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ABSTRACT 
We measure the differential jet multiplicity distribution iu e*t~ annihilation with the 
Mark II detector. This distribution is compared with the second order QCD prediction 
and a, is determined to be 0.123 ± 0.009 ± Q.005 nl y/i at Mz (nt SLC) and O.M9± 
0.002 ±0.00? at /̂J = 29 GcV {at PEP), Tlie running of a, between these two center of 
maw energies is consistent with the QCD prediction. The Q7 dependence or the Ajfg 
determination is also discussed. 

l . INTRODUCTION 

In determining \jfg (or at), it is better lo use observables which are insensitive 
to fragmentation and higher order QCD efforts. I» Ihat respect, the commonly used 
obscrvabtcs are (I) the total hadronk cross section {atat), (2) the energy-energy -
correlation asymmetry (EECA) and (3) the three-jct-cvent fraction. However, atot 

is not easy to measure precisely enough to determine A jf$ because the QCD effect is 
small (approximately 5% of otot)- The EECA is expected to be relatively insensitive 
to effects associated with fragmentation. However, it turns out that the efforts art-
not so small3 and hence extensive studies of these effects arc needed to estimate 1 he 
corresponding systematic errors.3 The three-jet event fraction appears relatively 
insensitive to fragmentation effects, if one chooses a reasonable jet algorithm and 
if one deals only with hard three-jet events.4 However, the actual dependence of llu> 
three-jct event fraction on the jet resolution parameter (&ui) used to select hard 
thxee-jcl events is not statistically easy to handle. This problem can be solved by 
using a differential jet multiplicity as described below, 

* This work was supported in part by Department of Energy rniumrl D&ACTCI-TCSrWil'i 
(SI.AC) 
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2. DIFFERENTIAL J E T MULTIPLICITY 

To define the number of jcls (jet multiplicity) in an event we use the algorithm 
proposed by the .IAD)'* collaboration.5 The scaled invariant mass nil-off (jifcuf) is 
used for tlie jet resolution in ih<> algoiithm. The algorithm proceeds aa follows: 
For each particle (duster) pair i,j, the scaled invariant mass 

2g . f i J ( l - «my i j ) 
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is calculated, where Ki and Ej are the energy of the particles (clusters) and Xij 
is the angle between them. The particle (or cluster) pair with the smallest yi3 is 
combined by adding the 4-momcnU of the two particles (clusters) i and j to form 
a new cluster i + j (;I{'+ J = pj.' + ; / ' ) . The above clustering procedure is repeated 
until all the clusters satisfy the condition ytt > yc„t where yC9t is referred to as the 
jet resolution. The three-jet fraction h(*icut) is defined to be the number of threc-
jct events obtained with the algorithm, divided by the tote! number of hadronic 
events. The two-jet fraction hii/tMi) and the four jet Traction fj[{ytui) are similarly 
defined. 

This jet algorithm has the important feature that mapping from parton jets to 
hadron jets in Monte Carlo hadronic events is close to one-to-one for reasonably 
large y c wi (> 0.04) values.4 However, it is not easy to extract « , by fitting the 
Ml/cat) (or fiiVrut)) distribution because the same events contribute at different 
yeat values and one must take into account all the correlations in '.his distribution. 

To overcome this difficulty, a differential jet multiplicity is defined in the fol­
lowing way. The clustering is tcrminaUid when the number or jets has reached a 
pre-selectcd value ti, irrespective of Uij values. For each event, particles are as­
signed to rj-jets using this method and yn is defined to be the minimum value of 
the scaled invariant mass ijit = M^/E^ (i ^ j , itj = l,2,...,n). I" other words, 
yn is the yrui value corresponding to the transition from w-jet to (n — l)-jet for a 
given event. The distribution function of yu is denoted </« (.'/«)• Integrating <?J(.VJ) 
over jfc from 0 to ynt, one recovers /l>(yctii) because all the events with #<, < yc„, 
arc categorized as Iwo-jct events for the give ..solution j / e w | . 

Hence. *Mm)\i**v~> - I T - hbjc*t)< 
"Scut 

Similarly, */i(7/i)lj/.=wr-. = * \Mvrut) + /l(Wcui)]. 
0}lcut 

Note that <mly the leading term (« n'i) is available for g.\ ill second ordrr QCD 
calculations. Similarly. if.i(.i/5)|tfl=JFrB, = 0 in second order. Therefore we restrict 
our analysis lo the differeutial jet fraction #,i0/.i) to determine o,,. 
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3. EXPERIMENTAL METHODS 

MullHiadron events are selected by nvjuiiijig that the number of rharged lrn<ks 
is at least sewn at SLO [at least five at 1'Kl1] and thai the sum of charged and neu­
tral particle energies (i-V*) i.s greater ili;m 1)."»0 ,/s ,il SLC |0,55 ^ ni (»KPJ,* The 
detection efficiency for uiultiliadrou events is estimated using QCD-based Monte 
Carlo generators »-"* to be U.8u±0.02 at SLC |IU»1 ±U.O? at PKPJ- A total of 391 
events from the SLC data and 7:j4S events from the PKI* data pass the selection 
cuts. 

Second order pertuvhiitive QCD predictions Arc directly compared with the 
measured <» distribution for determining oj . Detector effects, biases due to event 
selection and initial state radiation effects are corrcrtod with bin-by-bin correction 
factors. In the range 0.04 < #3 < 0.14, the corrections arc typically less than 5% 
for SLC data {10% for PEP data). The hrn-to-uin systematic errors due to the 
variation of the correction factors for various models 8 ~ 1 0 are tes» than 4% at SLC 
[3% at PEP]. These errors .slightly increase with jrj. The overall normalization 
uncertainty in the correction factors is estimated to be 2% at SIX [3% at PEP]. 
The corrected g-jf^iyt) distributions for the two data .samples are shown in Fig.l. 

Pig.l: 
The experimental distributions of 1/3 at 
(a) Jt = 01 GcV, ami {(1) ^ = 20 CleV. 
Only the si.-uislicnl errors art; indicated 
in the figures. The curves below jt» = 
0.14 indicate the QCD predictions with 
AJJ^ =0.1 GeV, 0.3 OeV and 0.5 CcV 
for Q1 = a. The j / a range used in the fit 
for the determination of ft, i« defined by 
like two dashed Iilira. The curves above 
io = 0.14 arc extrapolated from the QCD 
predictions in I lie low ya range. 

. . '3 ..... 

t In order to reduce the bins due to initial stale radiation and background from two photon 
processes for the PEP data, event* with Urge missing energy or with a Inrge energy photon 
are eliminated by applying additional cuts described in lU'f.tf. For the ^-resonance data 
such effects are small, lienre wi> do not apply imy cuts other Uimi t.hotu> mentioned above.7 
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FII; a-
Tin- r.-ilio .vf;"r"""/(I:'i'"'""" ! U i , l fimclioii 
"f ?h f'>r parlous and i>* li.idroii* (Af­
ter (rn>.r,mi,itl.ilioii nnd drrny of misLalde 
panicle) AI n̂) ^ = •)] TifV, Jitui [\t) 
\/s = 'J!l CicV. Tin* Miliil curvr corre­
spond), to tin* Lmul ]tki>i|i-l lta.siMl oil C*{«>jj) 
matrix elwiu-iit and lit*- tfiu-lifd curve Ui 
the Liiiul parton shower n«nM, Tint crroi 
bars iixlicaif ilir Moiih' Curio stntislicnl 
errors. 

Corrections are not applied for fragmentation ('fleets. Rather, they are ac­
counted for as systematic errors. Iti Pig/2, the ratio $>T,ou*l$'d™" is shown as 
a function of 1/3 for two models. 8 , 1 0 In the range 0.01 < 1/3 < 0.M, lhe bin-to-bin 
systematic errors associated with fragmentation effects arc 3-5% at SLC [5-10% al 
PEP]. The normalization uncertainty is estimated to he 2% at SLC [4% at PEP], 
4. RKSUI.TS (RUNNING « f ) 

The a , value is obtained from a fit of the corroded g$[y&) distribution to the 
0{aj) QCD prediction.11 The fit is performed within the range of 0.04 < j« < 0.14 
using a likelihood method which art-omits for the .slali.stiral errors and the various 
systematic errors. The lower y3 limit of the fitted range is chosen in order to 
limit the fragmentation effects, while the upper limit arises only because the QCD 
prediction for J/3 > 0.1'I is not available in Kef.ll. Choosing the rcnormalization 
point Q2 to be a, we obtain 

a, = 0.123 ± 0.()0<) ± 0.00,-i at SLC, 
o, « 0.149 ± 0.002 ± 0.007 at PEP. 

0.2S 

iao 150 
(GeV) 

300 

Fig4: 
The strong coupling w,{Q2 = s) M a 
function of \Js- The errors include statis­
tical and systematic uncertainties added 
in quadrature. Also gliowit arc* the ex­
trapolations of the a, measurement at. 
yfs = 2D (irV to higher enrrgics using 
the formula of Ref.12, or asriutniiig a con­
stant n,. The dotted lines indicate the ex-
trapol.ttion of the measured n, ± Iff from 
2!) 0.-V. 

The running of a., from 29 O V to ill CeV is consistent with the QCD predic-
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lion, as shown in Fig.3. The running of a, with Q 3 is governed by the Renormal-
izatton Group Equation (RGE) which, to second order in a3> is given by 

d £ = -<:)2(i + 0 d\nQ22x V 2 J T ' V 12JT 

The coefficients bo and 6] do not depend on the rcnormalizatioii scheme chosen, 
hence they represent fundamental physical quantities. Denoting by n/ the effective 
number of flavors at a given Q2, QCD predicts 60 = (33 - 2n/)/6 and 61 = 
(153 - 19n/)/(33 - 2ny). The RGE can be integrated to express ba in terms of 
our two measurements of the coupling constant of 1* 7 and a£EP and of the InQ2 

variation AI11Q2 = 2 In (91/29) = 2.29. One gets 

We obtain 60 = $Atf\ where the errors take into account the partial cancellation 
of the normalization uncertainties. This value, which is almost independent of fri, 
agrees with the QCD prediction of bo = 3.83 for » / = 5. 

To express the a , measurements in terms of the QCD scale parameter Ajy^, 
we use the approximate solution of the RGE given in Ref.12. We obtain A-py — 
0.29ljJ:|Jij};Ji GeV at SLC, and \ m = 0.28t$$j$$ GeV at PEP, in agreement 
with the value 0.33 ±0.04 ±0.07 GeV previously obtained using the energy-euergy-
correlation by Mark II at 29 GeV. 3 

5. Q2 DKPENIH;NCF: OF A ^ 

In finite order pcrturbalivc QCD. the predictions depend on (In- renarmal-
tzation scheme [RS) and on the tcnormalizatiun point {Q2). Therefore the \QC1) 
value, which is extracted from the data using finite order QCI) predictions, depends 
on both the US and IheQ 2 . Triggered by the work or Kramer and Lampe. u several 
experimental papers were published in an attempt to optimize Q1 for the deler-
urination of A^yy. 1* - 1 ' The simultaneous determination of Q* and ATTTTJ using JI i 
imdtiplitiiy favors wry small Qr values. 1 6 ' 1 7 but the resulth are very sensitive to 
pcrtuibative QC'D predictions in the very soft region where the *••»' of the serond 
order term is large compared to the first order term (i.e. where the 0{o'j) pei. urlia-
tive expansion is not reliable). Therefore the results of simultaneous deLerminaiicn 
of Q2 and Aj,^ would be based on the instability of the O(n'i) perturbative ex­
pansion in the infrared region, and hence is highly questionable- If we restrict 
ourselves only in the region where wc expect the fragmentation and higher onler 
QCD effects to lie small, ATTTJ* and Q~ cannot be determined independently. l,»j 
example, using yj(ueut) in the range 0.0-1 < #3 < 0.14. wheit; 0(n2) perturhaiive 
QCD works well, the resultant one sigma contour in the \-/j^-Q' plane is a hand 
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along a curve starting from A^rrj = 0.1 GeV at Q2 = (3 GeV) 2 and extending to 
Aj/s = 2 - 3 G e V a t Q2 - ( 1 0 0 ° GeV) 2 . 

In the second order calculations, difference of the predictions for different R^'s 
can be absorbed into the l Q 2 ambiguity*.1 8 Therefore */?5 ambiguity' and Q* 
ambiguity' are degenerated, to the C?(a~). A reasonable rcnormalizalion point Q2 

must be chosen as we choose the "MS scheme for RS* 

Several prescriptions have been proposed to choose a particular value of 
QI 19-2J p o r t ] l e p U r p 0 s e 0 f illustrating and exploring the effect of the choice of 
Q2

y we use the Brodsky-Lepage-Mackenzic (BLM) method 3 1 to eliminate the Q 2 

ambiguity for g$ at each yz value. In this picture, the source of the running aa 

is the vacuum polarization of gluons (in analogy with QED), hence Q2 might be 
the typical momentum scale involved in the vacuum polarization loops; the energy 
scale is related to the allowable invariant mass (virtualily) of gluons, which can be 
as small as a few GeV. The choice of Q~ depends on the kinematica) variable J/J 
because the gluon virtualily depends on yj . The Q value prescribed by the BLM 
method (<?*) is A GeV [1.3 GeV] at y3 = 0.05 and increases to 6 GeV |2.0 GeV] 
at y3 ~ 0.10 for y/s = 91 GoV \y/i = 29 GeV]. Choosing Q2 = (Q*) 2 at each 
value of t/3 and y/s, and » / values appropriate to the small Q* values (nj = A for 
SLC and nj = 3 for PEP), the A m values obtained using the BLM method are 
° - , 7 1 S C S J B G e V a l S l C *« • 017+H"l*U;o3 CoV at PKP. These A ^ values are 
smaller than the values which arc determined with Q2 = ,<i. 
0. CONCLUSIONS 

We have presented the measurement of the coupling strength of the strong 
interaction in e + c ~ annihilation at y/s R= MX (SLC) and at v/s = 29 GeV (PEP) 
using the differential jet multiplicity J/J. The method is relatively insensitive to frng-
mentalion effects and statistically easy to handle. In the framework of second order 
QCD calculations and for Q'1 = a, the measured values of o , are 0.]'>3±O.OOy±0.005 
at y/i = 91 GeV and 0.M9 ± 0.002 ± 0.1)07 nl ^ - *2» GeV. Tin- miming of n, 
from 2f) GeV to S)l GeV is seen and is ronsistenl with the Q01> ]>rediclion. The 
corresponding values of the QC'D scale parameter an- A J J # - n-2U^[I;i5iII;iG

 f ' p ^ 
at SLC, and A ^ ^ 0 . 2 8 + ^ + " $ GVV at. PKP. Kor ronipnris..n. results" have been 
also presented al considerably smaller values of the rriiorniiili^ilioii point (Q J ) . as 
suggested, for «*x;unple, by the Brodsky Lepage-Mar-ken/ie method. 

* Conventionally, Q3 = ? - q*, K , is rlioseii for t*r.~ collision ami Q'* = -q%. for d**ej> 
inelastic luplon-mirWii sciUleriiig. IJowi-v r̂, I how chinas arc not ilirrctly conuerti.-tl lo 
tin: qqg wriex where a, should he determined. 
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