo ts the characteristic volume for the momentum control volume defined by Eq. 5.29.
The reason that Eq. 5.35 ts written in the form shown ts that we want the discretized
momentum equation to satisfy the one-dimensional steady-state Bernoullrs equation (with
constantdensity).

The derivation of Eq. 5.29 follows. Referring to Ftg. 6, the one-dimensional steady-
state Bernoulli equation with constant density can be written as

p(W28- Wo2)/2 = -(Pe- PO)- Pg(Az° * azs)' (5.36)2

where 7= and Qo are the average velocities associated with the control volume centered at
grid points 6 and 0, respectively. From continuity, we have

p_e V____ee= pWoV_oOo= F=o= pAzowo. (5.37}

Substituting Eq. 5.37 into Eq. 5.36, and rearranging lead to the equation
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 rr l'2,,L,,vo '- = -(P6- Po)- _Pg(Azo + Az6), {5.38}

which must be satisfiedby the discreti_d,one-dlmenslonalz-momentum equatlon.

The one--dlmenslonalmomentum equationin the z directionis

A(¥zpWW) aP
&z = -¥v_" - YvPg. {5.39}

Integrating over the z-momentum control volume (Fig. 6), and assuming that w is positive,
that

j'v ,yv._, dv = P_-Po Vo,½(_=o+_z_)
and

Yvpgdv = _tvPgVo,
o

we obtain

F=6W_ - F=sWs = -(Ps-Po)Vo/[2(AZo + Az6)]- 7vPgVo, {5.40)
m

where V= tsthe charactertsUcvolume to be determined.

SubstitutingEqs. 5.7 and 5.9intoEq. 5.40,we get

(Fzo+ F6)FoAZ6 (Fo + Fzs)FzsAZo (P6-Po)Vo

2p6V 6 2PoV 0 = 12(&Zo+ Az6) - 7vPgVo" (5.411

For one-dlmenslonal flow with constant density.

Fzo = Fz5= Fz8,

and

po"= pe = P.

Therefore, Eq. 5.41 reduces to

.._..I__._ " AZo (Az6 AZo)=_(p6_P0)_0_ 1+ _¥v Pg(&z0 + Az6)V0. (5.42)2p V6 - Vo

Dtvld_g Eq. 5.42 by Eq. 5.38, we obtain

vo=(Azo,Az6 + 15.43_
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Equation 5.43 is identical to Eq. 5.29. Thus, the characteristic volume To employed in Eq.
5.35 is the proper volume for integration over the z-momentum control volume, and the
resulting finite--volume equation satisfies the one-dimensional Bernoulli equation.

The coefficients a_'...a_' and b_' in Eq. 5.34 can be evaluated from Eqs. 5.12, 5.21, 5.25,
a_d 5.28. The resulting equation has the same form as Eq. 5.33, except that the contribu-
tions of the source that enter a_ and b_' do not contain the pressure. The effect of the

pressure gradient is incorporated in the last term of Eq. 5.34. The coefficients of the
momentum equation for the z-momentum control volume are listed in Table 11, where
veloclW w was replaced by the general variable _. This is to indicate that the x- and y-
momentum equations can be derived in a similar manner. Note that in Table 11, the two
quantities Sce and Sp_ do not contain the mass source term rh"'. Two different forms of the
coefficient a*oare given in Table 11. The first form, a:(1), is obtained from the momentum
equation only and is referred to as the conservative form because conservation of
momentum is satisfied over the control volume. The second form, a'o(2), is derived by

employing both the momentum and continuity equations even though the latter may not be
satisfied during an iteration. Experience indicates that using the continuity equation often
helps to speed up convergence during iterations. The second form of the coefficient is
referred to as the transport form of the momentum equation and is implemented in
COMMIX-PPC.

To derive the transport form of the z-momentum equation, we begin with the
discretized continuity equation for Cell 0 and Cell 6. which can be written as

Po - P Vo / At + Fzo - Fz5 + Fx2 - Fxl + FY4 - FY3 - _ho Vo = 0 (5.44)

for Cell O, and

(Pe- P_)Ve / At + F,6 - F,o + Fx62- Fx61+ FYe4- FYe3 - rhoVo = 0 (5.45)

for Cell 6. The transport form of the z-momentum equation is obtained from the following
relati_nshlp:

tD tj

transport conservative form Woo
form of 7,-- = of z-momentum x Eq. 5.44 - W°6x Eq. 5.45. (5.46)
momentum equation 2 2
equation

Equations 5.44 and 5.45 contain the tlme-dependent terms, the convective fluxes, and
condensation terms. The diffusion terms and the source terms remain the same in the

transport form as they are in the conservative form of the z-momentum equation. Thus, all
the coefficients are in the conservative and transport forms of the z-momentum equation,

with the exception of the coefficient a*o,and Eq. 5.46 can be reduced to
• •

a_(2) = a_o(1)_ -_w°° x Eq. 5.44 - WOex2Eq. 5.45. (5.47)

After some manipulation and rean_.ngement, the final forms of a_0(2) are identical to those

given in Table 1I.
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Table 1I. Coe_lents of the fully implicit Jintt_volump.
equation for the z-momentum control volume

a_@o --al_*l+"'+ a_o*6+ b#o- d,(Po - Po)

| m

at= (P)_'-(lo.n,l_o/p,v,+[o.n_,l_,/p_,v_,)+D,

a I = 10.-Fx2[AZo / P2V2 + 10.-Fx_IAze / P_Ve2) + D2

a Az

4

al = Io.F,.st poVo

_(p)Z A_o--
a*8= 10'-F'61peVo +Do

b*o-_[<P)°]"(A_o+_o)*_/2At+S.Vo

psvs _,

"I+ 2

+D"l +'"+ De - Sp_Vo

o . I I .1a_(2, = (P)e Az° [fPl_'IAZo +
2at LKpo; _p_; j

Peve

poVo

+5_ + "'"+ D--e- Sp#ro
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6 Pressure Equation

The pressure in the momentum equation (Eq. 5.34) Is unknown and must be
determined from the conservation-of-mass equation. In this section, we present the
derivation of the pressure equation.

The conservation of mass in Eq. 5.32 for the cell around point 0 (Fig. 9} can be
expressed as

V0 (_)- (A x U)l_l/2{p}10 + (A x U)l+l/2{p} 0- (Ay v)j_l/2(P}03+ (Ay v)j+l/2(P}0

- (Az W)k_l/2(P)05 + (Az W)k+l/2(p)O - iii:V0 = 80. (6.1)

Here. Vo = yvAxAyAz is the fluid volume of the main control volume. 8o is the mass residual
of the continuity equation. <p> is the upwind density, u. v, and w are the normal velocities
at the surface of the control volume, and A is the true flow area. which is the prc_luct of
superficial surface area and directional surface porosity.

When mass !s precisely conserved, the right side of Eq. 6.1 vanishes, i.e., 8o = 0.
However. because Eq. 6.1 is solved by an iterative procedure, the mass residual 8o. in
general, may not be zero.

To convert the indirect specification of pressure in the continuity equation to an
explicit form. we write the momentum Eq. 5.34 as

# = _- d_A(SP) (# = u, v. w), (6.2a}

where

8P = P"+_- P", (6.2b)

6

Z a:_t+ bl_o- d*APn
_ ¢=I

a_ ' (6.2c)

In Eq. 6.2a,8P {insteadofP} isused tospeed the convergence.This isparticularlyhelpful
when the change in pressureissmallcompared to the absolutepressureofthe system.

For example, the z-dlrectlonvelocityw at the north surfaceof the main controlvolume
is

w8 - _'8- d_'(SPs-8Po). (6.3a}

where

6

@6 = ¢=I
a_' ' (6.3b)



39

2V;' (6.3c)
d_--a_(AZo+Azo)'

and

W =(AZo+_z_ + .

Defining O. 0. d, and _ In a similar manner, the following set of expressions can be derived.

u, = _,- d_(SPo - SP,),

u_ - _ - d;(Sp_- SPo).

v3 = ¢'s - d_(°_Po- 8P3),

v, = 7,- d_(b'P, - SPo),

and

ws = dvs- d_' (SPo- 8P5), (6.4)

where

d_ = 2V_a_,(AXo+Ax,)'

2v;
d_ = a_(Ayo + Ay3)'

2W
d_ = a_(Ay ° + Ay,)'

and

m W

2V; (6.5)
d_ = a_ (Azo + Azs)"

The characteristic volumes are defined as

V,"= (_,o+_x, + v, '

V_ = (Ayo + Ay3)_(_ + AY3_v3)'
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= (Ayo+ay, + .

and

&zs 16.61
+ vs '

In Eqs. 6.6, the subscripts I--6 refer to velocities at the surfaces of the main control volume.
Substitution of Eqs. 6.3 and 6.4 into Eq. 6.1 and rearranging yield

a;b'P 0 Za P Pt b"Pt- bo = 80' 16.71
t=l

where the coefIlclents are as listed in Table 12. These coefficients form a symmetric
matrix.

Equation 6.7 is the required pressure equaUon, lt can be solved by using any one of the
matrix solvers described in Sec. 11.3.

7 Turbulence Modeling mr ,
|li ii

Currently, two options are available in COMMIX-PPC to account for turbulence effects.
One is the constant turbulent viscosity model and the other is the k-e two-equation model;
both are briefly described in the following.

7.1 Constant Turbulent Viscosity Model

The constant turbulent viscosity model, in which the turbulent viscosity and the
turbulent conductivity are simply taken to be uniform, is the simplest turbulence model.
The value of the turbulent viscosity is a user-prescribed single-input constant. Strictly
speaking, the constant--diffusivity model is not a turbulence model. We sometimes find it
useful in performing scoping calculations.

lt is preferable to prescribe values of turbulent viscosity and turbulent conductivity

based on experimental data. If the experimental information is not available, then turbulent
viscosity can be estimated with the following equation, suggested by Sha and Launder: 25

I_t.,.= O.O07c=,pUm=t , (7.1)

where

c_ = 0.1 for Rem==> 2000,

c_ =O.l(0.001Remu-l) for 1000 <Remu<2000,

cp =0 for Rem= <I000, (7.2)

Umax = Max(u,v,w), {7.3)
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Table 12. CoefJlcients of the pressure equation
(F.,q.6.7)

1_,ao )I-I/2 4- _X 1J

k ao )l,l/n

k ao )j-u= _,Ayo+ Ayn)

a4P= C__v1 (p)4 l 2V_ .....1_, ao/J,I/2 &Y0 + AY4 )

asP= /A_._.w) (p)o5( 2_' ), _,ao )k-l/2 L_z° + &z5

_.ao )k+l/2

I__p_l +(Ax_l)i_l/2(p)L (A x - obop = -V0 _t 0 - U)I*I/2(P)2 '

4- (Ay Q)l.,l/2(p) 3 -(Ay_')j.l/2(p) 0

. 5 -. 0
4- ( Az W)k-l/2/_0)0 - ( Azw)k +1/2 (P)6- i'_I"'V0"

Remax = Max(Rex. Rey, Rez), (7.4)

and

Re = uDhp. (7.5)
_t

The mixing length t is given by

t = C t D h , (7.6)

with the coefficient

Ct= 0.4, (7.7)

and Dh ts the hydraulic diameter.

If information about the turbulent conductivity _,tur is not available, the following
approximation may be used:

." i
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_tur= CpIJ,tm"
Oh

Cp_t.r (7.8)m

where ah is the turbulent Prandtl number. Re is the characteristic Reynolds number, and

Pr = Cpli/_ is the molecular Prandtl number. Equation 7.8 was proposed by of NiJslng and
Eifler. 26

7.2 k-e Two--Equation Turbulence Model

The derivations of the transport equations for k and s are well documented in the

literature, e.g.. Sha and Launder. 25 Launder and Spalding, 27 and Arpaci and Larsen. 28 Here.
we only briefly summarize the results. The turbulence kinetic energy k is defined by

k = 21u.2 +V.2 +w.i ) 17.91

and the dissipation rate is defined by

: vi)lli _)ui (7. I01
(_xj _j '

Here, u', v'. and w' denote the fluctuation velocity components in the coordinate directions
xi, x2. and x3 respectively, v is the molecular-kinematic viscosity, i and j are the indices
from 1 to 3, and the overbars denote time averaging.

7.2.1 Transport Equatlon for k

The transport equation for turbulence kinetic energy k can be written as

_k _k i_u|

p-_-- + puj_xj : -puiuj O_X-"_ "e;)Xi

A B C

The four groups of terms on the right-hand side are

A: source due to mean shear.

B: buoyancy interactions.
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C: loss of k through viscous dissipation, and

D: diffusive transport of k and randomizing action of the pressure/strain correlation.

lt is evident that Eq. 7.1 1 requires closure. The prevailing practice is to rewrite Eq. 7.1 1

in the following form:

,712,
in which

is the source due to mean shear, and

P(_h _ gJ 17.141

is the source due to thermal buoyancy, lt is commonly recommended that the turbulence
Prandtl number Oh be assigned a value of 0.9. The term containing Ok in Eq. 7.12
represents the diffusion of k, and ak ts called the turbulence Prandtl number for k.
Launder et al. 29 have recommended that ak be assigned the value 1.0.

7.2.2 Transport Equation for e

The transport equation for _ is discussed in detail by Daly and Harlow, 3° HanJallc and

Launder. 31 and Lumley and KhaJeh-Nouri. 32 At the present time. the only feasible approach
toward devising a useful ¢ equation is to employ physical intuition and intelligent dimen-
sional analysis. The resulting ¢ equation usually contains several empirical coefficients that
require adjustment to account for prominent behaviors of different shear flows. The

equation proposed by Jones and Launder 33 and by Daly and Harlow 3° is

.P"J °, ."'- " (7.15}

In Eq. 7.15, the source terms Pk and Gk have the same form as Eq. 7.13 and Eq. 7.14, t;:v
second term on the right accounts for energy dissipation, and the last term represents
diffusion, in which oe is the turbulence Prandtl number for ¢ and its recommended value 28
is 1.3. The choice of the coefficient of the production term C ! is usually based on near-wall
turbulence, whereas the coefficient C2 is determined from the decay-of-grld turbulence.
The values of C! and C2 recommended by Launder et al. 34 are 1.44 and 1.92, respecUvely.
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7.2.3 Sequence of Steps in the k-e Two-Equation Turbulence Model

In tYLek-¢ two-equation turbulence model, the transport equations for the turbulence
kinetic energy k (Eq. 7.12) and for the dissipation rate of turbulence kinetic energy E (Eq.
7.15) are solved first. Then, the turbulent viscosity _tur is determined from the relation

= , 17.161
I_tur c

where. CD is a constant with the recommended value 0.09. The turbulent thermal
conductivity _,tur i8 determined from the equation

_'tur = _" 17.17)
Oh

t

In turbulent flows, the turbulent diffusivities in the governing conservation equation

13.1) are time-averaged quantities. By combining them with their respective molecular

counterparts, we can write

I_ = _eff = I11am+ ]_tur 17.18}

and

_, : _,eff : _,lam + _,tur. (7.19}

where, the subscripts lain and fur stand for laminar (molecular) and turbulent properties,
respectively.

The Prandtrs mixing-length hypothesis is a special case of the k-_ two--equation
turbulence model. We shall now proceed to demonstrate that this is indeed the case, For
steady-state, one-dimensional flow near a wall. the effects of convection and diffusion are
usually negligible; turbulence production is balanced by dissipation. Hence. Eq. 7, 12
reduces to

lau 2
I_t.r_- ) =pe. (7.20)

Combining Eq. 7.16 and Eq. 7.20 gives

_lL = CDp2k 2' 17.211

Because

_)u 17.22)
_tur : _Ltur_",

Eq. 7.21 Can be written as
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_tur = C_2p k , (7.23)

which states that the turbulent shear stress is directly proportional to the turbulence
kinetic energy in local equilibrium turbulence. This important relationship is supported by
numerous experiments on flows near walls.

From dimensional considerations, 27 the dissipation rate _ can be expressed as

E = C314 k3/2/t. (7.24)

Substituting Eqs. 7.16 and 7.24 into Eq. 7.20 and after rearrangement, one obtains

C_2k = t 2 . (7.25)

Eliminating k between Eqs. 7.23 and 7.25 gives

_tur = pt 17.261

which is the original form given by the Prandfl's mlxlng--length hypothesis. Thus, the

mirdng-length hypothesis can be deduced from the transport equation for the turbulence
kinetic energy upon neglecting the contributions from convection and diffusion. Its
application is limited to local equilibrium turbulent flows that usually occur near walls.

Consequently, as we shall soon see, the results of a local equilibrium turbulence model play
an important role in the development of the wall function to be described in Sec. 7.4.

7.3 Boundary Conditions for Turbulence Transport Equations

There are three types of boundaries: I. a line or a surface {plane) of s_,_n,metry, 2. inlet
told outlet bounda_es, and 3. a solid wall. The first two boundaries are discussed here, and

a solid-wall boundary is discussed in Sec. 7.4.

7.3.1 Symmetry Boundary

The simplest boundary is the line or plane of symmetry; at a symmetry line or plane,
the normal velocity is zero. The gradients of scalar quantities k and _ normal to the
symmetry line or plane also vanish.

7.3.2 Inlet and Outlet Boundario$

At the outlet plane (free boundary), the gradient of turbulence quantities is assumed to
be zero. Thus, at the outlet plane,

_k/_z = 0,

and
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_)El_)z= O, (7.27)

where z represents flow direcUon at the outlet.

The inlet plane requires special treatment. Both the inlet turbulence kinetic energy
kin and the inlet dissipation rate Ein should be obtained from measurements If available. If

measurements are not available at the inlet plane, the following procedure may be used to
estimate kin and Ein. If the inlet velocity Uin is uniform,

k_ = 0.001 u_ (7.28)

and

¢'_ Ie312
Etn -" _'D--In / _tn . (7.29)

where tin is a length scale at the inlet, lt is usually assumed that lin Is equal to the smaller
of 0.42 y and O. 1 8, where y denotes the distance to the nearest wall and 8 is the width of
the shear layer. If Uln is not uniform but the profile of the mean velocity at the inlet plane Is
known, kin can be estimated from

k_ = 3t2, +_, az )J' 17.301

where uin is the mean velocity component in the main flow (x) direction. The Inlet
dissipation rate Ein is again estimated by using Eq. 7.29.

Note that kin and Elnare user-specified Input parameters in COMMIX-PPC. If the user
does not specify km and Sin, COMMIX-PPC assumes that the inlet k and E are negligibly
small (k = 10-16 and _ = 10-lO).

7.4 Wall-Function Treatment

In the immediate vicinity of a solid wall, there is a large varlaUon in the values of
turbulence properties. Therefore, to predict the correct values of momentum flux, energy

flux, and the gradients of k and E, a special procedure is followed, called the wall-funcUon
treatment. In this procedure, we implicitly account for steep variation near a wall and avoid

the need for a fine mesh. This approach fits well with COMMIX because, in most engl-
neering applications, one rarely has _.e luxury of resolving the fine details in a boundary

layer that are due primarily to the hlgh cost of computation with a fine-mesh system.

In the literature, there are several different treatments of wall function. 35 lt appears

that, at the present time, no single wall--function treatment can claim superiority in both

generality and accuracy under a variety Gf condition. In view of this, we have developed the
wall--function model in COMMIX-PPC based on the following guidelines:

I. Simplicity.

2. Minimizing numerical difficulties.
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3. Wide range of applicabfl/ty.

The first two guidelines are self-explanatory. In a general-purpose code such as COMMIX,
one may frequently have to deal simultaneously with laminar and turbulent flows at different
locations in a system. Also, during a transient stmulaUon, different flow regimes may occur
at the same IocaUon but at different times. Thus, In COMMIX-PPC, provision ts made to
calculate flows with local Reynolds numbers ranging from very small (laminar) to very large
{highly turbulent), even though the accuracy of the results may deteriorate in a certain

range of the relevant parameters (such as Reynolds number). This is what we mean by a
wide range of applicability in Guideline 3.

There are basically two approaches in treating the ceUs adjacent to walls. The first is
that both k and E are calculated algebraically for the cells next to the walls, and therefore.
the transport equations for k and _ are not solved. The second approach is to calculate
algebraically and solve the transport equaUon for k for cells adjacent to walls. In COMMIX-
PPC. we have adopted the first approach. Le.. both k and g are solved algebraically, because
of sLmpllc/ty (Guideline 1).

There are also two types of wall-function models; a two-layer model and a thl_e-layer
model. In COMMIX-PPC, the simpler two-layer wall-funcUon model ts adopted with minor
modification.

7.4.1i A Wall-Function Model

Figure 10 illustrates the wall-funcUon model used in COMMIX-PPC. where P is the

node adjacent to the wall yp is the distance from P to the wall, and Yt is the thickness of
the viscous sublayer. When yp > Yl' the node P is In the fully turbulent region; when yp < Yt'
the node P Is in the laminar sublayer. The distance yp is fired when the user completes

modeling the geometry (and mesh system). The th/ckness of the viscous sublayer yr,
however, Is not constant and often cannot be easily determined beforehand. Hence,
provts/on Is made in COMMIX-PPC to accommodate both situaUons.

When Yp > Yl, the first node Is In the fully turbulent zone (Fig. 10). The velocity at
node P IS g/ven by the law of the wall In the fully turbulent region

+ Kin(Eye), (7.31)Up =

where

+ = Up/U_ {7.32)Up

u_ = (_w/p)l/2. (7.33}

y+ = ]rut/v, (7.34)

E Is a constant equal to 9.0, K IS the von Karman constant (K = 0.42), and v ts the kinematic
vscosity.

The turbulence kinettc energy k at node P can be calculated by using F_,q.7.23, which is
rewritten as

,,II

,|
i



48

_ VISCOUS FULLY
SUBLAYER FURBULENT

ZONE

Y •

, P

_VISCOUS FULLY
SU[II.AV_.R TURBULENT

---'--- ZONE

_1_ y _

.
= 10.92Yt

vy.

y_ = 10.92

I_. 10. Two-layer wall-functlon model

(_P> Yt)

3 21 C_2kp = u_ , (7.35)

for wh/ch the approximation that _tur = _w was used. The turbulence d/sslpatlon rate _ at

node P is calculated by using an equat/on shn/lar to Eq. 7.24, i.e.,

_p = C_14k_ I_ / (Z yp)

= U_/(Kyp) , (7.36)

because tp = Kyp.
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When Yp <Yt, the node P is in the viscous sublayer (Fig. 10). The veloclW at node P is
given by the law of the wall in the viscous sublayer

+ .

Up = yp, (7,37)

which can be rewritten as

u_ = (v up / yp)I/2. (7.37a)

The turbulence kinetic energy at node P is calculated from

kp = kt(y p / yt) 2, (7.38)

where k t is the turbulence kinetic energy at y = Yt" If we assume that Eq. 7.24. which is
valid for local equilibrium turbulence, applies at the edge of the laminar sublayer (y = Yt).
then Eq. 7.38 becomes

2(yp / yt)2 / C_2kp = u_ . (7.38a}

Note that the assumption of local equilibrium at the edge of the laminar sublayer may
not be strictly valid, lt is known 2s that local equilibrium applies in the region 30 < y+ < 50.
The main reason that the assumption was adopted was to simplify the calculation. The
present model also assumes that the turbulence kinetic energy k is constant outside the
laminar sublayer (Fig. I0}. This assumption greatly simplifies the numerical calculation
(Guideline i) because no extrapolation is needed.

The turbulence dissipation rate E at node P, which is calculated by using Eq. 7.35 and
by assuming that the dissipation rate in the viscous sublayer is constant and equal to that at
y = _. is defined as

3
_p = u,/ky t. (7.39)

The assumption of constant E in the viscous sublayer is in agreement with most wall-

function models in the literature. The assumption that Ep is equal to E at y = Yt is different
from assumptions in the literature. The reason for making the last assumption is to make
continuous so that numerical difficulties associated with discontinuous functions can be
avoided (Guideline 2).

7.4.2 Evaluating k and e for Cells Adjacent to Walls

In the computer code, the following paths are followed to determine the proper values
of k and ¢ for cells adjacent to the wall. The key is to determine whether the node adjacent

to a wall is in the viscous sublayer or in the turbulent zone. The relevant scaling parameter

is the frictional velocity uz, which appears In the equations for k, e. and the velocity
distribution given by the law of the wall in Sec. 7.4. I.

The preliminary step is to evaluate the dimensionless thickness of the viscous sublayer
gt+. This is accomplished by matching the velocity at the edge of the viscous sublayer (y =

Yt) to that from the law of the wall. Because u_ = y_,
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1
y_ = _In(E y_), (7.40)

where

y; =ytu_ / v, (7.4 I)

with K = 0.42, and E = 9. lt should be noted that _+ depends only on the constants K and
E. When the values of K and E Just cited are used, _+ = 10.92. We then proceed to

calculate kp and ep as follows:

Step 1 - Calculate y_ based on a guessed value of ut

The value of u_ can be estimated by either the viscous sublayer relationship (Eq. 7.37a). or
the local equilibrium turbulence relationship (Eq. 7.35). In the code, we take the larger of
the two as the guessed value of u_, i.e.,

U2= max_VUp'C_2kpl'kYP (7.421

Then, _ is calculated from

Yt = vy; [ u_ - 10.92 --_-v.
u_

Step 2 - Compute kp and ep

If yp > Yt, the node P is in the turbulent zone, and the frictional velocity uz is
recomputed iteratively by using the law of the wall in the turbulent zone,

u, = Kuv / tn(Eypu, / v). (7.43)

Next, kp and ep are calculated according to Eqs. 7.35 and 7.36, respectively, i.e.,

2 C_2kp -- U, /

ep = u 3/Kyp.

If yp < y_, the node P is in the viscous sublayer, and the friction velocity uz is
recomputed by using Eq. 7.37a. Thus,

U_ ----(VUp/yp)I/2.

Next, kp and ep are calculated according to Eqs. 7.38a and 7.39, respectively, i.e.,

kp = u2(yp/yt) 2/C_ 2

ep = u 3/Ky t.

The algebraically computed kp and ep of the cells adjacent to the wall are then used in the
solution of the transport equations of k and e for other cells. If the results do not satisfy the
convergence criteria, Steps 1 and 2 are repeated until convergence is reached.
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7.5 Solution Procedure for Calculating Turbulent Flows

The procedure for calculating turbulent flows is similar to that described in Sec. 11,
except that two additional transport equations for k m_d for _ must be solved. This is
accomplished after solving the pressure equation and before solving the component mass
conservation equation. A fully implicit solution procedure for calculating turbulent flows is
summarized in Table 13.

7.6 Discussion

Eight constants are employed in the k-_ two-equation turbulence model. Listed in
Table 14, they are the default values used in COMMIX-PPC. Some of these values may be
slightly different from those used in other k-_ two-equation turbulence models. If users
wish to use values other than those listed in Table 14, they can readily do so (see input

preparation described in Volume II).

The wall-function model described in Sec. 7.4 is simpler than most other models in

the literature. We have thoroughly tested this model against data for fully developed pipe
flow and for two-dimensional sudden-expansion associated with backward-facing steps. 36
The results indicate that the current k-_ two-equation turbulence model compares

favorably with the data from fully developed pipe flow at high Reynolds numbers, but is less
favorable for the backward-facing step, particularly near the reattachment zone. These
observations are in agreement with the assessment of other two-equation turbulence
models. 37

The k-_ two-equation turbulence model has also been tested against data from a
circular buoyant Jet. 38 Both the calculated centerline velocity aw:l centerline temperature
distributions compare favorably with data for a densimetric Froude number of 5. The
buoyant Jet is a free shear flow and therefore is not affected by the wall-function model.

Finally, it should be noted that the k_ two-equation turbulence model described in
this chapter is, strictly speaklng_ only valid for turbulence at very high Reynolds numbers.
Even though the code will perform calculations for flows at lower Reynolds numbers, the
results are less reliable and must be examined and interpreted very carefully. The k_ two-

equation turbulence model does not automatically degenerate to that for low Reynolds
flows, which is the inherent limitation of most turbulence models. Users must be aware of
this I/mitation. Our assessment is that this model does have some generality in treating a

variety of turbulent flows encountered in engineering systems, even though the accuracy
may vary from one type of flow to another.
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Table 13. Fully implicit (SIMPLEST-ANL) solution sequence
for turbulent flows

I. Calculate veloclty-pressure relation coefficients from the previous iterate values of u. v,
w, and gell:

$,d* ;(%= u,v,w).

2. Calculate pressure equation coefficients using $, d_ :

aop, aP, bp .

3. Solve pressure equation for new-tlme, new-lterate pressure SP:

aop8Po = 5"a p 8Pi + bop •

4. Calculate new-time, new-iterate velocities u, v, w from velocity-pressure relations:

¢ = 6-d*ASP;(¢ = u,v,w).

5. Calculate coefficients for k and ¢ equations using new-time new-lterate velocities:

a_. atk. bok : a_. a_. b_

6. Solve k and E equations for new-time, new-iterate k and E:

aokko = gakkt + bok ; a_o = ga_E, + b_

7. Calculate new-tlme, new-lterate _teffand _.efl:.

P fur- Co P k2 / E. _'tur = Cp _l.tur / Oh

Iz_ = l_tam+ l_tur. _._ = _'tam+ _'tur

8. Solve mass fraction Xk from component conservation equation.

(a_XO)k = (_a_Cxt) + (b_)kk

9. Calazlate partial steam pressure, saturation temperature, and mixture enthalpy.

Ps, Ts, h.

I0. Check for convergence of u, v, w, h, k, E, Xk; if not converged, return to Step I.
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Table 14. S_ of constants employed in the
k-e two-equatlon turbulence model

Appearance
Symbol Value (Equation)

Oh 0.9 7.11
Ok 1.0 7.11
oe 1.3 7.15
CI 1.44 7.15
C,2 1.92 7.15
CD 0.09 7.16
K 0.42 7.31 and 7.35
E 9.0 7.31 and 7.39

,. i,

8 One-Dimensional Formulation for Condenser Tube-Side Flow
iii

Because the flow in the tube side is essenUally unidirectional along the tube axis, one-
dimensional calculations can be used. The flow is also single phase. The governing

equations and their finite-volume formulations are as follows:

8.1 Governing Equations

Continuity eouation

i_+ a
_,(pu) = O, (8.1)at

Momentum eouatl.gJ1

8 aP(pu)+ _,(puu) = -_ + Pgx - Rx' (8.2)

Energy eouatlon

_-(ph) + ---_(p,,h)= (1:, (8.3}

where Rx is the tube-wall resistance per unit volume, and (fw is the wall heat flux per unit
volume.

Thus, wall friction is incorporated as a sink in the momentum equation and heat
transfer at the tube wall is treated as a source in the energy equation. In the latter, both
conduction and dissipation in fluid are neglected.
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8.2 Finite-Volume Formulation

8.2.1 Control Volume

In common with shell-side analysis, the staggered-grld system was used for tube-slde
computation. All dependent nonflow variables are stored at the center of a cell, and flow
velocities are stored at the surface of the cell.

Figure 11 shows the control volume for nonflow variables, lt is constructed around a
grld point 010. which has grid points 111-I) and 211+I) as its west and east neighbors. This
control volume, also called the main control volume, will be used for calculating the nonflow
variables, such as temperature and pressure.

Because the velocities are calculated for the surface of the cells, the control volume for

the fluid velocity at the east surface of the main control volume is that of a cell shIRed half a
cell length from the main control volume, as shown in Fig. 12. The pressure difference
between the two adjacent grid points 10 and 2) drives the flow. The staggered control
volume is used for the momentum equation.

8.2.2 Finite--Volume Equations for Continuity, Momentum, and Energy Conservation

8.2.2.1 Continuity Equation

Figure 13 shows the control volume for the continuity equation, in which F is the mass
flux across the control surface.

Upon integrating Eq. 8. I over the control volume, we obtain

At + Fi+I/2- Fi_I/2 =0. 18.41

where Vi = A Ax! is the fluid volume, A is the cross-sectional area of the tube. superscript n

refers to known old time-step values, and the superscript n+l refers to new time-step
values. The latter is omitted for simplicity.

The mass flux Fi+I/2 and Fi-I/2 in Eq. 8.4 can be expressed as

t (if > 0)Fj+I/2 = (p)i+l(UA)i+l/2 =Pi(ULA)i+I/2 Ui,l/2

=pl+l(UA)i+l/2 (If Ul+l/2 < O) (8.5)

and

F_-I/2- _O){{-l(uA)i_i/2= p/_I(RA){_I/2 (lr Ui_I/2 > 0)

=pt(uA){_i/2 (Ifui_i/2< 0). 18.6)

Here, the upwind-differencescheme isused. A location-valuesuperscriptisused for

positivevelocityand a location-valuesubscriptisused fornegativevelocity.

Equations8.5 and 8.6 can alsobe writtenas
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y 1 _ 2

l i-1 i i+1_x

Fig. I I. Control volume for nonJlow variables

Fig. 12. Control volume for./'low velocities

F_.
Y • "--"

I 4..Axt__ I_x I-I I i+l

Fig. 13. Control volume for the continuity equation

<,>',+,lu_I,+,,==Io.Iu_I,+,,=i,,-!°.-_u__,+,,=[,,+, ,_.?_
and

{-1

The symbol Ixi, x21 denotes the maximum of the tworeal numbers xi and x2.

S,2.2.2 Momentum Equation

The finite-volume formulation for ',he momentum equation can be obtained by

integrating Eq. 8.2 over the staggered control volume, as shown in Fig. 14.
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Frg. 14. Control volume for the momentum equation

Transient Term

_"_ (pu) dV=[(pu)I+I/2-(pu)In+I/2]VI+I/2At ' (8.9)

where

P z_ 1+ Pl+l_t-Xl+l

Pr+t/2 = _ (8.10)
,_X1+ z_t,Xl+ 1

A&x
Vi+l/2 - "_'( t + &xr+l) (8.1 I)

Convective Term

f_l_uu)dV=lo_,+,1Uo-Io-_,+,lu=-lO.F,[u_+_.-F,Iuo. (8.12)

where

I i Au i+t
F,+I = _[(P)I+I( )1+1/2 + C°)I+2(Au)i+3/2]

= 2g0.(Au)I+I/2_I-[0.-(Au)I+I/2_)i+I +[0.(Au),._,2IP,.,-_.-(Au),+3,2IP,.=]¢8t3,
I l-t

F,= _[(p), (AU)I_I/2 + (p)II+I(AU)'+I/2]

=_lo.l,u),_,,21,,_,-Io-<^u),_,,21p,+lo.(,u),+,,=l,,-Io.-(^u),+,,2l_,+,],=1,,_
Pressure Term

I_d_ _,.,P,)v..,2(p,.,p.), _i_,
Gra_W Term

PgxdV = (PV)i+ll2gx" 18.161

Wall Friction Term

-j)RxdV =-(RxV)t+I/2' (8.17)
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where

f I I

R_,.,,,=c,_p,.,_,lu,.,_,iu,.,_=F_u,.,_,. C8.18)
with

f
F,.c,_p,.,/,lu,.,_,I C8_91

Ustng Eqs. 8.9, 8.12, 8.15-8,19, we can write the finite--volume form of the momen-
tum equaUon as

u u u

aoui+l/2 = a_ul-l/2 + a2u1+3/2 + bo -1111+1-Pi)A, (8.201

where

. (Pv)l,_/=,I0.F,_I,IO._FII+FRvt,_. 18.211ao = At

a_'=lO.F,I. (8.22)

a_ = }O.-F;.II. (8.23)

and

(n n n)
u p U V t+I/2 (8.24)

b o = (pV)l+ll2g x 4 &t "

Dlvidtng F_,q.8.20 by a_ and rearranging° one obtains

Ul+l/2 = til+l/2-dul+l12(P|+t- Pl)" (8.25)

where

al u u b u
fit+l/2 = !-1/2 + a2 Ui+3/2 +

o 18.261
- a O

A
dUt+l/2 = --_-. 18.271

a o

8.2.2.3 Energy Equal, ion

The finite-volume equaUon for the conservation of energy Is obtained by integrating
F-xl.8.3 over the main control volume (Fig. 15).

Transient Term

J"_ dV = [('h)i-(ph)_l&t Vi" (8.28)
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Flg. 15. Control volume for the energy equation

Convective Term

_(puh) dV = (Au)l+ll2(Ph)ll+l-(Au)l_l/2(Ph}il-I

- _).(Au)l+l/2_lhi - J0,-(Au)i.l/21Pl+lhi.1

- _).(Au)l_l/2_l_lhi_l +_).-(Au)l_t/2_ihi. (8.29)

Wall Heat Flux Term

_1dr= _lwv = _l_Vi. 18.301l

The evaluaUon of Cl:t ts discussed in Sec. #.

Combining Eqs. 8.27-8.32. we obtain the finite-volume equation

aohhl = ahh,_I + a2hh,+, + boh, (8.3 I)

where

o At

h _),(Au)i_I/2 ] (8.33)aI =

h =_)._(Au)i+ll2J, 18.34)a 2

and

h (ph)_Vi + "'" V (8.35)
b° = At qw i I'
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82.3 Pressure Equation

The pressures Pi+i and Pi appearing in the momentum equation (8,25) are not known
a priori and are determined from tb? conservation-of-mass equation.

Let P = pa + SP, (8.36)

where SP is the pressure increment relative to the old time pressure value pn.

Using Eq. 8.36, we can rewrite Eq. 8.25 as

ul+l/2 = _'1+1/2-(du)i+l/2(_iP,+l- SPr)' (8.37)

where

: u 11
u,.Ii 2 = _li.,/2-(d )i+,/2(P_+I- Pin). (8.38)

Upon subsUtuting Eq. 8.37 into Eq. 8.4 and rearranging, we obtain the pressure equation

P P. a2SP,.,.bo. C8391
where

P P
+ a:, (8.40)ao = a l

P = (p)il-Ii(du)i_ll 2, (8.4 I]a l

P
= _0)li+lA(du)l+i/2, (8.42)a2

and

2 v,bo: A0i_I, 2 - - _t (pi- ID_). (8.43)

,9....Aux!!!ary Relations and Supplementary Physical Models

To broaden the scope of COMMIX-PPC applications and to more accurately account for
the phenomena relevant to thermal-hydraullc stmulaUon, several supplementary physical
models have been incorporated into COMMIX-PPC,

9.1 Rigorous Fluid-Property Routines

There are two fluid-property packages in COMMIX-PPC. One is for liquid water, the

other, for water vapor. These two packages are formulated in a modular fashion so they can
be read_ly replaced by any other property package, if desired. The input description for the
use of these packages is given in Volume Ii of this report.
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9.2 Simplified Fluid-Property Option

Besides the rigorous fluid-property packages, a simplified option is available to the
user. This option includes both fluid and solid properties. Enthalpy, density, thermal
conductivity, viscosity, and the saturation pressure of steam are expressed in the following
functional form:

h = Coh -t- Clh T + C2h T2 + C3hP ,

P = Cop + C_pT+ C_,P / (T + 273.15).

k = Cok + ClkT + C-2kT2

_t = Co_ +CloT +C2_/(T+ 273.15).

and

P= e'xp(Cop + CIpT + C2pT2) ' (9.1)

In the foregoing equation, T is temperature in degrees C, P is pre3sure in Pascals, and Co.
C I. C2, and C3 are constant coefficients to be specified by the user. The default values for

these constants are zero. We have found that the simplified option is quite useful in many
applications because it takes very little time to prepare and input the coefficients into Eq.

9. I. lt should be noted that for liquids and solids, the pressure dependence of a property
does not apply, and the corresponding coefficients should be set to zero. A detailed

description of inputting the simplified property option is given in Volume II of this report.

9.3 Heat Transfer Correlations

9.3.1 Heat Transfer Correlation for Condensation of a Steam/Air
Mixture in a Power Condenser

As a steam/air mixture flows past a bank of condensing tubes in a power condenser.
noncondensible air tends to accumulate at the interface between the metal surface and the

condensate film. Depending on the surface properties and contamination of the metal

surface, the noncondenslble air tends to adhere to the surface and is, in general, not
completely removed by the flow of the condensate film. Condensation also takes piace at
the interface between the condensate film and the steam/air mixture and, here again, the
air also tends to accumulate. Because air is a poor conductor, its accumulation at both

interfaces could significantly retard the overall condensation rate. The physical process is
complicated, and at the present stage of understanding, we resort to empirical correlations
and approximate analysis.

The deposition of dirt and the formation of scale on the inside surface of the tube are

also important considerations. In practice, their effect is accounted for by introducing a
fouling resistance. Accordingly, the overall heat transfer coefficient for the condensation of

a steam/air mixture in a power plant condenser is commonly expressed by 5,7,s
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1 Do
I I + + R w + Rf + . (9.2)Uo= D,h

where

Uo = overall heat transfer coefficient. W/m2,K.

ha = heat transfer coefficient to account for resistance due to the presence of
noncondensible air. W/m2,K.

hc = film heat transfer coefficient between liquid film and uncontaminated tube
surface. W/m2,K.

Rw = thermal resistance of tube wall. m2*K/W.

Rf = thermal resistance to account for fouling due to scale formation and dirt

deposition on tube wall. m2,K/W,

hew = tube-side heat transfer coefficient due to flow of cooling water, W/m2*K,

Do = outer diameter of the tube, m.

and

Di = inner diameter of the tube, m.

Figure 16 shows the component parts of the various resistances. The two resistances
due to the presence of an air layer at the tube surface and at the interface between the
condensate film and the steam/air mixture are combined into one, namely I/ha. In Fig. 16.

Ts is the temperature of the steam/air mixture, Tcs is the exterior temperature of the
condensate film, Two is the temperature of the outside tube wall, Twl is the temperature of

the inside tube wall, and Tcw is the bulk temperature of the cooling water.

9.3.2 Heat Transfer Coefficient due to Presence of Noncondensible Air (ha)

The heat transfer coefficient due to the presence of air can be evaluated from 38

"" 0_fPm 10"6pl/3f_s-_2/3(T.-Tcs) I/3 W/m2oK (9.3)
D_

ha = a'_o_tem _paj m _ Ts

where

a = empirical constant. 0.82.

Dm = molecular diffusivity, m2/s.

Pm = pressure of steam/air mixture. Pa.

Pa = partial pressure of air. Pa.

Ps = density of steam, kg/m 3,
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Fig. 16. Component parts of thermal resistances for condensation
of a sWamair mixture

Ts = saturation temperature of steam. K,

Tca = vapor/condensate interface temperature. °C.

hfg = latent heat. J/kg,

Rem = GmDo = Reynolds number. (9.3a)
gm

Gm = mass flux of mixture flow. kg/m2*sec,

and

llm ffi mixture viscosity, kg/m,s.

9.3.3 Heat Transfer Coefficient of Film Condensation for a Tube Bank (hc)

The heat transfer coefficient for pure steam condensing on horizontal tubes, modified
by the effects of inundation, subcooling, and vapor shear, can be expressed by

hc : hN * fl * fs * fv. (9.4)

where hN is the heat transfer coefficient for laminar film condensation of pure steam on the
outside of a single horizontal tube. and fl. fs, and fv are the correction factors that account
for the effects of inundation, subcooling, and vapor shear, respectively.

An expression for bN, averaged over the entire surface of a horizontal tube. was
originally derived by Nusselt. 39 lt is



63

3 I/4
B,(p,-

where

Pt = density of the liquid, kg/m 3,

pg = density of the vapor, kg/ma,

g = grav/tatlonal force, 9.8 m/s 2,

k t = thermal conductivity of liquid, W/mpC/s,

I_t = viscosity of the liquid, kg/m/s,

hfg = latent heat of condensation J/kg,

Cpt = specific heat of the liquid, W/kg°C,

Tcs = vapor- condensate interface temperature, °C,

Two = surface temperature of the outside wall, °C,

and

Do = outside diameter of the tube. m.

9.3.3.1 Inundation Effect (li)

For the condensation of vapor on a vertical bank of horizontal tubes, as shown in Fig.
17, where the condensate flowing from a tube ts assumed to fall upon the next lower row of
tubes, Nusselt 39 obtained the following expression for the average heat transfer coefficient
over n tube rows:

3 I/4
.... rgpt(p,- p,lk,hr ]

= u'lz°[_olXt(Tca- T.)J " (9.6)

Comparing Eqs. 9.5 and 9.6, one sees that the correction factor fl ts

fl = n -I/4. (9.7)

Nusselt's result ts generally considered to be too conservative. Clearly, the inundation
effeci_ varies with tube layout. Bundles with tubes in llne in the vertical direction will show
a greater inundation effect than those with tubes in a staggered arrangement, because the
condensate will tend to hit tube sides rather than tube tops (Fig. 18}.

An empirical relationship proposed by Short and Brown4O for the inundation effect is

fl - 1.24 n-I/4. (9.8)
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Co=aensate film

I_. 17. Condensate.film on ho_ontal tubes

F_. 18. Condensate film on staggered tubes
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9.3.3.2 Condensate Subcooling Effect (fs)

Because the liquid film on the tube surface is subcooled, Chen41 suggested that it is
possible for additional condensation to occur on the subcooled liquid layer around the
tubes; his analysis led to the following expression:

fs = 1 + 0.2CPt(Tcs- Tw°'(n_ - I), (9.9)
hfg

which is a good approximation when (n - l)Cpt(Tcs - Two ) < 2.
hfg

t

Rosenhow42 proposed that hfg in Eq. 9.5 be replaced by

t

hfg = hfg + 0.68 Cpt (Tcs - Two) (9. I0}

to obtain good agreement with experimental data.

In a power condenser, the latent heat (hfg) is two orders of magnitude greater than the
sensible heat, Cpt (Tcs- Two). Hence, the subcooling effect is of less significance when

compared with the effects of condensate inundation and shear of flowing vapor.

9.3.3.3 Vapor Shear Effect (fv)

Vapor shear influences the condensation heat transfer over tube bundles in three ways.
First, at high vapor velocity, there is increasing tendency for the film flow to become
turbulent. Second, vapor shear will reduce the thickness of the flowing condensate film

due to its acceleration in the direction of vapor flow. Third, a higher vapor velocity will
alter the flow path of the condensate that is falling on the tube rows.

The vapor shear correction factor suggested by Berrnan and Tumanov 43 is

incorporated in the COMMIX-PPC code:

fv = I + 0.0095Relm 1'8/'N4"_"'
(9. I I)

where Rem is defined in Eq. 9.3a and Nu is the Nusselt number defined as

N, = hND°. (9.12)
kt

9.3.4 Thermal Resistance of the Tube Wall (Rw)

The thermal resistance of the tube wall is expressed as

Do ln(_ ) m2 *K
R w =--- , _, (9.13)

k w W

where
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Do- tube outside diameter, m
Di = tube inside diameter, m

kw - thermal conductivity of the tube material, W/m,K.

9.3.5 Thermal Resistance of the Fouling Layer (Rf]

Fouling is an _xtremely complex phenomenon in condensers. The fouling
characteristics are functions of various parameters:

• Geometry and material of the heat transfer surface.

• Temperature of the fouling fluid and the deposit.

• Flow velocity.

® Characteristics of the fouling fluid.

Condensers in which sea water is used for cooling are subject to biofouling, corrosion

fouling, and fouling due to deposition of suspended particles or precipitation of salts.

Fouling deposits are usually poor thermal conductors; therefore, because they
accumulate on heat transfer surfaces, there is a reduction in condenser efficiency and

performance.

Thus. the thermal resistance due to a fouling layer in the condenser tube varies. A
value of Rf from 0.00005 to 0.00014 m2,K/W was used by Eissenberg and Noritake 44 in
seawater distillation plants.

9.3.6 Heat Transfer Coefficient for the Flow of Cooling Water Inside a Tube

The Dittus-Boelter45 correlation, used to calculate the turbulent heat transfer
coefficient between tube wall and cooling water, is

k os (9.14)
hcw = O.023_--LReD Pr°'4.

L.0| i

9.4 Structure/Fluid Mov.lentum Interaction

As described previously, the solid structures in the system under study interact with
fluid and influence momentum distribution. In the porous-medium formulation employed
in COMMIX-PPC, these interactions are modeled with distributed resistances that appear
in the source term of the momentum equations (Table 1). This section describes how the
distributed resistance, also known as force structure, is determined, and how a wide range

of generality and flexibility is provided in COMMIX-PPC.

In COMMIX-PPC, the frictional pressure drop due to stationary solid structures is

expressed in the following general form:
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Lpv2f. (9.15)ap Cs

where L(ax, ay, or az) ts the length of the cell and D is the hydraulic diameter.

The friction factor f is a function of the Reynolds number and is assumed to be of the
form

f = atam Rebt=m+ Cram (As Re_0, Cram_0) (9.16)

for Re<Retr and

f = aturReb"_+ Ctur {9.17)

for Re> Retr. Here, Re Is the Reynolds number, and a, b, and c are constants. The

subscripts tam, tur, and tr stand for laminar, turbulent, and transition. COMMIX has the
flexibility of permitting as many correlations as the user desires. Each correlation requires
seven input numbers: alara, btam, Clam. atur. btur. Ctur, and Retr. The Reynolds number Re
ts defined by

VDp (9.18)Re- _,

where V ts the local flow velocity, D ts the hydraulic diameter, p Is the density, and I_ ts the
viscosity. The product pV ts the local mass flux.

In Eq. 9.15, the values of c l and D depend on the geometry and type of structure and
must be provided by the user. There may be more than one type of structure In a flow
domain of interest. Partially submerged structures usually have different geometries and
require different values for parameters c{ and D. In COMMIX, we have provided this
flexibility; details are given in Volume II of this report.

The resistance to flow due to internal structure would depend on the orientation of the

structure relative to the general flow direction. Accordingly, a directional distributed
resistance R, expressed in pressure drop per unit length, ts introduced, lt Is defined by

R= AD =ct vlvl, (9.19)-C- P-ft"
Equation 9.19 ts used in COMMIX-PPC to account for frictional pressure drop. To

simplify the specification of the manner that a fluid cell interacts with a structure, a
specific input arrangement has been implemented in COMMIX; details are presented tn
Volume II. A collection of resistance correlations commonly needed by COMMIX users is

presented in a recent report 46 and Is also included In the appendix of Volume II of this
report.

Occasionally, the COMMIX-PPC user may find that the desired correlation Is not of a

form directly suitable for input into COMMIX. When thts occurs, the user may approximate
the correlation to fit the input form. or implement the new correlation Into the code.
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9.5 Shell--Side and Tube--Side Thermal Coupling

9.8.1 Introduction

As described earlier, solid structures, partially or totally submerged in a fluid, interact
with the fluid and influence momentum distribution. They influence temperature distribu-

tion when the temperature oi"the solid structure is different from that oi"the fluid. The
structure/thermal interaction in COMMIX-PPC is modeled by distributed heat sources.
Such interaction consists primarily oi"heat transfer between a structure and surrounding
fluid and, indirectly, heat transfer within the solid structure.

In COMMIX-PPC, the condenser tubes are modeled as thermal structures. The tubes
interact wlth a steam/alr mixture on the shell side and with cooling water on the tube side.
When a mixture of steam and air flows over tube surfaces, steam condenses on the tube
surface and releases latent heat to the tube. This latent heat is then transferred to the tube

side and raises the temperature of the cooling water.

COMMIX-PPC has modeled the thermal structure in a more generalized way so that it

can be used for other engineering calculations, such as those used in the nuclear industry.
lt has the following features:

• The model considers all internal structures,

• A structure can be planar, cylindrical, or spherical with either one surface
(e.g., solid cylinder or sphere) or two surfaces (plane or annular cylinder)
thermally interacting with surrounding fluid. _he axis of the structure can be
aligned with any of the three coordinate axes._'

• Each structure can consist of more than one type of material, each separated

bya gap.

A generalized way of modeling thermal structure is presented in the Appendix. In this
section, the thermal coupling between the shell-slde and tubHlde fluids will be described.
The heat transfer and temperature distribution within the tube wall is calculated by solving
the one-dlmenslonal heat conduction equation in the radial direction. This assumes that
heat conduction in the other two directions is negligible. The rate of heat transfer from a
steam/alr mixture to a tube is the distributed heat source. Because the energy equation is
not solved for a steam/alr mixture, this distributed heat source Is then used to calculate the
steam condensation rate.

9.5.2 Geometrical Description

Figure 19 shows a condenser tube with its axis aligned in the x-dlrection and Its length
extending over a number of computational cells with partition Ax. Each _ partition of the
tube is referred to as a thermal-structure element. Each element interacts with only one
fluid cell. Each element has its own temperature distribution as lt interacts with

surrounding fluid cells. Each element has two surfaces, outer and inner. The outer surface
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Fig. 19. Condenser tube (thermal structure) in a.flow domain

interacts thermally with the steam/alr mixture and the inner surface interacts thermally
with the cooling water. Each element can consist of any number of tubes.

9.S.3 Governing Equation

The transient one-dimensional heat conduction equation is

aT 1 ()" A ". (9.20)
pep a"t" = 7_ t- q)

where p and Cp are the density and specific heat of the tube. q is the radial heat flux per
unit area. and A is the local cross-sectional area.

9.5.4 Finite-Difference Formulation

Figure 20 shows the cross section of the thermal-structure element under consider-
ation. Each element is divided into a desired number of equal partitions. Let Ar be the

partition size and L be the total number of partition cells.

9.S.4.1 Internal Cells (t = 2,3, ...., L-l)

Consider the energy balance of cell I as shown in Fig. 21. The integrated energy
equation for the structure in the control volume oi"cell t gives

pCp (T,- = - (9.21 )
6t

Here. Vt ts the cell volume. The heat flux (I/can be expressed in terms of the overall heat
transfer coefficient UL or its reciprocal and a temperature difference:

qt = Ut(Tl_l_ T_) = 1_-t(T,_l- Tr) . (9.22)
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Fig. 21. Energy Balance of a partition cell t
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where

1 1 (9.23)
Ar

Here, _. is thermal conduc_Nity, T" and T are temperatures at time t and (t + St),

respectively.

Upon substituting Eq. 9.22 into Eq. 9.21 and rearranging, we obtain

(a t + bt + bt+l)T t = btTt_l + bt+lTt+l + dt ' (9.24)

where

at = pCpVt/St, (9.25)

bt = AtU t= At/Rr, (9.26)

bt+l = At+iUt+1 = At+t/Rr+l, (9.27)

and

dt = atT_" (9.28)

In Eq. 9.24, at is related to the tube heat capacity, bt and b t+lare related to the heat
transfer area and heat transfer coefficients, and dt is related to at and T_.

9.S.4.2 Outer Surface Cell (t = 1)

For the case of Cell 1 (Fig. 22), adjacent to the coolant Tcool, the finite-difference

energy equation is

PCsPtVI(TI - T_) : UIAI(Tcool I - TI)-U2A2(TI - T2)' (9.29)

where

I I (9.30)
UI---=

and

I 1 (9.31)

H2 = -'2 = (_)1 + (2_)2"

Here, h I is the convective heat transfer coefficient between fluid and tube wall. and can be
evaluated from Eq. 9.2 as

1 1 1 (9.32)

hl ha hc
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F_. 22. Energy balance of Cell 1

Upon subsUtutlng Eqs. 9.30 and 9.31 into Etl. 9.29 and rearranging, we obtain

(al + bl + b2)Tl = blTcooll + I)21"2 + dl, (9.33)

where

al = pCpVI, (9.34)
8t

Al (9.35)bl = AIU ! =

. (e)1
1:)2= A2U2, (9.361

and

di = alTl n. (9.37)

Here, al. bl. and dl have the same meaning as at, bf, and d_, in Eqs. 9.25-28. Note that bl
includes the convective contribution.

9.5.4.3 Inner Cell (t = L)

For the case of Cell L (Fig. 23}, adjacent to coolant Tcool2, the finite-dlfference energy
equation is

pCpVt(T L - T_)= ULAL(TL_ 1 - TL)- UL+IAL+I(T L - Tcoo,,), (9.38)8t

where

1

UL = (e)L-I + (_)L (9.39}

and

! (9.40)

UL+I = '_J_2+ (_)L"
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F_. 23. Energy balance of Cell L

Here, h2 is the convective heat transfer coefficient, which, from Eq. 9.2, can be deilncd as

_..I = Rf + Do . (9.41)
hl Dlhcw

Upon substituting F__s. 9.39 and 9.40 into Eq. 9.38 and rearranging, we obtain

(a L + bL + bL+l)T L = bLTL_I + bL+ITcool2 + d L, (9.42)

where

aL= pCpVL, {9.4;3)
8t

bL = ALUL, (9.44)

bL+l = AL_IUL+I, (9.45)

and :

-i_ndL= aL L. (9.46)

Here, aL. bL, bL+I, and dL have the same mean/ng as aL, bf, b_+I, and dr, defined In Eqs.
9.25-9.28. Note that bL+l Includes the convecLtve contribution.

We can see from the formulations of the preceding section that there are L equations
for L unknown temperatures.

• Outside Surface Cell (t = 1)

(al + bl + b2) T] = b2T_ + bl Tcooll + dl (9.47a)

• Internal cell (_ = 2,3, ...., L-I)

(aL + bt + br.l) Tt = btTt-i + bt+l Tt+l + dL (9.47b)
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* Inner cell (t = L)

{aL + bL + bL+l) TL = bLTL-I + bL+l Tcool2 +dL. (9.47c)

Equations 9.47 can be rewritten as

CIT ! = b2T2 + Al (t = I) (9.48)

CiT t = bt+ITt+I + At (t = 2,...,L-I) (9.49)

CLTL = bL+iTcool2 + AL (t = L), (9.50)

where

brAt-1 {9.5 1)
At = dt + (t=2,...L),

Ct-1

Ct = at + b t + bf+ l (t=2,...L), (9.52)
Ct_1

a I = dl + biTcool_, {9.53)

and

C I = al + bl + b2. (9.54)

The inside-surface cell temperature is first calculated from Eq. 9.50. The remaining

temperatures are then computed by using Eqs. 9.48 and 9.49.

9.5.5 Heat Transfer to Adjacent Fluid

Once the temperature distribution in a structure element is determined, the rate of
heat transfer to the adjacent fluid can be computed frgln

diI = AIUI(Tcooll - TI) for the outside surface (9.55)

diL+l = AL+IUL+I(TL - Tcool2) for the inside surface. (9.56)

9.5.6 Steam Condensation Rate

The steam condensation rate per unit volume (rh"') is computed from

dl (9.57).ht I! _.

hfgVf

where hfg is latent heat and Vf is the volume of the computational fluid cell.
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10 Initial and Boundary Conditions . -º-

10.1 Initial Conditions

Generally. before the solution sequence can begin, values of all variables must be
assigned. In COMMIX-PPC. we can accomplish this by either

• Continuing a previous run via the restart capability (recommended for all but
the first run), or

• Specifying the initial distribution throughout the interior points and boundary
of the space under consideration.

When the initialization is not a restart, we must specify initial pressure, temperature,

velocity, mass fraction, and turbulence parameters for the entire computation domain. The
assignment of these initial values and their subsequent input into the code are generally
tedious. In COMMIX, several simplified input procedures are provided for the initialization

of velocity, pressure, temperature, mass fraction, and turbulence parameters. These
procedures are described in Volume II of this report.

10.2 Boundary Conditions

This section describes the boundary conditions for mass, momentum, and energy

equations. The boundary conditions for turbulence-transport equations have already been
described in Sec. 7.4. The surface fluxes are in a direction normal to the local surface and

pointing into the fluid from the boundary surface.

10.2.1 Fluid Velocity Boundary Conditions

The most common physical boundaries in an engineering system are solid impervious
surface, inlet, symmetry, and outlet. To accommodate all possible fluid velocity conditions
at these boundaries, seven boundary condition options (summarized in Table 15) are

provided in the COMMIX code. In the following, these options are described in mathe-
matical terms; in Volume II their implementation in the input data is described.

1. Constant Fluid Velocity

This boundary condition implies that normal fluid velocity Vn is constant.
This option is applicable to an inlet surface with constant inlet fluid velocity.
lt is also applicable to a stationary solid surface as a special case of zero
normal fluid velocity.

2. Transient Fluid Velocity

This option is applicable when the inlet velocity varies with time, e.g.,

Vn = vo Ht). (I0.1)
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Table 15. Huid velecity boundary options

Option
Boundary/Suitable Option No. Remarks

Solid Impervious Surface
Constant velocity I Specify normal velocity Vn = 0

Inlet

Constant velocity 1 Specify inlet velocity
Transient velocity 2 Specify inlet velocity and

appropriate transient function

Surface of Symmetry
Free Slip 3 Axis through origin in

cylindrical coordinate is a
surface of symmetry

Outlet
Continuous mass flow 4 General outlet condition

Continuous momentum 5 Suitable when areas are equal

Continuous velocity 6 Suitable when areas and
densities are equal

Uniform velocity 7 Suitable when outlet is finely
divided (Fig. 24)

Here,

Vn = surface--normal fluid velocity at time, t,

vo = surface-normal fluid velocity at time, t = 0,

and

fIt) = dimensionless function of time.

3. Free Slip

The free-slip option is used when the shear stress at the surface vanishes and

Vn = 0.0. (10.2)

This option is applicable to a symmetry boundary. For a cylindrical coordinate
system in COMMIX, the z axis passing through the origin is considered a
symmetry boundary with zero surface area.

4. Continuous Mass Flow at Outlet

This option is for an outlet surface, as illustrated in Fig. 24, in which I and m

are the outlet boundary cells and l+l and m-I are the neighboring cells. The
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Inlet

Fig. 24. Near-boundary cells

continuousmass flow at the outlet implies that the normal surface velocity
must be such as to balance the mass flow. i.e..

(Vn)t-l/2 -- [(pA .112u-n+l/2 + (PI- P_)Vt//_V(PA ,-112" (10.3a,

and

(v.)=+,_== [-(pA)=_,_,=_,_,+(p=-0"-iv=/,L/(:PA)=+,_,. (_0.ab)
The sign difference between Eqs. 10.3a and t0.3b Is In conformity with the
COMMIX convention that surface-normal is directed into the flow domain.

5. Continuous Momentum How at Outlet

When an outlet area Is the same as the neighboring surface area, Eq. 10.3a

simplifies to

I,,°>,_,,== ,.,,,.
lt is called continuous momentum flow at outlet because lt has the appearance

of equating neighboring and outlet momentum fluxes.

6. Contlnuous Velocity at Outlet

If we have equal areas and equal densities, Eq. 10.3a simplifies to
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= (u),.,,,2. (1o.5)

This option ts called continuous velocity at outlet because the outlet velocity
and the velocity of the neighboring cells are equal.

7. Uniform Velocity at Outlet

The uniform velocity at outlet option of the boundary condition sets the
normal velocity for all surface elements at the same value, This value is
computed in such a way that the total mass flow through a surface is the same
as that obtained from the boundary condition of continuous mass flow outlet.
Mathematically,

(v.)_- +(,,,_ ,,o.,,
Here, the summation is taken over ali elements of a surface. This option Is

suitable when an outlet is very finely divided, as shown in Fig. 25.

10.2.2 Temperature Boundary Conditions

The five options of temperature boundary condition available in COMMIX-PPC are
briefly described here and summarized In Table 16.

1. Constant Temperature

This option is for a constant-temperature surface. The temperature
associated with each surface element is set initially and rvmains unchanged
throughout the calculation, as shown in Fig. 26. The surface heat flux is
calculated from the relation

cl = UA(Tw- "If), (I0.7)

where the subscripts w and f refer to the solid surface element and boundary
fluid cell, respectively, and

1

U = __+ _____, (I0.8}
h 2Aw

in which h is the heat transfer coefficient, _, is the conductivity of the wall
material, and AL is the wall thickness. Calculation of the overall heat transfer

coefficient U requires input on wall thickness, suitable correlation for h, and
thermal conductivity of wall material X.

If the Biot number hAL/2Xw << I, the overall heat transfer coefficient

becomes equal to h.

If an Inlet surface has a constant temperature, as shown in Fig. 27, the surface
heat flux is calculated from the Fourier relation
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Od_let Bounclary

. .,,,

Fig. 25. Model suitable for un_'cx'm velocity at outlet option

Table 16. Suitable temperature boundary options

Option

Boundary/OpUon No. Remarks
i|i i i i i

Solid Surface

Constant temperature 1 Tw = constant
Transient temperature 2 Tw = Tor(t)
Constant heat flux 3 qw = constant
Transient heat flux 4 qw = qof(t)
Adiabatic 5 qw = 0

Inlet

Constant temperature 1 Tw = constant
Transient temperature 2 Tw = Tor(t)

Outlet

Adiabatic 5 qw = 0

Surface of Symmetry
Adiabatic 5 qw = 0
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(10.9)a.- -',...

Here, _ff is the effective thermal conductivity of the fluid in the adjacent
internal cell and can be calculated from Eq. 7.19, _xf is the distance between

the surface and the boundary cell center, and the subscripts w and f stand for
wall (surface element) and adjacent internal cell, respectively.

2. Transient Temperature

This option is for a surface whose temperature varies with time, e.g.,

Tw = TO fit), (10.i0)

where

Tw = surface temperature at time t,

To = surface temperature at time = 0,

and

fit) = a dimensionless function of time.

We calculate the surface-element heat flux with the procedure described for

the constant-temperature boundary option.

3. Constant Heat Flux

In this option, the heat flux associated with each surface element is set
initially and remains unchanged throughout the calculation. Although the
surface heat flux remains fixed, its temperature Is evaluated by using Eq. 10.7
or 10.9.

4. Transient Heat Flux

Thls option is useful when the surface heat flux has a known variation with
time, e.g.,

4 = qo fit), (10.11)

where

4 ffi surface heat flux at time t,

4o = surface heat flux at time t = O.

and

fit} = a dimensionless function of time.

Once the surface heat flux is known for any given time t, the surface
temperature can be calculated from Eq. 10.7 or 10.9.
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5. _ SurSace

The adiabatic boundary option is used when the heat flux _I= 0. In this
option, the normal heat flux at all elements of a surface is inIUallzed to zero
and it remains at zero. The surface--element temperature is set equal to the

temperature of the neighboring internal cell.

10.2.3 Pressure Boundary Conditions

Currently. two options for pressure boundary condition are provided in COMMIX-PPC:

• Constant pressure, and

• Transient pressure.

The pressure boundary is specified for cells adjacent to the surface. This option is
usually used In conjunction with the contlnuous-mass-flow boundary condition.

If the velocity boundary condition is specified for an inlet surface, the pressure
boundary option is not used, because surface pressure does not enter into any calculation.

lt is Important to note that the pressure boundary condition in COMMIX-FPC refers to
the pressure at the boundary of adjacent fluid cells. Therefore, it is recommended that the
geomeh_y be modeled in such a way that the pressure boundary is applied to

• A surface with one surface element, or

• A surface that is normal to the direction of gravity and has parallel flow,

as shown in Fig. 28.

When the constant-pressure boundary option is used, the pressures of all internal cells
adjacent to a surface are set to a prescribed value. These values then remain unchanged
during the calculation.

For a transient pressure over a surface, the pressures of all internal cells adjacent to
that surface are calculated from

Pm = Pm0 f(t) , (10.12)

where

Pm " pressure of the adjacent cell m and time t,

Pmo " pressure of adjacent cell m at tlme = 0,

and

f(t) = a dimensionless function of time.

The implementation of these options in the input Is explained in Volume II.
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Fig. 28. Recommended surface arrangements for pressure boundary condition

10.3 Additional Options

The boundary conditions described in Sec. 10.2 are generally for uniform conditions at
the boundary surfaces. If the distribution of the parameter in question is not uniform, this

par_-_meter can be specified by using the boundary surface-element initialization procedure
in COMMIX-PPC. For example, if the inlet velocity is not uniform, the velocity can be

specified individually for each surface element at the inlet plane by using the variable VELB.
Similarly, if the heat flux on a given surface is not uniform, the heat flux can be specified
individually for each surface element by using the variable QBN. Other variables such as
mass flow rate, mass fraction, enthalpy, temperature, density, turbulence kinetic energy,

and dissipation rate of turbulence kinetic energy are included in the procedure for

boundary surface--element initialization, which overrides the procedures described in Sec.
10.2. Quite frequently, a combination of two procedures is used to achieve better accuracy

in specifying boundary conditions. The boundary surface-element initialization procedure

provides greater flexibility not only in specifying the nonuniform boundary conditions
previously described, but also for others not described in Sec. 10.2. For example, if the
user wishes to specify uniform mass flow at the inlet and because this option is not

provided in Table 15, the user can specify uniform mass flow at the inlet plane by using the
boundary surface-element initialization procedure. A detailed description of this procedure
is given in Volume II of this report.
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11 Solution Procedures
-- i .li i i iii i

11.1 Introduction

COMMIX-PPC performs thermal-hydraulic calculations by mmching in time. The

values of the dependent variables at a given time-step n are known and the values of the
dependent variables at time-step n+ I are calculated. By repeating this procedure, the
thermal-hydraulic variables for the desired time span are determined. The overall flow
chart of the program is shown in Fig. 29.

The same procedure is followed for steady-state calculations. We start with an initial

guess and continue the marching-in-time process until the changes in values of all
dependent variables of two successive time steps are lower than specified. The size of the
time step for the implicit steady-state calculation can be many times larger than the
Courant time-step criterion.

In COMMIX-PPC, two options are provided for the size of the time step:

• The user-desired time-step size (details of this input are given in the Input
Description in Volume IIL and

* The automatic time--step option.

In the automatic time-step option, the time-step size is evaluated on the basis of.the
Courant condition

At - C_Atc, (I 1.1)

where C I is the user-prescribed coefficient and Atc is the time-step size evaluated from

the Courant condition. The Courant time-step size is defined as the minimum time

required for fluid to be convected through a cell. In COMMIX, each computational cell is
examined with respect to flow in all three component directions for the determination of

the Courant time-step size. The fully implicit solution sequence is used in COMMIX-PPC.
Details are described in Section 11.2.

11.2 Fully Implicit (SIMPLEST-ANL) Solution Sequence

The fully implicit solution sequence, named SIMPLEST-ANL, iS based on a modification
of the SIMPLE/SIMPLER procedures developed at the Imperial College in England.

SIMPLEST/ANL requires less computer storage than SIMPLER and has comparable or
better computing efficiency. Because it relieves many of the time-step size limitations and

permits use of larger time steps, it is most suitable for steady-state and transient
calcul_',ions.
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Flg. 29. COMMIX-PPC flow chart

The procedure is called fully implicit because the new-time values of ali variables
prevail 'during any time step. An iterative procedure is therefore needed. Each outer"
iteration loop yields a better estimate of advanced-Ume values of ali variables. When the

*Here.outer/tm'atkm/oop Is used to dIstinguIshit fromthe InnerltemUveloops used for the solution of a specific
variable equation, e.g.. the iterativeloop (successive overrelaxatlonprocedureor the preconditionedconjugate
gradientmethod) used for the solution of pressure equations Is consideredan inner Iterativeloop.
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change In all variable values becomes smaller as one proceeds from one outer iteration to
the next, the Iterative process is considered converging and the last outer iterated values
are used for the advanced tlme-varlable values. The solution sequence for the fully Implicit
formulation is the seven-step iterative process shown in Table 17.

11.3 Matrix Solvers

Three matrix solvers are available in COMMIX-PPC to solve the discretlzed equations.
They are the successive overrelaxatlon (SOR) method, the direct matrix inversion method
(DMIM), and the Preconditioned Conjugate Gradient (PCG} method. All are incorporated in
COMMIX-PPC in a modular fashion so that the user has the flexibility of choosing any one of
the solvers for the pressure equation because the resulting matrix is symmetric. Either
SOR or DMIM can be selected for the scalar transport equations.

Of the three matrix solvers, SOR and PCG are iterative solvers, whereas DMIM is a
direct solver and requires no iteration, lt should be noted that the solution procedures
require the solving of several sets of algebraic equations by one or a combination of the
three matrix solvers.

11.3.1 Successive Overrelaxation Iterative Scheme

The SOR Iteration scheme uses one pass through the computational cell domain. As
each cell is visited, the residual of the _-equation to be solved is computed, using the most
recent values of the surrounding _'s. In this way, an updated value of _ is used if the
neighboring cell has been visited earlier in the pass, and a previously iterated value of _ is
used if the neighboring cell is to be visited later. Immediately after the residual of the _' .
equation for a cell under consideration is computed, the _ is adjusted in that cell before the
computation proceeds to the next cell in the pass.

After all cells have been visited, the convergence is checked and if it has been
achieved, the iterative process terminates; II"convergence has not been achieved, another
slngle--pass iteration Is performed.

The SOR scheme requires the relaxation parameter (o to be between 0 and 2.
Generally, convergence can be achieved in fewer iterations than in the Jacobi scheme.
Because 0) can have values greater than 1.0, it is termed overrelaxaUon. The optimum value

of the relaxation parameter is generally geometry- and problem-dependent; it is usually
between 1.4 and 1.8. and hence the name overrelaxation.

11.3.2 Direct Matrix Inversion Method

The DMIM Is a collection of routines for solving the n x n system of linear algebraic
equations when the coefficient matrix is large and sparse. The direct method is based on
Gaussian elimination without pivoting. The coefficient matrix can be symmetric or
nonsymmetrlc. The routines of the direct matrix Inversion method decompose the
coefficient matrix into triangular factors and then successively solve the triangular systems.



87

Table 17. Fully implicit (SIMP_-ANL) solution sequence

1. Calculate velocity-pressure relation coefficients from the previous iterates
of u, v, and w:

¢_,d';(_ = u. v, w).

2. Calculate pressure equation coefficients using _, d* :

aoP. atP, boP .

3. Solve pressure equation for new-time, new-iterate pressure SP:

aoPSPo = _aPSPt + bop .

4. Calculate new-time, new-iterate velocities u, v, w from velocity-pressure
relations:

¢_= _- d*ASP;(@ = u,v, w).

5. Calculatecomponent mass fractionequationcoefficientsusing new-time,
new-iteratevelocities:

x Xb_).ao,a_,

6. Solve component mass fraction equation for new-time mass fraction x:

a_xo = ]_a_Cxt +b_.

7. Ca/cu/atethe steam partialpressure,the saturationtemperature,and
mixtureenthalpy:

Ps,Ts,h.

8. Check forconvergenceofu, v,w. h. x; ifconvergencecriterionisnot
satisfied,returntoStep I.

The routine takes advantage of the sparse coefficient matrix by solving the triangular
systems without storing or operating on zero entries. The advantage of DMIM is that it is a
direct solver and no iteration is involved. Both symmetric and nonsymmetrlc matrices can

be solved. However, as the number of computation cells is increased, both the storage and
" the work increase rapidly and other methods (SOR and PCG} may become more economical

and efficient.

11.3.3 Preconditioned Conjugate Gradient Method

A number of PCG-like methods have been reported in the literature. 47 The PCG

method uses an iterative procedure that computes a sequence of approximate solutions of a
system of linear algebraic equations. In COMMIX-PPC, it solves the symmetric, positive-

definite systems, requires no estimates of scalar Parameters, and is relatively inexpensive
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per step. These properties make the conjugate gradient method more robust, easier to
implement, and more rapidly convergent than other iterative methods for solving
symmetric, posltlve-deflnlte problems. The convergence of the conjugate gradient method
can be improved by preconditioning technlques. 46 Consider a linear system of the form

Mx = b, (I 1.2i

where M is the coefficient matrix, and x and b are column vectors whose components are
xi, bi (! = I, 2, ..., n). In broad terms, preconditioning consists of solving the following
system:

Q-I Mx = Q-I b. (I 1.3)

where Q is an approximation of M so that Eq. I 1.3 is in some sense easier to solve than
Eq. 11.2. The preconditioning technique employed in COMMIX-PPC is the incomplete

factorization of M. More detailed descriptions of the conjugate gradient methods and the
preconditioning techniques can be found in Ref. 47.

11.3.4 Discussion

As described previously, the user has the flexibility of choosing any one or a comblna-
tion of the three matrix solvers to solve the pressure equations and the scalar transport

(energy, turbulence kinetic energy, etc.) equations. Table 18 summarizes the properties of
these matrix solvers and the type of equations each solver is suitable for. The pressure

equations in COMMIX-PPC are made symmetric and therefore can be solved by all three
matrix solvers. The transport equations are nonsymmetric and therefore not suitable for

PCG, but can be solved by either the SOR or the DMI method. Practically speaking, the

DMIM is more efficient for relatively small numbers of computational cells; it becomes less
efficient when the number of computational cells is greater than I000. When the number
of computational cells exceeds 2000. the PCG and SOR methods are more efficient and

economical than the DMIM. As a rough guide, the DMIM should be used for all equations
if the number of computational cells is less than 1000. If the number of computational cells
is greater than 2000, the PCG method should be used to solve the pressure equations and

the SOR method should be used to solve the scalar transport equations.

11.4 IterationCriteria

As has already been pointed out, SIMPLEST-ANL ts a fully implicit scheme and
requires iteration. Thus, iteration criteria are needed to determine if iteration should

proceed or be stopped before advancing to a next tlmestep. This is what we referred to
earlier as the outer iteration loop.

The seventh step listed in the fully implicit scheme (Table 17) is to check for

convergence. The changes from one iteration to the next are checked against the
convergence criteria for all ys. The iteration criteria are considered satlsfJed when

- <E3.
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Table 18. Properties of the three matrix solvers in COMMIX-PPC

_uitable for

Matrix Coefficient Pressure Transport
Solver Matrix Scheme Eqs. Eqs.

SOR Symmetric/Nonsymm etric Iterative Yes Yes

DMIM Symmetric/Nonsymmetric Direct Yes Yes

PCG Symmetric Iterative Yes No
r

unew -- uoldlmax < E3 ,
Vmx

[vn_- v_d[max < Ea. and
Vmx

lwn_ - W°adlmax< EZ (11.4)
Vmx

simultaneously. Here, Vmax is the maximum magnitude of the velocity, Ez is a user input
convergence parameter, and the superscripts "new" and *old" refer to current and
previous iterate values. If any one of these convergence criteria is not met, the sequence is
repeated from Step I. The solution proceeds through the sequence until it converges or
the specified maximum number of iterations has been performed. Here, _ refers to the
general scalar transport variable (such as enthalpy, turbulence kinetic energy, etc.).

Iteration criteria are also needed for the inner iteration loop if an iterative matrix
solver is selected. The inner iteration loop solves the individual pressure and scalar

transport equations within a given time step. If either the SOR or PCG method is selected,
we will need a mass convergence criterion for the pressure equation and some other
criteria for the scalar transport equations.

In theory, the pressure equation (Eq. 6.7) is considered solved when mass residue 8 is

equal to 0 for all cells. Because Eq. 6.7 is solved iteratively, this will, in general, never be
true. Instead, a nonzero mass residual 6 is computed for every cell and a maximum is
determined as 151max. The iterative process continues until either a maximum specified
number of iterations has been performed or the maximum mass residual falls below the

convergence criterion,

151max < convergence criterion. ( 1 1°5)

The mass convergence criterion is calculated with the relation

rr 1 1Convergence criterion = El * P_iUn + E2, (I 1.6)
Lk.'rv )wd
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where El and E2 are the input convergence constants and subscript i stands for three
coordinates.

The convergence criteria for the scalar transport equations in the inner iteration loop
within a given time step are

h_.l- hlJ"k_ gs,
h_x- h_n

m+l frm

m _ mk_ x k_

and

Em+l m

_Jk -EiJX _<E6, (11.7)in in
Ema x -- Ein m

where the superscripts m and m+ 1 represent the previous and the current iterative values,
respectively, the subscripts max and min represent the maximum and minimum values of

the variable in the entire computational domain, and the subscript iJk indicates the change
in value of the variable from one iteration to the next and is evaluated at the same location.

The convergence criteria expressed by Eq. I 1.7 mean that if the change in value of a vari-
able from one iteration to the next at any location divided by the maximum variation of that
variable in the computational domain is equal to or smaller than some prespecified number

E, the solution is considered convergent and no more iteration is required. Again, these
criteria apply only to iterative matrix solvers such as SOR and PCG. These iteration criteria
are not needed for the DMIM.

Table 19 summarizes the convergence criteria for the iterative scheme (fully implicit}
and the iterative matrix solvers (SOR and PCG} and provides the default values of
convergence parameters employed in COMMIX-PPC.

Table 19. Convergence criteria for the iterative scheme (fully implicit) and
the iterative matrix solvers (SOR and PCG) used in COMM/X-PPC

Convergence Default Iteration
Parameter Value Loop Description

el 10--4 Inner Mass convergence for
pressure equations

E2 10 -6 Inner Mass convergence for
pressure equations

E3 5 x I0 -5 Outer All transport variables

E6 10 -5 Inner Turbulence parameters k and E
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12 Summary and Discussion , ,

12.1 Major Features of COMMIX-PPC

The important features of COMMIX-PPC have already been explained. Some are unique

and distinct from other computer codes.. Flve of these unique features, which significantly
expmd COMMIX-PPC capabilities and increase its flexibility, are reiterated below.

• Porous-medium formulation

• Geometry modeling

• Matrix solvers

• Multicomponent capability

• Shell-tube-slde thermal coupling.

12,1.1 Porous-Medium Formulation

In COMMIX, volume porosity, directional surface porosity, distributed resistance, and
distributed heat source (or sink) are used to model the fluid dynamic and thermal charac-
teristics of a system involving complex geometry. The use of directional surface porosity Is
relatively new. lt has greatly facilitated the modeling of flow and heat transfer In aniso-
tropic media and has improved the resolution and accuracy of numerical modeling.

The porous--medium formulation has its foundation built on local volume-averaglng of

the governing partial differential conservation equations. The resulting equations are more
general. Ii"the directional surface porosity is set to equal the volume porosity, the equations
reduce to those for the conventional porous--medium formulation. Furthermore, if the
volume porosity and the directional surface porosity are set to unity, and the distributed
resistances and heat sources are set to zero, then the equations simplify to those of the
continuum formulation. Therefore, we may say that the continuum formulation Is a subset
of the conventional porOus-medium formulation which, in turn, is a subset of the present
porous--medium formulation.

The porous-medium formulation has provided a wider range of applicability of the
COMMIX code and has been successfully used to treat irregular geometries that are often
encountered in engineering applications. With some modification, COMMIX-PPC has the
capability to analyze In great detail

• A single-component system, s!,ch as a
-fuel assembly
-reactor plenum
-piping network,

as well as
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* A multicomponent system, such as a
-reactor vessel

-downcomer and lower plenum.
-cold leg, high-pressure injection system, downcomer.

12.1.2 Geometry Modeling

Unique features related to geometry modeling are

• Identification of a computational cell by a cell number instead of its (iJ, k)

location. All "do loops" are performed with the cell number as an index
instead of the conventional directional indices i,j.k. Consequently, the storage
requirement depends only on the total number of computational cells and not

on the dimension of IMAX x JMAX x KMAX. This is illustrated in Fig. 30 for
the grid arrangement in a two-dimensional piping system. The storage
requirement reduces from 56 for the conventional (i,j,k) method of cell

identification to 14 when the present scheme is used.

• Use of surface arrays to store boundary values at the boundary surface. This

eliminates the need for fictiti, s boundary cells to store boundary values.

• Extra surface to model irregu, , geometry. An irregular surface is one that is
at an angle to a grid plane, lt is an additional surface to the six, or normal,

surfaces (parallel to grid planes) of a computational cell. Heat transfer in the
energy equation and shear stress in the momentum equation pertaining to this
seventh irregular surface are properly accounted for in COMMIX-PPC.

12.1.3 Matrix Solvers

Three matrix solvers are provided inCOMMIX-PPC. They are the

* Successive overrelaxation (SOR) method

• Direct Matrix In;'_rsion Method (DM(M)

* Preconditione, d conjugate gradient (PCG) method.

Th ,se matrix solvers are used for the individual discretized equations (pressure and scalar

transport equations) in the inner iteration loop.

The SOR method and the DMIM are suitable for both symmetric and nonsymmetric

matrices, whereas the PCG method is limited to symmetric matrices only. Thus, the SOR
method and the DMIM are applicable to both the pressure and the scalar transport

equations, whereas the PCG method is limited to the pressure equation only. Both the SOR
and the PCG methods are iterative, whereas the DMIM is a direct solver and does not

involve iteration. In general, if the number of computational cells is less than 1,000, the

DMIM should be used. On the other hand, if the number of computational cells is greater
than 2,000, the SOR or PCG method should be selected.
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Total number of cells = 14
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Fig, 30. Grid arrangement fn a two-dfmenstonal ptpfng system,
fllustratfng storage requirements fn COMMIX-PPC

The three matrix solvers significantly increase the flexibility and efficiency of
COMMIX-PPC for the numerical computation of a wide range of engineering problems.

12.1.4 Multicomponent Capability

A multicomponent capability has been incorporated into the COMMIX-PPC code and
this capability is necessary because the shell side consists, in general, of a mixture of steam
and air. The distributions of steam and air inside a condenser are essential for the evalua-

tion of the performance of a condenser. The presence of air has a significant impact on the
local heat transfer rate. The steam is assumed in the saturated state with its bulk tempera-

ture determined solely by its partial pressure in the mixture. This assumption is quite
reasonable for condenser operation and greatly simplifies calculation.

12.1.5 Shell-Tube-Side Thermal Coupling

Tube-side fluid flow and heat transfer have been developed and incorporated into the
COMMIX-PPC code. The use of one-dlmensional conservation equations of mass, momen-

tum, and energy for tube-side flows greatly reduces the complexity and computer running
time without sacrificing accuracy, lt also facilitates the handling of thermal coupling
between the condensation of vapor on the shell side and forced convection of a shngle--
phase liquid in the tube side.
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12.2 Code Application and Validation

The COMMIX-PPC computer code has been applied to the Maansan nuclear power
plant for calculating condenser performance. The calculation is based on data provided by
the Taiwan Power Company. The data contain the boundary conditions at the inlets and
outlets of the shell and tube sides. The inlet and outlet pressure and temperature of tube--

slde flow are measured, whereas the inlet steam pressure and temperature are calculated
based on measured tube-side information and the designed values of steam mass flow rate,

feed water pump turbine exhaust flow conditions, _tube-slde mass flow rate, and the overall
heat transfer coefficient. The actual air leakage to the condenser is not known. The

velocity, pressure, and temperature distribution are also not available.

Because the appropriate experimental data are not available, validation of the COMMIX-
PPC computer code is not possible. Hopefully, we may be able to obtain experimental data

to validate COMMIX-PPC through cooperation with industrial vendors and government
agencies.

12.3 Future 0evelopments

Future developments of COMMIX-PPC will include the following:

• Tracking down condensates. In the present COMMIX-PPC, the liquid conden-
sate is discarded once steam is condensed. The effects of the motion of the

condensate on the fluid dynamic and heat transfer in the condenser are thus

neglected. Neglecting the presence of condensate, in general, underestimates
the pressure drop. Developing a two-phase model to track down the liquid

fluid and study its effects on condenser performance is needed.

• Valfdating all heat transfer correlations. We are seeking available condenser
experimental data to validate all the heat transfer correlations that are used in

the COMMIX-PPC computer code.

• Quantifying the turbulent vfscosi_ and mass diffusivity. In the present
COMMIX condenser calculation, constant values of turbulent viscosity and mass

diffusivity are used. To improve the accuracy of COMMIX-PPC calculations, the
two-equation turbulence model will be used to quantify turbulent viscosity and
diffusivity.

• Developing an e._icient numerical scheme. The current converging rate is
slow. An efficient and new solution scheme must be developed to speed up
the calculation.

• Improving input and output processing. COMMIX-PPC is a very large
computer code. Consequently, input preparation and output processing often
become tedious. Currently, due to the separation of shell- and tube-side flow

formulations, the graphic capability for the tube-slde is no longer operational.
Further developments and efforts are needed to make COMMIX-PPC a more
user-friendly computer program.
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Appendix:
Structure/Fluid Thermal Interaction

A.1 Introduction

Solid structures partially or totally submerged in a fluid interact with the fluid and
influence momentum distribution. They influence temperature distribution when the
tempe:rature of the solid structures is different from that of the fluid. The structure/fluld

thermal interaction in COMMIX-PPC is modeled by distributed heat sources. Such
interaction consists primarily of heat transfer between a structure and surrounding fluid
and, indirectly, heat transfer within the solid structure.

The transfer of heat to fluid from a structure is calculated by solving the one-
dimensional heat conduction equation for the structure. This assumes that heat conduction
in the other two directions is negligible.

The following features _'e found in the COMMIX thermal-structure model:

• The model considers all internal structures. The input determines the total
number of structures.

* A structure can be planar, cylindrical, or spherical, with either one surface (e.g.,
solid cylinder or sphere) or two surfaces (plane or annular cylinder) thermally
interacting with the surrounding fluid. The axis of the structure can be aligned
with any of the three coordinate axes.

• Each structure can consist of more than one type of material, each separated by
a gap.

• Temperature dependence of thermal conductivity and specific heat of
structures are incorporated.

• The effects of gaps in a structure element are accounted for in the model. The
gap width and heat transfer coefficient across a gap are input parameters,

• The heat source in a structure element is considered in the heat conduction

equation. The heat source can be transient.

• Each structure is divided into a desired number of axial elements. A set of

discretization equations is obtained for each element through the use of proper

boundary conditions. The equations are solved by using the Tri-Diagonal Matrix
Algorithm. The temperature variations in the element and heat transfer from
the element to fluid are calculated.
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A.2 Thermal Structure Modeling

A.2.1 Geometrical Description

To explain the geometrical features of the model, we consider a cylindrical structure
with its axis aligned in the z direction and its length extending over a number of Az
partitions (k levels) as shown in Fig. A. 1. Although the description and subsequent
formulation are for cyllndrlcal-type structures, the model in COMMIX-PPC is also
applicable to spherical and slab-type geometries.

Each Az pa1"tltion of the structure is referred to as a thermal-structure element. Each
element has its own internal temperature distribution as lt interacts with surrounding fluid
cells. Each element has two surfaces, outer and inner. The outer surface interacts

thermally with surrounding fluid. The inner surface can either be adiabatic or interact with

fluid, as shown in Fig. A.2. Each element may interact with no more than one fluid cell per
element, as illustrated in Fig. ,_3.

Figure A.4 shows the cross section of a typical structure element. The outside surface
is designated as Surface 1 and the inside as Surface 2. Each element can be made up of
more than one material. In Fig. A.4, there are three materials. Each material region can be
subdivided into several partitions as shown.

A.2.2 Governing Equation

The transient one-dimensional heat conduction equation is

aT 1_} (l"= -_-b--_(-Aq)+ . (A. 1}pCp-_-

Here, p and Cp are the density and specific heat of the material, _" is the heat source per
unit volume, q is the radial heat flux per unit area, and A is the local cross-sectional area.

A.2.3 Finite-Difference Formulation

Figure A.5 shows the cross section of a typical structure element under consideration.
Each element is divided into a number of material regions and each material region is
subdivided into several partitions. Let Ar be the partition size and L be the total number of
partition cells.

Consider the energy balance of cell l shown in Fig. A.6. The integrated energy equation
for the structure in the control volume of cell l gives

pep Vt (Tt _ Ttn) = -(At+l qt+l- Atqt)+ q" Vr. (A.2)6t
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Frg. A.5. Cross section of a thermal-structure element
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Fig. A.6. Energy balance of a partltWn cell t

Here, Vt is the cell volume. The heat flux qt can be expressed in terms of the overall heat
transfer coefficient (conductance) U t or its reciprocal Rt, the overall thermal resistance,

and a temperature d/fference

qL = U,(T,_,- T,)= ('Ft_L- Tt)/R t • (A.8)

1

_')t- + _ for conduction between two1 (2-_)t solid cells of same material, (A.4)

i for conduction and convection between

1 a fluid cell and a solid cell (this is only when

Ht = R"_ = _+_ convect/on takes place on a surface whose
normal is m the r-direction) (A.5)

1
for conduction between two (A. 6)

- (2A_)/-I + _'_ + (2-_)/ solid ceUs with different materials.
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Here, ), is the thermal conductivity, h is the convection heat transfer coefficient, and hgap is
the gap conductance between the two materials.

Upon substituting Eq. A.3 into A.2 and rearranging, we obtain

(a L+ b t + bt.l)Tt = btTL. l + br.nTr. l + d t , {A. 7}

where

a = pCpV / St, (A.8)
bffi AU = A/R, (A.9)

and

d = _I_'V + aT n . (A. I0)

Here, Tn and T are the temperatures at time t and (t + St), respectively.

Note that At is related to the heat capacity of the structural element, bl is related to the
heat transfer coefficient and area, and d is related to the heat source.

A.2.3.1 Cell Adjacent to Coolant

For the case of Cell 1 (Fig. A.7), adjacent to the fluid, the finite-difference energy
equation is

(al + bl + b2)Tl = biTc_t + b2T2 + dl. (A. 1 I)

Here, al, bl, and dl have the same meaning as a, b, and d in Eqs. A.8-A. 10. Note that bi
includes the convective contribution. Therefore,

bl Al ffi A! . (A. 12)
=R I 'l_'_--_-i+ (_)1

Similarly, at the other end of the thermal structure, Cell L is in contact with fluid and we
have

(a L + b L + bL+I)TL = bLTL_1 + bL.lTcool_+ alL, (A. 13)

where

bL+ I = AL+I = AL.I (A. 14)_. •

A.2.3.2 Cell Adjacent to Different Material

For a ce]] adjacent to a different material cell, as shown In Fig. A.8.

(a t + b_ + bt.,)T L = btTL_I + bt.,TL. , + d t . (A. 15)

4
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Equation A.15 is similar to Eq, A.7. Note that the term b/+l includes the gap resistance.
Thus,

bi+l = At+----L= A¢+l (A. 16)Ar

A.2.3.3 End Cell with Adiabatic Boundary Condition

The existence of a symmetry line (or surface) depends not only on geometry, but also
on thermal conditions. In solid cylindrical or spherical structures, the other end
(symmetry line) has the adiabatic boundary condition. The end cell for this boundary
condition is shown in Fig. A.9. There is no heat transfer, so thermal resistance is infinite
and the term bL+l goes to zero. The final equation, therefore, is

(a L + bL)T L = bLTL..I +dL " (A. 17)

A.2.3.4 Solution of the Oiscretized Equations

We can see from the formulations of the preceding section that there are L number of

equations for L number of unknown temperatures.

• Outside Surface Cell (t = I)

(al + bl + b2)Tl = b2T2 +dl+ bIT_, . (A. 18a}

• Intermediate Cells (l = 2, .*** L-I)

(a t + b t + bt+t)Tt = btTt_ l + bt.IT,.l+d t . (A. 18b)

• Inside Surface Cell (t = L)

(a L + bL + bL.I)T L = bLTL+I + bL+iTtx_ 2 + dL (A. 18c)

ff the inside surface is nonadiabaUc, and

(a L + bL)T L = bLTL_l + dE (A. 18d)

if the inside surface is adiabatic.

Equations A. 18 can be rewritten as

! !

Cl Tl = b 2 T2 + Al (l - I) (A. 19a)

! !

Ct Tt = bf. l "It. l + At (l = 2,...L-I) (A. 19b)

! !

C L T L = bL+ I Tcool 2 + A L (t = L; nonadlabatic) (A. 19c)

! !

C L T L = A L (t = L;adiabatic). (A. 19d)

Here,
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Adiabotic Boundary
.... ,

TL.-I TI.

R-'_

._g.A.9. Cellwith.adiabaticbew_dary

. (/)A t = d L+ btAt.l Ct_ l lt = 2;...LI (A.20a)

and

(/)Ct = at +br + bt+l- b_ Ct_ l (l = 2, ...LI (A.20b)

For l = 1,

!

Al =dl + bl Teooll (A.20c)

and

!

Cl = al + bx + b_ . (A.20d)

The inside-surface cell temperature fs first calculated from Eq. A. 19c or A. 19d. Then, the
rest of the temperatures are computed with Eqs. A. 19a and A. 19b.

A.2.3.5 Heat Transfer to Adjacent Fluid

Once the temperature d/strlbuUon hn a structure element is determined, the heat
transfer rate to the adjacent fluid can be computed from

_[ = _A--J-(Tt- Tr)
Rf

U1Al (T,- "If) l'or the outside surface ('If = Tmol,) (A.21)

and
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q= - T,)
RL.I

= UL+I (TL- Tf) for the inside surface (Tr = Tcool2), (A.22)

where _ is the heat transfer rate and U is the overall heat transfer coefficient given by

U_I I_ = , (A.23)
R l

A is the surface area, TI and TL are the temperatures of the edge partition cells, and Tf is
the fluid temperature, either Tcooll or Tcool2. For the present condenser modeling, the
heat transfer rate Clin Eq. A.21 is used to calculate the steam condensation rate in the shell
side and the heat transfer rate cI in Eq. A.22 is the source term for the tube-side energy
equation. Because steam is assumed to always be in the saturated condition, Tcoollis known
and is determined by the local pressure in the shell side. Tcool2 is not known a priori and
is determined by a consideration of the interaction between the thermal structure and the
inside and outside fluid. However, for general engineering applications, the heat transfer

rate cl in Eqs. A.21 and A.22 are specified as distributed heat source Q in the energy
equation. In this case, we have adopted an implicit treatment of the interaction between
the fluid and the thermal structure to increase the speed of convergence in COMMIX-PPC.

The integrated (over the main control volume) heat source term can be expressed as

_)_I (ho_ h_) (A.24)
Sh dxdydz = Vo{_ + _

where Vo is the fluid volume, Q is the rate of heat generation in the fluid per unit fluid
volume, cI is the heat transfer rate from the thermal structure to the fluid, h_ is the
enthalpy of the fluid cell adjacent to the thermal structure at old time n, and hD is the
enthalpy of the fluid cell adjacent to the thermal structure at new time n+l. The
superscript n+l is omitted for convenience. Equation 5.27 can be written for the energy
equation as

S h dxdydz = Sch Vo + Sph V 0 h 0 • (A.25)

Comparing Eq. A.24 to Eq. A.25, one has

Seh --_ Q - h_ _h_-_'o/Vo, (A.26)

and

/'v
Sph --- _--_0/ 0 '

(A.27)

In writing Eqs. A.26 and A.27, we have separated the term containing the new time value hD
from the rest of the terms that are known. When Eq. A.25 is substituted into the energy
equation, the term containing hD can be combined into the left side of the general
discretized finite-volume equation (Eq. 5.35). Thus, the effect of the thermal structure has
been accounted for when the energy equation is solved. This is what we mean by the
implicit treatment of the interaction between the fluid and the thermal structure.
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However, we must derive an expression for (_)_I/_)ho)so that the two quantities Sch and Sph

given by Eqs. A.26 and A.27 can be calculated.

Consider the case where only the outside surface is in contact with the fluid. At old

time n, Eq. A.21 can be written as

_[_= UlAl(Tln- Tc_), (A.28)

where Tl isthe temperatureforCellI and Tcl isthecoolanttemperatureadjacentto Cell
1. At the new time n+1,

Ch = Ul AI(TI- Tcl)

: Ta)+(,,-

A _ aT, )(h o h_)/Cp, (A.29)=_' +u, ,_,_,_,-1 - .

where ho - h_) = Cp I (Ta- 'Ici), andCp I is the specific heat of the fluid adjacent to the
thermal structure. In Eq. A.29, the variables cb, TI, Tc l, and ho represent the new time
value and we have omitted the superscript n+ I for these variables. From Eq. A.29, we can

obtain the following approximate expression for (_)_I/_)ho},

= ho _ = "_Pl _cl - l_. (A.30)

From Eq. A. 19a,

_T! = 1 _T2 _)A,
_Tc, C-'_l b2_ + . (A.31)

From Eq. A.20c.

_A'_ = bL " {A.32)
aTcl

Substituting Eqs. A.31 and A.32 into Eq. A.30,

_)h =  rc---7+ • (A.33)

(_Yr2/_Yrcl) can be calculated in terms of the following two recurrence equations:

_Yrt = bt+I 1A.341
_ro_ _rcIJ

and
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t !

! •

_)I"ei Ct., aTe_ [A.35)

which are. obtahned from Eqs. A. 19c and A.20a. From Eq. A. 19c, we have
!

!

for adiabatic and nonad/abat/c cases.

In summary, {a_ll/aho} can be calculated analyt/cally by using Eqs. A.32-A.36 when the
outside surface of the thermal structure Is m contact with the fluid.

If only the inside surface of the thermal structure Is in contact with the fluid, an
equation similar to Eq. A.30 can be derived:

aho_=ho h_ = C_ k_rcz 1 . 1A.371

(_rL/FFc2) can be calculated by using Eq. A. 19c:

d'_T_ CL
t

where CLIS given by Eq. A.20b for t = L. The recurrence formula, Eq. A.20b, can also be!

used to evaluate CL..I:

t 2 ! "

C, = a, + b, + b,., - (b,/C,.l)(t = 2.***.L-1) . (A.39b)

!

because Cl is known from Eq. A.20d. Thus, ff only the inside surface of the thermal
structure is m contact with the fluid. (a_h,/al_} can be calculated analytically by using Eqs.
A.37, A.38, A.20b, and A.20d.
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